1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineSizeOpts.h" 46 #include "llvm/CodeGen/TailDuplicator.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Allocator.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <memory> 69 #include <string> 70 #include <tuple> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "block-placement" 77 78 STATISTIC(NumCondBranches, "Number of conditional branches"); 79 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 80 STATISTIC(CondBranchTakenFreq, 81 "Potential frequency of taking conditional branches"); 82 STATISTIC(UncondBranchTakenFreq, 83 "Potential frequency of taking unconditional branches"); 84 85 static cl::opt<unsigned> AlignAllBlock( 86 "align-all-blocks", 87 cl::desc("Force the alignment of all blocks in the function in log2 format " 88 "(e.g 4 means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 92 "align-all-nofallthru-blocks", 93 cl::desc("Force the alignment of all blocks that have no fall-through " 94 "predecessors (i.e. don't add nops that are executed). In log2 " 95 "format (e.g 4 means align on 16B boundaries)."), 96 cl::init(0), cl::Hidden); 97 98 // FIXME: Find a good default for this flag and remove the flag. 99 static cl::opt<unsigned> ExitBlockBias( 100 "block-placement-exit-block-bias", 101 cl::desc("Block frequency percentage a loop exit block needs " 102 "over the original exit to be considered the new exit."), 103 cl::init(0), cl::Hidden); 104 105 // Definition: 106 // - Outlining: placement of a basic block outside the chain or hot path. 107 108 static cl::opt<unsigned> LoopToColdBlockRatio( 109 "loop-to-cold-block-ratio", 110 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 111 "(frequency of block) is greater than this ratio"), 112 cl::init(5), cl::Hidden); 113 114 static cl::opt<bool> ForceLoopColdBlock( 115 "force-loop-cold-block", 116 cl::desc("Force outlining cold blocks from loops."), 117 cl::init(false), cl::Hidden); 118 119 static cl::opt<bool> 120 PreciseRotationCost("precise-rotation-cost", 121 cl::desc("Model the cost of loop rotation more " 122 "precisely by using profile data."), 123 cl::init(false), cl::Hidden); 124 125 static cl::opt<bool> 126 ForcePreciseRotationCost("force-precise-rotation-cost", 127 cl::desc("Force the use of precise cost " 128 "loop rotation strategy."), 129 cl::init(false), cl::Hidden); 130 131 static cl::opt<unsigned> MisfetchCost( 132 "misfetch-cost", 133 cl::desc("Cost that models the probabilistic risk of an instruction " 134 "misfetch due to a jump comparing to falling through, whose cost " 135 "is zero."), 136 cl::init(1), cl::Hidden); 137 138 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 139 cl::desc("Cost of jump instructions."), 140 cl::init(1), cl::Hidden); 141 static cl::opt<bool> 142 TailDupPlacement("tail-dup-placement", 143 cl::desc("Perform tail duplication during placement. " 144 "Creates more fallthrough opportunites in " 145 "outline branches."), 146 cl::init(true), cl::Hidden); 147 148 static cl::opt<bool> 149 BranchFoldPlacement("branch-fold-placement", 150 cl::desc("Perform branch folding during placement. " 151 "Reduces code size."), 152 cl::init(true), cl::Hidden); 153 154 // Heuristic for tail duplication. 155 static cl::opt<unsigned> TailDupPlacementThreshold( 156 "tail-dup-placement-threshold", 157 cl::desc("Instruction cutoff for tail duplication during layout. " 158 "Tail merging during layout is forced to have a threshold " 159 "that won't conflict."), cl::init(2), 160 cl::Hidden); 161 162 // Heuristic for aggressive tail duplication. 163 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 164 "tail-dup-placement-aggressive-threshold", 165 cl::desc("Instruction cutoff for aggressive tail duplication during " 166 "layout. Used at -O3. Tail merging during layout is forced to " 167 "have a threshold that won't conflict."), cl::init(4), 168 cl::Hidden); 169 170 // Heuristic for tail duplication. 171 static cl::opt<unsigned> TailDupPlacementPenalty( 172 "tail-dup-placement-penalty", 173 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 174 "Copying can increase fallthrough, but it also increases icache " 175 "pressure. This parameter controls the penalty to account for that. " 176 "Percent as integer."), 177 cl::init(2), 178 cl::Hidden); 179 180 // Heuristic for tail duplication if profile count is used in cost model. 181 static cl::opt<unsigned> TailDupProfilePercentThreshold( 182 "tail-dup-profile-percent-threshold", 183 cl::desc("If profile count information is used in tail duplication cost " 184 "model, the gained fall through number from tail duplication " 185 "should be at least this percent of hot count."), 186 cl::init(50), cl::Hidden); 187 188 // Heuristic for triangle chains. 189 static cl::opt<unsigned> TriangleChainCount( 190 "triangle-chain-count", 191 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 192 "triangle tail duplication heuristic to kick in. 0 to disable."), 193 cl::init(2), 194 cl::Hidden); 195 196 extern cl::opt<unsigned> StaticLikelyProb; 197 extern cl::opt<unsigned> ProfileLikelyProb; 198 199 // Internal option used to control BFI display only after MBP pass. 200 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 201 // -view-block-layout-with-bfi= 202 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 203 204 // Command line option to specify the name of the function for CFG dump 205 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 206 extern cl::opt<std::string> ViewBlockFreqFuncName; 207 208 namespace { 209 210 class BlockChain; 211 212 /// Type for our function-wide basic block -> block chain mapping. 213 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 214 215 /// A chain of blocks which will be laid out contiguously. 216 /// 217 /// This is the datastructure representing a chain of consecutive blocks that 218 /// are profitable to layout together in order to maximize fallthrough 219 /// probabilities and code locality. We also can use a block chain to represent 220 /// a sequence of basic blocks which have some external (correctness) 221 /// requirement for sequential layout. 222 /// 223 /// Chains can be built around a single basic block and can be merged to grow 224 /// them. They participate in a block-to-chain mapping, which is updated 225 /// automatically as chains are merged together. 226 class BlockChain { 227 /// The sequence of blocks belonging to this chain. 228 /// 229 /// This is the sequence of blocks for a particular chain. These will be laid 230 /// out in-order within the function. 231 SmallVector<MachineBasicBlock *, 4> Blocks; 232 233 /// A handle to the function-wide basic block to block chain mapping. 234 /// 235 /// This is retained in each block chain to simplify the computation of child 236 /// block chains for SCC-formation and iteration. We store the edges to child 237 /// basic blocks, and map them back to their associated chains using this 238 /// structure. 239 BlockToChainMapType &BlockToChain; 240 241 public: 242 /// Construct a new BlockChain. 243 /// 244 /// This builds a new block chain representing a single basic block in the 245 /// function. It also registers itself as the chain that block participates 246 /// in with the BlockToChain mapping. 247 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 248 : Blocks(1, BB), BlockToChain(BlockToChain) { 249 assert(BB && "Cannot create a chain with a null basic block"); 250 BlockToChain[BB] = this; 251 } 252 253 /// Iterator over blocks within the chain. 254 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 255 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 256 257 /// Beginning of blocks within the chain. 258 iterator begin() { return Blocks.begin(); } 259 const_iterator begin() const { return Blocks.begin(); } 260 261 /// End of blocks within the chain. 262 iterator end() { return Blocks.end(); } 263 const_iterator end() const { return Blocks.end(); } 264 265 bool remove(MachineBasicBlock* BB) { 266 for(iterator i = begin(); i != end(); ++i) { 267 if (*i == BB) { 268 Blocks.erase(i); 269 return true; 270 } 271 } 272 return false; 273 } 274 275 /// Merge a block chain into this one. 276 /// 277 /// This routine merges a block chain into this one. It takes care of forming 278 /// a contiguous sequence of basic blocks, updating the edge list, and 279 /// updating the block -> chain mapping. It does not free or tear down the 280 /// old chain, but the old chain's block list is no longer valid. 281 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 282 assert(BB && "Can't merge a null block."); 283 assert(!Blocks.empty() && "Can't merge into an empty chain."); 284 285 // Fast path in case we don't have a chain already. 286 if (!Chain) { 287 assert(!BlockToChain[BB] && 288 "Passed chain is null, but BB has entry in BlockToChain."); 289 Blocks.push_back(BB); 290 BlockToChain[BB] = this; 291 return; 292 } 293 294 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 295 assert(Chain->begin() != Chain->end()); 296 297 // Update the incoming blocks to point to this chain, and add them to the 298 // chain structure. 299 for (MachineBasicBlock *ChainBB : *Chain) { 300 Blocks.push_back(ChainBB); 301 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 302 BlockToChain[ChainBB] = this; 303 } 304 } 305 306 #ifndef NDEBUG 307 /// Dump the blocks in this chain. 308 LLVM_DUMP_METHOD void dump() { 309 for (MachineBasicBlock *MBB : *this) 310 MBB->dump(); 311 } 312 #endif // NDEBUG 313 314 /// Count of predecessors of any block within the chain which have not 315 /// yet been scheduled. In general, we will delay scheduling this chain 316 /// until those predecessors are scheduled (or we find a sufficiently good 317 /// reason to override this heuristic.) Note that when forming loop chains, 318 /// blocks outside the loop are ignored and treated as if they were already 319 /// scheduled. 320 /// 321 /// Note: This field is reinitialized multiple times - once for each loop, 322 /// and then once for the function as a whole. 323 unsigned UnscheduledPredecessors = 0; 324 }; 325 326 class MachineBlockPlacement : public MachineFunctionPass { 327 /// A type for a block filter set. 328 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 329 330 /// Pair struct containing basic block and taildup profitability 331 struct BlockAndTailDupResult { 332 MachineBasicBlock *BB; 333 bool ShouldTailDup; 334 }; 335 336 /// Triple struct containing edge weight and the edge. 337 struct WeightedEdge { 338 BlockFrequency Weight; 339 MachineBasicBlock *Src; 340 MachineBasicBlock *Dest; 341 }; 342 343 /// work lists of blocks that are ready to be laid out 344 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 345 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 346 347 /// Edges that have already been computed as optimal. 348 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 349 350 /// Machine Function 351 MachineFunction *F; 352 353 /// A handle to the branch probability pass. 354 const MachineBranchProbabilityInfo *MBPI; 355 356 /// A handle to the function-wide block frequency pass. 357 std::unique_ptr<MBFIWrapper> MBFI; 358 359 /// A handle to the loop info. 360 MachineLoopInfo *MLI; 361 362 /// Preferred loop exit. 363 /// Member variable for convenience. It may be removed by duplication deep 364 /// in the call stack. 365 MachineBasicBlock *PreferredLoopExit; 366 367 /// A handle to the target's instruction info. 368 const TargetInstrInfo *TII; 369 370 /// A handle to the target's lowering info. 371 const TargetLoweringBase *TLI; 372 373 /// A handle to the post dominator tree. 374 MachinePostDominatorTree *MPDT; 375 376 ProfileSummaryInfo *PSI; 377 378 /// Duplicator used to duplicate tails during placement. 379 /// 380 /// Placement decisions can open up new tail duplication opportunities, but 381 /// since tail duplication affects placement decisions of later blocks, it 382 /// must be done inline. 383 TailDuplicator TailDup; 384 385 /// Partial tail duplication threshold. 386 BlockFrequency DupThreshold; 387 388 /// True: use block profile count to compute tail duplication cost. 389 /// False: use block frequency to compute tail duplication cost. 390 bool UseProfileCount; 391 392 /// Allocator and owner of BlockChain structures. 393 /// 394 /// We build BlockChains lazily while processing the loop structure of 395 /// a function. To reduce malloc traffic, we allocate them using this 396 /// slab-like allocator, and destroy them after the pass completes. An 397 /// important guarantee is that this allocator produces stable pointers to 398 /// the chains. 399 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 400 401 /// Function wide BasicBlock to BlockChain mapping. 402 /// 403 /// This mapping allows efficiently moving from any given basic block to the 404 /// BlockChain it participates in, if any. We use it to, among other things, 405 /// allow implicitly defining edges between chains as the existing edges 406 /// between basic blocks. 407 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 408 409 #ifndef NDEBUG 410 /// The set of basic blocks that have terminators that cannot be fully 411 /// analyzed. These basic blocks cannot be re-ordered safely by 412 /// MachineBlockPlacement, and we must preserve physical layout of these 413 /// blocks and their successors through the pass. 414 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 415 #endif 416 417 /// Get block profile count or frequency according to UseProfileCount. 418 /// The return value is used to model tail duplication cost. 419 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { 420 if (UseProfileCount) { 421 auto Count = MBFI->getBlockProfileCount(BB); 422 if (Count) 423 return *Count; 424 else 425 return 0; 426 } else 427 return MBFI->getBlockFreq(BB); 428 } 429 430 /// Scale the DupThreshold according to basic block size. 431 BlockFrequency scaleThreshold(MachineBasicBlock *BB); 432 void initDupThreshold(); 433 434 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 435 /// if the count goes to 0, add them to the appropriate work list. 436 void markChainSuccessors( 437 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 438 const BlockFilterSet *BlockFilter = nullptr); 439 440 /// Decrease the UnscheduledPredecessors count for a single block, and 441 /// if the count goes to 0, add them to the appropriate work list. 442 void markBlockSuccessors( 443 const BlockChain &Chain, const MachineBasicBlock *BB, 444 const MachineBasicBlock *LoopHeaderBB, 445 const BlockFilterSet *BlockFilter = nullptr); 446 447 BranchProbability 448 collectViableSuccessors( 449 const MachineBasicBlock *BB, const BlockChain &Chain, 450 const BlockFilterSet *BlockFilter, 451 SmallVector<MachineBasicBlock *, 4> &Successors); 452 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, 453 BlockFilterSet *BlockFilter); 454 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, 455 MachineBasicBlock *BB, 456 BlockFilterSet *BlockFilter); 457 bool repeatedlyTailDuplicateBlock( 458 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 459 const MachineBasicBlock *LoopHeaderBB, 460 BlockChain &Chain, BlockFilterSet *BlockFilter, 461 MachineFunction::iterator &PrevUnplacedBlockIt); 462 bool maybeTailDuplicateBlock( 463 MachineBasicBlock *BB, MachineBasicBlock *LPred, 464 BlockChain &Chain, BlockFilterSet *BlockFilter, 465 MachineFunction::iterator &PrevUnplacedBlockIt, 466 bool &DuplicatedToLPred); 467 bool hasBetterLayoutPredecessor( 468 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 469 const BlockChain &SuccChain, BranchProbability SuccProb, 470 BranchProbability RealSuccProb, const BlockChain &Chain, 471 const BlockFilterSet *BlockFilter); 472 BlockAndTailDupResult selectBestSuccessor( 473 const MachineBasicBlock *BB, const BlockChain &Chain, 474 const BlockFilterSet *BlockFilter); 475 MachineBasicBlock *selectBestCandidateBlock( 476 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 477 MachineBasicBlock *getFirstUnplacedBlock( 478 const BlockChain &PlacedChain, 479 MachineFunction::iterator &PrevUnplacedBlockIt, 480 const BlockFilterSet *BlockFilter); 481 482 /// Add a basic block to the work list if it is appropriate. 483 /// 484 /// If the optional parameter BlockFilter is provided, only MBB 485 /// present in the set will be added to the worklist. If nullptr 486 /// is provided, no filtering occurs. 487 void fillWorkLists(const MachineBasicBlock *MBB, 488 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 489 const BlockFilterSet *BlockFilter); 490 491 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 492 BlockFilterSet *BlockFilter = nullptr); 493 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 494 const MachineBasicBlock *OldTop); 495 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 496 const BlockFilterSet &LoopBlockSet); 497 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 498 const BlockFilterSet &LoopBlockSet); 499 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 500 const MachineBasicBlock *OldTop, 501 const MachineBasicBlock *ExitBB, 502 const BlockFilterSet &LoopBlockSet); 503 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 504 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 505 MachineBasicBlock *findBestLoopTop( 506 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 507 MachineBasicBlock *findBestLoopExit( 508 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 509 BlockFrequency &ExitFreq); 510 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 511 void buildLoopChains(const MachineLoop &L); 512 void rotateLoop( 513 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 514 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 515 void rotateLoopWithProfile( 516 BlockChain &LoopChain, const MachineLoop &L, 517 const BlockFilterSet &LoopBlockSet); 518 void buildCFGChains(); 519 void optimizeBranches(); 520 void alignBlocks(); 521 /// Returns true if a block should be tail-duplicated to increase fallthrough 522 /// opportunities. 523 bool shouldTailDuplicate(MachineBasicBlock *BB); 524 /// Check the edge frequencies to see if tail duplication will increase 525 /// fallthroughs. 526 bool isProfitableToTailDup( 527 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 528 BranchProbability QProb, 529 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 530 531 /// Check for a trellis layout. 532 bool isTrellis(const MachineBasicBlock *BB, 533 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 534 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 535 536 /// Get the best successor given a trellis layout. 537 BlockAndTailDupResult getBestTrellisSuccessor( 538 const MachineBasicBlock *BB, 539 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 540 BranchProbability AdjustedSumProb, const BlockChain &Chain, 541 const BlockFilterSet *BlockFilter); 542 543 /// Get the best pair of non-conflicting edges. 544 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 545 const MachineBasicBlock *BB, 546 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 547 548 /// Returns true if a block can tail duplicate into all unplaced 549 /// predecessors. Filters based on loop. 550 bool canTailDuplicateUnplacedPreds( 551 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 552 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 553 554 /// Find chains of triangles to tail-duplicate where a global analysis works, 555 /// but a local analysis would not find them. 556 void precomputeTriangleChains(); 557 558 public: 559 static char ID; // Pass identification, replacement for typeid 560 561 MachineBlockPlacement() : MachineFunctionPass(ID) { 562 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 563 } 564 565 bool runOnMachineFunction(MachineFunction &F) override; 566 567 bool allowTailDupPlacement() const { 568 assert(F); 569 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 570 } 571 572 void getAnalysisUsage(AnalysisUsage &AU) const override { 573 AU.addRequired<MachineBranchProbabilityInfo>(); 574 AU.addRequired<MachineBlockFrequencyInfo>(); 575 if (TailDupPlacement) 576 AU.addRequired<MachinePostDominatorTree>(); 577 AU.addRequired<MachineLoopInfo>(); 578 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 579 AU.addRequired<TargetPassConfig>(); 580 MachineFunctionPass::getAnalysisUsage(AU); 581 } 582 }; 583 584 } // end anonymous namespace 585 586 char MachineBlockPlacement::ID = 0; 587 588 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 589 590 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 591 "Branch Probability Basic Block Placement", false, false) 592 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 593 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 594 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 595 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 596 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 597 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 598 "Branch Probability Basic Block Placement", false, false) 599 600 #ifndef NDEBUG 601 /// Helper to print the name of a MBB. 602 /// 603 /// Only used by debug logging. 604 static std::string getBlockName(const MachineBasicBlock *BB) { 605 std::string Result; 606 raw_string_ostream OS(Result); 607 OS << printMBBReference(*BB); 608 OS << " ('" << BB->getName() << "')"; 609 OS.flush(); 610 return Result; 611 } 612 #endif 613 614 /// Mark a chain's successors as having one fewer preds. 615 /// 616 /// When a chain is being merged into the "placed" chain, this routine will 617 /// quickly walk the successors of each block in the chain and mark them as 618 /// having one fewer active predecessor. It also adds any successors of this 619 /// chain which reach the zero-predecessor state to the appropriate worklist. 620 void MachineBlockPlacement::markChainSuccessors( 621 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 622 const BlockFilterSet *BlockFilter) { 623 // Walk all the blocks in this chain, marking their successors as having 624 // a predecessor placed. 625 for (MachineBasicBlock *MBB : Chain) { 626 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 627 } 628 } 629 630 /// Mark a single block's successors as having one fewer preds. 631 /// 632 /// Under normal circumstances, this is only called by markChainSuccessors, 633 /// but if a block that was to be placed is completely tail-duplicated away, 634 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 635 /// for just that block. 636 void MachineBlockPlacement::markBlockSuccessors( 637 const BlockChain &Chain, const MachineBasicBlock *MBB, 638 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 639 // Add any successors for which this is the only un-placed in-loop 640 // predecessor to the worklist as a viable candidate for CFG-neutral 641 // placement. No subsequent placement of this block will violate the CFG 642 // shape, so we get to use heuristics to choose a favorable placement. 643 for (MachineBasicBlock *Succ : MBB->successors()) { 644 if (BlockFilter && !BlockFilter->count(Succ)) 645 continue; 646 BlockChain &SuccChain = *BlockToChain[Succ]; 647 // Disregard edges within a fixed chain, or edges to the loop header. 648 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 649 continue; 650 651 // This is a cross-chain edge that is within the loop, so decrement the 652 // loop predecessor count of the destination chain. 653 if (SuccChain.UnscheduledPredecessors == 0 || 654 --SuccChain.UnscheduledPredecessors > 0) 655 continue; 656 657 auto *NewBB = *SuccChain.begin(); 658 if (NewBB->isEHPad()) 659 EHPadWorkList.push_back(NewBB); 660 else 661 BlockWorkList.push_back(NewBB); 662 } 663 } 664 665 /// This helper function collects the set of successors of block 666 /// \p BB that are allowed to be its layout successors, and return 667 /// the total branch probability of edges from \p BB to those 668 /// blocks. 669 BranchProbability MachineBlockPlacement::collectViableSuccessors( 670 const MachineBasicBlock *BB, const BlockChain &Chain, 671 const BlockFilterSet *BlockFilter, 672 SmallVector<MachineBasicBlock *, 4> &Successors) { 673 // Adjust edge probabilities by excluding edges pointing to blocks that is 674 // either not in BlockFilter or is already in the current chain. Consider the 675 // following CFG: 676 // 677 // --->A 678 // | / \ 679 // | B C 680 // | \ / \ 681 // ----D E 682 // 683 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 684 // A->C is chosen as a fall-through, D won't be selected as a successor of C 685 // due to CFG constraint (the probability of C->D is not greater than 686 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 687 // when calculating the probability of C->D, D will be selected and we 688 // will get A C D B as the layout of this loop. 689 auto AdjustedSumProb = BranchProbability::getOne(); 690 for (MachineBasicBlock *Succ : BB->successors()) { 691 bool SkipSucc = false; 692 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 693 SkipSucc = true; 694 } else { 695 BlockChain *SuccChain = BlockToChain[Succ]; 696 if (SuccChain == &Chain) { 697 SkipSucc = true; 698 } else if (Succ != *SuccChain->begin()) { 699 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 700 << " -> Mid chain!\n"); 701 continue; 702 } 703 } 704 if (SkipSucc) 705 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 706 else 707 Successors.push_back(Succ); 708 } 709 710 return AdjustedSumProb; 711 } 712 713 /// The helper function returns the branch probability that is adjusted 714 /// or normalized over the new total \p AdjustedSumProb. 715 static BranchProbability 716 getAdjustedProbability(BranchProbability OrigProb, 717 BranchProbability AdjustedSumProb) { 718 BranchProbability SuccProb; 719 uint32_t SuccProbN = OrigProb.getNumerator(); 720 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 721 if (SuccProbN >= SuccProbD) 722 SuccProb = BranchProbability::getOne(); 723 else 724 SuccProb = BranchProbability(SuccProbN, SuccProbD); 725 726 return SuccProb; 727 } 728 729 /// Check if \p BB has exactly the successors in \p Successors. 730 static bool 731 hasSameSuccessors(MachineBasicBlock &BB, 732 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 733 if (BB.succ_size() != Successors.size()) 734 return false; 735 // We don't want to count self-loops 736 if (Successors.count(&BB)) 737 return false; 738 for (MachineBasicBlock *Succ : BB.successors()) 739 if (!Successors.count(Succ)) 740 return false; 741 return true; 742 } 743 744 /// Check if a block should be tail duplicated to increase fallthrough 745 /// opportunities. 746 /// \p BB Block to check. 747 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 748 // Blocks with single successors don't create additional fallthrough 749 // opportunities. Don't duplicate them. TODO: When conditional exits are 750 // analyzable, allow them to be duplicated. 751 bool IsSimple = TailDup.isSimpleBB(BB); 752 753 if (BB->succ_size() == 1) 754 return false; 755 return TailDup.shouldTailDuplicate(IsSimple, *BB); 756 } 757 758 /// Compare 2 BlockFrequency's with a small penalty for \p A. 759 /// In order to be conservative, we apply a X% penalty to account for 760 /// increased icache pressure and static heuristics. For small frequencies 761 /// we use only the numerators to improve accuracy. For simplicity, we assume the 762 /// penalty is less than 100% 763 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 764 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 765 uint64_t EntryFreq) { 766 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 767 BlockFrequency Gain = A - B; 768 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 769 } 770 771 /// Check the edge frequencies to see if tail duplication will increase 772 /// fallthroughs. It only makes sense to call this function when 773 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 774 /// always locally profitable if we would have picked \p Succ without 775 /// considering duplication. 776 bool MachineBlockPlacement::isProfitableToTailDup( 777 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 778 BranchProbability QProb, 779 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 780 // We need to do a probability calculation to make sure this is profitable. 781 // First: does succ have a successor that post-dominates? This affects the 782 // calculation. The 2 relevant cases are: 783 // BB BB 784 // | \Qout | \Qout 785 // P| C |P C 786 // = C' = C' 787 // | /Qin | /Qin 788 // | / | / 789 // Succ Succ 790 // / \ | \ V 791 // U/ =V |U \ 792 // / \ = D 793 // D E | / 794 // | / 795 // |/ 796 // PDom 797 // '=' : Branch taken for that CFG edge 798 // In the second case, Placing Succ while duplicating it into C prevents the 799 // fallthrough of Succ into either D or PDom, because they now have C as an 800 // unplaced predecessor 801 802 // Start by figuring out which case we fall into 803 MachineBasicBlock *PDom = nullptr; 804 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 805 // Only scan the relevant successors 806 auto AdjustedSuccSumProb = 807 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 808 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 809 auto BBFreq = MBFI->getBlockFreq(BB); 810 auto SuccFreq = MBFI->getBlockFreq(Succ); 811 BlockFrequency P = BBFreq * PProb; 812 BlockFrequency Qout = BBFreq * QProb; 813 uint64_t EntryFreq = MBFI->getEntryFreq(); 814 // If there are no more successors, it is profitable to copy, as it strictly 815 // increases fallthrough. 816 if (SuccSuccs.size() == 0) 817 return greaterWithBias(P, Qout, EntryFreq); 818 819 auto BestSuccSucc = BranchProbability::getZero(); 820 // Find the PDom or the best Succ if no PDom exists. 821 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 822 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 823 if (Prob > BestSuccSucc) 824 BestSuccSucc = Prob; 825 if (PDom == nullptr) 826 if (MPDT->dominates(SuccSucc, Succ)) { 827 PDom = SuccSucc; 828 break; 829 } 830 } 831 // For the comparisons, we need to know Succ's best incoming edge that isn't 832 // from BB. 833 auto SuccBestPred = BlockFrequency(0); 834 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 835 if (SuccPred == Succ || SuccPred == BB 836 || BlockToChain[SuccPred] == &Chain 837 || (BlockFilter && !BlockFilter->count(SuccPred))) 838 continue; 839 auto Freq = MBFI->getBlockFreq(SuccPred) 840 * MBPI->getEdgeProbability(SuccPred, Succ); 841 if (Freq > SuccBestPred) 842 SuccBestPred = Freq; 843 } 844 // Qin is Succ's best unplaced incoming edge that isn't BB 845 BlockFrequency Qin = SuccBestPred; 846 // If it doesn't have a post-dominating successor, here is the calculation: 847 // BB BB 848 // | \Qout | \ 849 // P| C | = 850 // = C' | C 851 // | /Qin | | 852 // | / | C' (+Succ) 853 // Succ Succ /| 854 // / \ | \/ | 855 // U/ =V | == | 856 // / \ | / \| 857 // D E D E 858 // '=' : Branch taken for that CFG edge 859 // Cost in the first case is: P + V 860 // For this calculation, we always assume P > Qout. If Qout > P 861 // The result of this function will be ignored at the caller. 862 // Let F = SuccFreq - Qin 863 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 864 865 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 866 BranchProbability UProb = BestSuccSucc; 867 BranchProbability VProb = AdjustedSuccSumProb - UProb; 868 BlockFrequency F = SuccFreq - Qin; 869 BlockFrequency V = SuccFreq * VProb; 870 BlockFrequency QinU = std::min(Qin, F) * UProb; 871 BlockFrequency BaseCost = P + V; 872 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 873 return greaterWithBias(BaseCost, DupCost, EntryFreq); 874 } 875 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 876 BranchProbability VProb = AdjustedSuccSumProb - UProb; 877 BlockFrequency U = SuccFreq * UProb; 878 BlockFrequency V = SuccFreq * VProb; 879 BlockFrequency F = SuccFreq - Qin; 880 // If there is a post-dominating successor, here is the calculation: 881 // BB BB BB BB 882 // | \Qout | \ | \Qout | \ 883 // |P C | = |P C | = 884 // = C' |P C = C' |P C 885 // | /Qin | | | /Qin | | 886 // | / | C' (+Succ) | / | C' (+Succ) 887 // Succ Succ /| Succ Succ /| 888 // | \ V | \/ | | \ V | \/ | 889 // |U \ |U /\ =? |U = |U /\ | 890 // = D = = =?| | D | = =| 891 // | / |/ D | / |/ D 892 // | / | / | = | / 893 // |/ | / |/ | = 894 // Dom Dom Dom Dom 895 // '=' : Branch taken for that CFG edge 896 // The cost for taken branches in the first case is P + U 897 // Let F = SuccFreq - Qin 898 // The cost in the second case (assuming independence), given the layout: 899 // BB, Succ, (C+Succ), D, Dom or the layout: 900 // BB, Succ, D, Dom, (C+Succ) 901 // is Qout + max(F, Qin) * U + min(F, Qin) 902 // compare P + U vs Qout + P * U + Qin. 903 // 904 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 905 // 906 // For the 3rd case, the cost is P + 2 * V 907 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 908 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 909 if (UProb > AdjustedSuccSumProb / 2 && 910 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 911 Chain, BlockFilter)) 912 // Cases 3 & 4 913 return greaterWithBias( 914 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 915 EntryFreq); 916 // Cases 1 & 2 917 return greaterWithBias((P + U), 918 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 919 std::max(Qin, F) * UProb), 920 EntryFreq); 921 } 922 923 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 924 /// successors form the lower part of a trellis. A successor set S forms the 925 /// lower part of a trellis if all of the predecessors of S are either in S or 926 /// have all of S as successors. We ignore trellises where BB doesn't have 2 927 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 928 /// are very uncommon and complex to compute optimally. Allowing edges within S 929 /// is not strictly a trellis, but the same algorithm works, so we allow it. 930 bool MachineBlockPlacement::isTrellis( 931 const MachineBasicBlock *BB, 932 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 933 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 934 // Technically BB could form a trellis with branching factor higher than 2. 935 // But that's extremely uncommon. 936 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 937 return false; 938 939 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 940 BB->succ_end()); 941 // To avoid reviewing the same predecessors twice. 942 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 943 944 for (MachineBasicBlock *Succ : ViableSuccs) { 945 int PredCount = 0; 946 for (auto SuccPred : Succ->predecessors()) { 947 // Allow triangle successors, but don't count them. 948 if (Successors.count(SuccPred)) { 949 // Make sure that it is actually a triangle. 950 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 951 if (!Successors.count(CheckSucc)) 952 return false; 953 continue; 954 } 955 const BlockChain *PredChain = BlockToChain[SuccPred]; 956 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 957 PredChain == &Chain || PredChain == BlockToChain[Succ]) 958 continue; 959 ++PredCount; 960 // Perform the successor check only once. 961 if (!SeenPreds.insert(SuccPred).second) 962 continue; 963 if (!hasSameSuccessors(*SuccPred, Successors)) 964 return false; 965 } 966 // If one of the successors has only BB as a predecessor, it is not a 967 // trellis. 968 if (PredCount < 1) 969 return false; 970 } 971 return true; 972 } 973 974 /// Pick the highest total weight pair of edges that can both be laid out. 975 /// The edges in \p Edges[0] are assumed to have a different destination than 976 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 977 /// the individual highest weight edges to the 2 different destinations, or in 978 /// case of a conflict, one of them should be replaced with a 2nd best edge. 979 std::pair<MachineBlockPlacement::WeightedEdge, 980 MachineBlockPlacement::WeightedEdge> 981 MachineBlockPlacement::getBestNonConflictingEdges( 982 const MachineBasicBlock *BB, 983 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 984 Edges) { 985 // Sort the edges, and then for each successor, find the best incoming 986 // predecessor. If the best incoming predecessors aren't the same, 987 // then that is clearly the best layout. If there is a conflict, one of the 988 // successors will have to fallthrough from the second best predecessor. We 989 // compare which combination is better overall. 990 991 // Sort for highest frequency. 992 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 993 994 llvm::stable_sort(Edges[0], Cmp); 995 llvm::stable_sort(Edges[1], Cmp); 996 auto BestA = Edges[0].begin(); 997 auto BestB = Edges[1].begin(); 998 // Arrange for the correct answer to be in BestA and BestB 999 // If the 2 best edges don't conflict, the answer is already there. 1000 if (BestA->Src == BestB->Src) { 1001 // Compare the total fallthrough of (Best + Second Best) for both pairs 1002 auto SecondBestA = std::next(BestA); 1003 auto SecondBestB = std::next(BestB); 1004 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 1005 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 1006 if (BestAScore < BestBScore) 1007 BestA = SecondBestA; 1008 else 1009 BestB = SecondBestB; 1010 } 1011 // Arrange for the BB edge to be in BestA if it exists. 1012 if (BestB->Src == BB) 1013 std::swap(BestA, BestB); 1014 return std::make_pair(*BestA, *BestB); 1015 } 1016 1017 /// Get the best successor from \p BB based on \p BB being part of a trellis. 1018 /// We only handle trellises with 2 successors, so the algorithm is 1019 /// straightforward: Find the best pair of edges that don't conflict. We find 1020 /// the best incoming edge for each successor in the trellis. If those conflict, 1021 /// we consider which of them should be replaced with the second best. 1022 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 1023 /// comes from \p BB, it will be in \p BestEdges[0] 1024 MachineBlockPlacement::BlockAndTailDupResult 1025 MachineBlockPlacement::getBestTrellisSuccessor( 1026 const MachineBasicBlock *BB, 1027 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 1028 BranchProbability AdjustedSumProb, const BlockChain &Chain, 1029 const BlockFilterSet *BlockFilter) { 1030 1031 BlockAndTailDupResult Result = {nullptr, false}; 1032 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1033 BB->succ_end()); 1034 1035 // We assume size 2 because it's common. For general n, we would have to do 1036 // the Hungarian algorithm, but it's not worth the complexity because more 1037 // than 2 successors is fairly uncommon, and a trellis even more so. 1038 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1039 return Result; 1040 1041 // Collect the edge frequencies of all edges that form the trellis. 1042 SmallVector<WeightedEdge, 8> Edges[2]; 1043 int SuccIndex = 0; 1044 for (auto Succ : ViableSuccs) { 1045 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1046 // Skip any placed predecessors that are not BB 1047 if (SuccPred != BB) 1048 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1049 BlockToChain[SuccPred] == &Chain || 1050 BlockToChain[SuccPred] == BlockToChain[Succ]) 1051 continue; 1052 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1053 MBPI->getEdgeProbability(SuccPred, Succ); 1054 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1055 } 1056 ++SuccIndex; 1057 } 1058 1059 // Pick the best combination of 2 edges from all the edges in the trellis. 1060 WeightedEdge BestA, BestB; 1061 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1062 1063 if (BestA.Src != BB) { 1064 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1065 // we shouldn't choose any successor. We've already looked and there's a 1066 // better fallthrough edge for all the successors. 1067 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1068 return Result; 1069 } 1070 1071 // Did we pick the triangle edge? If tail-duplication is profitable, do 1072 // that instead. Otherwise merge the triangle edge now while we know it is 1073 // optimal. 1074 if (BestA.Dest == BestB.Src) { 1075 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1076 // would be better. 1077 MachineBasicBlock *Succ1 = BestA.Dest; 1078 MachineBasicBlock *Succ2 = BestB.Dest; 1079 // Check to see if tail-duplication would be profitable. 1080 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1081 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1082 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1083 Chain, BlockFilter)) { 1084 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1085 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1086 dbgs() << " Selected: " << getBlockName(Succ2) 1087 << ", probability: " << Succ2Prob 1088 << " (Tail Duplicate)\n"); 1089 Result.BB = Succ2; 1090 Result.ShouldTailDup = true; 1091 return Result; 1092 } 1093 } 1094 // We have already computed the optimal edge for the other side of the 1095 // trellis. 1096 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1097 1098 auto TrellisSucc = BestA.Dest; 1099 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1100 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1101 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1102 << ", probability: " << SuccProb << " (Trellis)\n"); 1103 Result.BB = TrellisSucc; 1104 return Result; 1105 } 1106 1107 /// When the option allowTailDupPlacement() is on, this method checks if the 1108 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1109 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1110 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1111 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1112 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1113 if (!shouldTailDuplicate(Succ)) 1114 return false; 1115 1116 // The result of canTailDuplicate. 1117 bool Duplicate = true; 1118 // Number of possible duplication. 1119 unsigned int NumDup = 0; 1120 1121 // For CFG checking. 1122 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1123 BB->succ_end()); 1124 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1125 // Make sure all unplaced and unfiltered predecessors can be 1126 // tail-duplicated into. 1127 // Skip any blocks that are already placed or not in this loop. 1128 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1129 || BlockToChain[Pred] == &Chain) 1130 continue; 1131 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1132 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1133 // This will result in a trellis after tail duplication, so we don't 1134 // need to copy Succ into this predecessor. In the presence 1135 // of a trellis tail duplication can continue to be profitable. 1136 // For example: 1137 // A A 1138 // |\ |\ 1139 // | \ | \ 1140 // | C | C+BB 1141 // | / | | 1142 // |/ | | 1143 // BB => BB | 1144 // |\ |\/| 1145 // | \ |/\| 1146 // | D | D 1147 // | / | / 1148 // |/ |/ 1149 // Succ Succ 1150 // 1151 // After BB was duplicated into C, the layout looks like the one on the 1152 // right. BB and C now have the same successors. When considering 1153 // whether Succ can be duplicated into all its unplaced predecessors, we 1154 // ignore C. 1155 // We can do this because C already has a profitable fallthrough, namely 1156 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1157 // duplication and for this test. 1158 // 1159 // This allows trellises to be laid out in 2 separate chains 1160 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1161 // because it allows the creation of 2 fallthrough paths with links 1162 // between them, and we correctly identify the best layout for these 1163 // CFGs. We want to extend trellises that the user created in addition 1164 // to trellises created by tail-duplication, so we just look for the 1165 // CFG. 1166 continue; 1167 Duplicate = false; 1168 continue; 1169 } 1170 NumDup++; 1171 } 1172 1173 // No possible duplication in current filter set. 1174 if (NumDup == 0) 1175 return false; 1176 1177 // If profile information is available, findDuplicateCandidates can do more 1178 // precise benefit analysis. 1179 if (F->getFunction().hasProfileData()) 1180 return true; 1181 1182 // This is mainly for function exit BB. 1183 // The integrated tail duplication is really designed for increasing 1184 // fallthrough from predecessors from Succ to its successors. We may need 1185 // other machanism to handle different cases. 1186 if (Succ->succ_size() == 0) 1187 return true; 1188 1189 // Plus the already placed predecessor. 1190 NumDup++; 1191 1192 // If the duplication candidate has more unplaced predecessors than 1193 // successors, the extra duplication can't bring more fallthrough. 1194 // 1195 // Pred1 Pred2 Pred3 1196 // \ | / 1197 // \ | / 1198 // \ | / 1199 // Dup 1200 // / \ 1201 // / \ 1202 // Succ1 Succ2 1203 // 1204 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1205 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1206 // but the duplication into Pred3 can't increase fallthrough. 1207 // 1208 // A small number of extra duplication may not hurt too much. We need a better 1209 // heuristic to handle it. 1210 if ((NumDup > Succ->succ_size()) || !Duplicate) 1211 return false; 1212 1213 return true; 1214 } 1215 1216 /// Find chains of triangles where we believe it would be profitable to 1217 /// tail-duplicate them all, but a local analysis would not find them. 1218 /// There are 3 ways this can be profitable: 1219 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1220 /// longer chains) 1221 /// 2) The chains are statically correlated. Branch probabilities have a very 1222 /// U-shaped distribution. 1223 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1224 /// If the branches in a chain are likely to be from the same side of the 1225 /// distribution as their predecessor, but are independent at runtime, this 1226 /// transformation is profitable. (Because the cost of being wrong is a small 1227 /// fixed cost, unlike the standard triangle layout where the cost of being 1228 /// wrong scales with the # of triangles.) 1229 /// 3) The chains are dynamically correlated. If the probability that a previous 1230 /// branch was taken positively influences whether the next branch will be 1231 /// taken 1232 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1233 void MachineBlockPlacement::precomputeTriangleChains() { 1234 struct TriangleChain { 1235 std::vector<MachineBasicBlock *> Edges; 1236 1237 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1238 : Edges({src, dst}) {} 1239 1240 void append(MachineBasicBlock *dst) { 1241 assert(getKey()->isSuccessor(dst) && 1242 "Attempting to append a block that is not a successor."); 1243 Edges.push_back(dst); 1244 } 1245 1246 unsigned count() const { return Edges.size() - 1; } 1247 1248 MachineBasicBlock *getKey() const { 1249 return Edges.back(); 1250 } 1251 }; 1252 1253 if (TriangleChainCount == 0) 1254 return; 1255 1256 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1257 // Map from last block to the chain that contains it. This allows us to extend 1258 // chains as we find new triangles. 1259 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1260 for (MachineBasicBlock &BB : *F) { 1261 // If BB doesn't have 2 successors, it doesn't start a triangle. 1262 if (BB.succ_size() != 2) 1263 continue; 1264 MachineBasicBlock *PDom = nullptr; 1265 for (MachineBasicBlock *Succ : BB.successors()) { 1266 if (!MPDT->dominates(Succ, &BB)) 1267 continue; 1268 PDom = Succ; 1269 break; 1270 } 1271 // If BB doesn't have a post-dominating successor, it doesn't form a 1272 // triangle. 1273 if (PDom == nullptr) 1274 continue; 1275 // If PDom has a hint that it is low probability, skip this triangle. 1276 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1277 continue; 1278 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1279 // we're looking for. 1280 if (!shouldTailDuplicate(PDom)) 1281 continue; 1282 bool CanTailDuplicate = true; 1283 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1284 // isn't the kind of triangle we're looking for. 1285 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1286 if (Pred == &BB) 1287 continue; 1288 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1289 CanTailDuplicate = false; 1290 break; 1291 } 1292 } 1293 // If we can't tail-duplicate PDom to its predecessors, then skip this 1294 // triangle. 1295 if (!CanTailDuplicate) 1296 continue; 1297 1298 // Now we have an interesting triangle. Insert it if it's not part of an 1299 // existing chain. 1300 // Note: This cannot be replaced with a call insert() or emplace() because 1301 // the find key is BB, but the insert/emplace key is PDom. 1302 auto Found = TriangleChainMap.find(&BB); 1303 // If it is, remove the chain from the map, grow it, and put it back in the 1304 // map with the end as the new key. 1305 if (Found != TriangleChainMap.end()) { 1306 TriangleChain Chain = std::move(Found->second); 1307 TriangleChainMap.erase(Found); 1308 Chain.append(PDom); 1309 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1310 } else { 1311 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1312 assert(InsertResult.second && "Block seen twice."); 1313 (void)InsertResult; 1314 } 1315 } 1316 1317 // Iterating over a DenseMap is safe here, because the only thing in the body 1318 // of the loop is inserting into another DenseMap (ComputedEdges). 1319 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1320 for (auto &ChainPair : TriangleChainMap) { 1321 TriangleChain &Chain = ChainPair.second; 1322 // Benchmarking has shown that due to branch correlation duplicating 2 or 1323 // more triangles is profitable, despite the calculations assuming 1324 // independence. 1325 if (Chain.count() < TriangleChainCount) 1326 continue; 1327 MachineBasicBlock *dst = Chain.Edges.back(); 1328 Chain.Edges.pop_back(); 1329 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1330 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1331 << getBlockName(dst) 1332 << " as pre-computed based on triangles.\n"); 1333 1334 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1335 assert(InsertResult.second && "Block seen twice."); 1336 (void)InsertResult; 1337 1338 dst = src; 1339 } 1340 } 1341 } 1342 1343 // When profile is not present, return the StaticLikelyProb. 1344 // When profile is available, we need to handle the triangle-shape CFG. 1345 static BranchProbability getLayoutSuccessorProbThreshold( 1346 const MachineBasicBlock *BB) { 1347 if (!BB->getParent()->getFunction().hasProfileData()) 1348 return BranchProbability(StaticLikelyProb, 100); 1349 if (BB->succ_size() == 2) { 1350 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1351 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1352 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1353 /* See case 1 below for the cost analysis. For BB->Succ to 1354 * be taken with smaller cost, the following needs to hold: 1355 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1356 * So the threshold T in the calculation below 1357 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1358 * So T / (1 - T) = 2, Yielding T = 2/3 1359 * Also adding user specified branch bias, we have 1360 * T = (2/3)*(ProfileLikelyProb/50) 1361 * = (2*ProfileLikelyProb)/150) 1362 */ 1363 return BranchProbability(2 * ProfileLikelyProb, 150); 1364 } 1365 } 1366 return BranchProbability(ProfileLikelyProb, 100); 1367 } 1368 1369 /// Checks to see if the layout candidate block \p Succ has a better layout 1370 /// predecessor than \c BB. If yes, returns true. 1371 /// \p SuccProb: The probability adjusted for only remaining blocks. 1372 /// Only used for logging 1373 /// \p RealSuccProb: The un-adjusted probability. 1374 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1375 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1376 /// considered 1377 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1378 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1379 const BlockChain &SuccChain, BranchProbability SuccProb, 1380 BranchProbability RealSuccProb, const BlockChain &Chain, 1381 const BlockFilterSet *BlockFilter) { 1382 1383 // There isn't a better layout when there are no unscheduled predecessors. 1384 if (SuccChain.UnscheduledPredecessors == 0) 1385 return false; 1386 1387 // There are two basic scenarios here: 1388 // ------------------------------------- 1389 // Case 1: triangular shape CFG (if-then): 1390 // BB 1391 // | \ 1392 // | \ 1393 // | Pred 1394 // | / 1395 // Succ 1396 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1397 // set Succ as the layout successor of BB. Picking Succ as BB's 1398 // successor breaks the CFG constraints (FIXME: define these constraints). 1399 // With this layout, Pred BB 1400 // is forced to be outlined, so the overall cost will be cost of the 1401 // branch taken from BB to Pred, plus the cost of back taken branch 1402 // from Pred to Succ, as well as the additional cost associated 1403 // with the needed unconditional jump instruction from Pred To Succ. 1404 1405 // The cost of the topological order layout is the taken branch cost 1406 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1407 // must hold: 1408 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1409 // < freq(BB->Succ) * taken_branch_cost. 1410 // Ignoring unconditional jump cost, we get 1411 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1412 // prob(BB->Succ) > 2 * prob(BB->Pred) 1413 // 1414 // When real profile data is available, we can precisely compute the 1415 // probability threshold that is needed for edge BB->Succ to be considered. 1416 // Without profile data, the heuristic requires the branch bias to be 1417 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1418 // ----------------------------------------------------------------- 1419 // Case 2: diamond like CFG (if-then-else): 1420 // S 1421 // / \ 1422 // | \ 1423 // BB Pred 1424 // \ / 1425 // Succ 1426 // .. 1427 // 1428 // The current block is BB and edge BB->Succ is now being evaluated. 1429 // Note that edge S->BB was previously already selected because 1430 // prob(S->BB) > prob(S->Pred). 1431 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1432 // choose Pred, we will have a topological ordering as shown on the left 1433 // in the picture below. If we choose Succ, we have the solution as shown 1434 // on the right: 1435 // 1436 // topo-order: 1437 // 1438 // S----- ---S 1439 // | | | | 1440 // ---BB | | BB 1441 // | | | | 1442 // | Pred-- | Succ-- 1443 // | | | | 1444 // ---Succ ---Pred-- 1445 // 1446 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1447 // = freq(S->Pred) + freq(S->BB) 1448 // 1449 // If we have profile data (i.e, branch probabilities can be trusted), the 1450 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1451 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1452 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1453 // means the cost of topological order is greater. 1454 // When profile data is not available, however, we need to be more 1455 // conservative. If the branch prediction is wrong, breaking the topo-order 1456 // will actually yield a layout with large cost. For this reason, we need 1457 // strong biased branch at block S with Prob(S->BB) in order to select 1458 // BB->Succ. This is equivalent to looking the CFG backward with backward 1459 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1460 // profile data). 1461 // -------------------------------------------------------------------------- 1462 // Case 3: forked diamond 1463 // S 1464 // / \ 1465 // / \ 1466 // BB Pred 1467 // | \ / | 1468 // | \ / | 1469 // | X | 1470 // | / \ | 1471 // | / \ | 1472 // S1 S2 1473 // 1474 // The current block is BB and edge BB->S1 is now being evaluated. 1475 // As above S->BB was already selected because 1476 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1477 // 1478 // topo-order: 1479 // 1480 // S-------| ---S 1481 // | | | | 1482 // ---BB | | BB 1483 // | | | | 1484 // | Pred----| | S1---- 1485 // | | | | 1486 // --(S1 or S2) ---Pred-- 1487 // | 1488 // S2 1489 // 1490 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1491 // + min(freq(Pred->S1), freq(Pred->S2)) 1492 // Non-topo-order cost: 1493 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1494 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1495 // is 0. Then the non topo layout is better when 1496 // freq(S->Pred) < freq(BB->S1). 1497 // This is exactly what is checked below. 1498 // Note there are other shapes that apply (Pred may not be a single block, 1499 // but they all fit this general pattern.) 1500 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1501 1502 // Make sure that a hot successor doesn't have a globally more 1503 // important predecessor. 1504 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1505 bool BadCFGConflict = false; 1506 1507 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1508 BlockChain *PredChain = BlockToChain[Pred]; 1509 if (Pred == Succ || PredChain == &SuccChain || 1510 (BlockFilter && !BlockFilter->count(Pred)) || 1511 PredChain == &Chain || Pred != *std::prev(PredChain->end()) || 1512 // This check is redundant except for look ahead. This function is 1513 // called for lookahead by isProfitableToTailDup when BB hasn't been 1514 // placed yet. 1515 (Pred == BB)) 1516 continue; 1517 // Do backward checking. 1518 // For all cases above, we need a backward checking to filter out edges that 1519 // are not 'strongly' biased. 1520 // BB Pred 1521 // \ / 1522 // Succ 1523 // We select edge BB->Succ if 1524 // freq(BB->Succ) > freq(Succ) * HotProb 1525 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1526 // HotProb 1527 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1528 // Case 1 is covered too, because the first equation reduces to: 1529 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1530 BlockFrequency PredEdgeFreq = 1531 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1532 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1533 BadCFGConflict = true; 1534 break; 1535 } 1536 } 1537 1538 if (BadCFGConflict) { 1539 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1540 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1541 return true; 1542 } 1543 1544 return false; 1545 } 1546 1547 /// Select the best successor for a block. 1548 /// 1549 /// This looks across all successors of a particular block and attempts to 1550 /// select the "best" one to be the layout successor. It only considers direct 1551 /// successors which also pass the block filter. It will attempt to avoid 1552 /// breaking CFG structure, but cave and break such structures in the case of 1553 /// very hot successor edges. 1554 /// 1555 /// \returns The best successor block found, or null if none are viable, along 1556 /// with a boolean indicating if tail duplication is necessary. 1557 MachineBlockPlacement::BlockAndTailDupResult 1558 MachineBlockPlacement::selectBestSuccessor( 1559 const MachineBasicBlock *BB, const BlockChain &Chain, 1560 const BlockFilterSet *BlockFilter) { 1561 const BranchProbability HotProb(StaticLikelyProb, 100); 1562 1563 BlockAndTailDupResult BestSucc = { nullptr, false }; 1564 auto BestProb = BranchProbability::getZero(); 1565 1566 SmallVector<MachineBasicBlock *, 4> Successors; 1567 auto AdjustedSumProb = 1568 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1569 1570 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1571 << "\n"); 1572 1573 // if we already precomputed the best successor for BB, return that if still 1574 // applicable. 1575 auto FoundEdge = ComputedEdges.find(BB); 1576 if (FoundEdge != ComputedEdges.end()) { 1577 MachineBasicBlock *Succ = FoundEdge->second.BB; 1578 ComputedEdges.erase(FoundEdge); 1579 BlockChain *SuccChain = BlockToChain[Succ]; 1580 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1581 SuccChain != &Chain && Succ == *SuccChain->begin()) 1582 return FoundEdge->second; 1583 } 1584 1585 // if BB is part of a trellis, Use the trellis to determine the optimal 1586 // fallthrough edges 1587 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1588 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1589 BlockFilter); 1590 1591 // For blocks with CFG violations, we may be able to lay them out anyway with 1592 // tail-duplication. We keep this vector so we can perform the probability 1593 // calculations the minimum number of times. 1594 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> 1595 DupCandidates; 1596 for (MachineBasicBlock *Succ : Successors) { 1597 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1598 BranchProbability SuccProb = 1599 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1600 1601 BlockChain &SuccChain = *BlockToChain[Succ]; 1602 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1603 // predecessor that yields lower global cost. 1604 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1605 Chain, BlockFilter)) { 1606 // If tail duplication would make Succ profitable, place it. 1607 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1608 DupCandidates.emplace_back(SuccProb, Succ); 1609 continue; 1610 } 1611 1612 LLVM_DEBUG( 1613 dbgs() << " Candidate: " << getBlockName(Succ) 1614 << ", probability: " << SuccProb 1615 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1616 << "\n"); 1617 1618 if (BestSucc.BB && BestProb >= SuccProb) { 1619 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1620 continue; 1621 } 1622 1623 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1624 BestSucc.BB = Succ; 1625 BestProb = SuccProb; 1626 } 1627 // Handle the tail duplication candidates in order of decreasing probability. 1628 // Stop at the first one that is profitable. Also stop if they are less 1629 // profitable than BestSucc. Position is important because we preserve it and 1630 // prefer first best match. Here we aren't comparing in order, so we capture 1631 // the position instead. 1632 llvm::stable_sort(DupCandidates, 1633 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1634 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1635 return std::get<0>(L) > std::get<0>(R); 1636 }); 1637 for (auto &Tup : DupCandidates) { 1638 BranchProbability DupProb; 1639 MachineBasicBlock *Succ; 1640 std::tie(DupProb, Succ) = Tup; 1641 if (DupProb < BestProb) 1642 break; 1643 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1644 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1645 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1646 << ", probability: " << DupProb 1647 << " (Tail Duplicate)\n"); 1648 BestSucc.BB = Succ; 1649 BestSucc.ShouldTailDup = true; 1650 break; 1651 } 1652 } 1653 1654 if (BestSucc.BB) 1655 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1656 1657 return BestSucc; 1658 } 1659 1660 /// Select the best block from a worklist. 1661 /// 1662 /// This looks through the provided worklist as a list of candidate basic 1663 /// blocks and select the most profitable one to place. The definition of 1664 /// profitable only really makes sense in the context of a loop. This returns 1665 /// the most frequently visited block in the worklist, which in the case of 1666 /// a loop, is the one most desirable to be physically close to the rest of the 1667 /// loop body in order to improve i-cache behavior. 1668 /// 1669 /// \returns The best block found, or null if none are viable. 1670 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1671 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1672 // Once we need to walk the worklist looking for a candidate, cleanup the 1673 // worklist of already placed entries. 1674 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1675 // some code complexity) into the loop below. 1676 WorkList.erase(llvm::remove_if(WorkList, 1677 [&](MachineBasicBlock *BB) { 1678 return BlockToChain.lookup(BB) == &Chain; 1679 }), 1680 WorkList.end()); 1681 1682 if (WorkList.empty()) 1683 return nullptr; 1684 1685 bool IsEHPad = WorkList[0]->isEHPad(); 1686 1687 MachineBasicBlock *BestBlock = nullptr; 1688 BlockFrequency BestFreq; 1689 for (MachineBasicBlock *MBB : WorkList) { 1690 assert(MBB->isEHPad() == IsEHPad && 1691 "EHPad mismatch between block and work list."); 1692 1693 BlockChain &SuccChain = *BlockToChain[MBB]; 1694 if (&SuccChain == &Chain) 1695 continue; 1696 1697 assert(SuccChain.UnscheduledPredecessors == 0 && 1698 "Found CFG-violating block"); 1699 1700 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1701 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1702 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1703 1704 // For ehpad, we layout the least probable first as to avoid jumping back 1705 // from least probable landingpads to more probable ones. 1706 // 1707 // FIXME: Using probability is probably (!) not the best way to achieve 1708 // this. We should probably have a more principled approach to layout 1709 // cleanup code. 1710 // 1711 // The goal is to get: 1712 // 1713 // +--------------------------+ 1714 // | V 1715 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1716 // 1717 // Rather than: 1718 // 1719 // +-------------------------------------+ 1720 // V | 1721 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1722 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1723 continue; 1724 1725 BestBlock = MBB; 1726 BestFreq = CandidateFreq; 1727 } 1728 1729 return BestBlock; 1730 } 1731 1732 /// Retrieve the first unplaced basic block. 1733 /// 1734 /// This routine is called when we are unable to use the CFG to walk through 1735 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1736 /// We walk through the function's blocks in order, starting from the 1737 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1738 /// re-scanning the entire sequence on repeated calls to this routine. 1739 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1740 const BlockChain &PlacedChain, 1741 MachineFunction::iterator &PrevUnplacedBlockIt, 1742 const BlockFilterSet *BlockFilter) { 1743 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1744 ++I) { 1745 if (BlockFilter && !BlockFilter->count(&*I)) 1746 continue; 1747 if (BlockToChain[&*I] != &PlacedChain) { 1748 PrevUnplacedBlockIt = I; 1749 // Now select the head of the chain to which the unplaced block belongs 1750 // as the block to place. This will force the entire chain to be placed, 1751 // and satisfies the requirements of merging chains. 1752 return *BlockToChain[&*I]->begin(); 1753 } 1754 } 1755 return nullptr; 1756 } 1757 1758 void MachineBlockPlacement::fillWorkLists( 1759 const MachineBasicBlock *MBB, 1760 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1761 const BlockFilterSet *BlockFilter = nullptr) { 1762 BlockChain &Chain = *BlockToChain[MBB]; 1763 if (!UpdatedPreds.insert(&Chain).second) 1764 return; 1765 1766 assert( 1767 Chain.UnscheduledPredecessors == 0 && 1768 "Attempting to place block with unscheduled predecessors in worklist."); 1769 for (MachineBasicBlock *ChainBB : Chain) { 1770 assert(BlockToChain[ChainBB] == &Chain && 1771 "Block in chain doesn't match BlockToChain map."); 1772 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1773 if (BlockFilter && !BlockFilter->count(Pred)) 1774 continue; 1775 if (BlockToChain[Pred] == &Chain) 1776 continue; 1777 ++Chain.UnscheduledPredecessors; 1778 } 1779 } 1780 1781 if (Chain.UnscheduledPredecessors != 0) 1782 return; 1783 1784 MachineBasicBlock *BB = *Chain.begin(); 1785 if (BB->isEHPad()) 1786 EHPadWorkList.push_back(BB); 1787 else 1788 BlockWorkList.push_back(BB); 1789 } 1790 1791 void MachineBlockPlacement::buildChain( 1792 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1793 BlockFilterSet *BlockFilter) { 1794 assert(HeadBB && "BB must not be null.\n"); 1795 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1796 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1797 1798 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1799 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1800 MachineBasicBlock *BB = *std::prev(Chain.end()); 1801 while (true) { 1802 assert(BB && "null block found at end of chain in loop."); 1803 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1804 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1805 1806 1807 // Look for the best viable successor if there is one to place immediately 1808 // after this block. 1809 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1810 MachineBasicBlock* BestSucc = Result.BB; 1811 bool ShouldTailDup = Result.ShouldTailDup; 1812 if (allowTailDupPlacement()) 1813 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc, 1814 Chain, 1815 BlockFilter)); 1816 1817 // If an immediate successor isn't available, look for the best viable 1818 // block among those we've identified as not violating the loop's CFG at 1819 // this point. This won't be a fallthrough, but it will increase locality. 1820 if (!BestSucc) 1821 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1822 if (!BestSucc) 1823 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1824 1825 if (!BestSucc) { 1826 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1827 if (!BestSucc) 1828 break; 1829 1830 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1831 "layout successor until the CFG reduces\n"); 1832 } 1833 1834 // Placement may have changed tail duplication opportunities. 1835 // Check for that now. 1836 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1837 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1838 BlockFilter, PrevUnplacedBlockIt); 1839 // If the chosen successor was duplicated into BB, don't bother laying 1840 // it out, just go round the loop again with BB as the chain end. 1841 if (!BB->isSuccessor(BestSucc)) 1842 continue; 1843 } 1844 1845 // Place this block, updating the datastructures to reflect its placement. 1846 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1847 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1848 // we selected a successor that didn't fit naturally into the CFG. 1849 SuccChain.UnscheduledPredecessors = 0; 1850 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1851 << getBlockName(BestSucc) << "\n"); 1852 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1853 Chain.merge(BestSucc, &SuccChain); 1854 BB = *std::prev(Chain.end()); 1855 } 1856 1857 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1858 << getBlockName(*Chain.begin()) << "\n"); 1859 } 1860 1861 // If bottom of block BB has only one successor OldTop, in most cases it is 1862 // profitable to move it before OldTop, except the following case: 1863 // 1864 // -->OldTop<- 1865 // | . | 1866 // | . | 1867 // | . | 1868 // ---Pred | 1869 // | | 1870 // BB----- 1871 // 1872 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1873 // layout the other successor below it, so it can't reduce taken branch. 1874 // In this case we keep its original layout. 1875 bool 1876 MachineBlockPlacement::canMoveBottomBlockToTop( 1877 const MachineBasicBlock *BottomBlock, 1878 const MachineBasicBlock *OldTop) { 1879 if (BottomBlock->pred_size() != 1) 1880 return true; 1881 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1882 if (Pred->succ_size() != 2) 1883 return true; 1884 1885 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1886 if (OtherBB == BottomBlock) 1887 OtherBB = *Pred->succ_rbegin(); 1888 if (OtherBB == OldTop) 1889 return false; 1890 1891 return true; 1892 } 1893 1894 // Find out the possible fall through frequence to the top of a loop. 1895 BlockFrequency 1896 MachineBlockPlacement::TopFallThroughFreq( 1897 const MachineBasicBlock *Top, 1898 const BlockFilterSet &LoopBlockSet) { 1899 BlockFrequency MaxFreq = 0; 1900 for (MachineBasicBlock *Pred : Top->predecessors()) { 1901 BlockChain *PredChain = BlockToChain[Pred]; 1902 if (!LoopBlockSet.count(Pred) && 1903 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1904 // Found a Pred block can be placed before Top. 1905 // Check if Top is the best successor of Pred. 1906 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1907 bool TopOK = true; 1908 for (MachineBasicBlock *Succ : Pred->successors()) { 1909 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1910 BlockChain *SuccChain = BlockToChain[Succ]; 1911 // Check if Succ can be placed after Pred. 1912 // Succ should not be in any chain, or it is the head of some chain. 1913 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1914 (!SuccChain || Succ == *SuccChain->begin())) { 1915 TopOK = false; 1916 break; 1917 } 1918 } 1919 if (TopOK) { 1920 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1921 MBPI->getEdgeProbability(Pred, Top); 1922 if (EdgeFreq > MaxFreq) 1923 MaxFreq = EdgeFreq; 1924 } 1925 } 1926 } 1927 return MaxFreq; 1928 } 1929 1930 // Compute the fall through gains when move NewTop before OldTop. 1931 // 1932 // In following diagram, edges marked as "-" are reduced fallthrough, edges 1933 // marked as "+" are increased fallthrough, this function computes 1934 // 1935 // SUM(increased fallthrough) - SUM(decreased fallthrough) 1936 // 1937 // | 1938 // | - 1939 // V 1940 // --->OldTop 1941 // | . 1942 // | . 1943 // +| . + 1944 // | Pred ---> 1945 // | |- 1946 // | V 1947 // --- NewTop <--- 1948 // |- 1949 // V 1950 // 1951 BlockFrequency 1952 MachineBlockPlacement::FallThroughGains( 1953 const MachineBasicBlock *NewTop, 1954 const MachineBasicBlock *OldTop, 1955 const MachineBasicBlock *ExitBB, 1956 const BlockFilterSet &LoopBlockSet) { 1957 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 1958 BlockFrequency FallThrough2Exit = 0; 1959 if (ExitBB) 1960 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 1961 MBPI->getEdgeProbability(NewTop, ExitBB); 1962 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 1963 MBPI->getEdgeProbability(NewTop, OldTop); 1964 1965 // Find the best Pred of NewTop. 1966 MachineBasicBlock *BestPred = nullptr; 1967 BlockFrequency FallThroughFromPred = 0; 1968 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 1969 if (!LoopBlockSet.count(Pred)) 1970 continue; 1971 BlockChain *PredChain = BlockToChain[Pred]; 1972 if (!PredChain || Pred == *std::prev(PredChain->end())) { 1973 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1974 MBPI->getEdgeProbability(Pred, NewTop); 1975 if (EdgeFreq > FallThroughFromPred) { 1976 FallThroughFromPred = EdgeFreq; 1977 BestPred = Pred; 1978 } 1979 } 1980 } 1981 1982 // If NewTop is not placed after Pred, another successor can be placed 1983 // after Pred. 1984 BlockFrequency NewFreq = 0; 1985 if (BestPred) { 1986 for (MachineBasicBlock *Succ : BestPred->successors()) { 1987 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 1988 continue; 1989 if (ComputedEdges.find(Succ) != ComputedEdges.end()) 1990 continue; 1991 BlockChain *SuccChain = BlockToChain[Succ]; 1992 if ((SuccChain && (Succ != *SuccChain->begin())) || 1993 (SuccChain == BlockToChain[BestPred])) 1994 continue; 1995 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 1996 MBPI->getEdgeProbability(BestPred, Succ); 1997 if (EdgeFreq > NewFreq) 1998 NewFreq = EdgeFreq; 1999 } 2000 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 2001 MBPI->getEdgeProbability(BestPred, NewTop); 2002 if (NewFreq > OrigEdgeFreq) { 2003 // If NewTop is not the best successor of Pred, then Pred doesn't 2004 // fallthrough to NewTop. So there is no FallThroughFromPred and 2005 // NewFreq. 2006 NewFreq = 0; 2007 FallThroughFromPred = 0; 2008 } 2009 } 2010 2011 BlockFrequency Result = 0; 2012 BlockFrequency Gains = BackEdgeFreq + NewFreq; 2013 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 2014 FallThroughFromPred; 2015 if (Gains > Lost) 2016 Result = Gains - Lost; 2017 return Result; 2018 } 2019 2020 /// Helper function of findBestLoopTop. Find the best loop top block 2021 /// from predecessors of old top. 2022 /// 2023 /// Look for a block which is strictly better than the old top for laying 2024 /// out before the old top of the loop. This looks for only two patterns: 2025 /// 2026 /// 1. a block has only one successor, the old loop top 2027 /// 2028 /// Because such a block will always result in an unconditional jump, 2029 /// rotating it in front of the old top is always profitable. 2030 /// 2031 /// 2. a block has two successors, one is old top, another is exit 2032 /// and it has more than one predecessors 2033 /// 2034 /// If it is below one of its predecessors P, only P can fall through to 2035 /// it, all other predecessors need a jump to it, and another conditional 2036 /// jump to loop header. If it is moved before loop header, all its 2037 /// predecessors jump to it, then fall through to loop header. So all its 2038 /// predecessors except P can reduce one taken branch. 2039 /// At the same time, move it before old top increases the taken branch 2040 /// to loop exit block, so the reduced taken branch will be compared with 2041 /// the increased taken branch to the loop exit block. 2042 MachineBasicBlock * 2043 MachineBlockPlacement::findBestLoopTopHelper( 2044 MachineBasicBlock *OldTop, 2045 const MachineLoop &L, 2046 const BlockFilterSet &LoopBlockSet) { 2047 // Check that the header hasn't been fused with a preheader block due to 2048 // crazy branches. If it has, we need to start with the header at the top to 2049 // prevent pulling the preheader into the loop body. 2050 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2051 if (!LoopBlockSet.count(*HeaderChain.begin())) 2052 return OldTop; 2053 2054 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2055 << "\n"); 2056 2057 BlockFrequency BestGains = 0; 2058 MachineBasicBlock *BestPred = nullptr; 2059 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2060 if (!LoopBlockSet.count(Pred)) 2061 continue; 2062 if (Pred == L.getHeader()) 2063 continue; 2064 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2065 << Pred->succ_size() << " successors, "; 2066 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 2067 if (Pred->succ_size() > 2) 2068 continue; 2069 2070 MachineBasicBlock *OtherBB = nullptr; 2071 if (Pred->succ_size() == 2) { 2072 OtherBB = *Pred->succ_begin(); 2073 if (OtherBB == OldTop) 2074 OtherBB = *Pred->succ_rbegin(); 2075 } 2076 2077 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2078 continue; 2079 2080 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 2081 LoopBlockSet); 2082 if ((Gains > 0) && (Gains > BestGains || 2083 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2084 BestPred = Pred; 2085 BestGains = Gains; 2086 } 2087 } 2088 2089 // If no direct predecessor is fine, just use the loop header. 2090 if (!BestPred) { 2091 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2092 return OldTop; 2093 } 2094 2095 // Walk backwards through any straight line of predecessors. 2096 while (BestPred->pred_size() == 1 && 2097 (*BestPred->pred_begin())->succ_size() == 1 && 2098 *BestPred->pred_begin() != L.getHeader()) 2099 BestPred = *BestPred->pred_begin(); 2100 2101 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2102 return BestPred; 2103 } 2104 2105 /// Find the best loop top block for layout. 2106 /// 2107 /// This function iteratively calls findBestLoopTopHelper, until no new better 2108 /// BB can be found. 2109 MachineBasicBlock * 2110 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2111 const BlockFilterSet &LoopBlockSet) { 2112 // Placing the latch block before the header may introduce an extra branch 2113 // that skips this block the first time the loop is executed, which we want 2114 // to avoid when optimising for size. 2115 // FIXME: in theory there is a case that does not introduce a new branch, 2116 // i.e. when the layout predecessor does not fallthrough to the loop header. 2117 // In practice this never happens though: there always seems to be a preheader 2118 // that can fallthrough and that is also placed before the header. 2119 bool OptForSize = F->getFunction().hasOptSize() || 2120 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get()); 2121 if (OptForSize) 2122 return L.getHeader(); 2123 2124 MachineBasicBlock *OldTop = nullptr; 2125 MachineBasicBlock *NewTop = L.getHeader(); 2126 while (NewTop != OldTop) { 2127 OldTop = NewTop; 2128 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2129 if (NewTop != OldTop) 2130 ComputedEdges[NewTop] = { OldTop, false }; 2131 } 2132 return NewTop; 2133 } 2134 2135 /// Find the best loop exiting block for layout. 2136 /// 2137 /// This routine implements the logic to analyze the loop looking for the best 2138 /// block to layout at the top of the loop. Typically this is done to maximize 2139 /// fallthrough opportunities. 2140 MachineBasicBlock * 2141 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2142 const BlockFilterSet &LoopBlockSet, 2143 BlockFrequency &ExitFreq) { 2144 // We don't want to layout the loop linearly in all cases. If the loop header 2145 // is just a normal basic block in the loop, we want to look for what block 2146 // within the loop is the best one to layout at the top. However, if the loop 2147 // header has be pre-merged into a chain due to predecessors not having 2148 // analyzable branches, *and* the predecessor it is merged with is *not* part 2149 // of the loop, rotating the header into the middle of the loop will create 2150 // a non-contiguous range of blocks which is Very Bad. So start with the 2151 // header and only rotate if safe. 2152 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2153 if (!LoopBlockSet.count(*HeaderChain.begin())) 2154 return nullptr; 2155 2156 BlockFrequency BestExitEdgeFreq; 2157 unsigned BestExitLoopDepth = 0; 2158 MachineBasicBlock *ExitingBB = nullptr; 2159 // If there are exits to outer loops, loop rotation can severely limit 2160 // fallthrough opportunities unless it selects such an exit. Keep a set of 2161 // blocks where rotating to exit with that block will reach an outer loop. 2162 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2163 2164 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2165 << getBlockName(L.getHeader()) << "\n"); 2166 for (MachineBasicBlock *MBB : L.getBlocks()) { 2167 BlockChain &Chain = *BlockToChain[MBB]; 2168 // Ensure that this block is at the end of a chain; otherwise it could be 2169 // mid-way through an inner loop or a successor of an unanalyzable branch. 2170 if (MBB != *std::prev(Chain.end())) 2171 continue; 2172 2173 // Now walk the successors. We need to establish whether this has a viable 2174 // exiting successor and whether it has a viable non-exiting successor. 2175 // We store the old exiting state and restore it if a viable looping 2176 // successor isn't found. 2177 MachineBasicBlock *OldExitingBB = ExitingBB; 2178 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2179 bool HasLoopingSucc = false; 2180 for (MachineBasicBlock *Succ : MBB->successors()) { 2181 if (Succ->isEHPad()) 2182 continue; 2183 if (Succ == MBB) 2184 continue; 2185 BlockChain &SuccChain = *BlockToChain[Succ]; 2186 // Don't split chains, either this chain or the successor's chain. 2187 if (&Chain == &SuccChain) { 2188 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2189 << getBlockName(Succ) << " (chain conflict)\n"); 2190 continue; 2191 } 2192 2193 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2194 if (LoopBlockSet.count(Succ)) { 2195 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2196 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2197 HasLoopingSucc = true; 2198 continue; 2199 } 2200 2201 unsigned SuccLoopDepth = 0; 2202 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2203 SuccLoopDepth = ExitLoop->getLoopDepth(); 2204 if (ExitLoop->contains(&L)) 2205 BlocksExitingToOuterLoop.insert(MBB); 2206 } 2207 2208 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2209 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2210 << getBlockName(Succ) << " [L:" << SuccLoopDepth 2211 << "] ("; 2212 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 2213 // Note that we bias this toward an existing layout successor to retain 2214 // incoming order in the absence of better information. The exit must have 2215 // a frequency higher than the current exit before we consider breaking 2216 // the layout. 2217 BranchProbability Bias(100 - ExitBlockBias, 100); 2218 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2219 ExitEdgeFreq > BestExitEdgeFreq || 2220 (MBB->isLayoutSuccessor(Succ) && 2221 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2222 BestExitEdgeFreq = ExitEdgeFreq; 2223 ExitingBB = MBB; 2224 } 2225 } 2226 2227 if (!HasLoopingSucc) { 2228 // Restore the old exiting state, no viable looping successor was found. 2229 ExitingBB = OldExitingBB; 2230 BestExitEdgeFreq = OldBestExitEdgeFreq; 2231 } 2232 } 2233 // Without a candidate exiting block or with only a single block in the 2234 // loop, just use the loop header to layout the loop. 2235 if (!ExitingBB) { 2236 LLVM_DEBUG( 2237 dbgs() << " No other candidate exit blocks, using loop header\n"); 2238 return nullptr; 2239 } 2240 if (L.getNumBlocks() == 1) { 2241 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2242 return nullptr; 2243 } 2244 2245 // Also, if we have exit blocks which lead to outer loops but didn't select 2246 // one of them as the exiting block we are rotating toward, disable loop 2247 // rotation altogether. 2248 if (!BlocksExitingToOuterLoop.empty() && 2249 !BlocksExitingToOuterLoop.count(ExitingBB)) 2250 return nullptr; 2251 2252 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2253 << "\n"); 2254 ExitFreq = BestExitEdgeFreq; 2255 return ExitingBB; 2256 } 2257 2258 /// Check if there is a fallthrough to loop header Top. 2259 /// 2260 /// 1. Look for a Pred that can be layout before Top. 2261 /// 2. Check if Top is the most possible successor of Pred. 2262 bool 2263 MachineBlockPlacement::hasViableTopFallthrough( 2264 const MachineBasicBlock *Top, 2265 const BlockFilterSet &LoopBlockSet) { 2266 for (MachineBasicBlock *Pred : Top->predecessors()) { 2267 BlockChain *PredChain = BlockToChain[Pred]; 2268 if (!LoopBlockSet.count(Pred) && 2269 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2270 // Found a Pred block can be placed before Top. 2271 // Check if Top is the best successor of Pred. 2272 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2273 bool TopOK = true; 2274 for (MachineBasicBlock *Succ : Pred->successors()) { 2275 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2276 BlockChain *SuccChain = BlockToChain[Succ]; 2277 // Check if Succ can be placed after Pred. 2278 // Succ should not be in any chain, or it is the head of some chain. 2279 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2280 TopOK = false; 2281 break; 2282 } 2283 } 2284 if (TopOK) 2285 return true; 2286 } 2287 } 2288 return false; 2289 } 2290 2291 /// Attempt to rotate an exiting block to the bottom of the loop. 2292 /// 2293 /// Once we have built a chain, try to rotate it to line up the hot exit block 2294 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2295 /// branches. For example, if the loop has fallthrough into its header and out 2296 /// of its bottom already, don't rotate it. 2297 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2298 const MachineBasicBlock *ExitingBB, 2299 BlockFrequency ExitFreq, 2300 const BlockFilterSet &LoopBlockSet) { 2301 if (!ExitingBB) 2302 return; 2303 2304 MachineBasicBlock *Top = *LoopChain.begin(); 2305 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2306 2307 // If ExitingBB is already the last one in a chain then nothing to do. 2308 if (Bottom == ExitingBB) 2309 return; 2310 2311 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2312 2313 // If the header has viable fallthrough, check whether the current loop 2314 // bottom is a viable exiting block. If so, bail out as rotating will 2315 // introduce an unnecessary branch. 2316 if (ViableTopFallthrough) { 2317 for (MachineBasicBlock *Succ : Bottom->successors()) { 2318 BlockChain *SuccChain = BlockToChain[Succ]; 2319 if (!LoopBlockSet.count(Succ) && 2320 (!SuccChain || Succ == *SuccChain->begin())) 2321 return; 2322 } 2323 2324 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2325 // frequency is larger than top fallthrough. 2326 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2327 if (FallThrough2Top >= ExitFreq) 2328 return; 2329 } 2330 2331 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2332 if (ExitIt == LoopChain.end()) 2333 return; 2334 2335 // Rotating a loop exit to the bottom when there is a fallthrough to top 2336 // trades the entry fallthrough for an exit fallthrough. 2337 // If there is no bottom->top edge, but the chosen exit block does have 2338 // a fallthrough, we break that fallthrough for nothing in return. 2339 2340 // Let's consider an example. We have a built chain of basic blocks 2341 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2342 // By doing a rotation we get 2343 // Bk+1, ..., Bn, B1, ..., Bk 2344 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2345 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2346 // It might be compensated by fallthrough Bn -> B1. 2347 // So we have a condition to avoid creation of extra branch by loop rotation. 2348 // All below must be true to avoid loop rotation: 2349 // If there is a fallthrough to top (B1) 2350 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2351 // There is no fallthrough from bottom (Bn) to top (B1). 2352 // Please note that there is no exit fallthrough from Bn because we checked it 2353 // above. 2354 if (ViableTopFallthrough) { 2355 assert(std::next(ExitIt) != LoopChain.end() && 2356 "Exit should not be last BB"); 2357 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2358 if (ExitingBB->isSuccessor(NextBlockInChain)) 2359 if (!Bottom->isSuccessor(Top)) 2360 return; 2361 } 2362 2363 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2364 << " at bottom\n"); 2365 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2366 } 2367 2368 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2369 /// 2370 /// With profile data, we can determine the cost in terms of missed fall through 2371 /// opportunities when rotating a loop chain and select the best rotation. 2372 /// Basically, there are three kinds of cost to consider for each rotation: 2373 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2374 /// the loop to the loop header. 2375 /// 2. The possibly missed fall through edges (if they exist) from the loop 2376 /// exits to BB out of the loop. 2377 /// 3. The missed fall through edge (if it exists) from the last BB to the 2378 /// first BB in the loop chain. 2379 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2380 /// We select the best rotation with the smallest cost. 2381 void MachineBlockPlacement::rotateLoopWithProfile( 2382 BlockChain &LoopChain, const MachineLoop &L, 2383 const BlockFilterSet &LoopBlockSet) { 2384 auto RotationPos = LoopChain.end(); 2385 2386 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2387 2388 // A utility lambda that scales up a block frequency by dividing it by a 2389 // branch probability which is the reciprocal of the scale. 2390 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2391 unsigned Scale) -> BlockFrequency { 2392 if (Scale == 0) 2393 return 0; 2394 // Use operator / between BlockFrequency and BranchProbability to implement 2395 // saturating multiplication. 2396 return Freq / BranchProbability(1, Scale); 2397 }; 2398 2399 // Compute the cost of the missed fall-through edge to the loop header if the 2400 // chain head is not the loop header. As we only consider natural loops with 2401 // single header, this computation can be done only once. 2402 BlockFrequency HeaderFallThroughCost(0); 2403 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2404 for (auto *Pred : ChainHeaderBB->predecessors()) { 2405 BlockChain *PredChain = BlockToChain[Pred]; 2406 if (!LoopBlockSet.count(Pred) && 2407 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2408 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2409 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2410 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2411 // If the predecessor has only an unconditional jump to the header, we 2412 // need to consider the cost of this jump. 2413 if (Pred->succ_size() == 1) 2414 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2415 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2416 } 2417 } 2418 2419 // Here we collect all exit blocks in the loop, and for each exit we find out 2420 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2421 // as the sum of frequencies of exit edges we collect here, excluding the exit 2422 // edge from the tail of the loop chain. 2423 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2424 for (auto BB : LoopChain) { 2425 auto LargestExitEdgeProb = BranchProbability::getZero(); 2426 for (auto *Succ : BB->successors()) { 2427 BlockChain *SuccChain = BlockToChain[Succ]; 2428 if (!LoopBlockSet.count(Succ) && 2429 (!SuccChain || Succ == *SuccChain->begin())) { 2430 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2431 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2432 } 2433 } 2434 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2435 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2436 ExitsWithFreq.emplace_back(BB, ExitFreq); 2437 } 2438 } 2439 2440 // In this loop we iterate every block in the loop chain and calculate the 2441 // cost assuming the block is the head of the loop chain. When the loop ends, 2442 // we should have found the best candidate as the loop chain's head. 2443 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2444 EndIter = LoopChain.end(); 2445 Iter != EndIter; Iter++, TailIter++) { 2446 // TailIter is used to track the tail of the loop chain if the block we are 2447 // checking (pointed by Iter) is the head of the chain. 2448 if (TailIter == LoopChain.end()) 2449 TailIter = LoopChain.begin(); 2450 2451 auto TailBB = *TailIter; 2452 2453 // Calculate the cost by putting this BB to the top. 2454 BlockFrequency Cost = 0; 2455 2456 // If the current BB is the loop header, we need to take into account the 2457 // cost of the missed fall through edge from outside of the loop to the 2458 // header. 2459 if (Iter != LoopChain.begin()) 2460 Cost += HeaderFallThroughCost; 2461 2462 // Collect the loop exit cost by summing up frequencies of all exit edges 2463 // except the one from the chain tail. 2464 for (auto &ExitWithFreq : ExitsWithFreq) 2465 if (TailBB != ExitWithFreq.first) 2466 Cost += ExitWithFreq.second; 2467 2468 // The cost of breaking the once fall-through edge from the tail to the top 2469 // of the loop chain. Here we need to consider three cases: 2470 // 1. If the tail node has only one successor, then we will get an 2471 // additional jmp instruction. So the cost here is (MisfetchCost + 2472 // JumpInstCost) * tail node frequency. 2473 // 2. If the tail node has two successors, then we may still get an 2474 // additional jmp instruction if the layout successor after the loop 2475 // chain is not its CFG successor. Note that the more frequently executed 2476 // jmp instruction will be put ahead of the other one. Assume the 2477 // frequency of those two branches are x and y, where x is the frequency 2478 // of the edge to the chain head, then the cost will be 2479 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2480 // 3. If the tail node has more than two successors (this rarely happens), 2481 // we won't consider any additional cost. 2482 if (TailBB->isSuccessor(*Iter)) { 2483 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2484 if (TailBB->succ_size() == 1) 2485 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2486 MisfetchCost + JumpInstCost); 2487 else if (TailBB->succ_size() == 2) { 2488 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2489 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2490 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2491 ? TailBBFreq * TailToHeadProb.getCompl() 2492 : TailToHeadFreq; 2493 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2494 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2495 } 2496 } 2497 2498 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2499 << getBlockName(*Iter) 2500 << " to the top: " << Cost.getFrequency() << "\n"); 2501 2502 if (Cost < SmallestRotationCost) { 2503 SmallestRotationCost = Cost; 2504 RotationPos = Iter; 2505 } 2506 } 2507 2508 if (RotationPos != LoopChain.end()) { 2509 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2510 << " to the top\n"); 2511 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2512 } 2513 } 2514 2515 /// Collect blocks in the given loop that are to be placed. 2516 /// 2517 /// When profile data is available, exclude cold blocks from the returned set; 2518 /// otherwise, collect all blocks in the loop. 2519 MachineBlockPlacement::BlockFilterSet 2520 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2521 BlockFilterSet LoopBlockSet; 2522 2523 // Filter cold blocks off from LoopBlockSet when profile data is available. 2524 // Collect the sum of frequencies of incoming edges to the loop header from 2525 // outside. If we treat the loop as a super block, this is the frequency of 2526 // the loop. Then for each block in the loop, we calculate the ratio between 2527 // its frequency and the frequency of the loop block. When it is too small, 2528 // don't add it to the loop chain. If there are outer loops, then this block 2529 // will be merged into the first outer loop chain for which this block is not 2530 // cold anymore. This needs precise profile data and we only do this when 2531 // profile data is available. 2532 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2533 BlockFrequency LoopFreq(0); 2534 for (auto LoopPred : L.getHeader()->predecessors()) 2535 if (!L.contains(LoopPred)) 2536 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2537 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2538 2539 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2540 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2541 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2542 continue; 2543 LoopBlockSet.insert(LoopBB); 2544 } 2545 } else 2546 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2547 2548 return LoopBlockSet; 2549 } 2550 2551 /// Forms basic block chains from the natural loop structures. 2552 /// 2553 /// These chains are designed to preserve the existing *structure* of the code 2554 /// as much as possible. We can then stitch the chains together in a way which 2555 /// both preserves the topological structure and minimizes taken conditional 2556 /// branches. 2557 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2558 // First recurse through any nested loops, building chains for those inner 2559 // loops. 2560 for (const MachineLoop *InnerLoop : L) 2561 buildLoopChains(*InnerLoop); 2562 2563 assert(BlockWorkList.empty() && 2564 "BlockWorkList not empty when starting to build loop chains."); 2565 assert(EHPadWorkList.empty() && 2566 "EHPadWorkList not empty when starting to build loop chains."); 2567 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2568 2569 // Check if we have profile data for this function. If yes, we will rotate 2570 // this loop by modeling costs more precisely which requires the profile data 2571 // for better layout. 2572 bool RotateLoopWithProfile = 2573 ForcePreciseRotationCost || 2574 (PreciseRotationCost && F->getFunction().hasProfileData()); 2575 2576 // First check to see if there is an obviously preferable top block for the 2577 // loop. This will default to the header, but may end up as one of the 2578 // predecessors to the header if there is one which will result in strictly 2579 // fewer branches in the loop body. 2580 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2581 2582 // If we selected just the header for the loop top, look for a potentially 2583 // profitable exit block in the event that rotating the loop can eliminate 2584 // branches by placing an exit edge at the bottom. 2585 // 2586 // Loops are processed innermost to uttermost, make sure we clear 2587 // PreferredLoopExit before processing a new loop. 2588 PreferredLoopExit = nullptr; 2589 BlockFrequency ExitFreq; 2590 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2591 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2592 2593 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2594 2595 // FIXME: This is a really lame way of walking the chains in the loop: we 2596 // walk the blocks, and use a set to prevent visiting a particular chain 2597 // twice. 2598 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2599 assert(LoopChain.UnscheduledPredecessors == 0 && 2600 "LoopChain should not have unscheduled predecessors."); 2601 UpdatedPreds.insert(&LoopChain); 2602 2603 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2604 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2605 2606 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2607 2608 if (RotateLoopWithProfile) 2609 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2610 else 2611 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2612 2613 LLVM_DEBUG({ 2614 // Crash at the end so we get all of the debugging output first. 2615 bool BadLoop = false; 2616 if (LoopChain.UnscheduledPredecessors) { 2617 BadLoop = true; 2618 dbgs() << "Loop chain contains a block without its preds placed!\n" 2619 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2620 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2621 } 2622 for (MachineBasicBlock *ChainBB : LoopChain) { 2623 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2624 if (!LoopBlockSet.remove(ChainBB)) { 2625 // We don't mark the loop as bad here because there are real situations 2626 // where this can occur. For example, with an unanalyzable fallthrough 2627 // from a loop block to a non-loop block or vice versa. 2628 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2629 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2630 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2631 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2632 } 2633 } 2634 2635 if (!LoopBlockSet.empty()) { 2636 BadLoop = true; 2637 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2638 dbgs() << "Loop contains blocks never placed into a chain!\n" 2639 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2640 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2641 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2642 } 2643 assert(!BadLoop && "Detected problems with the placement of this loop."); 2644 }); 2645 2646 BlockWorkList.clear(); 2647 EHPadWorkList.clear(); 2648 } 2649 2650 void MachineBlockPlacement::buildCFGChains() { 2651 // Ensure that every BB in the function has an associated chain to simplify 2652 // the assumptions of the remaining algorithm. 2653 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2654 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2655 ++FI) { 2656 MachineBasicBlock *BB = &*FI; 2657 BlockChain *Chain = 2658 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2659 // Also, merge any blocks which we cannot reason about and must preserve 2660 // the exact fallthrough behavior for. 2661 while (true) { 2662 Cond.clear(); 2663 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2664 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2665 break; 2666 2667 MachineFunction::iterator NextFI = std::next(FI); 2668 MachineBasicBlock *NextBB = &*NextFI; 2669 // Ensure that the layout successor is a viable block, as we know that 2670 // fallthrough is a possibility. 2671 assert(NextFI != FE && "Can't fallthrough past the last block."); 2672 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2673 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2674 << "\n"); 2675 Chain->merge(NextBB, nullptr); 2676 #ifndef NDEBUG 2677 BlocksWithUnanalyzableExits.insert(&*BB); 2678 #endif 2679 FI = NextFI; 2680 BB = NextBB; 2681 } 2682 } 2683 2684 // Build any loop-based chains. 2685 PreferredLoopExit = nullptr; 2686 for (MachineLoop *L : *MLI) 2687 buildLoopChains(*L); 2688 2689 assert(BlockWorkList.empty() && 2690 "BlockWorkList should be empty before building final chain."); 2691 assert(EHPadWorkList.empty() && 2692 "EHPadWorkList should be empty before building final chain."); 2693 2694 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2695 for (MachineBasicBlock &MBB : *F) 2696 fillWorkLists(&MBB, UpdatedPreds); 2697 2698 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2699 buildChain(&F->front(), FunctionChain); 2700 2701 #ifndef NDEBUG 2702 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2703 #endif 2704 LLVM_DEBUG({ 2705 // Crash at the end so we get all of the debugging output first. 2706 bool BadFunc = false; 2707 FunctionBlockSetType FunctionBlockSet; 2708 for (MachineBasicBlock &MBB : *F) 2709 FunctionBlockSet.insert(&MBB); 2710 2711 for (MachineBasicBlock *ChainBB : FunctionChain) 2712 if (!FunctionBlockSet.erase(ChainBB)) { 2713 BadFunc = true; 2714 dbgs() << "Function chain contains a block not in the function!\n" 2715 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2716 } 2717 2718 if (!FunctionBlockSet.empty()) { 2719 BadFunc = true; 2720 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2721 dbgs() << "Function contains blocks never placed into a chain!\n" 2722 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2723 } 2724 assert(!BadFunc && "Detected problems with the block placement."); 2725 }); 2726 2727 // Remember original layout ordering, so we can update terminators after 2728 // reordering to point to the original layout successor. 2729 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( 2730 F->getNumBlockIDs()); 2731 { 2732 MachineBasicBlock *LastMBB = nullptr; 2733 for (auto &MBB : *F) { 2734 if (LastMBB != nullptr) 2735 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; 2736 LastMBB = &MBB; 2737 } 2738 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; 2739 } 2740 2741 // Splice the blocks into place. 2742 MachineFunction::iterator InsertPos = F->begin(); 2743 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2744 for (MachineBasicBlock *ChainBB : FunctionChain) { 2745 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2746 : " ... ") 2747 << getBlockName(ChainBB) << "\n"); 2748 if (InsertPos != MachineFunction::iterator(ChainBB)) 2749 F->splice(InsertPos, ChainBB); 2750 else 2751 ++InsertPos; 2752 2753 // Update the terminator of the previous block. 2754 if (ChainBB == *FunctionChain.begin()) 2755 continue; 2756 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2757 2758 // FIXME: It would be awesome of updateTerminator would just return rather 2759 // than assert when the branch cannot be analyzed in order to remove this 2760 // boiler plate. 2761 Cond.clear(); 2762 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2763 2764 #ifndef NDEBUG 2765 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2766 // Given the exact block placement we chose, we may actually not _need_ to 2767 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2768 // do that at this point is a bug. 2769 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2770 !PrevBB->canFallThrough()) && 2771 "Unexpected block with un-analyzable fallthrough!"); 2772 Cond.clear(); 2773 TBB = FBB = nullptr; 2774 } 2775 #endif 2776 2777 // The "PrevBB" is not yet updated to reflect current code layout, so, 2778 // o. it may fall-through to a block without explicit "goto" instruction 2779 // before layout, and no longer fall-through it after layout; or 2780 // o. just opposite. 2781 // 2782 // analyzeBranch() may return erroneous value for FBB when these two 2783 // situations take place. For the first scenario FBB is mistakenly set NULL; 2784 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2785 // mistakenly pointing to "*BI". 2786 // Thus, if the future change needs to use FBB before the layout is set, it 2787 // has to correct FBB first by using the code similar to the following: 2788 // 2789 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2790 // PrevBB->updateTerminator(); 2791 // Cond.clear(); 2792 // TBB = FBB = nullptr; 2793 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2794 // // FIXME: This should never take place. 2795 // TBB = FBB = nullptr; 2796 // } 2797 // } 2798 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2799 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2800 } 2801 } 2802 2803 // Fixup the last block. 2804 Cond.clear(); 2805 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2806 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) { 2807 MachineBasicBlock *PrevBB = &F->back(); 2808 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2809 } 2810 2811 BlockWorkList.clear(); 2812 EHPadWorkList.clear(); 2813 } 2814 2815 void MachineBlockPlacement::optimizeBranches() { 2816 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2817 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2818 2819 // Now that all the basic blocks in the chain have the proper layout, 2820 // make a final call to analyzeBranch with AllowModify set. 2821 // Indeed, the target may be able to optimize the branches in a way we 2822 // cannot because all branches may not be analyzable. 2823 // E.g., the target may be able to remove an unconditional branch to 2824 // a fallthrough when it occurs after predicated terminators. 2825 for (MachineBasicBlock *ChainBB : FunctionChain) { 2826 Cond.clear(); 2827 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2828 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2829 // If PrevBB has a two-way branch, try to re-order the branches 2830 // such that we branch to the successor with higher probability first. 2831 if (TBB && !Cond.empty() && FBB && 2832 MBPI->getEdgeProbability(ChainBB, FBB) > 2833 MBPI->getEdgeProbability(ChainBB, TBB) && 2834 !TII->reverseBranchCondition(Cond)) { 2835 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2836 << getBlockName(ChainBB) << "\n"); 2837 LLVM_DEBUG(dbgs() << " Edge probability: " 2838 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2839 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2840 DebugLoc dl; // FIXME: this is nowhere 2841 TII->removeBranch(*ChainBB); 2842 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2843 } 2844 } 2845 } 2846 } 2847 2848 void MachineBlockPlacement::alignBlocks() { 2849 // Walk through the backedges of the function now that we have fully laid out 2850 // the basic blocks and align the destination of each backedge. We don't rely 2851 // exclusively on the loop info here so that we can align backedges in 2852 // unnatural CFGs and backedges that were introduced purely because of the 2853 // loop rotations done during this layout pass. 2854 if (F->getFunction().hasMinSize() || 2855 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2856 return; 2857 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2858 if (FunctionChain.begin() == FunctionChain.end()) 2859 return; // Empty chain. 2860 2861 const BranchProbability ColdProb(1, 5); // 20% 2862 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2863 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2864 for (MachineBasicBlock *ChainBB : FunctionChain) { 2865 if (ChainBB == *FunctionChain.begin()) 2866 continue; 2867 2868 // Don't align non-looping basic blocks. These are unlikely to execute 2869 // enough times to matter in practice. Note that we'll still handle 2870 // unnatural CFGs inside of a natural outer loop (the common case) and 2871 // rotated loops. 2872 MachineLoop *L = MLI->getLoopFor(ChainBB); 2873 if (!L) 2874 continue; 2875 2876 const Align Align = TLI->getPrefLoopAlignment(L); 2877 if (Align == 1) 2878 continue; // Don't care about loop alignment. 2879 2880 // If the block is cold relative to the function entry don't waste space 2881 // aligning it. 2882 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2883 if (Freq < WeightedEntryFreq) 2884 continue; 2885 2886 // If the block is cold relative to its loop header, don't align it 2887 // regardless of what edges into the block exist. 2888 MachineBasicBlock *LoopHeader = L->getHeader(); 2889 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2890 if (Freq < (LoopHeaderFreq * ColdProb)) 2891 continue; 2892 2893 // If the global profiles indicates so, don't align it. 2894 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) && 2895 !TLI->alignLoopsWithOptSize()) 2896 continue; 2897 2898 // Check for the existence of a non-layout predecessor which would benefit 2899 // from aligning this block. 2900 MachineBasicBlock *LayoutPred = 2901 &*std::prev(MachineFunction::iterator(ChainBB)); 2902 2903 // Force alignment if all the predecessors are jumps. We already checked 2904 // that the block isn't cold above. 2905 if (!LayoutPred->isSuccessor(ChainBB)) { 2906 ChainBB->setAlignment(Align); 2907 continue; 2908 } 2909 2910 // Align this block if the layout predecessor's edge into this block is 2911 // cold relative to the block. When this is true, other predecessors make up 2912 // all of the hot entries into the block and thus alignment is likely to be 2913 // important. 2914 BranchProbability LayoutProb = 2915 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2916 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2917 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2918 ChainBB->setAlignment(Align); 2919 } 2920 } 2921 2922 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2923 /// it was duplicated into its chain predecessor and removed. 2924 /// \p BB - Basic block that may be duplicated. 2925 /// 2926 /// \p LPred - Chosen layout predecessor of \p BB. 2927 /// Updated to be the chain end if LPred is removed. 2928 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2929 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2930 /// Used to identify which blocks to update predecessor 2931 /// counts. 2932 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2933 /// chosen in the given order due to unnatural CFG 2934 /// only needed if \p BB is removed and 2935 /// \p PrevUnplacedBlockIt pointed to \p BB. 2936 /// @return true if \p BB was removed. 2937 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2938 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2939 const MachineBasicBlock *LoopHeaderBB, 2940 BlockChain &Chain, BlockFilterSet *BlockFilter, 2941 MachineFunction::iterator &PrevUnplacedBlockIt) { 2942 bool Removed, DuplicatedToLPred; 2943 bool DuplicatedToOriginalLPred; 2944 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2945 PrevUnplacedBlockIt, 2946 DuplicatedToLPred); 2947 if (!Removed) 2948 return false; 2949 DuplicatedToOriginalLPred = DuplicatedToLPred; 2950 // Iteratively try to duplicate again. It can happen that a block that is 2951 // duplicated into is still small enough to be duplicated again. 2952 // No need to call markBlockSuccessors in this case, as the blocks being 2953 // duplicated from here on are already scheduled. 2954 while (DuplicatedToLPred && Removed) { 2955 MachineBasicBlock *DupBB, *DupPred; 2956 // The removal callback causes Chain.end() to be updated when a block is 2957 // removed. On the first pass through the loop, the chain end should be the 2958 // same as it was on function entry. On subsequent passes, because we are 2959 // duplicating the block at the end of the chain, if it is removed the 2960 // chain will have shrunk by one block. 2961 BlockChain::iterator ChainEnd = Chain.end(); 2962 DupBB = *(--ChainEnd); 2963 // Now try to duplicate again. 2964 if (ChainEnd == Chain.begin()) 2965 break; 2966 DupPred = *std::prev(ChainEnd); 2967 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2968 PrevUnplacedBlockIt, 2969 DuplicatedToLPred); 2970 } 2971 // If BB was duplicated into LPred, it is now scheduled. But because it was 2972 // removed, markChainSuccessors won't be called for its chain. Instead we 2973 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2974 // at the end because repeating the tail duplication can increase the number 2975 // of unscheduled predecessors. 2976 LPred = *std::prev(Chain.end()); 2977 if (DuplicatedToOriginalLPred) 2978 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2979 return true; 2980 } 2981 2982 /// Tail duplicate \p BB into (some) predecessors if profitable. 2983 /// \p BB - Basic block that may be duplicated 2984 /// \p LPred - Chosen layout predecessor of \p BB 2985 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2986 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2987 /// Used to identify which blocks to update predecessor 2988 /// counts. 2989 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2990 /// chosen in the given order due to unnatural CFG 2991 /// only needed if \p BB is removed and 2992 /// \p PrevUnplacedBlockIt pointed to \p BB. 2993 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. 2994 /// \return - True if the block was duplicated into all preds and removed. 2995 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2996 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2997 BlockChain &Chain, BlockFilterSet *BlockFilter, 2998 MachineFunction::iterator &PrevUnplacedBlockIt, 2999 bool &DuplicatedToLPred) { 3000 DuplicatedToLPred = false; 3001 if (!shouldTailDuplicate(BB)) 3002 return false; 3003 3004 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 3005 << "\n"); 3006 3007 // This has to be a callback because none of it can be done after 3008 // BB is deleted. 3009 bool Removed = false; 3010 auto RemovalCallback = 3011 [&](MachineBasicBlock *RemBB) { 3012 // Signal to outer function 3013 Removed = true; 3014 3015 // Conservative default. 3016 bool InWorkList = true; 3017 // Remove from the Chain and Chain Map 3018 if (BlockToChain.count(RemBB)) { 3019 BlockChain *Chain = BlockToChain[RemBB]; 3020 InWorkList = Chain->UnscheduledPredecessors == 0; 3021 Chain->remove(RemBB); 3022 BlockToChain.erase(RemBB); 3023 } 3024 3025 // Handle the unplaced block iterator 3026 if (&(*PrevUnplacedBlockIt) == RemBB) { 3027 PrevUnplacedBlockIt++; 3028 } 3029 3030 // Handle the Work Lists 3031 if (InWorkList) { 3032 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 3033 if (RemBB->isEHPad()) 3034 RemoveList = EHPadWorkList; 3035 RemoveList.erase( 3036 llvm::remove_if(RemoveList, 3037 [RemBB](MachineBasicBlock *BB) { 3038 return BB == RemBB; 3039 }), 3040 RemoveList.end()); 3041 } 3042 3043 // Handle the filter set 3044 if (BlockFilter) { 3045 BlockFilter->remove(RemBB); 3046 } 3047 3048 // Remove the block from loop info. 3049 MLI->removeBlock(RemBB); 3050 if (RemBB == PreferredLoopExit) 3051 PreferredLoopExit = nullptr; 3052 3053 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 3054 << getBlockName(RemBB) << "\n"); 3055 }; 3056 auto RemovalCallbackRef = 3057 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 3058 3059 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3060 bool IsSimple = TailDup.isSimpleBB(BB); 3061 SmallVector<MachineBasicBlock *, 8> CandidatePreds; 3062 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; 3063 if (F->getFunction().hasProfileData()) { 3064 // We can do partial duplication with precise profile information. 3065 findDuplicateCandidates(CandidatePreds, BB, BlockFilter); 3066 if (CandidatePreds.size() == 0) 3067 return false; 3068 if (CandidatePreds.size() < BB->pred_size()) 3069 CandidatePtr = &CandidatePreds; 3070 } 3071 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds, 3072 &RemovalCallbackRef, CandidatePtr); 3073 3074 // Update UnscheduledPredecessors to reflect tail-duplication. 3075 DuplicatedToLPred = false; 3076 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3077 // We're only looking for unscheduled predecessors that match the filter. 3078 BlockChain* PredChain = BlockToChain[Pred]; 3079 if (Pred == LPred) 3080 DuplicatedToLPred = true; 3081 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 3082 || PredChain == &Chain) 3083 continue; 3084 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3085 if (BlockFilter && !BlockFilter->count(NewSucc)) 3086 continue; 3087 BlockChain *NewChain = BlockToChain[NewSucc]; 3088 if (NewChain != &Chain && NewChain != PredChain) 3089 NewChain->UnscheduledPredecessors++; 3090 } 3091 } 3092 return Removed; 3093 } 3094 3095 // Count the number of actual machine instructions. 3096 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { 3097 uint64_t InstrCount = 0; 3098 for (MachineInstr &MI : *MBB) { 3099 if (!MI.isPHI() && !MI.isMetaInstruction()) 3100 InstrCount += 1; 3101 } 3102 return InstrCount; 3103 } 3104 3105 // The size cost of duplication is the instruction size of the duplicated block. 3106 // So we should scale the threshold accordingly. But the instruction size is not 3107 // available on all targets, so we use the number of instructions instead. 3108 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { 3109 return DupThreshold.getFrequency() * countMBBInstruction(BB); 3110 } 3111 3112 // Returns true if BB is Pred's best successor. 3113 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, 3114 MachineBasicBlock *Pred, 3115 BlockFilterSet *BlockFilter) { 3116 if (BB == Pred) 3117 return false; 3118 if (BlockFilter && !BlockFilter->count(Pred)) 3119 return false; 3120 BlockChain *PredChain = BlockToChain[Pred]; 3121 if (PredChain && (Pred != *std::prev(PredChain->end()))) 3122 return false; 3123 3124 // Find the successor with largest probability excluding BB. 3125 BranchProbability BestProb = BranchProbability::getZero(); 3126 for (MachineBasicBlock *Succ : Pred->successors()) 3127 if (Succ != BB) { 3128 if (BlockFilter && !BlockFilter->count(Succ)) 3129 continue; 3130 BlockChain *SuccChain = BlockToChain[Succ]; 3131 if (SuccChain && (Succ != *SuccChain->begin())) 3132 continue; 3133 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ); 3134 if (SuccProb > BestProb) 3135 BestProb = SuccProb; 3136 } 3137 3138 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB); 3139 if (BBProb <= BestProb) 3140 return false; 3141 3142 // Compute the number of reduced taken branches if Pred falls through to BB 3143 // instead of another successor. Then compare it with threshold. 3144 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3145 BlockFrequency Gain = PredFreq * (BBProb - BestProb); 3146 return Gain > scaleThreshold(BB); 3147 } 3148 3149 // Find out the predecessors of BB and BB can be beneficially duplicated into 3150 // them. 3151 void MachineBlockPlacement::findDuplicateCandidates( 3152 SmallVectorImpl<MachineBasicBlock *> &Candidates, 3153 MachineBasicBlock *BB, 3154 BlockFilterSet *BlockFilter) { 3155 MachineBasicBlock *Fallthrough = nullptr; 3156 BranchProbability DefaultBranchProb = BranchProbability::getZero(); 3157 BlockFrequency BBDupThreshold(scaleThreshold(BB)); 3158 SmallVector<MachineBasicBlock *, 8> Preds(BB->pred_begin(), BB->pred_end()); 3159 SmallVector<MachineBasicBlock *, 8> Succs(BB->succ_begin(), BB->succ_end()); 3160 3161 // Sort for highest frequency. 3162 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3163 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B); 3164 }; 3165 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3166 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B); 3167 }; 3168 llvm::stable_sort(Succs, CmpSucc); 3169 llvm::stable_sort(Preds, CmpPred); 3170 3171 auto SuccIt = Succs.begin(); 3172 if (SuccIt != Succs.end()) { 3173 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl(); 3174 } 3175 3176 // For each predecessors of BB, compute the benefit of duplicating BB, 3177 // if it is larger than the threshold, add it into Candidates. 3178 // 3179 // If we have following control flow. 3180 // 3181 // PB1 PB2 PB3 PB4 3182 // \ | / /\ 3183 // \ | / / \ 3184 // \ |/ / \ 3185 // BB----/ OB 3186 // /\ 3187 // / \ 3188 // SB1 SB2 3189 // 3190 // And it can be partially duplicated as 3191 // 3192 // PB2+BB 3193 // | PB1 PB3 PB4 3194 // | | / /\ 3195 // | | / / \ 3196 // | |/ / \ 3197 // | BB----/ OB 3198 // |\ /| 3199 // | X | 3200 // |/ \| 3201 // SB2 SB1 3202 // 3203 // The benefit of duplicating into a predecessor is defined as 3204 // Orig_taken_branch - Duplicated_taken_branch 3205 // 3206 // The Orig_taken_branch is computed with the assumption that predecessor 3207 // jumps to BB and the most possible successor is laid out after BB. 3208 // 3209 // The Duplicated_taken_branch is computed with the assumption that BB is 3210 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and 3211 // SB2 for PB2 in our case). If there is no available successor, the combined 3212 // block jumps to all BB's successor, like PB3 in this example. 3213 // 3214 // If a predecessor has multiple successors, so BB can't be duplicated into 3215 // it. But it can beneficially fall through to BB, and duplicate BB into other 3216 // predecessors. 3217 for (MachineBasicBlock *Pred : Preds) { 3218 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3219 3220 if (!TailDup.canTailDuplicate(BB, Pred)) { 3221 // BB can't be duplicated into Pred, but it is possible to be layout 3222 // below Pred. 3223 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { 3224 Fallthrough = Pred; 3225 if (SuccIt != Succs.end()) 3226 SuccIt++; 3227 } 3228 continue; 3229 } 3230 3231 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; 3232 BlockFrequency DupCost; 3233 if (SuccIt == Succs.end()) { 3234 // Jump to all successors; 3235 if (Succs.size() > 0) 3236 DupCost += PredFreq; 3237 } else { 3238 // Fallthrough to *SuccIt, jump to all other successors; 3239 DupCost += PredFreq; 3240 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt); 3241 } 3242 3243 assert(OrigCost >= DupCost); 3244 OrigCost -= DupCost; 3245 if (OrigCost > BBDupThreshold) { 3246 Candidates.push_back(Pred); 3247 if (SuccIt != Succs.end()) 3248 SuccIt++; 3249 } 3250 } 3251 3252 // No predecessors can optimally fallthrough to BB. 3253 // So we can change one duplication into fallthrough. 3254 if (!Fallthrough) { 3255 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { 3256 Candidates[0] = Candidates.back(); 3257 Candidates.pop_back(); 3258 } 3259 } 3260 } 3261 3262 void MachineBlockPlacement::initDupThreshold() { 3263 DupThreshold = 0; 3264 if (!F->getFunction().hasProfileData()) 3265 return; 3266 3267 // We prefer to use prifile count. 3268 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); 3269 if (HotThreshold != UINT64_MAX) { 3270 UseProfileCount = true; 3271 DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100; 3272 return; 3273 } 3274 3275 // Profile count is not available, we can use block frequency instead. 3276 BlockFrequency MaxFreq = 0; 3277 for (MachineBasicBlock &MBB : *F) { 3278 BlockFrequency Freq = MBFI->getBlockFreq(&MBB); 3279 if (Freq > MaxFreq) 3280 MaxFreq = Freq; 3281 } 3282 3283 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 3284 DupThreshold = MaxFreq * ThresholdProb; 3285 UseProfileCount = false; 3286 } 3287 3288 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3289 if (skipFunction(MF.getFunction())) 3290 return false; 3291 3292 // Check for single-block functions and skip them. 3293 if (std::next(MF.begin()) == MF.end()) 3294 return false; 3295 3296 F = &MF; 3297 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3298 MBFI = std::make_unique<MBFIWrapper>( 3299 getAnalysis<MachineBlockFrequencyInfo>()); 3300 MLI = &getAnalysis<MachineLoopInfo>(); 3301 TII = MF.getSubtarget().getInstrInfo(); 3302 TLI = MF.getSubtarget().getTargetLowering(); 3303 MPDT = nullptr; 3304 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3305 3306 initDupThreshold(); 3307 3308 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3309 // there are no MachineLoops. 3310 PreferredLoopExit = nullptr; 3311 3312 assert(BlockToChain.empty() && 3313 "BlockToChain map should be empty before starting placement."); 3314 assert(ComputedEdges.empty() && 3315 "Computed Edge map should be empty before starting placement."); 3316 3317 unsigned TailDupSize = TailDupPlacementThreshold; 3318 // If only the aggressive threshold is explicitly set, use it. 3319 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3320 TailDupPlacementThreshold.getNumOccurrences() == 0) 3321 TailDupSize = TailDupPlacementAggressiveThreshold; 3322 3323 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3324 // For aggressive optimization, we can adjust some thresholds to be less 3325 // conservative. 3326 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 3327 // At O3 we should be more willing to copy blocks for tail duplication. This 3328 // increases size pressure, so we only do it at O3 3329 // Do this unless only the regular threshold is explicitly set. 3330 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3331 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3332 TailDupSize = TailDupPlacementAggressiveThreshold; 3333 } 3334 3335 if (allowTailDupPlacement()) { 3336 MPDT = &getAnalysis<MachinePostDominatorTree>(); 3337 bool OptForSize = MF.getFunction().hasOptSize() || 3338 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 3339 if (OptForSize) 3340 TailDupSize = 1; 3341 bool PreRegAlloc = false; 3342 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI, 3343 /* LayoutMode */ true, TailDupSize); 3344 precomputeTriangleChains(); 3345 } 3346 3347 buildCFGChains(); 3348 3349 // Changing the layout can create new tail merging opportunities. 3350 // TailMerge can create jump into if branches that make CFG irreducible for 3351 // HW that requires structured CFG. 3352 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3353 PassConfig->getEnableTailMerge() && 3354 BranchFoldPlacement; 3355 // No tail merging opportunities if the block number is less than four. 3356 if (MF.size() > 3 && EnableTailMerge) { 3357 unsigned TailMergeSize = TailDupSize + 1; 3358 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, 3359 *MBFI, *MBPI, PSI, TailMergeSize); 3360 3361 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI, 3362 /*AfterPlacement=*/true)) { 3363 // Redo the layout if tail merging creates/removes/moves blocks. 3364 BlockToChain.clear(); 3365 ComputedEdges.clear(); 3366 // Must redo the post-dominator tree if blocks were changed. 3367 if (MPDT) 3368 MPDT->runOnMachineFunction(MF); 3369 ChainAllocator.DestroyAll(); 3370 buildCFGChains(); 3371 } 3372 } 3373 3374 optimizeBranches(); 3375 alignBlocks(); 3376 3377 BlockToChain.clear(); 3378 ComputedEdges.clear(); 3379 ChainAllocator.DestroyAll(); 3380 3381 if (AlignAllBlock) 3382 // Align all of the blocks in the function to a specific alignment. 3383 for (MachineBasicBlock &MBB : MF) 3384 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3385 else if (AlignAllNonFallThruBlocks) { 3386 // Align all of the blocks that have no fall-through predecessors to a 3387 // specific alignment. 3388 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3389 auto LayoutPred = std::prev(MBI); 3390 if (!LayoutPred->isSuccessor(&*MBI)) 3391 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3392 } 3393 } 3394 if (ViewBlockLayoutWithBFI != GVDT_None && 3395 (ViewBlockFreqFuncName.empty() || 3396 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 3397 MBFI->view("MBP." + MF.getName(), false); 3398 } 3399 3400 3401 // We always return true as we have no way to track whether the final order 3402 // differs from the original order. 3403 return true; 3404 } 3405 3406 namespace { 3407 3408 /// A pass to compute block placement statistics. 3409 /// 3410 /// A separate pass to compute interesting statistics for evaluating block 3411 /// placement. This is separate from the actual placement pass so that they can 3412 /// be computed in the absence of any placement transformations or when using 3413 /// alternative placement strategies. 3414 class MachineBlockPlacementStats : public MachineFunctionPass { 3415 /// A handle to the branch probability pass. 3416 const MachineBranchProbabilityInfo *MBPI; 3417 3418 /// A handle to the function-wide block frequency pass. 3419 const MachineBlockFrequencyInfo *MBFI; 3420 3421 public: 3422 static char ID; // Pass identification, replacement for typeid 3423 3424 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3425 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3426 } 3427 3428 bool runOnMachineFunction(MachineFunction &F) override; 3429 3430 void getAnalysisUsage(AnalysisUsage &AU) const override { 3431 AU.addRequired<MachineBranchProbabilityInfo>(); 3432 AU.addRequired<MachineBlockFrequencyInfo>(); 3433 AU.setPreservesAll(); 3434 MachineFunctionPass::getAnalysisUsage(AU); 3435 } 3436 }; 3437 3438 } // end anonymous namespace 3439 3440 char MachineBlockPlacementStats::ID = 0; 3441 3442 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3443 3444 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3445 "Basic Block Placement Stats", false, false) 3446 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 3447 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 3448 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3449 "Basic Block Placement Stats", false, false) 3450 3451 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3452 // Check for single-block functions and skip them. 3453 if (std::next(F.begin()) == F.end()) 3454 return false; 3455 3456 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3457 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3458 3459 for (MachineBasicBlock &MBB : F) { 3460 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3461 Statistic &NumBranches = 3462 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3463 Statistic &BranchTakenFreq = 3464 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3465 for (MachineBasicBlock *Succ : MBB.successors()) { 3466 // Skip if this successor is a fallthrough. 3467 if (MBB.isLayoutSuccessor(Succ)) 3468 continue; 3469 3470 BlockFrequency EdgeFreq = 3471 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3472 ++NumBranches; 3473 BranchTakenFreq += EdgeFreq.getFrequency(); 3474 } 3475 } 3476 3477 return false; 3478 } 3479