1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "block-placement" 52 53 STATISTIC(NumCondBranches, "Number of conditional branches"); 54 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 55 STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57 STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 66 "align-all-nofallthru-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks that have no fall-through predecessors (i.e. don't add " 69 "nops that are executed)."), 70 cl::init(0), cl::Hidden); 71 72 // FIXME: Find a good default for this flag and remove the flag. 73 static cl::opt<unsigned> ExitBlockBias( 74 "block-placement-exit-block-bias", 75 cl::desc("Block frequency percentage a loop exit block needs " 76 "over the original exit to be considered the new exit."), 77 cl::init(0), cl::Hidden); 78 79 static cl::opt<bool> OutlineOptionalBranches( 80 "outline-optional-branches", 81 cl::desc("Put completely optional branches, i.e. branches with a common " 82 "post dominator, out of line."), 83 cl::init(false), cl::Hidden); 84 85 static cl::opt<unsigned> OutlineOptionalThreshold( 86 "outline-optional-threshold", 87 cl::desc("Don't outline optional branches that are a single block with an " 88 "instruction count below this threshold"), 89 cl::init(4), cl::Hidden); 90 91 static cl::opt<unsigned> LoopToColdBlockRatio( 92 "loop-to-cold-block-ratio", 93 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 94 "(frequency of block) is greater than this ratio"), 95 cl::init(5), cl::Hidden); 96 97 static cl::opt<bool> 98 PreciseRotationCost("precise-rotation-cost", 99 cl::desc("Model the cost of loop rotation more " 100 "precisely by using profile data."), 101 cl::init(false), cl::Hidden); 102 103 static cl::opt<unsigned> MisfetchCost( 104 "misfetch-cost", 105 cl::desc("Cost that models the probablistic risk of an instruction " 106 "misfetch due to a jump comparing to falling through, whose cost " 107 "is zero."), 108 cl::init(1), cl::Hidden); 109 110 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 111 cl::desc("Cost of jump instructions."), 112 cl::init(1), cl::Hidden); 113 114 namespace { 115 class BlockChain; 116 /// \brief Type for our function-wide basic block -> block chain mapping. 117 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 118 } 119 120 namespace { 121 /// \brief A chain of blocks which will be laid out contiguously. 122 /// 123 /// This is the datastructure representing a chain of consecutive blocks that 124 /// are profitable to layout together in order to maximize fallthrough 125 /// probabilities and code locality. We also can use a block chain to represent 126 /// a sequence of basic blocks which have some external (correctness) 127 /// requirement for sequential layout. 128 /// 129 /// Chains can be built around a single basic block and can be merged to grow 130 /// them. They participate in a block-to-chain mapping, which is updated 131 /// automatically as chains are merged together. 132 class BlockChain { 133 /// \brief The sequence of blocks belonging to this chain. 134 /// 135 /// This is the sequence of blocks for a particular chain. These will be laid 136 /// out in-order within the function. 137 SmallVector<MachineBasicBlock *, 4> Blocks; 138 139 /// \brief A handle to the function-wide basic block to block chain mapping. 140 /// 141 /// This is retained in each block chain to simplify the computation of child 142 /// block chains for SCC-formation and iteration. We store the edges to child 143 /// basic blocks, and map them back to their associated chains using this 144 /// structure. 145 BlockToChainMapType &BlockToChain; 146 147 public: 148 /// \brief Construct a new BlockChain. 149 /// 150 /// This builds a new block chain representing a single basic block in the 151 /// function. It also registers itself as the chain that block participates 152 /// in with the BlockToChain mapping. 153 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 154 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 155 assert(BB && "Cannot create a chain with a null basic block"); 156 BlockToChain[BB] = this; 157 } 158 159 /// \brief Iterator over blocks within the chain. 160 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 161 162 /// \brief Beginning of blocks within the chain. 163 iterator begin() { return Blocks.begin(); } 164 165 /// \brief End of blocks within the chain. 166 iterator end() { return Blocks.end(); } 167 168 /// \brief Merge a block chain into this one. 169 /// 170 /// This routine merges a block chain into this one. It takes care of forming 171 /// a contiguous sequence of basic blocks, updating the edge list, and 172 /// updating the block -> chain mapping. It does not free or tear down the 173 /// old chain, but the old chain's block list is no longer valid. 174 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 175 assert(BB); 176 assert(!Blocks.empty()); 177 178 // Fast path in case we don't have a chain already. 179 if (!Chain) { 180 assert(!BlockToChain[BB]); 181 Blocks.push_back(BB); 182 BlockToChain[BB] = this; 183 return; 184 } 185 186 assert(BB == *Chain->begin()); 187 assert(Chain->begin() != Chain->end()); 188 189 // Update the incoming blocks to point to this chain, and add them to the 190 // chain structure. 191 for (MachineBasicBlock *ChainBB : *Chain) { 192 Blocks.push_back(ChainBB); 193 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 194 BlockToChain[ChainBB] = this; 195 } 196 } 197 198 #ifndef NDEBUG 199 /// \brief Dump the blocks in this chain. 200 LLVM_DUMP_METHOD void dump() { 201 for (MachineBasicBlock *MBB : *this) 202 MBB->dump(); 203 } 204 #endif // NDEBUG 205 206 /// \brief Count of predecessors of any block within the chain which have not 207 /// yet been scheduled. In general, we will delay scheduling this chain 208 /// until those predecessors are scheduled (or we find a sufficiently good 209 /// reason to override this heuristic.) Note that when forming loop chains, 210 /// blocks outside the loop are ignored and treated as if they were already 211 /// scheduled. 212 /// 213 /// Note: This field is reinitialized multiple times - once for each loop, 214 /// and then once for the function as a whole. 215 unsigned UnscheduledPredecessors; 216 }; 217 } 218 219 namespace { 220 class MachineBlockPlacement : public MachineFunctionPass { 221 /// \brief A typedef for a block filter set. 222 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 223 224 /// \brief A handle to the branch probability pass. 225 const MachineBranchProbabilityInfo *MBPI; 226 227 /// \brief A handle to the function-wide block frequency pass. 228 const MachineBlockFrequencyInfo *MBFI; 229 230 /// \brief A handle to the loop info. 231 const MachineLoopInfo *MLI; 232 233 /// \brief A handle to the target's instruction info. 234 const TargetInstrInfo *TII; 235 236 /// \brief A handle to the target's lowering info. 237 const TargetLoweringBase *TLI; 238 239 /// \brief A handle to the post dominator tree. 240 MachineDominatorTree *MDT; 241 242 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 243 /// all terminators of the MachineFunction. 244 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 245 246 /// \brief Allocator and owner of BlockChain structures. 247 /// 248 /// We build BlockChains lazily while processing the loop structure of 249 /// a function. To reduce malloc traffic, we allocate them using this 250 /// slab-like allocator, and destroy them after the pass completes. An 251 /// important guarantee is that this allocator produces stable pointers to 252 /// the chains. 253 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 254 255 /// \brief Function wide BasicBlock to BlockChain mapping. 256 /// 257 /// This mapping allows efficiently moving from any given basic block to the 258 /// BlockChain it participates in, if any. We use it to, among other things, 259 /// allow implicitly defining edges between chains as the existing edges 260 /// between basic blocks. 261 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 262 263 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 264 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 265 const BlockFilterSet *BlockFilter = nullptr); 266 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 267 BlockChain &Chain, 268 const BlockFilterSet *BlockFilter); 269 MachineBasicBlock * 270 selectBestCandidateBlock(BlockChain &Chain, 271 SmallVectorImpl<MachineBasicBlock *> &WorkList, 272 const BlockFilterSet *BlockFilter); 273 MachineBasicBlock * 274 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 275 MachineFunction::iterator &PrevUnplacedBlockIt, 276 const BlockFilterSet *BlockFilter); 277 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 278 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 279 const BlockFilterSet *BlockFilter = nullptr); 280 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 281 const BlockFilterSet &LoopBlockSet); 282 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 283 const BlockFilterSet &LoopBlockSet); 284 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 285 void buildLoopChains(MachineFunction &F, MachineLoop &L); 286 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 287 const BlockFilterSet &LoopBlockSet); 288 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 289 const BlockFilterSet &LoopBlockSet); 290 void buildCFGChains(MachineFunction &F); 291 292 public: 293 static char ID; // Pass identification, replacement for typeid 294 MachineBlockPlacement() : MachineFunctionPass(ID) { 295 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 296 } 297 298 bool runOnMachineFunction(MachineFunction &F) override; 299 300 void getAnalysisUsage(AnalysisUsage &AU) const override { 301 AU.addRequired<MachineBranchProbabilityInfo>(); 302 AU.addRequired<MachineBlockFrequencyInfo>(); 303 AU.addRequired<MachineDominatorTree>(); 304 AU.addRequired<MachineLoopInfo>(); 305 MachineFunctionPass::getAnalysisUsage(AU); 306 } 307 }; 308 } 309 310 char MachineBlockPlacement::ID = 0; 311 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 312 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 313 "Branch Probability Basic Block Placement", false, false) 314 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 315 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 316 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 317 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 318 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 319 "Branch Probability Basic Block Placement", false, false) 320 321 #ifndef NDEBUG 322 /// \brief Helper to print the name of a MBB. 323 /// 324 /// Only used by debug logging. 325 static std::string getBlockName(MachineBasicBlock *BB) { 326 std::string Result; 327 raw_string_ostream OS(Result); 328 OS << "BB#" << BB->getNumber(); 329 OS << " ('" << BB->getName() << "')"; 330 OS.flush(); 331 return Result; 332 } 333 #endif 334 335 /// \brief Mark a chain's successors as having one fewer preds. 336 /// 337 /// When a chain is being merged into the "placed" chain, this routine will 338 /// quickly walk the successors of each block in the chain and mark them as 339 /// having one fewer active predecessor. It also adds any successors of this 340 /// chain which reach the zero-predecessor state to the worklist passed in. 341 void MachineBlockPlacement::markChainSuccessors( 342 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 343 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 344 const BlockFilterSet *BlockFilter) { 345 // Walk all the blocks in this chain, marking their successors as having 346 // a predecessor placed. 347 for (MachineBasicBlock *MBB : Chain) { 348 // Add any successors for which this is the only un-placed in-loop 349 // predecessor to the worklist as a viable candidate for CFG-neutral 350 // placement. No subsequent placement of this block will violate the CFG 351 // shape, so we get to use heuristics to choose a favorable placement. 352 for (MachineBasicBlock *Succ : MBB->successors()) { 353 if (BlockFilter && !BlockFilter->count(Succ)) 354 continue; 355 BlockChain &SuccChain = *BlockToChain[Succ]; 356 // Disregard edges within a fixed chain, or edges to the loop header. 357 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 358 continue; 359 360 // This is a cross-chain edge that is within the loop, so decrement the 361 // loop predecessor count of the destination chain. 362 if (SuccChain.UnscheduledPredecessors > 0 && --SuccChain.UnscheduledPredecessors == 0) 363 BlockWorkList.push_back(*SuccChain.begin()); 364 } 365 } 366 } 367 368 /// \brief Select the best successor for a block. 369 /// 370 /// This looks across all successors of a particular block and attempts to 371 /// select the "best" one to be the layout successor. It only considers direct 372 /// successors which also pass the block filter. It will attempt to avoid 373 /// breaking CFG structure, but cave and break such structures in the case of 374 /// very hot successor edges. 375 /// 376 /// \returns The best successor block found, or null if none are viable. 377 MachineBasicBlock * 378 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 379 BlockChain &Chain, 380 const BlockFilterSet *BlockFilter) { 381 const BranchProbability HotProb(4, 5); // 80% 382 383 MachineBasicBlock *BestSucc = nullptr; 384 auto BestProb = BranchProbability::getZero(); 385 386 // Adjust edge probabilities by excluding edges pointing to blocks that is 387 // either not in BlockFilter or is already in the current chain. Consider the 388 // following CFG: 389 // 390 // --->A 391 // | / \ 392 // | B C 393 // | \ / \ 394 // ----D E 395 // 396 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 397 // A->C is chosen as a fall-through, D won't be selected as a successor of C 398 // due to CFG constraint (the probability of C->D is not greater than 399 // HotProb). If we exclude E that is not in BlockFilter when calculating the 400 // probability of C->D, D will be selected and we will get A C D B as the 401 // layout of this loop. 402 auto AdjustedSumProb = BranchProbability::getOne(); 403 SmallVector<MachineBasicBlock *, 4> Successors; 404 for (MachineBasicBlock *Succ : BB->successors()) { 405 bool SkipSucc = false; 406 if (BlockFilter && !BlockFilter->count(Succ)) { 407 SkipSucc = true; 408 } else { 409 BlockChain *SuccChain = BlockToChain[Succ]; 410 if (SuccChain == &Chain) { 411 SkipSucc = true; 412 } else if (Succ != *SuccChain->begin()) { 413 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 414 continue; 415 } 416 } 417 if (SkipSucc) 418 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 419 else 420 Successors.push_back(Succ); 421 } 422 423 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 424 for (MachineBasicBlock *Succ : Successors) { 425 BranchProbability SuccProb; 426 uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator(); 427 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 428 if (SuccProbN >= SuccProbD) 429 SuccProb = BranchProbability::getOne(); 430 else 431 SuccProb = BranchProbability(SuccProbN, SuccProbD); 432 433 // If we outline optional branches, look whether Succ is unavoidable, i.e. 434 // dominates all terminators of the MachineFunction. If it does, other 435 // successors must be optional. Don't do this for cold branches. 436 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 437 UnavoidableBlocks.count(Succ) > 0) { 438 auto HasShortOptionalBranch = [&]() { 439 for (MachineBasicBlock *Pred : Succ->predecessors()) { 440 // Check whether there is an unplaced optional branch. 441 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 442 BlockToChain[Pred] == &Chain) 443 continue; 444 // Check whether the optional branch has exactly one BB. 445 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 446 continue; 447 // Check whether the optional branch is small. 448 if (Pred->size() < OutlineOptionalThreshold) 449 return true; 450 } 451 return false; 452 }; 453 if (!HasShortOptionalBranch()) 454 return Succ; 455 } 456 457 // Only consider successors which are either "hot", or wouldn't violate 458 // any CFG constraints. 459 BlockChain &SuccChain = *BlockToChain[Succ]; 460 if (SuccChain.UnscheduledPredecessors != 0) { 461 if (SuccProb < HotProb) { 462 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 463 << " (prob) (CFG conflict)\n"); 464 continue; 465 } 466 467 // Make sure that a hot successor doesn't have a globally more 468 // important predecessor. 469 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 470 BlockFrequency CandidateEdgeFreq = 471 MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl(); 472 bool BadCFGConflict = false; 473 for (MachineBasicBlock *Pred : Succ->predecessors()) { 474 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 475 (BlockFilter && !BlockFilter->count(Pred)) || 476 BlockToChain[Pred] == &Chain) 477 continue; 478 BlockFrequency PredEdgeFreq = 479 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 480 if (PredEdgeFreq >= CandidateEdgeFreq) { 481 BadCFGConflict = true; 482 break; 483 } 484 } 485 if (BadCFGConflict) { 486 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 487 << " (prob) (non-cold CFG conflict)\n"); 488 continue; 489 } 490 } 491 492 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 493 << " (prob)" 494 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 495 << "\n"); 496 if (BestSucc && BestProb >= SuccProb) 497 continue; 498 BestSucc = Succ; 499 BestProb = SuccProb; 500 } 501 return BestSucc; 502 } 503 504 /// \brief Select the best block from a worklist. 505 /// 506 /// This looks through the provided worklist as a list of candidate basic 507 /// blocks and select the most profitable one to place. The definition of 508 /// profitable only really makes sense in the context of a loop. This returns 509 /// the most frequently visited block in the worklist, which in the case of 510 /// a loop, is the one most desirable to be physically close to the rest of the 511 /// loop body in order to improve icache behavior. 512 /// 513 /// \returns The best block found, or null if none are viable. 514 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 515 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 516 const BlockFilterSet *BlockFilter) { 517 // Once we need to walk the worklist looking for a candidate, cleanup the 518 // worklist of already placed entries. 519 // FIXME: If this shows up on profiles, it could be folded (at the cost of 520 // some code complexity) into the loop below. 521 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 522 [&](MachineBasicBlock *BB) { 523 return BlockToChain.lookup(BB) == &Chain; 524 }), 525 WorkList.end()); 526 527 MachineBasicBlock *BestBlock = nullptr; 528 BlockFrequency BestFreq; 529 for (MachineBasicBlock *MBB : WorkList) { 530 BlockChain &SuccChain = *BlockToChain[MBB]; 531 if (&SuccChain == &Chain) 532 continue; 533 534 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 535 536 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 537 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 538 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 539 if (BestBlock && BestFreq >= CandidateFreq) 540 continue; 541 BestBlock = MBB; 542 BestFreq = CandidateFreq; 543 } 544 return BestBlock; 545 } 546 547 /// \brief Retrieve the first unplaced basic block. 548 /// 549 /// This routine is called when we are unable to use the CFG to walk through 550 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 551 /// We walk through the function's blocks in order, starting from the 552 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 553 /// re-scanning the entire sequence on repeated calls to this routine. 554 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 555 MachineFunction &F, const BlockChain &PlacedChain, 556 MachineFunction::iterator &PrevUnplacedBlockIt, 557 const BlockFilterSet *BlockFilter) { 558 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 559 ++I) { 560 if (BlockFilter && !BlockFilter->count(&*I)) 561 continue; 562 if (BlockToChain[&*I] != &PlacedChain) { 563 PrevUnplacedBlockIt = I; 564 // Now select the head of the chain to which the unplaced block belongs 565 // as the block to place. This will force the entire chain to be placed, 566 // and satisfies the requirements of merging chains. 567 return *BlockToChain[&*I]->begin(); 568 } 569 } 570 return nullptr; 571 } 572 573 void MachineBlockPlacement::buildChain( 574 MachineBasicBlock *BB, BlockChain &Chain, 575 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 576 const BlockFilterSet *BlockFilter) { 577 assert(BB); 578 assert(BlockToChain[BB] == &Chain); 579 MachineFunction &F = *BB->getParent(); 580 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 581 582 MachineBasicBlock *LoopHeaderBB = BB; 583 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 584 BB = *std::prev(Chain.end()); 585 for (;;) { 586 assert(BB); 587 assert(BlockToChain[BB] == &Chain); 588 assert(*std::prev(Chain.end()) == BB); 589 590 // Look for the best viable successor if there is one to place immediately 591 // after this block. 592 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 593 594 // If an immediate successor isn't available, look for the best viable 595 // block among those we've identified as not violating the loop's CFG at 596 // this point. This won't be a fallthrough, but it will increase locality. 597 if (!BestSucc) 598 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 599 600 if (!BestSucc) { 601 BestSucc = 602 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 603 if (!BestSucc) 604 break; 605 606 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 607 "layout successor until the CFG reduces\n"); 608 } 609 610 // Place this block, updating the datastructures to reflect its placement. 611 BlockChain &SuccChain = *BlockToChain[BestSucc]; 612 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 613 // we selected a successor that didn't fit naturally into the CFG. 614 SuccChain.UnscheduledPredecessors = 0; 615 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 616 << getBlockName(BestSucc) << "\n"); 617 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 618 Chain.merge(BestSucc, &SuccChain); 619 BB = *std::prev(Chain.end()); 620 } 621 622 DEBUG(dbgs() << "Finished forming chain for header block " 623 << getBlockName(*Chain.begin()) << "\n"); 624 } 625 626 /// \brief Find the best loop top block for layout. 627 /// 628 /// Look for a block which is strictly better than the loop header for laying 629 /// out at the top of the loop. This looks for one and only one pattern: 630 /// a latch block with no conditional exit. This block will cause a conditional 631 /// jump around it or will be the bottom of the loop if we lay it out in place, 632 /// but if it it doesn't end up at the bottom of the loop for any reason, 633 /// rotation alone won't fix it. Because such a block will always result in an 634 /// unconditional jump (for the backedge) rotating it in front of the loop 635 /// header is always profitable. 636 MachineBasicBlock * 637 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 638 const BlockFilterSet &LoopBlockSet) { 639 // Check that the header hasn't been fused with a preheader block due to 640 // crazy branches. If it has, we need to start with the header at the top to 641 // prevent pulling the preheader into the loop body. 642 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 643 if (!LoopBlockSet.count(*HeaderChain.begin())) 644 return L.getHeader(); 645 646 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 647 << "\n"); 648 649 BlockFrequency BestPredFreq; 650 MachineBasicBlock *BestPred = nullptr; 651 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 652 if (!LoopBlockSet.count(Pred)) 653 continue; 654 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 655 << Pred->succ_size() << " successors, "; 656 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 657 if (Pred->succ_size() > 1) 658 continue; 659 660 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 661 if (!BestPred || PredFreq > BestPredFreq || 662 (!(PredFreq < BestPredFreq) && 663 Pred->isLayoutSuccessor(L.getHeader()))) { 664 BestPred = Pred; 665 BestPredFreq = PredFreq; 666 } 667 } 668 669 // If no direct predecessor is fine, just use the loop header. 670 if (!BestPred) { 671 DEBUG(dbgs() << " final top unchanged\n"); 672 return L.getHeader(); 673 } 674 675 // Walk backwards through any straight line of predecessors. 676 while (BestPred->pred_size() == 1 && 677 (*BestPred->pred_begin())->succ_size() == 1 && 678 *BestPred->pred_begin() != L.getHeader()) 679 BestPred = *BestPred->pred_begin(); 680 681 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 682 return BestPred; 683 } 684 685 /// \brief Find the best loop exiting block for layout. 686 /// 687 /// This routine implements the logic to analyze the loop looking for the best 688 /// block to layout at the top of the loop. Typically this is done to maximize 689 /// fallthrough opportunities. 690 MachineBasicBlock * 691 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 692 const BlockFilterSet &LoopBlockSet) { 693 // We don't want to layout the loop linearly in all cases. If the loop header 694 // is just a normal basic block in the loop, we want to look for what block 695 // within the loop is the best one to layout at the top. However, if the loop 696 // header has be pre-merged into a chain due to predecessors not having 697 // analyzable branches, *and* the predecessor it is merged with is *not* part 698 // of the loop, rotating the header into the middle of the loop will create 699 // a non-contiguous range of blocks which is Very Bad. So start with the 700 // header and only rotate if safe. 701 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 702 if (!LoopBlockSet.count(*HeaderChain.begin())) 703 return nullptr; 704 705 BlockFrequency BestExitEdgeFreq; 706 unsigned BestExitLoopDepth = 0; 707 MachineBasicBlock *ExitingBB = nullptr; 708 // If there are exits to outer loops, loop rotation can severely limit 709 // fallthrough opportunites unless it selects such an exit. Keep a set of 710 // blocks where rotating to exit with that block will reach an outer loop. 711 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 712 713 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 714 << "\n"); 715 for (MachineBasicBlock *MBB : L.getBlocks()) { 716 BlockChain &Chain = *BlockToChain[MBB]; 717 // Ensure that this block is at the end of a chain; otherwise it could be 718 // mid-way through an inner loop or a successor of an unanalyzable branch. 719 if (MBB != *std::prev(Chain.end())) 720 continue; 721 722 // Now walk the successors. We need to establish whether this has a viable 723 // exiting successor and whether it has a viable non-exiting successor. 724 // We store the old exiting state and restore it if a viable looping 725 // successor isn't found. 726 MachineBasicBlock *OldExitingBB = ExitingBB; 727 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 728 bool HasLoopingSucc = false; 729 for (MachineBasicBlock *Succ : MBB->successors()) { 730 if (Succ->isEHPad()) 731 continue; 732 if (Succ == MBB) 733 continue; 734 BlockChain &SuccChain = *BlockToChain[Succ]; 735 // Don't split chains, either this chain or the successor's chain. 736 if (&Chain == &SuccChain) { 737 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 738 << getBlockName(Succ) << " (chain conflict)\n"); 739 continue; 740 } 741 742 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 743 if (LoopBlockSet.count(Succ)) { 744 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 745 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 746 HasLoopingSucc = true; 747 continue; 748 } 749 750 unsigned SuccLoopDepth = 0; 751 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 752 SuccLoopDepth = ExitLoop->getLoopDepth(); 753 if (ExitLoop->contains(&L)) 754 BlocksExitingToOuterLoop.insert(MBB); 755 } 756 757 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 758 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 759 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 760 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 761 // Note that we bias this toward an existing layout successor to retain 762 // incoming order in the absence of better information. The exit must have 763 // a frequency higher than the current exit before we consider breaking 764 // the layout. 765 BranchProbability Bias(100 - ExitBlockBias, 100); 766 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 767 ExitEdgeFreq > BestExitEdgeFreq || 768 (MBB->isLayoutSuccessor(Succ) && 769 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 770 BestExitEdgeFreq = ExitEdgeFreq; 771 ExitingBB = MBB; 772 } 773 } 774 775 if (!HasLoopingSucc) { 776 // Restore the old exiting state, no viable looping successor was found. 777 ExitingBB = OldExitingBB; 778 BestExitEdgeFreq = OldBestExitEdgeFreq; 779 continue; 780 } 781 } 782 // Without a candidate exiting block or with only a single block in the 783 // loop, just use the loop header to layout the loop. 784 if (!ExitingBB || L.getNumBlocks() == 1) 785 return nullptr; 786 787 // Also, if we have exit blocks which lead to outer loops but didn't select 788 // one of them as the exiting block we are rotating toward, disable loop 789 // rotation altogether. 790 if (!BlocksExitingToOuterLoop.empty() && 791 !BlocksExitingToOuterLoop.count(ExitingBB)) 792 return nullptr; 793 794 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 795 return ExitingBB; 796 } 797 798 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 799 /// 800 /// Once we have built a chain, try to rotate it to line up the hot exit block 801 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 802 /// branches. For example, if the loop has fallthrough into its header and out 803 /// of its bottom already, don't rotate it. 804 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 805 MachineBasicBlock *ExitingBB, 806 const BlockFilterSet &LoopBlockSet) { 807 if (!ExitingBB) 808 return; 809 810 MachineBasicBlock *Top = *LoopChain.begin(); 811 bool ViableTopFallthrough = false; 812 for (MachineBasicBlock *Pred : Top->predecessors()) { 813 BlockChain *PredChain = BlockToChain[Pred]; 814 if (!LoopBlockSet.count(Pred) && 815 (!PredChain || Pred == *std::prev(PredChain->end()))) { 816 ViableTopFallthrough = true; 817 break; 818 } 819 } 820 821 // If the header has viable fallthrough, check whether the current loop 822 // bottom is a viable exiting block. If so, bail out as rotating will 823 // introduce an unnecessary branch. 824 if (ViableTopFallthrough) { 825 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 826 for (MachineBasicBlock *Succ : Bottom->successors()) { 827 BlockChain *SuccChain = BlockToChain[Succ]; 828 if (!LoopBlockSet.count(Succ) && 829 (!SuccChain || Succ == *SuccChain->begin())) 830 return; 831 } 832 } 833 834 BlockChain::iterator ExitIt = 835 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 836 if (ExitIt == LoopChain.end()) 837 return; 838 839 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 840 } 841 842 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 843 /// 844 /// With profile data, we can determine the cost in terms of missed fall through 845 /// opportunities when rotating a loop chain and select the best rotation. 846 /// Basically, there are three kinds of cost to consider for each rotation: 847 /// 1. The possibly missed fall through edge (if it exists) from BB out of 848 /// the loop to the loop header. 849 /// 2. The possibly missed fall through edges (if they exist) from the loop 850 /// exits to BB out of the loop. 851 /// 3. The missed fall through edge (if it exists) from the last BB to the 852 /// first BB in the loop chain. 853 /// Therefore, the cost for a given rotation is the sum of costs listed above. 854 /// We select the best rotation with the smallest cost. 855 void MachineBlockPlacement::rotateLoopWithProfile( 856 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 857 auto HeaderBB = L.getHeader(); 858 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 859 auto RotationPos = LoopChain.end(); 860 861 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 862 863 // A utility lambda that scales up a block frequency by dividing it by a 864 // branch probability which is the reciprocal of the scale. 865 auto ScaleBlockFrequency = [](BlockFrequency Freq, 866 unsigned Scale) -> BlockFrequency { 867 if (Scale == 0) 868 return 0; 869 // Use operator / between BlockFrequency and BranchProbability to implement 870 // saturating multiplication. 871 return Freq / BranchProbability(1, Scale); 872 }; 873 874 // Compute the cost of the missed fall-through edge to the loop header if the 875 // chain head is not the loop header. As we only consider natural loops with 876 // single header, this computation can be done only once. 877 BlockFrequency HeaderFallThroughCost(0); 878 for (auto *Pred : HeaderBB->predecessors()) { 879 BlockChain *PredChain = BlockToChain[Pred]; 880 if (!LoopBlockSet.count(Pred) && 881 (!PredChain || Pred == *std::prev(PredChain->end()))) { 882 auto EdgeFreq = 883 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 884 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 885 // If the predecessor has only an unconditional jump to the header, we 886 // need to consider the cost of this jump. 887 if (Pred->succ_size() == 1) 888 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 889 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 890 } 891 } 892 893 // Here we collect all exit blocks in the loop, and for each exit we find out 894 // its hottest exit edge. For each loop rotation, we define the loop exit cost 895 // as the sum of frequencies of exit edges we collect here, excluding the exit 896 // edge from the tail of the loop chain. 897 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 898 for (auto BB : LoopChain) { 899 auto LargestExitEdgeProb = BranchProbability::getZero(); 900 for (auto *Succ : BB->successors()) { 901 BlockChain *SuccChain = BlockToChain[Succ]; 902 if (!LoopBlockSet.count(Succ) && 903 (!SuccChain || Succ == *SuccChain->begin())) { 904 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 905 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 906 } 907 } 908 if (LargestExitEdgeProb > BranchProbability::getZero()) { 909 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 910 ExitsWithFreq.emplace_back(BB, ExitFreq); 911 } 912 } 913 914 // In this loop we iterate every block in the loop chain and calculate the 915 // cost assuming the block is the head of the loop chain. When the loop ends, 916 // we should have found the best candidate as the loop chain's head. 917 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 918 EndIter = LoopChain.end(); 919 Iter != EndIter; Iter++, TailIter++) { 920 // TailIter is used to track the tail of the loop chain if the block we are 921 // checking (pointed by Iter) is the head of the chain. 922 if (TailIter == LoopChain.end()) 923 TailIter = LoopChain.begin(); 924 925 auto TailBB = *TailIter; 926 927 // Calculate the cost by putting this BB to the top. 928 BlockFrequency Cost = 0; 929 930 // If the current BB is the loop header, we need to take into account the 931 // cost of the missed fall through edge from outside of the loop to the 932 // header. 933 if (Iter != HeaderIter) 934 Cost += HeaderFallThroughCost; 935 936 // Collect the loop exit cost by summing up frequencies of all exit edges 937 // except the one from the chain tail. 938 for (auto &ExitWithFreq : ExitsWithFreq) 939 if (TailBB != ExitWithFreq.first) 940 Cost += ExitWithFreq.second; 941 942 // The cost of breaking the once fall-through edge from the tail to the top 943 // of the loop chain. Here we need to consider three cases: 944 // 1. If the tail node has only one successor, then we will get an 945 // additional jmp instruction. So the cost here is (MisfetchCost + 946 // JumpInstCost) * tail node frequency. 947 // 2. If the tail node has two successors, then we may still get an 948 // additional jmp instruction if the layout successor after the loop 949 // chain is not its CFG successor. Note that the more frequently executed 950 // jmp instruction will be put ahead of the other one. Assume the 951 // frequency of those two branches are x and y, where x is the frequency 952 // of the edge to the chain head, then the cost will be 953 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 954 // 3. If the tail node has more than two successors (this rarely happens), 955 // we won't consider any additional cost. 956 if (TailBB->isSuccessor(*Iter)) { 957 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 958 if (TailBB->succ_size() == 1) 959 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 960 MisfetchCost + JumpInstCost); 961 else if (TailBB->succ_size() == 2) { 962 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 963 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 964 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 965 ? TailBBFreq * TailToHeadProb.getCompl() 966 : TailToHeadFreq; 967 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 968 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 969 } 970 } 971 972 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 973 << " to the top: " << Cost.getFrequency() << "\n"); 974 975 if (Cost < SmallestRotationCost) { 976 SmallestRotationCost = Cost; 977 RotationPos = Iter; 978 } 979 } 980 981 if (RotationPos != LoopChain.end()) { 982 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 983 << " to the top\n"); 984 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 985 } 986 } 987 988 /// \brief Collect blocks in the given loop that are to be placed. 989 /// 990 /// When profile data is available, exclude cold blocks from the returned set; 991 /// otherwise, collect all blocks in the loop. 992 MachineBlockPlacement::BlockFilterSet 993 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 994 BlockFilterSet LoopBlockSet; 995 996 // Filter cold blocks off from LoopBlockSet when profile data is available. 997 // Collect the sum of frequencies of incoming edges to the loop header from 998 // outside. If we treat the loop as a super block, this is the frequency of 999 // the loop. Then for each block in the loop, we calculate the ratio between 1000 // its frequency and the frequency of the loop block. When it is too small, 1001 // don't add it to the loop chain. If there are outer loops, then this block 1002 // will be merged into the first outer loop chain for which this block is not 1003 // cold anymore. This needs precise profile data and we only do this when 1004 // profile data is available. 1005 if (F.getFunction()->getEntryCount()) { 1006 BlockFrequency LoopFreq(0); 1007 for (auto LoopPred : L.getHeader()->predecessors()) 1008 if (!L.contains(LoopPred)) 1009 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1010 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1011 1012 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1013 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1014 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1015 continue; 1016 LoopBlockSet.insert(LoopBB); 1017 } 1018 } else 1019 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1020 1021 return LoopBlockSet; 1022 } 1023 1024 /// \brief Forms basic block chains from the natural loop structures. 1025 /// 1026 /// These chains are designed to preserve the existing *structure* of the code 1027 /// as much as possible. We can then stitch the chains together in a way which 1028 /// both preserves the topological structure and minimizes taken conditional 1029 /// branches. 1030 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1031 MachineLoop &L) { 1032 // First recurse through any nested loops, building chains for those inner 1033 // loops. 1034 for (MachineLoop *InnerLoop : L) 1035 buildLoopChains(F, *InnerLoop); 1036 1037 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1038 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1039 1040 // Check if we have profile data for this function. If yes, we will rotate 1041 // this loop by modeling costs more precisely which requires the profile data 1042 // for better layout. 1043 bool RotateLoopWithProfile = 1044 PreciseRotationCost && F.getFunction()->getEntryCount(); 1045 1046 // First check to see if there is an obviously preferable top block for the 1047 // loop. This will default to the header, but may end up as one of the 1048 // predecessors to the header if there is one which will result in strictly 1049 // fewer branches in the loop body. 1050 // When we use profile data to rotate the loop, this is unnecessary. 1051 MachineBasicBlock *LoopTop = 1052 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1053 1054 // If we selected just the header for the loop top, look for a potentially 1055 // profitable exit block in the event that rotating the loop can eliminate 1056 // branches by placing an exit edge at the bottom. 1057 MachineBasicBlock *ExitingBB = nullptr; 1058 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1059 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1060 1061 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1062 1063 // FIXME: This is a really lame way of walking the chains in the loop: we 1064 // walk the blocks, and use a set to prevent visiting a particular chain 1065 // twice. 1066 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1067 assert(LoopChain.UnscheduledPredecessors == 0); 1068 UpdatedPreds.insert(&LoopChain); 1069 1070 for (MachineBasicBlock *LoopBB : LoopBlockSet) { 1071 BlockChain &Chain = *BlockToChain[LoopBB]; 1072 if (!UpdatedPreds.insert(&Chain).second) 1073 continue; 1074 1075 assert(Chain.UnscheduledPredecessors == 0); 1076 for (MachineBasicBlock *ChainBB : Chain) { 1077 assert(BlockToChain[ChainBB] == &Chain); 1078 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1079 if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred)) 1080 continue; 1081 ++Chain.UnscheduledPredecessors; 1082 } 1083 } 1084 1085 if (Chain.UnscheduledPredecessors == 0) 1086 BlockWorkList.push_back(*Chain.begin()); 1087 } 1088 1089 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 1090 1091 if (RotateLoopWithProfile) 1092 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1093 else 1094 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1095 1096 DEBUG({ 1097 // Crash at the end so we get all of the debugging output first. 1098 bool BadLoop = false; 1099 if (LoopChain.UnscheduledPredecessors) { 1100 BadLoop = true; 1101 dbgs() << "Loop chain contains a block without its preds placed!\n" 1102 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1103 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1104 } 1105 for (MachineBasicBlock *ChainBB : LoopChain) { 1106 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1107 if (!LoopBlockSet.erase(ChainBB)) { 1108 // We don't mark the loop as bad here because there are real situations 1109 // where this can occur. For example, with an unanalyzable fallthrough 1110 // from a loop block to a non-loop block or vice versa. 1111 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1112 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1113 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1114 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1115 } 1116 } 1117 1118 if (!LoopBlockSet.empty()) { 1119 BadLoop = true; 1120 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1121 dbgs() << "Loop contains blocks never placed into a chain!\n" 1122 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1123 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1124 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1125 } 1126 assert(!BadLoop && "Detected problems with the placement of this loop."); 1127 }); 1128 } 1129 1130 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1131 // Ensure that every BB in the function has an associated chain to simplify 1132 // the assumptions of the remaining algorithm. 1133 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1134 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1135 MachineBasicBlock *BB = &*FI; 1136 BlockChain *Chain = 1137 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1138 // Also, merge any blocks which we cannot reason about and must preserve 1139 // the exact fallthrough behavior for. 1140 for (;;) { 1141 Cond.clear(); 1142 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1143 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1144 break; 1145 1146 MachineFunction::iterator NextFI = std::next(FI); 1147 MachineBasicBlock *NextBB = &*NextFI; 1148 // Ensure that the layout successor is a viable block, as we know that 1149 // fallthrough is a possibility. 1150 assert(NextFI != FE && "Can't fallthrough past the last block."); 1151 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1152 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1153 << "\n"); 1154 Chain->merge(NextBB, nullptr); 1155 FI = NextFI; 1156 BB = NextBB; 1157 } 1158 } 1159 1160 if (OutlineOptionalBranches) { 1161 // Find the nearest common dominator of all of F's terminators. 1162 MachineBasicBlock *Terminator = nullptr; 1163 for (MachineBasicBlock &MBB : F) { 1164 if (MBB.succ_size() == 0) { 1165 if (Terminator == nullptr) 1166 Terminator = &MBB; 1167 else 1168 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1169 } 1170 } 1171 1172 // MBBs dominating this common dominator are unavoidable. 1173 UnavoidableBlocks.clear(); 1174 for (MachineBasicBlock &MBB : F) { 1175 if (MDT->dominates(&MBB, Terminator)) { 1176 UnavoidableBlocks.insert(&MBB); 1177 } 1178 } 1179 } 1180 1181 // Build any loop-based chains. 1182 for (MachineLoop *L : *MLI) 1183 buildLoopChains(F, *L); 1184 1185 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1186 1187 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1188 for (MachineBasicBlock &MBB : F) { 1189 BlockChain &Chain = *BlockToChain[&MBB]; 1190 if (!UpdatedPreds.insert(&Chain).second) 1191 continue; 1192 1193 assert(Chain.UnscheduledPredecessors == 0); 1194 for (MachineBasicBlock *ChainBB : Chain) { 1195 assert(BlockToChain[ChainBB] == &Chain); 1196 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1197 if (BlockToChain[Pred] == &Chain) 1198 continue; 1199 ++Chain.UnscheduledPredecessors; 1200 } 1201 } 1202 1203 if (Chain.UnscheduledPredecessors == 0) 1204 BlockWorkList.push_back(*Chain.begin()); 1205 } 1206 1207 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1208 buildChain(&F.front(), FunctionChain, BlockWorkList); 1209 1210 #ifndef NDEBUG 1211 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1212 #endif 1213 DEBUG({ 1214 // Crash at the end so we get all of the debugging output first. 1215 bool BadFunc = false; 1216 FunctionBlockSetType FunctionBlockSet; 1217 for (MachineBasicBlock &MBB : F) 1218 FunctionBlockSet.insert(&MBB); 1219 1220 for (MachineBasicBlock *ChainBB : FunctionChain) 1221 if (!FunctionBlockSet.erase(ChainBB)) { 1222 BadFunc = true; 1223 dbgs() << "Function chain contains a block not in the function!\n" 1224 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1225 } 1226 1227 if (!FunctionBlockSet.empty()) { 1228 BadFunc = true; 1229 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1230 dbgs() << "Function contains blocks never placed into a chain!\n" 1231 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1232 } 1233 assert(!BadFunc && "Detected problems with the block placement."); 1234 }); 1235 1236 // Splice the blocks into place. 1237 MachineFunction::iterator InsertPos = F.begin(); 1238 for (MachineBasicBlock *ChainBB : FunctionChain) { 1239 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1240 : " ... ") 1241 << getBlockName(ChainBB) << "\n"); 1242 if (InsertPos != MachineFunction::iterator(ChainBB)) 1243 F.splice(InsertPos, ChainBB); 1244 else 1245 ++InsertPos; 1246 1247 // Update the terminator of the previous block. 1248 if (ChainBB == *FunctionChain.begin()) 1249 continue; 1250 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1251 1252 // FIXME: It would be awesome of updateTerminator would just return rather 1253 // than assert when the branch cannot be analyzed in order to remove this 1254 // boiler plate. 1255 Cond.clear(); 1256 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1257 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1258 // The "PrevBB" is not yet updated to reflect current code layout, so, 1259 // o. it may fall-through to a block without explict "goto" instruction 1260 // before layout, and no longer fall-through it after layout; or 1261 // o. just opposite. 1262 // 1263 // AnalyzeBranch() may return erroneous value for FBB when these two 1264 // situations take place. For the first scenario FBB is mistakenly set 1265 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1266 // is mistakenly pointing to "*BI". 1267 // 1268 bool needUpdateBr = true; 1269 if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1270 PrevBB->updateTerminator(); 1271 needUpdateBr = false; 1272 Cond.clear(); 1273 TBB = FBB = nullptr; 1274 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1275 // FIXME: This should never take place. 1276 TBB = FBB = nullptr; 1277 } 1278 } 1279 1280 // If PrevBB has a two-way branch, try to re-order the branches 1281 // such that we branch to the successor with higher probability first. 1282 if (TBB && !Cond.empty() && FBB && 1283 MBPI->getEdgeProbability(PrevBB, FBB) > 1284 MBPI->getEdgeProbability(PrevBB, TBB) && 1285 !TII->ReverseBranchCondition(Cond)) { 1286 DEBUG(dbgs() << "Reverse order of the two branches: " 1287 << getBlockName(PrevBB) << "\n"); 1288 DEBUG(dbgs() << " Edge probability: " 1289 << MBPI->getEdgeProbability(PrevBB, FBB) << " vs " 1290 << MBPI->getEdgeProbability(PrevBB, TBB) << "\n"); 1291 DebugLoc dl; // FIXME: this is nowhere 1292 TII->RemoveBranch(*PrevBB); 1293 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1294 needUpdateBr = true; 1295 } 1296 if (needUpdateBr) 1297 PrevBB->updateTerminator(); 1298 } 1299 } 1300 1301 // Fixup the last block. 1302 Cond.clear(); 1303 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1304 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1305 F.back().updateTerminator(); 1306 1307 // Walk through the backedges of the function now that we have fully laid out 1308 // the basic blocks and align the destination of each backedge. We don't rely 1309 // exclusively on the loop info here so that we can align backedges in 1310 // unnatural CFGs and backedges that were introduced purely because of the 1311 // loop rotations done during this layout pass. 1312 // FIXME: Use Function::optForSize(). 1313 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 1314 return; 1315 if (FunctionChain.begin() == FunctionChain.end()) 1316 return; // Empty chain. 1317 1318 const BranchProbability ColdProb(1, 5); // 20% 1319 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1320 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1321 for (MachineBasicBlock *ChainBB : FunctionChain) { 1322 if (ChainBB == *FunctionChain.begin()) 1323 continue; 1324 1325 // Don't align non-looping basic blocks. These are unlikely to execute 1326 // enough times to matter in practice. Note that we'll still handle 1327 // unnatural CFGs inside of a natural outer loop (the common case) and 1328 // rotated loops. 1329 MachineLoop *L = MLI->getLoopFor(ChainBB); 1330 if (!L) 1331 continue; 1332 1333 unsigned Align = TLI->getPrefLoopAlignment(L); 1334 if (!Align) 1335 continue; // Don't care about loop alignment. 1336 1337 // If the block is cold relative to the function entry don't waste space 1338 // aligning it. 1339 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1340 if (Freq < WeightedEntryFreq) 1341 continue; 1342 1343 // If the block is cold relative to its loop header, don't align it 1344 // regardless of what edges into the block exist. 1345 MachineBasicBlock *LoopHeader = L->getHeader(); 1346 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1347 if (Freq < (LoopHeaderFreq * ColdProb)) 1348 continue; 1349 1350 // Check for the existence of a non-layout predecessor which would benefit 1351 // from aligning this block. 1352 MachineBasicBlock *LayoutPred = 1353 &*std::prev(MachineFunction::iterator(ChainBB)); 1354 1355 // Force alignment if all the predecessors are jumps. We already checked 1356 // that the block isn't cold above. 1357 if (!LayoutPred->isSuccessor(ChainBB)) { 1358 ChainBB->setAlignment(Align); 1359 continue; 1360 } 1361 1362 // Align this block if the layout predecessor's edge into this block is 1363 // cold relative to the block. When this is true, other predecessors make up 1364 // all of the hot entries into the block and thus alignment is likely to be 1365 // important. 1366 BranchProbability LayoutProb = 1367 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1368 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1369 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1370 ChainBB->setAlignment(Align); 1371 } 1372 } 1373 1374 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1375 // Check for single-block functions and skip them. 1376 if (std::next(F.begin()) == F.end()) 1377 return false; 1378 1379 if (skipOptnoneFunction(*F.getFunction())) 1380 return false; 1381 1382 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1383 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1384 MLI = &getAnalysis<MachineLoopInfo>(); 1385 TII = F.getSubtarget().getInstrInfo(); 1386 TLI = F.getSubtarget().getTargetLowering(); 1387 MDT = &getAnalysis<MachineDominatorTree>(); 1388 assert(BlockToChain.empty()); 1389 1390 buildCFGChains(F); 1391 1392 BlockToChain.clear(); 1393 ChainAllocator.DestroyAll(); 1394 1395 if (AlignAllBlock) 1396 // Align all of the blocks in the function to a specific alignment. 1397 for (MachineBasicBlock &MBB : F) 1398 MBB.setAlignment(AlignAllBlock); 1399 else if (AlignAllNonFallThruBlocks) { 1400 // Align all of the blocks that have no fall-through predecessors to a 1401 // specific alignment. 1402 for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) { 1403 auto LayoutPred = std::prev(MBI); 1404 if (!LayoutPred->isSuccessor(&*MBI)) 1405 MBI->setAlignment(AlignAllNonFallThruBlocks); 1406 } 1407 } 1408 1409 // We always return true as we have no way to track whether the final order 1410 // differs from the original order. 1411 return true; 1412 } 1413 1414 namespace { 1415 /// \brief A pass to compute block placement statistics. 1416 /// 1417 /// A separate pass to compute interesting statistics for evaluating block 1418 /// placement. This is separate from the actual placement pass so that they can 1419 /// be computed in the absence of any placement transformations or when using 1420 /// alternative placement strategies. 1421 class MachineBlockPlacementStats : public MachineFunctionPass { 1422 /// \brief A handle to the branch probability pass. 1423 const MachineBranchProbabilityInfo *MBPI; 1424 1425 /// \brief A handle to the function-wide block frequency pass. 1426 const MachineBlockFrequencyInfo *MBFI; 1427 1428 public: 1429 static char ID; // Pass identification, replacement for typeid 1430 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1431 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1432 } 1433 1434 bool runOnMachineFunction(MachineFunction &F) override; 1435 1436 void getAnalysisUsage(AnalysisUsage &AU) const override { 1437 AU.addRequired<MachineBranchProbabilityInfo>(); 1438 AU.addRequired<MachineBlockFrequencyInfo>(); 1439 AU.setPreservesAll(); 1440 MachineFunctionPass::getAnalysisUsage(AU); 1441 } 1442 }; 1443 } 1444 1445 char MachineBlockPlacementStats::ID = 0; 1446 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1447 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1448 "Basic Block Placement Stats", false, false) 1449 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1450 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1451 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1452 "Basic Block Placement Stats", false, false) 1453 1454 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1455 // Check for single-block functions and skip them. 1456 if (std::next(F.begin()) == F.end()) 1457 return false; 1458 1459 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1460 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1461 1462 for (MachineBasicBlock &MBB : F) { 1463 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1464 Statistic &NumBranches = 1465 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1466 Statistic &BranchTakenFreq = 1467 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1468 for (MachineBasicBlock *Succ : MBB.successors()) { 1469 // Skip if this successor is a fallthrough. 1470 if (MBB.isLayoutSuccessor(Succ)) 1471 continue; 1472 1473 BlockFrequency EdgeFreq = 1474 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1475 ++NumBranches; 1476 BranchTakenFreq += EdgeFreq.getFrequency(); 1477 } 1478 } 1479 1480 return false; 1481 } 1482