1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include <algorithm> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "block-placement2" 50 51 STATISTIC(NumCondBranches, "Number of conditional branches"); 52 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 53 STATISTIC(CondBranchTakenFreq, 54 "Potential frequency of taking conditional branches"); 55 STATISTIC(UncondBranchTakenFreq, 56 "Potential frequency of taking unconditional branches"); 57 58 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 59 cl::desc("Force the alignment of all " 60 "blocks in the function."), 61 cl::init(0), cl::Hidden); 62 63 // FIXME: Find a good default for this flag and remove the flag. 64 static cl::opt<unsigned> 65 ExitBlockBias("block-placement-exit-block-bias", 66 cl::desc("Block frequency percentage a loop exit block needs " 67 "over the original exit to be considered the new exit."), 68 cl::init(0), cl::Hidden); 69 70 namespace { 71 class BlockChain; 72 /// \brief Type for our function-wide basic block -> block chain mapping. 73 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 74 } 75 76 namespace { 77 /// \brief A chain of blocks which will be laid out contiguously. 78 /// 79 /// This is the datastructure representing a chain of consecutive blocks that 80 /// are profitable to layout together in order to maximize fallthrough 81 /// probabilities and code locality. We also can use a block chain to represent 82 /// a sequence of basic blocks which have some external (correctness) 83 /// requirement for sequential layout. 84 /// 85 /// Chains can be built around a single basic block and can be merged to grow 86 /// them. They participate in a block-to-chain mapping, which is updated 87 /// automatically as chains are merged together. 88 class BlockChain { 89 /// \brief The sequence of blocks belonging to this chain. 90 /// 91 /// This is the sequence of blocks for a particular chain. These will be laid 92 /// out in-order within the function. 93 SmallVector<MachineBasicBlock *, 4> Blocks; 94 95 /// \brief A handle to the function-wide basic block to block chain mapping. 96 /// 97 /// This is retained in each block chain to simplify the computation of child 98 /// block chains for SCC-formation and iteration. We store the edges to child 99 /// basic blocks, and map them back to their associated chains using this 100 /// structure. 101 BlockToChainMapType &BlockToChain; 102 103 public: 104 /// \brief Construct a new BlockChain. 105 /// 106 /// This builds a new block chain representing a single basic block in the 107 /// function. It also registers itself as the chain that block participates 108 /// in with the BlockToChain mapping. 109 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 110 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 111 assert(BB && "Cannot create a chain with a null basic block"); 112 BlockToChain[BB] = this; 113 } 114 115 /// \brief Iterator over blocks within the chain. 116 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 117 118 /// \brief Beginning of blocks within the chain. 119 iterator begin() { return Blocks.begin(); } 120 121 /// \brief End of blocks within the chain. 122 iterator end() { return Blocks.end(); } 123 124 /// \brief Merge a block chain into this one. 125 /// 126 /// This routine merges a block chain into this one. It takes care of forming 127 /// a contiguous sequence of basic blocks, updating the edge list, and 128 /// updating the block -> chain mapping. It does not free or tear down the 129 /// old chain, but the old chain's block list is no longer valid. 130 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 131 assert(BB); 132 assert(!Blocks.empty()); 133 134 // Fast path in case we don't have a chain already. 135 if (!Chain) { 136 assert(!BlockToChain[BB]); 137 Blocks.push_back(BB); 138 BlockToChain[BB] = this; 139 return; 140 } 141 142 assert(BB == *Chain->begin()); 143 assert(Chain->begin() != Chain->end()); 144 145 // Update the incoming blocks to point to this chain, and add them to the 146 // chain structure. 147 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 148 BI != BE; ++BI) { 149 Blocks.push_back(*BI); 150 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 151 BlockToChain[*BI] = this; 152 } 153 } 154 155 #ifndef NDEBUG 156 /// \brief Dump the blocks in this chain. 157 LLVM_DUMP_METHOD void dump() { 158 for (iterator I = begin(), E = end(); I != E; ++I) 159 (*I)->dump(); 160 } 161 #endif // NDEBUG 162 163 /// \brief Count of predecessors within the loop currently being processed. 164 /// 165 /// This count is updated at each loop we process to represent the number of 166 /// in-loop predecessors of this chain. 167 unsigned LoopPredecessors; 168 }; 169 } 170 171 namespace { 172 class MachineBlockPlacement : public MachineFunctionPass { 173 /// \brief A typedef for a block filter set. 174 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 175 176 /// \brief A handle to the branch probability pass. 177 const MachineBranchProbabilityInfo *MBPI; 178 179 /// \brief A handle to the function-wide block frequency pass. 180 const MachineBlockFrequencyInfo *MBFI; 181 182 /// \brief A handle to the loop info. 183 const MachineLoopInfo *MLI; 184 185 /// \brief A handle to the target's instruction info. 186 const TargetInstrInfo *TII; 187 188 /// \brief A handle to the target's lowering info. 189 const TargetLoweringBase *TLI; 190 191 /// \brief Allocator and owner of BlockChain structures. 192 /// 193 /// We build BlockChains lazily while processing the loop structure of 194 /// a function. To reduce malloc traffic, we allocate them using this 195 /// slab-like allocator, and destroy them after the pass completes. An 196 /// important guarantee is that this allocator produces stable pointers to 197 /// the chains. 198 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 199 200 /// \brief Function wide BasicBlock to BlockChain mapping. 201 /// 202 /// This mapping allows efficiently moving from any given basic block to the 203 /// BlockChain it participates in, if any. We use it to, among other things, 204 /// allow implicitly defining edges between chains as the existing edges 205 /// between basic blocks. 206 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 207 208 void markChainSuccessors(BlockChain &Chain, 209 MachineBasicBlock *LoopHeaderBB, 210 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 211 const BlockFilterSet *BlockFilter = nullptr); 212 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 213 BlockChain &Chain, 214 const BlockFilterSet *BlockFilter); 215 MachineBasicBlock *selectBestCandidateBlock( 216 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 217 const BlockFilterSet *BlockFilter); 218 MachineBasicBlock *getFirstUnplacedBlock( 219 MachineFunction &F, 220 const BlockChain &PlacedChain, 221 MachineFunction::iterator &PrevUnplacedBlockIt, 222 const BlockFilterSet *BlockFilter); 223 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 224 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 225 const BlockFilterSet *BlockFilter = nullptr); 226 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 227 const BlockFilterSet &LoopBlockSet); 228 MachineBasicBlock *findBestLoopExit(MachineFunction &F, 229 MachineLoop &L, 230 const BlockFilterSet &LoopBlockSet); 231 void buildLoopChains(MachineFunction &F, MachineLoop &L); 232 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 233 const BlockFilterSet &LoopBlockSet); 234 void buildCFGChains(MachineFunction &F); 235 236 public: 237 static char ID; // Pass identification, replacement for typeid 238 MachineBlockPlacement() : MachineFunctionPass(ID) { 239 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 240 } 241 242 bool runOnMachineFunction(MachineFunction &F) override; 243 244 void getAnalysisUsage(AnalysisUsage &AU) const override { 245 AU.addRequired<MachineBranchProbabilityInfo>(); 246 AU.addRequired<MachineBlockFrequencyInfo>(); 247 AU.addRequired<MachineLoopInfo>(); 248 MachineFunctionPass::getAnalysisUsage(AU); 249 } 250 }; 251 } 252 253 char MachineBlockPlacement::ID = 0; 254 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 255 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 256 "Branch Probability Basic Block Placement", false, false) 257 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 258 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 259 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 260 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 261 "Branch Probability Basic Block Placement", false, false) 262 263 #ifndef NDEBUG 264 /// \brief Helper to print the name of a MBB. 265 /// 266 /// Only used by debug logging. 267 static std::string getBlockName(MachineBasicBlock *BB) { 268 std::string Result; 269 raw_string_ostream OS(Result); 270 OS << "BB#" << BB->getNumber() 271 << " (derived from LLVM BB '" << BB->getName() << "')"; 272 OS.flush(); 273 return Result; 274 } 275 276 /// \brief Helper to print the number of a MBB. 277 /// 278 /// Only used by debug logging. 279 static std::string getBlockNum(MachineBasicBlock *BB) { 280 std::string Result; 281 raw_string_ostream OS(Result); 282 OS << "BB#" << BB->getNumber(); 283 OS.flush(); 284 return Result; 285 } 286 #endif 287 288 /// \brief Mark a chain's successors as having one fewer preds. 289 /// 290 /// When a chain is being merged into the "placed" chain, this routine will 291 /// quickly walk the successors of each block in the chain and mark them as 292 /// having one fewer active predecessor. It also adds any successors of this 293 /// chain which reach the zero-predecessor state to the worklist passed in. 294 void MachineBlockPlacement::markChainSuccessors( 295 BlockChain &Chain, 296 MachineBasicBlock *LoopHeaderBB, 297 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 298 const BlockFilterSet *BlockFilter) { 299 // Walk all the blocks in this chain, marking their successors as having 300 // a predecessor placed. 301 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 302 CBI != CBE; ++CBI) { 303 // Add any successors for which this is the only un-placed in-loop 304 // predecessor to the worklist as a viable candidate for CFG-neutral 305 // placement. No subsequent placement of this block will violate the CFG 306 // shape, so we get to use heuristics to choose a favorable placement. 307 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 308 SE = (*CBI)->succ_end(); 309 SI != SE; ++SI) { 310 if (BlockFilter && !BlockFilter->count(*SI)) 311 continue; 312 BlockChain &SuccChain = *BlockToChain[*SI]; 313 // Disregard edges within a fixed chain, or edges to the loop header. 314 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 315 continue; 316 317 // This is a cross-chain edge that is within the loop, so decrement the 318 // loop predecessor count of the destination chain. 319 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 320 BlockWorkList.push_back(*SuccChain.begin()); 321 } 322 } 323 } 324 325 /// \brief Select the best successor for a block. 326 /// 327 /// This looks across all successors of a particular block and attempts to 328 /// select the "best" one to be the layout successor. It only considers direct 329 /// successors which also pass the block filter. It will attempt to avoid 330 /// breaking CFG structure, but cave and break such structures in the case of 331 /// very hot successor edges. 332 /// 333 /// \returns The best successor block found, or null if none are viable. 334 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 335 MachineBasicBlock *BB, BlockChain &Chain, 336 const BlockFilterSet *BlockFilter) { 337 const BranchProbability HotProb(4, 5); // 80% 338 339 MachineBasicBlock *BestSucc = nullptr; 340 // FIXME: Due to the performance of the probability and weight routines in 341 // the MBPI analysis, we manually compute probabilities using the edge 342 // weights. This is suboptimal as it means that the somewhat subtle 343 // definition of edge weight semantics is encoded here as well. We should 344 // improve the MBPI interface to efficiently support query patterns such as 345 // this. 346 uint32_t BestWeight = 0; 347 uint32_t WeightScale = 0; 348 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 349 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 350 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 351 SE = BB->succ_end(); 352 SI != SE; ++SI) { 353 if (BlockFilter && !BlockFilter->count(*SI)) 354 continue; 355 BlockChain &SuccChain = *BlockToChain[*SI]; 356 if (&SuccChain == &Chain) { 357 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); 358 continue; 359 } 360 if (*SI != *SuccChain.begin()) { 361 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); 362 continue; 363 } 364 365 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); 366 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 367 368 // Only consider successors which are either "hot", or wouldn't violate 369 // any CFG constraints. 370 if (SuccChain.LoopPredecessors != 0) { 371 if (SuccProb < HotProb) { 372 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 373 << " (prob) (CFG conflict)\n"); 374 continue; 375 } 376 377 // Make sure that a hot successor doesn't have a globally more important 378 // predecessor. 379 BlockFrequency CandidateEdgeFreq 380 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 381 bool BadCFGConflict = false; 382 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), 383 PE = (*SI)->pred_end(); 384 PI != PE; ++PI) { 385 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || 386 BlockToChain[*PI] == &Chain) 387 continue; 388 BlockFrequency PredEdgeFreq 389 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); 390 if (PredEdgeFreq >= CandidateEdgeFreq) { 391 BadCFGConflict = true; 392 break; 393 } 394 } 395 if (BadCFGConflict) { 396 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 397 << " (prob) (non-cold CFG conflict)\n"); 398 continue; 399 } 400 } 401 402 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 403 << " (prob)" 404 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 405 << "\n"); 406 if (BestSucc && BestWeight >= SuccWeight) 407 continue; 408 BestSucc = *SI; 409 BestWeight = SuccWeight; 410 } 411 return BestSucc; 412 } 413 414 /// \brief Select the best block from a worklist. 415 /// 416 /// This looks through the provided worklist as a list of candidate basic 417 /// blocks and select the most profitable one to place. The definition of 418 /// profitable only really makes sense in the context of a loop. This returns 419 /// the most frequently visited block in the worklist, which in the case of 420 /// a loop, is the one most desirable to be physically close to the rest of the 421 /// loop body in order to improve icache behavior. 422 /// 423 /// \returns The best block found, or null if none are viable. 424 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 425 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 426 const BlockFilterSet *BlockFilter) { 427 // Once we need to walk the worklist looking for a candidate, cleanup the 428 // worklist of already placed entries. 429 // FIXME: If this shows up on profiles, it could be folded (at the cost of 430 // some code complexity) into the loop below. 431 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 432 [&](MachineBasicBlock *BB) { 433 return BlockToChain.lookup(BB) == &Chain; 434 }), 435 WorkList.end()); 436 437 MachineBasicBlock *BestBlock = nullptr; 438 BlockFrequency BestFreq; 439 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 440 WBE = WorkList.end(); 441 WBI != WBE; ++WBI) { 442 BlockChain &SuccChain = *BlockToChain[*WBI]; 443 if (&SuccChain == &Chain) { 444 DEBUG(dbgs() << " " << getBlockName(*WBI) 445 << " -> Already merged!\n"); 446 continue; 447 } 448 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 449 450 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 451 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> "; 452 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 453 if (BestBlock && BestFreq >= CandidateFreq) 454 continue; 455 BestBlock = *WBI; 456 BestFreq = CandidateFreq; 457 } 458 return BestBlock; 459 } 460 461 /// \brief Retrieve the first unplaced basic block. 462 /// 463 /// This routine is called when we are unable to use the CFG to walk through 464 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 465 /// We walk through the function's blocks in order, starting from the 466 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 467 /// re-scanning the entire sequence on repeated calls to this routine. 468 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 469 MachineFunction &F, const BlockChain &PlacedChain, 470 MachineFunction::iterator &PrevUnplacedBlockIt, 471 const BlockFilterSet *BlockFilter) { 472 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 473 ++I) { 474 if (BlockFilter && !BlockFilter->count(I)) 475 continue; 476 if (BlockToChain[I] != &PlacedChain) { 477 PrevUnplacedBlockIt = I; 478 // Now select the head of the chain to which the unplaced block belongs 479 // as the block to place. This will force the entire chain to be placed, 480 // and satisfies the requirements of merging chains. 481 return *BlockToChain[I]->begin(); 482 } 483 } 484 return nullptr; 485 } 486 487 void MachineBlockPlacement::buildChain( 488 MachineBasicBlock *BB, 489 BlockChain &Chain, 490 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 491 const BlockFilterSet *BlockFilter) { 492 assert(BB); 493 assert(BlockToChain[BB] == &Chain); 494 MachineFunction &F = *BB->getParent(); 495 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 496 497 MachineBasicBlock *LoopHeaderBB = BB; 498 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 499 BB = *std::prev(Chain.end()); 500 for (;;) { 501 assert(BB); 502 assert(BlockToChain[BB] == &Chain); 503 assert(*std::prev(Chain.end()) == BB); 504 505 // Look for the best viable successor if there is one to place immediately 506 // after this block. 507 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 508 509 // If an immediate successor isn't available, look for the best viable 510 // block among those we've identified as not violating the loop's CFG at 511 // this point. This won't be a fallthrough, but it will increase locality. 512 if (!BestSucc) 513 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 514 515 if (!BestSucc) { 516 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 517 BlockFilter); 518 if (!BestSucc) 519 break; 520 521 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 522 "layout successor until the CFG reduces\n"); 523 } 524 525 // Place this block, updating the datastructures to reflect its placement. 526 BlockChain &SuccChain = *BlockToChain[BestSucc]; 527 // Zero out LoopPredecessors for the successor we're about to merge in case 528 // we selected a successor that didn't fit naturally into the CFG. 529 SuccChain.LoopPredecessors = 0; 530 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 531 << " to " << getBlockNum(BestSucc) << "\n"); 532 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 533 Chain.merge(BestSucc, &SuccChain); 534 BB = *std::prev(Chain.end()); 535 } 536 537 DEBUG(dbgs() << "Finished forming chain for header block " 538 << getBlockNum(*Chain.begin()) << "\n"); 539 } 540 541 /// \brief Find the best loop top block for layout. 542 /// 543 /// Look for a block which is strictly better than the loop header for laying 544 /// out at the top of the loop. This looks for one and only one pattern: 545 /// a latch block with no conditional exit. This block will cause a conditional 546 /// jump around it or will be the bottom of the loop if we lay it out in place, 547 /// but if it it doesn't end up at the bottom of the loop for any reason, 548 /// rotation alone won't fix it. Because such a block will always result in an 549 /// unconditional jump (for the backedge) rotating it in front of the loop 550 /// header is always profitable. 551 MachineBasicBlock * 552 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 553 const BlockFilterSet &LoopBlockSet) { 554 // Check that the header hasn't been fused with a preheader block due to 555 // crazy branches. If it has, we need to start with the header at the top to 556 // prevent pulling the preheader into the loop body. 557 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 558 if (!LoopBlockSet.count(*HeaderChain.begin())) 559 return L.getHeader(); 560 561 DEBUG(dbgs() << "Finding best loop top for: " 562 << getBlockName(L.getHeader()) << "\n"); 563 564 BlockFrequency BestPredFreq; 565 MachineBasicBlock *BestPred = nullptr; 566 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(), 567 PE = L.getHeader()->pred_end(); 568 PI != PE; ++PI) { 569 MachineBasicBlock *Pred = *PI; 570 if (!LoopBlockSet.count(Pred)) 571 continue; 572 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 573 << Pred->succ_size() << " successors, "; 574 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 575 if (Pred->succ_size() > 1) 576 continue; 577 578 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 579 if (!BestPred || PredFreq > BestPredFreq || 580 (!(PredFreq < BestPredFreq) && 581 Pred->isLayoutSuccessor(L.getHeader()))) { 582 BestPred = Pred; 583 BestPredFreq = PredFreq; 584 } 585 } 586 587 // If no direct predecessor is fine, just use the loop header. 588 if (!BestPred) 589 return L.getHeader(); 590 591 // Walk backwards through any straight line of predecessors. 592 while (BestPred->pred_size() == 1 && 593 (*BestPred->pred_begin())->succ_size() == 1 && 594 *BestPred->pred_begin() != L.getHeader()) 595 BestPred = *BestPred->pred_begin(); 596 597 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 598 return BestPred; 599 } 600 601 602 /// \brief Find the best loop exiting block for layout. 603 /// 604 /// This routine implements the logic to analyze the loop looking for the best 605 /// block to layout at the top of the loop. Typically this is done to maximize 606 /// fallthrough opportunities. 607 MachineBasicBlock * 608 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, 609 MachineLoop &L, 610 const BlockFilterSet &LoopBlockSet) { 611 // We don't want to layout the loop linearly in all cases. If the loop header 612 // is just a normal basic block in the loop, we want to look for what block 613 // within the loop is the best one to layout at the top. However, if the loop 614 // header has be pre-merged into a chain due to predecessors not having 615 // analyzable branches, *and* the predecessor it is merged with is *not* part 616 // of the loop, rotating the header into the middle of the loop will create 617 // a non-contiguous range of blocks which is Very Bad. So start with the 618 // header and only rotate if safe. 619 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 620 if (!LoopBlockSet.count(*HeaderChain.begin())) 621 return nullptr; 622 623 BlockFrequency BestExitEdgeFreq; 624 unsigned BestExitLoopDepth = 0; 625 MachineBasicBlock *ExitingBB = nullptr; 626 // If there are exits to outer loops, loop rotation can severely limit 627 // fallthrough opportunites unless it selects such an exit. Keep a set of 628 // blocks where rotating to exit with that block will reach an outer loop. 629 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 630 631 DEBUG(dbgs() << "Finding best loop exit for: " 632 << getBlockName(L.getHeader()) << "\n"); 633 for (MachineLoop::block_iterator I = L.block_begin(), 634 E = L.block_end(); 635 I != E; ++I) { 636 BlockChain &Chain = *BlockToChain[*I]; 637 // Ensure that this block is at the end of a chain; otherwise it could be 638 // mid-way through an inner loop or a successor of an analyzable branch. 639 if (*I != *std::prev(Chain.end())) 640 continue; 641 642 // Now walk the successors. We need to establish whether this has a viable 643 // exiting successor and whether it has a viable non-exiting successor. 644 // We store the old exiting state and restore it if a viable looping 645 // successor isn't found. 646 MachineBasicBlock *OldExitingBB = ExitingBB; 647 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 648 bool HasLoopingSucc = false; 649 // FIXME: Due to the performance of the probability and weight routines in 650 // the MBPI analysis, we use the internal weights and manually compute the 651 // probabilities to avoid quadratic behavior. 652 uint32_t WeightScale = 0; 653 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 654 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 655 SE = (*I)->succ_end(); 656 SI != SE; ++SI) { 657 if ((*SI)->isLandingPad()) 658 continue; 659 if (*SI == *I) 660 continue; 661 BlockChain &SuccChain = *BlockToChain[*SI]; 662 // Don't split chains, either this chain or the successor's chain. 663 if (&Chain == &SuccChain) { 664 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 665 << getBlockName(*SI) << " (chain conflict)\n"); 666 continue; 667 } 668 669 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 670 if (LoopBlockSet.count(*SI)) { 671 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 672 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 673 HasLoopingSucc = true; 674 continue; 675 } 676 677 unsigned SuccLoopDepth = 0; 678 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) { 679 SuccLoopDepth = ExitLoop->getLoopDepth(); 680 if (ExitLoop->contains(&L)) 681 BlocksExitingToOuterLoop.insert(*I); 682 } 683 684 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 685 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 686 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 687 << getBlockName(*SI) << " [L:" << SuccLoopDepth 688 << "] ("; 689 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 690 // Note that we bias this toward an existing layout successor to retain 691 // incoming order in the absence of better information. The exit must have 692 // a frequency higher than the current exit before we consider breaking 693 // the layout. 694 BranchProbability Bias(100 - ExitBlockBias, 100); 695 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth || 696 ExitEdgeFreq > BestExitEdgeFreq || 697 ((*I)->isLayoutSuccessor(*SI) && 698 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 699 BestExitEdgeFreq = ExitEdgeFreq; 700 ExitingBB = *I; 701 } 702 } 703 704 // Restore the old exiting state, no viable looping successor was found. 705 if (!HasLoopingSucc) { 706 ExitingBB = OldExitingBB; 707 BestExitEdgeFreq = OldBestExitEdgeFreq; 708 continue; 709 } 710 } 711 // Without a candidate exiting block or with only a single block in the 712 // loop, just use the loop header to layout the loop. 713 if (!ExitingBB || L.getNumBlocks() == 1) 714 return nullptr; 715 716 // Also, if we have exit blocks which lead to outer loops but didn't select 717 // one of them as the exiting block we are rotating toward, disable loop 718 // rotation altogether. 719 if (!BlocksExitingToOuterLoop.empty() && 720 !BlocksExitingToOuterLoop.count(ExitingBB)) 721 return nullptr; 722 723 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 724 return ExitingBB; 725 } 726 727 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 728 /// 729 /// Once we have built a chain, try to rotate it to line up the hot exit block 730 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 731 /// branches. For example, if the loop has fallthrough into its header and out 732 /// of its bottom already, don't rotate it. 733 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 734 MachineBasicBlock *ExitingBB, 735 const BlockFilterSet &LoopBlockSet) { 736 if (!ExitingBB) 737 return; 738 739 MachineBasicBlock *Top = *LoopChain.begin(); 740 bool ViableTopFallthrough = false; 741 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(), 742 PE = Top->pred_end(); 743 PI != PE; ++PI) { 744 BlockChain *PredChain = BlockToChain[*PI]; 745 if (!LoopBlockSet.count(*PI) && 746 (!PredChain || *PI == *std::prev(PredChain->end()))) { 747 ViableTopFallthrough = true; 748 break; 749 } 750 } 751 752 // If the header has viable fallthrough, check whether the current loop 753 // bottom is a viable exiting block. If so, bail out as rotating will 754 // introduce an unnecessary branch. 755 if (ViableTopFallthrough) { 756 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 757 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(), 758 SE = Bottom->succ_end(); 759 SI != SE; ++SI) { 760 BlockChain *SuccChain = BlockToChain[*SI]; 761 if (!LoopBlockSet.count(*SI) && 762 (!SuccChain || *SI == *SuccChain->begin())) 763 return; 764 } 765 } 766 767 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(), 768 ExitingBB); 769 if (ExitIt == LoopChain.end()) 770 return; 771 772 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 773 } 774 775 /// \brief Forms basic block chains from the natural loop structures. 776 /// 777 /// These chains are designed to preserve the existing *structure* of the code 778 /// as much as possible. We can then stitch the chains together in a way which 779 /// both preserves the topological structure and minimizes taken conditional 780 /// branches. 781 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 782 MachineLoop &L) { 783 // First recurse through any nested loops, building chains for those inner 784 // loops. 785 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 786 buildLoopChains(F, **LI); 787 788 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 789 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 790 791 // First check to see if there is an obviously preferable top block for the 792 // loop. This will default to the header, but may end up as one of the 793 // predecessors to the header if there is one which will result in strictly 794 // fewer branches in the loop body. 795 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 796 797 // If we selected just the header for the loop top, look for a potentially 798 // profitable exit block in the event that rotating the loop can eliminate 799 // branches by placing an exit edge at the bottom. 800 MachineBasicBlock *ExitingBB = nullptr; 801 if (LoopTop == L.getHeader()) 802 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 803 804 BlockChain &LoopChain = *BlockToChain[LoopTop]; 805 806 // FIXME: This is a really lame way of walking the chains in the loop: we 807 // walk the blocks, and use a set to prevent visiting a particular chain 808 // twice. 809 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 810 assert(LoopChain.LoopPredecessors == 0); 811 UpdatedPreds.insert(&LoopChain); 812 for (MachineLoop::block_iterator BI = L.block_begin(), 813 BE = L.block_end(); 814 BI != BE; ++BI) { 815 BlockChain &Chain = *BlockToChain[*BI]; 816 if (!UpdatedPreds.insert(&Chain).second) 817 continue; 818 819 assert(Chain.LoopPredecessors == 0); 820 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 821 BCI != BCE; ++BCI) { 822 assert(BlockToChain[*BCI] == &Chain); 823 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 824 PE = (*BCI)->pred_end(); 825 PI != PE; ++PI) { 826 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 827 continue; 828 ++Chain.LoopPredecessors; 829 } 830 } 831 832 if (Chain.LoopPredecessors == 0) 833 BlockWorkList.push_back(*Chain.begin()); 834 } 835 836 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 837 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 838 839 DEBUG({ 840 // Crash at the end so we get all of the debugging output first. 841 bool BadLoop = false; 842 if (LoopChain.LoopPredecessors) { 843 BadLoop = true; 844 dbgs() << "Loop chain contains a block without its preds placed!\n" 845 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 846 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 847 } 848 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 849 BCI != BCE; ++BCI) { 850 dbgs() << " ... " << getBlockName(*BCI) << "\n"; 851 if (!LoopBlockSet.erase(*BCI)) { 852 // We don't mark the loop as bad here because there are real situations 853 // where this can occur. For example, with an unanalyzable fallthrough 854 // from a loop block to a non-loop block or vice versa. 855 dbgs() << "Loop chain contains a block not contained by the loop!\n" 856 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 857 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 858 << " Bad block: " << getBlockName(*BCI) << "\n"; 859 } 860 } 861 862 if (!LoopBlockSet.empty()) { 863 BadLoop = true; 864 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 865 LBE = LoopBlockSet.end(); 866 LBI != LBE; ++LBI) 867 dbgs() << "Loop contains blocks never placed into a chain!\n" 868 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 869 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 870 << " Bad block: " << getBlockName(*LBI) << "\n"; 871 } 872 assert(!BadLoop && "Detected problems with the placement of this loop."); 873 }); 874 } 875 876 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 877 // Ensure that every BB in the function has an associated chain to simplify 878 // the assumptions of the remaining algorithm. 879 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 880 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 881 MachineBasicBlock *BB = FI; 882 BlockChain *Chain 883 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 884 // Also, merge any blocks which we cannot reason about and must preserve 885 // the exact fallthrough behavior for. 886 for (;;) { 887 Cond.clear(); 888 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 889 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 890 break; 891 892 MachineFunction::iterator NextFI(std::next(FI)); 893 MachineBasicBlock *NextBB = NextFI; 894 // Ensure that the layout successor is a viable block, as we know that 895 // fallthrough is a possibility. 896 assert(NextFI != FE && "Can't fallthrough past the last block."); 897 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 898 << getBlockName(BB) << " -> " << getBlockName(NextBB) 899 << "\n"); 900 Chain->merge(NextBB, nullptr); 901 FI = NextFI; 902 BB = NextBB; 903 } 904 } 905 906 // Build any loop-based chains. 907 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 908 ++LI) 909 buildLoopChains(F, **LI); 910 911 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 912 913 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 914 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 915 MachineBasicBlock *BB = &*FI; 916 BlockChain &Chain = *BlockToChain[BB]; 917 if (!UpdatedPreds.insert(&Chain).second) 918 continue; 919 920 assert(Chain.LoopPredecessors == 0); 921 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 922 BCI != BCE; ++BCI) { 923 assert(BlockToChain[*BCI] == &Chain); 924 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 925 PE = (*BCI)->pred_end(); 926 PI != PE; ++PI) { 927 if (BlockToChain[*PI] == &Chain) 928 continue; 929 ++Chain.LoopPredecessors; 930 } 931 } 932 933 if (Chain.LoopPredecessors == 0) 934 BlockWorkList.push_back(*Chain.begin()); 935 } 936 937 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 938 buildChain(&F.front(), FunctionChain, BlockWorkList); 939 940 #ifndef NDEBUG 941 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 942 #endif 943 DEBUG({ 944 // Crash at the end so we get all of the debugging output first. 945 bool BadFunc = false; 946 FunctionBlockSetType FunctionBlockSet; 947 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 948 FunctionBlockSet.insert(FI); 949 950 for (BlockChain::iterator BCI = FunctionChain.begin(), 951 BCE = FunctionChain.end(); 952 BCI != BCE; ++BCI) 953 if (!FunctionBlockSet.erase(*BCI)) { 954 BadFunc = true; 955 dbgs() << "Function chain contains a block not in the function!\n" 956 << " Bad block: " << getBlockName(*BCI) << "\n"; 957 } 958 959 if (!FunctionBlockSet.empty()) { 960 BadFunc = true; 961 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 962 FBE = FunctionBlockSet.end(); 963 FBI != FBE; ++FBI) 964 dbgs() << "Function contains blocks never placed into a chain!\n" 965 << " Bad block: " << getBlockName(*FBI) << "\n"; 966 } 967 assert(!BadFunc && "Detected problems with the block placement."); 968 }); 969 970 // Splice the blocks into place. 971 MachineFunction::iterator InsertPos = F.begin(); 972 for (BlockChain::iterator BI = FunctionChain.begin(), 973 BE = FunctionChain.end(); 974 BI != BE; ++BI) { 975 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 976 : " ... ") 977 << getBlockName(*BI) << "\n"); 978 if (InsertPos != MachineFunction::iterator(*BI)) 979 F.splice(InsertPos, *BI); 980 else 981 ++InsertPos; 982 983 // Update the terminator of the previous block. 984 if (BI == FunctionChain.begin()) 985 continue; 986 MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(*BI)); 987 988 // FIXME: It would be awesome of updateTerminator would just return rather 989 // than assert when the branch cannot be analyzed in order to remove this 990 // boiler plate. 991 Cond.clear(); 992 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 993 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 994 // The "PrevBB" is not yet updated to reflect current code layout, so, 995 // o. it may fall-through to a block without explict "goto" instruction 996 // before layout, and no longer fall-through it after layout; or 997 // o. just opposite. 998 // 999 // AnalyzeBranch() may return erroneous value for FBB when these two 1000 // situations take place. For the first scenario FBB is mistakenly set 1001 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1002 // is mistakenly pointing to "*BI". 1003 // 1004 bool needUpdateBr = true; 1005 if (!Cond.empty() && (!FBB || FBB == *BI)) { 1006 PrevBB->updateTerminator(); 1007 needUpdateBr = false; 1008 Cond.clear(); 1009 TBB = FBB = nullptr; 1010 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1011 // FIXME: This should never take place. 1012 TBB = FBB = nullptr; 1013 } 1014 } 1015 1016 // If PrevBB has a two-way branch, try to re-order the branches 1017 // such that we branch to the successor with higher weight first. 1018 if (TBB && !Cond.empty() && FBB && 1019 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1020 !TII->ReverseBranchCondition(Cond)) { 1021 DEBUG(dbgs() << "Reverse order of the two branches: " 1022 << getBlockName(PrevBB) << "\n"); 1023 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1024 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1025 DebugLoc dl; // FIXME: this is nowhere 1026 TII->RemoveBranch(*PrevBB); 1027 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1028 needUpdateBr = true; 1029 } 1030 if (needUpdateBr) 1031 PrevBB->updateTerminator(); 1032 } 1033 } 1034 1035 // Fixup the last block. 1036 Cond.clear(); 1037 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1038 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1039 F.back().updateTerminator(); 1040 1041 // Walk through the backedges of the function now that we have fully laid out 1042 // the basic blocks and align the destination of each backedge. We don't rely 1043 // exclusively on the loop info here so that we can align backedges in 1044 // unnatural CFGs and backedges that were introduced purely because of the 1045 // loop rotations done during this layout pass. 1046 if (F.getFunction()->getAttributes(). 1047 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize)) 1048 return; 1049 if (FunctionChain.begin() == FunctionChain.end()) 1050 return; // Empty chain. 1051 1052 const BranchProbability ColdProb(1, 5); // 20% 1053 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 1054 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1055 for (BlockChain::iterator BI = std::next(FunctionChain.begin()), 1056 BE = FunctionChain.end(); 1057 BI != BE; ++BI) { 1058 // Don't align non-looping basic blocks. These are unlikely to execute 1059 // enough times to matter in practice. Note that we'll still handle 1060 // unnatural CFGs inside of a natural outer loop (the common case) and 1061 // rotated loops. 1062 MachineLoop *L = MLI->getLoopFor(*BI); 1063 if (!L) 1064 continue; 1065 1066 unsigned Align = TLI->getPrefLoopAlignment(L); 1067 if (!Align) 1068 continue; // Don't care about loop alignment. 1069 1070 // If the block is cold relative to the function entry don't waste space 1071 // aligning it. 1072 BlockFrequency Freq = MBFI->getBlockFreq(*BI); 1073 if (Freq < WeightedEntryFreq) 1074 continue; 1075 1076 // If the block is cold relative to its loop header, don't align it 1077 // regardless of what edges into the block exist. 1078 MachineBasicBlock *LoopHeader = L->getHeader(); 1079 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1080 if (Freq < (LoopHeaderFreq * ColdProb)) 1081 continue; 1082 1083 // Check for the existence of a non-layout predecessor which would benefit 1084 // from aligning this block. 1085 MachineBasicBlock *LayoutPred = *std::prev(BI); 1086 1087 // Force alignment if all the predecessors are jumps. We already checked 1088 // that the block isn't cold above. 1089 if (!LayoutPred->isSuccessor(*BI)) { 1090 (*BI)->setAlignment(Align); 1091 continue; 1092 } 1093 1094 // Align this block if the layout predecessor's edge into this block is 1095 // cold relative to the block. When this is true, other predecessors make up 1096 // all of the hot entries into the block and thus alignment is likely to be 1097 // important. 1098 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI); 1099 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1100 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1101 (*BI)->setAlignment(Align); 1102 } 1103 } 1104 1105 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1106 // Check for single-block functions and skip them. 1107 if (std::next(F.begin()) == F.end()) 1108 return false; 1109 1110 if (skipOptnoneFunction(*F.getFunction())) 1111 return false; 1112 1113 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1114 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1115 MLI = &getAnalysis<MachineLoopInfo>(); 1116 TII = F.getSubtarget().getInstrInfo(); 1117 TLI = F.getSubtarget().getTargetLowering(); 1118 assert(BlockToChain.empty()); 1119 1120 buildCFGChains(F); 1121 1122 BlockToChain.clear(); 1123 ChainAllocator.DestroyAll(); 1124 1125 if (AlignAllBlock) 1126 // Align all of the blocks in the function to a specific alignment. 1127 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 1128 FI != FE; ++FI) 1129 FI->setAlignment(AlignAllBlock); 1130 1131 // We always return true as we have no way to track whether the final order 1132 // differs from the original order. 1133 return true; 1134 } 1135 1136 namespace { 1137 /// \brief A pass to compute block placement statistics. 1138 /// 1139 /// A separate pass to compute interesting statistics for evaluating block 1140 /// placement. This is separate from the actual placement pass so that they can 1141 /// be computed in the absence of any placement transformations or when using 1142 /// alternative placement strategies. 1143 class MachineBlockPlacementStats : public MachineFunctionPass { 1144 /// \brief A handle to the branch probability pass. 1145 const MachineBranchProbabilityInfo *MBPI; 1146 1147 /// \brief A handle to the function-wide block frequency pass. 1148 const MachineBlockFrequencyInfo *MBFI; 1149 1150 public: 1151 static char ID; // Pass identification, replacement for typeid 1152 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1153 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1154 } 1155 1156 bool runOnMachineFunction(MachineFunction &F) override; 1157 1158 void getAnalysisUsage(AnalysisUsage &AU) const override { 1159 AU.addRequired<MachineBranchProbabilityInfo>(); 1160 AU.addRequired<MachineBlockFrequencyInfo>(); 1161 AU.setPreservesAll(); 1162 MachineFunctionPass::getAnalysisUsage(AU); 1163 } 1164 }; 1165 } 1166 1167 char MachineBlockPlacementStats::ID = 0; 1168 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1169 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1170 "Basic Block Placement Stats", false, false) 1171 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1172 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1173 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1174 "Basic Block Placement Stats", false, false) 1175 1176 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1177 // Check for single-block functions and skip them. 1178 if (std::next(F.begin()) == F.end()) 1179 return false; 1180 1181 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1182 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1183 1184 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 1185 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 1186 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 1187 : NumUncondBranches; 1188 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 1189 : UncondBranchTakenFreq; 1190 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 1191 SE = I->succ_end(); 1192 SI != SE; ++SI) { 1193 // Skip if this successor is a fallthrough. 1194 if (I->isLayoutSuccessor(*SI)) 1195 continue; 1196 1197 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 1198 ++NumBranches; 1199 BranchTakenFreq += EdgeFreq.getFrequency(); 1200 } 1201 } 1202 1203 return false; 1204 } 1205 1206