1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include "llvm/Target/TargetSubtargetInfo.h"
47 #include <algorithm>
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "block-placement"
51 
52 STATISTIC(NumCondBranches, "Number of conditional branches");
53 STATISTIC(NumUncondBranches, "Number of uncondittional branches");
54 STATISTIC(CondBranchTakenFreq,
55           "Potential frequency of taking conditional branches");
56 STATISTIC(UncondBranchTakenFreq,
57           "Potential frequency of taking unconditional branches");
58 
59 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
60                                        cl::desc("Force the alignment of all "
61                                                 "blocks in the function."),
62                                        cl::init(0), cl::Hidden);
63 
64 // FIXME: Find a good default for this flag and remove the flag.
65 static cl::opt<unsigned> ExitBlockBias(
66     "block-placement-exit-block-bias",
67     cl::desc("Block frequency percentage a loop exit block needs "
68              "over the original exit to be considered the new exit."),
69     cl::init(0), cl::Hidden);
70 
71 static cl::opt<bool> OutlineOptionalBranches(
72     "outline-optional-branches",
73     cl::desc("Put completely optional branches, i.e. branches with a common "
74              "post dominator, out of line."),
75     cl::init(false), cl::Hidden);
76 
77 namespace {
78 class BlockChain;
79 /// \brief Type for our function-wide basic block -> block chain mapping.
80 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
81 }
82 
83 namespace {
84 /// \brief A chain of blocks which will be laid out contiguously.
85 ///
86 /// This is the datastructure representing a chain of consecutive blocks that
87 /// are profitable to layout together in order to maximize fallthrough
88 /// probabilities and code locality. We also can use a block chain to represent
89 /// a sequence of basic blocks which have some external (correctness)
90 /// requirement for sequential layout.
91 ///
92 /// Chains can be built around a single basic block and can be merged to grow
93 /// them. They participate in a block-to-chain mapping, which is updated
94 /// automatically as chains are merged together.
95 class BlockChain {
96   /// \brief The sequence of blocks belonging to this chain.
97   ///
98   /// This is the sequence of blocks for a particular chain. These will be laid
99   /// out in-order within the function.
100   SmallVector<MachineBasicBlock *, 4> Blocks;
101 
102   /// \brief A handle to the function-wide basic block to block chain mapping.
103   ///
104   /// This is retained in each block chain to simplify the computation of child
105   /// block chains for SCC-formation and iteration. We store the edges to child
106   /// basic blocks, and map them back to their associated chains using this
107   /// structure.
108   BlockToChainMapType &BlockToChain;
109 
110 public:
111   /// \brief Construct a new BlockChain.
112   ///
113   /// This builds a new block chain representing a single basic block in the
114   /// function. It also registers itself as the chain that block participates
115   /// in with the BlockToChain mapping.
116   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
117       : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
118     assert(BB && "Cannot create a chain with a null basic block");
119     BlockToChain[BB] = this;
120   }
121 
122   /// \brief Iterator over blocks within the chain.
123   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
124 
125   /// \brief Beginning of blocks within the chain.
126   iterator begin() { return Blocks.begin(); }
127 
128   /// \brief End of blocks within the chain.
129   iterator end() { return Blocks.end(); }
130 
131   /// \brief Merge a block chain into this one.
132   ///
133   /// This routine merges a block chain into this one. It takes care of forming
134   /// a contiguous sequence of basic blocks, updating the edge list, and
135   /// updating the block -> chain mapping. It does not free or tear down the
136   /// old chain, but the old chain's block list is no longer valid.
137   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
138     assert(BB);
139     assert(!Blocks.empty());
140 
141     // Fast path in case we don't have a chain already.
142     if (!Chain) {
143       assert(!BlockToChain[BB]);
144       Blocks.push_back(BB);
145       BlockToChain[BB] = this;
146       return;
147     }
148 
149     assert(BB == *Chain->begin());
150     assert(Chain->begin() != Chain->end());
151 
152     // Update the incoming blocks to point to this chain, and add them to the
153     // chain structure.
154     for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); BI != BE;
155          ++BI) {
156       Blocks.push_back(*BI);
157       assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
158       BlockToChain[*BI] = this;
159     }
160   }
161 
162 #ifndef NDEBUG
163   /// \brief Dump the blocks in this chain.
164   LLVM_DUMP_METHOD void dump() {
165     for (iterator I = begin(), E = end(); I != E; ++I)
166       (*I)->dump();
167   }
168 #endif // NDEBUG
169 
170   /// \brief Count of predecessors within the loop currently being processed.
171   ///
172   /// This count is updated at each loop we process to represent the number of
173   /// in-loop predecessors of this chain.
174   unsigned LoopPredecessors;
175 };
176 }
177 
178 namespace {
179 class MachineBlockPlacement : public MachineFunctionPass {
180   /// \brief A typedef for a block filter set.
181   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
182 
183   /// \brief A handle to the branch probability pass.
184   const MachineBranchProbabilityInfo *MBPI;
185 
186   /// \brief A handle to the function-wide block frequency pass.
187   const MachineBlockFrequencyInfo *MBFI;
188 
189   /// \brief A handle to the loop info.
190   const MachineLoopInfo *MLI;
191 
192   /// \brief A handle to the target's instruction info.
193   const TargetInstrInfo *TII;
194 
195   /// \brief A handle to the target's lowering info.
196   const TargetLoweringBase *TLI;
197 
198   /// \brief A handle to the post dominator tree.
199   MachineDominatorTree *MDT;
200 
201   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
202   /// all terminators of the MachineFunction.
203   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
204 
205   /// \brief Allocator and owner of BlockChain structures.
206   ///
207   /// We build BlockChains lazily while processing the loop structure of
208   /// a function. To reduce malloc traffic, we allocate them using this
209   /// slab-like allocator, and destroy them after the pass completes. An
210   /// important guarantee is that this allocator produces stable pointers to
211   /// the chains.
212   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
213 
214   /// \brief Function wide BasicBlock to BlockChain mapping.
215   ///
216   /// This mapping allows efficiently moving from any given basic block to the
217   /// BlockChain it participates in, if any. We use it to, among other things,
218   /// allow implicitly defining edges between chains as the existing edges
219   /// between basic blocks.
220   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
221 
222   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
223                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
224                            const BlockFilterSet *BlockFilter = nullptr);
225   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
226                                          BlockChain &Chain,
227                                          const BlockFilterSet *BlockFilter);
228   MachineBasicBlock *
229   selectBestCandidateBlock(BlockChain &Chain,
230                            SmallVectorImpl<MachineBasicBlock *> &WorkList,
231                            const BlockFilterSet *BlockFilter);
232   MachineBasicBlock *
233   getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
234                         MachineFunction::iterator &PrevUnplacedBlockIt,
235                         const BlockFilterSet *BlockFilter);
236   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
237                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
238                   const BlockFilterSet *BlockFilter = nullptr);
239   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
240                                      const BlockFilterSet &LoopBlockSet);
241   MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
242                                       const BlockFilterSet &LoopBlockSet);
243   void buildLoopChains(MachineFunction &F, MachineLoop &L);
244   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
245                   const BlockFilterSet &LoopBlockSet);
246   void buildCFGChains(MachineFunction &F);
247 
248 public:
249   static char ID; // Pass identification, replacement for typeid
250   MachineBlockPlacement() : MachineFunctionPass(ID) {
251     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
252   }
253 
254   bool runOnMachineFunction(MachineFunction &F) override;
255 
256   void getAnalysisUsage(AnalysisUsage &AU) const override {
257     AU.addRequired<MachineBranchProbabilityInfo>();
258     AU.addRequired<MachineBlockFrequencyInfo>();
259     AU.addRequired<MachineDominatorTree>();
260     AU.addRequired<MachineLoopInfo>();
261     MachineFunctionPass::getAnalysisUsage(AU);
262   }
263 };
264 }
265 
266 char MachineBlockPlacement::ID = 0;
267 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
268 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
269                       "Branch Probability Basic Block Placement", false, false)
270 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
271 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
272 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
273 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
274 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
275                     "Branch Probability Basic Block Placement", false, false)
276 
277 #ifndef NDEBUG
278 /// \brief Helper to print the name of a MBB.
279 ///
280 /// Only used by debug logging.
281 static std::string getBlockName(MachineBasicBlock *BB) {
282   std::string Result;
283   raw_string_ostream OS(Result);
284   OS << "BB#" << BB->getNumber();
285   OS << " (derived from LLVM BB '" << BB->getName() << "')";
286   OS.flush();
287   return Result;
288 }
289 
290 /// \brief Helper to print the number of a MBB.
291 ///
292 /// Only used by debug logging.
293 static std::string getBlockNum(MachineBasicBlock *BB) {
294   std::string Result;
295   raw_string_ostream OS(Result);
296   OS << "BB#" << BB->getNumber();
297   OS.flush();
298   return Result;
299 }
300 #endif
301 
302 /// \brief Mark a chain's successors as having one fewer preds.
303 ///
304 /// When a chain is being merged into the "placed" chain, this routine will
305 /// quickly walk the successors of each block in the chain and mark them as
306 /// having one fewer active predecessor. It also adds any successors of this
307 /// chain which reach the zero-predecessor state to the worklist passed in.
308 void MachineBlockPlacement::markChainSuccessors(
309     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
310     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
311     const BlockFilterSet *BlockFilter) {
312   // Walk all the blocks in this chain, marking their successors as having
313   // a predecessor placed.
314   for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); CBI != CBE;
315        ++CBI) {
316     // Add any successors for which this is the only un-placed in-loop
317     // predecessor to the worklist as a viable candidate for CFG-neutral
318     // placement. No subsequent placement of this block will violate the CFG
319     // shape, so we get to use heuristics to choose a favorable placement.
320     for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
321                                           SE = (*CBI)->succ_end();
322          SI != SE; ++SI) {
323       if (BlockFilter && !BlockFilter->count(*SI))
324         continue;
325       BlockChain &SuccChain = *BlockToChain[*SI];
326       // Disregard edges within a fixed chain, or edges to the loop header.
327       if (&Chain == &SuccChain || *SI == LoopHeaderBB)
328         continue;
329 
330       // This is a cross-chain edge that is within the loop, so decrement the
331       // loop predecessor count of the destination chain.
332       if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
333         BlockWorkList.push_back(*SuccChain.begin());
334     }
335   }
336 }
337 
338 /// \brief Select the best successor for a block.
339 ///
340 /// This looks across all successors of a particular block and attempts to
341 /// select the "best" one to be the layout successor. It only considers direct
342 /// successors which also pass the block filter. It will attempt to avoid
343 /// breaking CFG structure, but cave and break such structures in the case of
344 /// very hot successor edges.
345 ///
346 /// \returns The best successor block found, or null if none are viable.
347 MachineBasicBlock *
348 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
349                                            BlockChain &Chain,
350                                            const BlockFilterSet *BlockFilter) {
351   const BranchProbability HotProb(4, 5); // 80%
352 
353   MachineBasicBlock *BestSucc = nullptr;
354   // FIXME: Due to the performance of the probability and weight routines in
355   // the MBPI analysis, we manually compute probabilities using the edge
356   // weights. This is suboptimal as it means that the somewhat subtle
357   // definition of edge weight semantics is encoded here as well. We should
358   // improve the MBPI interface to efficiently support query patterns such as
359   // this.
360   uint32_t BestWeight = 0;
361   uint32_t WeightScale = 0;
362   uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
363   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
364   for (MachineBasicBlock *Succ : BB->successors()) {
365     if (BlockFilter && !BlockFilter->count(Succ))
366       continue;
367     BlockChain &SuccChain = *BlockToChain[Succ];
368     if (&SuccChain == &Chain) {
369       DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Already merged!\n");
370       continue;
371     }
372     if (Succ != *SuccChain.begin()) {
373       DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
374       continue;
375     }
376 
377     uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ);
378     BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
379 
380     // If we outline optional branches, look whether Succ is unavoidable, i.e.
381     // dominates all terminators of the MachineFunction. If it does, other
382     // successors must be optional. Don't do this for cold branches.
383     if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
384         UnavoidableBlocks.count(Succ) > 0)
385       return Succ;
386 
387     // Only consider successors which are either "hot", or wouldn't violate
388     // any CFG constraints.
389     if (SuccChain.LoopPredecessors != 0) {
390       if (SuccProb < HotProb) {
391         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
392                      << " (prob) (CFG conflict)\n");
393         continue;
394       }
395 
396       // Make sure that a hot successor doesn't have a globally more
397       // important predecessor.
398       BlockFrequency CandidateEdgeFreq =
399           MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
400       bool BadCFGConflict = false;
401       for (MachineBasicBlock *Pred : Succ->predecessors()) {
402         if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
403             BlockToChain[Pred] == &Chain)
404           continue;
405         BlockFrequency PredEdgeFreq =
406             MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
407         if (PredEdgeFreq >= CandidateEdgeFreq) {
408           BadCFGConflict = true;
409           break;
410         }
411       }
412       if (BadCFGConflict) {
413         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
414                      << " (prob) (non-cold CFG conflict)\n");
415         continue;
416       }
417     }
418 
419     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
420                  << " (prob)"
421                  << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
422                  << "\n");
423     if (BestSucc && BestWeight >= SuccWeight)
424       continue;
425     BestSucc = Succ;
426     BestWeight = SuccWeight;
427   }
428   return BestSucc;
429 }
430 
431 /// \brief Select the best block from a worklist.
432 ///
433 /// This looks through the provided worklist as a list of candidate basic
434 /// blocks and select the most profitable one to place. The definition of
435 /// profitable only really makes sense in the context of a loop. This returns
436 /// the most frequently visited block in the worklist, which in the case of
437 /// a loop, is the one most desirable to be physically close to the rest of the
438 /// loop body in order to improve icache behavior.
439 ///
440 /// \returns The best block found, or null if none are viable.
441 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
442     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
443     const BlockFilterSet *BlockFilter) {
444   // Once we need to walk the worklist looking for a candidate, cleanup the
445   // worklist of already placed entries.
446   // FIXME: If this shows up on profiles, it could be folded (at the cost of
447   // some code complexity) into the loop below.
448   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
449                                 [&](MachineBasicBlock *BB) {
450                                   return BlockToChain.lookup(BB) == &Chain;
451                                 }),
452                  WorkList.end());
453 
454   MachineBasicBlock *BestBlock = nullptr;
455   BlockFrequency BestFreq;
456   for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
457                                                       WBE = WorkList.end();
458        WBI != WBE; ++WBI) {
459     BlockChain &SuccChain = *BlockToChain[*WBI];
460     if (&SuccChain == &Chain) {
461       DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> Already merged!\n");
462       continue;
463     }
464     assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
465 
466     BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
467     DEBUG(dbgs() << "    " << getBlockName(*WBI) << " -> ";
468           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
469     if (BestBlock && BestFreq >= CandidateFreq)
470       continue;
471     BestBlock = *WBI;
472     BestFreq = CandidateFreq;
473   }
474   return BestBlock;
475 }
476 
477 /// \brief Retrieve the first unplaced basic block.
478 ///
479 /// This routine is called when we are unable to use the CFG to walk through
480 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
481 /// We walk through the function's blocks in order, starting from the
482 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
483 /// re-scanning the entire sequence on repeated calls to this routine.
484 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
485     MachineFunction &F, const BlockChain &PlacedChain,
486     MachineFunction::iterator &PrevUnplacedBlockIt,
487     const BlockFilterSet *BlockFilter) {
488   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
489        ++I) {
490     if (BlockFilter && !BlockFilter->count(I))
491       continue;
492     if (BlockToChain[I] != &PlacedChain) {
493       PrevUnplacedBlockIt = I;
494       // Now select the head of the chain to which the unplaced block belongs
495       // as the block to place. This will force the entire chain to be placed,
496       // and satisfies the requirements of merging chains.
497       return *BlockToChain[I]->begin();
498     }
499   }
500   return nullptr;
501 }
502 
503 void MachineBlockPlacement::buildChain(
504     MachineBasicBlock *BB, BlockChain &Chain,
505     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
506     const BlockFilterSet *BlockFilter) {
507   assert(BB);
508   assert(BlockToChain[BB] == &Chain);
509   MachineFunction &F = *BB->getParent();
510   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
511 
512   MachineBasicBlock *LoopHeaderBB = BB;
513   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
514   BB = *std::prev(Chain.end());
515   for (;;) {
516     assert(BB);
517     assert(BlockToChain[BB] == &Chain);
518     assert(*std::prev(Chain.end()) == BB);
519 
520     // Look for the best viable successor if there is one to place immediately
521     // after this block.
522     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
523 
524     // If an immediate successor isn't available, look for the best viable
525     // block among those we've identified as not violating the loop's CFG at
526     // this point. This won't be a fallthrough, but it will increase locality.
527     if (!BestSucc)
528       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
529 
530     if (!BestSucc) {
531       BestSucc =
532           getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
533       if (!BestSucc)
534         break;
535 
536       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
537                       "layout successor until the CFG reduces\n");
538     }
539 
540     // Place this block, updating the datastructures to reflect its placement.
541     BlockChain &SuccChain = *BlockToChain[BestSucc];
542     // Zero out LoopPredecessors for the successor we're about to merge in case
543     // we selected a successor that didn't fit naturally into the CFG.
544     SuccChain.LoopPredecessors = 0;
545     DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
546                  << getBlockNum(BestSucc) << "\n");
547     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
548     Chain.merge(BestSucc, &SuccChain);
549     BB = *std::prev(Chain.end());
550   }
551 
552   DEBUG(dbgs() << "Finished forming chain for header block "
553                << getBlockNum(*Chain.begin()) << "\n");
554 }
555 
556 /// \brief Find the best loop top block for layout.
557 ///
558 /// Look for a block which is strictly better than the loop header for laying
559 /// out at the top of the loop. This looks for one and only one pattern:
560 /// a latch block with no conditional exit. This block will cause a conditional
561 /// jump around it or will be the bottom of the loop if we lay it out in place,
562 /// but if it it doesn't end up at the bottom of the loop for any reason,
563 /// rotation alone won't fix it. Because such a block will always result in an
564 /// unconditional jump (for the backedge) rotating it in front of the loop
565 /// header is always profitable.
566 MachineBasicBlock *
567 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
568                                        const BlockFilterSet &LoopBlockSet) {
569   // Check that the header hasn't been fused with a preheader block due to
570   // crazy branches. If it has, we need to start with the header at the top to
571   // prevent pulling the preheader into the loop body.
572   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
573   if (!LoopBlockSet.count(*HeaderChain.begin()))
574     return L.getHeader();
575 
576   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
577                << "\n");
578 
579   BlockFrequency BestPredFreq;
580   MachineBasicBlock *BestPred = nullptr;
581   for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(),
582                                         PE = L.getHeader()->pred_end();
583        PI != PE; ++PI) {
584     MachineBasicBlock *Pred = *PI;
585     if (!LoopBlockSet.count(Pred))
586       continue;
587     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
588                  << Pred->succ_size() << " successors, ";
589           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
590     if (Pred->succ_size() > 1)
591       continue;
592 
593     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
594     if (!BestPred || PredFreq > BestPredFreq ||
595         (!(PredFreq < BestPredFreq) &&
596          Pred->isLayoutSuccessor(L.getHeader()))) {
597       BestPred = Pred;
598       BestPredFreq = PredFreq;
599     }
600   }
601 
602   // If no direct predecessor is fine, just use the loop header.
603   if (!BestPred)
604     return L.getHeader();
605 
606   // Walk backwards through any straight line of predecessors.
607   while (BestPred->pred_size() == 1 &&
608          (*BestPred->pred_begin())->succ_size() == 1 &&
609          *BestPred->pred_begin() != L.getHeader())
610     BestPred = *BestPred->pred_begin();
611 
612   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
613   return BestPred;
614 }
615 
616 /// \brief Find the best loop exiting block for layout.
617 ///
618 /// This routine implements the logic to analyze the loop looking for the best
619 /// block to layout at the top of the loop. Typically this is done to maximize
620 /// fallthrough opportunities.
621 MachineBasicBlock *
622 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
623                                         const BlockFilterSet &LoopBlockSet) {
624   // We don't want to layout the loop linearly in all cases. If the loop header
625   // is just a normal basic block in the loop, we want to look for what block
626   // within the loop is the best one to layout at the top. However, if the loop
627   // header has be pre-merged into a chain due to predecessors not having
628   // analyzable branches, *and* the predecessor it is merged with is *not* part
629   // of the loop, rotating the header into the middle of the loop will create
630   // a non-contiguous range of blocks which is Very Bad. So start with the
631   // header and only rotate if safe.
632   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
633   if (!LoopBlockSet.count(*HeaderChain.begin()))
634     return nullptr;
635 
636   BlockFrequency BestExitEdgeFreq;
637   unsigned BestExitLoopDepth = 0;
638   MachineBasicBlock *ExitingBB = nullptr;
639   // If there are exits to outer loops, loop rotation can severely limit
640   // fallthrough opportunites unless it selects such an exit. Keep a set of
641   // blocks where rotating to exit with that block will reach an outer loop.
642   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
643 
644   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
645                << "\n");
646   for (MachineLoop::block_iterator I = L.block_begin(), E = L.block_end();
647        I != E; ++I) {
648     BlockChain &Chain = *BlockToChain[*I];
649     // Ensure that this block is at the end of a chain; otherwise it could be
650     // mid-way through an inner loop or a successor of an analyzable branch.
651     if (*I != *std::prev(Chain.end()))
652       continue;
653 
654     // Now walk the successors. We need to establish whether this has a viable
655     // exiting successor and whether it has a viable non-exiting successor.
656     // We store the old exiting state and restore it if a viable looping
657     // successor isn't found.
658     MachineBasicBlock *OldExitingBB = ExitingBB;
659     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
660     bool HasLoopingSucc = false;
661     // FIXME: Due to the performance of the probability and weight routines in
662     // the MBPI analysis, we use the internal weights and manually compute the
663     // probabilities to avoid quadratic behavior.
664     uint32_t WeightScale = 0;
665     uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
666     for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
667                                           SE = (*I)->succ_end();
668          SI != SE; ++SI) {
669       if ((*SI)->isLandingPad())
670         continue;
671       if (*SI == *I)
672         continue;
673       BlockChain &SuccChain = *BlockToChain[*SI];
674       // Don't split chains, either this chain or the successor's chain.
675       if (&Chain == &SuccChain) {
676         DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
677                      << getBlockName(*SI) << " (chain conflict)\n");
678         continue;
679       }
680 
681       uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
682       if (LoopBlockSet.count(*SI)) {
683         DEBUG(dbgs() << "    looping: " << getBlockName(*I) << " -> "
684                      << getBlockName(*SI) << " (" << SuccWeight << ")\n");
685         HasLoopingSucc = true;
686         continue;
687       }
688 
689       unsigned SuccLoopDepth = 0;
690       if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
691         SuccLoopDepth = ExitLoop->getLoopDepth();
692         if (ExitLoop->contains(&L))
693           BlocksExitingToOuterLoop.insert(*I);
694       }
695 
696       BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
697       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
698       DEBUG(dbgs() << "    exiting: " << getBlockName(*I) << " -> "
699                    << getBlockName(*SI) << " [L:" << SuccLoopDepth << "] (";
700             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
701       // Note that we bias this toward an existing layout successor to retain
702       // incoming order in the absence of better information. The exit must have
703       // a frequency higher than the current exit before we consider breaking
704       // the layout.
705       BranchProbability Bias(100 - ExitBlockBias, 100);
706       if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
707           ExitEdgeFreq > BestExitEdgeFreq ||
708           ((*I)->isLayoutSuccessor(*SI) &&
709            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
710         BestExitEdgeFreq = ExitEdgeFreq;
711         ExitingBB = *I;
712       }
713     }
714 
715     // Restore the old exiting state, no viable looping successor was found.
716     if (!HasLoopingSucc) {
717       ExitingBB = OldExitingBB;
718       BestExitEdgeFreq = OldBestExitEdgeFreq;
719       continue;
720     }
721   }
722   // Without a candidate exiting block or with only a single block in the
723   // loop, just use the loop header to layout the loop.
724   if (!ExitingBB || L.getNumBlocks() == 1)
725     return nullptr;
726 
727   // Also, if we have exit blocks which lead to outer loops but didn't select
728   // one of them as the exiting block we are rotating toward, disable loop
729   // rotation altogether.
730   if (!BlocksExitingToOuterLoop.empty() &&
731       !BlocksExitingToOuterLoop.count(ExitingBB))
732     return nullptr;
733 
734   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
735   return ExitingBB;
736 }
737 
738 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
739 ///
740 /// Once we have built a chain, try to rotate it to line up the hot exit block
741 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
742 /// branches. For example, if the loop has fallthrough into its header and out
743 /// of its bottom already, don't rotate it.
744 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
745                                        MachineBasicBlock *ExitingBB,
746                                        const BlockFilterSet &LoopBlockSet) {
747   if (!ExitingBB)
748     return;
749 
750   MachineBasicBlock *Top = *LoopChain.begin();
751   bool ViableTopFallthrough = false;
752   for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(),
753                                         PE = Top->pred_end();
754        PI != PE; ++PI) {
755     BlockChain *PredChain = BlockToChain[*PI];
756     if (!LoopBlockSet.count(*PI) &&
757         (!PredChain || *PI == *std::prev(PredChain->end()))) {
758       ViableTopFallthrough = true;
759       break;
760     }
761   }
762 
763   // If the header has viable fallthrough, check whether the current loop
764   // bottom is a viable exiting block. If so, bail out as rotating will
765   // introduce an unnecessary branch.
766   if (ViableTopFallthrough) {
767     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
768     for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
769                                           SE = Bottom->succ_end();
770          SI != SE; ++SI) {
771       BlockChain *SuccChain = BlockToChain[*SI];
772       if (!LoopBlockSet.count(*SI) &&
773           (!SuccChain || *SI == *SuccChain->begin()))
774         return;
775     }
776   }
777 
778   BlockChain::iterator ExitIt =
779       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
780   if (ExitIt == LoopChain.end())
781     return;
782 
783   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
784 }
785 
786 /// \brief Forms basic block chains from the natural loop structures.
787 ///
788 /// These chains are designed to preserve the existing *structure* of the code
789 /// as much as possible. We can then stitch the chains together in a way which
790 /// both preserves the topological structure and minimizes taken conditional
791 /// branches.
792 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
793                                             MachineLoop &L) {
794   // First recurse through any nested loops, building chains for those inner
795   // loops.
796   for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
797     buildLoopChains(F, **LI);
798 
799   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
800   BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
801 
802   // First check to see if there is an obviously preferable top block for the
803   // loop. This will default to the header, but may end up as one of the
804   // predecessors to the header if there is one which will result in strictly
805   // fewer branches in the loop body.
806   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
807 
808   // If we selected just the header for the loop top, look for a potentially
809   // profitable exit block in the event that rotating the loop can eliminate
810   // branches by placing an exit edge at the bottom.
811   MachineBasicBlock *ExitingBB = nullptr;
812   if (LoopTop == L.getHeader())
813     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
814 
815   BlockChain &LoopChain = *BlockToChain[LoopTop];
816 
817   // FIXME: This is a really lame way of walking the chains in the loop: we
818   // walk the blocks, and use a set to prevent visiting a particular chain
819   // twice.
820   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
821   assert(LoopChain.LoopPredecessors == 0);
822   UpdatedPreds.insert(&LoopChain);
823   for (MachineLoop::block_iterator BI = L.block_begin(), BE = L.block_end();
824        BI != BE; ++BI) {
825     BlockChain &Chain = *BlockToChain[*BI];
826     if (!UpdatedPreds.insert(&Chain).second)
827       continue;
828 
829     assert(Chain.LoopPredecessors == 0);
830     for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
831          BCI != BCE; ++BCI) {
832       assert(BlockToChain[*BCI] == &Chain);
833       for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
834                                             PE = (*BCI)->pred_end();
835            PI != PE; ++PI) {
836         if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
837           continue;
838         ++Chain.LoopPredecessors;
839       }
840     }
841 
842     if (Chain.LoopPredecessors == 0)
843       BlockWorkList.push_back(*Chain.begin());
844   }
845 
846   buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
847   rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
848 
849   DEBUG({
850     // Crash at the end so we get all of the debugging output first.
851     bool BadLoop = false;
852     if (LoopChain.LoopPredecessors) {
853       BadLoop = true;
854       dbgs() << "Loop chain contains a block without its preds placed!\n"
855              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
856              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
857     }
858     for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
859          BCI != BCE; ++BCI) {
860       dbgs() << "          ... " << getBlockName(*BCI) << "\n";
861       if (!LoopBlockSet.erase(*BCI)) {
862         // We don't mark the loop as bad here because there are real situations
863         // where this can occur. For example, with an unanalyzable fallthrough
864         // from a loop block to a non-loop block or vice versa.
865         dbgs() << "Loop chain contains a block not contained by the loop!\n"
866                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
867                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
868                << "  Bad block:    " << getBlockName(*BCI) << "\n";
869       }
870     }
871 
872     if (!LoopBlockSet.empty()) {
873       BadLoop = true;
874       for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
875                                     LBE = LoopBlockSet.end();
876            LBI != LBE; ++LBI)
877         dbgs() << "Loop contains blocks never placed into a chain!\n"
878                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
879                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
880                << "  Bad block:    " << getBlockName(*LBI) << "\n";
881     }
882     assert(!BadLoop && "Detected problems with the placement of this loop.");
883   });
884 }
885 
886 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
887   // Ensure that every BB in the function has an associated chain to simplify
888   // the assumptions of the remaining algorithm.
889   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
890   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
891     MachineBasicBlock *BB = FI;
892     BlockChain *Chain =
893         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
894     // Also, merge any blocks which we cannot reason about and must preserve
895     // the exact fallthrough behavior for.
896     for (;;) {
897       Cond.clear();
898       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
899       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
900         break;
901 
902       MachineFunction::iterator NextFI(std::next(FI));
903       MachineBasicBlock *NextBB = NextFI;
904       // Ensure that the layout successor is a viable block, as we know that
905       // fallthrough is a possibility.
906       assert(NextFI != FE && "Can't fallthrough past the last block.");
907       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
908                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
909                    << "\n");
910       Chain->merge(NextBB, nullptr);
911       FI = NextFI;
912       BB = NextBB;
913     }
914   }
915 
916   if (OutlineOptionalBranches) {
917     // Find the nearest common dominator of all of F's terminators.
918     MachineBasicBlock *Terminator = nullptr;
919     for (MachineBasicBlock &MBB : F) {
920       if (MBB.succ_size() == 0) {
921         if (Terminator == nullptr)
922           Terminator = &MBB;
923         else
924           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
925       }
926     }
927 
928     // MBBs dominating this common dominator are unavoidable.
929     UnavoidableBlocks.clear();
930     for (MachineBasicBlock &MBB : F) {
931       if (MDT->dominates(&MBB, Terminator)) {
932         UnavoidableBlocks.insert(&MBB);
933       }
934     }
935   }
936 
937   // Build any loop-based chains.
938   for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
939        ++LI)
940     buildLoopChains(F, **LI);
941 
942   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
943 
944   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
945   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
946     MachineBasicBlock *BB = &*FI;
947     BlockChain &Chain = *BlockToChain[BB];
948     if (!UpdatedPreds.insert(&Chain).second)
949       continue;
950 
951     assert(Chain.LoopPredecessors == 0);
952     for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
953          BCI != BCE; ++BCI) {
954       assert(BlockToChain[*BCI] == &Chain);
955       for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
956                                             PE = (*BCI)->pred_end();
957            PI != PE; ++PI) {
958         if (BlockToChain[*PI] == &Chain)
959           continue;
960         ++Chain.LoopPredecessors;
961       }
962     }
963 
964     if (Chain.LoopPredecessors == 0)
965       BlockWorkList.push_back(*Chain.begin());
966   }
967 
968   BlockChain &FunctionChain = *BlockToChain[&F.front()];
969   buildChain(&F.front(), FunctionChain, BlockWorkList);
970 
971 #ifndef NDEBUG
972   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
973 #endif
974   DEBUG({
975     // Crash at the end so we get all of the debugging output first.
976     bool BadFunc = false;
977     FunctionBlockSetType FunctionBlockSet;
978     for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
979       FunctionBlockSet.insert(FI);
980 
981     for (BlockChain::iterator BCI = FunctionChain.begin(),
982                               BCE = FunctionChain.end();
983          BCI != BCE; ++BCI)
984       if (!FunctionBlockSet.erase(*BCI)) {
985         BadFunc = true;
986         dbgs() << "Function chain contains a block not in the function!\n"
987                << "  Bad block:    " << getBlockName(*BCI) << "\n";
988       }
989 
990     if (!FunctionBlockSet.empty()) {
991       BadFunc = true;
992       for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
993                                           FBE = FunctionBlockSet.end();
994            FBI != FBE; ++FBI)
995         dbgs() << "Function contains blocks never placed into a chain!\n"
996                << "  Bad block:    " << getBlockName(*FBI) << "\n";
997     }
998     assert(!BadFunc && "Detected problems with the block placement.");
999   });
1000 
1001   // Splice the blocks into place.
1002   MachineFunction::iterator InsertPos = F.begin();
1003   for (BlockChain::iterator BI = FunctionChain.begin(),
1004                             BE = FunctionChain.end();
1005        BI != BE; ++BI) {
1006     DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
1007                                                  : "          ... ")
1008                  << getBlockName(*BI) << "\n");
1009     if (InsertPos != MachineFunction::iterator(*BI))
1010       F.splice(InsertPos, *BI);
1011     else
1012       ++InsertPos;
1013 
1014     // Update the terminator of the previous block.
1015     if (BI == FunctionChain.begin())
1016       continue;
1017     MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(*BI));
1018 
1019     // FIXME: It would be awesome of updateTerminator would just return rather
1020     // than assert when the branch cannot be analyzed in order to remove this
1021     // boiler plate.
1022     Cond.clear();
1023     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1024     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1025       // The "PrevBB" is not yet updated to reflect current code layout, so,
1026       //   o. it may fall-through to a block without explict "goto" instruction
1027       //      before layout, and no longer fall-through it after layout; or
1028       //   o. just opposite.
1029       //
1030       // AnalyzeBranch() may return erroneous value for FBB when these two
1031       // situations take place. For the first scenario FBB is mistakenly set
1032       // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1033       // is mistakenly pointing to "*BI".
1034       //
1035       bool needUpdateBr = true;
1036       if (!Cond.empty() && (!FBB || FBB == *BI)) {
1037         PrevBB->updateTerminator();
1038         needUpdateBr = false;
1039         Cond.clear();
1040         TBB = FBB = nullptr;
1041         if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1042           // FIXME: This should never take place.
1043           TBB = FBB = nullptr;
1044         }
1045       }
1046 
1047       // If PrevBB has a two-way branch, try to re-order the branches
1048       // such that we branch to the successor with higher weight first.
1049       if (TBB && !Cond.empty() && FBB &&
1050           MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
1051           !TII->ReverseBranchCondition(Cond)) {
1052         DEBUG(dbgs() << "Reverse order of the two branches: "
1053                      << getBlockName(PrevBB) << "\n");
1054         DEBUG(dbgs() << "    Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
1055                      << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
1056         DebugLoc dl; // FIXME: this is nowhere
1057         TII->RemoveBranch(*PrevBB);
1058         TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1059         needUpdateBr = true;
1060       }
1061       if (needUpdateBr)
1062         PrevBB->updateTerminator();
1063     }
1064   }
1065 
1066   // Fixup the last block.
1067   Cond.clear();
1068   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1069   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1070     F.back().updateTerminator();
1071 
1072   // Walk through the backedges of the function now that we have fully laid out
1073   // the basic blocks and align the destination of each backedge. We don't rely
1074   // exclusively on the loop info here so that we can align backedges in
1075   // unnatural CFGs and backedges that were introduced purely because of the
1076   // loop rotations done during this layout pass.
1077   if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
1078     return;
1079   if (FunctionChain.begin() == FunctionChain.end())
1080     return; // Empty chain.
1081 
1082   const BranchProbability ColdProb(1, 5); // 20%
1083   BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
1084   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1085   for (BlockChain::iterator BI = std::next(FunctionChain.begin()),
1086                             BE = FunctionChain.end();
1087        BI != BE; ++BI) {
1088     // Don't align non-looping basic blocks. These are unlikely to execute
1089     // enough times to matter in practice. Note that we'll still handle
1090     // unnatural CFGs inside of a natural outer loop (the common case) and
1091     // rotated loops.
1092     MachineLoop *L = MLI->getLoopFor(*BI);
1093     if (!L)
1094       continue;
1095 
1096     unsigned Align = TLI->getPrefLoopAlignment(L);
1097     if (!Align)
1098       continue; // Don't care about loop alignment.
1099 
1100     // If the block is cold relative to the function entry don't waste space
1101     // aligning it.
1102     BlockFrequency Freq = MBFI->getBlockFreq(*BI);
1103     if (Freq < WeightedEntryFreq)
1104       continue;
1105 
1106     // If the block is cold relative to its loop header, don't align it
1107     // regardless of what edges into the block exist.
1108     MachineBasicBlock *LoopHeader = L->getHeader();
1109     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1110     if (Freq < (LoopHeaderFreq * ColdProb))
1111       continue;
1112 
1113     // Check for the existence of a non-layout predecessor which would benefit
1114     // from aligning this block.
1115     MachineBasicBlock *LayoutPred = *std::prev(BI);
1116 
1117     // Force alignment if all the predecessors are jumps. We already checked
1118     // that the block isn't cold above.
1119     if (!LayoutPred->isSuccessor(*BI)) {
1120       (*BI)->setAlignment(Align);
1121       continue;
1122     }
1123 
1124     // Align this block if the layout predecessor's edge into this block is
1125     // cold relative to the block. When this is true, other predecessors make up
1126     // all of the hot entries into the block and thus alignment is likely to be
1127     // important.
1128     BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI);
1129     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1130     if (LayoutEdgeFreq <= (Freq * ColdProb))
1131       (*BI)->setAlignment(Align);
1132   }
1133 }
1134 
1135 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1136   // Check for single-block functions and skip them.
1137   if (std::next(F.begin()) == F.end())
1138     return false;
1139 
1140   if (skipOptnoneFunction(*F.getFunction()))
1141     return false;
1142 
1143   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1144   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1145   MLI = &getAnalysis<MachineLoopInfo>();
1146   TII = F.getSubtarget().getInstrInfo();
1147   TLI = F.getSubtarget().getTargetLowering();
1148   MDT = &getAnalysis<MachineDominatorTree>();
1149   assert(BlockToChain.empty());
1150 
1151   buildCFGChains(F);
1152 
1153   BlockToChain.clear();
1154   ChainAllocator.DestroyAll();
1155 
1156   if (AlignAllBlock)
1157     // Align all of the blocks in the function to a specific alignment.
1158     for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1159       FI->setAlignment(AlignAllBlock);
1160 
1161   // We always return true as we have no way to track whether the final order
1162   // differs from the original order.
1163   return true;
1164 }
1165 
1166 namespace {
1167 /// \brief A pass to compute block placement statistics.
1168 ///
1169 /// A separate pass to compute interesting statistics for evaluating block
1170 /// placement. This is separate from the actual placement pass so that they can
1171 /// be computed in the absence of any placement transformations or when using
1172 /// alternative placement strategies.
1173 class MachineBlockPlacementStats : public MachineFunctionPass {
1174   /// \brief A handle to the branch probability pass.
1175   const MachineBranchProbabilityInfo *MBPI;
1176 
1177   /// \brief A handle to the function-wide block frequency pass.
1178   const MachineBlockFrequencyInfo *MBFI;
1179 
1180 public:
1181   static char ID; // Pass identification, replacement for typeid
1182   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1183     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1184   }
1185 
1186   bool runOnMachineFunction(MachineFunction &F) override;
1187 
1188   void getAnalysisUsage(AnalysisUsage &AU) const override {
1189     AU.addRequired<MachineBranchProbabilityInfo>();
1190     AU.addRequired<MachineBlockFrequencyInfo>();
1191     AU.setPreservesAll();
1192     MachineFunctionPass::getAnalysisUsage(AU);
1193   }
1194 };
1195 }
1196 
1197 char MachineBlockPlacementStats::ID = 0;
1198 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1199 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1200                       "Basic Block Placement Stats", false, false)
1201 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1202 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1203 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1204                     "Basic Block Placement Stats", false, false)
1205 
1206 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1207   // Check for single-block functions and skip them.
1208   if (std::next(F.begin()) == F.end())
1209     return false;
1210 
1211   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1212   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1213 
1214   for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1215     BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
1216     Statistic &NumBranches =
1217         (I->succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1218     Statistic &BranchTakenFreq =
1219         (I->succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1220     for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
1221                                           SE = I->succ_end();
1222          SI != SE; ++SI) {
1223       // Skip if this successor is a fallthrough.
1224       if (I->isLayoutSuccessor(*SI))
1225         continue;
1226 
1227       BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
1228       ++NumBranches;
1229       BranchTakenFreq += EdgeFreq.getFrequency();
1230     }
1231   }
1232 
1233   return false;
1234 }
1235 
1236