1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetSubtargetInfo.h" 47 #include <algorithm> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "block-placement" 51 52 STATISTIC(NumCondBranches, "Number of conditional branches"); 53 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 54 STATISTIC(CondBranchTakenFreq, 55 "Potential frequency of taking conditional branches"); 56 STATISTIC(UncondBranchTakenFreq, 57 "Potential frequency of taking unconditional branches"); 58 59 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 60 cl::desc("Force the alignment of all " 61 "blocks in the function."), 62 cl::init(0), cl::Hidden); 63 64 // FIXME: Find a good default for this flag and remove the flag. 65 static cl::opt<unsigned> ExitBlockBias( 66 "block-placement-exit-block-bias", 67 cl::desc("Block frequency percentage a loop exit block needs " 68 "over the original exit to be considered the new exit."), 69 cl::init(0), cl::Hidden); 70 71 static cl::opt<bool> OutlineOptionalBranches( 72 "outline-optional-branches", 73 cl::desc("Put completely optional branches, i.e. branches with a common " 74 "post dominator, out of line."), 75 cl::init(false), cl::Hidden); 76 77 namespace { 78 class BlockChain; 79 /// \brief Type for our function-wide basic block -> block chain mapping. 80 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 81 } 82 83 namespace { 84 /// \brief A chain of blocks which will be laid out contiguously. 85 /// 86 /// This is the datastructure representing a chain of consecutive blocks that 87 /// are profitable to layout together in order to maximize fallthrough 88 /// probabilities and code locality. We also can use a block chain to represent 89 /// a sequence of basic blocks which have some external (correctness) 90 /// requirement for sequential layout. 91 /// 92 /// Chains can be built around a single basic block and can be merged to grow 93 /// them. They participate in a block-to-chain mapping, which is updated 94 /// automatically as chains are merged together. 95 class BlockChain { 96 /// \brief The sequence of blocks belonging to this chain. 97 /// 98 /// This is the sequence of blocks for a particular chain. These will be laid 99 /// out in-order within the function. 100 SmallVector<MachineBasicBlock *, 4> Blocks; 101 102 /// \brief A handle to the function-wide basic block to block chain mapping. 103 /// 104 /// This is retained in each block chain to simplify the computation of child 105 /// block chains for SCC-formation and iteration. We store the edges to child 106 /// basic blocks, and map them back to their associated chains using this 107 /// structure. 108 BlockToChainMapType &BlockToChain; 109 110 public: 111 /// \brief Construct a new BlockChain. 112 /// 113 /// This builds a new block chain representing a single basic block in the 114 /// function. It also registers itself as the chain that block participates 115 /// in with the BlockToChain mapping. 116 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 117 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 118 assert(BB && "Cannot create a chain with a null basic block"); 119 BlockToChain[BB] = this; 120 } 121 122 /// \brief Iterator over blocks within the chain. 123 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 124 125 /// \brief Beginning of blocks within the chain. 126 iterator begin() { return Blocks.begin(); } 127 128 /// \brief End of blocks within the chain. 129 iterator end() { return Blocks.end(); } 130 131 /// \brief Merge a block chain into this one. 132 /// 133 /// This routine merges a block chain into this one. It takes care of forming 134 /// a contiguous sequence of basic blocks, updating the edge list, and 135 /// updating the block -> chain mapping. It does not free or tear down the 136 /// old chain, but the old chain's block list is no longer valid. 137 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 138 assert(BB); 139 assert(!Blocks.empty()); 140 141 // Fast path in case we don't have a chain already. 142 if (!Chain) { 143 assert(!BlockToChain[BB]); 144 Blocks.push_back(BB); 145 BlockToChain[BB] = this; 146 return; 147 } 148 149 assert(BB == *Chain->begin()); 150 assert(Chain->begin() != Chain->end()); 151 152 // Update the incoming blocks to point to this chain, and add them to the 153 // chain structure. 154 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); BI != BE; 155 ++BI) { 156 Blocks.push_back(*BI); 157 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 158 BlockToChain[*BI] = this; 159 } 160 } 161 162 #ifndef NDEBUG 163 /// \brief Dump the blocks in this chain. 164 LLVM_DUMP_METHOD void dump() { 165 for (iterator I = begin(), E = end(); I != E; ++I) 166 (*I)->dump(); 167 } 168 #endif // NDEBUG 169 170 /// \brief Count of predecessors within the loop currently being processed. 171 /// 172 /// This count is updated at each loop we process to represent the number of 173 /// in-loop predecessors of this chain. 174 unsigned LoopPredecessors; 175 }; 176 } 177 178 namespace { 179 class MachineBlockPlacement : public MachineFunctionPass { 180 /// \brief A typedef for a block filter set. 181 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 182 183 /// \brief A handle to the branch probability pass. 184 const MachineBranchProbabilityInfo *MBPI; 185 186 /// \brief A handle to the function-wide block frequency pass. 187 const MachineBlockFrequencyInfo *MBFI; 188 189 /// \brief A handle to the loop info. 190 const MachineLoopInfo *MLI; 191 192 /// \brief A handle to the target's instruction info. 193 const TargetInstrInfo *TII; 194 195 /// \brief A handle to the target's lowering info. 196 const TargetLoweringBase *TLI; 197 198 /// \brief A handle to the post dominator tree. 199 MachineDominatorTree *MDT; 200 201 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 202 /// all terminators of the MachineFunction. 203 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 204 205 /// \brief Allocator and owner of BlockChain structures. 206 /// 207 /// We build BlockChains lazily while processing the loop structure of 208 /// a function. To reduce malloc traffic, we allocate them using this 209 /// slab-like allocator, and destroy them after the pass completes. An 210 /// important guarantee is that this allocator produces stable pointers to 211 /// the chains. 212 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 213 214 /// \brief Function wide BasicBlock to BlockChain mapping. 215 /// 216 /// This mapping allows efficiently moving from any given basic block to the 217 /// BlockChain it participates in, if any. We use it to, among other things, 218 /// allow implicitly defining edges between chains as the existing edges 219 /// between basic blocks. 220 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 221 222 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 223 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 224 const BlockFilterSet *BlockFilter = nullptr); 225 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 226 BlockChain &Chain, 227 const BlockFilterSet *BlockFilter); 228 MachineBasicBlock * 229 selectBestCandidateBlock(BlockChain &Chain, 230 SmallVectorImpl<MachineBasicBlock *> &WorkList, 231 const BlockFilterSet *BlockFilter); 232 MachineBasicBlock * 233 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 234 MachineFunction::iterator &PrevUnplacedBlockIt, 235 const BlockFilterSet *BlockFilter); 236 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 237 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 238 const BlockFilterSet *BlockFilter = nullptr); 239 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 240 const BlockFilterSet &LoopBlockSet); 241 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 242 const BlockFilterSet &LoopBlockSet); 243 void buildLoopChains(MachineFunction &F, MachineLoop &L); 244 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 245 const BlockFilterSet &LoopBlockSet); 246 void buildCFGChains(MachineFunction &F); 247 248 public: 249 static char ID; // Pass identification, replacement for typeid 250 MachineBlockPlacement() : MachineFunctionPass(ID) { 251 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 252 } 253 254 bool runOnMachineFunction(MachineFunction &F) override; 255 256 void getAnalysisUsage(AnalysisUsage &AU) const override { 257 AU.addRequired<MachineBranchProbabilityInfo>(); 258 AU.addRequired<MachineBlockFrequencyInfo>(); 259 AU.addRequired<MachineDominatorTree>(); 260 AU.addRequired<MachineLoopInfo>(); 261 MachineFunctionPass::getAnalysisUsage(AU); 262 } 263 }; 264 } 265 266 char MachineBlockPlacement::ID = 0; 267 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 268 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 269 "Branch Probability Basic Block Placement", false, false) 270 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 271 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 272 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 273 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 274 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 275 "Branch Probability Basic Block Placement", false, false) 276 277 #ifndef NDEBUG 278 /// \brief Helper to print the name of a MBB. 279 /// 280 /// Only used by debug logging. 281 static std::string getBlockName(MachineBasicBlock *BB) { 282 std::string Result; 283 raw_string_ostream OS(Result); 284 OS << "BB#" << BB->getNumber(); 285 OS << " (derived from LLVM BB '" << BB->getName() << "')"; 286 OS.flush(); 287 return Result; 288 } 289 290 /// \brief Helper to print the number of a MBB. 291 /// 292 /// Only used by debug logging. 293 static std::string getBlockNum(MachineBasicBlock *BB) { 294 std::string Result; 295 raw_string_ostream OS(Result); 296 OS << "BB#" << BB->getNumber(); 297 OS.flush(); 298 return Result; 299 } 300 #endif 301 302 /// \brief Mark a chain's successors as having one fewer preds. 303 /// 304 /// When a chain is being merged into the "placed" chain, this routine will 305 /// quickly walk the successors of each block in the chain and mark them as 306 /// having one fewer active predecessor. It also adds any successors of this 307 /// chain which reach the zero-predecessor state to the worklist passed in. 308 void MachineBlockPlacement::markChainSuccessors( 309 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 310 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 311 const BlockFilterSet *BlockFilter) { 312 // Walk all the blocks in this chain, marking their successors as having 313 // a predecessor placed. 314 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); CBI != CBE; 315 ++CBI) { 316 // Add any successors for which this is the only un-placed in-loop 317 // predecessor to the worklist as a viable candidate for CFG-neutral 318 // placement. No subsequent placement of this block will violate the CFG 319 // shape, so we get to use heuristics to choose a favorable placement. 320 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 321 SE = (*CBI)->succ_end(); 322 SI != SE; ++SI) { 323 if (BlockFilter && !BlockFilter->count(*SI)) 324 continue; 325 BlockChain &SuccChain = *BlockToChain[*SI]; 326 // Disregard edges within a fixed chain, or edges to the loop header. 327 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 328 continue; 329 330 // This is a cross-chain edge that is within the loop, so decrement the 331 // loop predecessor count of the destination chain. 332 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 333 BlockWorkList.push_back(*SuccChain.begin()); 334 } 335 } 336 } 337 338 /// \brief Select the best successor for a block. 339 /// 340 /// This looks across all successors of a particular block and attempts to 341 /// select the "best" one to be the layout successor. It only considers direct 342 /// successors which also pass the block filter. It will attempt to avoid 343 /// breaking CFG structure, but cave and break such structures in the case of 344 /// very hot successor edges. 345 /// 346 /// \returns The best successor block found, or null if none are viable. 347 MachineBasicBlock * 348 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 349 BlockChain &Chain, 350 const BlockFilterSet *BlockFilter) { 351 const BranchProbability HotProb(4, 5); // 80% 352 353 MachineBasicBlock *BestSucc = nullptr; 354 // FIXME: Due to the performance of the probability and weight routines in 355 // the MBPI analysis, we manually compute probabilities using the edge 356 // weights. This is suboptimal as it means that the somewhat subtle 357 // definition of edge weight semantics is encoded here as well. We should 358 // improve the MBPI interface to efficiently support query patterns such as 359 // this. 360 uint32_t BestWeight = 0; 361 uint32_t WeightScale = 0; 362 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 363 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 364 for (MachineBasicBlock *Succ : BB->successors()) { 365 if (BlockFilter && !BlockFilter->count(Succ)) 366 continue; 367 BlockChain &SuccChain = *BlockToChain[Succ]; 368 if (&SuccChain == &Chain) { 369 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Already merged!\n"); 370 continue; 371 } 372 if (Succ != *SuccChain.begin()) { 373 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 374 continue; 375 } 376 377 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ); 378 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 379 380 // If we outline optional branches, look whether Succ is unavoidable, i.e. 381 // dominates all terminators of the MachineFunction. If it does, other 382 // successors must be optional. Don't do this for cold branches. 383 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 384 UnavoidableBlocks.count(Succ) > 0) 385 return Succ; 386 387 // Only consider successors which are either "hot", or wouldn't violate 388 // any CFG constraints. 389 if (SuccChain.LoopPredecessors != 0) { 390 if (SuccProb < HotProb) { 391 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 392 << " (prob) (CFG conflict)\n"); 393 continue; 394 } 395 396 // Make sure that a hot successor doesn't have a globally more 397 // important predecessor. 398 BlockFrequency CandidateEdgeFreq = 399 MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 400 bool BadCFGConflict = false; 401 for (MachineBasicBlock *Pred : Succ->predecessors()) { 402 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 403 BlockToChain[Pred] == &Chain) 404 continue; 405 BlockFrequency PredEdgeFreq = 406 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 407 if (PredEdgeFreq >= CandidateEdgeFreq) { 408 BadCFGConflict = true; 409 break; 410 } 411 } 412 if (BadCFGConflict) { 413 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 414 << " (prob) (non-cold CFG conflict)\n"); 415 continue; 416 } 417 } 418 419 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 420 << " (prob)" 421 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 422 << "\n"); 423 if (BestSucc && BestWeight >= SuccWeight) 424 continue; 425 BestSucc = Succ; 426 BestWeight = SuccWeight; 427 } 428 return BestSucc; 429 } 430 431 /// \brief Select the best block from a worklist. 432 /// 433 /// This looks through the provided worklist as a list of candidate basic 434 /// blocks and select the most profitable one to place. The definition of 435 /// profitable only really makes sense in the context of a loop. This returns 436 /// the most frequently visited block in the worklist, which in the case of 437 /// a loop, is the one most desirable to be physically close to the rest of the 438 /// loop body in order to improve icache behavior. 439 /// 440 /// \returns The best block found, or null if none are viable. 441 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 442 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 443 const BlockFilterSet *BlockFilter) { 444 // Once we need to walk the worklist looking for a candidate, cleanup the 445 // worklist of already placed entries. 446 // FIXME: If this shows up on profiles, it could be folded (at the cost of 447 // some code complexity) into the loop below. 448 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 449 [&](MachineBasicBlock *BB) { 450 return BlockToChain.lookup(BB) == &Chain; 451 }), 452 WorkList.end()); 453 454 MachineBasicBlock *BestBlock = nullptr; 455 BlockFrequency BestFreq; 456 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 457 WBE = WorkList.end(); 458 WBI != WBE; ++WBI) { 459 BlockChain &SuccChain = *BlockToChain[*WBI]; 460 if (&SuccChain == &Chain) { 461 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> Already merged!\n"); 462 continue; 463 } 464 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 465 466 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 467 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> "; 468 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 469 if (BestBlock && BestFreq >= CandidateFreq) 470 continue; 471 BestBlock = *WBI; 472 BestFreq = CandidateFreq; 473 } 474 return BestBlock; 475 } 476 477 /// \brief Retrieve the first unplaced basic block. 478 /// 479 /// This routine is called when we are unable to use the CFG to walk through 480 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 481 /// We walk through the function's blocks in order, starting from the 482 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 483 /// re-scanning the entire sequence on repeated calls to this routine. 484 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 485 MachineFunction &F, const BlockChain &PlacedChain, 486 MachineFunction::iterator &PrevUnplacedBlockIt, 487 const BlockFilterSet *BlockFilter) { 488 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 489 ++I) { 490 if (BlockFilter && !BlockFilter->count(I)) 491 continue; 492 if (BlockToChain[I] != &PlacedChain) { 493 PrevUnplacedBlockIt = I; 494 // Now select the head of the chain to which the unplaced block belongs 495 // as the block to place. This will force the entire chain to be placed, 496 // and satisfies the requirements of merging chains. 497 return *BlockToChain[I]->begin(); 498 } 499 } 500 return nullptr; 501 } 502 503 void MachineBlockPlacement::buildChain( 504 MachineBasicBlock *BB, BlockChain &Chain, 505 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 506 const BlockFilterSet *BlockFilter) { 507 assert(BB); 508 assert(BlockToChain[BB] == &Chain); 509 MachineFunction &F = *BB->getParent(); 510 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 511 512 MachineBasicBlock *LoopHeaderBB = BB; 513 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 514 BB = *std::prev(Chain.end()); 515 for (;;) { 516 assert(BB); 517 assert(BlockToChain[BB] == &Chain); 518 assert(*std::prev(Chain.end()) == BB); 519 520 // Look for the best viable successor if there is one to place immediately 521 // after this block. 522 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 523 524 // If an immediate successor isn't available, look for the best viable 525 // block among those we've identified as not violating the loop's CFG at 526 // this point. This won't be a fallthrough, but it will increase locality. 527 if (!BestSucc) 528 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 529 530 if (!BestSucc) { 531 BestSucc = 532 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 533 if (!BestSucc) 534 break; 535 536 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 537 "layout successor until the CFG reduces\n"); 538 } 539 540 // Place this block, updating the datastructures to reflect its placement. 541 BlockChain &SuccChain = *BlockToChain[BestSucc]; 542 // Zero out LoopPredecessors for the successor we're about to merge in case 543 // we selected a successor that didn't fit naturally into the CFG. 544 SuccChain.LoopPredecessors = 0; 545 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to " 546 << getBlockNum(BestSucc) << "\n"); 547 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 548 Chain.merge(BestSucc, &SuccChain); 549 BB = *std::prev(Chain.end()); 550 } 551 552 DEBUG(dbgs() << "Finished forming chain for header block " 553 << getBlockNum(*Chain.begin()) << "\n"); 554 } 555 556 /// \brief Find the best loop top block for layout. 557 /// 558 /// Look for a block which is strictly better than the loop header for laying 559 /// out at the top of the loop. This looks for one and only one pattern: 560 /// a latch block with no conditional exit. This block will cause a conditional 561 /// jump around it or will be the bottom of the loop if we lay it out in place, 562 /// but if it it doesn't end up at the bottom of the loop for any reason, 563 /// rotation alone won't fix it. Because such a block will always result in an 564 /// unconditional jump (for the backedge) rotating it in front of the loop 565 /// header is always profitable. 566 MachineBasicBlock * 567 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 568 const BlockFilterSet &LoopBlockSet) { 569 // Check that the header hasn't been fused with a preheader block due to 570 // crazy branches. If it has, we need to start with the header at the top to 571 // prevent pulling the preheader into the loop body. 572 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 573 if (!LoopBlockSet.count(*HeaderChain.begin())) 574 return L.getHeader(); 575 576 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 577 << "\n"); 578 579 BlockFrequency BestPredFreq; 580 MachineBasicBlock *BestPred = nullptr; 581 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(), 582 PE = L.getHeader()->pred_end(); 583 PI != PE; ++PI) { 584 MachineBasicBlock *Pred = *PI; 585 if (!LoopBlockSet.count(Pred)) 586 continue; 587 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 588 << Pred->succ_size() << " successors, "; 589 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 590 if (Pred->succ_size() > 1) 591 continue; 592 593 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 594 if (!BestPred || PredFreq > BestPredFreq || 595 (!(PredFreq < BestPredFreq) && 596 Pred->isLayoutSuccessor(L.getHeader()))) { 597 BestPred = Pred; 598 BestPredFreq = PredFreq; 599 } 600 } 601 602 // If no direct predecessor is fine, just use the loop header. 603 if (!BestPred) 604 return L.getHeader(); 605 606 // Walk backwards through any straight line of predecessors. 607 while (BestPred->pred_size() == 1 && 608 (*BestPred->pred_begin())->succ_size() == 1 && 609 *BestPred->pred_begin() != L.getHeader()) 610 BestPred = *BestPred->pred_begin(); 611 612 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 613 return BestPred; 614 } 615 616 /// \brief Find the best loop exiting block for layout. 617 /// 618 /// This routine implements the logic to analyze the loop looking for the best 619 /// block to layout at the top of the loop. Typically this is done to maximize 620 /// fallthrough opportunities. 621 MachineBasicBlock * 622 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 623 const BlockFilterSet &LoopBlockSet) { 624 // We don't want to layout the loop linearly in all cases. If the loop header 625 // is just a normal basic block in the loop, we want to look for what block 626 // within the loop is the best one to layout at the top. However, if the loop 627 // header has be pre-merged into a chain due to predecessors not having 628 // analyzable branches, *and* the predecessor it is merged with is *not* part 629 // of the loop, rotating the header into the middle of the loop will create 630 // a non-contiguous range of blocks which is Very Bad. So start with the 631 // header and only rotate if safe. 632 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 633 if (!LoopBlockSet.count(*HeaderChain.begin())) 634 return nullptr; 635 636 BlockFrequency BestExitEdgeFreq; 637 unsigned BestExitLoopDepth = 0; 638 MachineBasicBlock *ExitingBB = nullptr; 639 // If there are exits to outer loops, loop rotation can severely limit 640 // fallthrough opportunites unless it selects such an exit. Keep a set of 641 // blocks where rotating to exit with that block will reach an outer loop. 642 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 643 644 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 645 << "\n"); 646 for (MachineLoop::block_iterator I = L.block_begin(), E = L.block_end(); 647 I != E; ++I) { 648 BlockChain &Chain = *BlockToChain[*I]; 649 // Ensure that this block is at the end of a chain; otherwise it could be 650 // mid-way through an inner loop or a successor of an analyzable branch. 651 if (*I != *std::prev(Chain.end())) 652 continue; 653 654 // Now walk the successors. We need to establish whether this has a viable 655 // exiting successor and whether it has a viable non-exiting successor. 656 // We store the old exiting state and restore it if a viable looping 657 // successor isn't found. 658 MachineBasicBlock *OldExitingBB = ExitingBB; 659 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 660 bool HasLoopingSucc = false; 661 // FIXME: Due to the performance of the probability and weight routines in 662 // the MBPI analysis, we use the internal weights and manually compute the 663 // probabilities to avoid quadratic behavior. 664 uint32_t WeightScale = 0; 665 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 666 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 667 SE = (*I)->succ_end(); 668 SI != SE; ++SI) { 669 if ((*SI)->isLandingPad()) 670 continue; 671 if (*SI == *I) 672 continue; 673 BlockChain &SuccChain = *BlockToChain[*SI]; 674 // Don't split chains, either this chain or the successor's chain. 675 if (&Chain == &SuccChain) { 676 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 677 << getBlockName(*SI) << " (chain conflict)\n"); 678 continue; 679 } 680 681 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 682 if (LoopBlockSet.count(*SI)) { 683 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 684 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 685 HasLoopingSucc = true; 686 continue; 687 } 688 689 unsigned SuccLoopDepth = 0; 690 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) { 691 SuccLoopDepth = ExitLoop->getLoopDepth(); 692 if (ExitLoop->contains(&L)) 693 BlocksExitingToOuterLoop.insert(*I); 694 } 695 696 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 697 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 698 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 699 << getBlockName(*SI) << " [L:" << SuccLoopDepth << "] ("; 700 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 701 // Note that we bias this toward an existing layout successor to retain 702 // incoming order in the absence of better information. The exit must have 703 // a frequency higher than the current exit before we consider breaking 704 // the layout. 705 BranchProbability Bias(100 - ExitBlockBias, 100); 706 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth || 707 ExitEdgeFreq > BestExitEdgeFreq || 708 ((*I)->isLayoutSuccessor(*SI) && 709 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 710 BestExitEdgeFreq = ExitEdgeFreq; 711 ExitingBB = *I; 712 } 713 } 714 715 // Restore the old exiting state, no viable looping successor was found. 716 if (!HasLoopingSucc) { 717 ExitingBB = OldExitingBB; 718 BestExitEdgeFreq = OldBestExitEdgeFreq; 719 continue; 720 } 721 } 722 // Without a candidate exiting block or with only a single block in the 723 // loop, just use the loop header to layout the loop. 724 if (!ExitingBB || L.getNumBlocks() == 1) 725 return nullptr; 726 727 // Also, if we have exit blocks which lead to outer loops but didn't select 728 // one of them as the exiting block we are rotating toward, disable loop 729 // rotation altogether. 730 if (!BlocksExitingToOuterLoop.empty() && 731 !BlocksExitingToOuterLoop.count(ExitingBB)) 732 return nullptr; 733 734 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 735 return ExitingBB; 736 } 737 738 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 739 /// 740 /// Once we have built a chain, try to rotate it to line up the hot exit block 741 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 742 /// branches. For example, if the loop has fallthrough into its header and out 743 /// of its bottom already, don't rotate it. 744 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 745 MachineBasicBlock *ExitingBB, 746 const BlockFilterSet &LoopBlockSet) { 747 if (!ExitingBB) 748 return; 749 750 MachineBasicBlock *Top = *LoopChain.begin(); 751 bool ViableTopFallthrough = false; 752 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(), 753 PE = Top->pred_end(); 754 PI != PE; ++PI) { 755 BlockChain *PredChain = BlockToChain[*PI]; 756 if (!LoopBlockSet.count(*PI) && 757 (!PredChain || *PI == *std::prev(PredChain->end()))) { 758 ViableTopFallthrough = true; 759 break; 760 } 761 } 762 763 // If the header has viable fallthrough, check whether the current loop 764 // bottom is a viable exiting block. If so, bail out as rotating will 765 // introduce an unnecessary branch. 766 if (ViableTopFallthrough) { 767 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 768 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(), 769 SE = Bottom->succ_end(); 770 SI != SE; ++SI) { 771 BlockChain *SuccChain = BlockToChain[*SI]; 772 if (!LoopBlockSet.count(*SI) && 773 (!SuccChain || *SI == *SuccChain->begin())) 774 return; 775 } 776 } 777 778 BlockChain::iterator ExitIt = 779 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 780 if (ExitIt == LoopChain.end()) 781 return; 782 783 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 784 } 785 786 /// \brief Forms basic block chains from the natural loop structures. 787 /// 788 /// These chains are designed to preserve the existing *structure* of the code 789 /// as much as possible. We can then stitch the chains together in a way which 790 /// both preserves the topological structure and minimizes taken conditional 791 /// branches. 792 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 793 MachineLoop &L) { 794 // First recurse through any nested loops, building chains for those inner 795 // loops. 796 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 797 buildLoopChains(F, **LI); 798 799 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 800 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 801 802 // First check to see if there is an obviously preferable top block for the 803 // loop. This will default to the header, but may end up as one of the 804 // predecessors to the header if there is one which will result in strictly 805 // fewer branches in the loop body. 806 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 807 808 // If we selected just the header for the loop top, look for a potentially 809 // profitable exit block in the event that rotating the loop can eliminate 810 // branches by placing an exit edge at the bottom. 811 MachineBasicBlock *ExitingBB = nullptr; 812 if (LoopTop == L.getHeader()) 813 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 814 815 BlockChain &LoopChain = *BlockToChain[LoopTop]; 816 817 // FIXME: This is a really lame way of walking the chains in the loop: we 818 // walk the blocks, and use a set to prevent visiting a particular chain 819 // twice. 820 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 821 assert(LoopChain.LoopPredecessors == 0); 822 UpdatedPreds.insert(&LoopChain); 823 for (MachineLoop::block_iterator BI = L.block_begin(), BE = L.block_end(); 824 BI != BE; ++BI) { 825 BlockChain &Chain = *BlockToChain[*BI]; 826 if (!UpdatedPreds.insert(&Chain).second) 827 continue; 828 829 assert(Chain.LoopPredecessors == 0); 830 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 831 BCI != BCE; ++BCI) { 832 assert(BlockToChain[*BCI] == &Chain); 833 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 834 PE = (*BCI)->pred_end(); 835 PI != PE; ++PI) { 836 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 837 continue; 838 ++Chain.LoopPredecessors; 839 } 840 } 841 842 if (Chain.LoopPredecessors == 0) 843 BlockWorkList.push_back(*Chain.begin()); 844 } 845 846 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 847 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 848 849 DEBUG({ 850 // Crash at the end so we get all of the debugging output first. 851 bool BadLoop = false; 852 if (LoopChain.LoopPredecessors) { 853 BadLoop = true; 854 dbgs() << "Loop chain contains a block without its preds placed!\n" 855 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 856 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 857 } 858 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 859 BCI != BCE; ++BCI) { 860 dbgs() << " ... " << getBlockName(*BCI) << "\n"; 861 if (!LoopBlockSet.erase(*BCI)) { 862 // We don't mark the loop as bad here because there are real situations 863 // where this can occur. For example, with an unanalyzable fallthrough 864 // from a loop block to a non-loop block or vice versa. 865 dbgs() << "Loop chain contains a block not contained by the loop!\n" 866 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 867 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 868 << " Bad block: " << getBlockName(*BCI) << "\n"; 869 } 870 } 871 872 if (!LoopBlockSet.empty()) { 873 BadLoop = true; 874 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 875 LBE = LoopBlockSet.end(); 876 LBI != LBE; ++LBI) 877 dbgs() << "Loop contains blocks never placed into a chain!\n" 878 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 879 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 880 << " Bad block: " << getBlockName(*LBI) << "\n"; 881 } 882 assert(!BadLoop && "Detected problems with the placement of this loop."); 883 }); 884 } 885 886 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 887 // Ensure that every BB in the function has an associated chain to simplify 888 // the assumptions of the remaining algorithm. 889 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 890 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 891 MachineBasicBlock *BB = FI; 892 BlockChain *Chain = 893 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 894 // Also, merge any blocks which we cannot reason about and must preserve 895 // the exact fallthrough behavior for. 896 for (;;) { 897 Cond.clear(); 898 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 899 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 900 break; 901 902 MachineFunction::iterator NextFI(std::next(FI)); 903 MachineBasicBlock *NextBB = NextFI; 904 // Ensure that the layout successor is a viable block, as we know that 905 // fallthrough is a possibility. 906 assert(NextFI != FE && "Can't fallthrough past the last block."); 907 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 908 << getBlockName(BB) << " -> " << getBlockName(NextBB) 909 << "\n"); 910 Chain->merge(NextBB, nullptr); 911 FI = NextFI; 912 BB = NextBB; 913 } 914 } 915 916 if (OutlineOptionalBranches) { 917 // Find the nearest common dominator of all of F's terminators. 918 MachineBasicBlock *Terminator = nullptr; 919 for (MachineBasicBlock &MBB : F) { 920 if (MBB.succ_size() == 0) { 921 if (Terminator == nullptr) 922 Terminator = &MBB; 923 else 924 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 925 } 926 } 927 928 // MBBs dominating this common dominator are unavoidable. 929 UnavoidableBlocks.clear(); 930 for (MachineBasicBlock &MBB : F) { 931 if (MDT->dominates(&MBB, Terminator)) { 932 UnavoidableBlocks.insert(&MBB); 933 } 934 } 935 } 936 937 // Build any loop-based chains. 938 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 939 ++LI) 940 buildLoopChains(F, **LI); 941 942 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 943 944 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 945 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 946 MachineBasicBlock *BB = &*FI; 947 BlockChain &Chain = *BlockToChain[BB]; 948 if (!UpdatedPreds.insert(&Chain).second) 949 continue; 950 951 assert(Chain.LoopPredecessors == 0); 952 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 953 BCI != BCE; ++BCI) { 954 assert(BlockToChain[*BCI] == &Chain); 955 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 956 PE = (*BCI)->pred_end(); 957 PI != PE; ++PI) { 958 if (BlockToChain[*PI] == &Chain) 959 continue; 960 ++Chain.LoopPredecessors; 961 } 962 } 963 964 if (Chain.LoopPredecessors == 0) 965 BlockWorkList.push_back(*Chain.begin()); 966 } 967 968 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 969 buildChain(&F.front(), FunctionChain, BlockWorkList); 970 971 #ifndef NDEBUG 972 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 973 #endif 974 DEBUG({ 975 // Crash at the end so we get all of the debugging output first. 976 bool BadFunc = false; 977 FunctionBlockSetType FunctionBlockSet; 978 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 979 FunctionBlockSet.insert(FI); 980 981 for (BlockChain::iterator BCI = FunctionChain.begin(), 982 BCE = FunctionChain.end(); 983 BCI != BCE; ++BCI) 984 if (!FunctionBlockSet.erase(*BCI)) { 985 BadFunc = true; 986 dbgs() << "Function chain contains a block not in the function!\n" 987 << " Bad block: " << getBlockName(*BCI) << "\n"; 988 } 989 990 if (!FunctionBlockSet.empty()) { 991 BadFunc = true; 992 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 993 FBE = FunctionBlockSet.end(); 994 FBI != FBE; ++FBI) 995 dbgs() << "Function contains blocks never placed into a chain!\n" 996 << " Bad block: " << getBlockName(*FBI) << "\n"; 997 } 998 assert(!BadFunc && "Detected problems with the block placement."); 999 }); 1000 1001 // Splice the blocks into place. 1002 MachineFunction::iterator InsertPos = F.begin(); 1003 for (BlockChain::iterator BI = FunctionChain.begin(), 1004 BE = FunctionChain.end(); 1005 BI != BE; ++BI) { 1006 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 1007 : " ... ") 1008 << getBlockName(*BI) << "\n"); 1009 if (InsertPos != MachineFunction::iterator(*BI)) 1010 F.splice(InsertPos, *BI); 1011 else 1012 ++InsertPos; 1013 1014 // Update the terminator of the previous block. 1015 if (BI == FunctionChain.begin()) 1016 continue; 1017 MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(*BI)); 1018 1019 // FIXME: It would be awesome of updateTerminator would just return rather 1020 // than assert when the branch cannot be analyzed in order to remove this 1021 // boiler plate. 1022 Cond.clear(); 1023 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1024 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1025 // The "PrevBB" is not yet updated to reflect current code layout, so, 1026 // o. it may fall-through to a block without explict "goto" instruction 1027 // before layout, and no longer fall-through it after layout; or 1028 // o. just opposite. 1029 // 1030 // AnalyzeBranch() may return erroneous value for FBB when these two 1031 // situations take place. For the first scenario FBB is mistakenly set 1032 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1033 // is mistakenly pointing to "*BI". 1034 // 1035 bool needUpdateBr = true; 1036 if (!Cond.empty() && (!FBB || FBB == *BI)) { 1037 PrevBB->updateTerminator(); 1038 needUpdateBr = false; 1039 Cond.clear(); 1040 TBB = FBB = nullptr; 1041 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1042 // FIXME: This should never take place. 1043 TBB = FBB = nullptr; 1044 } 1045 } 1046 1047 // If PrevBB has a two-way branch, try to re-order the branches 1048 // such that we branch to the successor with higher weight first. 1049 if (TBB && !Cond.empty() && FBB && 1050 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1051 !TII->ReverseBranchCondition(Cond)) { 1052 DEBUG(dbgs() << "Reverse order of the two branches: " 1053 << getBlockName(PrevBB) << "\n"); 1054 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1055 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1056 DebugLoc dl; // FIXME: this is nowhere 1057 TII->RemoveBranch(*PrevBB); 1058 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1059 needUpdateBr = true; 1060 } 1061 if (needUpdateBr) 1062 PrevBB->updateTerminator(); 1063 } 1064 } 1065 1066 // Fixup the last block. 1067 Cond.clear(); 1068 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1069 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1070 F.back().updateTerminator(); 1071 1072 // Walk through the backedges of the function now that we have fully laid out 1073 // the basic blocks and align the destination of each backedge. We don't rely 1074 // exclusively on the loop info here so that we can align backedges in 1075 // unnatural CFGs and backedges that were introduced purely because of the 1076 // loop rotations done during this layout pass. 1077 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 1078 return; 1079 if (FunctionChain.begin() == FunctionChain.end()) 1080 return; // Empty chain. 1081 1082 const BranchProbability ColdProb(1, 5); // 20% 1083 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 1084 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1085 for (BlockChain::iterator BI = std::next(FunctionChain.begin()), 1086 BE = FunctionChain.end(); 1087 BI != BE; ++BI) { 1088 // Don't align non-looping basic blocks. These are unlikely to execute 1089 // enough times to matter in practice. Note that we'll still handle 1090 // unnatural CFGs inside of a natural outer loop (the common case) and 1091 // rotated loops. 1092 MachineLoop *L = MLI->getLoopFor(*BI); 1093 if (!L) 1094 continue; 1095 1096 unsigned Align = TLI->getPrefLoopAlignment(L); 1097 if (!Align) 1098 continue; // Don't care about loop alignment. 1099 1100 // If the block is cold relative to the function entry don't waste space 1101 // aligning it. 1102 BlockFrequency Freq = MBFI->getBlockFreq(*BI); 1103 if (Freq < WeightedEntryFreq) 1104 continue; 1105 1106 // If the block is cold relative to its loop header, don't align it 1107 // regardless of what edges into the block exist. 1108 MachineBasicBlock *LoopHeader = L->getHeader(); 1109 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1110 if (Freq < (LoopHeaderFreq * ColdProb)) 1111 continue; 1112 1113 // Check for the existence of a non-layout predecessor which would benefit 1114 // from aligning this block. 1115 MachineBasicBlock *LayoutPred = *std::prev(BI); 1116 1117 // Force alignment if all the predecessors are jumps. We already checked 1118 // that the block isn't cold above. 1119 if (!LayoutPred->isSuccessor(*BI)) { 1120 (*BI)->setAlignment(Align); 1121 continue; 1122 } 1123 1124 // Align this block if the layout predecessor's edge into this block is 1125 // cold relative to the block. When this is true, other predecessors make up 1126 // all of the hot entries into the block and thus alignment is likely to be 1127 // important. 1128 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI); 1129 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1130 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1131 (*BI)->setAlignment(Align); 1132 } 1133 } 1134 1135 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1136 // Check for single-block functions and skip them. 1137 if (std::next(F.begin()) == F.end()) 1138 return false; 1139 1140 if (skipOptnoneFunction(*F.getFunction())) 1141 return false; 1142 1143 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1144 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1145 MLI = &getAnalysis<MachineLoopInfo>(); 1146 TII = F.getSubtarget().getInstrInfo(); 1147 TLI = F.getSubtarget().getTargetLowering(); 1148 MDT = &getAnalysis<MachineDominatorTree>(); 1149 assert(BlockToChain.empty()); 1150 1151 buildCFGChains(F); 1152 1153 BlockToChain.clear(); 1154 ChainAllocator.DestroyAll(); 1155 1156 if (AlignAllBlock) 1157 // Align all of the blocks in the function to a specific alignment. 1158 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 1159 FI->setAlignment(AlignAllBlock); 1160 1161 // We always return true as we have no way to track whether the final order 1162 // differs from the original order. 1163 return true; 1164 } 1165 1166 namespace { 1167 /// \brief A pass to compute block placement statistics. 1168 /// 1169 /// A separate pass to compute interesting statistics for evaluating block 1170 /// placement. This is separate from the actual placement pass so that they can 1171 /// be computed in the absence of any placement transformations or when using 1172 /// alternative placement strategies. 1173 class MachineBlockPlacementStats : public MachineFunctionPass { 1174 /// \brief A handle to the branch probability pass. 1175 const MachineBranchProbabilityInfo *MBPI; 1176 1177 /// \brief A handle to the function-wide block frequency pass. 1178 const MachineBlockFrequencyInfo *MBFI; 1179 1180 public: 1181 static char ID; // Pass identification, replacement for typeid 1182 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1183 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1184 } 1185 1186 bool runOnMachineFunction(MachineFunction &F) override; 1187 1188 void getAnalysisUsage(AnalysisUsage &AU) const override { 1189 AU.addRequired<MachineBranchProbabilityInfo>(); 1190 AU.addRequired<MachineBlockFrequencyInfo>(); 1191 AU.setPreservesAll(); 1192 MachineFunctionPass::getAnalysisUsage(AU); 1193 } 1194 }; 1195 } 1196 1197 char MachineBlockPlacementStats::ID = 0; 1198 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1199 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1200 "Basic Block Placement Stats", false, false) 1201 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1202 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1203 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1204 "Basic Block Placement Stats", false, false) 1205 1206 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1207 // Check for single-block functions and skip them. 1208 if (std::next(F.begin()) == F.end()) 1209 return false; 1210 1211 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1212 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1213 1214 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 1215 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 1216 Statistic &NumBranches = 1217 (I->succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1218 Statistic &BranchTakenFreq = 1219 (I->succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1220 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 1221 SE = I->succ_end(); 1222 SI != SE; ++SI) { 1223 // Skip if this successor is a fallthrough. 1224 if (I->isLayoutSuccessor(*SI)) 1225 continue; 1226 1227 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 1228 ++NumBranches; 1229 BranchTakenFreq += EdgeFreq.getFrequency(); 1230 } 1231 } 1232 1233 return false; 1234 } 1235 1236