1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include <algorithm> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "block-placement2" 50 51 STATISTIC(NumCondBranches, "Number of conditional branches"); 52 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 53 STATISTIC(CondBranchTakenFreq, 54 "Potential frequency of taking conditional branches"); 55 STATISTIC(UncondBranchTakenFreq, 56 "Potential frequency of taking unconditional branches"); 57 58 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 59 cl::desc("Force the alignment of all " 60 "blocks in the function."), 61 cl::init(0), cl::Hidden); 62 63 static cl::opt<bool> OnlyHotBadCFGConflictCheck( 64 "only-hot-bad-cfg-conflict-check", 65 cl::desc("Only check that a hot successor doesn't have a hot predecessor."), 66 cl::init(false), cl::Hidden); 67 68 static cl::opt<bool> NoBadCFGConflictCheck( 69 "no-bad-cfg-conflict-check", 70 cl::desc("Don't check whether a hot successor has a more important " 71 "predecessor."), 72 cl::init(false), cl::Hidden); 73 74 // FIXME: Find a good default for this flag and remove the flag. 75 static cl::opt<unsigned> 76 ExitBlockBias("block-placement-exit-block-bias", 77 cl::desc("Block frequency percentage a loop exit block needs " 78 "over the original exit to be considered the new exit."), 79 cl::init(0), cl::Hidden); 80 81 namespace { 82 class BlockChain; 83 /// \brief Type for our function-wide basic block -> block chain mapping. 84 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 85 } 86 87 namespace { 88 /// \brief A chain of blocks which will be laid out contiguously. 89 /// 90 /// This is the datastructure representing a chain of consecutive blocks that 91 /// are profitable to layout together in order to maximize fallthrough 92 /// probabilities and code locality. We also can use a block chain to represent 93 /// a sequence of basic blocks which have some external (correctness) 94 /// requirement for sequential layout. 95 /// 96 /// Chains can be built around a single basic block and can be merged to grow 97 /// them. They participate in a block-to-chain mapping, which is updated 98 /// automatically as chains are merged together. 99 class BlockChain { 100 /// \brief The sequence of blocks belonging to this chain. 101 /// 102 /// This is the sequence of blocks for a particular chain. These will be laid 103 /// out in-order within the function. 104 SmallVector<MachineBasicBlock *, 4> Blocks; 105 106 /// \brief A handle to the function-wide basic block to block chain mapping. 107 /// 108 /// This is retained in each block chain to simplify the computation of child 109 /// block chains for SCC-formation and iteration. We store the edges to child 110 /// basic blocks, and map them back to their associated chains using this 111 /// structure. 112 BlockToChainMapType &BlockToChain; 113 114 public: 115 /// \brief Construct a new BlockChain. 116 /// 117 /// This builds a new block chain representing a single basic block in the 118 /// function. It also registers itself as the chain that block participates 119 /// in with the BlockToChain mapping. 120 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 121 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 122 assert(BB && "Cannot create a chain with a null basic block"); 123 BlockToChain[BB] = this; 124 } 125 126 /// \brief Iterator over blocks within the chain. 127 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 128 129 /// \brief Beginning of blocks within the chain. 130 iterator begin() { return Blocks.begin(); } 131 132 /// \brief End of blocks within the chain. 133 iterator end() { return Blocks.end(); } 134 135 /// \brief Merge a block chain into this one. 136 /// 137 /// This routine merges a block chain into this one. It takes care of forming 138 /// a contiguous sequence of basic blocks, updating the edge list, and 139 /// updating the block -> chain mapping. It does not free or tear down the 140 /// old chain, but the old chain's block list is no longer valid. 141 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 142 assert(BB); 143 assert(!Blocks.empty()); 144 145 // Fast path in case we don't have a chain already. 146 if (!Chain) { 147 assert(!BlockToChain[BB]); 148 Blocks.push_back(BB); 149 BlockToChain[BB] = this; 150 return; 151 } 152 153 assert(BB == *Chain->begin()); 154 assert(Chain->begin() != Chain->end()); 155 156 // Update the incoming blocks to point to this chain, and add them to the 157 // chain structure. 158 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 159 BI != BE; ++BI) { 160 Blocks.push_back(*BI); 161 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 162 BlockToChain[*BI] = this; 163 } 164 } 165 166 #ifndef NDEBUG 167 /// \brief Dump the blocks in this chain. 168 LLVM_DUMP_METHOD void dump() { 169 for (iterator I = begin(), E = end(); I != E; ++I) 170 (*I)->dump(); 171 } 172 #endif // NDEBUG 173 174 /// \brief Count of predecessors within the loop currently being processed. 175 /// 176 /// This count is updated at each loop we process to represent the number of 177 /// in-loop predecessors of this chain. 178 unsigned LoopPredecessors; 179 }; 180 } 181 182 namespace { 183 class MachineBlockPlacement : public MachineFunctionPass { 184 /// \brief A typedef for a block filter set. 185 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 186 187 /// \brief A handle to the branch probability pass. 188 const MachineBranchProbabilityInfo *MBPI; 189 190 /// \brief A handle to the function-wide block frequency pass. 191 const MachineBlockFrequencyInfo *MBFI; 192 193 /// \brief A handle to the loop info. 194 const MachineLoopInfo *MLI; 195 196 /// \brief A handle to the target's instruction info. 197 const TargetInstrInfo *TII; 198 199 /// \brief A handle to the target's lowering info. 200 const TargetLoweringBase *TLI; 201 202 /// \brief Allocator and owner of BlockChain structures. 203 /// 204 /// We build BlockChains lazily while processing the loop structure of 205 /// a function. To reduce malloc traffic, we allocate them using this 206 /// slab-like allocator, and destroy them after the pass completes. An 207 /// important guarantee is that this allocator produces stable pointers to 208 /// the chains. 209 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 210 211 /// \brief Function wide BasicBlock to BlockChain mapping. 212 /// 213 /// This mapping allows efficiently moving from any given basic block to the 214 /// BlockChain it participates in, if any. We use it to, among other things, 215 /// allow implicitly defining edges between chains as the existing edges 216 /// between basic blocks. 217 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 218 219 void markChainSuccessors(BlockChain &Chain, 220 MachineBasicBlock *LoopHeaderBB, 221 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 222 const BlockFilterSet *BlockFilter = nullptr); 223 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 224 BlockChain &Chain, 225 const BlockFilterSet *BlockFilter); 226 MachineBasicBlock *selectBestCandidateBlock( 227 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 228 const BlockFilterSet *BlockFilter); 229 MachineBasicBlock *getFirstUnplacedBlock( 230 MachineFunction &F, 231 const BlockChain &PlacedChain, 232 MachineFunction::iterator &PrevUnplacedBlockIt, 233 const BlockFilterSet *BlockFilter); 234 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 235 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 236 const BlockFilterSet *BlockFilter = nullptr); 237 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 238 const BlockFilterSet &LoopBlockSet); 239 MachineBasicBlock *findBestLoopExit(MachineFunction &F, 240 MachineLoop &L, 241 const BlockFilterSet &LoopBlockSet); 242 void buildLoopChains(MachineFunction &F, MachineLoop &L); 243 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 244 const BlockFilterSet &LoopBlockSet); 245 void buildCFGChains(MachineFunction &F); 246 247 public: 248 static char ID; // Pass identification, replacement for typeid 249 MachineBlockPlacement() : MachineFunctionPass(ID) { 250 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 251 } 252 253 bool runOnMachineFunction(MachineFunction &F) override; 254 255 void getAnalysisUsage(AnalysisUsage &AU) const override { 256 AU.addRequired<MachineBranchProbabilityInfo>(); 257 AU.addRequired<MachineBlockFrequencyInfo>(); 258 AU.addRequired<MachineLoopInfo>(); 259 MachineFunctionPass::getAnalysisUsage(AU); 260 } 261 }; 262 } 263 264 char MachineBlockPlacement::ID = 0; 265 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 266 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 267 "Branch Probability Basic Block Placement", false, false) 268 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 269 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 270 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 271 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 272 "Branch Probability Basic Block Placement", false, false) 273 274 #ifndef NDEBUG 275 /// \brief Helper to print the name of a MBB. 276 /// 277 /// Only used by debug logging. 278 static std::string getBlockName(MachineBasicBlock *BB) { 279 std::string Result; 280 raw_string_ostream OS(Result); 281 OS << "BB#" << BB->getNumber() 282 << " (derived from LLVM BB '" << BB->getName() << "')"; 283 OS.flush(); 284 return Result; 285 } 286 287 /// \brief Helper to print the number of a MBB. 288 /// 289 /// Only used by debug logging. 290 static std::string getBlockNum(MachineBasicBlock *BB) { 291 std::string Result; 292 raw_string_ostream OS(Result); 293 OS << "BB#" << BB->getNumber(); 294 OS.flush(); 295 return Result; 296 } 297 #endif 298 299 /// \brief Mark a chain's successors as having one fewer preds. 300 /// 301 /// When a chain is being merged into the "placed" chain, this routine will 302 /// quickly walk the successors of each block in the chain and mark them as 303 /// having one fewer active predecessor. It also adds any successors of this 304 /// chain which reach the zero-predecessor state to the worklist passed in. 305 void MachineBlockPlacement::markChainSuccessors( 306 BlockChain &Chain, 307 MachineBasicBlock *LoopHeaderBB, 308 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 309 const BlockFilterSet *BlockFilter) { 310 // Walk all the blocks in this chain, marking their successors as having 311 // a predecessor placed. 312 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 313 CBI != CBE; ++CBI) { 314 // Add any successors for which this is the only un-placed in-loop 315 // predecessor to the worklist as a viable candidate for CFG-neutral 316 // placement. No subsequent placement of this block will violate the CFG 317 // shape, so we get to use heuristics to choose a favorable placement. 318 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 319 SE = (*CBI)->succ_end(); 320 SI != SE; ++SI) { 321 if (BlockFilter && !BlockFilter->count(*SI)) 322 continue; 323 BlockChain &SuccChain = *BlockToChain[*SI]; 324 // Disregard edges within a fixed chain, or edges to the loop header. 325 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 326 continue; 327 328 // This is a cross-chain edge that is within the loop, so decrement the 329 // loop predecessor count of the destination chain. 330 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 331 BlockWorkList.push_back(*SuccChain.begin()); 332 } 333 } 334 } 335 336 /// \brief Select the best successor for a block. 337 /// 338 /// This looks across all successors of a particular block and attempts to 339 /// select the "best" one to be the layout successor. It only considers direct 340 /// successors which also pass the block filter. It will attempt to avoid 341 /// breaking CFG structure, but cave and break such structures in the case of 342 /// very hot successor edges. 343 /// 344 /// \returns The best successor block found, or null if none are viable. 345 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 346 MachineBasicBlock *BB, BlockChain &Chain, 347 const BlockFilterSet *BlockFilter) { 348 const BranchProbability HotProb(4, 5); // 80% 349 350 MachineBasicBlock *BestSucc = nullptr; 351 // FIXME: Due to the performance of the probability and weight routines in 352 // the MBPI analysis, we manually compute probabilities using the edge 353 // weights. This is suboptimal as it means that the somewhat subtle 354 // definition of edge weight semantics is encoded here as well. We should 355 // improve the MBPI interface to efficiently support query patterns such as 356 // this. 357 uint32_t BestWeight = 0; 358 uint32_t WeightScale = 0; 359 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 360 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 361 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 362 SE = BB->succ_end(); 363 SI != SE; ++SI) { 364 if (BlockFilter && !BlockFilter->count(*SI)) 365 continue; 366 BlockChain &SuccChain = *BlockToChain[*SI]; 367 if (&SuccChain == &Chain) { 368 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); 369 continue; 370 } 371 if (*SI != *SuccChain.begin()) { 372 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); 373 continue; 374 } 375 376 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); 377 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 378 379 // Only consider successors which are either "hot", or wouldn't violate 380 // any CFG constraints. 381 if (SuccChain.LoopPredecessors != 0) { 382 if (SuccProb < HotProb) { 383 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 384 << " (prob) (CFG conflict)\n"); 385 continue; 386 } 387 388 if (!NoBadCFGConflictCheck) { 389 // Make sure that a hot successor doesn't have a globally more 390 // important predecessor. 391 BlockFrequency CandidateEdgeFreq = 392 OnlyHotBadCFGConflictCheck 393 ? MBFI->getBlockFreq(BB) * SuccProb 394 : MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 395 bool BadCFGConflict = false; 396 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), 397 PE = (*SI)->pred_end(); 398 PI != PE; ++PI) { 399 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || 400 BlockToChain[*PI] == &Chain) 401 continue; 402 BlockFrequency PredEdgeFreq = 403 MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); 404 if (PredEdgeFreq >= CandidateEdgeFreq) { 405 BadCFGConflict = true; 406 break; 407 } 408 } 409 if (BadCFGConflict) { 410 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 411 << " (prob) (non-cold CFG conflict)\n"); 412 continue; 413 } 414 } 415 } 416 417 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 418 << " (prob)" 419 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 420 << "\n"); 421 if (BestSucc && BestWeight >= SuccWeight) 422 continue; 423 BestSucc = *SI; 424 BestWeight = SuccWeight; 425 } 426 return BestSucc; 427 } 428 429 /// \brief Select the best block from a worklist. 430 /// 431 /// This looks through the provided worklist as a list of candidate basic 432 /// blocks and select the most profitable one to place. The definition of 433 /// profitable only really makes sense in the context of a loop. This returns 434 /// the most frequently visited block in the worklist, which in the case of 435 /// a loop, is the one most desirable to be physically close to the rest of the 436 /// loop body in order to improve icache behavior. 437 /// 438 /// \returns The best block found, or null if none are viable. 439 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 440 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 441 const BlockFilterSet *BlockFilter) { 442 // Once we need to walk the worklist looking for a candidate, cleanup the 443 // worklist of already placed entries. 444 // FIXME: If this shows up on profiles, it could be folded (at the cost of 445 // some code complexity) into the loop below. 446 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 447 [&](MachineBasicBlock *BB) { 448 return BlockToChain.lookup(BB) == &Chain; 449 }), 450 WorkList.end()); 451 452 MachineBasicBlock *BestBlock = nullptr; 453 BlockFrequency BestFreq; 454 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 455 WBE = WorkList.end(); 456 WBI != WBE; ++WBI) { 457 BlockChain &SuccChain = *BlockToChain[*WBI]; 458 if (&SuccChain == &Chain) { 459 DEBUG(dbgs() << " " << getBlockName(*WBI) 460 << " -> Already merged!\n"); 461 continue; 462 } 463 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 464 465 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 466 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> "; 467 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 468 if (BestBlock && BestFreq >= CandidateFreq) 469 continue; 470 BestBlock = *WBI; 471 BestFreq = CandidateFreq; 472 } 473 return BestBlock; 474 } 475 476 /// \brief Retrieve the first unplaced basic block. 477 /// 478 /// This routine is called when we are unable to use the CFG to walk through 479 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 480 /// We walk through the function's blocks in order, starting from the 481 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 482 /// re-scanning the entire sequence on repeated calls to this routine. 483 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 484 MachineFunction &F, const BlockChain &PlacedChain, 485 MachineFunction::iterator &PrevUnplacedBlockIt, 486 const BlockFilterSet *BlockFilter) { 487 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 488 ++I) { 489 if (BlockFilter && !BlockFilter->count(I)) 490 continue; 491 if (BlockToChain[I] != &PlacedChain) { 492 PrevUnplacedBlockIt = I; 493 // Now select the head of the chain to which the unplaced block belongs 494 // as the block to place. This will force the entire chain to be placed, 495 // and satisfies the requirements of merging chains. 496 return *BlockToChain[I]->begin(); 497 } 498 } 499 return nullptr; 500 } 501 502 void MachineBlockPlacement::buildChain( 503 MachineBasicBlock *BB, 504 BlockChain &Chain, 505 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 506 const BlockFilterSet *BlockFilter) { 507 assert(BB); 508 assert(BlockToChain[BB] == &Chain); 509 MachineFunction &F = *BB->getParent(); 510 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 511 512 MachineBasicBlock *LoopHeaderBB = BB; 513 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 514 BB = *std::prev(Chain.end()); 515 for (;;) { 516 assert(BB); 517 assert(BlockToChain[BB] == &Chain); 518 assert(*std::prev(Chain.end()) == BB); 519 520 // Look for the best viable successor if there is one to place immediately 521 // after this block. 522 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 523 524 // If an immediate successor isn't available, look for the best viable 525 // block among those we've identified as not violating the loop's CFG at 526 // this point. This won't be a fallthrough, but it will increase locality. 527 if (!BestSucc) 528 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 529 530 if (!BestSucc) { 531 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 532 BlockFilter); 533 if (!BestSucc) 534 break; 535 536 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 537 "layout successor until the CFG reduces\n"); 538 } 539 540 // Place this block, updating the datastructures to reflect its placement. 541 BlockChain &SuccChain = *BlockToChain[BestSucc]; 542 // Zero out LoopPredecessors for the successor we're about to merge in case 543 // we selected a successor that didn't fit naturally into the CFG. 544 SuccChain.LoopPredecessors = 0; 545 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 546 << " to " << getBlockNum(BestSucc) << "\n"); 547 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 548 Chain.merge(BestSucc, &SuccChain); 549 BB = *std::prev(Chain.end()); 550 } 551 552 DEBUG(dbgs() << "Finished forming chain for header block " 553 << getBlockNum(*Chain.begin()) << "\n"); 554 } 555 556 /// \brief Find the best loop top block for layout. 557 /// 558 /// Look for a block which is strictly better than the loop header for laying 559 /// out at the top of the loop. This looks for one and only one pattern: 560 /// a latch block with no conditional exit. This block will cause a conditional 561 /// jump around it or will be the bottom of the loop if we lay it out in place, 562 /// but if it it doesn't end up at the bottom of the loop for any reason, 563 /// rotation alone won't fix it. Because such a block will always result in an 564 /// unconditional jump (for the backedge) rotating it in front of the loop 565 /// header is always profitable. 566 MachineBasicBlock * 567 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 568 const BlockFilterSet &LoopBlockSet) { 569 // Check that the header hasn't been fused with a preheader block due to 570 // crazy branches. If it has, we need to start with the header at the top to 571 // prevent pulling the preheader into the loop body. 572 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 573 if (!LoopBlockSet.count(*HeaderChain.begin())) 574 return L.getHeader(); 575 576 DEBUG(dbgs() << "Finding best loop top for: " 577 << getBlockName(L.getHeader()) << "\n"); 578 579 BlockFrequency BestPredFreq; 580 MachineBasicBlock *BestPred = nullptr; 581 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(), 582 PE = L.getHeader()->pred_end(); 583 PI != PE; ++PI) { 584 MachineBasicBlock *Pred = *PI; 585 if (!LoopBlockSet.count(Pred)) 586 continue; 587 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 588 << Pred->succ_size() << " successors, "; 589 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 590 if (Pred->succ_size() > 1) 591 continue; 592 593 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 594 if (!BestPred || PredFreq > BestPredFreq || 595 (!(PredFreq < BestPredFreq) && 596 Pred->isLayoutSuccessor(L.getHeader()))) { 597 BestPred = Pred; 598 BestPredFreq = PredFreq; 599 } 600 } 601 602 // If no direct predecessor is fine, just use the loop header. 603 if (!BestPred) 604 return L.getHeader(); 605 606 // Walk backwards through any straight line of predecessors. 607 while (BestPred->pred_size() == 1 && 608 (*BestPred->pred_begin())->succ_size() == 1 && 609 *BestPred->pred_begin() != L.getHeader()) 610 BestPred = *BestPred->pred_begin(); 611 612 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 613 return BestPred; 614 } 615 616 617 /// \brief Find the best loop exiting block for layout. 618 /// 619 /// This routine implements the logic to analyze the loop looking for the best 620 /// block to layout at the top of the loop. Typically this is done to maximize 621 /// fallthrough opportunities. 622 MachineBasicBlock * 623 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, 624 MachineLoop &L, 625 const BlockFilterSet &LoopBlockSet) { 626 // We don't want to layout the loop linearly in all cases. If the loop header 627 // is just a normal basic block in the loop, we want to look for what block 628 // within the loop is the best one to layout at the top. However, if the loop 629 // header has be pre-merged into a chain due to predecessors not having 630 // analyzable branches, *and* the predecessor it is merged with is *not* part 631 // of the loop, rotating the header into the middle of the loop will create 632 // a non-contiguous range of blocks which is Very Bad. So start with the 633 // header and only rotate if safe. 634 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 635 if (!LoopBlockSet.count(*HeaderChain.begin())) 636 return nullptr; 637 638 BlockFrequency BestExitEdgeFreq; 639 unsigned BestExitLoopDepth = 0; 640 MachineBasicBlock *ExitingBB = nullptr; 641 // If there are exits to outer loops, loop rotation can severely limit 642 // fallthrough opportunites unless it selects such an exit. Keep a set of 643 // blocks where rotating to exit with that block will reach an outer loop. 644 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 645 646 DEBUG(dbgs() << "Finding best loop exit for: " 647 << getBlockName(L.getHeader()) << "\n"); 648 for (MachineLoop::block_iterator I = L.block_begin(), 649 E = L.block_end(); 650 I != E; ++I) { 651 BlockChain &Chain = *BlockToChain[*I]; 652 // Ensure that this block is at the end of a chain; otherwise it could be 653 // mid-way through an inner loop or a successor of an analyzable branch. 654 if (*I != *std::prev(Chain.end())) 655 continue; 656 657 // Now walk the successors. We need to establish whether this has a viable 658 // exiting successor and whether it has a viable non-exiting successor. 659 // We store the old exiting state and restore it if a viable looping 660 // successor isn't found. 661 MachineBasicBlock *OldExitingBB = ExitingBB; 662 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 663 bool HasLoopingSucc = false; 664 // FIXME: Due to the performance of the probability and weight routines in 665 // the MBPI analysis, we use the internal weights and manually compute the 666 // probabilities to avoid quadratic behavior. 667 uint32_t WeightScale = 0; 668 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 669 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 670 SE = (*I)->succ_end(); 671 SI != SE; ++SI) { 672 if ((*SI)->isLandingPad()) 673 continue; 674 if (*SI == *I) 675 continue; 676 BlockChain &SuccChain = *BlockToChain[*SI]; 677 // Don't split chains, either this chain or the successor's chain. 678 if (&Chain == &SuccChain) { 679 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 680 << getBlockName(*SI) << " (chain conflict)\n"); 681 continue; 682 } 683 684 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 685 if (LoopBlockSet.count(*SI)) { 686 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 687 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 688 HasLoopingSucc = true; 689 continue; 690 } 691 692 unsigned SuccLoopDepth = 0; 693 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) { 694 SuccLoopDepth = ExitLoop->getLoopDepth(); 695 if (ExitLoop->contains(&L)) 696 BlocksExitingToOuterLoop.insert(*I); 697 } 698 699 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 700 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 701 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 702 << getBlockName(*SI) << " [L:" << SuccLoopDepth 703 << "] ("; 704 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 705 // Note that we bias this toward an existing layout successor to retain 706 // incoming order in the absence of better information. The exit must have 707 // a frequency higher than the current exit before we consider breaking 708 // the layout. 709 BranchProbability Bias(100 - ExitBlockBias, 100); 710 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth || 711 ExitEdgeFreq > BestExitEdgeFreq || 712 ((*I)->isLayoutSuccessor(*SI) && 713 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 714 BestExitEdgeFreq = ExitEdgeFreq; 715 ExitingBB = *I; 716 } 717 } 718 719 // Restore the old exiting state, no viable looping successor was found. 720 if (!HasLoopingSucc) { 721 ExitingBB = OldExitingBB; 722 BestExitEdgeFreq = OldBestExitEdgeFreq; 723 continue; 724 } 725 } 726 // Without a candidate exiting block or with only a single block in the 727 // loop, just use the loop header to layout the loop. 728 if (!ExitingBB || L.getNumBlocks() == 1) 729 return nullptr; 730 731 // Also, if we have exit blocks which lead to outer loops but didn't select 732 // one of them as the exiting block we are rotating toward, disable loop 733 // rotation altogether. 734 if (!BlocksExitingToOuterLoop.empty() && 735 !BlocksExitingToOuterLoop.count(ExitingBB)) 736 return nullptr; 737 738 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 739 return ExitingBB; 740 } 741 742 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 743 /// 744 /// Once we have built a chain, try to rotate it to line up the hot exit block 745 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 746 /// branches. For example, if the loop has fallthrough into its header and out 747 /// of its bottom already, don't rotate it. 748 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 749 MachineBasicBlock *ExitingBB, 750 const BlockFilterSet &LoopBlockSet) { 751 if (!ExitingBB) 752 return; 753 754 MachineBasicBlock *Top = *LoopChain.begin(); 755 bool ViableTopFallthrough = false; 756 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(), 757 PE = Top->pred_end(); 758 PI != PE; ++PI) { 759 BlockChain *PredChain = BlockToChain[*PI]; 760 if (!LoopBlockSet.count(*PI) && 761 (!PredChain || *PI == *std::prev(PredChain->end()))) { 762 ViableTopFallthrough = true; 763 break; 764 } 765 } 766 767 // If the header has viable fallthrough, check whether the current loop 768 // bottom is a viable exiting block. If so, bail out as rotating will 769 // introduce an unnecessary branch. 770 if (ViableTopFallthrough) { 771 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 772 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(), 773 SE = Bottom->succ_end(); 774 SI != SE; ++SI) { 775 BlockChain *SuccChain = BlockToChain[*SI]; 776 if (!LoopBlockSet.count(*SI) && 777 (!SuccChain || *SI == *SuccChain->begin())) 778 return; 779 } 780 } 781 782 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(), 783 ExitingBB); 784 if (ExitIt == LoopChain.end()) 785 return; 786 787 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 788 } 789 790 /// \brief Forms basic block chains from the natural loop structures. 791 /// 792 /// These chains are designed to preserve the existing *structure* of the code 793 /// as much as possible. We can then stitch the chains together in a way which 794 /// both preserves the topological structure and minimizes taken conditional 795 /// branches. 796 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 797 MachineLoop &L) { 798 // First recurse through any nested loops, building chains for those inner 799 // loops. 800 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 801 buildLoopChains(F, **LI); 802 803 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 804 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 805 806 // First check to see if there is an obviously preferable top block for the 807 // loop. This will default to the header, but may end up as one of the 808 // predecessors to the header if there is one which will result in strictly 809 // fewer branches in the loop body. 810 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 811 812 // If we selected just the header for the loop top, look for a potentially 813 // profitable exit block in the event that rotating the loop can eliminate 814 // branches by placing an exit edge at the bottom. 815 MachineBasicBlock *ExitingBB = nullptr; 816 if (LoopTop == L.getHeader()) 817 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 818 819 BlockChain &LoopChain = *BlockToChain[LoopTop]; 820 821 // FIXME: This is a really lame way of walking the chains in the loop: we 822 // walk the blocks, and use a set to prevent visiting a particular chain 823 // twice. 824 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 825 assert(LoopChain.LoopPredecessors == 0); 826 UpdatedPreds.insert(&LoopChain); 827 for (MachineLoop::block_iterator BI = L.block_begin(), 828 BE = L.block_end(); 829 BI != BE; ++BI) { 830 BlockChain &Chain = *BlockToChain[*BI]; 831 if (!UpdatedPreds.insert(&Chain).second) 832 continue; 833 834 assert(Chain.LoopPredecessors == 0); 835 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 836 BCI != BCE; ++BCI) { 837 assert(BlockToChain[*BCI] == &Chain); 838 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 839 PE = (*BCI)->pred_end(); 840 PI != PE; ++PI) { 841 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 842 continue; 843 ++Chain.LoopPredecessors; 844 } 845 } 846 847 if (Chain.LoopPredecessors == 0) 848 BlockWorkList.push_back(*Chain.begin()); 849 } 850 851 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 852 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 853 854 DEBUG({ 855 // Crash at the end so we get all of the debugging output first. 856 bool BadLoop = false; 857 if (LoopChain.LoopPredecessors) { 858 BadLoop = true; 859 dbgs() << "Loop chain contains a block without its preds placed!\n" 860 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 861 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 862 } 863 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 864 BCI != BCE; ++BCI) { 865 dbgs() << " ... " << getBlockName(*BCI) << "\n"; 866 if (!LoopBlockSet.erase(*BCI)) { 867 // We don't mark the loop as bad here because there are real situations 868 // where this can occur. For example, with an unanalyzable fallthrough 869 // from a loop block to a non-loop block or vice versa. 870 dbgs() << "Loop chain contains a block not contained by the loop!\n" 871 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 872 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 873 << " Bad block: " << getBlockName(*BCI) << "\n"; 874 } 875 } 876 877 if (!LoopBlockSet.empty()) { 878 BadLoop = true; 879 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 880 LBE = LoopBlockSet.end(); 881 LBI != LBE; ++LBI) 882 dbgs() << "Loop contains blocks never placed into a chain!\n" 883 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 884 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 885 << " Bad block: " << getBlockName(*LBI) << "\n"; 886 } 887 assert(!BadLoop && "Detected problems with the placement of this loop."); 888 }); 889 } 890 891 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 892 // Ensure that every BB in the function has an associated chain to simplify 893 // the assumptions of the remaining algorithm. 894 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 895 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 896 MachineBasicBlock *BB = FI; 897 BlockChain *Chain 898 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 899 // Also, merge any blocks which we cannot reason about and must preserve 900 // the exact fallthrough behavior for. 901 for (;;) { 902 Cond.clear(); 903 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 904 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 905 break; 906 907 MachineFunction::iterator NextFI(std::next(FI)); 908 MachineBasicBlock *NextBB = NextFI; 909 // Ensure that the layout successor is a viable block, as we know that 910 // fallthrough is a possibility. 911 assert(NextFI != FE && "Can't fallthrough past the last block."); 912 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 913 << getBlockName(BB) << " -> " << getBlockName(NextBB) 914 << "\n"); 915 Chain->merge(NextBB, nullptr); 916 FI = NextFI; 917 BB = NextBB; 918 } 919 } 920 921 // Build any loop-based chains. 922 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 923 ++LI) 924 buildLoopChains(F, **LI); 925 926 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 927 928 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 929 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 930 MachineBasicBlock *BB = &*FI; 931 BlockChain &Chain = *BlockToChain[BB]; 932 if (!UpdatedPreds.insert(&Chain).second) 933 continue; 934 935 assert(Chain.LoopPredecessors == 0); 936 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 937 BCI != BCE; ++BCI) { 938 assert(BlockToChain[*BCI] == &Chain); 939 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 940 PE = (*BCI)->pred_end(); 941 PI != PE; ++PI) { 942 if (BlockToChain[*PI] == &Chain) 943 continue; 944 ++Chain.LoopPredecessors; 945 } 946 } 947 948 if (Chain.LoopPredecessors == 0) 949 BlockWorkList.push_back(*Chain.begin()); 950 } 951 952 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 953 buildChain(&F.front(), FunctionChain, BlockWorkList); 954 955 #ifndef NDEBUG 956 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 957 #endif 958 DEBUG({ 959 // Crash at the end so we get all of the debugging output first. 960 bool BadFunc = false; 961 FunctionBlockSetType FunctionBlockSet; 962 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 963 FunctionBlockSet.insert(FI); 964 965 for (BlockChain::iterator BCI = FunctionChain.begin(), 966 BCE = FunctionChain.end(); 967 BCI != BCE; ++BCI) 968 if (!FunctionBlockSet.erase(*BCI)) { 969 BadFunc = true; 970 dbgs() << "Function chain contains a block not in the function!\n" 971 << " Bad block: " << getBlockName(*BCI) << "\n"; 972 } 973 974 if (!FunctionBlockSet.empty()) { 975 BadFunc = true; 976 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 977 FBE = FunctionBlockSet.end(); 978 FBI != FBE; ++FBI) 979 dbgs() << "Function contains blocks never placed into a chain!\n" 980 << " Bad block: " << getBlockName(*FBI) << "\n"; 981 } 982 assert(!BadFunc && "Detected problems with the block placement."); 983 }); 984 985 // Splice the blocks into place. 986 MachineFunction::iterator InsertPos = F.begin(); 987 for (BlockChain::iterator BI = FunctionChain.begin(), 988 BE = FunctionChain.end(); 989 BI != BE; ++BI) { 990 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 991 : " ... ") 992 << getBlockName(*BI) << "\n"); 993 if (InsertPos != MachineFunction::iterator(*BI)) 994 F.splice(InsertPos, *BI); 995 else 996 ++InsertPos; 997 998 // Update the terminator of the previous block. 999 if (BI == FunctionChain.begin()) 1000 continue; 1001 MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(*BI)); 1002 1003 // FIXME: It would be awesome of updateTerminator would just return rather 1004 // than assert when the branch cannot be analyzed in order to remove this 1005 // boiler plate. 1006 Cond.clear(); 1007 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1008 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1009 // The "PrevBB" is not yet updated to reflect current code layout, so, 1010 // o. it may fall-through to a block without explict "goto" instruction 1011 // before layout, and no longer fall-through it after layout; or 1012 // o. just opposite. 1013 // 1014 // AnalyzeBranch() may return erroneous value for FBB when these two 1015 // situations take place. For the first scenario FBB is mistakenly set 1016 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1017 // is mistakenly pointing to "*BI". 1018 // 1019 bool needUpdateBr = true; 1020 if (!Cond.empty() && (!FBB || FBB == *BI)) { 1021 PrevBB->updateTerminator(); 1022 needUpdateBr = false; 1023 Cond.clear(); 1024 TBB = FBB = nullptr; 1025 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1026 // FIXME: This should never take place. 1027 TBB = FBB = nullptr; 1028 } 1029 } 1030 1031 // If PrevBB has a two-way branch, try to re-order the branches 1032 // such that we branch to the successor with higher weight first. 1033 if (TBB && !Cond.empty() && FBB && 1034 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1035 !TII->ReverseBranchCondition(Cond)) { 1036 DEBUG(dbgs() << "Reverse order of the two branches: " 1037 << getBlockName(PrevBB) << "\n"); 1038 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1039 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1040 DebugLoc dl; // FIXME: this is nowhere 1041 TII->RemoveBranch(*PrevBB); 1042 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1043 needUpdateBr = true; 1044 } 1045 if (needUpdateBr) 1046 PrevBB->updateTerminator(); 1047 } 1048 } 1049 1050 // Fixup the last block. 1051 Cond.clear(); 1052 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1053 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1054 F.back().updateTerminator(); 1055 1056 // Walk through the backedges of the function now that we have fully laid out 1057 // the basic blocks and align the destination of each backedge. We don't rely 1058 // exclusively on the loop info here so that we can align backedges in 1059 // unnatural CFGs and backedges that were introduced purely because of the 1060 // loop rotations done during this layout pass. 1061 if (F.getFunction()->getAttributes(). 1062 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize)) 1063 return; 1064 if (FunctionChain.begin() == FunctionChain.end()) 1065 return; // Empty chain. 1066 1067 const BranchProbability ColdProb(1, 5); // 20% 1068 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 1069 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1070 for (BlockChain::iterator BI = std::next(FunctionChain.begin()), 1071 BE = FunctionChain.end(); 1072 BI != BE; ++BI) { 1073 // Don't align non-looping basic blocks. These are unlikely to execute 1074 // enough times to matter in practice. Note that we'll still handle 1075 // unnatural CFGs inside of a natural outer loop (the common case) and 1076 // rotated loops. 1077 MachineLoop *L = MLI->getLoopFor(*BI); 1078 if (!L) 1079 continue; 1080 1081 unsigned Align = TLI->getPrefLoopAlignment(L); 1082 if (!Align) 1083 continue; // Don't care about loop alignment. 1084 1085 // If the block is cold relative to the function entry don't waste space 1086 // aligning it. 1087 BlockFrequency Freq = MBFI->getBlockFreq(*BI); 1088 if (Freq < WeightedEntryFreq) 1089 continue; 1090 1091 // If the block is cold relative to its loop header, don't align it 1092 // regardless of what edges into the block exist. 1093 MachineBasicBlock *LoopHeader = L->getHeader(); 1094 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1095 if (Freq < (LoopHeaderFreq * ColdProb)) 1096 continue; 1097 1098 // Check for the existence of a non-layout predecessor which would benefit 1099 // from aligning this block. 1100 MachineBasicBlock *LayoutPred = *std::prev(BI); 1101 1102 // Force alignment if all the predecessors are jumps. We already checked 1103 // that the block isn't cold above. 1104 if (!LayoutPred->isSuccessor(*BI)) { 1105 (*BI)->setAlignment(Align); 1106 continue; 1107 } 1108 1109 // Align this block if the layout predecessor's edge into this block is 1110 // cold relative to the block. When this is true, other predecessors make up 1111 // all of the hot entries into the block and thus alignment is likely to be 1112 // important. 1113 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI); 1114 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1115 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1116 (*BI)->setAlignment(Align); 1117 } 1118 } 1119 1120 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1121 // Check for single-block functions and skip them. 1122 if (std::next(F.begin()) == F.end()) 1123 return false; 1124 1125 if (skipOptnoneFunction(*F.getFunction())) 1126 return false; 1127 1128 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1129 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1130 MLI = &getAnalysis<MachineLoopInfo>(); 1131 TII = F.getSubtarget().getInstrInfo(); 1132 TLI = F.getSubtarget().getTargetLowering(); 1133 assert(BlockToChain.empty()); 1134 1135 buildCFGChains(F); 1136 1137 BlockToChain.clear(); 1138 ChainAllocator.DestroyAll(); 1139 1140 if (AlignAllBlock) 1141 // Align all of the blocks in the function to a specific alignment. 1142 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 1143 FI != FE; ++FI) 1144 FI->setAlignment(AlignAllBlock); 1145 1146 // We always return true as we have no way to track whether the final order 1147 // differs from the original order. 1148 return true; 1149 } 1150 1151 namespace { 1152 /// \brief A pass to compute block placement statistics. 1153 /// 1154 /// A separate pass to compute interesting statistics for evaluating block 1155 /// placement. This is separate from the actual placement pass so that they can 1156 /// be computed in the absence of any placement transformations or when using 1157 /// alternative placement strategies. 1158 class MachineBlockPlacementStats : public MachineFunctionPass { 1159 /// \brief A handle to the branch probability pass. 1160 const MachineBranchProbabilityInfo *MBPI; 1161 1162 /// \brief A handle to the function-wide block frequency pass. 1163 const MachineBlockFrequencyInfo *MBFI; 1164 1165 public: 1166 static char ID; // Pass identification, replacement for typeid 1167 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1168 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1169 } 1170 1171 bool runOnMachineFunction(MachineFunction &F) override; 1172 1173 void getAnalysisUsage(AnalysisUsage &AU) const override { 1174 AU.addRequired<MachineBranchProbabilityInfo>(); 1175 AU.addRequired<MachineBlockFrequencyInfo>(); 1176 AU.setPreservesAll(); 1177 MachineFunctionPass::getAnalysisUsage(AU); 1178 } 1179 }; 1180 } 1181 1182 char MachineBlockPlacementStats::ID = 0; 1183 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1184 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1185 "Basic Block Placement Stats", false, false) 1186 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1187 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1188 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1189 "Basic Block Placement Stats", false, false) 1190 1191 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1192 // Check for single-block functions and skip them. 1193 if (std::next(F.begin()) == F.end()) 1194 return false; 1195 1196 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1197 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1198 1199 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 1200 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 1201 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 1202 : NumUncondBranches; 1203 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 1204 : UncondBranchTakenFreq; 1205 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 1206 SE = I->succ_end(); 1207 SI != SE; ++SI) { 1208 // Skip if this successor is a fallthrough. 1209 if (I->isLayoutSuccessor(*SI)) 1210 continue; 1211 1212 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 1213 ++NumBranches; 1214 BranchTakenFreq += EdgeFreq.getFrequency(); 1215 } 1216 } 1217 1218 return false; 1219 } 1220 1221