1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "block-placement" 52 53 STATISTIC(NumCondBranches, "Number of conditional branches"); 54 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 55 STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57 STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65 // FIXME: Find a good default for this flag and remove the flag. 66 static cl::opt<unsigned> ExitBlockBias( 67 "block-placement-exit-block-bias", 68 cl::desc("Block frequency percentage a loop exit block needs " 69 "over the original exit to be considered the new exit."), 70 cl::init(0), cl::Hidden); 71 72 static cl::opt<bool> OutlineOptionalBranches( 73 "outline-optional-branches", 74 cl::desc("Put completely optional branches, i.e. branches with a common " 75 "post dominator, out of line."), 76 cl::init(false), cl::Hidden); 77 78 static cl::opt<unsigned> OutlineOptionalThreshold( 79 "outline-optional-threshold", 80 cl::desc("Don't outline optional branches that are a single block with an " 81 "instruction count below this threshold"), 82 cl::init(4), cl::Hidden); 83 84 static cl::opt<unsigned> LoopToColdBlockRatio( 85 "loop-to-cold-block-ratio", 86 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 87 "(frequency of block) is greater than this ratio"), 88 cl::init(5), cl::Hidden); 89 90 static cl::opt<bool> 91 PreciseRotationCost("precise-rotation-cost", 92 cl::desc("Model the cost of loop rotation more " 93 "precisely by using profile data."), 94 cl::init(false), cl::Hidden); 95 96 static cl::opt<unsigned> MisfetchCost( 97 "misfetch-cost", 98 cl::desc("Cost that models the probablistic risk of an instruction " 99 "misfetch due to a jump comparing to falling through, whose cost " 100 "is zero."), 101 cl::init(1), cl::Hidden); 102 103 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 104 cl::desc("Cost of jump instructions."), 105 cl::init(1), cl::Hidden); 106 107 namespace { 108 class BlockChain; 109 /// \brief Type for our function-wide basic block -> block chain mapping. 110 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 111 } 112 113 namespace { 114 /// \brief A chain of blocks which will be laid out contiguously. 115 /// 116 /// This is the datastructure representing a chain of consecutive blocks that 117 /// are profitable to layout together in order to maximize fallthrough 118 /// probabilities and code locality. We also can use a block chain to represent 119 /// a sequence of basic blocks which have some external (correctness) 120 /// requirement for sequential layout. 121 /// 122 /// Chains can be built around a single basic block and can be merged to grow 123 /// them. They participate in a block-to-chain mapping, which is updated 124 /// automatically as chains are merged together. 125 class BlockChain { 126 /// \brief The sequence of blocks belonging to this chain. 127 /// 128 /// This is the sequence of blocks for a particular chain. These will be laid 129 /// out in-order within the function. 130 SmallVector<MachineBasicBlock *, 4> Blocks; 131 132 /// \brief A handle to the function-wide basic block to block chain mapping. 133 /// 134 /// This is retained in each block chain to simplify the computation of child 135 /// block chains for SCC-formation and iteration. We store the edges to child 136 /// basic blocks, and map them back to their associated chains using this 137 /// structure. 138 BlockToChainMapType &BlockToChain; 139 140 public: 141 /// \brief Construct a new BlockChain. 142 /// 143 /// This builds a new block chain representing a single basic block in the 144 /// function. It also registers itself as the chain that block participates 145 /// in with the BlockToChain mapping. 146 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 147 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 148 assert(BB && "Cannot create a chain with a null basic block"); 149 BlockToChain[BB] = this; 150 } 151 152 /// \brief Iterator over blocks within the chain. 153 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 154 155 /// \brief Beginning of blocks within the chain. 156 iterator begin() { return Blocks.begin(); } 157 158 /// \brief End of blocks within the chain. 159 iterator end() { return Blocks.end(); } 160 161 /// \brief Merge a block chain into this one. 162 /// 163 /// This routine merges a block chain into this one. It takes care of forming 164 /// a contiguous sequence of basic blocks, updating the edge list, and 165 /// updating the block -> chain mapping. It does not free or tear down the 166 /// old chain, but the old chain's block list is no longer valid. 167 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 168 assert(BB); 169 assert(!Blocks.empty()); 170 171 // Fast path in case we don't have a chain already. 172 if (!Chain) { 173 assert(!BlockToChain[BB]); 174 Blocks.push_back(BB); 175 BlockToChain[BB] = this; 176 return; 177 } 178 179 assert(BB == *Chain->begin()); 180 assert(Chain->begin() != Chain->end()); 181 182 // Update the incoming blocks to point to this chain, and add them to the 183 // chain structure. 184 for (MachineBasicBlock *ChainBB : *Chain) { 185 Blocks.push_back(ChainBB); 186 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 187 BlockToChain[ChainBB] = this; 188 } 189 } 190 191 #ifndef NDEBUG 192 /// \brief Dump the blocks in this chain. 193 LLVM_DUMP_METHOD void dump() { 194 for (MachineBasicBlock *MBB : *this) 195 MBB->dump(); 196 } 197 #endif // NDEBUG 198 199 /// \brief Count of predecessors within the loop currently being processed. 200 /// 201 /// This count is updated at each loop we process to represent the number of 202 /// in-loop predecessors of this chain. 203 unsigned LoopPredecessors; 204 }; 205 } 206 207 namespace { 208 class MachineBlockPlacement : public MachineFunctionPass { 209 /// \brief A typedef for a block filter set. 210 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 211 212 /// \brief A handle to the branch probability pass. 213 const MachineBranchProbabilityInfo *MBPI; 214 215 /// \brief A handle to the function-wide block frequency pass. 216 const MachineBlockFrequencyInfo *MBFI; 217 218 /// \brief A handle to the loop info. 219 const MachineLoopInfo *MLI; 220 221 /// \brief A handle to the target's instruction info. 222 const TargetInstrInfo *TII; 223 224 /// \brief A handle to the target's lowering info. 225 const TargetLoweringBase *TLI; 226 227 /// \brief A handle to the post dominator tree. 228 MachineDominatorTree *MDT; 229 230 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 231 /// all terminators of the MachineFunction. 232 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 233 234 /// \brief Allocator and owner of BlockChain structures. 235 /// 236 /// We build BlockChains lazily while processing the loop structure of 237 /// a function. To reduce malloc traffic, we allocate them using this 238 /// slab-like allocator, and destroy them after the pass completes. An 239 /// important guarantee is that this allocator produces stable pointers to 240 /// the chains. 241 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 242 243 /// \brief Function wide BasicBlock to BlockChain mapping. 244 /// 245 /// This mapping allows efficiently moving from any given basic block to the 246 /// BlockChain it participates in, if any. We use it to, among other things, 247 /// allow implicitly defining edges between chains as the existing edges 248 /// between basic blocks. 249 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 250 251 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 252 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 253 const BlockFilterSet *BlockFilter = nullptr); 254 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 255 BlockChain &Chain, 256 const BlockFilterSet *BlockFilter); 257 MachineBasicBlock * 258 selectBestCandidateBlock(BlockChain &Chain, 259 SmallVectorImpl<MachineBasicBlock *> &WorkList, 260 const BlockFilterSet *BlockFilter); 261 MachineBasicBlock * 262 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 263 MachineFunction::iterator &PrevUnplacedBlockIt, 264 const BlockFilterSet *BlockFilter); 265 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 266 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 267 const BlockFilterSet *BlockFilter = nullptr); 268 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 269 const BlockFilterSet &LoopBlockSet); 270 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 271 const BlockFilterSet &LoopBlockSet); 272 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 273 void buildLoopChains(MachineFunction &F, MachineLoop &L); 274 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 275 const BlockFilterSet &LoopBlockSet); 276 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 277 const BlockFilterSet &LoopBlockSet); 278 void buildCFGChains(MachineFunction &F); 279 280 public: 281 static char ID; // Pass identification, replacement for typeid 282 MachineBlockPlacement() : MachineFunctionPass(ID) { 283 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 284 } 285 286 bool runOnMachineFunction(MachineFunction &F) override; 287 288 void getAnalysisUsage(AnalysisUsage &AU) const override { 289 AU.addRequired<MachineBranchProbabilityInfo>(); 290 AU.addRequired<MachineBlockFrequencyInfo>(); 291 AU.addRequired<MachineDominatorTree>(); 292 AU.addRequired<MachineLoopInfo>(); 293 MachineFunctionPass::getAnalysisUsage(AU); 294 } 295 }; 296 } 297 298 char MachineBlockPlacement::ID = 0; 299 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 300 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 301 "Branch Probability Basic Block Placement", false, false) 302 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 303 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 304 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 305 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 306 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 307 "Branch Probability Basic Block Placement", false, false) 308 309 #ifndef NDEBUG 310 /// \brief Helper to print the name of a MBB. 311 /// 312 /// Only used by debug logging. 313 static std::string getBlockName(MachineBasicBlock *BB) { 314 std::string Result; 315 raw_string_ostream OS(Result); 316 OS << "BB#" << BB->getNumber(); 317 OS << " (derived from LLVM BB '" << BB->getName() << "')"; 318 OS.flush(); 319 return Result; 320 } 321 322 /// \brief Helper to print the number of a MBB. 323 /// 324 /// Only used by debug logging. 325 static std::string getBlockNum(MachineBasicBlock *BB) { 326 std::string Result; 327 raw_string_ostream OS(Result); 328 OS << "BB#" << BB->getNumber(); 329 OS.flush(); 330 return Result; 331 } 332 #endif 333 334 /// \brief Mark a chain's successors as having one fewer preds. 335 /// 336 /// When a chain is being merged into the "placed" chain, this routine will 337 /// quickly walk the successors of each block in the chain and mark them as 338 /// having one fewer active predecessor. It also adds any successors of this 339 /// chain which reach the zero-predecessor state to the worklist passed in. 340 void MachineBlockPlacement::markChainSuccessors( 341 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 342 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 343 const BlockFilterSet *BlockFilter) { 344 // Walk all the blocks in this chain, marking their successors as having 345 // a predecessor placed. 346 for (MachineBasicBlock *MBB : Chain) { 347 // Add any successors for which this is the only un-placed in-loop 348 // predecessor to the worklist as a viable candidate for CFG-neutral 349 // placement. No subsequent placement of this block will violate the CFG 350 // shape, so we get to use heuristics to choose a favorable placement. 351 for (MachineBasicBlock *Succ : MBB->successors()) { 352 if (BlockFilter && !BlockFilter->count(Succ)) 353 continue; 354 BlockChain &SuccChain = *BlockToChain[Succ]; 355 // Disregard edges within a fixed chain, or edges to the loop header. 356 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 357 continue; 358 359 // This is a cross-chain edge that is within the loop, so decrement the 360 // loop predecessor count of the destination chain. 361 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 362 BlockWorkList.push_back(*SuccChain.begin()); 363 } 364 } 365 } 366 367 /// \brief Select the best successor for a block. 368 /// 369 /// This looks across all successors of a particular block and attempts to 370 /// select the "best" one to be the layout successor. It only considers direct 371 /// successors which also pass the block filter. It will attempt to avoid 372 /// breaking CFG structure, but cave and break such structures in the case of 373 /// very hot successor edges. 374 /// 375 /// \returns The best successor block found, or null if none are viable. 376 MachineBasicBlock * 377 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 378 BlockChain &Chain, 379 const BlockFilterSet *BlockFilter) { 380 const BranchProbability HotProb(4, 5); // 80% 381 382 MachineBasicBlock *BestSucc = nullptr; 383 // FIXME: Due to the performance of the probability and weight routines in 384 // the MBPI analysis, we manually compute probabilities using the edge 385 // weights. This is suboptimal as it means that the somewhat subtle 386 // definition of edge weight semantics is encoded here as well. We should 387 // improve the MBPI interface to efficiently support query patterns such as 388 // this. 389 uint32_t BestWeight = 0; 390 uint32_t WeightScale = 0; 391 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 392 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 393 for (MachineBasicBlock *Succ : BB->successors()) { 394 if (BlockFilter && !BlockFilter->count(Succ)) 395 continue; 396 BlockChain &SuccChain = *BlockToChain[Succ]; 397 if (&SuccChain == &Chain) { 398 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Already merged!\n"); 399 continue; 400 } 401 if (Succ != *SuccChain.begin()) { 402 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 403 continue; 404 } 405 406 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ); 407 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 408 409 // If we outline optional branches, look whether Succ is unavoidable, i.e. 410 // dominates all terminators of the MachineFunction. If it does, other 411 // successors must be optional. Don't do this for cold branches. 412 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 413 UnavoidableBlocks.count(Succ) > 0) { 414 auto HasShortOptionalBranch = [&]() { 415 for (MachineBasicBlock *Pred : Succ->predecessors()) { 416 // Check whether there is an unplaced optional branch. 417 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 418 BlockToChain[Pred] == &Chain) 419 continue; 420 // Check whether the optional branch has exactly one BB. 421 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 422 continue; 423 // Check whether the optional branch is small. 424 if (Pred->size() < OutlineOptionalThreshold) 425 return true; 426 } 427 return false; 428 }; 429 if (!HasShortOptionalBranch()) 430 return Succ; 431 } 432 433 // Only consider successors which are either "hot", or wouldn't violate 434 // any CFG constraints. 435 if (SuccChain.LoopPredecessors != 0) { 436 if (SuccProb < HotProb) { 437 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 438 << " (prob) (CFG conflict)\n"); 439 continue; 440 } 441 442 // Make sure that a hot successor doesn't have a globally more 443 // important predecessor. 444 BlockFrequency CandidateEdgeFreq = 445 MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 446 bool BadCFGConflict = false; 447 for (MachineBasicBlock *Pred : Succ->predecessors()) { 448 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 449 BlockToChain[Pred] == &Chain) 450 continue; 451 BlockFrequency PredEdgeFreq = 452 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 453 if (PredEdgeFreq >= CandidateEdgeFreq) { 454 BadCFGConflict = true; 455 break; 456 } 457 } 458 if (BadCFGConflict) { 459 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 460 << " (prob) (non-cold CFG conflict)\n"); 461 continue; 462 } 463 } 464 465 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 466 << " (prob)" 467 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 468 << "\n"); 469 if (BestSucc && BestWeight >= SuccWeight) 470 continue; 471 BestSucc = Succ; 472 BestWeight = SuccWeight; 473 } 474 return BestSucc; 475 } 476 477 /// \brief Select the best block from a worklist. 478 /// 479 /// This looks through the provided worklist as a list of candidate basic 480 /// blocks and select the most profitable one to place. The definition of 481 /// profitable only really makes sense in the context of a loop. This returns 482 /// the most frequently visited block in the worklist, which in the case of 483 /// a loop, is the one most desirable to be physically close to the rest of the 484 /// loop body in order to improve icache behavior. 485 /// 486 /// \returns The best block found, or null if none are viable. 487 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 488 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 489 const BlockFilterSet *BlockFilter) { 490 // Once we need to walk the worklist looking for a candidate, cleanup the 491 // worklist of already placed entries. 492 // FIXME: If this shows up on profiles, it could be folded (at the cost of 493 // some code complexity) into the loop below. 494 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 495 [&](MachineBasicBlock *BB) { 496 return BlockToChain.lookup(BB) == &Chain; 497 }), 498 WorkList.end()); 499 500 MachineBasicBlock *BestBlock = nullptr; 501 BlockFrequency BestFreq; 502 for (MachineBasicBlock *MBB : WorkList) { 503 BlockChain &SuccChain = *BlockToChain[MBB]; 504 if (&SuccChain == &Chain) { 505 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> Already merged!\n"); 506 continue; 507 } 508 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 509 510 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 511 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 512 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 513 if (BestBlock && BestFreq >= CandidateFreq) 514 continue; 515 BestBlock = MBB; 516 BestFreq = CandidateFreq; 517 } 518 return BestBlock; 519 } 520 521 /// \brief Retrieve the first unplaced basic block. 522 /// 523 /// This routine is called when we are unable to use the CFG to walk through 524 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 525 /// We walk through the function's blocks in order, starting from the 526 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 527 /// re-scanning the entire sequence on repeated calls to this routine. 528 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 529 MachineFunction &F, const BlockChain &PlacedChain, 530 MachineFunction::iterator &PrevUnplacedBlockIt, 531 const BlockFilterSet *BlockFilter) { 532 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 533 ++I) { 534 if (BlockFilter && !BlockFilter->count(&*I)) 535 continue; 536 if (BlockToChain[&*I] != &PlacedChain) { 537 PrevUnplacedBlockIt = I; 538 // Now select the head of the chain to which the unplaced block belongs 539 // as the block to place. This will force the entire chain to be placed, 540 // and satisfies the requirements of merging chains. 541 return *BlockToChain[&*I]->begin(); 542 } 543 } 544 return nullptr; 545 } 546 547 void MachineBlockPlacement::buildChain( 548 MachineBasicBlock *BB, BlockChain &Chain, 549 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 550 const BlockFilterSet *BlockFilter) { 551 assert(BB); 552 assert(BlockToChain[BB] == &Chain); 553 MachineFunction &F = *BB->getParent(); 554 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 555 556 MachineBasicBlock *LoopHeaderBB = BB; 557 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 558 BB = *std::prev(Chain.end()); 559 for (;;) { 560 assert(BB); 561 assert(BlockToChain[BB] == &Chain); 562 assert(*std::prev(Chain.end()) == BB); 563 564 // Look for the best viable successor if there is one to place immediately 565 // after this block. 566 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 567 568 // If an immediate successor isn't available, look for the best viable 569 // block among those we've identified as not violating the loop's CFG at 570 // this point. This won't be a fallthrough, but it will increase locality. 571 if (!BestSucc) 572 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 573 574 if (!BestSucc) { 575 BestSucc = 576 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 577 if (!BestSucc) 578 break; 579 580 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 581 "layout successor until the CFG reduces\n"); 582 } 583 584 // Place this block, updating the datastructures to reflect its placement. 585 BlockChain &SuccChain = *BlockToChain[BestSucc]; 586 // Zero out LoopPredecessors for the successor we're about to merge in case 587 // we selected a successor that didn't fit naturally into the CFG. 588 SuccChain.LoopPredecessors = 0; 589 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to " 590 << getBlockNum(BestSucc) << "\n"); 591 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 592 Chain.merge(BestSucc, &SuccChain); 593 BB = *std::prev(Chain.end()); 594 } 595 596 DEBUG(dbgs() << "Finished forming chain for header block " 597 << getBlockNum(*Chain.begin()) << "\n"); 598 } 599 600 /// \brief Find the best loop top block for layout. 601 /// 602 /// Look for a block which is strictly better than the loop header for laying 603 /// out at the top of the loop. This looks for one and only one pattern: 604 /// a latch block with no conditional exit. This block will cause a conditional 605 /// jump around it or will be the bottom of the loop if we lay it out in place, 606 /// but if it it doesn't end up at the bottom of the loop for any reason, 607 /// rotation alone won't fix it. Because such a block will always result in an 608 /// unconditional jump (for the backedge) rotating it in front of the loop 609 /// header is always profitable. 610 MachineBasicBlock * 611 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 612 const BlockFilterSet &LoopBlockSet) { 613 // Check that the header hasn't been fused with a preheader block due to 614 // crazy branches. If it has, we need to start with the header at the top to 615 // prevent pulling the preheader into the loop body. 616 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 617 if (!LoopBlockSet.count(*HeaderChain.begin())) 618 return L.getHeader(); 619 620 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 621 << "\n"); 622 623 BlockFrequency BestPredFreq; 624 MachineBasicBlock *BestPred = nullptr; 625 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 626 if (!LoopBlockSet.count(Pred)) 627 continue; 628 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 629 << Pred->succ_size() << " successors, "; 630 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 631 if (Pred->succ_size() > 1) 632 continue; 633 634 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 635 if (!BestPred || PredFreq > BestPredFreq || 636 (!(PredFreq < BestPredFreq) && 637 Pred->isLayoutSuccessor(L.getHeader()))) { 638 BestPred = Pred; 639 BestPredFreq = PredFreq; 640 } 641 } 642 643 // If no direct predecessor is fine, just use the loop header. 644 if (!BestPred) 645 return L.getHeader(); 646 647 // Walk backwards through any straight line of predecessors. 648 while (BestPred->pred_size() == 1 && 649 (*BestPred->pred_begin())->succ_size() == 1 && 650 *BestPred->pred_begin() != L.getHeader()) 651 BestPred = *BestPred->pred_begin(); 652 653 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 654 return BestPred; 655 } 656 657 /// \brief Find the best loop exiting block for layout. 658 /// 659 /// This routine implements the logic to analyze the loop looking for the best 660 /// block to layout at the top of the loop. Typically this is done to maximize 661 /// fallthrough opportunities. 662 MachineBasicBlock * 663 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 664 const BlockFilterSet &LoopBlockSet) { 665 // We don't want to layout the loop linearly in all cases. If the loop header 666 // is just a normal basic block in the loop, we want to look for what block 667 // within the loop is the best one to layout at the top. However, if the loop 668 // header has be pre-merged into a chain due to predecessors not having 669 // analyzable branches, *and* the predecessor it is merged with is *not* part 670 // of the loop, rotating the header into the middle of the loop will create 671 // a non-contiguous range of blocks which is Very Bad. So start with the 672 // header and only rotate if safe. 673 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 674 if (!LoopBlockSet.count(*HeaderChain.begin())) 675 return nullptr; 676 677 BlockFrequency BestExitEdgeFreq; 678 unsigned BestExitLoopDepth = 0; 679 MachineBasicBlock *ExitingBB = nullptr; 680 // If there are exits to outer loops, loop rotation can severely limit 681 // fallthrough opportunites unless it selects such an exit. Keep a set of 682 // blocks where rotating to exit with that block will reach an outer loop. 683 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 684 685 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 686 << "\n"); 687 for (MachineBasicBlock *MBB : L.getBlocks()) { 688 BlockChain &Chain = *BlockToChain[MBB]; 689 // Ensure that this block is at the end of a chain; otherwise it could be 690 // mid-way through an inner loop or a successor of an unanalyzable branch. 691 if (MBB != *std::prev(Chain.end())) 692 continue; 693 694 // Now walk the successors. We need to establish whether this has a viable 695 // exiting successor and whether it has a viable non-exiting successor. 696 // We store the old exiting state and restore it if a viable looping 697 // successor isn't found. 698 MachineBasicBlock *OldExitingBB = ExitingBB; 699 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 700 bool HasLoopingSucc = false; 701 // FIXME: Due to the performance of the probability and weight routines in 702 // the MBPI analysis, we use the internal weights and manually compute the 703 // probabilities to avoid quadratic behavior. 704 uint32_t WeightScale = 0; 705 uint32_t SumWeight = MBPI->getSumForBlock(MBB, WeightScale); 706 for (MachineBasicBlock *Succ : MBB->successors()) { 707 if (Succ->isEHPad()) 708 continue; 709 if (Succ == MBB) 710 continue; 711 BlockChain &SuccChain = *BlockToChain[Succ]; 712 // Don't split chains, either this chain or the successor's chain. 713 if (&Chain == &SuccChain) { 714 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 715 << getBlockName(Succ) << " (chain conflict)\n"); 716 continue; 717 } 718 719 uint32_t SuccWeight = MBPI->getEdgeWeight(MBB, Succ); 720 if (LoopBlockSet.count(Succ)) { 721 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 722 << getBlockName(Succ) << " (" << SuccWeight << ")\n"); 723 HasLoopingSucc = true; 724 continue; 725 } 726 727 unsigned SuccLoopDepth = 0; 728 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 729 SuccLoopDepth = ExitLoop->getLoopDepth(); 730 if (ExitLoop->contains(&L)) 731 BlocksExitingToOuterLoop.insert(MBB); 732 } 733 734 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 735 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 736 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 737 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 738 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 739 // Note that we bias this toward an existing layout successor to retain 740 // incoming order in the absence of better information. The exit must have 741 // a frequency higher than the current exit before we consider breaking 742 // the layout. 743 BranchProbability Bias(100 - ExitBlockBias, 100); 744 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 745 ExitEdgeFreq > BestExitEdgeFreq || 746 (MBB->isLayoutSuccessor(Succ) && 747 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 748 BestExitEdgeFreq = ExitEdgeFreq; 749 ExitingBB = MBB; 750 } 751 } 752 753 if (!HasLoopingSucc) { 754 // Restore the old exiting state, no viable looping successor was found. 755 ExitingBB = OldExitingBB; 756 BestExitEdgeFreq = OldBestExitEdgeFreq; 757 continue; 758 } 759 } 760 // Without a candidate exiting block or with only a single block in the 761 // loop, just use the loop header to layout the loop. 762 if (!ExitingBB || L.getNumBlocks() == 1) 763 return nullptr; 764 765 // Also, if we have exit blocks which lead to outer loops but didn't select 766 // one of them as the exiting block we are rotating toward, disable loop 767 // rotation altogether. 768 if (!BlocksExitingToOuterLoop.empty() && 769 !BlocksExitingToOuterLoop.count(ExitingBB)) 770 return nullptr; 771 772 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 773 return ExitingBB; 774 } 775 776 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 777 /// 778 /// Once we have built a chain, try to rotate it to line up the hot exit block 779 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 780 /// branches. For example, if the loop has fallthrough into its header and out 781 /// of its bottom already, don't rotate it. 782 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 783 MachineBasicBlock *ExitingBB, 784 const BlockFilterSet &LoopBlockSet) { 785 if (!ExitingBB) 786 return; 787 788 MachineBasicBlock *Top = *LoopChain.begin(); 789 bool ViableTopFallthrough = false; 790 for (MachineBasicBlock *Pred : Top->predecessors()) { 791 BlockChain *PredChain = BlockToChain[Pred]; 792 if (!LoopBlockSet.count(Pred) && 793 (!PredChain || Pred == *std::prev(PredChain->end()))) { 794 ViableTopFallthrough = true; 795 break; 796 } 797 } 798 799 // If the header has viable fallthrough, check whether the current loop 800 // bottom is a viable exiting block. If so, bail out as rotating will 801 // introduce an unnecessary branch. 802 if (ViableTopFallthrough) { 803 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 804 for (MachineBasicBlock *Succ : Bottom->successors()) { 805 BlockChain *SuccChain = BlockToChain[Succ]; 806 if (!LoopBlockSet.count(Succ) && 807 (!SuccChain || Succ == *SuccChain->begin())) 808 return; 809 } 810 } 811 812 BlockChain::iterator ExitIt = 813 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 814 if (ExitIt == LoopChain.end()) 815 return; 816 817 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 818 } 819 820 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 821 /// 822 /// With profile data, we can determine the cost in terms of missed fall through 823 /// opportunities when rotating a loop chain and select the best rotation. 824 /// Basically, there are three kinds of cost to consider for each rotation: 825 /// 1. The possibly missed fall through edge (if it exists) from BB out of 826 /// the loop to the loop header. 827 /// 2. The possibly missed fall through edges (if they exist) from the loop 828 /// exits to BB out of the loop. 829 /// 3. The missed fall through edge (if it exists) from the last BB to the 830 /// first BB in the loop chain. 831 /// Therefore, the cost for a given rotation is the sum of costs listed above. 832 /// We select the best rotation with the smallest cost. 833 void MachineBlockPlacement::rotateLoopWithProfile( 834 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 835 auto HeaderBB = L.getHeader(); 836 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 837 auto RotationPos = LoopChain.end(); 838 839 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 840 841 // A utility lambda that scales up a block frequency by dividing it by a 842 // branch probability which is the reciprocal of the scale. 843 auto ScaleBlockFrequency = [](BlockFrequency Freq, 844 unsigned Scale) -> BlockFrequency { 845 if (Scale == 0) 846 return 0; 847 // Use operator / between BlockFrequency and BranchProbability to implement 848 // saturating multiplication. 849 return Freq / BranchProbability(1, Scale); 850 }; 851 852 // Compute the cost of the missed fall-through edge to the loop header if the 853 // chain head is not the loop header. As we only consider natural loops with 854 // single header, this computation can be done only once. 855 BlockFrequency HeaderFallThroughCost(0); 856 for (auto *Pred : HeaderBB->predecessors()) { 857 BlockChain *PredChain = BlockToChain[Pred]; 858 if (!LoopBlockSet.count(Pred) && 859 (!PredChain || Pred == *std::prev(PredChain->end()))) { 860 auto EdgeFreq = 861 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 862 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 863 // If the predecessor has only an unconditional jump to the header, we 864 // need to consider the cost of this jump. 865 if (Pred->succ_size() == 1) 866 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 867 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 868 } 869 } 870 871 // Here we collect all exit blocks in the loop, and for each exit we find out 872 // its hottest exit edge. For each loop rotation, we define the loop exit cost 873 // as the sum of frequencies of exit edges we collect here, excluding the exit 874 // edge from the tail of the loop chain. 875 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 876 for (auto BB : LoopChain) { 877 uint32_t LargestExitEdgeWeight = 0; 878 for (auto *Succ : BB->successors()) { 879 BlockChain *SuccChain = BlockToChain[Succ]; 880 if (!LoopBlockSet.count(Succ) && 881 (!SuccChain || Succ == *SuccChain->begin())) { 882 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ); 883 LargestExitEdgeWeight = std::max(LargestExitEdgeWeight, SuccWeight); 884 } 885 } 886 if (LargestExitEdgeWeight > 0) { 887 uint32_t WeightScale = 0; 888 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 889 auto ExitFreq = 890 MBFI->getBlockFreq(BB) * 891 BranchProbability(LargestExitEdgeWeight / WeightScale, SumWeight); 892 ExitsWithFreq.emplace_back(BB, ExitFreq); 893 } 894 } 895 896 // In this loop we iterate every block in the loop chain and calculate the 897 // cost assuming the block is the head of the loop chain. When the loop ends, 898 // we should have found the best candidate as the loop chain's head. 899 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 900 EndIter = LoopChain.end(); 901 Iter != EndIter; Iter++, TailIter++) { 902 // TailIter is used to track the tail of the loop chain if the block we are 903 // checking (pointed by Iter) is the head of the chain. 904 if (TailIter == LoopChain.end()) 905 TailIter = LoopChain.begin(); 906 907 auto TailBB = *TailIter; 908 909 // Calculate the cost by putting this BB to the top. 910 BlockFrequency Cost = 0; 911 912 // If the current BB is the loop header, we need to take into account the 913 // cost of the missed fall through edge from outside of the loop to the 914 // header. 915 if (Iter != HeaderIter) 916 Cost += HeaderFallThroughCost; 917 918 // Collect the loop exit cost by summing up frequencies of all exit edges 919 // except the one from the chain tail. 920 for (auto &ExitWithFreq : ExitsWithFreq) 921 if (TailBB != ExitWithFreq.first) 922 Cost += ExitWithFreq.second; 923 924 // The cost of breaking the once fall-through edge from the tail to the top 925 // of the loop chain. Here we need to consider three cases: 926 // 1. If the tail node has only one successor, then we will get an 927 // additional jmp instruction. So the cost here is (MisfetchCost + 928 // JumpInstCost) * tail node frequency. 929 // 2. If the tail node has two successors, then we may still get an 930 // additional jmp instruction if the layout successor after the loop 931 // chain is not its CFG successor. Note that the more frequently executed 932 // jmp instruction will be put ahead of the other one. Assume the 933 // frequency of those two branches are x and y, where x is the frequency 934 // of the edge to the chain head, then the cost will be 935 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 936 // 3. If the tail node has more than two successors (this rarely happens), 937 // we won't consider any additional cost. 938 if (TailBB->isSuccessor(*Iter)) { 939 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 940 if (TailBB->succ_size() == 1) 941 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 942 MisfetchCost + JumpInstCost); 943 else if (TailBB->succ_size() == 2) { 944 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 945 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 946 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 947 ? TailBBFreq * TailToHeadProb.getCompl() 948 : TailToHeadFreq; 949 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 950 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 951 } 952 } 953 954 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter) 955 << " to the top: " << Cost.getFrequency() << "\n"); 956 957 if (Cost < SmallestRotationCost) { 958 SmallestRotationCost = Cost; 959 RotationPos = Iter; 960 } 961 } 962 963 if (RotationPos != LoopChain.end()) { 964 DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos) 965 << " to the top\n"); 966 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 967 } 968 } 969 970 /// \brief Collect blocks in the given loop that are to be placed. 971 /// 972 /// When profile data is available, exclude cold blocks from the returned set; 973 /// otherwise, collect all blocks in the loop. 974 MachineBlockPlacement::BlockFilterSet 975 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 976 BlockFilterSet LoopBlockSet; 977 978 // Filter cold blocks off from LoopBlockSet when profile data is available. 979 // Collect the sum of frequencies of incoming edges to the loop header from 980 // outside. If we treat the loop as a super block, this is the frequency of 981 // the loop. Then for each block in the loop, we calculate the ratio between 982 // its frequency and the frequency of the loop block. When it is too small, 983 // don't add it to the loop chain. If there are outer loops, then this block 984 // will be merged into the first outer loop chain for which this block is not 985 // cold anymore. This needs precise profile data and we only do this when 986 // profile data is available. 987 if (F.getFunction()->getEntryCount()) { 988 BlockFrequency LoopFreq(0); 989 for (auto LoopPred : L.getHeader()->predecessors()) 990 if (!L.contains(LoopPred)) 991 LoopFreq += MBFI->getBlockFreq(LoopPred) * 992 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 993 994 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 995 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 996 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 997 continue; 998 LoopBlockSet.insert(LoopBB); 999 } 1000 } else 1001 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1002 1003 return LoopBlockSet; 1004 } 1005 1006 /// \brief Forms basic block chains from the natural loop structures. 1007 /// 1008 /// These chains are designed to preserve the existing *structure* of the code 1009 /// as much as possible. We can then stitch the chains together in a way which 1010 /// both preserves the topological structure and minimizes taken conditional 1011 /// branches. 1012 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1013 MachineLoop &L) { 1014 // First recurse through any nested loops, building chains for those inner 1015 // loops. 1016 for (MachineLoop *InnerLoop : L) 1017 buildLoopChains(F, *InnerLoop); 1018 1019 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1020 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1021 1022 // Check if we have profile data for this function. If yes, we will rotate 1023 // this loop by modeling costs more precisely which requires the profile data 1024 // for better layout. 1025 bool RotateLoopWithProfile = 1026 PreciseRotationCost && F.getFunction()->getEntryCount(); 1027 1028 // First check to see if there is an obviously preferable top block for the 1029 // loop. This will default to the header, but may end up as one of the 1030 // predecessors to the header if there is one which will result in strictly 1031 // fewer branches in the loop body. 1032 // When we use profile data to rotate the loop, this is unnecessary. 1033 MachineBasicBlock *LoopTop = 1034 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1035 1036 // If we selected just the header for the loop top, look for a potentially 1037 // profitable exit block in the event that rotating the loop can eliminate 1038 // branches by placing an exit edge at the bottom. 1039 MachineBasicBlock *ExitingBB = nullptr; 1040 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1041 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1042 1043 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1044 1045 // FIXME: This is a really lame way of walking the chains in the loop: we 1046 // walk the blocks, and use a set to prevent visiting a particular chain 1047 // twice. 1048 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1049 assert(LoopChain.LoopPredecessors == 0); 1050 UpdatedPreds.insert(&LoopChain); 1051 1052 for (MachineBasicBlock *LoopBB : LoopBlockSet) { 1053 BlockChain &Chain = *BlockToChain[LoopBB]; 1054 if (!UpdatedPreds.insert(&Chain).second) 1055 continue; 1056 1057 assert(Chain.LoopPredecessors == 0); 1058 for (MachineBasicBlock *ChainBB : Chain) { 1059 assert(BlockToChain[ChainBB] == &Chain); 1060 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1061 if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred)) 1062 continue; 1063 ++Chain.LoopPredecessors; 1064 } 1065 } 1066 1067 if (Chain.LoopPredecessors == 0) 1068 BlockWorkList.push_back(*Chain.begin()); 1069 } 1070 1071 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 1072 1073 if (RotateLoopWithProfile) 1074 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1075 else 1076 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1077 1078 DEBUG({ 1079 // Crash at the end so we get all of the debugging output first. 1080 bool BadLoop = false; 1081 if (LoopChain.LoopPredecessors) { 1082 BadLoop = true; 1083 dbgs() << "Loop chain contains a block without its preds placed!\n" 1084 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1085 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1086 } 1087 for (MachineBasicBlock *ChainBB : LoopChain) { 1088 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1089 if (!LoopBlockSet.erase(ChainBB)) { 1090 // We don't mark the loop as bad here because there are real situations 1091 // where this can occur. For example, with an unanalyzable fallthrough 1092 // from a loop block to a non-loop block or vice versa. 1093 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1094 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1095 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1096 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1097 } 1098 } 1099 1100 if (!LoopBlockSet.empty()) { 1101 BadLoop = true; 1102 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1103 dbgs() << "Loop contains blocks never placed into a chain!\n" 1104 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1105 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1106 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1107 } 1108 assert(!BadLoop && "Detected problems with the placement of this loop."); 1109 }); 1110 } 1111 1112 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1113 // Ensure that every BB in the function has an associated chain to simplify 1114 // the assumptions of the remaining algorithm. 1115 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1116 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1117 MachineBasicBlock *BB = &*FI; 1118 BlockChain *Chain = 1119 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1120 // Also, merge any blocks which we cannot reason about and must preserve 1121 // the exact fallthrough behavior for. 1122 for (;;) { 1123 Cond.clear(); 1124 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1125 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1126 break; 1127 1128 MachineFunction::iterator NextFI = std::next(FI); 1129 MachineBasicBlock *NextBB = &*NextFI; 1130 // Ensure that the layout successor is a viable block, as we know that 1131 // fallthrough is a possibility. 1132 assert(NextFI != FE && "Can't fallthrough past the last block."); 1133 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1134 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1135 << "\n"); 1136 Chain->merge(NextBB, nullptr); 1137 FI = NextFI; 1138 BB = NextBB; 1139 } 1140 } 1141 1142 if (OutlineOptionalBranches) { 1143 // Find the nearest common dominator of all of F's terminators. 1144 MachineBasicBlock *Terminator = nullptr; 1145 for (MachineBasicBlock &MBB : F) { 1146 if (MBB.succ_size() == 0) { 1147 if (Terminator == nullptr) 1148 Terminator = &MBB; 1149 else 1150 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1151 } 1152 } 1153 1154 // MBBs dominating this common dominator are unavoidable. 1155 UnavoidableBlocks.clear(); 1156 for (MachineBasicBlock &MBB : F) { 1157 if (MDT->dominates(&MBB, Terminator)) { 1158 UnavoidableBlocks.insert(&MBB); 1159 } 1160 } 1161 } 1162 1163 // Build any loop-based chains. 1164 for (MachineLoop *L : *MLI) 1165 buildLoopChains(F, *L); 1166 1167 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1168 1169 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1170 for (MachineBasicBlock &MBB : F) { 1171 BlockChain &Chain = *BlockToChain[&MBB]; 1172 if (!UpdatedPreds.insert(&Chain).second) 1173 continue; 1174 1175 assert(Chain.LoopPredecessors == 0); 1176 for (MachineBasicBlock *ChainBB : Chain) { 1177 assert(BlockToChain[ChainBB] == &Chain); 1178 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1179 if (BlockToChain[Pred] == &Chain) 1180 continue; 1181 ++Chain.LoopPredecessors; 1182 } 1183 } 1184 1185 if (Chain.LoopPredecessors == 0) 1186 BlockWorkList.push_back(*Chain.begin()); 1187 } 1188 1189 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1190 buildChain(&F.front(), FunctionChain, BlockWorkList); 1191 1192 #ifndef NDEBUG 1193 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1194 #endif 1195 DEBUG({ 1196 // Crash at the end so we get all of the debugging output first. 1197 bool BadFunc = false; 1198 FunctionBlockSetType FunctionBlockSet; 1199 for (MachineBasicBlock &MBB : F) 1200 FunctionBlockSet.insert(&MBB); 1201 1202 for (MachineBasicBlock *ChainBB : FunctionChain) 1203 if (!FunctionBlockSet.erase(ChainBB)) { 1204 BadFunc = true; 1205 dbgs() << "Function chain contains a block not in the function!\n" 1206 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1207 } 1208 1209 if (!FunctionBlockSet.empty()) { 1210 BadFunc = true; 1211 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1212 dbgs() << "Function contains blocks never placed into a chain!\n" 1213 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1214 } 1215 assert(!BadFunc && "Detected problems with the block placement."); 1216 }); 1217 1218 // Splice the blocks into place. 1219 MachineFunction::iterator InsertPos = F.begin(); 1220 for (MachineBasicBlock *ChainBB : FunctionChain) { 1221 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1222 : " ... ") 1223 << getBlockName(ChainBB) << "\n"); 1224 if (InsertPos != MachineFunction::iterator(ChainBB)) 1225 F.splice(InsertPos, ChainBB); 1226 else 1227 ++InsertPos; 1228 1229 // Update the terminator of the previous block. 1230 if (ChainBB == *FunctionChain.begin()) 1231 continue; 1232 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1233 1234 // FIXME: It would be awesome of updateTerminator would just return rather 1235 // than assert when the branch cannot be analyzed in order to remove this 1236 // boiler plate. 1237 Cond.clear(); 1238 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1239 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1240 // The "PrevBB" is not yet updated to reflect current code layout, so, 1241 // o. it may fall-through to a block without explict "goto" instruction 1242 // before layout, and no longer fall-through it after layout; or 1243 // o. just opposite. 1244 // 1245 // AnalyzeBranch() may return erroneous value for FBB when these two 1246 // situations take place. For the first scenario FBB is mistakenly set 1247 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1248 // is mistakenly pointing to "*BI". 1249 // 1250 bool needUpdateBr = true; 1251 if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1252 PrevBB->updateTerminator(); 1253 needUpdateBr = false; 1254 Cond.clear(); 1255 TBB = FBB = nullptr; 1256 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1257 // FIXME: This should never take place. 1258 TBB = FBB = nullptr; 1259 } 1260 } 1261 1262 // If PrevBB has a two-way branch, try to re-order the branches 1263 // such that we branch to the successor with higher weight first. 1264 if (TBB && !Cond.empty() && FBB && 1265 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1266 !TII->ReverseBranchCondition(Cond)) { 1267 DEBUG(dbgs() << "Reverse order of the two branches: " 1268 << getBlockName(PrevBB) << "\n"); 1269 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1270 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1271 DebugLoc dl; // FIXME: this is nowhere 1272 TII->RemoveBranch(*PrevBB); 1273 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1274 needUpdateBr = true; 1275 } 1276 if (needUpdateBr) 1277 PrevBB->updateTerminator(); 1278 } 1279 } 1280 1281 // Fixup the last block. 1282 Cond.clear(); 1283 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1284 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1285 F.back().updateTerminator(); 1286 1287 // Walk through the backedges of the function now that we have fully laid out 1288 // the basic blocks and align the destination of each backedge. We don't rely 1289 // exclusively on the loop info here so that we can align backedges in 1290 // unnatural CFGs and backedges that were introduced purely because of the 1291 // loop rotations done during this layout pass. 1292 // FIXME: Use Function::optForSize(). 1293 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 1294 return; 1295 if (FunctionChain.begin() == FunctionChain.end()) 1296 return; // Empty chain. 1297 1298 const BranchProbability ColdProb(1, 5); // 20% 1299 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1300 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1301 for (MachineBasicBlock *ChainBB : FunctionChain) { 1302 if (ChainBB == *FunctionChain.begin()) 1303 continue; 1304 1305 // Don't align non-looping basic blocks. These are unlikely to execute 1306 // enough times to matter in practice. Note that we'll still handle 1307 // unnatural CFGs inside of a natural outer loop (the common case) and 1308 // rotated loops. 1309 MachineLoop *L = MLI->getLoopFor(ChainBB); 1310 if (!L) 1311 continue; 1312 1313 unsigned Align = TLI->getPrefLoopAlignment(L); 1314 if (!Align) 1315 continue; // Don't care about loop alignment. 1316 1317 // If the block is cold relative to the function entry don't waste space 1318 // aligning it. 1319 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1320 if (Freq < WeightedEntryFreq) 1321 continue; 1322 1323 // If the block is cold relative to its loop header, don't align it 1324 // regardless of what edges into the block exist. 1325 MachineBasicBlock *LoopHeader = L->getHeader(); 1326 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1327 if (Freq < (LoopHeaderFreq * ColdProb)) 1328 continue; 1329 1330 // Check for the existence of a non-layout predecessor which would benefit 1331 // from aligning this block. 1332 MachineBasicBlock *LayoutPred = 1333 &*std::prev(MachineFunction::iterator(ChainBB)); 1334 1335 // Force alignment if all the predecessors are jumps. We already checked 1336 // that the block isn't cold above. 1337 if (!LayoutPred->isSuccessor(ChainBB)) { 1338 ChainBB->setAlignment(Align); 1339 continue; 1340 } 1341 1342 // Align this block if the layout predecessor's edge into this block is 1343 // cold relative to the block. When this is true, other predecessors make up 1344 // all of the hot entries into the block and thus alignment is likely to be 1345 // important. 1346 BranchProbability LayoutProb = 1347 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1348 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1349 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1350 ChainBB->setAlignment(Align); 1351 } 1352 } 1353 1354 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1355 // Check for single-block functions and skip them. 1356 if (std::next(F.begin()) == F.end()) 1357 return false; 1358 1359 if (skipOptnoneFunction(*F.getFunction())) 1360 return false; 1361 1362 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1363 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1364 MLI = &getAnalysis<MachineLoopInfo>(); 1365 TII = F.getSubtarget().getInstrInfo(); 1366 TLI = F.getSubtarget().getTargetLowering(); 1367 MDT = &getAnalysis<MachineDominatorTree>(); 1368 assert(BlockToChain.empty()); 1369 1370 buildCFGChains(F); 1371 1372 BlockToChain.clear(); 1373 ChainAllocator.DestroyAll(); 1374 1375 if (AlignAllBlock) 1376 // Align all of the blocks in the function to a specific alignment. 1377 for (MachineBasicBlock &MBB : F) 1378 MBB.setAlignment(AlignAllBlock); 1379 1380 // We always return true as we have no way to track whether the final order 1381 // differs from the original order. 1382 return true; 1383 } 1384 1385 namespace { 1386 /// \brief A pass to compute block placement statistics. 1387 /// 1388 /// A separate pass to compute interesting statistics for evaluating block 1389 /// placement. This is separate from the actual placement pass so that they can 1390 /// be computed in the absence of any placement transformations or when using 1391 /// alternative placement strategies. 1392 class MachineBlockPlacementStats : public MachineFunctionPass { 1393 /// \brief A handle to the branch probability pass. 1394 const MachineBranchProbabilityInfo *MBPI; 1395 1396 /// \brief A handle to the function-wide block frequency pass. 1397 const MachineBlockFrequencyInfo *MBFI; 1398 1399 public: 1400 static char ID; // Pass identification, replacement for typeid 1401 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1402 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1403 } 1404 1405 bool runOnMachineFunction(MachineFunction &F) override; 1406 1407 void getAnalysisUsage(AnalysisUsage &AU) const override { 1408 AU.addRequired<MachineBranchProbabilityInfo>(); 1409 AU.addRequired<MachineBlockFrequencyInfo>(); 1410 AU.setPreservesAll(); 1411 MachineFunctionPass::getAnalysisUsage(AU); 1412 } 1413 }; 1414 } 1415 1416 char MachineBlockPlacementStats::ID = 0; 1417 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1418 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1419 "Basic Block Placement Stats", false, false) 1420 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1421 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1422 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1423 "Basic Block Placement Stats", false, false) 1424 1425 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1426 // Check for single-block functions and skip them. 1427 if (std::next(F.begin()) == F.end()) 1428 return false; 1429 1430 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1431 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1432 1433 for (MachineBasicBlock &MBB : F) { 1434 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1435 Statistic &NumBranches = 1436 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1437 Statistic &BranchTakenFreq = 1438 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1439 for (MachineBasicBlock *Succ : MBB.successors()) { 1440 // Skip if this successor is a fallthrough. 1441 if (MBB.isLayoutSuccessor(Succ)) 1442 continue; 1443 1444 BlockFrequency EdgeFreq = 1445 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1446 ++NumBranches; 1447 BranchTakenFreq += EdgeFreq.getFrequency(); 1448 } 1449 } 1450 1451 return false; 1452 } 1453