1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38 #include "llvm/CodeGen/MachineDominators.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/TailDuplicator.h"
44 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetLowering.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 #include <algorithm>
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "block-placement"
55 
56 STATISTIC(NumCondBranches, "Number of conditional branches");
57 STATISTIC(NumUncondBranches, "Number of unconditional branches");
58 STATISTIC(CondBranchTakenFreq,
59           "Potential frequency of taking conditional branches");
60 STATISTIC(UncondBranchTakenFreq,
61           "Potential frequency of taking unconditional branches");
62 
63 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
64                                        cl::desc("Force the alignment of all "
65                                                 "blocks in the function."),
66                                        cl::init(0), cl::Hidden);
67 
68 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
69     "align-all-nofallthru-blocks",
70     cl::desc("Force the alignment of all "
71              "blocks that have no fall-through predecessors (i.e. don't add "
72              "nops that are executed)."),
73     cl::init(0), cl::Hidden);
74 
75 // FIXME: Find a good default for this flag and remove the flag.
76 static cl::opt<unsigned> ExitBlockBias(
77     "block-placement-exit-block-bias",
78     cl::desc("Block frequency percentage a loop exit block needs "
79              "over the original exit to be considered the new exit."),
80     cl::init(0), cl::Hidden);
81 
82 // Definition:
83 // - Outlining: placement of a basic block outside the chain or hot path.
84 
85 static cl::opt<bool> OutlineOptionalBranches(
86     "outline-optional-branches",
87     cl::desc("Outlining optional branches will place blocks that are optional "
88               "branches, i.e. branches with a common post dominator, outside "
89               "the hot path or chain"),
90     cl::init(false), cl::Hidden);
91 
92 static cl::opt<unsigned> OutlineOptionalThreshold(
93     "outline-optional-threshold",
94     cl::desc("Don't outline optional branches that are a single block with an "
95              "instruction count below this threshold"),
96     cl::init(4), cl::Hidden);
97 
98 static cl::opt<unsigned> LoopToColdBlockRatio(
99     "loop-to-cold-block-ratio",
100     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
101              "(frequency of block) is greater than this ratio"),
102     cl::init(5), cl::Hidden);
103 
104 static cl::opt<bool>
105     PreciseRotationCost("precise-rotation-cost",
106                         cl::desc("Model the cost of loop rotation more "
107                                  "precisely by using profile data."),
108                         cl::init(false), cl::Hidden);
109 static cl::opt<bool>
110     ForcePreciseRotationCost("force-precise-rotation-cost",
111                              cl::desc("Force the use of precise cost "
112                                       "loop rotation strategy."),
113                              cl::init(false), cl::Hidden);
114 
115 static cl::opt<unsigned> MisfetchCost(
116     "misfetch-cost",
117     cl::desc("Cost that models the probabilistic risk of an instruction "
118              "misfetch due to a jump comparing to falling through, whose cost "
119              "is zero."),
120     cl::init(1), cl::Hidden);
121 
122 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
123                                       cl::desc("Cost of jump instructions."),
124                                       cl::init(1), cl::Hidden);
125 static cl::opt<bool>
126 TailDupPlacement("tail-dup-placement",
127               cl::desc("Perform tail duplication during placement. "
128                        "Creates more fallthrough opportunites in "
129                        "outline branches."),
130               cl::init(true), cl::Hidden);
131 
132 static cl::opt<bool>
133 BranchFoldPlacement("branch-fold-placement",
134               cl::desc("Perform branch folding during placement. "
135                        "Reduces code size."),
136               cl::init(true), cl::Hidden);
137 
138 // Heuristic for tail duplication.
139 static cl::opt<unsigned> TailDuplicatePlacementThreshold(
140     "tail-dup-placement-threshold",
141     cl::desc("Instruction cutoff for tail duplication during layout. "
142              "Tail merging during layout is forced to have a threshold "
143              "that won't conflict."), cl::init(2),
144     cl::Hidden);
145 
146 extern cl::opt<unsigned> StaticLikelyProb;
147 extern cl::opt<unsigned> ProfileLikelyProb;
148 
149 namespace {
150 class BlockChain;
151 /// \brief Type for our function-wide basic block -> block chain mapping.
152 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
153 }
154 
155 namespace {
156 /// \brief A chain of blocks which will be laid out contiguously.
157 ///
158 /// This is the datastructure representing a chain of consecutive blocks that
159 /// are profitable to layout together in order to maximize fallthrough
160 /// probabilities and code locality. We also can use a block chain to represent
161 /// a sequence of basic blocks which have some external (correctness)
162 /// requirement for sequential layout.
163 ///
164 /// Chains can be built around a single basic block and can be merged to grow
165 /// them. They participate in a block-to-chain mapping, which is updated
166 /// automatically as chains are merged together.
167 class BlockChain {
168   /// \brief The sequence of blocks belonging to this chain.
169   ///
170   /// This is the sequence of blocks for a particular chain. These will be laid
171   /// out in-order within the function.
172   SmallVector<MachineBasicBlock *, 4> Blocks;
173 
174   /// \brief A handle to the function-wide basic block to block chain mapping.
175   ///
176   /// This is retained in each block chain to simplify the computation of child
177   /// block chains for SCC-formation and iteration. We store the edges to child
178   /// basic blocks, and map them back to their associated chains using this
179   /// structure.
180   BlockToChainMapType &BlockToChain;
181 
182 public:
183   /// \brief Construct a new BlockChain.
184   ///
185   /// This builds a new block chain representing a single basic block in the
186   /// function. It also registers itself as the chain that block participates
187   /// in with the BlockToChain mapping.
188   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
189       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
190     assert(BB && "Cannot create a chain with a null basic block");
191     BlockToChain[BB] = this;
192   }
193 
194   /// \brief Iterator over blocks within the chain.
195   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
196 
197   /// \brief Beginning of blocks within the chain.
198   iterator begin() { return Blocks.begin(); }
199 
200   /// \brief End of blocks within the chain.
201   iterator end() { return Blocks.end(); }
202 
203   bool remove(MachineBasicBlock* BB) {
204     for(iterator i = begin(); i != end(); ++i) {
205       if (*i == BB) {
206         Blocks.erase(i);
207         return true;
208       }
209     }
210     return false;
211   }
212 
213   /// \brief Merge a block chain into this one.
214   ///
215   /// This routine merges a block chain into this one. It takes care of forming
216   /// a contiguous sequence of basic blocks, updating the edge list, and
217   /// updating the block -> chain mapping. It does not free or tear down the
218   /// old chain, but the old chain's block list is no longer valid.
219   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
220     assert(BB);
221     assert(!Blocks.empty());
222 
223     // Fast path in case we don't have a chain already.
224     if (!Chain) {
225       assert(!BlockToChain[BB]);
226       Blocks.push_back(BB);
227       BlockToChain[BB] = this;
228       return;
229     }
230 
231     assert(BB == *Chain->begin());
232     assert(Chain->begin() != Chain->end());
233 
234     // Update the incoming blocks to point to this chain, and add them to the
235     // chain structure.
236     for (MachineBasicBlock *ChainBB : *Chain) {
237       Blocks.push_back(ChainBB);
238       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
239       BlockToChain[ChainBB] = this;
240     }
241   }
242 
243 #ifndef NDEBUG
244   /// \brief Dump the blocks in this chain.
245   LLVM_DUMP_METHOD void dump() {
246     for (MachineBasicBlock *MBB : *this)
247       MBB->dump();
248   }
249 #endif // NDEBUG
250 
251   /// \brief Count of predecessors of any block within the chain which have not
252   /// yet been scheduled.  In general, we will delay scheduling this chain
253   /// until those predecessors are scheduled (or we find a sufficiently good
254   /// reason to override this heuristic.)  Note that when forming loop chains,
255   /// blocks outside the loop are ignored and treated as if they were already
256   /// scheduled.
257   ///
258   /// Note: This field is reinitialized multiple times - once for each loop,
259   /// and then once for the function as a whole.
260   unsigned UnscheduledPredecessors;
261 };
262 }
263 
264 namespace {
265 class MachineBlockPlacement : public MachineFunctionPass {
266   /// \brief A typedef for a block filter set.
267   typedef SmallSetVector<MachineBasicBlock *, 16> BlockFilterSet;
268 
269   /// \brief work lists of blocks that are ready to be laid out
270   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
271   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
272 
273   /// \brief Machine Function
274   MachineFunction *F;
275 
276   /// \brief A handle to the branch probability pass.
277   const MachineBranchProbabilityInfo *MBPI;
278 
279   /// \brief A handle to the function-wide block frequency pass.
280   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
281 
282   /// \brief A handle to the loop info.
283   MachineLoopInfo *MLI;
284 
285   /// \brief Preferred loop exit.
286   /// Member variable for convenience. It may be removed by duplication deep
287   /// in the call stack.
288   MachineBasicBlock *PreferredLoopExit;
289 
290   /// \brief A handle to the target's instruction info.
291   const TargetInstrInfo *TII;
292 
293   /// \brief A handle to the target's lowering info.
294   const TargetLoweringBase *TLI;
295 
296   /// \brief A handle to the post dominator tree.
297   MachineDominatorTree *MDT;
298 
299   /// \brief Duplicator used to duplicate tails during placement.
300   ///
301   /// Placement decisions can open up new tail duplication opportunities, but
302   /// since tail duplication affects placement decisions of later blocks, it
303   /// must be done inline.
304   TailDuplicator TailDup;
305 
306   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
307   /// all terminators of the MachineFunction.
308   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
309 
310   /// \brief Allocator and owner of BlockChain structures.
311   ///
312   /// We build BlockChains lazily while processing the loop structure of
313   /// a function. To reduce malloc traffic, we allocate them using this
314   /// slab-like allocator, and destroy them after the pass completes. An
315   /// important guarantee is that this allocator produces stable pointers to
316   /// the chains.
317   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
318 
319   /// \brief Function wide BasicBlock to BlockChain mapping.
320   ///
321   /// This mapping allows efficiently moving from any given basic block to the
322   /// BlockChain it participates in, if any. We use it to, among other things,
323   /// allow implicitly defining edges between chains as the existing edges
324   /// between basic blocks.
325   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
326 
327 #ifndef NDEBUG
328   /// The set of basic blocks that have terminators that cannot be fully
329   /// analyzed.  These basic blocks cannot be re-ordered safely by
330   /// MachineBlockPlacement, and we must preserve physical layout of these
331   /// blocks and their successors through the pass.
332   SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
333 #endif
334 
335   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
336   /// if the count goes to 0, add them to the appropriate work list.
337   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
338                            const BlockFilterSet *BlockFilter = nullptr);
339 
340   /// Decrease the UnscheduledPredecessors count for a single block, and
341   /// if the count goes to 0, add them to the appropriate work list.
342   void markBlockSuccessors(
343       BlockChain &Chain, MachineBasicBlock *BB, MachineBasicBlock *LoopHeaderBB,
344       const BlockFilterSet *BlockFilter = nullptr);
345 
346 
347   BranchProbability
348   collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain,
349                           const BlockFilterSet *BlockFilter,
350                           SmallVector<MachineBasicBlock *, 4> &Successors);
351   bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ,
352                                  BlockChain &Chain,
353                                  const BlockFilterSet *BlockFilter,
354                                  BranchProbability SuccProb,
355                                  BranchProbability HotProb);
356   bool repeatedlyTailDuplicateBlock(
357       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
358       MachineBasicBlock *LoopHeaderBB,
359       BlockChain &Chain, BlockFilterSet *BlockFilter,
360       MachineFunction::iterator &PrevUnplacedBlockIt);
361   bool maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred,
362                                const BlockChain &Chain,
363                                BlockFilterSet *BlockFilter,
364                                MachineFunction::iterator &PrevUnplacedBlockIt,
365                                bool &DuplicatedToPred);
366   bool
367   hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ,
368                              BlockChain &SuccChain, BranchProbability SuccProb,
369                              BranchProbability RealSuccProb, BlockChain &Chain,
370                              const BlockFilterSet *BlockFilter);
371   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
372                                          BlockChain &Chain,
373                                          const BlockFilterSet *BlockFilter);
374   MachineBasicBlock *
375   selectBestCandidateBlock(BlockChain &Chain,
376                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
377   MachineBasicBlock *
378   getFirstUnplacedBlock(const BlockChain &PlacedChain,
379                         MachineFunction::iterator &PrevUnplacedBlockIt,
380                         const BlockFilterSet *BlockFilter);
381 
382   /// \brief Add a basic block to the work list if it is appropriate.
383   ///
384   /// If the optional parameter BlockFilter is provided, only MBB
385   /// present in the set will be added to the worklist. If nullptr
386   /// is provided, no filtering occurs.
387   void fillWorkLists(MachineBasicBlock *MBB,
388                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
389                      const BlockFilterSet *BlockFilter);
390   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
391                   BlockFilterSet *BlockFilter = nullptr);
392   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
393                                      const BlockFilterSet &LoopBlockSet);
394   MachineBasicBlock *findBestLoopExit(MachineLoop &L,
395                                       const BlockFilterSet &LoopBlockSet);
396   BlockFilterSet collectLoopBlockSet(MachineLoop &L);
397   void buildLoopChains(MachineLoop &L);
398   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
399                   const BlockFilterSet &LoopBlockSet);
400   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
401                              const BlockFilterSet &LoopBlockSet);
402   void collectMustExecuteBBs();
403   void buildCFGChains();
404   void optimizeBranches();
405   void alignBlocks();
406   bool shouldTailDuplicate(MachineBasicBlock *BB);
407   bool canTailDuplicateUnplacedPreds(
408       MachineBasicBlock *BB, MachineBasicBlock *Succ,
409       BlockChain &Chain, const BlockFilterSet *BlockFilter);
410 
411 public:
412   static char ID; // Pass identification, replacement for typeid
413   MachineBlockPlacement() : MachineFunctionPass(ID) {
414     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
415   }
416 
417   bool runOnMachineFunction(MachineFunction &F) override;
418 
419   void getAnalysisUsage(AnalysisUsage &AU) const override {
420     AU.addRequired<MachineBranchProbabilityInfo>();
421     AU.addRequired<MachineBlockFrequencyInfo>();
422     AU.addRequired<MachineDominatorTree>();
423     AU.addRequired<MachineLoopInfo>();
424     AU.addRequired<TargetPassConfig>();
425     MachineFunctionPass::getAnalysisUsage(AU);
426   }
427 };
428 }
429 
430 char MachineBlockPlacement::ID = 0;
431 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
432 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
433                       "Branch Probability Basic Block Placement", false, false)
434 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
435 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
436 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
437 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
438 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
439                     "Branch Probability Basic Block Placement", false, false)
440 
441 #ifndef NDEBUG
442 /// \brief Helper to print the name of a MBB.
443 ///
444 /// Only used by debug logging.
445 static std::string getBlockName(MachineBasicBlock *BB) {
446   std::string Result;
447   raw_string_ostream OS(Result);
448   OS << "BB#" << BB->getNumber();
449   OS << " ('" << BB->getName() << "')";
450   OS.flush();
451   return Result;
452 }
453 #endif
454 
455 /// \brief Mark a chain's successors as having one fewer preds.
456 ///
457 /// When a chain is being merged into the "placed" chain, this routine will
458 /// quickly walk the successors of each block in the chain and mark them as
459 /// having one fewer active predecessor. It also adds any successors of this
460 /// chain which reach the zero-predecessor state to the appropriate worklist.
461 void MachineBlockPlacement::markChainSuccessors(
462     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
463     const BlockFilterSet *BlockFilter) {
464   // Walk all the blocks in this chain, marking their successors as having
465   // a predecessor placed.
466   for (MachineBasicBlock *MBB : Chain) {
467     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
468   }
469 }
470 
471 /// \brief Mark a single block's successors as having one fewer preds.
472 ///
473 /// Under normal circumstances, this is only called by markChainSuccessors,
474 /// but if a block that was to be placed is completely tail-duplicated away,
475 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
476 /// for just that block.
477 void MachineBlockPlacement::markBlockSuccessors(
478     BlockChain &Chain, MachineBasicBlock *MBB, MachineBasicBlock *LoopHeaderBB,
479     const BlockFilterSet *BlockFilter) {
480   // Add any successors for which this is the only un-placed in-loop
481   // predecessor to the worklist as a viable candidate for CFG-neutral
482   // placement. No subsequent placement of this block will violate the CFG
483   // shape, so we get to use heuristics to choose a favorable placement.
484   for (MachineBasicBlock *Succ : MBB->successors()) {
485     if (BlockFilter && !BlockFilter->count(Succ))
486       continue;
487     BlockChain &SuccChain = *BlockToChain[Succ];
488     // Disregard edges within a fixed chain, or edges to the loop header.
489     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
490       continue;
491 
492     // This is a cross-chain edge that is within the loop, so decrement the
493     // loop predecessor count of the destination chain.
494     if (SuccChain.UnscheduledPredecessors == 0 ||
495         --SuccChain.UnscheduledPredecessors > 0)
496       continue;
497 
498     auto *NewBB = *SuccChain.begin();
499     if (NewBB->isEHPad())
500       EHPadWorkList.push_back(NewBB);
501     else
502       BlockWorkList.push_back(NewBB);
503   }
504 }
505 
506 /// This helper function collects the set of successors of block
507 /// \p BB that are allowed to be its layout successors, and return
508 /// the total branch probability of edges from \p BB to those
509 /// blocks.
510 BranchProbability MachineBlockPlacement::collectViableSuccessors(
511     MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter,
512     SmallVector<MachineBasicBlock *, 4> &Successors) {
513   // Adjust edge probabilities by excluding edges pointing to blocks that is
514   // either not in BlockFilter or is already in the current chain. Consider the
515   // following CFG:
516   //
517   //     --->A
518   //     |  / \
519   //     | B   C
520   //     |  \ / \
521   //     ----D   E
522   //
523   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
524   // A->C is chosen as a fall-through, D won't be selected as a successor of C
525   // due to CFG constraint (the probability of C->D is not greater than
526   // HotProb to break top-order). If we exclude E that is not in BlockFilter
527   // when calculating the  probability of C->D, D will be selected and we
528   // will get A C D B as the layout of this loop.
529   auto AdjustedSumProb = BranchProbability::getOne();
530   for (MachineBasicBlock *Succ : BB->successors()) {
531     bool SkipSucc = false;
532     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
533       SkipSucc = true;
534     } else {
535       BlockChain *SuccChain = BlockToChain[Succ];
536       if (SuccChain == &Chain) {
537         SkipSucc = true;
538       } else if (Succ != *SuccChain->begin()) {
539         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
540         continue;
541       }
542     }
543     if (SkipSucc)
544       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
545     else
546       Successors.push_back(Succ);
547   }
548 
549   return AdjustedSumProb;
550 }
551 
552 /// The helper function returns the branch probability that is adjusted
553 /// or normalized over the new total \p AdjustedSumProb.
554 static BranchProbability
555 getAdjustedProbability(BranchProbability OrigProb,
556                        BranchProbability AdjustedSumProb) {
557   BranchProbability SuccProb;
558   uint32_t SuccProbN = OrigProb.getNumerator();
559   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
560   if (SuccProbN >= SuccProbD)
561     SuccProb = BranchProbability::getOne();
562   else
563     SuccProb = BranchProbability(SuccProbN, SuccProbD);
564 
565   return SuccProb;
566 }
567 
568 /// Check if a block should be tail duplicated.
569 /// \p BB Block to check.
570 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
571   // Blocks with single successors don't create additional fallthrough
572   // opportunities. Don't duplicate them. TODO: When conditional exits are
573   // analyzable, allow them to be duplicated.
574   bool IsSimple = TailDup.isSimpleBB(BB);
575 
576   if (BB->succ_size() == 1)
577     return false;
578   return TailDup.shouldTailDuplicate(IsSimple, *BB);
579 }
580 
581 /// When the option TailDupPlacement is on, this method checks if the
582 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
583 /// into all of its unplaced, unfiltered predecessors, that are not BB. In
584 /// addition we keep a set of blocks that have been tail-duplicated into and
585 /// allow those blocks to be unplaced as well. This allows the creation of a
586 /// second (larger) spine and a short fallthrough spine.
587 /// We also identify blocks with the CFG that would have been produced by
588 /// tail-duplication and lay them out in the same manner.
589 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
590     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
591     const BlockFilterSet *BlockFilter) {
592   if (!shouldTailDuplicate(Succ))
593     return false;
594 
595   for (MachineBasicBlock *Pred : Succ->predecessors()) {
596     // Make sure all unplaced and unfiltered predecessors can be
597     // tail-duplicated into.
598     if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
599         || BlockToChain[Pred] == &Chain)
600       continue;
601     if (!TailDup.canTailDuplicate(Succ, Pred))
602       return false;
603   }
604   return true;
605 }
606 
607 /// When the option OutlineOptionalBranches is on, this method
608 /// checks if the fallthrough candidate block \p Succ (of block
609 /// \p BB) also has other unscheduled predecessor blocks which
610 /// are also successors of \p BB (forming triangular shape CFG).
611 /// If none of such predecessors are small, it returns true.
612 /// The caller can choose to select \p Succ as the layout successors
613 /// so that \p Succ's predecessors (optional branches) can be
614 /// outlined.
615 /// FIXME: fold this with more general layout cost analysis.
616 bool MachineBlockPlacement::shouldPredBlockBeOutlined(
617     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
618     const BlockFilterSet *BlockFilter, BranchProbability SuccProb,
619     BranchProbability HotProb) {
620   if (!OutlineOptionalBranches)
621     return false;
622   // If we outline optional branches, look whether Succ is unavoidable, i.e.
623   // dominates all terminators of the MachineFunction. If it does, other
624   // successors must be optional. Don't do this for cold branches.
625   if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
626     for (MachineBasicBlock *Pred : Succ->predecessors()) {
627       // Check whether there is an unplaced optional branch.
628       if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
629           BlockToChain[Pred] == &Chain)
630         continue;
631       // Check whether the optional branch has exactly one BB.
632       if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
633         continue;
634       // Check whether the optional branch is small.
635       if (Pred->size() < OutlineOptionalThreshold)
636         return false;
637     }
638     return true;
639   } else
640     return false;
641 }
642 
643 // When profile is not present, return the StaticLikelyProb.
644 // When profile is available, we need to handle the triangle-shape CFG.
645 static BranchProbability getLayoutSuccessorProbThreshold(
646       MachineBasicBlock *BB) {
647   if (!BB->getParent()->getFunction()->getEntryCount())
648     return BranchProbability(StaticLikelyProb, 100);
649   if (BB->succ_size() == 2) {
650     const MachineBasicBlock *Succ1 = *BB->succ_begin();
651     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
652     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
653       /* See case 1 below for the cost analysis. For BB->Succ to
654        * be taken with smaller cost, the following needs to hold:
655        *   Prob(BB->Succ) > 2* Prob(BB->Pred)
656        *   So the threshold T
657        *   T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1,
658        * We have  T + T/2 = 1, i.e. T = 2/3. Also adding user specified
659        * branch bias, we have
660        *   T = (2/3)*(ProfileLikelyProb/50)
661        *     = (2*ProfileLikelyProb)/150)
662        */
663       return BranchProbability(2 * ProfileLikelyProb, 150);
664     }
665   }
666   return BranchProbability(ProfileLikelyProb, 100);
667 }
668 
669 /// Checks to see if the layout candidate block \p Succ has a better layout
670 /// predecessor than \c BB. If yes, returns true.
671 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
672     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain,
673     BranchProbability SuccProb, BranchProbability RealSuccProb,
674     BlockChain &Chain, const BlockFilterSet *BlockFilter) {
675 
676   // There isn't a better layout when there are no unscheduled predecessors.
677   if (SuccChain.UnscheduledPredecessors == 0)
678     return false;
679 
680   // As a heuristic, if we can duplicate the block into all its unscheduled
681   // predecessors, we return false.
682   if (TailDupPlacement
683       && canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter))
684     return false;
685 
686   // There are two basic scenarios here:
687   // -------------------------------------
688   // Case 1: triangular shape CFG (if-then):
689   //     BB
690   //     | \
691   //     |  \
692   //     |   Pred
693   //     |   /
694   //     Succ
695   // In this case, we are evaluating whether to select edge -> Succ, e.g.
696   // set Succ as the layout successor of BB. Picking Succ as BB's
697   // successor breaks the CFG constraints (FIXME: define these constraints).
698   // With this layout, Pred BB
699   // is forced to be outlined, so the overall cost will be cost of the
700   // branch taken from BB to Pred, plus the cost of back taken branch
701   // from Pred to Succ, as well as the additional cost associated
702   // with the needed unconditional jump instruction from Pred To Succ.
703 
704   // The cost of the topological order layout is the taken branch cost
705   // from BB to Succ, so to make BB->Succ a viable candidate, the following
706   // must hold:
707   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
708   //      < freq(BB->Succ) *  taken_branch_cost.
709   // Ignoring unconditional jump cost, we get
710   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
711   //    prob(BB->Succ) > 2 * prob(BB->Pred)
712   //
713   // When real profile data is available, we can precisely compute the
714   // probability threshold that is needed for edge BB->Succ to be considered.
715   // Without profile data, the heuristic requires the branch bias to be
716   // a lot larger to make sure the signal is very strong (e.g. 80% default).
717   // -----------------------------------------------------------------
718   // Case 2: diamond like CFG (if-then-else):
719   //     S
720   //    / \
721   //   |   \
722   //  BB    Pred
723   //   \    /
724   //    Succ
725   //    ..
726   //
727   // The current block is BB and edge BB->Succ is now being evaluated.
728   // Note that edge S->BB was previously already selected because
729   // prob(S->BB) > prob(S->Pred).
730   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
731   // choose Pred, we will have a topological ordering as shown on the left
732   // in the picture below. If we choose Succ, we have the solution as shown
733   // on the right:
734   //
735   //   topo-order:
736   //
737   //       S-----                             ---S
738   //       |    |                             |  |
739   //    ---BB   |                             |  BB
740   //    |       |                             |  |
741   //    |  pred--                             |  Succ--
742   //    |  |                                  |       |
743   //    ---succ                               ---pred--
744   //
745   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
746   //      = freq(S->Pred) + freq(S->BB)
747   //
748   // If we have profile data (i.e, branch probabilities can be trusted), the
749   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
750   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
751   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
752   // means the cost of topological order is greater.
753   // When profile data is not available, however, we need to be more
754   // conservative. If the branch prediction is wrong, breaking the topo-order
755   // will actually yield a layout with large cost. For this reason, we need
756   // strong biased branch at block S with Prob(S->BB) in order to select
757   // BB->Succ. This is equivalent to looking the CFG backward with backward
758   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
759   // profile data).
760   // --------------------------------------------------------------------------
761   // Case 3: forked diamond
762   //       S
763   //      / \
764   //     /   \
765   //   BB    Pred
766   //   | \   / |
767   //   |  \ /  |
768   //   |   X   |
769   //   |  / \  |
770   //   | /   \ |
771   //   S1     S2
772   //
773   // The current block is BB and edge BB->S1 is now being evaluated.
774   // As above S->BB was already selected because
775   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
776   //
777   // topo-order:
778   //
779   //     S-------|                     ---S
780   //     |       |                     |  |
781   //  ---BB      |                     |  BB
782   //  |          |                     |  |
783   //  |  Pred----|                     |  S1----
784   //  |  |                             |       |
785   //  --(S1 or S2)                     ---Pred--
786   //
787   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
788   //    + min(freq(Pred->S1), freq(Pred->S2))
789   // Non-topo-order cost:
790   // In the worst case, S2 will not get laid out after Pred.
791   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
792   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
793   // is 0. Then the non topo layout is better when
794   // freq(S->Pred) < freq(BB->S1).
795   // This is exactly what is checked below.
796   // Note there are other shapes that apply (Pred may not be a single block,
797   // but they all fit this general pattern.)
798   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
799 
800   // Make sure that a hot successor doesn't have a globally more
801   // important predecessor.
802   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
803   bool BadCFGConflict = false;
804 
805   for (MachineBasicBlock *Pred : Succ->predecessors()) {
806     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
807         (BlockFilter && !BlockFilter->count(Pred)) ||
808         BlockToChain[Pred] == &Chain)
809       continue;
810     // Do backward checking.
811     // For all cases above, we need a backward checking to filter out edges that
812     // are not 'strongly' biased. With profile data available, the check is
813     // mostly redundant for case 2 (when threshold prob is set at 50%) unless S
814     // has more than two successors.
815     // BB  Pred
816     //  \ /
817     //  Succ
818     // We select edge BB->Succ if
819     //      freq(BB->Succ) > freq(Succ) * HotProb
820     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
821     //      HotProb
822     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
823     // Case 1 is covered too, because the first equation reduces to:
824     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
825     BlockFrequency PredEdgeFreq =
826         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
827     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
828       BadCFGConflict = true;
829       break;
830     }
831   }
832 
833   if (BadCFGConflict) {
834     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
835                  << " (prob) (non-cold CFG conflict)\n");
836     return true;
837   }
838 
839   return false;
840 }
841 
842 /// \brief Select the best successor for a block.
843 ///
844 /// This looks across all successors of a particular block and attempts to
845 /// select the "best" one to be the layout successor. It only considers direct
846 /// successors which also pass the block filter. It will attempt to avoid
847 /// breaking CFG structure, but cave and break such structures in the case of
848 /// very hot successor edges.
849 ///
850 /// \returns The best successor block found, or null if none are viable.
851 MachineBasicBlock *
852 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
853                                            BlockChain &Chain,
854                                            const BlockFilterSet *BlockFilter) {
855   const BranchProbability HotProb(StaticLikelyProb, 100);
856 
857   MachineBasicBlock *BestSucc = nullptr;
858   auto BestProb = BranchProbability::getZero();
859 
860   SmallVector<MachineBasicBlock *, 4> Successors;
861   auto AdjustedSumProb =
862       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
863 
864   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
865   for (MachineBasicBlock *Succ : Successors) {
866     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
867     BranchProbability SuccProb =
868         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
869 
870     // This heuristic is off by default.
871     if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
872                                   HotProb))
873       return Succ;
874 
875     BlockChain &SuccChain = *BlockToChain[Succ];
876     // Skip the edge \c BB->Succ if block \c Succ has a better layout
877     // predecessor that yields lower global cost.
878     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
879                                    Chain, BlockFilter))
880       continue;
881 
882     DEBUG(
883         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
884                << SuccProb
885                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
886                << "\n");
887 
888     if (BestSucc && BestProb >= SuccProb) {
889       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
890       continue;
891     }
892 
893     DEBUG(dbgs() << "    Setting it as best candidate\n");
894     BestSucc = Succ;
895     BestProb = SuccProb;
896   }
897   if (BestSucc)
898     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc) << "\n");
899 
900   return BestSucc;
901 }
902 
903 /// \brief Select the best block from a worklist.
904 ///
905 /// This looks through the provided worklist as a list of candidate basic
906 /// blocks and select the most profitable one to place. The definition of
907 /// profitable only really makes sense in the context of a loop. This returns
908 /// the most frequently visited block in the worklist, which in the case of
909 /// a loop, is the one most desirable to be physically close to the rest of the
910 /// loop body in order to improve i-cache behavior.
911 ///
912 /// \returns The best block found, or null if none are viable.
913 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
914     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
915   // Once we need to walk the worklist looking for a candidate, cleanup the
916   // worklist of already placed entries.
917   // FIXME: If this shows up on profiles, it could be folded (at the cost of
918   // some code complexity) into the loop below.
919   WorkList.erase(remove_if(WorkList,
920                            [&](MachineBasicBlock *BB) {
921                              return BlockToChain.lookup(BB) == &Chain;
922                            }),
923                  WorkList.end());
924 
925   if (WorkList.empty())
926     return nullptr;
927 
928   bool IsEHPad = WorkList[0]->isEHPad();
929 
930   MachineBasicBlock *BestBlock = nullptr;
931   BlockFrequency BestFreq;
932   for (MachineBasicBlock *MBB : WorkList) {
933     assert(MBB->isEHPad() == IsEHPad);
934 
935     BlockChain &SuccChain = *BlockToChain[MBB];
936     if (&SuccChain == &Chain)
937       continue;
938 
939     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
940 
941     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
942     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
943           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
944 
945     // For ehpad, we layout the least probable first as to avoid jumping back
946     // from least probable landingpads to more probable ones.
947     //
948     // FIXME: Using probability is probably (!) not the best way to achieve
949     // this. We should probably have a more principled approach to layout
950     // cleanup code.
951     //
952     // The goal is to get:
953     //
954     //                 +--------------------------+
955     //                 |                          V
956     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
957     //
958     // Rather than:
959     //
960     //                 +-------------------------------------+
961     //                 V                                     |
962     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
963     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
964       continue;
965 
966     BestBlock = MBB;
967     BestFreq = CandidateFreq;
968   }
969 
970   return BestBlock;
971 }
972 
973 /// \brief Retrieve the first unplaced basic block.
974 ///
975 /// This routine is called when we are unable to use the CFG to walk through
976 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
977 /// We walk through the function's blocks in order, starting from the
978 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
979 /// re-scanning the entire sequence on repeated calls to this routine.
980 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
981     const BlockChain &PlacedChain,
982     MachineFunction::iterator &PrevUnplacedBlockIt,
983     const BlockFilterSet *BlockFilter) {
984   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
985        ++I) {
986     if (BlockFilter && !BlockFilter->count(&*I))
987       continue;
988     if (BlockToChain[&*I] != &PlacedChain) {
989       PrevUnplacedBlockIt = I;
990       // Now select the head of the chain to which the unplaced block belongs
991       // as the block to place. This will force the entire chain to be placed,
992       // and satisfies the requirements of merging chains.
993       return *BlockToChain[&*I]->begin();
994     }
995   }
996   return nullptr;
997 }
998 
999 void MachineBlockPlacement::fillWorkLists(
1000     MachineBasicBlock *MBB,
1001     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1002     const BlockFilterSet *BlockFilter = nullptr) {
1003   BlockChain &Chain = *BlockToChain[MBB];
1004   if (!UpdatedPreds.insert(&Chain).second)
1005     return;
1006 
1007   assert(Chain.UnscheduledPredecessors == 0);
1008   for (MachineBasicBlock *ChainBB : Chain) {
1009     assert(BlockToChain[ChainBB] == &Chain);
1010     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1011       if (BlockFilter && !BlockFilter->count(Pred))
1012         continue;
1013       if (BlockToChain[Pred] == &Chain)
1014         continue;
1015       ++Chain.UnscheduledPredecessors;
1016     }
1017   }
1018 
1019   if (Chain.UnscheduledPredecessors != 0)
1020     return;
1021 
1022   MBB = *Chain.begin();
1023   if (MBB->isEHPad())
1024     EHPadWorkList.push_back(MBB);
1025   else
1026     BlockWorkList.push_back(MBB);
1027 }
1028 
1029 void MachineBlockPlacement::buildChain(
1030     MachineBasicBlock *BB, BlockChain &Chain,
1031     BlockFilterSet *BlockFilter) {
1032   assert(BB && "BB must not be null.\n");
1033   assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n");
1034   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1035 
1036   MachineBasicBlock *LoopHeaderBB = BB;
1037   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1038   BB = *std::prev(Chain.end());
1039   for (;;) {
1040     assert(BB && "null block found at end of chain in loop.");
1041     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1042     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1043 
1044 
1045     // Look for the best viable successor if there is one to place immediately
1046     // after this block.
1047     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
1048 
1049     // If an immediate successor isn't available, look for the best viable
1050     // block among those we've identified as not violating the loop's CFG at
1051     // this point. This won't be a fallthrough, but it will increase locality.
1052     if (!BestSucc)
1053       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1054     if (!BestSucc)
1055       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1056 
1057     if (!BestSucc) {
1058       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1059       if (!BestSucc)
1060         break;
1061 
1062       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1063                       "layout successor until the CFG reduces\n");
1064     }
1065 
1066     // Placement may have changed tail duplication opportunities.
1067     // Check for that now.
1068     if (TailDupPlacement && BestSucc) {
1069       // If the chosen successor was duplicated into all its predecessors,
1070       // don't bother laying it out, just go round the loop again with BB as
1071       // the chain end.
1072       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1073                                        BlockFilter, PrevUnplacedBlockIt))
1074         continue;
1075     }
1076 
1077     // Place this block, updating the datastructures to reflect its placement.
1078     BlockChain &SuccChain = *BlockToChain[BestSucc];
1079     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1080     // we selected a successor that didn't fit naturally into the CFG.
1081     SuccChain.UnscheduledPredecessors = 0;
1082     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1083                  << getBlockName(BestSucc) << "\n");
1084     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1085     Chain.merge(BestSucc, &SuccChain);
1086     BB = *std::prev(Chain.end());
1087   }
1088 
1089   DEBUG(dbgs() << "Finished forming chain for header block "
1090                << getBlockName(*Chain.begin()) << "\n");
1091 }
1092 
1093 /// \brief Find the best loop top block for layout.
1094 ///
1095 /// Look for a block which is strictly better than the loop header for laying
1096 /// out at the top of the loop. This looks for one and only one pattern:
1097 /// a latch block with no conditional exit. This block will cause a conditional
1098 /// jump around it or will be the bottom of the loop if we lay it out in place,
1099 /// but if it it doesn't end up at the bottom of the loop for any reason,
1100 /// rotation alone won't fix it. Because such a block will always result in an
1101 /// unconditional jump (for the backedge) rotating it in front of the loop
1102 /// header is always profitable.
1103 MachineBasicBlock *
1104 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
1105                                        const BlockFilterSet &LoopBlockSet) {
1106   // Placing the latch block before the header may introduce an extra branch
1107   // that skips this block the first time the loop is executed, which we want
1108   // to avoid when optimising for size.
1109   // FIXME: in theory there is a case that does not introduce a new branch,
1110   // i.e. when the layout predecessor does not fallthrough to the loop header.
1111   // In practice this never happens though: there always seems to be a preheader
1112   // that can fallthrough and that is also placed before the header.
1113   if (F->getFunction()->optForSize())
1114     return L.getHeader();
1115 
1116   // Check that the header hasn't been fused with a preheader block due to
1117   // crazy branches. If it has, we need to start with the header at the top to
1118   // prevent pulling the preheader into the loop body.
1119   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1120   if (!LoopBlockSet.count(*HeaderChain.begin()))
1121     return L.getHeader();
1122 
1123   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
1124                << "\n");
1125 
1126   BlockFrequency BestPredFreq;
1127   MachineBasicBlock *BestPred = nullptr;
1128   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1129     if (!LoopBlockSet.count(Pred))
1130       continue;
1131     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
1132                  << Pred->succ_size() << " successors, ";
1133           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1134     if (Pred->succ_size() > 1)
1135       continue;
1136 
1137     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1138     if (!BestPred || PredFreq > BestPredFreq ||
1139         (!(PredFreq < BestPredFreq) &&
1140          Pred->isLayoutSuccessor(L.getHeader()))) {
1141       BestPred = Pred;
1142       BestPredFreq = PredFreq;
1143     }
1144   }
1145 
1146   // If no direct predecessor is fine, just use the loop header.
1147   if (!BestPred) {
1148     DEBUG(dbgs() << "    final top unchanged\n");
1149     return L.getHeader();
1150   }
1151 
1152   // Walk backwards through any straight line of predecessors.
1153   while (BestPred->pred_size() == 1 &&
1154          (*BestPred->pred_begin())->succ_size() == 1 &&
1155          *BestPred->pred_begin() != L.getHeader())
1156     BestPred = *BestPred->pred_begin();
1157 
1158   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1159   return BestPred;
1160 }
1161 
1162 /// \brief Find the best loop exiting block for layout.
1163 ///
1164 /// This routine implements the logic to analyze the loop looking for the best
1165 /// block to layout at the top of the loop. Typically this is done to maximize
1166 /// fallthrough opportunities.
1167 MachineBasicBlock *
1168 MachineBlockPlacement::findBestLoopExit(MachineLoop &L,
1169                                         const BlockFilterSet &LoopBlockSet) {
1170   // We don't want to layout the loop linearly in all cases. If the loop header
1171   // is just a normal basic block in the loop, we want to look for what block
1172   // within the loop is the best one to layout at the top. However, if the loop
1173   // header has be pre-merged into a chain due to predecessors not having
1174   // analyzable branches, *and* the predecessor it is merged with is *not* part
1175   // of the loop, rotating the header into the middle of the loop will create
1176   // a non-contiguous range of blocks which is Very Bad. So start with the
1177   // header and only rotate if safe.
1178   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1179   if (!LoopBlockSet.count(*HeaderChain.begin()))
1180     return nullptr;
1181 
1182   BlockFrequency BestExitEdgeFreq;
1183   unsigned BestExitLoopDepth = 0;
1184   MachineBasicBlock *ExitingBB = nullptr;
1185   // If there are exits to outer loops, loop rotation can severely limit
1186   // fallthrough opportunities unless it selects such an exit. Keep a set of
1187   // blocks where rotating to exit with that block will reach an outer loop.
1188   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1189 
1190   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1191                << "\n");
1192   for (MachineBasicBlock *MBB : L.getBlocks()) {
1193     BlockChain &Chain = *BlockToChain[MBB];
1194     // Ensure that this block is at the end of a chain; otherwise it could be
1195     // mid-way through an inner loop or a successor of an unanalyzable branch.
1196     if (MBB != *std::prev(Chain.end()))
1197       continue;
1198 
1199     // Now walk the successors. We need to establish whether this has a viable
1200     // exiting successor and whether it has a viable non-exiting successor.
1201     // We store the old exiting state and restore it if a viable looping
1202     // successor isn't found.
1203     MachineBasicBlock *OldExitingBB = ExitingBB;
1204     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1205     bool HasLoopingSucc = false;
1206     for (MachineBasicBlock *Succ : MBB->successors()) {
1207       if (Succ->isEHPad())
1208         continue;
1209       if (Succ == MBB)
1210         continue;
1211       BlockChain &SuccChain = *BlockToChain[Succ];
1212       // Don't split chains, either this chain or the successor's chain.
1213       if (&Chain == &SuccChain) {
1214         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1215                      << getBlockName(Succ) << " (chain conflict)\n");
1216         continue;
1217       }
1218 
1219       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1220       if (LoopBlockSet.count(Succ)) {
1221         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1222                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1223         HasLoopingSucc = true;
1224         continue;
1225       }
1226 
1227       unsigned SuccLoopDepth = 0;
1228       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1229         SuccLoopDepth = ExitLoop->getLoopDepth();
1230         if (ExitLoop->contains(&L))
1231           BlocksExitingToOuterLoop.insert(MBB);
1232       }
1233 
1234       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1235       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1236                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1237             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1238       // Note that we bias this toward an existing layout successor to retain
1239       // incoming order in the absence of better information. The exit must have
1240       // a frequency higher than the current exit before we consider breaking
1241       // the layout.
1242       BranchProbability Bias(100 - ExitBlockBias, 100);
1243       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1244           ExitEdgeFreq > BestExitEdgeFreq ||
1245           (MBB->isLayoutSuccessor(Succ) &&
1246            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1247         BestExitEdgeFreq = ExitEdgeFreq;
1248         ExitingBB = MBB;
1249       }
1250     }
1251 
1252     if (!HasLoopingSucc) {
1253       // Restore the old exiting state, no viable looping successor was found.
1254       ExitingBB = OldExitingBB;
1255       BestExitEdgeFreq = OldBestExitEdgeFreq;
1256     }
1257   }
1258   // Without a candidate exiting block or with only a single block in the
1259   // loop, just use the loop header to layout the loop.
1260   if (!ExitingBB) {
1261     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1262     return nullptr;
1263   }
1264   if (L.getNumBlocks() == 1) {
1265     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1266     return nullptr;
1267   }
1268 
1269   // Also, if we have exit blocks which lead to outer loops but didn't select
1270   // one of them as the exiting block we are rotating toward, disable loop
1271   // rotation altogether.
1272   if (!BlocksExitingToOuterLoop.empty() &&
1273       !BlocksExitingToOuterLoop.count(ExitingBB))
1274     return nullptr;
1275 
1276   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1277   return ExitingBB;
1278 }
1279 
1280 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1281 ///
1282 /// Once we have built a chain, try to rotate it to line up the hot exit block
1283 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1284 /// branches. For example, if the loop has fallthrough into its header and out
1285 /// of its bottom already, don't rotate it.
1286 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1287                                        MachineBasicBlock *ExitingBB,
1288                                        const BlockFilterSet &LoopBlockSet) {
1289   if (!ExitingBB)
1290     return;
1291 
1292   MachineBasicBlock *Top = *LoopChain.begin();
1293   bool ViableTopFallthrough = false;
1294   for (MachineBasicBlock *Pred : Top->predecessors()) {
1295     BlockChain *PredChain = BlockToChain[Pred];
1296     if (!LoopBlockSet.count(Pred) &&
1297         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1298       ViableTopFallthrough = true;
1299       break;
1300     }
1301   }
1302 
1303   // If the header has viable fallthrough, check whether the current loop
1304   // bottom is a viable exiting block. If so, bail out as rotating will
1305   // introduce an unnecessary branch.
1306   if (ViableTopFallthrough) {
1307     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1308     for (MachineBasicBlock *Succ : Bottom->successors()) {
1309       BlockChain *SuccChain = BlockToChain[Succ];
1310       if (!LoopBlockSet.count(Succ) &&
1311           (!SuccChain || Succ == *SuccChain->begin()))
1312         return;
1313     }
1314   }
1315 
1316   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1317   if (ExitIt == LoopChain.end())
1318     return;
1319 
1320   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1321 }
1322 
1323 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1324 ///
1325 /// With profile data, we can determine the cost in terms of missed fall through
1326 /// opportunities when rotating a loop chain and select the best rotation.
1327 /// Basically, there are three kinds of cost to consider for each rotation:
1328 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1329 ///    the loop to the loop header.
1330 ///    2. The possibly missed fall through edges (if they exist) from the loop
1331 ///    exits to BB out of the loop.
1332 ///    3. The missed fall through edge (if it exists) from the last BB to the
1333 ///    first BB in the loop chain.
1334 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1335 ///  We select the best rotation with the smallest cost.
1336 void MachineBlockPlacement::rotateLoopWithProfile(
1337     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
1338   auto HeaderBB = L.getHeader();
1339   auto HeaderIter = find(LoopChain, HeaderBB);
1340   auto RotationPos = LoopChain.end();
1341 
1342   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1343 
1344   // A utility lambda that scales up a block frequency by dividing it by a
1345   // branch probability which is the reciprocal of the scale.
1346   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1347                                 unsigned Scale) -> BlockFrequency {
1348     if (Scale == 0)
1349       return 0;
1350     // Use operator / between BlockFrequency and BranchProbability to implement
1351     // saturating multiplication.
1352     return Freq / BranchProbability(1, Scale);
1353   };
1354 
1355   // Compute the cost of the missed fall-through edge to the loop header if the
1356   // chain head is not the loop header. As we only consider natural loops with
1357   // single header, this computation can be done only once.
1358   BlockFrequency HeaderFallThroughCost(0);
1359   for (auto *Pred : HeaderBB->predecessors()) {
1360     BlockChain *PredChain = BlockToChain[Pred];
1361     if (!LoopBlockSet.count(Pred) &&
1362         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1363       auto EdgeFreq =
1364           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1365       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1366       // If the predecessor has only an unconditional jump to the header, we
1367       // need to consider the cost of this jump.
1368       if (Pred->succ_size() == 1)
1369         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1370       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1371     }
1372   }
1373 
1374   // Here we collect all exit blocks in the loop, and for each exit we find out
1375   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1376   // as the sum of frequencies of exit edges we collect here, excluding the exit
1377   // edge from the tail of the loop chain.
1378   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1379   for (auto BB : LoopChain) {
1380     auto LargestExitEdgeProb = BranchProbability::getZero();
1381     for (auto *Succ : BB->successors()) {
1382       BlockChain *SuccChain = BlockToChain[Succ];
1383       if (!LoopBlockSet.count(Succ) &&
1384           (!SuccChain || Succ == *SuccChain->begin())) {
1385         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1386         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1387       }
1388     }
1389     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1390       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1391       ExitsWithFreq.emplace_back(BB, ExitFreq);
1392     }
1393   }
1394 
1395   // In this loop we iterate every block in the loop chain and calculate the
1396   // cost assuming the block is the head of the loop chain. When the loop ends,
1397   // we should have found the best candidate as the loop chain's head.
1398   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1399             EndIter = LoopChain.end();
1400        Iter != EndIter; Iter++, TailIter++) {
1401     // TailIter is used to track the tail of the loop chain if the block we are
1402     // checking (pointed by Iter) is the head of the chain.
1403     if (TailIter == LoopChain.end())
1404       TailIter = LoopChain.begin();
1405 
1406     auto TailBB = *TailIter;
1407 
1408     // Calculate the cost by putting this BB to the top.
1409     BlockFrequency Cost = 0;
1410 
1411     // If the current BB is the loop header, we need to take into account the
1412     // cost of the missed fall through edge from outside of the loop to the
1413     // header.
1414     if (Iter != HeaderIter)
1415       Cost += HeaderFallThroughCost;
1416 
1417     // Collect the loop exit cost by summing up frequencies of all exit edges
1418     // except the one from the chain tail.
1419     for (auto &ExitWithFreq : ExitsWithFreq)
1420       if (TailBB != ExitWithFreq.first)
1421         Cost += ExitWithFreq.second;
1422 
1423     // The cost of breaking the once fall-through edge from the tail to the top
1424     // of the loop chain. Here we need to consider three cases:
1425     // 1. If the tail node has only one successor, then we will get an
1426     //    additional jmp instruction. So the cost here is (MisfetchCost +
1427     //    JumpInstCost) * tail node frequency.
1428     // 2. If the tail node has two successors, then we may still get an
1429     //    additional jmp instruction if the layout successor after the loop
1430     //    chain is not its CFG successor. Note that the more frequently executed
1431     //    jmp instruction will be put ahead of the other one. Assume the
1432     //    frequency of those two branches are x and y, where x is the frequency
1433     //    of the edge to the chain head, then the cost will be
1434     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1435     // 3. If the tail node has more than two successors (this rarely happens),
1436     //    we won't consider any additional cost.
1437     if (TailBB->isSuccessor(*Iter)) {
1438       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1439       if (TailBB->succ_size() == 1)
1440         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1441                                     MisfetchCost + JumpInstCost);
1442       else if (TailBB->succ_size() == 2) {
1443         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1444         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1445         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1446                                   ? TailBBFreq * TailToHeadProb.getCompl()
1447                                   : TailToHeadFreq;
1448         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1449                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1450       }
1451     }
1452 
1453     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1454                  << " to the top: " << Cost.getFrequency() << "\n");
1455 
1456     if (Cost < SmallestRotationCost) {
1457       SmallestRotationCost = Cost;
1458       RotationPos = Iter;
1459     }
1460   }
1461 
1462   if (RotationPos != LoopChain.end()) {
1463     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1464                  << " to the top\n");
1465     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1466   }
1467 }
1468 
1469 /// \brief Collect blocks in the given loop that are to be placed.
1470 ///
1471 /// When profile data is available, exclude cold blocks from the returned set;
1472 /// otherwise, collect all blocks in the loop.
1473 MachineBlockPlacement::BlockFilterSet
1474 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) {
1475   BlockFilterSet LoopBlockSet;
1476 
1477   // Filter cold blocks off from LoopBlockSet when profile data is available.
1478   // Collect the sum of frequencies of incoming edges to the loop header from
1479   // outside. If we treat the loop as a super block, this is the frequency of
1480   // the loop. Then for each block in the loop, we calculate the ratio between
1481   // its frequency and the frequency of the loop block. When it is too small,
1482   // don't add it to the loop chain. If there are outer loops, then this block
1483   // will be merged into the first outer loop chain for which this block is not
1484   // cold anymore. This needs precise profile data and we only do this when
1485   // profile data is available.
1486   if (F->getFunction()->getEntryCount()) {
1487     BlockFrequency LoopFreq(0);
1488     for (auto LoopPred : L.getHeader()->predecessors())
1489       if (!L.contains(LoopPred))
1490         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1491                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1492 
1493     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1494       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1495       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1496         continue;
1497       LoopBlockSet.insert(LoopBB);
1498     }
1499   } else
1500     LoopBlockSet.insert(L.block_begin(), L.block_end());
1501 
1502   return LoopBlockSet;
1503 }
1504 
1505 /// \brief Forms basic block chains from the natural loop structures.
1506 ///
1507 /// These chains are designed to preserve the existing *structure* of the code
1508 /// as much as possible. We can then stitch the chains together in a way which
1509 /// both preserves the topological structure and minimizes taken conditional
1510 /// branches.
1511 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
1512   // First recurse through any nested loops, building chains for those inner
1513   // loops.
1514   for (MachineLoop *InnerLoop : L)
1515     buildLoopChains(*InnerLoop);
1516 
1517   assert(BlockWorkList.empty());
1518   assert(EHPadWorkList.empty());
1519   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
1520 
1521   // Check if we have profile data for this function. If yes, we will rotate
1522   // this loop by modeling costs more precisely which requires the profile data
1523   // for better layout.
1524   bool RotateLoopWithProfile =
1525       ForcePreciseRotationCost ||
1526       (PreciseRotationCost && F->getFunction()->getEntryCount());
1527 
1528   // First check to see if there is an obviously preferable top block for the
1529   // loop. This will default to the header, but may end up as one of the
1530   // predecessors to the header if there is one which will result in strictly
1531   // fewer branches in the loop body.
1532   // When we use profile data to rotate the loop, this is unnecessary.
1533   MachineBasicBlock *LoopTop =
1534       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1535 
1536   // If we selected just the header for the loop top, look for a potentially
1537   // profitable exit block in the event that rotating the loop can eliminate
1538   // branches by placing an exit edge at the bottom.
1539   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1540     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
1541 
1542   BlockChain &LoopChain = *BlockToChain[LoopTop];
1543 
1544   // FIXME: This is a really lame way of walking the chains in the loop: we
1545   // walk the blocks, and use a set to prevent visiting a particular chain
1546   // twice.
1547   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1548   assert(LoopChain.UnscheduledPredecessors == 0);
1549   UpdatedPreds.insert(&LoopChain);
1550 
1551   for (MachineBasicBlock *LoopBB : LoopBlockSet)
1552     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
1553 
1554   buildChain(LoopTop, LoopChain, &LoopBlockSet);
1555 
1556   if (RotateLoopWithProfile)
1557     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1558   else
1559     rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
1560 
1561   DEBUG({
1562     // Crash at the end so we get all of the debugging output first.
1563     bool BadLoop = false;
1564     if (LoopChain.UnscheduledPredecessors) {
1565       BadLoop = true;
1566       dbgs() << "Loop chain contains a block without its preds placed!\n"
1567              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1568              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1569     }
1570     for (MachineBasicBlock *ChainBB : LoopChain) {
1571       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1572       if (!LoopBlockSet.remove(ChainBB)) {
1573         // We don't mark the loop as bad here because there are real situations
1574         // where this can occur. For example, with an unanalyzable fallthrough
1575         // from a loop block to a non-loop block or vice versa.
1576         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1577                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1578                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1579                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1580       }
1581     }
1582 
1583     if (!LoopBlockSet.empty()) {
1584       BadLoop = true;
1585       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1586         dbgs() << "Loop contains blocks never placed into a chain!\n"
1587                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1588                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1589                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1590     }
1591     assert(!BadLoop && "Detected problems with the placement of this loop.");
1592   });
1593 
1594   BlockWorkList.clear();
1595   EHPadWorkList.clear();
1596 }
1597 
1598 /// When OutlineOpitonalBranches is on, this method collects BBs that
1599 /// dominates all terminator blocks of the function \p F.
1600 void MachineBlockPlacement::collectMustExecuteBBs() {
1601   if (OutlineOptionalBranches) {
1602     // Find the nearest common dominator of all of F's terminators.
1603     MachineBasicBlock *Terminator = nullptr;
1604     for (MachineBasicBlock &MBB : *F) {
1605       if (MBB.succ_size() == 0) {
1606         if (Terminator == nullptr)
1607           Terminator = &MBB;
1608         else
1609           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1610       }
1611     }
1612 
1613     // MBBs dominating this common dominator are unavoidable.
1614     UnavoidableBlocks.clear();
1615     for (MachineBasicBlock &MBB : *F) {
1616       if (MDT->dominates(&MBB, Terminator)) {
1617         UnavoidableBlocks.insert(&MBB);
1618       }
1619     }
1620   }
1621 }
1622 
1623 void MachineBlockPlacement::buildCFGChains() {
1624   // Ensure that every BB in the function has an associated chain to simplify
1625   // the assumptions of the remaining algorithm.
1626   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1627   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
1628        ++FI) {
1629     MachineBasicBlock *BB = &*FI;
1630     BlockChain *Chain =
1631         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1632     // Also, merge any blocks which we cannot reason about and must preserve
1633     // the exact fallthrough behavior for.
1634     for (;;) {
1635       Cond.clear();
1636       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1637       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1638         break;
1639 
1640       MachineFunction::iterator NextFI = std::next(FI);
1641       MachineBasicBlock *NextBB = &*NextFI;
1642       // Ensure that the layout successor is a viable block, as we know that
1643       // fallthrough is a possibility.
1644       assert(NextFI != FE && "Can't fallthrough past the last block.");
1645       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1646                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1647                    << "\n");
1648       Chain->merge(NextBB, nullptr);
1649 #ifndef NDEBUG
1650       BlocksWithUnanalyzableExits.insert(&*BB);
1651 #endif
1652       FI = NextFI;
1653       BB = NextBB;
1654     }
1655   }
1656 
1657   // Turned on with OutlineOptionalBranches option
1658   collectMustExecuteBBs();
1659 
1660   // Build any loop-based chains.
1661   PreferredLoopExit = nullptr;
1662   for (MachineLoop *L : *MLI)
1663     buildLoopChains(*L);
1664 
1665   assert(BlockWorkList.empty());
1666   assert(EHPadWorkList.empty());
1667 
1668   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1669   for (MachineBasicBlock &MBB : *F)
1670     fillWorkLists(&MBB, UpdatedPreds);
1671 
1672   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1673   buildChain(&F->front(), FunctionChain);
1674 
1675 #ifndef NDEBUG
1676   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1677 #endif
1678   DEBUG({
1679     // Crash at the end so we get all of the debugging output first.
1680     bool BadFunc = false;
1681     FunctionBlockSetType FunctionBlockSet;
1682     for (MachineBasicBlock &MBB : *F)
1683       FunctionBlockSet.insert(&MBB);
1684 
1685     for (MachineBasicBlock *ChainBB : FunctionChain)
1686       if (!FunctionBlockSet.erase(ChainBB)) {
1687         BadFunc = true;
1688         dbgs() << "Function chain contains a block not in the function!\n"
1689                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1690       }
1691 
1692     if (!FunctionBlockSet.empty()) {
1693       BadFunc = true;
1694       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1695         dbgs() << "Function contains blocks never placed into a chain!\n"
1696                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1697     }
1698     assert(!BadFunc && "Detected problems with the block placement.");
1699   });
1700 
1701   // Splice the blocks into place.
1702   MachineFunction::iterator InsertPos = F->begin();
1703   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
1704   for (MachineBasicBlock *ChainBB : FunctionChain) {
1705     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1706                                                        : "          ... ")
1707                  << getBlockName(ChainBB) << "\n");
1708     if (InsertPos != MachineFunction::iterator(ChainBB))
1709       F->splice(InsertPos, ChainBB);
1710     else
1711       ++InsertPos;
1712 
1713     // Update the terminator of the previous block.
1714     if (ChainBB == *FunctionChain.begin())
1715       continue;
1716     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1717 
1718     // FIXME: It would be awesome of updateTerminator would just return rather
1719     // than assert when the branch cannot be analyzed in order to remove this
1720     // boiler plate.
1721     Cond.clear();
1722     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1723 
1724 #ifndef NDEBUG
1725     if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
1726       // Given the exact block placement we chose, we may actually not _need_ to
1727       // be able to edit PrevBB's terminator sequence, but not being _able_ to
1728       // do that at this point is a bug.
1729       assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
1730               !PrevBB->canFallThrough()) &&
1731              "Unexpected block with un-analyzable fallthrough!");
1732       Cond.clear();
1733       TBB = FBB = nullptr;
1734     }
1735 #endif
1736 
1737     // The "PrevBB" is not yet updated to reflect current code layout, so,
1738     //   o. it may fall-through to a block without explicit "goto" instruction
1739     //      before layout, and no longer fall-through it after layout; or
1740     //   o. just opposite.
1741     //
1742     // analyzeBranch() may return erroneous value for FBB when these two
1743     // situations take place. For the first scenario FBB is mistakenly set NULL;
1744     // for the 2nd scenario, the FBB, which is expected to be NULL, is
1745     // mistakenly pointing to "*BI".
1746     // Thus, if the future change needs to use FBB before the layout is set, it
1747     // has to correct FBB first by using the code similar to the following:
1748     //
1749     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1750     //   PrevBB->updateTerminator();
1751     //   Cond.clear();
1752     //   TBB = FBB = nullptr;
1753     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1754     //     // FIXME: This should never take place.
1755     //     TBB = FBB = nullptr;
1756     //   }
1757     // }
1758     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
1759       PrevBB->updateTerminator();
1760   }
1761 
1762   // Fixup the last block.
1763   Cond.clear();
1764   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1765   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
1766     F->back().updateTerminator();
1767 
1768   BlockWorkList.clear();
1769   EHPadWorkList.clear();
1770 }
1771 
1772 void MachineBlockPlacement::optimizeBranches() {
1773   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1774   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1775 
1776   // Now that all the basic blocks in the chain have the proper layout,
1777   // make a final call to AnalyzeBranch with AllowModify set.
1778   // Indeed, the target may be able to optimize the branches in a way we
1779   // cannot because all branches may not be analyzable.
1780   // E.g., the target may be able to remove an unconditional branch to
1781   // a fallthrough when it occurs after predicated terminators.
1782   for (MachineBasicBlock *ChainBB : FunctionChain) {
1783     Cond.clear();
1784     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1785     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1786       // If PrevBB has a two-way branch, try to re-order the branches
1787       // such that we branch to the successor with higher probability first.
1788       if (TBB && !Cond.empty() && FBB &&
1789           MBPI->getEdgeProbability(ChainBB, FBB) >
1790               MBPI->getEdgeProbability(ChainBB, TBB) &&
1791           !TII->reverseBranchCondition(Cond)) {
1792         DEBUG(dbgs() << "Reverse order of the two branches: "
1793                      << getBlockName(ChainBB) << "\n");
1794         DEBUG(dbgs() << "    Edge probability: "
1795                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1796                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1797         DebugLoc dl; // FIXME: this is nowhere
1798         TII->removeBranch(*ChainBB);
1799         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
1800         ChainBB->updateTerminator();
1801       }
1802     }
1803   }
1804 }
1805 
1806 void MachineBlockPlacement::alignBlocks() {
1807   // Walk through the backedges of the function now that we have fully laid out
1808   // the basic blocks and align the destination of each backedge. We don't rely
1809   // exclusively on the loop info here so that we can align backedges in
1810   // unnatural CFGs and backedges that were introduced purely because of the
1811   // loop rotations done during this layout pass.
1812   if (F->getFunction()->optForSize())
1813     return;
1814   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1815   if (FunctionChain.begin() == FunctionChain.end())
1816     return; // Empty chain.
1817 
1818   const BranchProbability ColdProb(1, 5); // 20%
1819   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
1820   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1821   for (MachineBasicBlock *ChainBB : FunctionChain) {
1822     if (ChainBB == *FunctionChain.begin())
1823       continue;
1824 
1825     // Don't align non-looping basic blocks. These are unlikely to execute
1826     // enough times to matter in practice. Note that we'll still handle
1827     // unnatural CFGs inside of a natural outer loop (the common case) and
1828     // rotated loops.
1829     MachineLoop *L = MLI->getLoopFor(ChainBB);
1830     if (!L)
1831       continue;
1832 
1833     unsigned Align = TLI->getPrefLoopAlignment(L);
1834     if (!Align)
1835       continue; // Don't care about loop alignment.
1836 
1837     // If the block is cold relative to the function entry don't waste space
1838     // aligning it.
1839     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1840     if (Freq < WeightedEntryFreq)
1841       continue;
1842 
1843     // If the block is cold relative to its loop header, don't align it
1844     // regardless of what edges into the block exist.
1845     MachineBasicBlock *LoopHeader = L->getHeader();
1846     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1847     if (Freq < (LoopHeaderFreq * ColdProb))
1848       continue;
1849 
1850     // Check for the existence of a non-layout predecessor which would benefit
1851     // from aligning this block.
1852     MachineBasicBlock *LayoutPred =
1853         &*std::prev(MachineFunction::iterator(ChainBB));
1854 
1855     // Force alignment if all the predecessors are jumps. We already checked
1856     // that the block isn't cold above.
1857     if (!LayoutPred->isSuccessor(ChainBB)) {
1858       ChainBB->setAlignment(Align);
1859       continue;
1860     }
1861 
1862     // Align this block if the layout predecessor's edge into this block is
1863     // cold relative to the block. When this is true, other predecessors make up
1864     // all of the hot entries into the block and thus alignment is likely to be
1865     // important.
1866     BranchProbability LayoutProb =
1867         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1868     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1869     if (LayoutEdgeFreq <= (Freq * ColdProb))
1870       ChainBB->setAlignment(Align);
1871   }
1872 }
1873 
1874 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
1875 /// it was duplicated into its chain predecessor and removed.
1876 /// \p BB    - Basic block that may be duplicated.
1877 ///
1878 /// \p LPred - Chosen layout predecessor of \p BB.
1879 ///            Updated to be the chain end if LPred is removed.
1880 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
1881 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
1882 ///                  Used to identify which blocks to update predecessor
1883 ///                  counts.
1884 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
1885 ///                          chosen in the given order due to unnatural CFG
1886 ///                          only needed if \p BB is removed and
1887 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
1888 /// @return true if \p BB was removed.
1889 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
1890     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
1891     MachineBasicBlock *LoopHeaderBB,
1892     BlockChain &Chain, BlockFilterSet *BlockFilter,
1893     MachineFunction::iterator &PrevUnplacedBlockIt) {
1894   bool Removed, DuplicatedToLPred;
1895   bool DuplicatedToOriginalLPred;
1896   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
1897                                     PrevUnplacedBlockIt,
1898                                     DuplicatedToLPred);
1899   if (!Removed)
1900     return false;
1901   DuplicatedToOriginalLPred = DuplicatedToLPred;
1902   // Iteratively try to duplicate again. It can happen that a block that is
1903   // duplicated into is still small enough to be duplicated again.
1904   // No need to call markBlockSuccessors in this case, as the blocks being
1905   // duplicated from here on are already scheduled.
1906   // Note that DuplicatedToLPred always implies Removed.
1907   while (DuplicatedToLPred) {
1908     assert (Removed && "Block must have been removed to be duplicated into its "
1909             "layout predecessor.");
1910     MachineBasicBlock *DupBB, *DupPred;
1911     // The removal callback causes Chain.end() to be updated when a block is
1912     // removed. On the first pass through the loop, the chain end should be the
1913     // same as it was on function entry. On subsequent passes, because we are
1914     // duplicating the block at the end of the chain, if it is removed the
1915     // chain will have shrunk by one block.
1916     BlockChain::iterator ChainEnd = Chain.end();
1917     DupBB = *(--ChainEnd);
1918     // Now try to duplicate again.
1919     if (ChainEnd == Chain.begin())
1920       break;
1921     DupPred = *std::prev(ChainEnd);
1922     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
1923                                       PrevUnplacedBlockIt,
1924                                       DuplicatedToLPred);
1925   }
1926   // If BB was duplicated into LPred, it is now scheduled. But because it was
1927   // removed, markChainSuccessors won't be called for its chain. Instead we
1928   // call markBlockSuccessors for LPred to achieve the same effect. This must go
1929   // at the end because repeating the tail duplication can increase the number
1930   // of unscheduled predecessors.
1931   LPred = *std::prev(Chain.end());
1932   if (DuplicatedToOriginalLPred)
1933     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
1934   return true;
1935 }
1936 
1937 /// Tail duplicate \p BB into (some) predecessors if profitable.
1938 /// \p BB    - Basic block that may be duplicated
1939 /// \p LPred - Chosen layout predecessor of \p BB
1940 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
1941 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
1942 ///                  Used to identify which blocks to update predecessor
1943 ///                  counts.
1944 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
1945 ///                          chosen in the given order due to unnatural CFG
1946 ///                          only needed if \p BB is removed and
1947 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
1948 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
1949 ///                        only be true if the block was removed.
1950 /// \return  - True if the block was duplicated into all preds and removed.
1951 bool MachineBlockPlacement::maybeTailDuplicateBlock(
1952     MachineBasicBlock *BB, MachineBasicBlock *LPred,
1953     const BlockChain &Chain, BlockFilterSet *BlockFilter,
1954     MachineFunction::iterator &PrevUnplacedBlockIt,
1955     bool &DuplicatedToLPred) {
1956 
1957   DuplicatedToLPred = false;
1958   DEBUG(dbgs() << "Redoing tail duplication for Succ#"
1959         << BB->getNumber() << "\n");
1960 
1961   if (!shouldTailDuplicate(BB))
1962     return false;
1963   // This has to be a callback because none of it can be done after
1964   // BB is deleted.
1965   bool Removed = false;
1966   auto RemovalCallback =
1967       [&](MachineBasicBlock *RemBB) {
1968         // Signal to outer function
1969         Removed = true;
1970 
1971         // Conservative default.
1972         bool InWorkList = true;
1973         // Remove from the Chain and Chain Map
1974         if (BlockToChain.count(RemBB)) {
1975           BlockChain *Chain = BlockToChain[RemBB];
1976           InWorkList = Chain->UnscheduledPredecessors == 0;
1977           Chain->remove(RemBB);
1978           BlockToChain.erase(RemBB);
1979         }
1980 
1981         // Handle the unplaced block iterator
1982         if (&(*PrevUnplacedBlockIt) == RemBB) {
1983           PrevUnplacedBlockIt++;
1984         }
1985 
1986         // Handle the Work Lists
1987         if (InWorkList) {
1988           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
1989           if (RemBB->isEHPad())
1990             RemoveList = EHPadWorkList;
1991           RemoveList.erase(
1992               remove_if(RemoveList,
1993                         [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
1994               RemoveList.end());
1995         }
1996 
1997         // Handle the filter set
1998         if (BlockFilter) {
1999           BlockFilter->remove(RemBB);
2000         }
2001 
2002         // Remove the block from loop info.
2003         MLI->removeBlock(RemBB);
2004         if (RemBB == PreferredLoopExit)
2005           PreferredLoopExit = nullptr;
2006 
2007         DEBUG(dbgs() << "TailDuplicator deleted block: "
2008               << getBlockName(RemBB) << "\n");
2009       };
2010   auto RemovalCallbackRef =
2011       llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
2012 
2013   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
2014   bool IsSimple = TailDup.isSimpleBB(BB);
2015   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
2016                                  &DuplicatedPreds, &RemovalCallbackRef);
2017 
2018   // Update UnscheduledPredecessors to reflect tail-duplication.
2019   DuplicatedToLPred = false;
2020   for (MachineBasicBlock *Pred : DuplicatedPreds) {
2021     // We're only looking for unscheduled predecessors that match the filter.
2022     BlockChain* PredChain = BlockToChain[Pred];
2023     if (Pred == LPred)
2024       DuplicatedToLPred = true;
2025     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
2026         || PredChain == &Chain)
2027       continue;
2028     for (MachineBasicBlock *NewSucc : Pred->successors()) {
2029       if (BlockFilter && !BlockFilter->count(NewSucc))
2030         continue;
2031       BlockChain *NewChain = BlockToChain[NewSucc];
2032       if (NewChain != &Chain && NewChain != PredChain)
2033         NewChain->UnscheduledPredecessors++;
2034     }
2035   }
2036   return Removed;
2037 }
2038 
2039 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
2040   if (skipFunction(*MF.getFunction()))
2041     return false;
2042 
2043   // Check for single-block functions and skip them.
2044   if (std::next(MF.begin()) == MF.end())
2045     return false;
2046 
2047   F = &MF;
2048   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2049   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
2050       getAnalysis<MachineBlockFrequencyInfo>());
2051   MLI = &getAnalysis<MachineLoopInfo>();
2052   TII = MF.getSubtarget().getInstrInfo();
2053   TLI = MF.getSubtarget().getTargetLowering();
2054   MDT = &getAnalysis<MachineDominatorTree>();
2055 
2056   // Initialize PreferredLoopExit to nullptr here since it may never be set if
2057   // there are no MachineLoops.
2058   PreferredLoopExit = nullptr;
2059 
2060   if (TailDupPlacement) {
2061     unsigned TailDupSize = TailDuplicatePlacementThreshold;
2062     if (MF.getFunction()->optForSize())
2063       TailDupSize = 1;
2064     TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
2065   }
2066 
2067   assert(BlockToChain.empty());
2068 
2069   buildCFGChains();
2070 
2071   // Changing the layout can create new tail merging opportunities.
2072   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
2073   // TailMerge can create jump into if branches that make CFG irreducible for
2074   // HW that requires structured CFG.
2075   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
2076                          PassConfig->getEnableTailMerge() &&
2077                          BranchFoldPlacement;
2078   // No tail merging opportunities if the block number is less than four.
2079   if (MF.size() > 3 && EnableTailMerge) {
2080     unsigned TailMergeSize = TailDuplicatePlacementThreshold + 1;
2081     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2082                     *MBPI, TailMergeSize);
2083 
2084     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2085                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2086                             /*AfterBlockPlacement=*/true)) {
2087       // Redo the layout if tail merging creates/removes/moves blocks.
2088       BlockToChain.clear();
2089       // Must redo the dominator tree if blocks were changed.
2090       MDT->runOnMachineFunction(MF);
2091       ChainAllocator.DestroyAll();
2092       buildCFGChains();
2093     }
2094   }
2095 
2096   optimizeBranches();
2097   alignBlocks();
2098 
2099   BlockToChain.clear();
2100   ChainAllocator.DestroyAll();
2101 
2102   if (AlignAllBlock)
2103     // Align all of the blocks in the function to a specific alignment.
2104     for (MachineBasicBlock &MBB : MF)
2105       MBB.setAlignment(AlignAllBlock);
2106   else if (AlignAllNonFallThruBlocks) {
2107     // Align all of the blocks that have no fall-through predecessors to a
2108     // specific alignment.
2109     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2110       auto LayoutPred = std::prev(MBI);
2111       if (!LayoutPred->isSuccessor(&*MBI))
2112         MBI->setAlignment(AlignAllNonFallThruBlocks);
2113     }
2114   }
2115 
2116   // We always return true as we have no way to track whether the final order
2117   // differs from the original order.
2118   return true;
2119 }
2120 
2121 namespace {
2122 /// \brief A pass to compute block placement statistics.
2123 ///
2124 /// A separate pass to compute interesting statistics for evaluating block
2125 /// placement. This is separate from the actual placement pass so that they can
2126 /// be computed in the absence of any placement transformations or when using
2127 /// alternative placement strategies.
2128 class MachineBlockPlacementStats : public MachineFunctionPass {
2129   /// \brief A handle to the branch probability pass.
2130   const MachineBranchProbabilityInfo *MBPI;
2131 
2132   /// \brief A handle to the function-wide block frequency pass.
2133   const MachineBlockFrequencyInfo *MBFI;
2134 
2135 public:
2136   static char ID; // Pass identification, replacement for typeid
2137   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2138     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2139   }
2140 
2141   bool runOnMachineFunction(MachineFunction &F) override;
2142 
2143   void getAnalysisUsage(AnalysisUsage &AU) const override {
2144     AU.addRequired<MachineBranchProbabilityInfo>();
2145     AU.addRequired<MachineBlockFrequencyInfo>();
2146     AU.setPreservesAll();
2147     MachineFunctionPass::getAnalysisUsage(AU);
2148   }
2149 };
2150 }
2151 
2152 char MachineBlockPlacementStats::ID = 0;
2153 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2154 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2155                       "Basic Block Placement Stats", false, false)
2156 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2157 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2158 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2159                     "Basic Block Placement Stats", false, false)
2160 
2161 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2162   // Check for single-block functions and skip them.
2163   if (std::next(F.begin()) == F.end())
2164     return false;
2165 
2166   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2167   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2168 
2169   for (MachineBasicBlock &MBB : F) {
2170     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2171     Statistic &NumBranches =
2172         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2173     Statistic &BranchTakenFreq =
2174         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2175     for (MachineBasicBlock *Succ : MBB.successors()) {
2176       // Skip if this successor is a fallthrough.
2177       if (MBB.isLayoutSuccessor(Succ))
2178         continue;
2179 
2180       BlockFrequency EdgeFreq =
2181           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2182       ++NumBranches;
2183       BranchTakenFreq += EdgeFreq.getFrequency();
2184     }
2185   }
2186 
2187   return false;
2188 }
2189