1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "block-placement" 52 53 STATISTIC(NumCondBranches, "Number of conditional branches"); 54 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 55 STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57 STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65 // FIXME: Find a good default for this flag and remove the flag. 66 static cl::opt<unsigned> ExitBlockBias( 67 "block-placement-exit-block-bias", 68 cl::desc("Block frequency percentage a loop exit block needs " 69 "over the original exit to be considered the new exit."), 70 cl::init(0), cl::Hidden); 71 72 static cl::opt<bool> OutlineOptionalBranches( 73 "outline-optional-branches", 74 cl::desc("Put completely optional branches, i.e. branches with a common " 75 "post dominator, out of line."), 76 cl::init(false), cl::Hidden); 77 78 static cl::opt<unsigned> OutlineOptionalThreshold( 79 "outline-optional-threshold", 80 cl::desc("Don't outline optional branches that are a single block with an " 81 "instruction count below this threshold"), 82 cl::init(4), cl::Hidden); 83 84 static cl::opt<bool> 85 PreciseRotationCost("precise-rotation-cost", 86 cl::desc("Model the cost of loop rotation more " 87 "precisely by using profile data."), 88 cl::init(false), cl::Hidden); 89 90 static cl::opt<unsigned> MisfetchCost( 91 "misfetch-cost", 92 cl::desc("Cost that models the probablistic risk of an instruction " 93 "misfetch due to a jump comparing to falling through, whose cost " 94 "is zero."), 95 cl::init(1), cl::Hidden); 96 97 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 98 cl::desc("Cost of jump instructions."), 99 cl::init(1), cl::Hidden); 100 101 namespace { 102 class BlockChain; 103 /// \brief Type for our function-wide basic block -> block chain mapping. 104 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 105 } 106 107 namespace { 108 /// \brief A chain of blocks which will be laid out contiguously. 109 /// 110 /// This is the datastructure representing a chain of consecutive blocks that 111 /// are profitable to layout together in order to maximize fallthrough 112 /// probabilities and code locality. We also can use a block chain to represent 113 /// a sequence of basic blocks which have some external (correctness) 114 /// requirement for sequential layout. 115 /// 116 /// Chains can be built around a single basic block and can be merged to grow 117 /// them. They participate in a block-to-chain mapping, which is updated 118 /// automatically as chains are merged together. 119 class BlockChain { 120 /// \brief The sequence of blocks belonging to this chain. 121 /// 122 /// This is the sequence of blocks for a particular chain. These will be laid 123 /// out in-order within the function. 124 SmallVector<MachineBasicBlock *, 4> Blocks; 125 126 /// \brief A handle to the function-wide basic block to block chain mapping. 127 /// 128 /// This is retained in each block chain to simplify the computation of child 129 /// block chains for SCC-formation and iteration. We store the edges to child 130 /// basic blocks, and map them back to their associated chains using this 131 /// structure. 132 BlockToChainMapType &BlockToChain; 133 134 public: 135 /// \brief Construct a new BlockChain. 136 /// 137 /// This builds a new block chain representing a single basic block in the 138 /// function. It also registers itself as the chain that block participates 139 /// in with the BlockToChain mapping. 140 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 141 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 142 assert(BB && "Cannot create a chain with a null basic block"); 143 BlockToChain[BB] = this; 144 } 145 146 /// \brief Iterator over blocks within the chain. 147 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 148 149 /// \brief Beginning of blocks within the chain. 150 iterator begin() { return Blocks.begin(); } 151 152 /// \brief End of blocks within the chain. 153 iterator end() { return Blocks.end(); } 154 155 /// \brief Merge a block chain into this one. 156 /// 157 /// This routine merges a block chain into this one. It takes care of forming 158 /// a contiguous sequence of basic blocks, updating the edge list, and 159 /// updating the block -> chain mapping. It does not free or tear down the 160 /// old chain, but the old chain's block list is no longer valid. 161 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 162 assert(BB); 163 assert(!Blocks.empty()); 164 165 // Fast path in case we don't have a chain already. 166 if (!Chain) { 167 assert(!BlockToChain[BB]); 168 Blocks.push_back(BB); 169 BlockToChain[BB] = this; 170 return; 171 } 172 173 assert(BB == *Chain->begin()); 174 assert(Chain->begin() != Chain->end()); 175 176 // Update the incoming blocks to point to this chain, and add them to the 177 // chain structure. 178 for (MachineBasicBlock *ChainBB : *Chain) { 179 Blocks.push_back(ChainBB); 180 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 181 BlockToChain[ChainBB] = this; 182 } 183 } 184 185 #ifndef NDEBUG 186 /// \brief Dump the blocks in this chain. 187 LLVM_DUMP_METHOD void dump() { 188 for (MachineBasicBlock *MBB : *this) 189 MBB->dump(); 190 } 191 #endif // NDEBUG 192 193 /// \brief Count of predecessors within the loop currently being processed. 194 /// 195 /// This count is updated at each loop we process to represent the number of 196 /// in-loop predecessors of this chain. 197 unsigned LoopPredecessors; 198 }; 199 } 200 201 namespace { 202 class MachineBlockPlacement : public MachineFunctionPass { 203 /// \brief A typedef for a block filter set. 204 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 205 206 /// \brief A handle to the branch probability pass. 207 const MachineBranchProbabilityInfo *MBPI; 208 209 /// \brief A handle to the function-wide block frequency pass. 210 const MachineBlockFrequencyInfo *MBFI; 211 212 /// \brief A handle to the loop info. 213 const MachineLoopInfo *MLI; 214 215 /// \brief A handle to the target's instruction info. 216 const TargetInstrInfo *TII; 217 218 /// \brief A handle to the target's lowering info. 219 const TargetLoweringBase *TLI; 220 221 /// \brief A handle to the post dominator tree. 222 MachineDominatorTree *MDT; 223 224 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 225 /// all terminators of the MachineFunction. 226 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 227 228 /// \brief Allocator and owner of BlockChain structures. 229 /// 230 /// We build BlockChains lazily while processing the loop structure of 231 /// a function. To reduce malloc traffic, we allocate them using this 232 /// slab-like allocator, and destroy them after the pass completes. An 233 /// important guarantee is that this allocator produces stable pointers to 234 /// the chains. 235 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 236 237 /// \brief Function wide BasicBlock to BlockChain mapping. 238 /// 239 /// This mapping allows efficiently moving from any given basic block to the 240 /// BlockChain it participates in, if any. We use it to, among other things, 241 /// allow implicitly defining edges between chains as the existing edges 242 /// between basic blocks. 243 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 244 245 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 246 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 247 const BlockFilterSet *BlockFilter = nullptr); 248 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 249 BlockChain &Chain, 250 const BlockFilterSet *BlockFilter); 251 MachineBasicBlock * 252 selectBestCandidateBlock(BlockChain &Chain, 253 SmallVectorImpl<MachineBasicBlock *> &WorkList, 254 const BlockFilterSet *BlockFilter); 255 MachineBasicBlock * 256 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 257 MachineFunction::iterator &PrevUnplacedBlockIt, 258 const BlockFilterSet *BlockFilter); 259 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 260 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 261 const BlockFilterSet *BlockFilter = nullptr); 262 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 263 const BlockFilterSet &LoopBlockSet); 264 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 265 const BlockFilterSet &LoopBlockSet); 266 void buildLoopChains(MachineFunction &F, MachineLoop &L); 267 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 268 const BlockFilterSet &LoopBlockSet); 269 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 270 const BlockFilterSet &LoopBlockSet); 271 void buildCFGChains(MachineFunction &F); 272 273 public: 274 static char ID; // Pass identification, replacement for typeid 275 MachineBlockPlacement() : MachineFunctionPass(ID) { 276 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 277 } 278 279 bool runOnMachineFunction(MachineFunction &F) override; 280 281 void getAnalysisUsage(AnalysisUsage &AU) const override { 282 AU.addRequired<MachineBranchProbabilityInfo>(); 283 AU.addRequired<MachineBlockFrequencyInfo>(); 284 AU.addRequired<MachineDominatorTree>(); 285 AU.addRequired<MachineLoopInfo>(); 286 MachineFunctionPass::getAnalysisUsage(AU); 287 } 288 }; 289 } 290 291 char MachineBlockPlacement::ID = 0; 292 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 293 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 294 "Branch Probability Basic Block Placement", false, false) 295 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 296 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 297 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 298 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 299 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 300 "Branch Probability Basic Block Placement", false, false) 301 302 #ifndef NDEBUG 303 /// \brief Helper to print the name of a MBB. 304 /// 305 /// Only used by debug logging. 306 static std::string getBlockName(MachineBasicBlock *BB) { 307 std::string Result; 308 raw_string_ostream OS(Result); 309 OS << "BB#" << BB->getNumber(); 310 OS << " (derived from LLVM BB '" << BB->getName() << "')"; 311 OS.flush(); 312 return Result; 313 } 314 315 /// \brief Helper to print the number of a MBB. 316 /// 317 /// Only used by debug logging. 318 static std::string getBlockNum(MachineBasicBlock *BB) { 319 std::string Result; 320 raw_string_ostream OS(Result); 321 OS << "BB#" << BB->getNumber(); 322 OS.flush(); 323 return Result; 324 } 325 #endif 326 327 /// \brief Mark a chain's successors as having one fewer preds. 328 /// 329 /// When a chain is being merged into the "placed" chain, this routine will 330 /// quickly walk the successors of each block in the chain and mark them as 331 /// having one fewer active predecessor. It also adds any successors of this 332 /// chain which reach the zero-predecessor state to the worklist passed in. 333 void MachineBlockPlacement::markChainSuccessors( 334 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 335 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 336 const BlockFilterSet *BlockFilter) { 337 // Walk all the blocks in this chain, marking their successors as having 338 // a predecessor placed. 339 for (MachineBasicBlock *MBB : Chain) { 340 // Add any successors for which this is the only un-placed in-loop 341 // predecessor to the worklist as a viable candidate for CFG-neutral 342 // placement. No subsequent placement of this block will violate the CFG 343 // shape, so we get to use heuristics to choose a favorable placement. 344 for (MachineBasicBlock *Succ : MBB->successors()) { 345 if (BlockFilter && !BlockFilter->count(Succ)) 346 continue; 347 BlockChain &SuccChain = *BlockToChain[Succ]; 348 // Disregard edges within a fixed chain, or edges to the loop header. 349 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 350 continue; 351 352 // This is a cross-chain edge that is within the loop, so decrement the 353 // loop predecessor count of the destination chain. 354 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 355 BlockWorkList.push_back(*SuccChain.begin()); 356 } 357 } 358 } 359 360 /// \brief Select the best successor for a block. 361 /// 362 /// This looks across all successors of a particular block and attempts to 363 /// select the "best" one to be the layout successor. It only considers direct 364 /// successors which also pass the block filter. It will attempt to avoid 365 /// breaking CFG structure, but cave and break such structures in the case of 366 /// very hot successor edges. 367 /// 368 /// \returns The best successor block found, or null if none are viable. 369 MachineBasicBlock * 370 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 371 BlockChain &Chain, 372 const BlockFilterSet *BlockFilter) { 373 const BranchProbability HotProb(4, 5); // 80% 374 375 MachineBasicBlock *BestSucc = nullptr; 376 // FIXME: Due to the performance of the probability and weight routines in 377 // the MBPI analysis, we manually compute probabilities using the edge 378 // weights. This is suboptimal as it means that the somewhat subtle 379 // definition of edge weight semantics is encoded here as well. We should 380 // improve the MBPI interface to efficiently support query patterns such as 381 // this. 382 uint32_t BestWeight = 0; 383 uint32_t WeightScale = 0; 384 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 385 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 386 for (MachineBasicBlock *Succ : BB->successors()) { 387 if (BlockFilter && !BlockFilter->count(Succ)) 388 continue; 389 BlockChain &SuccChain = *BlockToChain[Succ]; 390 if (&SuccChain == &Chain) { 391 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Already merged!\n"); 392 continue; 393 } 394 if (Succ != *SuccChain.begin()) { 395 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 396 continue; 397 } 398 399 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ); 400 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 401 402 // If we outline optional branches, look whether Succ is unavoidable, i.e. 403 // dominates all terminators of the MachineFunction. If it does, other 404 // successors must be optional. Don't do this for cold branches. 405 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 406 UnavoidableBlocks.count(Succ) > 0) { 407 auto HasShortOptionalBranch = [&]() { 408 for (MachineBasicBlock *Pred : Succ->predecessors()) { 409 // Check whether there is an unplaced optional branch. 410 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 411 BlockToChain[Pred] == &Chain) 412 continue; 413 // Check whether the optional branch has exactly one BB. 414 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 415 continue; 416 // Check whether the optional branch is small. 417 if (Pred->size() < OutlineOptionalThreshold) 418 return true; 419 } 420 return false; 421 }; 422 if (!HasShortOptionalBranch()) 423 return Succ; 424 } 425 426 // Only consider successors which are either "hot", or wouldn't violate 427 // any CFG constraints. 428 if (SuccChain.LoopPredecessors != 0) { 429 if (SuccProb < HotProb) { 430 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 431 << " (prob) (CFG conflict)\n"); 432 continue; 433 } 434 435 // Make sure that a hot successor doesn't have a globally more 436 // important predecessor. 437 BlockFrequency CandidateEdgeFreq = 438 MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 439 bool BadCFGConflict = false; 440 for (MachineBasicBlock *Pred : Succ->predecessors()) { 441 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 442 BlockToChain[Pred] == &Chain) 443 continue; 444 BlockFrequency PredEdgeFreq = 445 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 446 if (PredEdgeFreq >= CandidateEdgeFreq) { 447 BadCFGConflict = true; 448 break; 449 } 450 } 451 if (BadCFGConflict) { 452 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 453 << " (prob) (non-cold CFG conflict)\n"); 454 continue; 455 } 456 } 457 458 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 459 << " (prob)" 460 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 461 << "\n"); 462 if (BestSucc && BestWeight >= SuccWeight) 463 continue; 464 BestSucc = Succ; 465 BestWeight = SuccWeight; 466 } 467 return BestSucc; 468 } 469 470 /// \brief Select the best block from a worklist. 471 /// 472 /// This looks through the provided worklist as a list of candidate basic 473 /// blocks and select the most profitable one to place. The definition of 474 /// profitable only really makes sense in the context of a loop. This returns 475 /// the most frequently visited block in the worklist, which in the case of 476 /// a loop, is the one most desirable to be physically close to the rest of the 477 /// loop body in order to improve icache behavior. 478 /// 479 /// \returns The best block found, or null if none are viable. 480 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 481 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 482 const BlockFilterSet *BlockFilter) { 483 // Once we need to walk the worklist looking for a candidate, cleanup the 484 // worklist of already placed entries. 485 // FIXME: If this shows up on profiles, it could be folded (at the cost of 486 // some code complexity) into the loop below. 487 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 488 [&](MachineBasicBlock *BB) { 489 return BlockToChain.lookup(BB) == &Chain; 490 }), 491 WorkList.end()); 492 493 MachineBasicBlock *BestBlock = nullptr; 494 BlockFrequency BestFreq; 495 for (MachineBasicBlock *MBB : WorkList) { 496 BlockChain &SuccChain = *BlockToChain[MBB]; 497 if (&SuccChain == &Chain) { 498 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> Already merged!\n"); 499 continue; 500 } 501 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 502 503 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 504 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 505 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 506 if (BestBlock && BestFreq >= CandidateFreq) 507 continue; 508 BestBlock = MBB; 509 BestFreq = CandidateFreq; 510 } 511 return BestBlock; 512 } 513 514 /// \brief Retrieve the first unplaced basic block. 515 /// 516 /// This routine is called when we are unable to use the CFG to walk through 517 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 518 /// We walk through the function's blocks in order, starting from the 519 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 520 /// re-scanning the entire sequence on repeated calls to this routine. 521 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 522 MachineFunction &F, const BlockChain &PlacedChain, 523 MachineFunction::iterator &PrevUnplacedBlockIt, 524 const BlockFilterSet *BlockFilter) { 525 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 526 ++I) { 527 if (BlockFilter && !BlockFilter->count(&*I)) 528 continue; 529 if (BlockToChain[&*I] != &PlacedChain) { 530 PrevUnplacedBlockIt = I; 531 // Now select the head of the chain to which the unplaced block belongs 532 // as the block to place. This will force the entire chain to be placed, 533 // and satisfies the requirements of merging chains. 534 return *BlockToChain[&*I]->begin(); 535 } 536 } 537 return nullptr; 538 } 539 540 void MachineBlockPlacement::buildChain( 541 MachineBasicBlock *BB, BlockChain &Chain, 542 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 543 const BlockFilterSet *BlockFilter) { 544 assert(BB); 545 assert(BlockToChain[BB] == &Chain); 546 MachineFunction &F = *BB->getParent(); 547 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 548 549 MachineBasicBlock *LoopHeaderBB = BB; 550 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 551 BB = *std::prev(Chain.end()); 552 for (;;) { 553 assert(BB); 554 assert(BlockToChain[BB] == &Chain); 555 assert(*std::prev(Chain.end()) == BB); 556 557 // Look for the best viable successor if there is one to place immediately 558 // after this block. 559 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 560 561 // If an immediate successor isn't available, look for the best viable 562 // block among those we've identified as not violating the loop's CFG at 563 // this point. This won't be a fallthrough, but it will increase locality. 564 if (!BestSucc) 565 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 566 567 if (!BestSucc) { 568 BestSucc = 569 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 570 if (!BestSucc) 571 break; 572 573 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 574 "layout successor until the CFG reduces\n"); 575 } 576 577 // Place this block, updating the datastructures to reflect its placement. 578 BlockChain &SuccChain = *BlockToChain[BestSucc]; 579 // Zero out LoopPredecessors for the successor we're about to merge in case 580 // we selected a successor that didn't fit naturally into the CFG. 581 SuccChain.LoopPredecessors = 0; 582 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to " 583 << getBlockNum(BestSucc) << "\n"); 584 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 585 Chain.merge(BestSucc, &SuccChain); 586 BB = *std::prev(Chain.end()); 587 } 588 589 DEBUG(dbgs() << "Finished forming chain for header block " 590 << getBlockNum(*Chain.begin()) << "\n"); 591 } 592 593 /// \brief Find the best loop top block for layout. 594 /// 595 /// Look for a block which is strictly better than the loop header for laying 596 /// out at the top of the loop. This looks for one and only one pattern: 597 /// a latch block with no conditional exit. This block will cause a conditional 598 /// jump around it or will be the bottom of the loop if we lay it out in place, 599 /// but if it it doesn't end up at the bottom of the loop for any reason, 600 /// rotation alone won't fix it. Because such a block will always result in an 601 /// unconditional jump (for the backedge) rotating it in front of the loop 602 /// header is always profitable. 603 MachineBasicBlock * 604 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 605 const BlockFilterSet &LoopBlockSet) { 606 // Check that the header hasn't been fused with a preheader block due to 607 // crazy branches. If it has, we need to start with the header at the top to 608 // prevent pulling the preheader into the loop body. 609 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 610 if (!LoopBlockSet.count(*HeaderChain.begin())) 611 return L.getHeader(); 612 613 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 614 << "\n"); 615 616 BlockFrequency BestPredFreq; 617 MachineBasicBlock *BestPred = nullptr; 618 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 619 if (!LoopBlockSet.count(Pred)) 620 continue; 621 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 622 << Pred->succ_size() << " successors, "; 623 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 624 if (Pred->succ_size() > 1) 625 continue; 626 627 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 628 if (!BestPred || PredFreq > BestPredFreq || 629 (!(PredFreq < BestPredFreq) && 630 Pred->isLayoutSuccessor(L.getHeader()))) { 631 BestPred = Pred; 632 BestPredFreq = PredFreq; 633 } 634 } 635 636 // If no direct predecessor is fine, just use the loop header. 637 if (!BestPred) 638 return L.getHeader(); 639 640 // Walk backwards through any straight line of predecessors. 641 while (BestPred->pred_size() == 1 && 642 (*BestPred->pred_begin())->succ_size() == 1 && 643 *BestPred->pred_begin() != L.getHeader()) 644 BestPred = *BestPred->pred_begin(); 645 646 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 647 return BestPred; 648 } 649 650 /// \brief Find the best loop exiting block for layout. 651 /// 652 /// This routine implements the logic to analyze the loop looking for the best 653 /// block to layout at the top of the loop. Typically this is done to maximize 654 /// fallthrough opportunities. 655 MachineBasicBlock * 656 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 657 const BlockFilterSet &LoopBlockSet) { 658 // We don't want to layout the loop linearly in all cases. If the loop header 659 // is just a normal basic block in the loop, we want to look for what block 660 // within the loop is the best one to layout at the top. However, if the loop 661 // header has be pre-merged into a chain due to predecessors not having 662 // analyzable branches, *and* the predecessor it is merged with is *not* part 663 // of the loop, rotating the header into the middle of the loop will create 664 // a non-contiguous range of blocks which is Very Bad. So start with the 665 // header and only rotate if safe. 666 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 667 if (!LoopBlockSet.count(*HeaderChain.begin())) 668 return nullptr; 669 670 BlockFrequency BestExitEdgeFreq; 671 unsigned BestExitLoopDepth = 0; 672 MachineBasicBlock *ExitingBB = nullptr; 673 // If there are exits to outer loops, loop rotation can severely limit 674 // fallthrough opportunites unless it selects such an exit. Keep a set of 675 // blocks where rotating to exit with that block will reach an outer loop. 676 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 677 678 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 679 << "\n"); 680 for (MachineBasicBlock *MBB : L.getBlocks()) { 681 BlockChain &Chain = *BlockToChain[MBB]; 682 // Ensure that this block is at the end of a chain; otherwise it could be 683 // mid-way through an inner loop or a successor of an unanalyzable branch. 684 if (MBB != *std::prev(Chain.end())) 685 continue; 686 687 // Now walk the successors. We need to establish whether this has a viable 688 // exiting successor and whether it has a viable non-exiting successor. 689 // We store the old exiting state and restore it if a viable looping 690 // successor isn't found. 691 MachineBasicBlock *OldExitingBB = ExitingBB; 692 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 693 bool HasLoopingSucc = false; 694 // FIXME: Due to the performance of the probability and weight routines in 695 // the MBPI analysis, we use the internal weights and manually compute the 696 // probabilities to avoid quadratic behavior. 697 uint32_t WeightScale = 0; 698 uint32_t SumWeight = MBPI->getSumForBlock(MBB, WeightScale); 699 for (MachineBasicBlock *Succ : MBB->successors()) { 700 if (Succ->isEHPad()) 701 continue; 702 if (Succ == MBB) 703 continue; 704 BlockChain &SuccChain = *BlockToChain[Succ]; 705 // Don't split chains, either this chain or the successor's chain. 706 if (&Chain == &SuccChain) { 707 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 708 << getBlockName(Succ) << " (chain conflict)\n"); 709 continue; 710 } 711 712 uint32_t SuccWeight = MBPI->getEdgeWeight(MBB, Succ); 713 if (LoopBlockSet.count(Succ)) { 714 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 715 << getBlockName(Succ) << " (" << SuccWeight << ")\n"); 716 HasLoopingSucc = true; 717 continue; 718 } 719 720 unsigned SuccLoopDepth = 0; 721 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 722 SuccLoopDepth = ExitLoop->getLoopDepth(); 723 if (ExitLoop->contains(&L)) 724 BlocksExitingToOuterLoop.insert(MBB); 725 } 726 727 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 728 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 729 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 730 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 731 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 732 // Note that we bias this toward an existing layout successor to retain 733 // incoming order in the absence of better information. The exit must have 734 // a frequency higher than the current exit before we consider breaking 735 // the layout. 736 BranchProbability Bias(100 - ExitBlockBias, 100); 737 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 738 ExitEdgeFreq > BestExitEdgeFreq || 739 (MBB->isLayoutSuccessor(Succ) && 740 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 741 BestExitEdgeFreq = ExitEdgeFreq; 742 ExitingBB = MBB; 743 } 744 } 745 746 if (!HasLoopingSucc) { 747 // Restore the old exiting state, no viable looping successor was found. 748 ExitingBB = OldExitingBB; 749 BestExitEdgeFreq = OldBestExitEdgeFreq; 750 continue; 751 } 752 } 753 // Without a candidate exiting block or with only a single block in the 754 // loop, just use the loop header to layout the loop. 755 if (!ExitingBB || L.getNumBlocks() == 1) 756 return nullptr; 757 758 // Also, if we have exit blocks which lead to outer loops but didn't select 759 // one of them as the exiting block we are rotating toward, disable loop 760 // rotation altogether. 761 if (!BlocksExitingToOuterLoop.empty() && 762 !BlocksExitingToOuterLoop.count(ExitingBB)) 763 return nullptr; 764 765 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 766 return ExitingBB; 767 } 768 769 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 770 /// 771 /// Once we have built a chain, try to rotate it to line up the hot exit block 772 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 773 /// branches. For example, if the loop has fallthrough into its header and out 774 /// of its bottom already, don't rotate it. 775 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 776 MachineBasicBlock *ExitingBB, 777 const BlockFilterSet &LoopBlockSet) { 778 if (!ExitingBB) 779 return; 780 781 MachineBasicBlock *Top = *LoopChain.begin(); 782 bool ViableTopFallthrough = false; 783 for (MachineBasicBlock *Pred : Top->predecessors()) { 784 BlockChain *PredChain = BlockToChain[Pred]; 785 if (!LoopBlockSet.count(Pred) && 786 (!PredChain || Pred == *std::prev(PredChain->end()))) { 787 ViableTopFallthrough = true; 788 break; 789 } 790 } 791 792 // If the header has viable fallthrough, check whether the current loop 793 // bottom is a viable exiting block. If so, bail out as rotating will 794 // introduce an unnecessary branch. 795 if (ViableTopFallthrough) { 796 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 797 for (MachineBasicBlock *Succ : Bottom->successors()) { 798 BlockChain *SuccChain = BlockToChain[Succ]; 799 if (!LoopBlockSet.count(Succ) && 800 (!SuccChain || Succ == *SuccChain->begin())) 801 return; 802 } 803 } 804 805 BlockChain::iterator ExitIt = 806 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 807 if (ExitIt == LoopChain.end()) 808 return; 809 810 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 811 } 812 813 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 814 /// 815 /// With profile data, we can determine the cost in terms of missed fall through 816 /// opportunities when rotating a loop chain and select the best rotation. 817 /// Basically, there are three kinds of cost to consider for each rotation: 818 /// 1. The possibly missed fall through edge (if it exists) from BB out of 819 /// the loop to the loop header. 820 /// 2. The possibly missed fall through edges (if they exist) from the loop 821 /// exits to BB out of the loop. 822 /// 3. The missed fall through edge (if it exists) from the last BB to the 823 /// first BB in the loop chain. 824 /// Therefore, the cost for a given rotation is the sum of costs listed above. 825 /// We select the best rotation with the smallest cost. 826 void MachineBlockPlacement::rotateLoopWithProfile( 827 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 828 auto HeaderBB = L.getHeader(); 829 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 830 auto RotationPos = LoopChain.end(); 831 832 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 833 834 // A utility lambda that scales up a block frequency by dividing it by a 835 // branch probability which is the reciprocal of the scale. 836 auto ScaleBlockFrequency = [](BlockFrequency Freq, 837 unsigned Scale) -> BlockFrequency { 838 if (Scale == 0) 839 return 0; 840 // Use operator / between BlockFrequency and BranchProbability to implement 841 // saturating multiplication. 842 return Freq / BranchProbability(1, Scale); 843 }; 844 845 // Compute the cost of the missed fall-through edge to the loop header if the 846 // chain head is not the loop header. As we only consider natural loops with 847 // single header, this computation can be done only once. 848 BlockFrequency HeaderFallThroughCost(0); 849 for (auto *Pred : HeaderBB->predecessors()) { 850 BlockChain *PredChain = BlockToChain[Pred]; 851 if (!LoopBlockSet.count(Pred) && 852 (!PredChain || Pred == *std::prev(PredChain->end()))) { 853 auto EdgeFreq = 854 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 855 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 856 // If the predecessor has only an unconditional jump to the header, we 857 // need to consider the cost of this jump. 858 if (Pred->succ_size() == 1) 859 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 860 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 861 } 862 } 863 864 // Here we collect all exit blocks in the loop, and for each exit we find out 865 // its hottest exit edge. For each loop rotation, we define the loop exit cost 866 // as the sum of frequencies of exit edges we collect here, excluding the exit 867 // edge from the tail of the loop chain. 868 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 869 for (auto BB : LoopChain) { 870 uint32_t LargestExitEdgeWeight = 0; 871 for (auto *Succ : BB->successors()) { 872 BlockChain *SuccChain = BlockToChain[Succ]; 873 if (!LoopBlockSet.count(Succ) && 874 (!SuccChain || Succ == *SuccChain->begin())) { 875 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ); 876 LargestExitEdgeWeight = std::max(LargestExitEdgeWeight, SuccWeight); 877 } 878 } 879 if (LargestExitEdgeWeight > 0) { 880 uint32_t WeightScale = 0; 881 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 882 auto ExitFreq = 883 MBFI->getBlockFreq(BB) * 884 BranchProbability(LargestExitEdgeWeight / WeightScale, SumWeight); 885 ExitsWithFreq.emplace_back(BB, ExitFreq); 886 } 887 } 888 889 // In this loop we iterate every block in the loop chain and calculate the 890 // cost assuming the block is the head of the loop chain. When the loop ends, 891 // we should have found the best candidate as the loop chain's head. 892 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 893 EndIter = LoopChain.end(); 894 Iter != EndIter; Iter++, TailIter++) { 895 // TailIter is used to track the tail of the loop chain if the block we are 896 // checking (pointed by Iter) is the head of the chain. 897 if (TailIter == LoopChain.end()) 898 TailIter = LoopChain.begin(); 899 900 auto TailBB = *TailIter; 901 902 // Calculate the cost by putting this BB to the top. 903 BlockFrequency Cost = 0; 904 905 // If the current BB is the loop header, we need to take into account the 906 // cost of the missed fall through edge from outside of the loop to the 907 // header. 908 if (Iter != HeaderIter) 909 Cost += HeaderFallThroughCost; 910 911 // Collect the loop exit cost by summing up frequencies of all exit edges 912 // except the one from the chain tail. 913 for (auto &ExitWithFreq : ExitsWithFreq) 914 if (TailBB != ExitWithFreq.first) 915 Cost += ExitWithFreq.second; 916 917 // The cost of breaking the once fall-through edge from the tail to the top 918 // of the loop chain. Here we need to consider three cases: 919 // 1. If the tail node has only one successor, then we will get an 920 // additional jmp instruction. So the cost here is (MisfetchCost + 921 // JumpInstCost) * tail node frequency. 922 // 2. If the tail node has two successors, then we may still get an 923 // additional jmp instruction if the layout successor after the loop 924 // chain is not its CFG successor. Note that the more frequently executed 925 // jmp instruction will be put ahead of the other one. Assume the 926 // frequency of those two branches are x and y, where x is the frequency 927 // of the edge to the chain head, then the cost will be 928 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 929 // 3. If the tail node has more than two successors (this rarely happens), 930 // we won't consider any additional cost. 931 if (TailBB->isSuccessor(*Iter)) { 932 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 933 if (TailBB->succ_size() == 1) 934 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 935 MisfetchCost + JumpInstCost); 936 else if (TailBB->succ_size() == 2) { 937 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 938 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 939 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 940 ? TailBBFreq * TailToHeadProb.getCompl() 941 : TailToHeadFreq; 942 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 943 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 944 } 945 } 946 947 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter) 948 << " to the top: " << Cost.getFrequency() << "\n"); 949 950 if (Cost < SmallestRotationCost) { 951 SmallestRotationCost = Cost; 952 RotationPos = Iter; 953 } 954 } 955 956 if (RotationPos != LoopChain.end()) { 957 DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos) 958 << " to the top\n"); 959 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 960 } 961 } 962 963 /// \brief Forms basic block chains from the natural loop structures. 964 /// 965 /// These chains are designed to preserve the existing *structure* of the code 966 /// as much as possible. We can then stitch the chains together in a way which 967 /// both preserves the topological structure and minimizes taken conditional 968 /// branches. 969 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 970 MachineLoop &L) { 971 // First recurse through any nested loops, building chains for those inner 972 // loops. 973 for (MachineLoop *InnerLoop : L) 974 buildLoopChains(F, *InnerLoop); 975 976 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 977 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 978 979 // Check if we have profile data for this function. If yes, we will rotate 980 // this loop by modeling costs more precisely which requires the profile data 981 // for better layout. 982 bool RotateLoopWithProfile = 983 PreciseRotationCost && F.getFunction()->getEntryCount(); 984 985 // First check to see if there is an obviously preferable top block for the 986 // loop. This will default to the header, but may end up as one of the 987 // predecessors to the header if there is one which will result in strictly 988 // fewer branches in the loop body. 989 // When we use profile data to rotate the loop, this is unnecessary. 990 MachineBasicBlock *LoopTop = 991 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 992 993 // If we selected just the header for the loop top, look for a potentially 994 // profitable exit block in the event that rotating the loop can eliminate 995 // branches by placing an exit edge at the bottom. 996 MachineBasicBlock *ExitingBB = nullptr; 997 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 998 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 999 1000 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1001 1002 // FIXME: This is a really lame way of walking the chains in the loop: we 1003 // walk the blocks, and use a set to prevent visiting a particular chain 1004 // twice. 1005 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1006 assert(LoopChain.LoopPredecessors == 0); 1007 UpdatedPreds.insert(&LoopChain); 1008 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1009 BlockChain &Chain = *BlockToChain[LoopBB]; 1010 if (!UpdatedPreds.insert(&Chain).second) 1011 continue; 1012 1013 assert(Chain.LoopPredecessors == 0); 1014 for (MachineBasicBlock *ChainBB : Chain) { 1015 assert(BlockToChain[ChainBB] == &Chain); 1016 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1017 if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred)) 1018 continue; 1019 ++Chain.LoopPredecessors; 1020 } 1021 } 1022 1023 if (Chain.LoopPredecessors == 0) 1024 BlockWorkList.push_back(*Chain.begin()); 1025 } 1026 1027 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 1028 1029 if (RotateLoopWithProfile) 1030 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1031 else 1032 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1033 1034 DEBUG({ 1035 // Crash at the end so we get all of the debugging output first. 1036 bool BadLoop = false; 1037 if (LoopChain.LoopPredecessors) { 1038 BadLoop = true; 1039 dbgs() << "Loop chain contains a block without its preds placed!\n" 1040 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1041 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1042 } 1043 for (MachineBasicBlock *ChainBB : LoopChain) { 1044 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1045 if (!LoopBlockSet.erase(ChainBB)) { 1046 // We don't mark the loop as bad here because there are real situations 1047 // where this can occur. For example, with an unanalyzable fallthrough 1048 // from a loop block to a non-loop block or vice versa. 1049 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1050 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1051 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1052 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1053 } 1054 } 1055 1056 if (!LoopBlockSet.empty()) { 1057 BadLoop = true; 1058 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1059 dbgs() << "Loop contains blocks never placed into a chain!\n" 1060 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1061 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1062 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1063 } 1064 assert(!BadLoop && "Detected problems with the placement of this loop."); 1065 }); 1066 } 1067 1068 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1069 // Ensure that every BB in the function has an associated chain to simplify 1070 // the assumptions of the remaining algorithm. 1071 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1072 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1073 MachineBasicBlock *BB = &*FI; 1074 BlockChain *Chain = 1075 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1076 // Also, merge any blocks which we cannot reason about and must preserve 1077 // the exact fallthrough behavior for. 1078 for (;;) { 1079 Cond.clear(); 1080 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1081 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1082 break; 1083 1084 MachineFunction::iterator NextFI = std::next(FI); 1085 MachineBasicBlock *NextBB = &*NextFI; 1086 // Ensure that the layout successor is a viable block, as we know that 1087 // fallthrough is a possibility. 1088 assert(NextFI != FE && "Can't fallthrough past the last block."); 1089 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1090 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1091 << "\n"); 1092 Chain->merge(NextBB, nullptr); 1093 FI = NextFI; 1094 BB = NextBB; 1095 } 1096 } 1097 1098 if (OutlineOptionalBranches) { 1099 // Find the nearest common dominator of all of F's terminators. 1100 MachineBasicBlock *Terminator = nullptr; 1101 for (MachineBasicBlock &MBB : F) { 1102 if (MBB.succ_size() == 0) { 1103 if (Terminator == nullptr) 1104 Terminator = &MBB; 1105 else 1106 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1107 } 1108 } 1109 1110 // MBBs dominating this common dominator are unavoidable. 1111 UnavoidableBlocks.clear(); 1112 for (MachineBasicBlock &MBB : F) { 1113 if (MDT->dominates(&MBB, Terminator)) { 1114 UnavoidableBlocks.insert(&MBB); 1115 } 1116 } 1117 } 1118 1119 // Build any loop-based chains. 1120 for (MachineLoop *L : *MLI) 1121 buildLoopChains(F, *L); 1122 1123 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1124 1125 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1126 for (MachineBasicBlock &MBB : F) { 1127 BlockChain &Chain = *BlockToChain[&MBB]; 1128 if (!UpdatedPreds.insert(&Chain).second) 1129 continue; 1130 1131 assert(Chain.LoopPredecessors == 0); 1132 for (MachineBasicBlock *ChainBB : Chain) { 1133 assert(BlockToChain[ChainBB] == &Chain); 1134 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1135 if (BlockToChain[Pred] == &Chain) 1136 continue; 1137 ++Chain.LoopPredecessors; 1138 } 1139 } 1140 1141 if (Chain.LoopPredecessors == 0) 1142 BlockWorkList.push_back(*Chain.begin()); 1143 } 1144 1145 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1146 buildChain(&F.front(), FunctionChain, BlockWorkList); 1147 1148 #ifndef NDEBUG 1149 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1150 #endif 1151 DEBUG({ 1152 // Crash at the end so we get all of the debugging output first. 1153 bool BadFunc = false; 1154 FunctionBlockSetType FunctionBlockSet; 1155 for (MachineBasicBlock &MBB : F) 1156 FunctionBlockSet.insert(&MBB); 1157 1158 for (MachineBasicBlock *ChainBB : FunctionChain) 1159 if (!FunctionBlockSet.erase(ChainBB)) { 1160 BadFunc = true; 1161 dbgs() << "Function chain contains a block not in the function!\n" 1162 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1163 } 1164 1165 if (!FunctionBlockSet.empty()) { 1166 BadFunc = true; 1167 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1168 dbgs() << "Function contains blocks never placed into a chain!\n" 1169 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1170 } 1171 assert(!BadFunc && "Detected problems with the block placement."); 1172 }); 1173 1174 // Splice the blocks into place. 1175 MachineFunction::iterator InsertPos = F.begin(); 1176 for (MachineBasicBlock *ChainBB : FunctionChain) { 1177 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1178 : " ... ") 1179 << getBlockName(ChainBB) << "\n"); 1180 if (InsertPos != MachineFunction::iterator(ChainBB)) 1181 F.splice(InsertPos, ChainBB); 1182 else 1183 ++InsertPos; 1184 1185 // Update the terminator of the previous block. 1186 if (ChainBB == *FunctionChain.begin()) 1187 continue; 1188 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1189 1190 // FIXME: It would be awesome of updateTerminator would just return rather 1191 // than assert when the branch cannot be analyzed in order to remove this 1192 // boiler plate. 1193 Cond.clear(); 1194 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1195 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1196 // The "PrevBB" is not yet updated to reflect current code layout, so, 1197 // o. it may fall-through to a block without explict "goto" instruction 1198 // before layout, and no longer fall-through it after layout; or 1199 // o. just opposite. 1200 // 1201 // AnalyzeBranch() may return erroneous value for FBB when these two 1202 // situations take place. For the first scenario FBB is mistakenly set 1203 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1204 // is mistakenly pointing to "*BI". 1205 // 1206 bool needUpdateBr = true; 1207 if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1208 PrevBB->updateTerminator(); 1209 needUpdateBr = false; 1210 Cond.clear(); 1211 TBB = FBB = nullptr; 1212 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1213 // FIXME: This should never take place. 1214 TBB = FBB = nullptr; 1215 } 1216 } 1217 1218 // If PrevBB has a two-way branch, try to re-order the branches 1219 // such that we branch to the successor with higher weight first. 1220 if (TBB && !Cond.empty() && FBB && 1221 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1222 !TII->ReverseBranchCondition(Cond)) { 1223 DEBUG(dbgs() << "Reverse order of the two branches: " 1224 << getBlockName(PrevBB) << "\n"); 1225 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1226 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1227 DebugLoc dl; // FIXME: this is nowhere 1228 TII->RemoveBranch(*PrevBB); 1229 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1230 needUpdateBr = true; 1231 } 1232 if (needUpdateBr) 1233 PrevBB->updateTerminator(); 1234 } 1235 } 1236 1237 // Fixup the last block. 1238 Cond.clear(); 1239 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1240 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1241 F.back().updateTerminator(); 1242 1243 // Walk through the backedges of the function now that we have fully laid out 1244 // the basic blocks and align the destination of each backedge. We don't rely 1245 // exclusively on the loop info here so that we can align backedges in 1246 // unnatural CFGs and backedges that were introduced purely because of the 1247 // loop rotations done during this layout pass. 1248 // FIXME: Use Function::optForSize(). 1249 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 1250 return; 1251 if (FunctionChain.begin() == FunctionChain.end()) 1252 return; // Empty chain. 1253 1254 const BranchProbability ColdProb(1, 5); // 20% 1255 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1256 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1257 for (MachineBasicBlock *ChainBB : FunctionChain) { 1258 if (ChainBB == *FunctionChain.begin()) 1259 continue; 1260 1261 // Don't align non-looping basic blocks. These are unlikely to execute 1262 // enough times to matter in practice. Note that we'll still handle 1263 // unnatural CFGs inside of a natural outer loop (the common case) and 1264 // rotated loops. 1265 MachineLoop *L = MLI->getLoopFor(ChainBB); 1266 if (!L) 1267 continue; 1268 1269 unsigned Align = TLI->getPrefLoopAlignment(L); 1270 if (!Align) 1271 continue; // Don't care about loop alignment. 1272 1273 // If the block is cold relative to the function entry don't waste space 1274 // aligning it. 1275 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1276 if (Freq < WeightedEntryFreq) 1277 continue; 1278 1279 // If the block is cold relative to its loop header, don't align it 1280 // regardless of what edges into the block exist. 1281 MachineBasicBlock *LoopHeader = L->getHeader(); 1282 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1283 if (Freq < (LoopHeaderFreq * ColdProb)) 1284 continue; 1285 1286 // Check for the existence of a non-layout predecessor which would benefit 1287 // from aligning this block. 1288 MachineBasicBlock *LayoutPred = 1289 &*std::prev(MachineFunction::iterator(ChainBB)); 1290 1291 // Force alignment if all the predecessors are jumps. We already checked 1292 // that the block isn't cold above. 1293 if (!LayoutPred->isSuccessor(ChainBB)) { 1294 ChainBB->setAlignment(Align); 1295 continue; 1296 } 1297 1298 // Align this block if the layout predecessor's edge into this block is 1299 // cold relative to the block. When this is true, other predecessors make up 1300 // all of the hot entries into the block and thus alignment is likely to be 1301 // important. 1302 BranchProbability LayoutProb = 1303 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1304 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1305 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1306 ChainBB->setAlignment(Align); 1307 } 1308 } 1309 1310 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1311 // Check for single-block functions and skip them. 1312 if (std::next(F.begin()) == F.end()) 1313 return false; 1314 1315 if (skipOptnoneFunction(*F.getFunction())) 1316 return false; 1317 1318 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1319 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1320 MLI = &getAnalysis<MachineLoopInfo>(); 1321 TII = F.getSubtarget().getInstrInfo(); 1322 TLI = F.getSubtarget().getTargetLowering(); 1323 MDT = &getAnalysis<MachineDominatorTree>(); 1324 assert(BlockToChain.empty()); 1325 1326 buildCFGChains(F); 1327 1328 BlockToChain.clear(); 1329 ChainAllocator.DestroyAll(); 1330 1331 if (AlignAllBlock) 1332 // Align all of the blocks in the function to a specific alignment. 1333 for (MachineBasicBlock &MBB : F) 1334 MBB.setAlignment(AlignAllBlock); 1335 1336 // We always return true as we have no way to track whether the final order 1337 // differs from the original order. 1338 return true; 1339 } 1340 1341 namespace { 1342 /// \brief A pass to compute block placement statistics. 1343 /// 1344 /// A separate pass to compute interesting statistics for evaluating block 1345 /// placement. This is separate from the actual placement pass so that they can 1346 /// be computed in the absence of any placement transformations or when using 1347 /// alternative placement strategies. 1348 class MachineBlockPlacementStats : public MachineFunctionPass { 1349 /// \brief A handle to the branch probability pass. 1350 const MachineBranchProbabilityInfo *MBPI; 1351 1352 /// \brief A handle to the function-wide block frequency pass. 1353 const MachineBlockFrequencyInfo *MBFI; 1354 1355 public: 1356 static char ID; // Pass identification, replacement for typeid 1357 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1358 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1359 } 1360 1361 bool runOnMachineFunction(MachineFunction &F) override; 1362 1363 void getAnalysisUsage(AnalysisUsage &AU) const override { 1364 AU.addRequired<MachineBranchProbabilityInfo>(); 1365 AU.addRequired<MachineBlockFrequencyInfo>(); 1366 AU.setPreservesAll(); 1367 MachineFunctionPass::getAnalysisUsage(AU); 1368 } 1369 }; 1370 } 1371 1372 char MachineBlockPlacementStats::ID = 0; 1373 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1374 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1375 "Basic Block Placement Stats", false, false) 1376 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1377 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1378 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1379 "Basic Block Placement Stats", false, false) 1380 1381 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1382 // Check for single-block functions and skip them. 1383 if (std::next(F.begin()) == F.end()) 1384 return false; 1385 1386 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1387 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1388 1389 for (MachineBasicBlock &MBB : F) { 1390 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1391 Statistic &NumBranches = 1392 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1393 Statistic &BranchTakenFreq = 1394 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1395 for (MachineBasicBlock *Succ : MBB.successors()) { 1396 // Skip if this successor is a fallthrough. 1397 if (MBB.isLayoutSuccessor(Succ)) 1398 continue; 1399 1400 BlockFrequency EdgeFreq = 1401 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1402 ++NumBranches; 1403 BranchTakenFreq += EdgeFreq.getFrequency(); 1404 } 1405 } 1406 1407 return false; 1408 } 1409