1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "BranchFolding.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 36 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachinePostDominators.h" 42 #include "llvm/CodeGen/Passes.h" 43 #include "llvm/CodeGen/TailDuplicator.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include <algorithm> 53 #include <functional> 54 #include <utility> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "block-placement" 58 59 STATISTIC(NumCondBranches, "Number of conditional branches"); 60 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 61 STATISTIC(CondBranchTakenFreq, 62 "Potential frequency of taking conditional branches"); 63 STATISTIC(UncondBranchTakenFreq, 64 "Potential frequency of taking unconditional branches"); 65 66 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks in the function."), 69 cl::init(0), cl::Hidden); 70 71 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 72 "align-all-nofallthru-blocks", 73 cl::desc("Force the alignment of all " 74 "blocks that have no fall-through predecessors (i.e. don't add " 75 "nops that are executed)."), 76 cl::init(0), cl::Hidden); 77 78 // FIXME: Find a good default for this flag and remove the flag. 79 static cl::opt<unsigned> ExitBlockBias( 80 "block-placement-exit-block-bias", 81 cl::desc("Block frequency percentage a loop exit block needs " 82 "over the original exit to be considered the new exit."), 83 cl::init(0), cl::Hidden); 84 85 // Definition: 86 // - Outlining: placement of a basic block outside the chain or hot path. 87 88 static cl::opt<unsigned> LoopToColdBlockRatio( 89 "loop-to-cold-block-ratio", 90 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 91 "(frequency of block) is greater than this ratio"), 92 cl::init(5), cl::Hidden); 93 94 static cl::opt<bool> ForceLoopColdBlock( 95 "force-loop-cold-block", 96 cl::desc("Force outlining cold blocks from loops."), 97 cl::init(false), cl::Hidden); 98 99 static cl::opt<bool> 100 PreciseRotationCost("precise-rotation-cost", 101 cl::desc("Model the cost of loop rotation more " 102 "precisely by using profile data."), 103 cl::init(false), cl::Hidden); 104 static cl::opt<bool> 105 ForcePreciseRotationCost("force-precise-rotation-cost", 106 cl::desc("Force the use of precise cost " 107 "loop rotation strategy."), 108 cl::init(false), cl::Hidden); 109 110 static cl::opt<unsigned> MisfetchCost( 111 "misfetch-cost", 112 cl::desc("Cost that models the probabilistic risk of an instruction " 113 "misfetch due to a jump comparing to falling through, whose cost " 114 "is zero."), 115 cl::init(1), cl::Hidden); 116 117 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 118 cl::desc("Cost of jump instructions."), 119 cl::init(1), cl::Hidden); 120 static cl::opt<bool> 121 TailDupPlacement("tail-dup-placement", 122 cl::desc("Perform tail duplication during placement. " 123 "Creates more fallthrough opportunites in " 124 "outline branches."), 125 cl::init(true), cl::Hidden); 126 127 static cl::opt<bool> 128 BranchFoldPlacement("branch-fold-placement", 129 cl::desc("Perform branch folding during placement. " 130 "Reduces code size."), 131 cl::init(true), cl::Hidden); 132 133 // Heuristic for tail duplication. 134 static cl::opt<unsigned> TailDupPlacementThreshold( 135 "tail-dup-placement-threshold", 136 cl::desc("Instruction cutoff for tail duplication during layout. " 137 "Tail merging during layout is forced to have a threshold " 138 "that won't conflict."), cl::init(2), 139 cl::Hidden); 140 141 // Heuristic for aggressive tail duplication. 142 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 143 "tail-dup-placement-aggressive-threshold", 144 cl::desc("Instruction cutoff for aggressive tail duplication during " 145 "layout. Used at -O3. Tail merging during layout is forced to " 146 "have a threshold that won't conflict."), cl::init(3), 147 cl::Hidden); 148 149 // Heuristic for tail duplication. 150 static cl::opt<unsigned> TailDupPlacementPenalty( 151 "tail-dup-placement-penalty", 152 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 153 "Copying can increase fallthrough, but it also increases icache " 154 "pressure. This parameter controls the penalty to account for that. " 155 "Percent as integer."), 156 cl::init(2), 157 cl::Hidden); 158 159 // Heuristic for triangle chains. 160 static cl::opt<unsigned> TriangleChainCount( 161 "triangle-chain-count", 162 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 163 "triangle tail duplication heuristic to kick in. 0 to disable."), 164 cl::init(2), 165 cl::Hidden); 166 167 extern cl::opt<unsigned> StaticLikelyProb; 168 extern cl::opt<unsigned> ProfileLikelyProb; 169 170 // Internal option used to control BFI display only after MBP pass. 171 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 172 // -view-block-layout-with-bfi= 173 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 174 175 // Command line option to specify the name of the function for CFG dump 176 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 177 extern cl::opt<std::string> ViewBlockFreqFuncName; 178 179 namespace { 180 class BlockChain; 181 /// \brief Type for our function-wide basic block -> block chain mapping. 182 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType; 183 } 184 185 namespace { 186 /// \brief A chain of blocks which will be laid out contiguously. 187 /// 188 /// This is the datastructure representing a chain of consecutive blocks that 189 /// are profitable to layout together in order to maximize fallthrough 190 /// probabilities and code locality. We also can use a block chain to represent 191 /// a sequence of basic blocks which have some external (correctness) 192 /// requirement for sequential layout. 193 /// 194 /// Chains can be built around a single basic block and can be merged to grow 195 /// them. They participate in a block-to-chain mapping, which is updated 196 /// automatically as chains are merged together. 197 class BlockChain { 198 /// \brief The sequence of blocks belonging to this chain. 199 /// 200 /// This is the sequence of blocks for a particular chain. These will be laid 201 /// out in-order within the function. 202 SmallVector<MachineBasicBlock *, 4> Blocks; 203 204 /// \brief A handle to the function-wide basic block to block chain mapping. 205 /// 206 /// This is retained in each block chain to simplify the computation of child 207 /// block chains for SCC-formation and iteration. We store the edges to child 208 /// basic blocks, and map them back to their associated chains using this 209 /// structure. 210 BlockToChainMapType &BlockToChain; 211 212 public: 213 /// \brief Construct a new BlockChain. 214 /// 215 /// This builds a new block chain representing a single basic block in the 216 /// function. It also registers itself as the chain that block participates 217 /// in with the BlockToChain mapping. 218 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 219 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 220 assert(BB && "Cannot create a chain with a null basic block"); 221 BlockToChain[BB] = this; 222 } 223 224 /// \brief Iterator over blocks within the chain. 225 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 226 typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator; 227 228 /// \brief Beginning of blocks within the chain. 229 iterator begin() { return Blocks.begin(); } 230 const_iterator begin() const { return Blocks.begin(); } 231 232 /// \brief End of blocks within the chain. 233 iterator end() { return Blocks.end(); } 234 const_iterator end() const { return Blocks.end(); } 235 236 bool remove(MachineBasicBlock* BB) { 237 for(iterator i = begin(); i != end(); ++i) { 238 if (*i == BB) { 239 Blocks.erase(i); 240 return true; 241 } 242 } 243 return false; 244 } 245 246 /// \brief Merge a block chain into this one. 247 /// 248 /// This routine merges a block chain into this one. It takes care of forming 249 /// a contiguous sequence of basic blocks, updating the edge list, and 250 /// updating the block -> chain mapping. It does not free or tear down the 251 /// old chain, but the old chain's block list is no longer valid. 252 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 253 assert(BB && "Can't merge a null block."); 254 assert(!Blocks.empty() && "Can't merge into an empty chain."); 255 256 // Fast path in case we don't have a chain already. 257 if (!Chain) { 258 assert(!BlockToChain[BB] && 259 "Passed chain is null, but BB has entry in BlockToChain."); 260 Blocks.push_back(BB); 261 BlockToChain[BB] = this; 262 return; 263 } 264 265 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 266 assert(Chain->begin() != Chain->end()); 267 268 // Update the incoming blocks to point to this chain, and add them to the 269 // chain structure. 270 for (MachineBasicBlock *ChainBB : *Chain) { 271 Blocks.push_back(ChainBB); 272 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 273 BlockToChain[ChainBB] = this; 274 } 275 } 276 277 #ifndef NDEBUG 278 /// \brief Dump the blocks in this chain. 279 LLVM_DUMP_METHOD void dump() { 280 for (MachineBasicBlock *MBB : *this) 281 MBB->dump(); 282 } 283 #endif // NDEBUG 284 285 /// \brief Count of predecessors of any block within the chain which have not 286 /// yet been scheduled. In general, we will delay scheduling this chain 287 /// until those predecessors are scheduled (or we find a sufficiently good 288 /// reason to override this heuristic.) Note that when forming loop chains, 289 /// blocks outside the loop are ignored and treated as if they were already 290 /// scheduled. 291 /// 292 /// Note: This field is reinitialized multiple times - once for each loop, 293 /// and then once for the function as a whole. 294 unsigned UnscheduledPredecessors; 295 }; 296 } 297 298 namespace { 299 class MachineBlockPlacement : public MachineFunctionPass { 300 /// \brief A typedef for a block filter set. 301 typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet; 302 303 /// Pair struct containing basic block and taildup profitiability 304 struct BlockAndTailDupResult { 305 MachineBasicBlock *BB; 306 bool ShouldTailDup; 307 }; 308 309 /// Triple struct containing edge weight and the edge. 310 struct WeightedEdge { 311 BlockFrequency Weight; 312 MachineBasicBlock *Src; 313 MachineBasicBlock *Dest; 314 }; 315 316 /// \brief work lists of blocks that are ready to be laid out 317 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 318 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 319 320 /// Edges that have already been computed as optimal. 321 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 322 323 /// \brief Machine Function 324 MachineFunction *F; 325 326 /// \brief A handle to the branch probability pass. 327 const MachineBranchProbabilityInfo *MBPI; 328 329 /// \brief A handle to the function-wide block frequency pass. 330 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 331 332 /// \brief A handle to the loop info. 333 MachineLoopInfo *MLI; 334 335 /// \brief Preferred loop exit. 336 /// Member variable for convenience. It may be removed by duplication deep 337 /// in the call stack. 338 MachineBasicBlock *PreferredLoopExit; 339 340 /// \brief A handle to the target's instruction info. 341 const TargetInstrInfo *TII; 342 343 /// \brief A handle to the target's lowering info. 344 const TargetLoweringBase *TLI; 345 346 /// \brief A handle to the post dominator tree. 347 MachinePostDominatorTree *MPDT; 348 349 /// \brief Duplicator used to duplicate tails during placement. 350 /// 351 /// Placement decisions can open up new tail duplication opportunities, but 352 /// since tail duplication affects placement decisions of later blocks, it 353 /// must be done inline. 354 TailDuplicator TailDup; 355 356 /// \brief Allocator and owner of BlockChain structures. 357 /// 358 /// We build BlockChains lazily while processing the loop structure of 359 /// a function. To reduce malloc traffic, we allocate them using this 360 /// slab-like allocator, and destroy them after the pass completes. An 361 /// important guarantee is that this allocator produces stable pointers to 362 /// the chains. 363 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 364 365 /// \brief Function wide BasicBlock to BlockChain mapping. 366 /// 367 /// This mapping allows efficiently moving from any given basic block to the 368 /// BlockChain it participates in, if any. We use it to, among other things, 369 /// allow implicitly defining edges between chains as the existing edges 370 /// between basic blocks. 371 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 372 373 #ifndef NDEBUG 374 /// The set of basic blocks that have terminators that cannot be fully 375 /// analyzed. These basic blocks cannot be re-ordered safely by 376 /// MachineBlockPlacement, and we must preserve physical layout of these 377 /// blocks and their successors through the pass. 378 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 379 #endif 380 381 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 382 /// if the count goes to 0, add them to the appropriate work list. 383 void markChainSuccessors( 384 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 385 const BlockFilterSet *BlockFilter = nullptr); 386 387 /// Decrease the UnscheduledPredecessors count for a single block, and 388 /// if the count goes to 0, add them to the appropriate work list. 389 void markBlockSuccessors( 390 const BlockChain &Chain, const MachineBasicBlock *BB, 391 const MachineBasicBlock *LoopHeaderBB, 392 const BlockFilterSet *BlockFilter = nullptr); 393 394 BranchProbability 395 collectViableSuccessors( 396 const MachineBasicBlock *BB, const BlockChain &Chain, 397 const BlockFilterSet *BlockFilter, 398 SmallVector<MachineBasicBlock *, 4> &Successors); 399 bool shouldPredBlockBeOutlined( 400 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 401 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 402 BranchProbability SuccProb, BranchProbability HotProb); 403 bool repeatedlyTailDuplicateBlock( 404 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 405 const MachineBasicBlock *LoopHeaderBB, 406 BlockChain &Chain, BlockFilterSet *BlockFilter, 407 MachineFunction::iterator &PrevUnplacedBlockIt); 408 bool maybeTailDuplicateBlock( 409 MachineBasicBlock *BB, MachineBasicBlock *LPred, 410 BlockChain &Chain, BlockFilterSet *BlockFilter, 411 MachineFunction::iterator &PrevUnplacedBlockIt, 412 bool &DuplicatedToPred); 413 bool hasBetterLayoutPredecessor( 414 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 415 const BlockChain &SuccChain, BranchProbability SuccProb, 416 BranchProbability RealSuccProb, const BlockChain &Chain, 417 const BlockFilterSet *BlockFilter); 418 BlockAndTailDupResult selectBestSuccessor( 419 const MachineBasicBlock *BB, const BlockChain &Chain, 420 const BlockFilterSet *BlockFilter); 421 MachineBasicBlock *selectBestCandidateBlock( 422 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 423 MachineBasicBlock *getFirstUnplacedBlock( 424 const BlockChain &PlacedChain, 425 MachineFunction::iterator &PrevUnplacedBlockIt, 426 const BlockFilterSet *BlockFilter); 427 428 /// \brief Add a basic block to the work list if it is appropriate. 429 /// 430 /// If the optional parameter BlockFilter is provided, only MBB 431 /// present in the set will be added to the worklist. If nullptr 432 /// is provided, no filtering occurs. 433 void fillWorkLists(const MachineBasicBlock *MBB, 434 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 435 const BlockFilterSet *BlockFilter); 436 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 437 BlockFilterSet *BlockFilter = nullptr); 438 MachineBasicBlock *findBestLoopTop( 439 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 440 MachineBasicBlock *findBestLoopExit( 441 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 442 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 443 void buildLoopChains(const MachineLoop &L); 444 void rotateLoop( 445 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 446 const BlockFilterSet &LoopBlockSet); 447 void rotateLoopWithProfile( 448 BlockChain &LoopChain, const MachineLoop &L, 449 const BlockFilterSet &LoopBlockSet); 450 void buildCFGChains(); 451 void optimizeBranches(); 452 void alignBlocks(); 453 /// Returns true if a block should be tail-duplicated to increase fallthrough 454 /// opportunities. 455 bool shouldTailDuplicate(MachineBasicBlock *BB); 456 /// Check the edge frequencies to see if tail duplication will increase 457 /// fallthroughs. 458 bool isProfitableToTailDup( 459 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 460 BranchProbability AdjustedSumProb, 461 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 462 /// Check for a trellis layout. 463 bool isTrellis(const MachineBasicBlock *BB, 464 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 465 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 466 /// Get the best successor given a trellis layout. 467 BlockAndTailDupResult getBestTrellisSuccessor( 468 const MachineBasicBlock *BB, 469 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 470 BranchProbability AdjustedSumProb, const BlockChain &Chain, 471 const BlockFilterSet *BlockFilter); 472 /// Get the best pair of non-conflicting edges. 473 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 474 const MachineBasicBlock *BB, 475 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 476 /// Returns true if a block can tail duplicate into all unplaced 477 /// predecessors. Filters based on loop. 478 bool canTailDuplicateUnplacedPreds( 479 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 480 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 481 /// Find chains of triangles to tail-duplicate where a global analysis works, 482 /// but a local analysis would not find them. 483 void precomputeTriangleChains(); 484 485 public: 486 static char ID; // Pass identification, replacement for typeid 487 MachineBlockPlacement() : MachineFunctionPass(ID) { 488 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 489 } 490 491 bool runOnMachineFunction(MachineFunction &F) override; 492 493 void getAnalysisUsage(AnalysisUsage &AU) const override { 494 AU.addRequired<MachineBranchProbabilityInfo>(); 495 AU.addRequired<MachineBlockFrequencyInfo>(); 496 if (TailDupPlacement) 497 AU.addRequired<MachinePostDominatorTree>(); 498 AU.addRequired<MachineLoopInfo>(); 499 AU.addRequired<TargetPassConfig>(); 500 MachineFunctionPass::getAnalysisUsage(AU); 501 } 502 }; 503 } 504 505 char MachineBlockPlacement::ID = 0; 506 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 507 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 508 "Branch Probability Basic Block Placement", false, false) 509 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 510 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 511 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 512 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 513 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 514 "Branch Probability Basic Block Placement", false, false) 515 516 #ifndef NDEBUG 517 /// \brief Helper to print the name of a MBB. 518 /// 519 /// Only used by debug logging. 520 static std::string getBlockName(const MachineBasicBlock *BB) { 521 std::string Result; 522 raw_string_ostream OS(Result); 523 OS << "BB#" << BB->getNumber(); 524 OS << " ('" << BB->getName() << "')"; 525 OS.flush(); 526 return Result; 527 } 528 #endif 529 530 /// \brief Mark a chain's successors as having one fewer preds. 531 /// 532 /// When a chain is being merged into the "placed" chain, this routine will 533 /// quickly walk the successors of each block in the chain and mark them as 534 /// having one fewer active predecessor. It also adds any successors of this 535 /// chain which reach the zero-predecessor state to the appropriate worklist. 536 void MachineBlockPlacement::markChainSuccessors( 537 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 538 const BlockFilterSet *BlockFilter) { 539 // Walk all the blocks in this chain, marking their successors as having 540 // a predecessor placed. 541 for (MachineBasicBlock *MBB : Chain) { 542 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 543 } 544 } 545 546 /// \brief Mark a single block's successors as having one fewer preds. 547 /// 548 /// Under normal circumstances, this is only called by markChainSuccessors, 549 /// but if a block that was to be placed is completely tail-duplicated away, 550 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 551 /// for just that block. 552 void MachineBlockPlacement::markBlockSuccessors( 553 const BlockChain &Chain, const MachineBasicBlock *MBB, 554 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 555 // Add any successors for which this is the only un-placed in-loop 556 // predecessor to the worklist as a viable candidate for CFG-neutral 557 // placement. No subsequent placement of this block will violate the CFG 558 // shape, so we get to use heuristics to choose a favorable placement. 559 for (MachineBasicBlock *Succ : MBB->successors()) { 560 if (BlockFilter && !BlockFilter->count(Succ)) 561 continue; 562 BlockChain &SuccChain = *BlockToChain[Succ]; 563 // Disregard edges within a fixed chain, or edges to the loop header. 564 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 565 continue; 566 567 // This is a cross-chain edge that is within the loop, so decrement the 568 // loop predecessor count of the destination chain. 569 if (SuccChain.UnscheduledPredecessors == 0 || 570 --SuccChain.UnscheduledPredecessors > 0) 571 continue; 572 573 auto *NewBB = *SuccChain.begin(); 574 if (NewBB->isEHPad()) 575 EHPadWorkList.push_back(NewBB); 576 else 577 BlockWorkList.push_back(NewBB); 578 } 579 } 580 581 /// This helper function collects the set of successors of block 582 /// \p BB that are allowed to be its layout successors, and return 583 /// the total branch probability of edges from \p BB to those 584 /// blocks. 585 BranchProbability MachineBlockPlacement::collectViableSuccessors( 586 const MachineBasicBlock *BB, const BlockChain &Chain, 587 const BlockFilterSet *BlockFilter, 588 SmallVector<MachineBasicBlock *, 4> &Successors) { 589 // Adjust edge probabilities by excluding edges pointing to blocks that is 590 // either not in BlockFilter or is already in the current chain. Consider the 591 // following CFG: 592 // 593 // --->A 594 // | / \ 595 // | B C 596 // | \ / \ 597 // ----D E 598 // 599 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 600 // A->C is chosen as a fall-through, D won't be selected as a successor of C 601 // due to CFG constraint (the probability of C->D is not greater than 602 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 603 // when calculating the probability of C->D, D will be selected and we 604 // will get A C D B as the layout of this loop. 605 auto AdjustedSumProb = BranchProbability::getOne(); 606 for (MachineBasicBlock *Succ : BB->successors()) { 607 bool SkipSucc = false; 608 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 609 SkipSucc = true; 610 } else { 611 BlockChain *SuccChain = BlockToChain[Succ]; 612 if (SuccChain == &Chain) { 613 SkipSucc = true; 614 } else if (Succ != *SuccChain->begin()) { 615 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 616 continue; 617 } 618 } 619 if (SkipSucc) 620 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 621 else 622 Successors.push_back(Succ); 623 } 624 625 return AdjustedSumProb; 626 } 627 628 /// The helper function returns the branch probability that is adjusted 629 /// or normalized over the new total \p AdjustedSumProb. 630 static BranchProbability 631 getAdjustedProbability(BranchProbability OrigProb, 632 BranchProbability AdjustedSumProb) { 633 BranchProbability SuccProb; 634 uint32_t SuccProbN = OrigProb.getNumerator(); 635 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 636 if (SuccProbN >= SuccProbD) 637 SuccProb = BranchProbability::getOne(); 638 else 639 SuccProb = BranchProbability(SuccProbN, SuccProbD); 640 641 return SuccProb; 642 } 643 644 /// Check if \p BB has exactly the successors in \p Successors. 645 static bool 646 hasSameSuccessors(MachineBasicBlock &BB, 647 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 648 if (BB.succ_size() != Successors.size()) 649 return false; 650 // We don't want to count self-loops 651 if (Successors.count(&BB)) 652 return false; 653 for (MachineBasicBlock *Succ : BB.successors()) 654 if (!Successors.count(Succ)) 655 return false; 656 return true; 657 } 658 659 /// Check if a block should be tail duplicated to increase fallthrough 660 /// opportunities. 661 /// \p BB Block to check. 662 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 663 // Blocks with single successors don't create additional fallthrough 664 // opportunities. Don't duplicate them. TODO: When conditional exits are 665 // analyzable, allow them to be duplicated. 666 bool IsSimple = TailDup.isSimpleBB(BB); 667 668 if (BB->succ_size() == 1) 669 return false; 670 return TailDup.shouldTailDuplicate(IsSimple, *BB); 671 } 672 673 /// Compare 2 BlockFrequency's with a small penalty for \p A. 674 /// In order to be conservative, we apply a X% penalty to account for 675 /// increased icache pressure and static heuristics. For small frequencies 676 /// we use only the numerators to improve accuracy. For simplicity, we assume the 677 /// penalty is less than 100% 678 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 679 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 680 uint64_t EntryFreq) { 681 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 682 BlockFrequency Gain = A - B; 683 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 684 } 685 686 /// Check the edge frequencies to see if tail duplication will increase 687 /// fallthroughs. It only makes sense to call this function when 688 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 689 /// always locally profitable if we would have picked \p Succ without 690 /// considering duplication. 691 bool MachineBlockPlacement::isProfitableToTailDup( 692 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 693 BranchProbability QProb, 694 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 695 // We need to do a probability calculation to make sure this is profitable. 696 // First: does succ have a successor that post-dominates? This affects the 697 // calculation. The 2 relevant cases are: 698 // BB BB 699 // | \Qout | \Qout 700 // P| C |P C 701 // = C' = C' 702 // | /Qin | /Qin 703 // | / | / 704 // Succ Succ 705 // / \ | \ V 706 // U/ =V |U \ 707 // / \ = D 708 // D E | / 709 // | / 710 // |/ 711 // PDom 712 // '=' : Branch taken for that CFG edge 713 // In the second case, Placing Succ while duplicating it into C prevents the 714 // fallthrough of Succ into either D or PDom, because they now have C as an 715 // unplaced predecessor 716 717 // Start by figuring out which case we fall into 718 MachineBasicBlock *PDom = nullptr; 719 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 720 // Only scan the relevant successors 721 auto AdjustedSuccSumProb = 722 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 723 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 724 auto BBFreq = MBFI->getBlockFreq(BB); 725 auto SuccFreq = MBFI->getBlockFreq(Succ); 726 BlockFrequency P = BBFreq * PProb; 727 BlockFrequency Qout = BBFreq * QProb; 728 uint64_t EntryFreq = MBFI->getEntryFreq(); 729 // If there are no more successors, it is profitable to copy, as it strictly 730 // increases fallthrough. 731 if (SuccSuccs.size() == 0) 732 return greaterWithBias(P, Qout, EntryFreq); 733 734 auto BestSuccSucc = BranchProbability::getZero(); 735 // Find the PDom or the best Succ if no PDom exists. 736 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 737 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 738 if (Prob > BestSuccSucc) 739 BestSuccSucc = Prob; 740 if (PDom == nullptr) 741 if (MPDT->dominates(SuccSucc, Succ)) { 742 PDom = SuccSucc; 743 break; 744 } 745 } 746 // For the comparisons, we need to know Succ's best incoming edge that isn't 747 // from BB. 748 auto SuccBestPred = BlockFrequency(0); 749 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 750 if (SuccPred == Succ || SuccPred == BB 751 || BlockToChain[SuccPred] == &Chain 752 || (BlockFilter && !BlockFilter->count(SuccPred))) 753 continue; 754 auto Freq = MBFI->getBlockFreq(SuccPred) 755 * MBPI->getEdgeProbability(SuccPred, Succ); 756 if (Freq > SuccBestPred) 757 SuccBestPred = Freq; 758 } 759 // Qin is Succ's best unplaced incoming edge that isn't BB 760 BlockFrequency Qin = SuccBestPred; 761 // If it doesn't have a post-dominating successor, here is the calculation: 762 // BB BB 763 // | \Qout | \ 764 // P| C | = 765 // = C' | C 766 // | /Qin | | 767 // | / | C' (+Succ) 768 // Succ Succ /| 769 // / \ | \/ | 770 // U/ =V | == | 771 // / \ | / \| 772 // D E D E 773 // '=' : Branch taken for that CFG edge 774 // Cost in the first case is: P + V 775 // For this calculation, we always assume P > Qout. If Qout > P 776 // The result of this function will be ignored at the caller. 777 // Let F = SuccFreq - Qin 778 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 779 780 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 781 BranchProbability UProb = BestSuccSucc; 782 BranchProbability VProb = AdjustedSuccSumProb - UProb; 783 BlockFrequency F = SuccFreq - Qin; 784 BlockFrequency V = SuccFreq * VProb; 785 BlockFrequency QinU = std::min(Qin, F) * UProb; 786 BlockFrequency BaseCost = P + V; 787 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 788 return greaterWithBias(BaseCost, DupCost, EntryFreq); 789 } 790 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 791 BranchProbability VProb = AdjustedSuccSumProb - UProb; 792 BlockFrequency U = SuccFreq * UProb; 793 BlockFrequency V = SuccFreq * VProb; 794 BlockFrequency F = SuccFreq - Qin; 795 // If there is a post-dominating successor, here is the calculation: 796 // BB BB BB BB 797 // | \Qout | \ | \Qout | \ 798 // |P C | = |P C | = 799 // = C' |P C = C' |P C 800 // | /Qin | | | /Qin | | 801 // | / | C' (+Succ) | / | C' (+Succ) 802 // Succ Succ /| Succ Succ /| 803 // | \ V | \/ | | \ V | \/ | 804 // |U \ |U /\ =? |U = |U /\ | 805 // = D = = =?| | D | = =| 806 // | / |/ D | / |/ D 807 // | / | / | = | / 808 // |/ | / |/ | = 809 // Dom Dom Dom Dom 810 // '=' : Branch taken for that CFG edge 811 // The cost for taken branches in the first case is P + U 812 // Let F = SuccFreq - Qin 813 // The cost in the second case (assuming independence), given the layout: 814 // BB, Succ, (C+Succ), D, Dom or the layout: 815 // BB, Succ, D, Dom, (C+Succ) 816 // is Qout + max(F, Qin) * U + min(F, Qin) 817 // compare P + U vs Qout + P * U + Qin. 818 // 819 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 820 // 821 // For the 3rd case, the cost is P + 2 * V 822 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 823 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 824 if (UProb > AdjustedSuccSumProb / 2 && 825 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 826 Chain, BlockFilter)) 827 // Cases 3 & 4 828 return greaterWithBias( 829 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 830 EntryFreq); 831 // Cases 1 & 2 832 return greaterWithBias((P + U), 833 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 834 std::max(Qin, F) * UProb), 835 EntryFreq); 836 } 837 838 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 839 /// successors form the lower part of a trellis. A successor set S forms the 840 /// lower part of a trellis if all of the predecessors of S are either in S or 841 /// have all of S as successors. We ignore trellises where BB doesn't have 2 842 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 843 /// are very uncommon and complex to compute optimally. Allowing edges within S 844 /// is not strictly a trellis, but the same algorithm works, so we allow it. 845 bool MachineBlockPlacement::isTrellis( 846 const MachineBasicBlock *BB, 847 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 848 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 849 // Technically BB could form a trellis with branching factor higher than 2. 850 // But that's extremely uncommon. 851 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 852 return false; 853 854 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 855 BB->succ_end()); 856 // To avoid reviewing the same predecessors twice. 857 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 858 859 for (MachineBasicBlock *Succ : ViableSuccs) { 860 int PredCount = 0; 861 for (auto SuccPred : Succ->predecessors()) { 862 // Allow triangle successors, but don't count them. 863 if (Successors.count(SuccPred)) { 864 // Make sure that it is actually a triangle. 865 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 866 if (!Successors.count(CheckSucc)) 867 return false; 868 continue; 869 } 870 const BlockChain *PredChain = BlockToChain[SuccPred]; 871 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 872 PredChain == &Chain || PredChain == BlockToChain[Succ]) 873 continue; 874 ++PredCount; 875 // Perform the successor check only once. 876 if (!SeenPreds.insert(SuccPred).second) 877 continue; 878 if (!hasSameSuccessors(*SuccPred, Successors)) 879 return false; 880 } 881 // If one of the successors has only BB as a predecessor, it is not a 882 // trellis. 883 if (PredCount < 1) 884 return false; 885 } 886 return true; 887 } 888 889 /// Pick the highest total weight pair of edges that can both be laid out. 890 /// The edges in \p Edges[0] are assumed to have a different destination than 891 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 892 /// the individual highest weight edges to the 2 different destinations, or in 893 /// case of a conflict, one of them should be replaced with a 2nd best edge. 894 std::pair<MachineBlockPlacement::WeightedEdge, 895 MachineBlockPlacement::WeightedEdge> 896 MachineBlockPlacement::getBestNonConflictingEdges( 897 const MachineBasicBlock *BB, 898 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 899 Edges) { 900 // Sort the edges, and then for each successor, find the best incoming 901 // predecessor. If the best incoming predecessors aren't the same, 902 // then that is clearly the best layout. If there is a conflict, one of the 903 // successors will have to fallthrough from the second best predecessor. We 904 // compare which combination is better overall. 905 906 // Sort for highest frequency. 907 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 908 909 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 910 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 911 auto BestA = Edges[0].begin(); 912 auto BestB = Edges[1].begin(); 913 // Arrange for the correct answer to be in BestA and BestB 914 // If the 2 best edges don't conflict, the answer is already there. 915 if (BestA->Src == BestB->Src) { 916 // Compare the total fallthrough of (Best + Second Best) for both pairs 917 auto SecondBestA = std::next(BestA); 918 auto SecondBestB = std::next(BestB); 919 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 920 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 921 if (BestAScore < BestBScore) 922 BestA = SecondBestA; 923 else 924 BestB = SecondBestB; 925 } 926 // Arrange for the BB edge to be in BestA if it exists. 927 if (BestB->Src == BB) 928 std::swap(BestA, BestB); 929 return std::make_pair(*BestA, *BestB); 930 } 931 932 /// Get the best successor from \p BB based on \p BB being part of a trellis. 933 /// We only handle trellises with 2 successors, so the algorithm is 934 /// straightforward: Find the best pair of edges that don't conflict. We find 935 /// the best incoming edge for each successor in the trellis. If those conflict, 936 /// we consider which of them should be replaced with the second best. 937 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 938 /// comes from \p BB, it will be in \p BestEdges[0] 939 MachineBlockPlacement::BlockAndTailDupResult 940 MachineBlockPlacement::getBestTrellisSuccessor( 941 const MachineBasicBlock *BB, 942 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 943 BranchProbability AdjustedSumProb, const BlockChain &Chain, 944 const BlockFilterSet *BlockFilter) { 945 946 BlockAndTailDupResult Result = {nullptr, false}; 947 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 948 BB->succ_end()); 949 950 // We assume size 2 because it's common. For general n, we would have to do 951 // the Hungarian algorithm, but it's not worth the complexity because more 952 // than 2 successors is fairly uncommon, and a trellis even more so. 953 if (Successors.size() != 2 || ViableSuccs.size() != 2) 954 return Result; 955 956 // Collect the edge frequencies of all edges that form the trellis. 957 SmallVector<WeightedEdge, 8> Edges[2]; 958 int SuccIndex = 0; 959 for (auto Succ : ViableSuccs) { 960 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 961 // Skip any placed predecessors that are not BB 962 if (SuccPred != BB) 963 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 964 BlockToChain[SuccPred] == &Chain || 965 BlockToChain[SuccPred] == BlockToChain[Succ]) 966 continue; 967 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 968 MBPI->getEdgeProbability(SuccPred, Succ); 969 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 970 } 971 ++SuccIndex; 972 } 973 974 // Pick the best combination of 2 edges from all the edges in the trellis. 975 WeightedEdge BestA, BestB; 976 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 977 978 if (BestA.Src != BB) { 979 // If we have a trellis, and BB doesn't have the best fallthrough edges, 980 // we shouldn't choose any successor. We've already looked and there's a 981 // better fallthrough edge for all the successors. 982 DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 983 return Result; 984 } 985 986 // Did we pick the triangle edge? If tail-duplication is profitable, do 987 // that instead. Otherwise merge the triangle edge now while we know it is 988 // optimal. 989 if (BestA.Dest == BestB.Src) { 990 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 991 // would be better. 992 MachineBasicBlock *Succ1 = BestA.Dest; 993 MachineBasicBlock *Succ2 = BestB.Dest; 994 // Check to see if tail-duplication would be profitable. 995 if (TailDupPlacement && shouldTailDuplicate(Succ2) && 996 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 997 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 998 Chain, BlockFilter)) { 999 DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1000 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1001 dbgs() << " Selected: " << getBlockName(Succ2) 1002 << ", probability: " << Succ2Prob << " (Tail Duplicate)\n"); 1003 Result.BB = Succ2; 1004 Result.ShouldTailDup = true; 1005 return Result; 1006 } 1007 } 1008 // We have already computed the optimal edge for the other side of the 1009 // trellis. 1010 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1011 1012 auto TrellisSucc = BestA.Dest; 1013 DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1014 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1015 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1016 << ", probability: " << SuccProb << " (Trellis)\n"); 1017 Result.BB = TrellisSucc; 1018 return Result; 1019 } 1020 1021 /// When the option TailDupPlacement is on, this method checks if the 1022 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1023 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1024 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1025 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1026 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1027 if (!shouldTailDuplicate(Succ)) 1028 return false; 1029 1030 // For CFG checking. 1031 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1032 BB->succ_end()); 1033 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1034 // Make sure all unplaced and unfiltered predecessors can be 1035 // tail-duplicated into. 1036 // Skip any blocks that are already placed or not in this loop. 1037 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1038 || BlockToChain[Pred] == &Chain) 1039 continue; 1040 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1041 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1042 // This will result in a trellis after tail duplication, so we don't 1043 // need to copy Succ into this predecessor. In the presence 1044 // of a trellis tail duplication can continue to be profitable. 1045 // For example: 1046 // A A 1047 // |\ |\ 1048 // | \ | \ 1049 // | C | C+BB 1050 // | / | | 1051 // |/ | | 1052 // BB => BB | 1053 // |\ |\/| 1054 // | \ |/\| 1055 // | D | D 1056 // | / | / 1057 // |/ |/ 1058 // Succ Succ 1059 // 1060 // After BB was duplicated into C, the layout looks like the one on the 1061 // right. BB and C now have the same successors. When considering 1062 // whether Succ can be duplicated into all its unplaced predecessors, we 1063 // ignore C. 1064 // We can do this because C already has a profitable fallthrough, namely 1065 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1066 // duplication and for this test. 1067 // 1068 // This allows trellises to be laid out in 2 separate chains 1069 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1070 // because it allows the creation of 2 fallthrough paths with links 1071 // between them, and we correctly identify the best layout for these 1072 // CFGs. We want to extend trellises that the user created in addition 1073 // to trellises created by tail-duplication, so we just look for the 1074 // CFG. 1075 continue; 1076 return false; 1077 } 1078 } 1079 return true; 1080 } 1081 1082 /// Find chains of triangles where we believe it would be profitable to 1083 /// tail-duplicate them all, but a local analysis would not find them. 1084 /// There are 3 ways this can be profitable: 1085 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1086 /// longer chains) 1087 /// 2) The chains are statically correlated. Branch probabilities have a very 1088 /// U-shaped distribution. 1089 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1090 /// If the branches in a chain are likely to be from the same side of the 1091 /// distribution as their predecessor, but are independent at runtime, this 1092 /// transformation is profitable. (Because the cost of being wrong is a small 1093 /// fixed cost, unlike the standard triangle layout where the cost of being 1094 /// wrong scales with the # of triangles.) 1095 /// 3) The chains are dynamically correlated. If the probability that a previous 1096 /// branch was taken positively influences whether the next branch will be 1097 /// taken 1098 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1099 void MachineBlockPlacement::precomputeTriangleChains() { 1100 struct TriangleChain { 1101 std::vector<MachineBasicBlock *> Edges; 1102 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1103 : Edges({src, dst}) {} 1104 1105 void append(MachineBasicBlock *dst) { 1106 assert(getKey()->isSuccessor(dst) && 1107 "Attempting to append a block that is not a successor."); 1108 Edges.push_back(dst); 1109 } 1110 1111 unsigned count() const { return Edges.size() - 1; } 1112 1113 MachineBasicBlock *getKey() const { 1114 return Edges.back(); 1115 } 1116 }; 1117 1118 if (TriangleChainCount == 0) 1119 return; 1120 1121 DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1122 // Map from last block to the chain that contains it. This allows us to extend 1123 // chains as we find new triangles. 1124 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1125 for (MachineBasicBlock &BB : *F) { 1126 // If BB doesn't have 2 successors, it doesn't start a triangle. 1127 if (BB.succ_size() != 2) 1128 continue; 1129 MachineBasicBlock *PDom = nullptr; 1130 for (MachineBasicBlock *Succ : BB.successors()) { 1131 if (!MPDT->dominates(Succ, &BB)) 1132 continue; 1133 PDom = Succ; 1134 break; 1135 } 1136 // If BB doesn't have a post-dominating successor, it doesn't form a 1137 // triangle. 1138 if (PDom == nullptr) 1139 continue; 1140 // If PDom has a hint that it is low probability, skip this triangle. 1141 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1142 continue; 1143 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1144 // we're looking for. 1145 if (!shouldTailDuplicate(PDom)) 1146 continue; 1147 bool CanTailDuplicate = true; 1148 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1149 // isn't the kind of triangle we're looking for. 1150 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1151 if (Pred == &BB) 1152 continue; 1153 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1154 CanTailDuplicate = false; 1155 break; 1156 } 1157 } 1158 // If we can't tail-duplicate PDom to its predecessors, then skip this 1159 // triangle. 1160 if (!CanTailDuplicate) 1161 continue; 1162 1163 // Now we have an interesting triangle. Insert it if it's not part of an 1164 // existing chain. 1165 // Note: This cannot be replaced with a call insert() or emplace() because 1166 // the find key is BB, but the insert/emplace key is PDom. 1167 auto Found = TriangleChainMap.find(&BB); 1168 // If it is, remove the chain from the map, grow it, and put it back in the 1169 // map with the end as the new key. 1170 if (Found != TriangleChainMap.end()) { 1171 TriangleChain Chain = std::move(Found->second); 1172 TriangleChainMap.erase(Found); 1173 Chain.append(PDom); 1174 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1175 } else { 1176 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1177 assert(InsertResult.second && "Block seen twice."); 1178 (void)InsertResult; 1179 } 1180 } 1181 1182 // Iterating over a DenseMap is safe here, because the only thing in the body 1183 // of the loop is inserting into another DenseMap (ComputedEdges). 1184 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1185 for (auto &ChainPair : TriangleChainMap) { 1186 TriangleChain &Chain = ChainPair.second; 1187 // Benchmarking has shown that due to branch correlation duplicating 2 or 1188 // more triangles is profitable, despite the calculations assuming 1189 // independence. 1190 if (Chain.count() < TriangleChainCount) 1191 continue; 1192 MachineBasicBlock *dst = Chain.Edges.back(); 1193 Chain.Edges.pop_back(); 1194 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1195 DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" << 1196 getBlockName(dst) << " as pre-computed based on triangles.\n"); 1197 1198 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1199 assert(InsertResult.second && "Block seen twice."); 1200 (void)InsertResult; 1201 1202 dst = src; 1203 } 1204 } 1205 } 1206 1207 // When profile is not present, return the StaticLikelyProb. 1208 // When profile is available, we need to handle the triangle-shape CFG. 1209 static BranchProbability getLayoutSuccessorProbThreshold( 1210 const MachineBasicBlock *BB) { 1211 if (!BB->getParent()->getFunction()->getEntryCount()) 1212 return BranchProbability(StaticLikelyProb, 100); 1213 if (BB->succ_size() == 2) { 1214 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1215 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1216 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1217 /* See case 1 below for the cost analysis. For BB->Succ to 1218 * be taken with smaller cost, the following needs to hold: 1219 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1220 * So the threshold T in the calculation below 1221 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1222 * So T / (1 - T) = 2, Yielding T = 2/3 1223 * Also adding user specified branch bias, we have 1224 * T = (2/3)*(ProfileLikelyProb/50) 1225 * = (2*ProfileLikelyProb)/150) 1226 */ 1227 return BranchProbability(2 * ProfileLikelyProb, 150); 1228 } 1229 } 1230 return BranchProbability(ProfileLikelyProb, 100); 1231 } 1232 1233 /// Checks to see if the layout candidate block \p Succ has a better layout 1234 /// predecessor than \c BB. If yes, returns true. 1235 /// \p SuccProb: The probability adjusted for only remaining blocks. 1236 /// Only used for logging 1237 /// \p RealSuccProb: The un-adjusted probability. 1238 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1239 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1240 /// considered 1241 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1242 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1243 const BlockChain &SuccChain, BranchProbability SuccProb, 1244 BranchProbability RealSuccProb, const BlockChain &Chain, 1245 const BlockFilterSet *BlockFilter) { 1246 1247 // There isn't a better layout when there are no unscheduled predecessors. 1248 if (SuccChain.UnscheduledPredecessors == 0) 1249 return false; 1250 1251 // There are two basic scenarios here: 1252 // ------------------------------------- 1253 // Case 1: triangular shape CFG (if-then): 1254 // BB 1255 // | \ 1256 // | \ 1257 // | Pred 1258 // | / 1259 // Succ 1260 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1261 // set Succ as the layout successor of BB. Picking Succ as BB's 1262 // successor breaks the CFG constraints (FIXME: define these constraints). 1263 // With this layout, Pred BB 1264 // is forced to be outlined, so the overall cost will be cost of the 1265 // branch taken from BB to Pred, plus the cost of back taken branch 1266 // from Pred to Succ, as well as the additional cost associated 1267 // with the needed unconditional jump instruction from Pred To Succ. 1268 1269 // The cost of the topological order layout is the taken branch cost 1270 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1271 // must hold: 1272 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1273 // < freq(BB->Succ) * taken_branch_cost. 1274 // Ignoring unconditional jump cost, we get 1275 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1276 // prob(BB->Succ) > 2 * prob(BB->Pred) 1277 // 1278 // When real profile data is available, we can precisely compute the 1279 // probability threshold that is needed for edge BB->Succ to be considered. 1280 // Without profile data, the heuristic requires the branch bias to be 1281 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1282 // ----------------------------------------------------------------- 1283 // Case 2: diamond like CFG (if-then-else): 1284 // S 1285 // / \ 1286 // | \ 1287 // BB Pred 1288 // \ / 1289 // Succ 1290 // .. 1291 // 1292 // The current block is BB and edge BB->Succ is now being evaluated. 1293 // Note that edge S->BB was previously already selected because 1294 // prob(S->BB) > prob(S->Pred). 1295 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1296 // choose Pred, we will have a topological ordering as shown on the left 1297 // in the picture below. If we choose Succ, we have the solution as shown 1298 // on the right: 1299 // 1300 // topo-order: 1301 // 1302 // S----- ---S 1303 // | | | | 1304 // ---BB | | BB 1305 // | | | | 1306 // | Pred-- | Succ-- 1307 // | | | | 1308 // ---Succ ---Pred-- 1309 // 1310 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1311 // = freq(S->Pred) + freq(S->BB) 1312 // 1313 // If we have profile data (i.e, branch probabilities can be trusted), the 1314 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1315 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1316 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1317 // means the cost of topological order is greater. 1318 // When profile data is not available, however, we need to be more 1319 // conservative. If the branch prediction is wrong, breaking the topo-order 1320 // will actually yield a layout with large cost. For this reason, we need 1321 // strong biased branch at block S with Prob(S->BB) in order to select 1322 // BB->Succ. This is equivalent to looking the CFG backward with backward 1323 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1324 // profile data). 1325 // -------------------------------------------------------------------------- 1326 // Case 3: forked diamond 1327 // S 1328 // / \ 1329 // / \ 1330 // BB Pred 1331 // | \ / | 1332 // | \ / | 1333 // | X | 1334 // | / \ | 1335 // | / \ | 1336 // S1 S2 1337 // 1338 // The current block is BB and edge BB->S1 is now being evaluated. 1339 // As above S->BB was already selected because 1340 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1341 // 1342 // topo-order: 1343 // 1344 // S-------| ---S 1345 // | | | | 1346 // ---BB | | BB 1347 // | | | | 1348 // | Pred----| | S1---- 1349 // | | | | 1350 // --(S1 or S2) ---Pred-- 1351 // | 1352 // S2 1353 // 1354 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1355 // + min(freq(Pred->S1), freq(Pred->S2)) 1356 // Non-topo-order cost: 1357 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1358 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1359 // is 0. Then the non topo layout is better when 1360 // freq(S->Pred) < freq(BB->S1). 1361 // This is exactly what is checked below. 1362 // Note there are other shapes that apply (Pred may not be a single block, 1363 // but they all fit this general pattern.) 1364 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1365 1366 // Make sure that a hot successor doesn't have a globally more 1367 // important predecessor. 1368 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1369 bool BadCFGConflict = false; 1370 1371 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1372 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1373 (BlockFilter && !BlockFilter->count(Pred)) || 1374 BlockToChain[Pred] == &Chain || 1375 // This check is redundant except for look ahead. This function is 1376 // called for lookahead by isProfitableToTailDup when BB hasn't been 1377 // placed yet. 1378 (Pred == BB)) 1379 continue; 1380 // Do backward checking. 1381 // For all cases above, we need a backward checking to filter out edges that 1382 // are not 'strongly' biased. 1383 // BB Pred 1384 // \ / 1385 // Succ 1386 // We select edge BB->Succ if 1387 // freq(BB->Succ) > freq(Succ) * HotProb 1388 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1389 // HotProb 1390 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1391 // Case 1 is covered too, because the first equation reduces to: 1392 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1393 BlockFrequency PredEdgeFreq = 1394 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1395 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1396 BadCFGConflict = true; 1397 break; 1398 } 1399 } 1400 1401 if (BadCFGConflict) { 1402 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1403 << " (prob) (non-cold CFG conflict)\n"); 1404 return true; 1405 } 1406 1407 return false; 1408 } 1409 1410 /// \brief Select the best successor for a block. 1411 /// 1412 /// This looks across all successors of a particular block and attempts to 1413 /// select the "best" one to be the layout successor. It only considers direct 1414 /// successors which also pass the block filter. It will attempt to avoid 1415 /// breaking CFG structure, but cave and break such structures in the case of 1416 /// very hot successor edges. 1417 /// 1418 /// \returns The best successor block found, or null if none are viable, along 1419 /// with a boolean indicating if tail duplication is necessary. 1420 MachineBlockPlacement::BlockAndTailDupResult 1421 MachineBlockPlacement::selectBestSuccessor( 1422 const MachineBasicBlock *BB, const BlockChain &Chain, 1423 const BlockFilterSet *BlockFilter) { 1424 const BranchProbability HotProb(StaticLikelyProb, 100); 1425 1426 BlockAndTailDupResult BestSucc = { nullptr, false }; 1427 auto BestProb = BranchProbability::getZero(); 1428 1429 SmallVector<MachineBasicBlock *, 4> Successors; 1430 auto AdjustedSumProb = 1431 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1432 1433 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1434 1435 // if we already precomputed the best successor for BB, return that if still 1436 // applicable. 1437 auto FoundEdge = ComputedEdges.find(BB); 1438 if (FoundEdge != ComputedEdges.end()) { 1439 MachineBasicBlock *Succ = FoundEdge->second.BB; 1440 ComputedEdges.erase(FoundEdge); 1441 BlockChain *SuccChain = BlockToChain[Succ]; 1442 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1443 SuccChain != &Chain && Succ == *SuccChain->begin()) 1444 return FoundEdge->second; 1445 } 1446 1447 // if BB is part of a trellis, Use the trellis to determine the optimal 1448 // fallthrough edges 1449 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1450 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1451 BlockFilter); 1452 1453 // For blocks with CFG violations, we may be able to lay them out anyway with 1454 // tail-duplication. We keep this vector so we can perform the probability 1455 // calculations the minimum number of times. 1456 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1457 DupCandidates; 1458 for (MachineBasicBlock *Succ : Successors) { 1459 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1460 BranchProbability SuccProb = 1461 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1462 1463 BlockChain &SuccChain = *BlockToChain[Succ]; 1464 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1465 // predecessor that yields lower global cost. 1466 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1467 Chain, BlockFilter)) { 1468 // If tail duplication would make Succ profitable, place it. 1469 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1470 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1471 continue; 1472 } 1473 1474 DEBUG( 1475 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1476 << SuccProb 1477 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1478 << "\n"); 1479 1480 if (BestSucc.BB && BestProb >= SuccProb) { 1481 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1482 continue; 1483 } 1484 1485 DEBUG(dbgs() << " Setting it as best candidate\n"); 1486 BestSucc.BB = Succ; 1487 BestProb = SuccProb; 1488 } 1489 // Handle the tail duplication candidates in order of decreasing probability. 1490 // Stop at the first one that is profitable. Also stop if they are less 1491 // profitable than BestSucc. Position is important because we preserve it and 1492 // prefer first best match. Here we aren't comparing in order, so we capture 1493 // the position instead. 1494 if (DupCandidates.size() != 0) { 1495 auto cmp = 1496 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1497 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1498 return std::get<0>(a) > std::get<0>(b); 1499 }; 1500 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1501 } 1502 for(auto &Tup : DupCandidates) { 1503 BranchProbability DupProb; 1504 MachineBasicBlock *Succ; 1505 std::tie(DupProb, Succ) = Tup; 1506 if (DupProb < BestProb) 1507 break; 1508 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1509 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1510 DEBUG( 1511 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1512 << DupProb 1513 << " (Tail Duplicate)\n"); 1514 BestSucc.BB = Succ; 1515 BestSucc.ShouldTailDup = true; 1516 break; 1517 } 1518 } 1519 1520 if (BestSucc.BB) 1521 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1522 1523 return BestSucc; 1524 } 1525 1526 /// \brief Select the best block from a worklist. 1527 /// 1528 /// This looks through the provided worklist as a list of candidate basic 1529 /// blocks and select the most profitable one to place. The definition of 1530 /// profitable only really makes sense in the context of a loop. This returns 1531 /// the most frequently visited block in the worklist, which in the case of 1532 /// a loop, is the one most desirable to be physically close to the rest of the 1533 /// loop body in order to improve i-cache behavior. 1534 /// 1535 /// \returns The best block found, or null if none are viable. 1536 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1537 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1538 // Once we need to walk the worklist looking for a candidate, cleanup the 1539 // worklist of already placed entries. 1540 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1541 // some code complexity) into the loop below. 1542 WorkList.erase(remove_if(WorkList, 1543 [&](MachineBasicBlock *BB) { 1544 return BlockToChain.lookup(BB) == &Chain; 1545 }), 1546 WorkList.end()); 1547 1548 if (WorkList.empty()) 1549 return nullptr; 1550 1551 bool IsEHPad = WorkList[0]->isEHPad(); 1552 1553 MachineBasicBlock *BestBlock = nullptr; 1554 BlockFrequency BestFreq; 1555 for (MachineBasicBlock *MBB : WorkList) { 1556 assert(MBB->isEHPad() == IsEHPad && 1557 "EHPad mismatch between block and work list."); 1558 1559 BlockChain &SuccChain = *BlockToChain[MBB]; 1560 if (&SuccChain == &Chain) 1561 continue; 1562 1563 assert(SuccChain.UnscheduledPredecessors == 0 && 1564 "Found CFG-violating block"); 1565 1566 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1567 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1568 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1569 1570 // For ehpad, we layout the least probable first as to avoid jumping back 1571 // from least probable landingpads to more probable ones. 1572 // 1573 // FIXME: Using probability is probably (!) not the best way to achieve 1574 // this. We should probably have a more principled approach to layout 1575 // cleanup code. 1576 // 1577 // The goal is to get: 1578 // 1579 // +--------------------------+ 1580 // | V 1581 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1582 // 1583 // Rather than: 1584 // 1585 // +-------------------------------------+ 1586 // V | 1587 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1588 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1589 continue; 1590 1591 BestBlock = MBB; 1592 BestFreq = CandidateFreq; 1593 } 1594 1595 return BestBlock; 1596 } 1597 1598 /// \brief Retrieve the first unplaced basic block. 1599 /// 1600 /// This routine is called when we are unable to use the CFG to walk through 1601 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1602 /// We walk through the function's blocks in order, starting from the 1603 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1604 /// re-scanning the entire sequence on repeated calls to this routine. 1605 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1606 const BlockChain &PlacedChain, 1607 MachineFunction::iterator &PrevUnplacedBlockIt, 1608 const BlockFilterSet *BlockFilter) { 1609 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1610 ++I) { 1611 if (BlockFilter && !BlockFilter->count(&*I)) 1612 continue; 1613 if (BlockToChain[&*I] != &PlacedChain) { 1614 PrevUnplacedBlockIt = I; 1615 // Now select the head of the chain to which the unplaced block belongs 1616 // as the block to place. This will force the entire chain to be placed, 1617 // and satisfies the requirements of merging chains. 1618 return *BlockToChain[&*I]->begin(); 1619 } 1620 } 1621 return nullptr; 1622 } 1623 1624 void MachineBlockPlacement::fillWorkLists( 1625 const MachineBasicBlock *MBB, 1626 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1627 const BlockFilterSet *BlockFilter = nullptr) { 1628 BlockChain &Chain = *BlockToChain[MBB]; 1629 if (!UpdatedPreds.insert(&Chain).second) 1630 return; 1631 1632 assert( 1633 Chain.UnscheduledPredecessors == 0 && 1634 "Attempting to place block with unscheduled predecessors in worklist."); 1635 for (MachineBasicBlock *ChainBB : Chain) { 1636 assert(BlockToChain[ChainBB] == &Chain && 1637 "Block in chain doesn't match BlockToChain map."); 1638 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1639 if (BlockFilter && !BlockFilter->count(Pred)) 1640 continue; 1641 if (BlockToChain[Pred] == &Chain) 1642 continue; 1643 ++Chain.UnscheduledPredecessors; 1644 } 1645 } 1646 1647 if (Chain.UnscheduledPredecessors != 0) 1648 return; 1649 1650 MachineBasicBlock *BB = *Chain.begin(); 1651 if (BB->isEHPad()) 1652 EHPadWorkList.push_back(BB); 1653 else 1654 BlockWorkList.push_back(BB); 1655 } 1656 1657 void MachineBlockPlacement::buildChain( 1658 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1659 BlockFilterSet *BlockFilter) { 1660 assert(HeadBB && "BB must not be null.\n"); 1661 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1662 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1663 1664 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1665 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1666 MachineBasicBlock *BB = *std::prev(Chain.end()); 1667 for (;;) { 1668 assert(BB && "null block found at end of chain in loop."); 1669 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1670 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1671 1672 1673 // Look for the best viable successor if there is one to place immediately 1674 // after this block. 1675 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1676 MachineBasicBlock* BestSucc = Result.BB; 1677 bool ShouldTailDup = Result.ShouldTailDup; 1678 if (TailDupPlacement) 1679 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1680 1681 // If an immediate successor isn't available, look for the best viable 1682 // block among those we've identified as not violating the loop's CFG at 1683 // this point. This won't be a fallthrough, but it will increase locality. 1684 if (!BestSucc) 1685 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1686 if (!BestSucc) 1687 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1688 1689 if (!BestSucc) { 1690 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1691 if (!BestSucc) 1692 break; 1693 1694 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1695 "layout successor until the CFG reduces\n"); 1696 } 1697 1698 // Placement may have changed tail duplication opportunities. 1699 // Check for that now. 1700 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1701 // If the chosen successor was duplicated into all its predecessors, 1702 // don't bother laying it out, just go round the loop again with BB as 1703 // the chain end. 1704 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1705 BlockFilter, PrevUnplacedBlockIt)) 1706 continue; 1707 } 1708 1709 // Place this block, updating the datastructures to reflect its placement. 1710 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1711 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1712 // we selected a successor that didn't fit naturally into the CFG. 1713 SuccChain.UnscheduledPredecessors = 0; 1714 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1715 << getBlockName(BestSucc) << "\n"); 1716 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1717 Chain.merge(BestSucc, &SuccChain); 1718 BB = *std::prev(Chain.end()); 1719 } 1720 1721 DEBUG(dbgs() << "Finished forming chain for header block " 1722 << getBlockName(*Chain.begin()) << "\n"); 1723 } 1724 1725 /// \brief Find the best loop top block for layout. 1726 /// 1727 /// Look for a block which is strictly better than the loop header for laying 1728 /// out at the top of the loop. This looks for one and only one pattern: 1729 /// a latch block with no conditional exit. This block will cause a conditional 1730 /// jump around it or will be the bottom of the loop if we lay it out in place, 1731 /// but if it it doesn't end up at the bottom of the loop for any reason, 1732 /// rotation alone won't fix it. Because such a block will always result in an 1733 /// unconditional jump (for the backedge) rotating it in front of the loop 1734 /// header is always profitable. 1735 MachineBasicBlock * 1736 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1737 const BlockFilterSet &LoopBlockSet) { 1738 // Placing the latch block before the header may introduce an extra branch 1739 // that skips this block the first time the loop is executed, which we want 1740 // to avoid when optimising for size. 1741 // FIXME: in theory there is a case that does not introduce a new branch, 1742 // i.e. when the layout predecessor does not fallthrough to the loop header. 1743 // In practice this never happens though: there always seems to be a preheader 1744 // that can fallthrough and that is also placed before the header. 1745 if (F->getFunction()->optForSize()) 1746 return L.getHeader(); 1747 1748 // Check that the header hasn't been fused with a preheader block due to 1749 // crazy branches. If it has, we need to start with the header at the top to 1750 // prevent pulling the preheader into the loop body. 1751 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1752 if (!LoopBlockSet.count(*HeaderChain.begin())) 1753 return L.getHeader(); 1754 1755 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1756 << "\n"); 1757 1758 BlockFrequency BestPredFreq; 1759 MachineBasicBlock *BestPred = nullptr; 1760 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1761 if (!LoopBlockSet.count(Pred)) 1762 continue; 1763 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1764 << Pred->succ_size() << " successors, "; 1765 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1766 if (Pred->succ_size() > 1) 1767 continue; 1768 1769 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1770 if (!BestPred || PredFreq > BestPredFreq || 1771 (!(PredFreq < BestPredFreq) && 1772 Pred->isLayoutSuccessor(L.getHeader()))) { 1773 BestPred = Pred; 1774 BestPredFreq = PredFreq; 1775 } 1776 } 1777 1778 // If no direct predecessor is fine, just use the loop header. 1779 if (!BestPred) { 1780 DEBUG(dbgs() << " final top unchanged\n"); 1781 return L.getHeader(); 1782 } 1783 1784 // Walk backwards through any straight line of predecessors. 1785 while (BestPred->pred_size() == 1 && 1786 (*BestPred->pred_begin())->succ_size() == 1 && 1787 *BestPred->pred_begin() != L.getHeader()) 1788 BestPred = *BestPred->pred_begin(); 1789 1790 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1791 return BestPred; 1792 } 1793 1794 /// \brief Find the best loop exiting block for layout. 1795 /// 1796 /// This routine implements the logic to analyze the loop looking for the best 1797 /// block to layout at the top of the loop. Typically this is done to maximize 1798 /// fallthrough opportunities. 1799 MachineBasicBlock * 1800 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1801 const BlockFilterSet &LoopBlockSet) { 1802 // We don't want to layout the loop linearly in all cases. If the loop header 1803 // is just a normal basic block in the loop, we want to look for what block 1804 // within the loop is the best one to layout at the top. However, if the loop 1805 // header has be pre-merged into a chain due to predecessors not having 1806 // analyzable branches, *and* the predecessor it is merged with is *not* part 1807 // of the loop, rotating the header into the middle of the loop will create 1808 // a non-contiguous range of blocks which is Very Bad. So start with the 1809 // header and only rotate if safe. 1810 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1811 if (!LoopBlockSet.count(*HeaderChain.begin())) 1812 return nullptr; 1813 1814 BlockFrequency BestExitEdgeFreq; 1815 unsigned BestExitLoopDepth = 0; 1816 MachineBasicBlock *ExitingBB = nullptr; 1817 // If there are exits to outer loops, loop rotation can severely limit 1818 // fallthrough opportunities unless it selects such an exit. Keep a set of 1819 // blocks where rotating to exit with that block will reach an outer loop. 1820 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1821 1822 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1823 << "\n"); 1824 for (MachineBasicBlock *MBB : L.getBlocks()) { 1825 BlockChain &Chain = *BlockToChain[MBB]; 1826 // Ensure that this block is at the end of a chain; otherwise it could be 1827 // mid-way through an inner loop or a successor of an unanalyzable branch. 1828 if (MBB != *std::prev(Chain.end())) 1829 continue; 1830 1831 // Now walk the successors. We need to establish whether this has a viable 1832 // exiting successor and whether it has a viable non-exiting successor. 1833 // We store the old exiting state and restore it if a viable looping 1834 // successor isn't found. 1835 MachineBasicBlock *OldExitingBB = ExitingBB; 1836 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1837 bool HasLoopingSucc = false; 1838 for (MachineBasicBlock *Succ : MBB->successors()) { 1839 if (Succ->isEHPad()) 1840 continue; 1841 if (Succ == MBB) 1842 continue; 1843 BlockChain &SuccChain = *BlockToChain[Succ]; 1844 // Don't split chains, either this chain or the successor's chain. 1845 if (&Chain == &SuccChain) { 1846 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1847 << getBlockName(Succ) << " (chain conflict)\n"); 1848 continue; 1849 } 1850 1851 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1852 if (LoopBlockSet.count(Succ)) { 1853 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1854 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1855 HasLoopingSucc = true; 1856 continue; 1857 } 1858 1859 unsigned SuccLoopDepth = 0; 1860 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1861 SuccLoopDepth = ExitLoop->getLoopDepth(); 1862 if (ExitLoop->contains(&L)) 1863 BlocksExitingToOuterLoop.insert(MBB); 1864 } 1865 1866 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1867 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1868 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1869 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1870 // Note that we bias this toward an existing layout successor to retain 1871 // incoming order in the absence of better information. The exit must have 1872 // a frequency higher than the current exit before we consider breaking 1873 // the layout. 1874 BranchProbability Bias(100 - ExitBlockBias, 100); 1875 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1876 ExitEdgeFreq > BestExitEdgeFreq || 1877 (MBB->isLayoutSuccessor(Succ) && 1878 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1879 BestExitEdgeFreq = ExitEdgeFreq; 1880 ExitingBB = MBB; 1881 } 1882 } 1883 1884 if (!HasLoopingSucc) { 1885 // Restore the old exiting state, no viable looping successor was found. 1886 ExitingBB = OldExitingBB; 1887 BestExitEdgeFreq = OldBestExitEdgeFreq; 1888 } 1889 } 1890 // Without a candidate exiting block or with only a single block in the 1891 // loop, just use the loop header to layout the loop. 1892 if (!ExitingBB) { 1893 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1894 return nullptr; 1895 } 1896 if (L.getNumBlocks() == 1) { 1897 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1898 return nullptr; 1899 } 1900 1901 // Also, if we have exit blocks which lead to outer loops but didn't select 1902 // one of them as the exiting block we are rotating toward, disable loop 1903 // rotation altogether. 1904 if (!BlocksExitingToOuterLoop.empty() && 1905 !BlocksExitingToOuterLoop.count(ExitingBB)) 1906 return nullptr; 1907 1908 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1909 return ExitingBB; 1910 } 1911 1912 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1913 /// 1914 /// Once we have built a chain, try to rotate it to line up the hot exit block 1915 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1916 /// branches. For example, if the loop has fallthrough into its header and out 1917 /// of its bottom already, don't rotate it. 1918 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1919 const MachineBasicBlock *ExitingBB, 1920 const BlockFilterSet &LoopBlockSet) { 1921 if (!ExitingBB) 1922 return; 1923 1924 MachineBasicBlock *Top = *LoopChain.begin(); 1925 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1926 1927 // If ExitingBB is already the last one in a chain then nothing to do. 1928 if (Bottom == ExitingBB) 1929 return; 1930 1931 bool ViableTopFallthrough = false; 1932 for (MachineBasicBlock *Pred : Top->predecessors()) { 1933 BlockChain *PredChain = BlockToChain[Pred]; 1934 if (!LoopBlockSet.count(Pred) && 1935 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1936 ViableTopFallthrough = true; 1937 break; 1938 } 1939 } 1940 1941 // If the header has viable fallthrough, check whether the current loop 1942 // bottom is a viable exiting block. If so, bail out as rotating will 1943 // introduce an unnecessary branch. 1944 if (ViableTopFallthrough) { 1945 for (MachineBasicBlock *Succ : Bottom->successors()) { 1946 BlockChain *SuccChain = BlockToChain[Succ]; 1947 if (!LoopBlockSet.count(Succ) && 1948 (!SuccChain || Succ == *SuccChain->begin())) 1949 return; 1950 } 1951 } 1952 1953 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1954 if (ExitIt == LoopChain.end()) 1955 return; 1956 1957 // Rotating a loop exit to the bottom when there is a fallthrough to top 1958 // trades the entry fallthrough for an exit fallthrough. 1959 // If there is no bottom->top edge, but the chosen exit block does have 1960 // a fallthrough, we break that fallthrough for nothing in return. 1961 1962 // Let's consider an example. We have a built chain of basic blocks 1963 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 1964 // By doing a rotation we get 1965 // Bk+1, ..., Bn, B1, ..., Bk 1966 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 1967 // If we had a fallthrough Bk -> Bk+1 it is broken now. 1968 // It might be compensated by fallthrough Bn -> B1. 1969 // So we have a condition to avoid creation of extra branch by loop rotation. 1970 // All below must be true to avoid loop rotation: 1971 // If there is a fallthrough to top (B1) 1972 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 1973 // There is no fallthrough from bottom (Bn) to top (B1). 1974 // Please note that there is no exit fallthrough from Bn because we checked it 1975 // above. 1976 if (ViableTopFallthrough) { 1977 assert(std::next(ExitIt) != LoopChain.end() && 1978 "Exit should not be last BB"); 1979 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 1980 if (ExitingBB->isSuccessor(NextBlockInChain)) 1981 if (!Bottom->isSuccessor(Top)) 1982 return; 1983 } 1984 1985 DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 1986 << " at bottom\n"); 1987 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1988 } 1989 1990 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1991 /// 1992 /// With profile data, we can determine the cost in terms of missed fall through 1993 /// opportunities when rotating a loop chain and select the best rotation. 1994 /// Basically, there are three kinds of cost to consider for each rotation: 1995 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1996 /// the loop to the loop header. 1997 /// 2. The possibly missed fall through edges (if they exist) from the loop 1998 /// exits to BB out of the loop. 1999 /// 3. The missed fall through edge (if it exists) from the last BB to the 2000 /// first BB in the loop chain. 2001 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2002 /// We select the best rotation with the smallest cost. 2003 void MachineBlockPlacement::rotateLoopWithProfile( 2004 BlockChain &LoopChain, const MachineLoop &L, 2005 const BlockFilterSet &LoopBlockSet) { 2006 auto HeaderBB = L.getHeader(); 2007 auto HeaderIter = find(LoopChain, HeaderBB); 2008 auto RotationPos = LoopChain.end(); 2009 2010 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2011 2012 // A utility lambda that scales up a block frequency by dividing it by a 2013 // branch probability which is the reciprocal of the scale. 2014 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2015 unsigned Scale) -> BlockFrequency { 2016 if (Scale == 0) 2017 return 0; 2018 // Use operator / between BlockFrequency and BranchProbability to implement 2019 // saturating multiplication. 2020 return Freq / BranchProbability(1, Scale); 2021 }; 2022 2023 // Compute the cost of the missed fall-through edge to the loop header if the 2024 // chain head is not the loop header. As we only consider natural loops with 2025 // single header, this computation can be done only once. 2026 BlockFrequency HeaderFallThroughCost(0); 2027 for (auto *Pred : HeaderBB->predecessors()) { 2028 BlockChain *PredChain = BlockToChain[Pred]; 2029 if (!LoopBlockSet.count(Pred) && 2030 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2031 auto EdgeFreq = 2032 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 2033 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2034 // If the predecessor has only an unconditional jump to the header, we 2035 // need to consider the cost of this jump. 2036 if (Pred->succ_size() == 1) 2037 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2038 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2039 } 2040 } 2041 2042 // Here we collect all exit blocks in the loop, and for each exit we find out 2043 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2044 // as the sum of frequencies of exit edges we collect here, excluding the exit 2045 // edge from the tail of the loop chain. 2046 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2047 for (auto BB : LoopChain) { 2048 auto LargestExitEdgeProb = BranchProbability::getZero(); 2049 for (auto *Succ : BB->successors()) { 2050 BlockChain *SuccChain = BlockToChain[Succ]; 2051 if (!LoopBlockSet.count(Succ) && 2052 (!SuccChain || Succ == *SuccChain->begin())) { 2053 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2054 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2055 } 2056 } 2057 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2058 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2059 ExitsWithFreq.emplace_back(BB, ExitFreq); 2060 } 2061 } 2062 2063 // In this loop we iterate every block in the loop chain and calculate the 2064 // cost assuming the block is the head of the loop chain. When the loop ends, 2065 // we should have found the best candidate as the loop chain's head. 2066 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2067 EndIter = LoopChain.end(); 2068 Iter != EndIter; Iter++, TailIter++) { 2069 // TailIter is used to track the tail of the loop chain if the block we are 2070 // checking (pointed by Iter) is the head of the chain. 2071 if (TailIter == LoopChain.end()) 2072 TailIter = LoopChain.begin(); 2073 2074 auto TailBB = *TailIter; 2075 2076 // Calculate the cost by putting this BB to the top. 2077 BlockFrequency Cost = 0; 2078 2079 // If the current BB is the loop header, we need to take into account the 2080 // cost of the missed fall through edge from outside of the loop to the 2081 // header. 2082 if (Iter != HeaderIter) 2083 Cost += HeaderFallThroughCost; 2084 2085 // Collect the loop exit cost by summing up frequencies of all exit edges 2086 // except the one from the chain tail. 2087 for (auto &ExitWithFreq : ExitsWithFreq) 2088 if (TailBB != ExitWithFreq.first) 2089 Cost += ExitWithFreq.second; 2090 2091 // The cost of breaking the once fall-through edge from the tail to the top 2092 // of the loop chain. Here we need to consider three cases: 2093 // 1. If the tail node has only one successor, then we will get an 2094 // additional jmp instruction. So the cost here is (MisfetchCost + 2095 // JumpInstCost) * tail node frequency. 2096 // 2. If the tail node has two successors, then we may still get an 2097 // additional jmp instruction if the layout successor after the loop 2098 // chain is not its CFG successor. Note that the more frequently executed 2099 // jmp instruction will be put ahead of the other one. Assume the 2100 // frequency of those two branches are x and y, where x is the frequency 2101 // of the edge to the chain head, then the cost will be 2102 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2103 // 3. If the tail node has more than two successors (this rarely happens), 2104 // we won't consider any additional cost. 2105 if (TailBB->isSuccessor(*Iter)) { 2106 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2107 if (TailBB->succ_size() == 1) 2108 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2109 MisfetchCost + JumpInstCost); 2110 else if (TailBB->succ_size() == 2) { 2111 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2112 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2113 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2114 ? TailBBFreq * TailToHeadProb.getCompl() 2115 : TailToHeadFreq; 2116 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2117 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2118 } 2119 } 2120 2121 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 2122 << " to the top: " << Cost.getFrequency() << "\n"); 2123 2124 if (Cost < SmallestRotationCost) { 2125 SmallestRotationCost = Cost; 2126 RotationPos = Iter; 2127 } 2128 } 2129 2130 if (RotationPos != LoopChain.end()) { 2131 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2132 << " to the top\n"); 2133 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2134 } 2135 } 2136 2137 /// \brief Collect blocks in the given loop that are to be placed. 2138 /// 2139 /// When profile data is available, exclude cold blocks from the returned set; 2140 /// otherwise, collect all blocks in the loop. 2141 MachineBlockPlacement::BlockFilterSet 2142 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2143 BlockFilterSet LoopBlockSet; 2144 2145 // Filter cold blocks off from LoopBlockSet when profile data is available. 2146 // Collect the sum of frequencies of incoming edges to the loop header from 2147 // outside. If we treat the loop as a super block, this is the frequency of 2148 // the loop. Then for each block in the loop, we calculate the ratio between 2149 // its frequency and the frequency of the loop block. When it is too small, 2150 // don't add it to the loop chain. If there are outer loops, then this block 2151 // will be merged into the first outer loop chain for which this block is not 2152 // cold anymore. This needs precise profile data and we only do this when 2153 // profile data is available. 2154 if (F->getFunction()->getEntryCount() || ForceLoopColdBlock) { 2155 BlockFrequency LoopFreq(0); 2156 for (auto LoopPred : L.getHeader()->predecessors()) 2157 if (!L.contains(LoopPred)) 2158 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2159 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2160 2161 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2162 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2163 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2164 continue; 2165 LoopBlockSet.insert(LoopBB); 2166 } 2167 } else 2168 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2169 2170 return LoopBlockSet; 2171 } 2172 2173 /// \brief Forms basic block chains from the natural loop structures. 2174 /// 2175 /// These chains are designed to preserve the existing *structure* of the code 2176 /// as much as possible. We can then stitch the chains together in a way which 2177 /// both preserves the topological structure and minimizes taken conditional 2178 /// branches. 2179 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2180 // First recurse through any nested loops, building chains for those inner 2181 // loops. 2182 for (const MachineLoop *InnerLoop : L) 2183 buildLoopChains(*InnerLoop); 2184 2185 assert(BlockWorkList.empty() && 2186 "BlockWorkList not empty when starting to build loop chains."); 2187 assert(EHPadWorkList.empty() && 2188 "EHPadWorkList not empty when starting to build loop chains."); 2189 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2190 2191 // Check if we have profile data for this function. If yes, we will rotate 2192 // this loop by modeling costs more precisely which requires the profile data 2193 // for better layout. 2194 bool RotateLoopWithProfile = 2195 ForcePreciseRotationCost || 2196 (PreciseRotationCost && F->getFunction()->getEntryCount()); 2197 2198 // First check to see if there is an obviously preferable top block for the 2199 // loop. This will default to the header, but may end up as one of the 2200 // predecessors to the header if there is one which will result in strictly 2201 // fewer branches in the loop body. 2202 // When we use profile data to rotate the loop, this is unnecessary. 2203 MachineBasicBlock *LoopTop = 2204 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2205 2206 // If we selected just the header for the loop top, look for a potentially 2207 // profitable exit block in the event that rotating the loop can eliminate 2208 // branches by placing an exit edge at the bottom. 2209 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2210 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2211 2212 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2213 2214 // FIXME: This is a really lame way of walking the chains in the loop: we 2215 // walk the blocks, and use a set to prevent visiting a particular chain 2216 // twice. 2217 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2218 assert(LoopChain.UnscheduledPredecessors == 0 && 2219 "LoopChain should not have unscheduled predecessors."); 2220 UpdatedPreds.insert(&LoopChain); 2221 2222 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2223 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2224 2225 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2226 2227 if (RotateLoopWithProfile) 2228 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2229 else 2230 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2231 2232 DEBUG({ 2233 // Crash at the end so we get all of the debugging output first. 2234 bool BadLoop = false; 2235 if (LoopChain.UnscheduledPredecessors) { 2236 BadLoop = true; 2237 dbgs() << "Loop chain contains a block without its preds placed!\n" 2238 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2239 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2240 } 2241 for (MachineBasicBlock *ChainBB : LoopChain) { 2242 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2243 if (!LoopBlockSet.remove(ChainBB)) { 2244 // We don't mark the loop as bad here because there are real situations 2245 // where this can occur. For example, with an unanalyzable fallthrough 2246 // from a loop block to a non-loop block or vice versa. 2247 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2248 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2249 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2250 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2251 } 2252 } 2253 2254 if (!LoopBlockSet.empty()) { 2255 BadLoop = true; 2256 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2257 dbgs() << "Loop contains blocks never placed into a chain!\n" 2258 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2259 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2260 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2261 } 2262 assert(!BadLoop && "Detected problems with the placement of this loop."); 2263 }); 2264 2265 BlockWorkList.clear(); 2266 EHPadWorkList.clear(); 2267 } 2268 2269 void MachineBlockPlacement::buildCFGChains() { 2270 // Ensure that every BB in the function has an associated chain to simplify 2271 // the assumptions of the remaining algorithm. 2272 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2273 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2274 ++FI) { 2275 MachineBasicBlock *BB = &*FI; 2276 BlockChain *Chain = 2277 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2278 // Also, merge any blocks which we cannot reason about and must preserve 2279 // the exact fallthrough behavior for. 2280 for (;;) { 2281 Cond.clear(); 2282 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2283 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2284 break; 2285 2286 MachineFunction::iterator NextFI = std::next(FI); 2287 MachineBasicBlock *NextBB = &*NextFI; 2288 // Ensure that the layout successor is a viable block, as we know that 2289 // fallthrough is a possibility. 2290 assert(NextFI != FE && "Can't fallthrough past the last block."); 2291 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2292 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2293 << "\n"); 2294 Chain->merge(NextBB, nullptr); 2295 #ifndef NDEBUG 2296 BlocksWithUnanalyzableExits.insert(&*BB); 2297 #endif 2298 FI = NextFI; 2299 BB = NextBB; 2300 } 2301 } 2302 2303 // Build any loop-based chains. 2304 PreferredLoopExit = nullptr; 2305 for (MachineLoop *L : *MLI) 2306 buildLoopChains(*L); 2307 2308 assert(BlockWorkList.empty() && 2309 "BlockWorkList should be empty before building final chain."); 2310 assert(EHPadWorkList.empty() && 2311 "EHPadWorkList should be empty before building final chain."); 2312 2313 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2314 for (MachineBasicBlock &MBB : *F) 2315 fillWorkLists(&MBB, UpdatedPreds); 2316 2317 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2318 buildChain(&F->front(), FunctionChain); 2319 2320 #ifndef NDEBUG 2321 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 2322 #endif 2323 DEBUG({ 2324 // Crash at the end so we get all of the debugging output first. 2325 bool BadFunc = false; 2326 FunctionBlockSetType FunctionBlockSet; 2327 for (MachineBasicBlock &MBB : *F) 2328 FunctionBlockSet.insert(&MBB); 2329 2330 for (MachineBasicBlock *ChainBB : FunctionChain) 2331 if (!FunctionBlockSet.erase(ChainBB)) { 2332 BadFunc = true; 2333 dbgs() << "Function chain contains a block not in the function!\n" 2334 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2335 } 2336 2337 if (!FunctionBlockSet.empty()) { 2338 BadFunc = true; 2339 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2340 dbgs() << "Function contains blocks never placed into a chain!\n" 2341 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2342 } 2343 assert(!BadFunc && "Detected problems with the block placement."); 2344 }); 2345 2346 // Splice the blocks into place. 2347 MachineFunction::iterator InsertPos = F->begin(); 2348 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 2349 for (MachineBasicBlock *ChainBB : FunctionChain) { 2350 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2351 : " ... ") 2352 << getBlockName(ChainBB) << "\n"); 2353 if (InsertPos != MachineFunction::iterator(ChainBB)) 2354 F->splice(InsertPos, ChainBB); 2355 else 2356 ++InsertPos; 2357 2358 // Update the terminator of the previous block. 2359 if (ChainBB == *FunctionChain.begin()) 2360 continue; 2361 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2362 2363 // FIXME: It would be awesome of updateTerminator would just return rather 2364 // than assert when the branch cannot be analyzed in order to remove this 2365 // boiler plate. 2366 Cond.clear(); 2367 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2368 2369 #ifndef NDEBUG 2370 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2371 // Given the exact block placement we chose, we may actually not _need_ to 2372 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2373 // do that at this point is a bug. 2374 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2375 !PrevBB->canFallThrough()) && 2376 "Unexpected block with un-analyzable fallthrough!"); 2377 Cond.clear(); 2378 TBB = FBB = nullptr; 2379 } 2380 #endif 2381 2382 // The "PrevBB" is not yet updated to reflect current code layout, so, 2383 // o. it may fall-through to a block without explicit "goto" instruction 2384 // before layout, and no longer fall-through it after layout; or 2385 // o. just opposite. 2386 // 2387 // analyzeBranch() may return erroneous value for FBB when these two 2388 // situations take place. For the first scenario FBB is mistakenly set NULL; 2389 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2390 // mistakenly pointing to "*BI". 2391 // Thus, if the future change needs to use FBB before the layout is set, it 2392 // has to correct FBB first by using the code similar to the following: 2393 // 2394 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2395 // PrevBB->updateTerminator(); 2396 // Cond.clear(); 2397 // TBB = FBB = nullptr; 2398 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2399 // // FIXME: This should never take place. 2400 // TBB = FBB = nullptr; 2401 // } 2402 // } 2403 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2404 PrevBB->updateTerminator(); 2405 } 2406 2407 // Fixup the last block. 2408 Cond.clear(); 2409 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2410 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2411 F->back().updateTerminator(); 2412 2413 BlockWorkList.clear(); 2414 EHPadWorkList.clear(); 2415 } 2416 2417 void MachineBlockPlacement::optimizeBranches() { 2418 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2419 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2420 2421 // Now that all the basic blocks in the chain have the proper layout, 2422 // make a final call to AnalyzeBranch with AllowModify set. 2423 // Indeed, the target may be able to optimize the branches in a way we 2424 // cannot because all branches may not be analyzable. 2425 // E.g., the target may be able to remove an unconditional branch to 2426 // a fallthrough when it occurs after predicated terminators. 2427 for (MachineBasicBlock *ChainBB : FunctionChain) { 2428 Cond.clear(); 2429 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2430 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2431 // If PrevBB has a two-way branch, try to re-order the branches 2432 // such that we branch to the successor with higher probability first. 2433 if (TBB && !Cond.empty() && FBB && 2434 MBPI->getEdgeProbability(ChainBB, FBB) > 2435 MBPI->getEdgeProbability(ChainBB, TBB) && 2436 !TII->reverseBranchCondition(Cond)) { 2437 DEBUG(dbgs() << "Reverse order of the two branches: " 2438 << getBlockName(ChainBB) << "\n"); 2439 DEBUG(dbgs() << " Edge probability: " 2440 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2441 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2442 DebugLoc dl; // FIXME: this is nowhere 2443 TII->removeBranch(*ChainBB); 2444 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2445 ChainBB->updateTerminator(); 2446 } 2447 } 2448 } 2449 } 2450 2451 void MachineBlockPlacement::alignBlocks() { 2452 // Walk through the backedges of the function now that we have fully laid out 2453 // the basic blocks and align the destination of each backedge. We don't rely 2454 // exclusively on the loop info here so that we can align backedges in 2455 // unnatural CFGs and backedges that were introduced purely because of the 2456 // loop rotations done during this layout pass. 2457 if (F->getFunction()->optForSize()) 2458 return; 2459 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2460 if (FunctionChain.begin() == FunctionChain.end()) 2461 return; // Empty chain. 2462 2463 const BranchProbability ColdProb(1, 5); // 20% 2464 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2465 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2466 for (MachineBasicBlock *ChainBB : FunctionChain) { 2467 if (ChainBB == *FunctionChain.begin()) 2468 continue; 2469 2470 // Don't align non-looping basic blocks. These are unlikely to execute 2471 // enough times to matter in practice. Note that we'll still handle 2472 // unnatural CFGs inside of a natural outer loop (the common case) and 2473 // rotated loops. 2474 MachineLoop *L = MLI->getLoopFor(ChainBB); 2475 if (!L) 2476 continue; 2477 2478 unsigned Align = TLI->getPrefLoopAlignment(L); 2479 if (!Align) 2480 continue; // Don't care about loop alignment. 2481 2482 // If the block is cold relative to the function entry don't waste space 2483 // aligning it. 2484 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2485 if (Freq < WeightedEntryFreq) 2486 continue; 2487 2488 // If the block is cold relative to its loop header, don't align it 2489 // regardless of what edges into the block exist. 2490 MachineBasicBlock *LoopHeader = L->getHeader(); 2491 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2492 if (Freq < (LoopHeaderFreq * ColdProb)) 2493 continue; 2494 2495 // Check for the existence of a non-layout predecessor which would benefit 2496 // from aligning this block. 2497 MachineBasicBlock *LayoutPred = 2498 &*std::prev(MachineFunction::iterator(ChainBB)); 2499 2500 // Force alignment if all the predecessors are jumps. We already checked 2501 // that the block isn't cold above. 2502 if (!LayoutPred->isSuccessor(ChainBB)) { 2503 ChainBB->setAlignment(Align); 2504 continue; 2505 } 2506 2507 // Align this block if the layout predecessor's edge into this block is 2508 // cold relative to the block. When this is true, other predecessors make up 2509 // all of the hot entries into the block and thus alignment is likely to be 2510 // important. 2511 BranchProbability LayoutProb = 2512 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2513 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2514 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2515 ChainBB->setAlignment(Align); 2516 } 2517 } 2518 2519 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2520 /// it was duplicated into its chain predecessor and removed. 2521 /// \p BB - Basic block that may be duplicated. 2522 /// 2523 /// \p LPred - Chosen layout predecessor of \p BB. 2524 /// Updated to be the chain end if LPred is removed. 2525 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2526 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2527 /// Used to identify which blocks to update predecessor 2528 /// counts. 2529 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2530 /// chosen in the given order due to unnatural CFG 2531 /// only needed if \p BB is removed and 2532 /// \p PrevUnplacedBlockIt pointed to \p BB. 2533 /// @return true if \p BB was removed. 2534 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2535 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2536 const MachineBasicBlock *LoopHeaderBB, 2537 BlockChain &Chain, BlockFilterSet *BlockFilter, 2538 MachineFunction::iterator &PrevUnplacedBlockIt) { 2539 bool Removed, DuplicatedToLPred; 2540 bool DuplicatedToOriginalLPred; 2541 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2542 PrevUnplacedBlockIt, 2543 DuplicatedToLPred); 2544 if (!Removed) 2545 return false; 2546 DuplicatedToOriginalLPred = DuplicatedToLPred; 2547 // Iteratively try to duplicate again. It can happen that a block that is 2548 // duplicated into is still small enough to be duplicated again. 2549 // No need to call markBlockSuccessors in this case, as the blocks being 2550 // duplicated from here on are already scheduled. 2551 // Note that DuplicatedToLPred always implies Removed. 2552 while (DuplicatedToLPred) { 2553 assert (Removed && "Block must have been removed to be duplicated into its " 2554 "layout predecessor."); 2555 MachineBasicBlock *DupBB, *DupPred; 2556 // The removal callback causes Chain.end() to be updated when a block is 2557 // removed. On the first pass through the loop, the chain end should be the 2558 // same as it was on function entry. On subsequent passes, because we are 2559 // duplicating the block at the end of the chain, if it is removed the 2560 // chain will have shrunk by one block. 2561 BlockChain::iterator ChainEnd = Chain.end(); 2562 DupBB = *(--ChainEnd); 2563 // Now try to duplicate again. 2564 if (ChainEnd == Chain.begin()) 2565 break; 2566 DupPred = *std::prev(ChainEnd); 2567 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2568 PrevUnplacedBlockIt, 2569 DuplicatedToLPred); 2570 } 2571 // If BB was duplicated into LPred, it is now scheduled. But because it was 2572 // removed, markChainSuccessors won't be called for its chain. Instead we 2573 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2574 // at the end because repeating the tail duplication can increase the number 2575 // of unscheduled predecessors. 2576 LPred = *std::prev(Chain.end()); 2577 if (DuplicatedToOriginalLPred) 2578 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2579 return true; 2580 } 2581 2582 /// Tail duplicate \p BB into (some) predecessors if profitable. 2583 /// \p BB - Basic block that may be duplicated 2584 /// \p LPred - Chosen layout predecessor of \p BB 2585 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2586 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2587 /// Used to identify which blocks to update predecessor 2588 /// counts. 2589 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2590 /// chosen in the given order due to unnatural CFG 2591 /// only needed if \p BB is removed and 2592 /// \p PrevUnplacedBlockIt pointed to \p BB. 2593 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2594 /// only be true if the block was removed. 2595 /// \return - True if the block was duplicated into all preds and removed. 2596 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2597 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2598 BlockChain &Chain, BlockFilterSet *BlockFilter, 2599 MachineFunction::iterator &PrevUnplacedBlockIt, 2600 bool &DuplicatedToLPred) { 2601 DuplicatedToLPred = false; 2602 if (!shouldTailDuplicate(BB)) 2603 return false; 2604 2605 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2606 << BB->getNumber() << "\n"); 2607 2608 // This has to be a callback because none of it can be done after 2609 // BB is deleted. 2610 bool Removed = false; 2611 auto RemovalCallback = 2612 [&](MachineBasicBlock *RemBB) { 2613 // Signal to outer function 2614 Removed = true; 2615 2616 // Conservative default. 2617 bool InWorkList = true; 2618 // Remove from the Chain and Chain Map 2619 if (BlockToChain.count(RemBB)) { 2620 BlockChain *Chain = BlockToChain[RemBB]; 2621 InWorkList = Chain->UnscheduledPredecessors == 0; 2622 Chain->remove(RemBB); 2623 BlockToChain.erase(RemBB); 2624 } 2625 2626 // Handle the unplaced block iterator 2627 if (&(*PrevUnplacedBlockIt) == RemBB) { 2628 PrevUnplacedBlockIt++; 2629 } 2630 2631 // Handle the Work Lists 2632 if (InWorkList) { 2633 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2634 if (RemBB->isEHPad()) 2635 RemoveList = EHPadWorkList; 2636 RemoveList.erase( 2637 remove_if(RemoveList, 2638 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 2639 RemoveList.end()); 2640 } 2641 2642 // Handle the filter set 2643 if (BlockFilter) { 2644 BlockFilter->remove(RemBB); 2645 } 2646 2647 // Remove the block from loop info. 2648 MLI->removeBlock(RemBB); 2649 if (RemBB == PreferredLoopExit) 2650 PreferredLoopExit = nullptr; 2651 2652 DEBUG(dbgs() << "TailDuplicator deleted block: " 2653 << getBlockName(RemBB) << "\n"); 2654 }; 2655 auto RemovalCallbackRef = 2656 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2657 2658 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2659 bool IsSimple = TailDup.isSimpleBB(BB); 2660 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2661 &DuplicatedPreds, &RemovalCallbackRef); 2662 2663 // Update UnscheduledPredecessors to reflect tail-duplication. 2664 DuplicatedToLPred = false; 2665 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2666 // We're only looking for unscheduled predecessors that match the filter. 2667 BlockChain* PredChain = BlockToChain[Pred]; 2668 if (Pred == LPred) 2669 DuplicatedToLPred = true; 2670 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2671 || PredChain == &Chain) 2672 continue; 2673 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2674 if (BlockFilter && !BlockFilter->count(NewSucc)) 2675 continue; 2676 BlockChain *NewChain = BlockToChain[NewSucc]; 2677 if (NewChain != &Chain && NewChain != PredChain) 2678 NewChain->UnscheduledPredecessors++; 2679 } 2680 } 2681 return Removed; 2682 } 2683 2684 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2685 if (skipFunction(*MF.getFunction())) 2686 return false; 2687 2688 // Check for single-block functions and skip them. 2689 if (std::next(MF.begin()) == MF.end()) 2690 return false; 2691 2692 F = &MF; 2693 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2694 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2695 getAnalysis<MachineBlockFrequencyInfo>()); 2696 MLI = &getAnalysis<MachineLoopInfo>(); 2697 TII = MF.getSubtarget().getInstrInfo(); 2698 TLI = MF.getSubtarget().getTargetLowering(); 2699 MPDT = nullptr; 2700 2701 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2702 // there are no MachineLoops. 2703 PreferredLoopExit = nullptr; 2704 2705 assert(BlockToChain.empty() && 2706 "BlockToChain map should be empty before starting placement."); 2707 assert(ComputedEdges.empty() && 2708 "Computed Edge map should be empty before starting placement."); 2709 2710 unsigned TailDupSize = TailDupPlacementThreshold; 2711 // If only the aggressive threshold is explicitly set, use it. 2712 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 2713 TailDupPlacementThreshold.getNumOccurrences() == 0) 2714 TailDupSize = TailDupPlacementAggressiveThreshold; 2715 2716 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2717 // For agressive optimization, we can adjust some thresholds to be less 2718 // conservative. 2719 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 2720 // At O3 we should be more willing to copy blocks for tail duplication. This 2721 // increases size pressure, so we only do it at O3 2722 // Do this unless only the regular threshold is explicitly set. 2723 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 2724 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 2725 TailDupSize = TailDupPlacementAggressiveThreshold; 2726 } 2727 2728 if (TailDupPlacement) { 2729 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2730 if (MF.getFunction()->optForSize()) 2731 TailDupSize = 1; 2732 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2733 precomputeTriangleChains(); 2734 } 2735 2736 buildCFGChains(); 2737 2738 // Changing the layout can create new tail merging opportunities. 2739 // TailMerge can create jump into if branches that make CFG irreducible for 2740 // HW that requires structured CFG. 2741 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2742 PassConfig->getEnableTailMerge() && 2743 BranchFoldPlacement; 2744 // No tail merging opportunities if the block number is less than four. 2745 if (MF.size() > 3 && EnableTailMerge) { 2746 unsigned TailMergeSize = TailDupSize + 1; 2747 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2748 *MBPI, TailMergeSize); 2749 2750 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2751 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2752 /*AfterBlockPlacement=*/true)) { 2753 // Redo the layout if tail merging creates/removes/moves blocks. 2754 BlockToChain.clear(); 2755 ComputedEdges.clear(); 2756 // Must redo the post-dominator tree if blocks were changed. 2757 if (MPDT) 2758 MPDT->runOnMachineFunction(MF); 2759 ChainAllocator.DestroyAll(); 2760 buildCFGChains(); 2761 } 2762 } 2763 2764 optimizeBranches(); 2765 alignBlocks(); 2766 2767 BlockToChain.clear(); 2768 ComputedEdges.clear(); 2769 ChainAllocator.DestroyAll(); 2770 2771 if (AlignAllBlock) 2772 // Align all of the blocks in the function to a specific alignment. 2773 for (MachineBasicBlock &MBB : MF) 2774 MBB.setAlignment(AlignAllBlock); 2775 else if (AlignAllNonFallThruBlocks) { 2776 // Align all of the blocks that have no fall-through predecessors to a 2777 // specific alignment. 2778 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2779 auto LayoutPred = std::prev(MBI); 2780 if (!LayoutPred->isSuccessor(&*MBI)) 2781 MBI->setAlignment(AlignAllNonFallThruBlocks); 2782 } 2783 } 2784 if (ViewBlockLayoutWithBFI != GVDT_None && 2785 (ViewBlockFreqFuncName.empty() || 2786 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2787 MBFI->view("MBP." + MF.getName(), false); 2788 } 2789 2790 2791 // We always return true as we have no way to track whether the final order 2792 // differs from the original order. 2793 return true; 2794 } 2795 2796 namespace { 2797 /// \brief A pass to compute block placement statistics. 2798 /// 2799 /// A separate pass to compute interesting statistics for evaluating block 2800 /// placement. This is separate from the actual placement pass so that they can 2801 /// be computed in the absence of any placement transformations or when using 2802 /// alternative placement strategies. 2803 class MachineBlockPlacementStats : public MachineFunctionPass { 2804 /// \brief A handle to the branch probability pass. 2805 const MachineBranchProbabilityInfo *MBPI; 2806 2807 /// \brief A handle to the function-wide block frequency pass. 2808 const MachineBlockFrequencyInfo *MBFI; 2809 2810 public: 2811 static char ID; // Pass identification, replacement for typeid 2812 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2813 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2814 } 2815 2816 bool runOnMachineFunction(MachineFunction &F) override; 2817 2818 void getAnalysisUsage(AnalysisUsage &AU) const override { 2819 AU.addRequired<MachineBranchProbabilityInfo>(); 2820 AU.addRequired<MachineBlockFrequencyInfo>(); 2821 AU.setPreservesAll(); 2822 MachineFunctionPass::getAnalysisUsage(AU); 2823 } 2824 }; 2825 } 2826 2827 char MachineBlockPlacementStats::ID = 0; 2828 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2829 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2830 "Basic Block Placement Stats", false, false) 2831 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2832 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2833 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2834 "Basic Block Placement Stats", false, false) 2835 2836 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2837 // Check for single-block functions and skip them. 2838 if (std::next(F.begin()) == F.end()) 2839 return false; 2840 2841 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2842 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2843 2844 for (MachineBasicBlock &MBB : F) { 2845 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2846 Statistic &NumBranches = 2847 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2848 Statistic &BranchTakenFreq = 2849 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2850 for (MachineBasicBlock *Succ : MBB.successors()) { 2851 // Skip if this successor is a fallthrough. 2852 if (MBB.isLayoutSuccessor(Succ)) 2853 continue; 2854 2855 BlockFrequency EdgeFreq = 2856 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2857 ++NumBranches; 2858 BranchTakenFreq += EdgeFreq.getFrequency(); 2859 } 2860 } 2861 2862 return false; 2863 } 2864