1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "block-placement" 52 53 STATISTIC(NumCondBranches, "Number of conditional branches"); 54 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 55 STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57 STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65 // FIXME: Find a good default for this flag and remove the flag. 66 static cl::opt<unsigned> ExitBlockBias( 67 "block-placement-exit-block-bias", 68 cl::desc("Block frequency percentage a loop exit block needs " 69 "over the original exit to be considered the new exit."), 70 cl::init(0), cl::Hidden); 71 72 static cl::opt<bool> OutlineOptionalBranches( 73 "outline-optional-branches", 74 cl::desc("Put completely optional branches, i.e. branches with a common " 75 "post dominator, out of line."), 76 cl::init(false), cl::Hidden); 77 78 static cl::opt<unsigned> OutlineOptionalThreshold( 79 "outline-optional-threshold", 80 cl::desc("Don't outline optional branches that are a single block with an " 81 "instruction count below this threshold"), 82 cl::init(4), cl::Hidden); 83 84 static cl::opt<unsigned> LoopToColdBlockRatio( 85 "loop-to-cold-block-ratio", 86 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 87 "(frequency of block) is greater than this ratio"), 88 cl::init(5), cl::Hidden); 89 90 static cl::opt<bool> 91 PreciseRotationCost("precise-rotation-cost", 92 cl::desc("Model the cost of loop rotation more " 93 "precisely by using profile data."), 94 cl::init(false), cl::Hidden); 95 96 static cl::opt<unsigned> MisfetchCost( 97 "misfetch-cost", 98 cl::desc("Cost that models the probablistic risk of an instruction " 99 "misfetch due to a jump comparing to falling through, whose cost " 100 "is zero."), 101 cl::init(1), cl::Hidden); 102 103 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 104 cl::desc("Cost of jump instructions."), 105 cl::init(1), cl::Hidden); 106 107 namespace { 108 class BlockChain; 109 /// \brief Type for our function-wide basic block -> block chain mapping. 110 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 111 } 112 113 namespace { 114 /// \brief A chain of blocks which will be laid out contiguously. 115 /// 116 /// This is the datastructure representing a chain of consecutive blocks that 117 /// are profitable to layout together in order to maximize fallthrough 118 /// probabilities and code locality. We also can use a block chain to represent 119 /// a sequence of basic blocks which have some external (correctness) 120 /// requirement for sequential layout. 121 /// 122 /// Chains can be built around a single basic block and can be merged to grow 123 /// them. They participate in a block-to-chain mapping, which is updated 124 /// automatically as chains are merged together. 125 class BlockChain { 126 /// \brief The sequence of blocks belonging to this chain. 127 /// 128 /// This is the sequence of blocks for a particular chain. These will be laid 129 /// out in-order within the function. 130 SmallVector<MachineBasicBlock *, 4> Blocks; 131 132 /// \brief A handle to the function-wide basic block to block chain mapping. 133 /// 134 /// This is retained in each block chain to simplify the computation of child 135 /// block chains for SCC-formation and iteration. We store the edges to child 136 /// basic blocks, and map them back to their associated chains using this 137 /// structure. 138 BlockToChainMapType &BlockToChain; 139 140 public: 141 /// \brief Construct a new BlockChain. 142 /// 143 /// This builds a new block chain representing a single basic block in the 144 /// function. It also registers itself as the chain that block participates 145 /// in with the BlockToChain mapping. 146 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 147 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 148 assert(BB && "Cannot create a chain with a null basic block"); 149 BlockToChain[BB] = this; 150 } 151 152 /// \brief Iterator over blocks within the chain. 153 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 154 155 /// \brief Beginning of blocks within the chain. 156 iterator begin() { return Blocks.begin(); } 157 158 /// \brief End of blocks within the chain. 159 iterator end() { return Blocks.end(); } 160 161 /// \brief Merge a block chain into this one. 162 /// 163 /// This routine merges a block chain into this one. It takes care of forming 164 /// a contiguous sequence of basic blocks, updating the edge list, and 165 /// updating the block -> chain mapping. It does not free or tear down the 166 /// old chain, but the old chain's block list is no longer valid. 167 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 168 assert(BB); 169 assert(!Blocks.empty()); 170 171 // Fast path in case we don't have a chain already. 172 if (!Chain) { 173 assert(!BlockToChain[BB]); 174 Blocks.push_back(BB); 175 BlockToChain[BB] = this; 176 return; 177 } 178 179 assert(BB == *Chain->begin()); 180 assert(Chain->begin() != Chain->end()); 181 182 // Update the incoming blocks to point to this chain, and add them to the 183 // chain structure. 184 for (MachineBasicBlock *ChainBB : *Chain) { 185 Blocks.push_back(ChainBB); 186 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 187 BlockToChain[ChainBB] = this; 188 } 189 } 190 191 #ifndef NDEBUG 192 /// \brief Dump the blocks in this chain. 193 LLVM_DUMP_METHOD void dump() { 194 for (MachineBasicBlock *MBB : *this) 195 MBB->dump(); 196 } 197 #endif // NDEBUG 198 199 /// \brief Count of predecessors within the loop currently being processed. 200 /// 201 /// This count is updated at each loop we process to represent the number of 202 /// in-loop predecessors of this chain. 203 unsigned LoopPredecessors; 204 }; 205 } 206 207 namespace { 208 class MachineBlockPlacement : public MachineFunctionPass { 209 /// \brief A typedef for a block filter set. 210 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 211 212 /// \brief A handle to the branch probability pass. 213 const MachineBranchProbabilityInfo *MBPI; 214 215 /// \brief A handle to the function-wide block frequency pass. 216 const MachineBlockFrequencyInfo *MBFI; 217 218 /// \brief A handle to the loop info. 219 const MachineLoopInfo *MLI; 220 221 /// \brief A handle to the target's instruction info. 222 const TargetInstrInfo *TII; 223 224 /// \brief A handle to the target's lowering info. 225 const TargetLoweringBase *TLI; 226 227 /// \brief A handle to the post dominator tree. 228 MachineDominatorTree *MDT; 229 230 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 231 /// all terminators of the MachineFunction. 232 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 233 234 /// \brief Allocator and owner of BlockChain structures. 235 /// 236 /// We build BlockChains lazily while processing the loop structure of 237 /// a function. To reduce malloc traffic, we allocate them using this 238 /// slab-like allocator, and destroy them after the pass completes. An 239 /// important guarantee is that this allocator produces stable pointers to 240 /// the chains. 241 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 242 243 /// \brief Function wide BasicBlock to BlockChain mapping. 244 /// 245 /// This mapping allows efficiently moving from any given basic block to the 246 /// BlockChain it participates in, if any. We use it to, among other things, 247 /// allow implicitly defining edges between chains as the existing edges 248 /// between basic blocks. 249 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 250 251 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 252 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 253 const BlockFilterSet *BlockFilter = nullptr); 254 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 255 BlockChain &Chain, 256 const BlockFilterSet *BlockFilter); 257 MachineBasicBlock * 258 selectBestCandidateBlock(BlockChain &Chain, 259 SmallVectorImpl<MachineBasicBlock *> &WorkList, 260 const BlockFilterSet *BlockFilter); 261 MachineBasicBlock * 262 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 263 MachineFunction::iterator &PrevUnplacedBlockIt, 264 const BlockFilterSet *BlockFilter); 265 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 266 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 267 const BlockFilterSet *BlockFilter = nullptr); 268 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 269 const BlockFilterSet &LoopBlockSet); 270 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 271 const BlockFilterSet &LoopBlockSet); 272 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 273 void buildLoopChains(MachineFunction &F, MachineLoop &L); 274 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 275 const BlockFilterSet &LoopBlockSet); 276 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 277 const BlockFilterSet &LoopBlockSet); 278 void buildCFGChains(MachineFunction &F); 279 280 public: 281 static char ID; // Pass identification, replacement for typeid 282 MachineBlockPlacement() : MachineFunctionPass(ID) { 283 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 284 } 285 286 bool runOnMachineFunction(MachineFunction &F) override; 287 288 void getAnalysisUsage(AnalysisUsage &AU) const override { 289 AU.addRequired<MachineBranchProbabilityInfo>(); 290 AU.addRequired<MachineBlockFrequencyInfo>(); 291 AU.addRequired<MachineDominatorTree>(); 292 AU.addRequired<MachineLoopInfo>(); 293 MachineFunctionPass::getAnalysisUsage(AU); 294 } 295 }; 296 } 297 298 char MachineBlockPlacement::ID = 0; 299 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 300 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 301 "Branch Probability Basic Block Placement", false, false) 302 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 303 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 304 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 305 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 306 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 307 "Branch Probability Basic Block Placement", false, false) 308 309 #ifndef NDEBUG 310 /// \brief Helper to print the name of a MBB. 311 /// 312 /// Only used by debug logging. 313 static std::string getBlockName(MachineBasicBlock *BB) { 314 std::string Result; 315 raw_string_ostream OS(Result); 316 OS << "BB#" << BB->getNumber(); 317 OS << " (derived from LLVM BB '" << BB->getName() << "')"; 318 OS.flush(); 319 return Result; 320 } 321 322 /// \brief Helper to print the number of a MBB. 323 /// 324 /// Only used by debug logging. 325 static std::string getBlockNum(MachineBasicBlock *BB) { 326 std::string Result; 327 raw_string_ostream OS(Result); 328 OS << "BB#" << BB->getNumber(); 329 OS.flush(); 330 return Result; 331 } 332 #endif 333 334 /// \brief Mark a chain's successors as having one fewer preds. 335 /// 336 /// When a chain is being merged into the "placed" chain, this routine will 337 /// quickly walk the successors of each block in the chain and mark them as 338 /// having one fewer active predecessor. It also adds any successors of this 339 /// chain which reach the zero-predecessor state to the worklist passed in. 340 void MachineBlockPlacement::markChainSuccessors( 341 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 342 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 343 const BlockFilterSet *BlockFilter) { 344 // Walk all the blocks in this chain, marking their successors as having 345 // a predecessor placed. 346 for (MachineBasicBlock *MBB : Chain) { 347 // Add any successors for which this is the only un-placed in-loop 348 // predecessor to the worklist as a viable candidate for CFG-neutral 349 // placement. No subsequent placement of this block will violate the CFG 350 // shape, so we get to use heuristics to choose a favorable placement. 351 for (MachineBasicBlock *Succ : MBB->successors()) { 352 if (BlockFilter && !BlockFilter->count(Succ)) 353 continue; 354 BlockChain &SuccChain = *BlockToChain[Succ]; 355 // Disregard edges within a fixed chain, or edges to the loop header. 356 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 357 continue; 358 359 // This is a cross-chain edge that is within the loop, so decrement the 360 // loop predecessor count of the destination chain. 361 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 362 BlockWorkList.push_back(*SuccChain.begin()); 363 } 364 } 365 } 366 367 /// \brief Select the best successor for a block. 368 /// 369 /// This looks across all successors of a particular block and attempts to 370 /// select the "best" one to be the layout successor. It only considers direct 371 /// successors which also pass the block filter. It will attempt to avoid 372 /// breaking CFG structure, but cave and break such structures in the case of 373 /// very hot successor edges. 374 /// 375 /// \returns The best successor block found, or null if none are viable. 376 MachineBasicBlock * 377 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 378 BlockChain &Chain, 379 const BlockFilterSet *BlockFilter) { 380 const BranchProbability HotProb(4, 5); // 80% 381 382 MachineBasicBlock *BestSucc = nullptr; 383 // FIXME: Due to the performance of the probability and weight routines in 384 // the MBPI analysis, we manually compute probabilities using the edge 385 // weights. This is suboptimal as it means that the somewhat subtle 386 // definition of edge weight semantics is encoded here as well. We should 387 // improve the MBPI interface to efficiently support query patterns such as 388 // this. 389 uint32_t BestWeight = 0; 390 uint32_t WeightScale = 0; 391 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 392 393 // Adjust sum of weights by excluding weights on edges pointing to blocks that 394 // is either not in BlockFilter or is already in the current chain. Consider 395 // the following CFG: 396 // 397 // --->A 398 // | / \ 399 // | B C 400 // | \ / \ 401 // ----D E 402 // 403 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 404 // A->C is chosen as a fall-through, D won't be selected as a successor of C 405 // due to CFG constraint (the probability of C->D is not greater than 406 // HotProb). If we exclude E that is not in BlockFilter when calculating the 407 // probability of C->D, D will be selected and we will get A C D B as the 408 // layout of this loop. 409 uint32_t AdjustedSumWeight = SumWeight; 410 SmallVector<MachineBasicBlock *, 4> Successors; 411 for (MachineBasicBlock *Succ : BB->successors()) { 412 bool SkipSucc = false; 413 if (BlockFilter && !BlockFilter->count(Succ)) { 414 SkipSucc = true; 415 } else { 416 BlockChain *SuccChain = BlockToChain[Succ]; 417 if (SuccChain == &Chain) { 418 DEBUG(dbgs() << " " << getBlockName(Succ) 419 << " -> Already merged!\n"); 420 SkipSucc = true; 421 } else if (Succ != *SuccChain->begin()) { 422 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 423 continue; 424 } 425 } 426 if (SkipSucc) 427 AdjustedSumWeight -= MBPI->getEdgeWeight(BB, Succ) / WeightScale; 428 else 429 Successors.push_back(Succ); 430 } 431 432 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 433 for (MachineBasicBlock *Succ : Successors) { 434 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ); 435 BranchProbability SuccProb(SuccWeight / WeightScale, AdjustedSumWeight); 436 437 // If we outline optional branches, look whether Succ is unavoidable, i.e. 438 // dominates all terminators of the MachineFunction. If it does, other 439 // successors must be optional. Don't do this for cold branches. 440 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 441 UnavoidableBlocks.count(Succ) > 0) { 442 auto HasShortOptionalBranch = [&]() { 443 for (MachineBasicBlock *Pred : Succ->predecessors()) { 444 // Check whether there is an unplaced optional branch. 445 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 446 BlockToChain[Pred] == &Chain) 447 continue; 448 // Check whether the optional branch has exactly one BB. 449 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 450 continue; 451 // Check whether the optional branch is small. 452 if (Pred->size() < OutlineOptionalThreshold) 453 return true; 454 } 455 return false; 456 }; 457 if (!HasShortOptionalBranch()) 458 return Succ; 459 } 460 461 // Only consider successors which are either "hot", or wouldn't violate 462 // any CFG constraints. 463 BlockChain &SuccChain = *BlockToChain[Succ]; 464 if (SuccChain.LoopPredecessors != 0) { 465 if (SuccProb < HotProb) { 466 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 467 << " (prob) (CFG conflict)\n"); 468 continue; 469 } 470 471 // Make sure that a hot successor doesn't have a globally more 472 // important predecessor. 473 BranchProbability RealSuccProb(SuccWeight / WeightScale, SumWeight); 474 BlockFrequency CandidateEdgeFreq = 475 MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl(); 476 bool BadCFGConflict = false; 477 for (MachineBasicBlock *Pred : Succ->predecessors()) { 478 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 479 BlockToChain[Pred] == &Chain) 480 continue; 481 BlockFrequency PredEdgeFreq = 482 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 483 if (PredEdgeFreq >= CandidateEdgeFreq) { 484 BadCFGConflict = true; 485 break; 486 } 487 } 488 if (BadCFGConflict) { 489 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 490 << " (prob) (non-cold CFG conflict)\n"); 491 continue; 492 } 493 } 494 495 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 496 << " (prob)" 497 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 498 << "\n"); 499 if (BestSucc && BestWeight >= SuccWeight) 500 continue; 501 BestSucc = Succ; 502 BestWeight = SuccWeight; 503 } 504 return BestSucc; 505 } 506 507 /// \brief Select the best block from a worklist. 508 /// 509 /// This looks through the provided worklist as a list of candidate basic 510 /// blocks and select the most profitable one to place. The definition of 511 /// profitable only really makes sense in the context of a loop. This returns 512 /// the most frequently visited block in the worklist, which in the case of 513 /// a loop, is the one most desirable to be physically close to the rest of the 514 /// loop body in order to improve icache behavior. 515 /// 516 /// \returns The best block found, or null if none are viable. 517 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 518 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 519 const BlockFilterSet *BlockFilter) { 520 // Once we need to walk the worklist looking for a candidate, cleanup the 521 // worklist of already placed entries. 522 // FIXME: If this shows up on profiles, it could be folded (at the cost of 523 // some code complexity) into the loop below. 524 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 525 [&](MachineBasicBlock *BB) { 526 return BlockToChain.lookup(BB) == &Chain; 527 }), 528 WorkList.end()); 529 530 MachineBasicBlock *BestBlock = nullptr; 531 BlockFrequency BestFreq; 532 for (MachineBasicBlock *MBB : WorkList) { 533 BlockChain &SuccChain = *BlockToChain[MBB]; 534 if (&SuccChain == &Chain) { 535 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> Already merged!\n"); 536 continue; 537 } 538 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 539 540 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 541 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 542 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 543 if (BestBlock && BestFreq >= CandidateFreq) 544 continue; 545 BestBlock = MBB; 546 BestFreq = CandidateFreq; 547 } 548 return BestBlock; 549 } 550 551 /// \brief Retrieve the first unplaced basic block. 552 /// 553 /// This routine is called when we are unable to use the CFG to walk through 554 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 555 /// We walk through the function's blocks in order, starting from the 556 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 557 /// re-scanning the entire sequence on repeated calls to this routine. 558 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 559 MachineFunction &F, const BlockChain &PlacedChain, 560 MachineFunction::iterator &PrevUnplacedBlockIt, 561 const BlockFilterSet *BlockFilter) { 562 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 563 ++I) { 564 if (BlockFilter && !BlockFilter->count(&*I)) 565 continue; 566 if (BlockToChain[&*I] != &PlacedChain) { 567 PrevUnplacedBlockIt = I; 568 // Now select the head of the chain to which the unplaced block belongs 569 // as the block to place. This will force the entire chain to be placed, 570 // and satisfies the requirements of merging chains. 571 return *BlockToChain[&*I]->begin(); 572 } 573 } 574 return nullptr; 575 } 576 577 void MachineBlockPlacement::buildChain( 578 MachineBasicBlock *BB, BlockChain &Chain, 579 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 580 const BlockFilterSet *BlockFilter) { 581 assert(BB); 582 assert(BlockToChain[BB] == &Chain); 583 MachineFunction &F = *BB->getParent(); 584 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 585 586 MachineBasicBlock *LoopHeaderBB = BB; 587 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 588 BB = *std::prev(Chain.end()); 589 for (;;) { 590 assert(BB); 591 assert(BlockToChain[BB] == &Chain); 592 assert(*std::prev(Chain.end()) == BB); 593 594 // Look for the best viable successor if there is one to place immediately 595 // after this block. 596 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 597 598 // If an immediate successor isn't available, look for the best viable 599 // block among those we've identified as not violating the loop's CFG at 600 // this point. This won't be a fallthrough, but it will increase locality. 601 if (!BestSucc) 602 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 603 604 if (!BestSucc) { 605 BestSucc = 606 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 607 if (!BestSucc) 608 break; 609 610 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 611 "layout successor until the CFG reduces\n"); 612 } 613 614 // Place this block, updating the datastructures to reflect its placement. 615 BlockChain &SuccChain = *BlockToChain[BestSucc]; 616 // Zero out LoopPredecessors for the successor we're about to merge in case 617 // we selected a successor that didn't fit naturally into the CFG. 618 SuccChain.LoopPredecessors = 0; 619 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to " 620 << getBlockNum(BestSucc) << "\n"); 621 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 622 Chain.merge(BestSucc, &SuccChain); 623 BB = *std::prev(Chain.end()); 624 } 625 626 DEBUG(dbgs() << "Finished forming chain for header block " 627 << getBlockNum(*Chain.begin()) << "\n"); 628 } 629 630 /// \brief Find the best loop top block for layout. 631 /// 632 /// Look for a block which is strictly better than the loop header for laying 633 /// out at the top of the loop. This looks for one and only one pattern: 634 /// a latch block with no conditional exit. This block will cause a conditional 635 /// jump around it or will be the bottom of the loop if we lay it out in place, 636 /// but if it it doesn't end up at the bottom of the loop for any reason, 637 /// rotation alone won't fix it. Because such a block will always result in an 638 /// unconditional jump (for the backedge) rotating it in front of the loop 639 /// header is always profitable. 640 MachineBasicBlock * 641 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 642 const BlockFilterSet &LoopBlockSet) { 643 // Check that the header hasn't been fused with a preheader block due to 644 // crazy branches. If it has, we need to start with the header at the top to 645 // prevent pulling the preheader into the loop body. 646 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 647 if (!LoopBlockSet.count(*HeaderChain.begin())) 648 return L.getHeader(); 649 650 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 651 << "\n"); 652 653 BlockFrequency BestPredFreq; 654 MachineBasicBlock *BestPred = nullptr; 655 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 656 if (!LoopBlockSet.count(Pred)) 657 continue; 658 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 659 << Pred->succ_size() << " successors, "; 660 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 661 if (Pred->succ_size() > 1) 662 continue; 663 664 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 665 if (!BestPred || PredFreq > BestPredFreq || 666 (!(PredFreq < BestPredFreq) && 667 Pred->isLayoutSuccessor(L.getHeader()))) { 668 BestPred = Pred; 669 BestPredFreq = PredFreq; 670 } 671 } 672 673 // If no direct predecessor is fine, just use the loop header. 674 if (!BestPred) 675 return L.getHeader(); 676 677 // Walk backwards through any straight line of predecessors. 678 while (BestPred->pred_size() == 1 && 679 (*BestPred->pred_begin())->succ_size() == 1 && 680 *BestPred->pred_begin() != L.getHeader()) 681 BestPred = *BestPred->pred_begin(); 682 683 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 684 return BestPred; 685 } 686 687 /// \brief Find the best loop exiting block for layout. 688 /// 689 /// This routine implements the logic to analyze the loop looking for the best 690 /// block to layout at the top of the loop. Typically this is done to maximize 691 /// fallthrough opportunities. 692 MachineBasicBlock * 693 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 694 const BlockFilterSet &LoopBlockSet) { 695 // We don't want to layout the loop linearly in all cases. If the loop header 696 // is just a normal basic block in the loop, we want to look for what block 697 // within the loop is the best one to layout at the top. However, if the loop 698 // header has be pre-merged into a chain due to predecessors not having 699 // analyzable branches, *and* the predecessor it is merged with is *not* part 700 // of the loop, rotating the header into the middle of the loop will create 701 // a non-contiguous range of blocks which is Very Bad. So start with the 702 // header and only rotate if safe. 703 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 704 if (!LoopBlockSet.count(*HeaderChain.begin())) 705 return nullptr; 706 707 BlockFrequency BestExitEdgeFreq; 708 unsigned BestExitLoopDepth = 0; 709 MachineBasicBlock *ExitingBB = nullptr; 710 // If there are exits to outer loops, loop rotation can severely limit 711 // fallthrough opportunites unless it selects such an exit. Keep a set of 712 // blocks where rotating to exit with that block will reach an outer loop. 713 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 714 715 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 716 << "\n"); 717 for (MachineBasicBlock *MBB : L.getBlocks()) { 718 BlockChain &Chain = *BlockToChain[MBB]; 719 // Ensure that this block is at the end of a chain; otherwise it could be 720 // mid-way through an inner loop or a successor of an unanalyzable branch. 721 if (MBB != *std::prev(Chain.end())) 722 continue; 723 724 // Now walk the successors. We need to establish whether this has a viable 725 // exiting successor and whether it has a viable non-exiting successor. 726 // We store the old exiting state and restore it if a viable looping 727 // successor isn't found. 728 MachineBasicBlock *OldExitingBB = ExitingBB; 729 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 730 bool HasLoopingSucc = false; 731 // FIXME: Due to the performance of the probability and weight routines in 732 // the MBPI analysis, we use the internal weights and manually compute the 733 // probabilities to avoid quadratic behavior. 734 uint32_t WeightScale = 0; 735 uint32_t SumWeight = MBPI->getSumForBlock(MBB, WeightScale); 736 for (MachineBasicBlock *Succ : MBB->successors()) { 737 if (Succ->isEHPad()) 738 continue; 739 if (Succ == MBB) 740 continue; 741 BlockChain &SuccChain = *BlockToChain[Succ]; 742 // Don't split chains, either this chain or the successor's chain. 743 if (&Chain == &SuccChain) { 744 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 745 << getBlockName(Succ) << " (chain conflict)\n"); 746 continue; 747 } 748 749 uint32_t SuccWeight = MBPI->getEdgeWeight(MBB, Succ); 750 if (LoopBlockSet.count(Succ)) { 751 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 752 << getBlockName(Succ) << " (" << SuccWeight << ")\n"); 753 HasLoopingSucc = true; 754 continue; 755 } 756 757 unsigned SuccLoopDepth = 0; 758 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 759 SuccLoopDepth = ExitLoop->getLoopDepth(); 760 if (ExitLoop->contains(&L)) 761 BlocksExitingToOuterLoop.insert(MBB); 762 } 763 764 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 765 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 766 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 767 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 768 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 769 // Note that we bias this toward an existing layout successor to retain 770 // incoming order in the absence of better information. The exit must have 771 // a frequency higher than the current exit before we consider breaking 772 // the layout. 773 BranchProbability Bias(100 - ExitBlockBias, 100); 774 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 775 ExitEdgeFreq > BestExitEdgeFreq || 776 (MBB->isLayoutSuccessor(Succ) && 777 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 778 BestExitEdgeFreq = ExitEdgeFreq; 779 ExitingBB = MBB; 780 } 781 } 782 783 if (!HasLoopingSucc) { 784 // Restore the old exiting state, no viable looping successor was found. 785 ExitingBB = OldExitingBB; 786 BestExitEdgeFreq = OldBestExitEdgeFreq; 787 continue; 788 } 789 } 790 // Without a candidate exiting block or with only a single block in the 791 // loop, just use the loop header to layout the loop. 792 if (!ExitingBB || L.getNumBlocks() == 1) 793 return nullptr; 794 795 // Also, if we have exit blocks which lead to outer loops but didn't select 796 // one of them as the exiting block we are rotating toward, disable loop 797 // rotation altogether. 798 if (!BlocksExitingToOuterLoop.empty() && 799 !BlocksExitingToOuterLoop.count(ExitingBB)) 800 return nullptr; 801 802 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 803 return ExitingBB; 804 } 805 806 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 807 /// 808 /// Once we have built a chain, try to rotate it to line up the hot exit block 809 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 810 /// branches. For example, if the loop has fallthrough into its header and out 811 /// of its bottom already, don't rotate it. 812 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 813 MachineBasicBlock *ExitingBB, 814 const BlockFilterSet &LoopBlockSet) { 815 if (!ExitingBB) 816 return; 817 818 MachineBasicBlock *Top = *LoopChain.begin(); 819 bool ViableTopFallthrough = false; 820 for (MachineBasicBlock *Pred : Top->predecessors()) { 821 BlockChain *PredChain = BlockToChain[Pred]; 822 if (!LoopBlockSet.count(Pred) && 823 (!PredChain || Pred == *std::prev(PredChain->end()))) { 824 ViableTopFallthrough = true; 825 break; 826 } 827 } 828 829 // If the header has viable fallthrough, check whether the current loop 830 // bottom is a viable exiting block. If so, bail out as rotating will 831 // introduce an unnecessary branch. 832 if (ViableTopFallthrough) { 833 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 834 for (MachineBasicBlock *Succ : Bottom->successors()) { 835 BlockChain *SuccChain = BlockToChain[Succ]; 836 if (!LoopBlockSet.count(Succ) && 837 (!SuccChain || Succ == *SuccChain->begin())) 838 return; 839 } 840 } 841 842 BlockChain::iterator ExitIt = 843 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 844 if (ExitIt == LoopChain.end()) 845 return; 846 847 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 848 } 849 850 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 851 /// 852 /// With profile data, we can determine the cost in terms of missed fall through 853 /// opportunities when rotating a loop chain and select the best rotation. 854 /// Basically, there are three kinds of cost to consider for each rotation: 855 /// 1. The possibly missed fall through edge (if it exists) from BB out of 856 /// the loop to the loop header. 857 /// 2. The possibly missed fall through edges (if they exist) from the loop 858 /// exits to BB out of the loop. 859 /// 3. The missed fall through edge (if it exists) from the last BB to the 860 /// first BB in the loop chain. 861 /// Therefore, the cost for a given rotation is the sum of costs listed above. 862 /// We select the best rotation with the smallest cost. 863 void MachineBlockPlacement::rotateLoopWithProfile( 864 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 865 auto HeaderBB = L.getHeader(); 866 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 867 auto RotationPos = LoopChain.end(); 868 869 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 870 871 // A utility lambda that scales up a block frequency by dividing it by a 872 // branch probability which is the reciprocal of the scale. 873 auto ScaleBlockFrequency = [](BlockFrequency Freq, 874 unsigned Scale) -> BlockFrequency { 875 if (Scale == 0) 876 return 0; 877 // Use operator / between BlockFrequency and BranchProbability to implement 878 // saturating multiplication. 879 return Freq / BranchProbability(1, Scale); 880 }; 881 882 // Compute the cost of the missed fall-through edge to the loop header if the 883 // chain head is not the loop header. As we only consider natural loops with 884 // single header, this computation can be done only once. 885 BlockFrequency HeaderFallThroughCost(0); 886 for (auto *Pred : HeaderBB->predecessors()) { 887 BlockChain *PredChain = BlockToChain[Pred]; 888 if (!LoopBlockSet.count(Pred) && 889 (!PredChain || Pred == *std::prev(PredChain->end()))) { 890 auto EdgeFreq = 891 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 892 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 893 // If the predecessor has only an unconditional jump to the header, we 894 // need to consider the cost of this jump. 895 if (Pred->succ_size() == 1) 896 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 897 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 898 } 899 } 900 901 // Here we collect all exit blocks in the loop, and for each exit we find out 902 // its hottest exit edge. For each loop rotation, we define the loop exit cost 903 // as the sum of frequencies of exit edges we collect here, excluding the exit 904 // edge from the tail of the loop chain. 905 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 906 for (auto BB : LoopChain) { 907 uint32_t LargestExitEdgeWeight = 0; 908 for (auto *Succ : BB->successors()) { 909 BlockChain *SuccChain = BlockToChain[Succ]; 910 if (!LoopBlockSet.count(Succ) && 911 (!SuccChain || Succ == *SuccChain->begin())) { 912 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ); 913 LargestExitEdgeWeight = std::max(LargestExitEdgeWeight, SuccWeight); 914 } 915 } 916 if (LargestExitEdgeWeight > 0) { 917 uint32_t WeightScale = 0; 918 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 919 auto ExitFreq = 920 MBFI->getBlockFreq(BB) * 921 BranchProbability(LargestExitEdgeWeight / WeightScale, SumWeight); 922 ExitsWithFreq.emplace_back(BB, ExitFreq); 923 } 924 } 925 926 // In this loop we iterate every block in the loop chain and calculate the 927 // cost assuming the block is the head of the loop chain. When the loop ends, 928 // we should have found the best candidate as the loop chain's head. 929 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 930 EndIter = LoopChain.end(); 931 Iter != EndIter; Iter++, TailIter++) { 932 // TailIter is used to track the tail of the loop chain if the block we are 933 // checking (pointed by Iter) is the head of the chain. 934 if (TailIter == LoopChain.end()) 935 TailIter = LoopChain.begin(); 936 937 auto TailBB = *TailIter; 938 939 // Calculate the cost by putting this BB to the top. 940 BlockFrequency Cost = 0; 941 942 // If the current BB is the loop header, we need to take into account the 943 // cost of the missed fall through edge from outside of the loop to the 944 // header. 945 if (Iter != HeaderIter) 946 Cost += HeaderFallThroughCost; 947 948 // Collect the loop exit cost by summing up frequencies of all exit edges 949 // except the one from the chain tail. 950 for (auto &ExitWithFreq : ExitsWithFreq) 951 if (TailBB != ExitWithFreq.first) 952 Cost += ExitWithFreq.second; 953 954 // The cost of breaking the once fall-through edge from the tail to the top 955 // of the loop chain. Here we need to consider three cases: 956 // 1. If the tail node has only one successor, then we will get an 957 // additional jmp instruction. So the cost here is (MisfetchCost + 958 // JumpInstCost) * tail node frequency. 959 // 2. If the tail node has two successors, then we may still get an 960 // additional jmp instruction if the layout successor after the loop 961 // chain is not its CFG successor. Note that the more frequently executed 962 // jmp instruction will be put ahead of the other one. Assume the 963 // frequency of those two branches are x and y, where x is the frequency 964 // of the edge to the chain head, then the cost will be 965 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 966 // 3. If the tail node has more than two successors (this rarely happens), 967 // we won't consider any additional cost. 968 if (TailBB->isSuccessor(*Iter)) { 969 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 970 if (TailBB->succ_size() == 1) 971 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 972 MisfetchCost + JumpInstCost); 973 else if (TailBB->succ_size() == 2) { 974 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 975 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 976 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 977 ? TailBBFreq * TailToHeadProb.getCompl() 978 : TailToHeadFreq; 979 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 980 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 981 } 982 } 983 984 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter) 985 << " to the top: " << Cost.getFrequency() << "\n"); 986 987 if (Cost < SmallestRotationCost) { 988 SmallestRotationCost = Cost; 989 RotationPos = Iter; 990 } 991 } 992 993 if (RotationPos != LoopChain.end()) { 994 DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos) 995 << " to the top\n"); 996 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 997 } 998 } 999 1000 /// \brief Collect blocks in the given loop that are to be placed. 1001 /// 1002 /// When profile data is available, exclude cold blocks from the returned set; 1003 /// otherwise, collect all blocks in the loop. 1004 MachineBlockPlacement::BlockFilterSet 1005 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 1006 BlockFilterSet LoopBlockSet; 1007 1008 // Filter cold blocks off from LoopBlockSet when profile data is available. 1009 // Collect the sum of frequencies of incoming edges to the loop header from 1010 // outside. If we treat the loop as a super block, this is the frequency of 1011 // the loop. Then for each block in the loop, we calculate the ratio between 1012 // its frequency and the frequency of the loop block. When it is too small, 1013 // don't add it to the loop chain. If there are outer loops, then this block 1014 // will be merged into the first outer loop chain for which this block is not 1015 // cold anymore. This needs precise profile data and we only do this when 1016 // profile data is available. 1017 if (F.getFunction()->getEntryCount()) { 1018 BlockFrequency LoopFreq(0); 1019 for (auto LoopPred : L.getHeader()->predecessors()) 1020 if (!L.contains(LoopPred)) 1021 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1022 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1023 1024 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1025 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1026 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1027 continue; 1028 LoopBlockSet.insert(LoopBB); 1029 } 1030 } else 1031 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1032 1033 return LoopBlockSet; 1034 } 1035 1036 /// \brief Forms basic block chains from the natural loop structures. 1037 /// 1038 /// These chains are designed to preserve the existing *structure* of the code 1039 /// as much as possible. We can then stitch the chains together in a way which 1040 /// both preserves the topological structure and minimizes taken conditional 1041 /// branches. 1042 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1043 MachineLoop &L) { 1044 // First recurse through any nested loops, building chains for those inner 1045 // loops. 1046 for (MachineLoop *InnerLoop : L) 1047 buildLoopChains(F, *InnerLoop); 1048 1049 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1050 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1051 1052 // Check if we have profile data for this function. If yes, we will rotate 1053 // this loop by modeling costs more precisely which requires the profile data 1054 // for better layout. 1055 bool RotateLoopWithProfile = 1056 PreciseRotationCost && F.getFunction()->getEntryCount(); 1057 1058 // First check to see if there is an obviously preferable top block for the 1059 // loop. This will default to the header, but may end up as one of the 1060 // predecessors to the header if there is one which will result in strictly 1061 // fewer branches in the loop body. 1062 // When we use profile data to rotate the loop, this is unnecessary. 1063 MachineBasicBlock *LoopTop = 1064 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1065 1066 // If we selected just the header for the loop top, look for a potentially 1067 // profitable exit block in the event that rotating the loop can eliminate 1068 // branches by placing an exit edge at the bottom. 1069 MachineBasicBlock *ExitingBB = nullptr; 1070 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1071 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1072 1073 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1074 1075 // FIXME: This is a really lame way of walking the chains in the loop: we 1076 // walk the blocks, and use a set to prevent visiting a particular chain 1077 // twice. 1078 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1079 assert(LoopChain.LoopPredecessors == 0); 1080 UpdatedPreds.insert(&LoopChain); 1081 1082 for (MachineBasicBlock *LoopBB : LoopBlockSet) { 1083 BlockChain &Chain = *BlockToChain[LoopBB]; 1084 if (!UpdatedPreds.insert(&Chain).second) 1085 continue; 1086 1087 assert(Chain.LoopPredecessors == 0); 1088 for (MachineBasicBlock *ChainBB : Chain) { 1089 assert(BlockToChain[ChainBB] == &Chain); 1090 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1091 if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred)) 1092 continue; 1093 ++Chain.LoopPredecessors; 1094 } 1095 } 1096 1097 if (Chain.LoopPredecessors == 0) 1098 BlockWorkList.push_back(*Chain.begin()); 1099 } 1100 1101 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 1102 1103 if (RotateLoopWithProfile) 1104 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1105 else 1106 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1107 1108 DEBUG({ 1109 // Crash at the end so we get all of the debugging output first. 1110 bool BadLoop = false; 1111 if (LoopChain.LoopPredecessors) { 1112 BadLoop = true; 1113 dbgs() << "Loop chain contains a block without its preds placed!\n" 1114 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1115 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1116 } 1117 for (MachineBasicBlock *ChainBB : LoopChain) { 1118 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1119 if (!LoopBlockSet.erase(ChainBB)) { 1120 // We don't mark the loop as bad here because there are real situations 1121 // where this can occur. For example, with an unanalyzable fallthrough 1122 // from a loop block to a non-loop block or vice versa. 1123 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1124 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1125 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1126 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1127 } 1128 } 1129 1130 if (!LoopBlockSet.empty()) { 1131 BadLoop = true; 1132 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1133 dbgs() << "Loop contains blocks never placed into a chain!\n" 1134 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1135 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1136 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1137 } 1138 assert(!BadLoop && "Detected problems with the placement of this loop."); 1139 }); 1140 } 1141 1142 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1143 // Ensure that every BB in the function has an associated chain to simplify 1144 // the assumptions of the remaining algorithm. 1145 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1146 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1147 MachineBasicBlock *BB = &*FI; 1148 BlockChain *Chain = 1149 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1150 // Also, merge any blocks which we cannot reason about and must preserve 1151 // the exact fallthrough behavior for. 1152 for (;;) { 1153 Cond.clear(); 1154 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1155 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1156 break; 1157 1158 MachineFunction::iterator NextFI = std::next(FI); 1159 MachineBasicBlock *NextBB = &*NextFI; 1160 // Ensure that the layout successor is a viable block, as we know that 1161 // fallthrough is a possibility. 1162 assert(NextFI != FE && "Can't fallthrough past the last block."); 1163 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1164 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1165 << "\n"); 1166 Chain->merge(NextBB, nullptr); 1167 FI = NextFI; 1168 BB = NextBB; 1169 } 1170 } 1171 1172 if (OutlineOptionalBranches) { 1173 // Find the nearest common dominator of all of F's terminators. 1174 MachineBasicBlock *Terminator = nullptr; 1175 for (MachineBasicBlock &MBB : F) { 1176 if (MBB.succ_size() == 0) { 1177 if (Terminator == nullptr) 1178 Terminator = &MBB; 1179 else 1180 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1181 } 1182 } 1183 1184 // MBBs dominating this common dominator are unavoidable. 1185 UnavoidableBlocks.clear(); 1186 for (MachineBasicBlock &MBB : F) { 1187 if (MDT->dominates(&MBB, Terminator)) { 1188 UnavoidableBlocks.insert(&MBB); 1189 } 1190 } 1191 } 1192 1193 // Build any loop-based chains. 1194 for (MachineLoop *L : *MLI) 1195 buildLoopChains(F, *L); 1196 1197 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1198 1199 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1200 for (MachineBasicBlock &MBB : F) { 1201 BlockChain &Chain = *BlockToChain[&MBB]; 1202 if (!UpdatedPreds.insert(&Chain).second) 1203 continue; 1204 1205 assert(Chain.LoopPredecessors == 0); 1206 for (MachineBasicBlock *ChainBB : Chain) { 1207 assert(BlockToChain[ChainBB] == &Chain); 1208 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1209 if (BlockToChain[Pred] == &Chain) 1210 continue; 1211 ++Chain.LoopPredecessors; 1212 } 1213 } 1214 1215 if (Chain.LoopPredecessors == 0) 1216 BlockWorkList.push_back(*Chain.begin()); 1217 } 1218 1219 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1220 buildChain(&F.front(), FunctionChain, BlockWorkList); 1221 1222 #ifndef NDEBUG 1223 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1224 #endif 1225 DEBUG({ 1226 // Crash at the end so we get all of the debugging output first. 1227 bool BadFunc = false; 1228 FunctionBlockSetType FunctionBlockSet; 1229 for (MachineBasicBlock &MBB : F) 1230 FunctionBlockSet.insert(&MBB); 1231 1232 for (MachineBasicBlock *ChainBB : FunctionChain) 1233 if (!FunctionBlockSet.erase(ChainBB)) { 1234 BadFunc = true; 1235 dbgs() << "Function chain contains a block not in the function!\n" 1236 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1237 } 1238 1239 if (!FunctionBlockSet.empty()) { 1240 BadFunc = true; 1241 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1242 dbgs() << "Function contains blocks never placed into a chain!\n" 1243 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1244 } 1245 assert(!BadFunc && "Detected problems with the block placement."); 1246 }); 1247 1248 // Splice the blocks into place. 1249 MachineFunction::iterator InsertPos = F.begin(); 1250 for (MachineBasicBlock *ChainBB : FunctionChain) { 1251 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1252 : " ... ") 1253 << getBlockName(ChainBB) << "\n"); 1254 if (InsertPos != MachineFunction::iterator(ChainBB)) 1255 F.splice(InsertPos, ChainBB); 1256 else 1257 ++InsertPos; 1258 1259 // Update the terminator of the previous block. 1260 if (ChainBB == *FunctionChain.begin()) 1261 continue; 1262 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1263 1264 // FIXME: It would be awesome of updateTerminator would just return rather 1265 // than assert when the branch cannot be analyzed in order to remove this 1266 // boiler plate. 1267 Cond.clear(); 1268 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1269 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1270 // The "PrevBB" is not yet updated to reflect current code layout, so, 1271 // o. it may fall-through to a block without explict "goto" instruction 1272 // before layout, and no longer fall-through it after layout; or 1273 // o. just opposite. 1274 // 1275 // AnalyzeBranch() may return erroneous value for FBB when these two 1276 // situations take place. For the first scenario FBB is mistakenly set 1277 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1278 // is mistakenly pointing to "*BI". 1279 // 1280 bool needUpdateBr = true; 1281 if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1282 PrevBB->updateTerminator(); 1283 needUpdateBr = false; 1284 Cond.clear(); 1285 TBB = FBB = nullptr; 1286 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1287 // FIXME: This should never take place. 1288 TBB = FBB = nullptr; 1289 } 1290 } 1291 1292 // If PrevBB has a two-way branch, try to re-order the branches 1293 // such that we branch to the successor with higher weight first. 1294 if (TBB && !Cond.empty() && FBB && 1295 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1296 !TII->ReverseBranchCondition(Cond)) { 1297 DEBUG(dbgs() << "Reverse order of the two branches: " 1298 << getBlockName(PrevBB) << "\n"); 1299 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1300 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1301 DebugLoc dl; // FIXME: this is nowhere 1302 TII->RemoveBranch(*PrevBB); 1303 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1304 needUpdateBr = true; 1305 } 1306 if (needUpdateBr) 1307 PrevBB->updateTerminator(); 1308 } 1309 } 1310 1311 // Fixup the last block. 1312 Cond.clear(); 1313 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1314 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1315 F.back().updateTerminator(); 1316 1317 // Walk through the backedges of the function now that we have fully laid out 1318 // the basic blocks and align the destination of each backedge. We don't rely 1319 // exclusively on the loop info here so that we can align backedges in 1320 // unnatural CFGs and backedges that were introduced purely because of the 1321 // loop rotations done during this layout pass. 1322 // FIXME: Use Function::optForSize(). 1323 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 1324 return; 1325 if (FunctionChain.begin() == FunctionChain.end()) 1326 return; // Empty chain. 1327 1328 const BranchProbability ColdProb(1, 5); // 20% 1329 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1330 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1331 for (MachineBasicBlock *ChainBB : FunctionChain) { 1332 if (ChainBB == *FunctionChain.begin()) 1333 continue; 1334 1335 // Don't align non-looping basic blocks. These are unlikely to execute 1336 // enough times to matter in practice. Note that we'll still handle 1337 // unnatural CFGs inside of a natural outer loop (the common case) and 1338 // rotated loops. 1339 MachineLoop *L = MLI->getLoopFor(ChainBB); 1340 if (!L) 1341 continue; 1342 1343 unsigned Align = TLI->getPrefLoopAlignment(L); 1344 if (!Align) 1345 continue; // Don't care about loop alignment. 1346 1347 // If the block is cold relative to the function entry don't waste space 1348 // aligning it. 1349 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1350 if (Freq < WeightedEntryFreq) 1351 continue; 1352 1353 // If the block is cold relative to its loop header, don't align it 1354 // regardless of what edges into the block exist. 1355 MachineBasicBlock *LoopHeader = L->getHeader(); 1356 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1357 if (Freq < (LoopHeaderFreq * ColdProb)) 1358 continue; 1359 1360 // Check for the existence of a non-layout predecessor which would benefit 1361 // from aligning this block. 1362 MachineBasicBlock *LayoutPred = 1363 &*std::prev(MachineFunction::iterator(ChainBB)); 1364 1365 // Force alignment if all the predecessors are jumps. We already checked 1366 // that the block isn't cold above. 1367 if (!LayoutPred->isSuccessor(ChainBB)) { 1368 ChainBB->setAlignment(Align); 1369 continue; 1370 } 1371 1372 // Align this block if the layout predecessor's edge into this block is 1373 // cold relative to the block. When this is true, other predecessors make up 1374 // all of the hot entries into the block and thus alignment is likely to be 1375 // important. 1376 BranchProbability LayoutProb = 1377 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1378 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1379 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1380 ChainBB->setAlignment(Align); 1381 } 1382 } 1383 1384 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1385 // Check for single-block functions and skip them. 1386 if (std::next(F.begin()) == F.end()) 1387 return false; 1388 1389 if (skipOptnoneFunction(*F.getFunction())) 1390 return false; 1391 1392 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1393 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1394 MLI = &getAnalysis<MachineLoopInfo>(); 1395 TII = F.getSubtarget().getInstrInfo(); 1396 TLI = F.getSubtarget().getTargetLowering(); 1397 MDT = &getAnalysis<MachineDominatorTree>(); 1398 assert(BlockToChain.empty()); 1399 1400 buildCFGChains(F); 1401 1402 BlockToChain.clear(); 1403 ChainAllocator.DestroyAll(); 1404 1405 if (AlignAllBlock) 1406 // Align all of the blocks in the function to a specific alignment. 1407 for (MachineBasicBlock &MBB : F) 1408 MBB.setAlignment(AlignAllBlock); 1409 1410 // We always return true as we have no way to track whether the final order 1411 // differs from the original order. 1412 return true; 1413 } 1414 1415 namespace { 1416 /// \brief A pass to compute block placement statistics. 1417 /// 1418 /// A separate pass to compute interesting statistics for evaluating block 1419 /// placement. This is separate from the actual placement pass so that they can 1420 /// be computed in the absence of any placement transformations or when using 1421 /// alternative placement strategies. 1422 class MachineBlockPlacementStats : public MachineFunctionPass { 1423 /// \brief A handle to the branch probability pass. 1424 const MachineBranchProbabilityInfo *MBPI; 1425 1426 /// \brief A handle to the function-wide block frequency pass. 1427 const MachineBlockFrequencyInfo *MBFI; 1428 1429 public: 1430 static char ID; // Pass identification, replacement for typeid 1431 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1432 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1433 } 1434 1435 bool runOnMachineFunction(MachineFunction &F) override; 1436 1437 void getAnalysisUsage(AnalysisUsage &AU) const override { 1438 AU.addRequired<MachineBranchProbabilityInfo>(); 1439 AU.addRequired<MachineBlockFrequencyInfo>(); 1440 AU.setPreservesAll(); 1441 MachineFunctionPass::getAnalysisUsage(AU); 1442 } 1443 }; 1444 } 1445 1446 char MachineBlockPlacementStats::ID = 0; 1447 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1448 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1449 "Basic Block Placement Stats", false, false) 1450 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1451 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1452 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1453 "Basic Block Placement Stats", false, false) 1454 1455 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1456 // Check for single-block functions and skip them. 1457 if (std::next(F.begin()) == F.end()) 1458 return false; 1459 1460 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1461 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1462 1463 for (MachineBasicBlock &MBB : F) { 1464 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1465 Statistic &NumBranches = 1466 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1467 Statistic &BranchTakenFreq = 1468 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1469 for (MachineBasicBlock *Succ : MBB.successors()) { 1470 // Skip if this successor is a fallthrough. 1471 if (MBB.isLayoutSuccessor(Succ)) 1472 continue; 1473 1474 BlockFrequency EdgeFreq = 1475 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1476 ++NumBranches; 1477 BranchTakenFreq += EdgeFreq.getFrequency(); 1478 } 1479 } 1480 1481 return false; 1482 } 1483