1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #define DEBUG_TYPE "block-placement2" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 36 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include <algorithm> 47 using namespace llvm; 48 49 STATISTIC(NumCondBranches, "Number of conditional branches"); 50 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 51 STATISTIC(CondBranchTakenFreq, 52 "Potential frequency of taking conditional branches"); 53 STATISTIC(UncondBranchTakenFreq, 54 "Potential frequency of taking unconditional branches"); 55 56 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 57 cl::desc("Force the alignment of all " 58 "blocks in the function."), 59 cl::init(0), cl::Hidden); 60 61 // FIXME: Find a good default for this flag and remove the flag. 62 static cl::opt<unsigned> 63 ExitBlockBias("block-placement-exit-block-bias", 64 cl::desc("Block frequency percentage a loop exit block needs " 65 "over the original exit to be considered the new exit."), 66 cl::init(0), cl::Hidden); 67 68 namespace { 69 class BlockChain; 70 /// \brief Type for our function-wide basic block -> block chain mapping. 71 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 72 } 73 74 namespace { 75 /// \brief A chain of blocks which will be laid out contiguously. 76 /// 77 /// This is the datastructure representing a chain of consecutive blocks that 78 /// are profitable to layout together in order to maximize fallthrough 79 /// probabilities and code locality. We also can use a block chain to represent 80 /// a sequence of basic blocks which have some external (correctness) 81 /// requirement for sequential layout. 82 /// 83 /// Chains can be built around a single basic block and can be merged to grow 84 /// them. They participate in a block-to-chain mapping, which is updated 85 /// automatically as chains are merged together. 86 class BlockChain { 87 /// \brief The sequence of blocks belonging to this chain. 88 /// 89 /// This is the sequence of blocks for a particular chain. These will be laid 90 /// out in-order within the function. 91 SmallVector<MachineBasicBlock *, 4> Blocks; 92 93 /// \brief A handle to the function-wide basic block to block chain mapping. 94 /// 95 /// This is retained in each block chain to simplify the computation of child 96 /// block chains for SCC-formation and iteration. We store the edges to child 97 /// basic blocks, and map them back to their associated chains using this 98 /// structure. 99 BlockToChainMapType &BlockToChain; 100 101 public: 102 /// \brief Construct a new BlockChain. 103 /// 104 /// This builds a new block chain representing a single basic block in the 105 /// function. It also registers itself as the chain that block participates 106 /// in with the BlockToChain mapping. 107 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 108 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 109 assert(BB && "Cannot create a chain with a null basic block"); 110 BlockToChain[BB] = this; 111 } 112 113 /// \brief Iterator over blocks within the chain. 114 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 115 116 /// \brief Beginning of blocks within the chain. 117 iterator begin() { return Blocks.begin(); } 118 119 /// \brief End of blocks within the chain. 120 iterator end() { return Blocks.end(); } 121 122 /// \brief Merge a block chain into this one. 123 /// 124 /// This routine merges a block chain into this one. It takes care of forming 125 /// a contiguous sequence of basic blocks, updating the edge list, and 126 /// updating the block -> chain mapping. It does not free or tear down the 127 /// old chain, but the old chain's block list is no longer valid. 128 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 129 assert(BB); 130 assert(!Blocks.empty()); 131 132 // Fast path in case we don't have a chain already. 133 if (!Chain) { 134 assert(!BlockToChain[BB]); 135 Blocks.push_back(BB); 136 BlockToChain[BB] = this; 137 return; 138 } 139 140 assert(BB == *Chain->begin()); 141 assert(Chain->begin() != Chain->end()); 142 143 // Update the incoming blocks to point to this chain, and add them to the 144 // chain structure. 145 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 146 BI != BE; ++BI) { 147 Blocks.push_back(*BI); 148 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 149 BlockToChain[*BI] = this; 150 } 151 } 152 153 #ifndef NDEBUG 154 /// \brief Dump the blocks in this chain. 155 LLVM_DUMP_METHOD void dump() { 156 for (iterator I = begin(), E = end(); I != E; ++I) 157 (*I)->dump(); 158 } 159 #endif // NDEBUG 160 161 /// \brief Count of predecessors within the loop currently being processed. 162 /// 163 /// This count is updated at each loop we process to represent the number of 164 /// in-loop predecessors of this chain. 165 unsigned LoopPredecessors; 166 }; 167 } 168 169 namespace { 170 class MachineBlockPlacement : public MachineFunctionPass { 171 /// \brief A typedef for a block filter set. 172 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 173 174 /// \brief A handle to the branch probability pass. 175 const MachineBranchProbabilityInfo *MBPI; 176 177 /// \brief A handle to the function-wide block frequency pass. 178 const MachineBlockFrequencyInfo *MBFI; 179 180 /// \brief A handle to the loop info. 181 const MachineLoopInfo *MLI; 182 183 /// \brief A handle to the target's instruction info. 184 const TargetInstrInfo *TII; 185 186 /// \brief A handle to the target's lowering info. 187 const TargetLoweringBase *TLI; 188 189 /// \brief Allocator and owner of BlockChain structures. 190 /// 191 /// We build BlockChains lazily while processing the loop structure of 192 /// a function. To reduce malloc traffic, we allocate them using this 193 /// slab-like allocator, and destroy them after the pass completes. An 194 /// important guarantee is that this allocator produces stable pointers to 195 /// the chains. 196 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 197 198 /// \brief Function wide BasicBlock to BlockChain mapping. 199 /// 200 /// This mapping allows efficiently moving from any given basic block to the 201 /// BlockChain it participates in, if any. We use it to, among other things, 202 /// allow implicitly defining edges between chains as the existing edges 203 /// between basic blocks. 204 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 205 206 void markChainSuccessors(BlockChain &Chain, 207 MachineBasicBlock *LoopHeaderBB, 208 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 209 const BlockFilterSet *BlockFilter = 0); 210 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 211 BlockChain &Chain, 212 const BlockFilterSet *BlockFilter); 213 MachineBasicBlock *selectBestCandidateBlock( 214 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 215 const BlockFilterSet *BlockFilter); 216 MachineBasicBlock *getFirstUnplacedBlock( 217 MachineFunction &F, 218 const BlockChain &PlacedChain, 219 MachineFunction::iterator &PrevUnplacedBlockIt, 220 const BlockFilterSet *BlockFilter); 221 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 222 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 223 const BlockFilterSet *BlockFilter = 0); 224 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 225 const BlockFilterSet &LoopBlockSet); 226 MachineBasicBlock *findBestLoopExit(MachineFunction &F, 227 MachineLoop &L, 228 const BlockFilterSet &LoopBlockSet); 229 void buildLoopChains(MachineFunction &F, MachineLoop &L); 230 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 231 const BlockFilterSet &LoopBlockSet); 232 void buildCFGChains(MachineFunction &F); 233 234 public: 235 static char ID; // Pass identification, replacement for typeid 236 MachineBlockPlacement() : MachineFunctionPass(ID) { 237 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 238 } 239 240 bool runOnMachineFunction(MachineFunction &F) override; 241 242 void getAnalysisUsage(AnalysisUsage &AU) const override { 243 AU.addRequired<MachineBranchProbabilityInfo>(); 244 AU.addRequired<MachineBlockFrequencyInfo>(); 245 AU.addRequired<MachineLoopInfo>(); 246 MachineFunctionPass::getAnalysisUsage(AU); 247 } 248 }; 249 } 250 251 char MachineBlockPlacement::ID = 0; 252 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 253 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 254 "Branch Probability Basic Block Placement", false, false) 255 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 256 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 257 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 258 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 259 "Branch Probability Basic Block Placement", false, false) 260 261 #ifndef NDEBUG 262 /// \brief Helper to print the name of a MBB. 263 /// 264 /// Only used by debug logging. 265 static std::string getBlockName(MachineBasicBlock *BB) { 266 std::string Result; 267 raw_string_ostream OS(Result); 268 OS << "BB#" << BB->getNumber() 269 << " (derived from LLVM BB '" << BB->getName() << "')"; 270 OS.flush(); 271 return Result; 272 } 273 274 /// \brief Helper to print the number of a MBB. 275 /// 276 /// Only used by debug logging. 277 static std::string getBlockNum(MachineBasicBlock *BB) { 278 std::string Result; 279 raw_string_ostream OS(Result); 280 OS << "BB#" << BB->getNumber(); 281 OS.flush(); 282 return Result; 283 } 284 #endif 285 286 /// \brief Mark a chain's successors as having one fewer preds. 287 /// 288 /// When a chain is being merged into the "placed" chain, this routine will 289 /// quickly walk the successors of each block in the chain and mark them as 290 /// having one fewer active predecessor. It also adds any successors of this 291 /// chain which reach the zero-predecessor state to the worklist passed in. 292 void MachineBlockPlacement::markChainSuccessors( 293 BlockChain &Chain, 294 MachineBasicBlock *LoopHeaderBB, 295 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 296 const BlockFilterSet *BlockFilter) { 297 // Walk all the blocks in this chain, marking their successors as having 298 // a predecessor placed. 299 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 300 CBI != CBE; ++CBI) { 301 // Add any successors for which this is the only un-placed in-loop 302 // predecessor to the worklist as a viable candidate for CFG-neutral 303 // placement. No subsequent placement of this block will violate the CFG 304 // shape, so we get to use heuristics to choose a favorable placement. 305 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 306 SE = (*CBI)->succ_end(); 307 SI != SE; ++SI) { 308 if (BlockFilter && !BlockFilter->count(*SI)) 309 continue; 310 BlockChain &SuccChain = *BlockToChain[*SI]; 311 // Disregard edges within a fixed chain, or edges to the loop header. 312 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 313 continue; 314 315 // This is a cross-chain edge that is within the loop, so decrement the 316 // loop predecessor count of the destination chain. 317 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 318 BlockWorkList.push_back(*SuccChain.begin()); 319 } 320 } 321 } 322 323 /// \brief Select the best successor for a block. 324 /// 325 /// This looks across all successors of a particular block and attempts to 326 /// select the "best" one to be the layout successor. It only considers direct 327 /// successors which also pass the block filter. It will attempt to avoid 328 /// breaking CFG structure, but cave and break such structures in the case of 329 /// very hot successor edges. 330 /// 331 /// \returns The best successor block found, or null if none are viable. 332 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 333 MachineBasicBlock *BB, BlockChain &Chain, 334 const BlockFilterSet *BlockFilter) { 335 const BranchProbability HotProb(4, 5); // 80% 336 337 MachineBasicBlock *BestSucc = 0; 338 // FIXME: Due to the performance of the probability and weight routines in 339 // the MBPI analysis, we manually compute probabilities using the edge 340 // weights. This is suboptimal as it means that the somewhat subtle 341 // definition of edge weight semantics is encoded here as well. We should 342 // improve the MBPI interface to efficiently support query patterns such as 343 // this. 344 uint32_t BestWeight = 0; 345 uint32_t WeightScale = 0; 346 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 347 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 348 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 349 SE = BB->succ_end(); 350 SI != SE; ++SI) { 351 if (BlockFilter && !BlockFilter->count(*SI)) 352 continue; 353 BlockChain &SuccChain = *BlockToChain[*SI]; 354 if (&SuccChain == &Chain) { 355 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); 356 continue; 357 } 358 if (*SI != *SuccChain.begin()) { 359 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); 360 continue; 361 } 362 363 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); 364 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 365 366 // Only consider successors which are either "hot", or wouldn't violate 367 // any CFG constraints. 368 if (SuccChain.LoopPredecessors != 0) { 369 if (SuccProb < HotProb) { 370 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 371 << " (prob) (CFG conflict)\n"); 372 continue; 373 } 374 375 // Make sure that a hot successor doesn't have a globally more important 376 // predecessor. 377 BlockFrequency CandidateEdgeFreq 378 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 379 bool BadCFGConflict = false; 380 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), 381 PE = (*SI)->pred_end(); 382 PI != PE; ++PI) { 383 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || 384 BlockToChain[*PI] == &Chain) 385 continue; 386 BlockFrequency PredEdgeFreq 387 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); 388 if (PredEdgeFreq >= CandidateEdgeFreq) { 389 BadCFGConflict = true; 390 break; 391 } 392 } 393 if (BadCFGConflict) { 394 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 395 << " (prob) (non-cold CFG conflict)\n"); 396 continue; 397 } 398 } 399 400 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 401 << " (prob)" 402 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 403 << "\n"); 404 if (BestSucc && BestWeight >= SuccWeight) 405 continue; 406 BestSucc = *SI; 407 BestWeight = SuccWeight; 408 } 409 return BestSucc; 410 } 411 412 /// \brief Select the best block from a worklist. 413 /// 414 /// This looks through the provided worklist as a list of candidate basic 415 /// blocks and select the most profitable one to place. The definition of 416 /// profitable only really makes sense in the context of a loop. This returns 417 /// the most frequently visited block in the worklist, which in the case of 418 /// a loop, is the one most desirable to be physically close to the rest of the 419 /// loop body in order to improve icache behavior. 420 /// 421 /// \returns The best block found, or null if none are viable. 422 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 423 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 424 const BlockFilterSet *BlockFilter) { 425 // Once we need to walk the worklist looking for a candidate, cleanup the 426 // worklist of already placed entries. 427 // FIXME: If this shows up on profiles, it could be folded (at the cost of 428 // some code complexity) into the loop below. 429 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 430 [&](MachineBasicBlock *BB) { 431 return BlockToChain.lookup(BB) == &Chain; 432 }), 433 WorkList.end()); 434 435 MachineBasicBlock *BestBlock = 0; 436 BlockFrequency BestFreq; 437 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 438 WBE = WorkList.end(); 439 WBI != WBE; ++WBI) { 440 BlockChain &SuccChain = *BlockToChain[*WBI]; 441 if (&SuccChain == &Chain) { 442 DEBUG(dbgs() << " " << getBlockName(*WBI) 443 << " -> Already merged!\n"); 444 continue; 445 } 446 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 447 448 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 449 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> "; 450 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 451 if (BestBlock && BestFreq >= CandidateFreq) 452 continue; 453 BestBlock = *WBI; 454 BestFreq = CandidateFreq; 455 } 456 return BestBlock; 457 } 458 459 /// \brief Retrieve the first unplaced basic block. 460 /// 461 /// This routine is called when we are unable to use the CFG to walk through 462 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 463 /// We walk through the function's blocks in order, starting from the 464 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 465 /// re-scanning the entire sequence on repeated calls to this routine. 466 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 467 MachineFunction &F, const BlockChain &PlacedChain, 468 MachineFunction::iterator &PrevUnplacedBlockIt, 469 const BlockFilterSet *BlockFilter) { 470 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 471 ++I) { 472 if (BlockFilter && !BlockFilter->count(I)) 473 continue; 474 if (BlockToChain[I] != &PlacedChain) { 475 PrevUnplacedBlockIt = I; 476 // Now select the head of the chain to which the unplaced block belongs 477 // as the block to place. This will force the entire chain to be placed, 478 // and satisfies the requirements of merging chains. 479 return *BlockToChain[I]->begin(); 480 } 481 } 482 return 0; 483 } 484 485 void MachineBlockPlacement::buildChain( 486 MachineBasicBlock *BB, 487 BlockChain &Chain, 488 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 489 const BlockFilterSet *BlockFilter) { 490 assert(BB); 491 assert(BlockToChain[BB] == &Chain); 492 MachineFunction &F = *BB->getParent(); 493 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 494 495 MachineBasicBlock *LoopHeaderBB = BB; 496 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 497 BB = *std::prev(Chain.end()); 498 for (;;) { 499 assert(BB); 500 assert(BlockToChain[BB] == &Chain); 501 assert(*std::prev(Chain.end()) == BB); 502 503 // Look for the best viable successor if there is one to place immediately 504 // after this block. 505 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 506 507 // If an immediate successor isn't available, look for the best viable 508 // block among those we've identified as not violating the loop's CFG at 509 // this point. This won't be a fallthrough, but it will increase locality. 510 if (!BestSucc) 511 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 512 513 if (!BestSucc) { 514 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 515 BlockFilter); 516 if (!BestSucc) 517 break; 518 519 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 520 "layout successor until the CFG reduces\n"); 521 } 522 523 // Place this block, updating the datastructures to reflect its placement. 524 BlockChain &SuccChain = *BlockToChain[BestSucc]; 525 // Zero out LoopPredecessors for the successor we're about to merge in case 526 // we selected a successor that didn't fit naturally into the CFG. 527 SuccChain.LoopPredecessors = 0; 528 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 529 << " to " << getBlockNum(BestSucc) << "\n"); 530 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 531 Chain.merge(BestSucc, &SuccChain); 532 BB = *std::prev(Chain.end()); 533 } 534 535 DEBUG(dbgs() << "Finished forming chain for header block " 536 << getBlockNum(*Chain.begin()) << "\n"); 537 } 538 539 /// \brief Find the best loop top block for layout. 540 /// 541 /// Look for a block which is strictly better than the loop header for laying 542 /// out at the top of the loop. This looks for one and only one pattern: 543 /// a latch block with no conditional exit. This block will cause a conditional 544 /// jump around it or will be the bottom of the loop if we lay it out in place, 545 /// but if it it doesn't end up at the bottom of the loop for any reason, 546 /// rotation alone won't fix it. Because such a block will always result in an 547 /// unconditional jump (for the backedge) rotating it in front of the loop 548 /// header is always profitable. 549 MachineBasicBlock * 550 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 551 const BlockFilterSet &LoopBlockSet) { 552 // Check that the header hasn't been fused with a preheader block due to 553 // crazy branches. If it has, we need to start with the header at the top to 554 // prevent pulling the preheader into the loop body. 555 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 556 if (!LoopBlockSet.count(*HeaderChain.begin())) 557 return L.getHeader(); 558 559 DEBUG(dbgs() << "Finding best loop top for: " 560 << getBlockName(L.getHeader()) << "\n"); 561 562 BlockFrequency BestPredFreq; 563 MachineBasicBlock *BestPred = 0; 564 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(), 565 PE = L.getHeader()->pred_end(); 566 PI != PE; ++PI) { 567 MachineBasicBlock *Pred = *PI; 568 if (!LoopBlockSet.count(Pred)) 569 continue; 570 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 571 << Pred->succ_size() << " successors, "; 572 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 573 if (Pred->succ_size() > 1) 574 continue; 575 576 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 577 if (!BestPred || PredFreq > BestPredFreq || 578 (!(PredFreq < BestPredFreq) && 579 Pred->isLayoutSuccessor(L.getHeader()))) { 580 BestPred = Pred; 581 BestPredFreq = PredFreq; 582 } 583 } 584 585 // If no direct predecessor is fine, just use the loop header. 586 if (!BestPred) 587 return L.getHeader(); 588 589 // Walk backwards through any straight line of predecessors. 590 while (BestPred->pred_size() == 1 && 591 (*BestPred->pred_begin())->succ_size() == 1 && 592 *BestPred->pred_begin() != L.getHeader()) 593 BestPred = *BestPred->pred_begin(); 594 595 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 596 return BestPred; 597 } 598 599 600 /// \brief Find the best loop exiting block for layout. 601 /// 602 /// This routine implements the logic to analyze the loop looking for the best 603 /// block to layout at the top of the loop. Typically this is done to maximize 604 /// fallthrough opportunities. 605 MachineBasicBlock * 606 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, 607 MachineLoop &L, 608 const BlockFilterSet &LoopBlockSet) { 609 // We don't want to layout the loop linearly in all cases. If the loop header 610 // is just a normal basic block in the loop, we want to look for what block 611 // within the loop is the best one to layout at the top. However, if the loop 612 // header has be pre-merged into a chain due to predecessors not having 613 // analyzable branches, *and* the predecessor it is merged with is *not* part 614 // of the loop, rotating the header into the middle of the loop will create 615 // a non-contiguous range of blocks which is Very Bad. So start with the 616 // header and only rotate if safe. 617 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 618 if (!LoopBlockSet.count(*HeaderChain.begin())) 619 return 0; 620 621 BlockFrequency BestExitEdgeFreq; 622 unsigned BestExitLoopDepth = 0; 623 MachineBasicBlock *ExitingBB = 0; 624 // If there are exits to outer loops, loop rotation can severely limit 625 // fallthrough opportunites unless it selects such an exit. Keep a set of 626 // blocks where rotating to exit with that block will reach an outer loop. 627 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 628 629 DEBUG(dbgs() << "Finding best loop exit for: " 630 << getBlockName(L.getHeader()) << "\n"); 631 for (MachineLoop::block_iterator I = L.block_begin(), 632 E = L.block_end(); 633 I != E; ++I) { 634 BlockChain &Chain = *BlockToChain[*I]; 635 // Ensure that this block is at the end of a chain; otherwise it could be 636 // mid-way through an inner loop or a successor of an analyzable branch. 637 if (*I != *std::prev(Chain.end())) 638 continue; 639 640 // Now walk the successors. We need to establish whether this has a viable 641 // exiting successor and whether it has a viable non-exiting successor. 642 // We store the old exiting state and restore it if a viable looping 643 // successor isn't found. 644 MachineBasicBlock *OldExitingBB = ExitingBB; 645 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 646 bool HasLoopingSucc = false; 647 // FIXME: Due to the performance of the probability and weight routines in 648 // the MBPI analysis, we use the internal weights and manually compute the 649 // probabilities to avoid quadratic behavior. 650 uint32_t WeightScale = 0; 651 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 652 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 653 SE = (*I)->succ_end(); 654 SI != SE; ++SI) { 655 if ((*SI)->isLandingPad()) 656 continue; 657 if (*SI == *I) 658 continue; 659 BlockChain &SuccChain = *BlockToChain[*SI]; 660 // Don't split chains, either this chain or the successor's chain. 661 if (&Chain == &SuccChain) { 662 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 663 << getBlockName(*SI) << " (chain conflict)\n"); 664 continue; 665 } 666 667 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 668 if (LoopBlockSet.count(*SI)) { 669 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 670 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 671 HasLoopingSucc = true; 672 continue; 673 } 674 675 unsigned SuccLoopDepth = 0; 676 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) { 677 SuccLoopDepth = ExitLoop->getLoopDepth(); 678 if (ExitLoop->contains(&L)) 679 BlocksExitingToOuterLoop.insert(*I); 680 } 681 682 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 683 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 684 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 685 << getBlockName(*SI) << " [L:" << SuccLoopDepth 686 << "] ("; 687 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 688 // Note that we bias this toward an existing layout successor to retain 689 // incoming order in the absence of better information. The exit must have 690 // a frequency higher than the current exit before we consider breaking 691 // the layout. 692 BranchProbability Bias(100 - ExitBlockBias, 100); 693 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth || 694 ExitEdgeFreq > BestExitEdgeFreq || 695 ((*I)->isLayoutSuccessor(*SI) && 696 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 697 BestExitEdgeFreq = ExitEdgeFreq; 698 ExitingBB = *I; 699 } 700 } 701 702 // Restore the old exiting state, no viable looping successor was found. 703 if (!HasLoopingSucc) { 704 ExitingBB = OldExitingBB; 705 BestExitEdgeFreq = OldBestExitEdgeFreq; 706 continue; 707 } 708 } 709 // Without a candidate exiting block or with only a single block in the 710 // loop, just use the loop header to layout the loop. 711 if (!ExitingBB || L.getNumBlocks() == 1) 712 return 0; 713 714 // Also, if we have exit blocks which lead to outer loops but didn't select 715 // one of them as the exiting block we are rotating toward, disable loop 716 // rotation altogether. 717 if (!BlocksExitingToOuterLoop.empty() && 718 !BlocksExitingToOuterLoop.count(ExitingBB)) 719 return 0; 720 721 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 722 return ExitingBB; 723 } 724 725 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 726 /// 727 /// Once we have built a chain, try to rotate it to line up the hot exit block 728 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 729 /// branches. For example, if the loop has fallthrough into its header and out 730 /// of its bottom already, don't rotate it. 731 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 732 MachineBasicBlock *ExitingBB, 733 const BlockFilterSet &LoopBlockSet) { 734 if (!ExitingBB) 735 return; 736 737 MachineBasicBlock *Top = *LoopChain.begin(); 738 bool ViableTopFallthrough = false; 739 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(), 740 PE = Top->pred_end(); 741 PI != PE; ++PI) { 742 BlockChain *PredChain = BlockToChain[*PI]; 743 if (!LoopBlockSet.count(*PI) && 744 (!PredChain || *PI == *std::prev(PredChain->end()))) { 745 ViableTopFallthrough = true; 746 break; 747 } 748 } 749 750 // If the header has viable fallthrough, check whether the current loop 751 // bottom is a viable exiting block. If so, bail out as rotating will 752 // introduce an unnecessary branch. 753 if (ViableTopFallthrough) { 754 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 755 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(), 756 SE = Bottom->succ_end(); 757 SI != SE; ++SI) { 758 BlockChain *SuccChain = BlockToChain[*SI]; 759 if (!LoopBlockSet.count(*SI) && 760 (!SuccChain || *SI == *SuccChain->begin())) 761 return; 762 } 763 } 764 765 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(), 766 ExitingBB); 767 if (ExitIt == LoopChain.end()) 768 return; 769 770 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 771 } 772 773 /// \brief Forms basic block chains from the natural loop structures. 774 /// 775 /// These chains are designed to preserve the existing *structure* of the code 776 /// as much as possible. We can then stitch the chains together in a way which 777 /// both preserves the topological structure and minimizes taken conditional 778 /// branches. 779 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 780 MachineLoop &L) { 781 // First recurse through any nested loops, building chains for those inner 782 // loops. 783 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 784 buildLoopChains(F, **LI); 785 786 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 787 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 788 789 // First check to see if there is an obviously preferable top block for the 790 // loop. This will default to the header, but may end up as one of the 791 // predecessors to the header if there is one which will result in strictly 792 // fewer branches in the loop body. 793 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 794 795 // If we selected just the header for the loop top, look for a potentially 796 // profitable exit block in the event that rotating the loop can eliminate 797 // branches by placing an exit edge at the bottom. 798 MachineBasicBlock *ExitingBB = 0; 799 if (LoopTop == L.getHeader()) 800 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 801 802 BlockChain &LoopChain = *BlockToChain[LoopTop]; 803 804 // FIXME: This is a really lame way of walking the chains in the loop: we 805 // walk the blocks, and use a set to prevent visiting a particular chain 806 // twice. 807 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 808 assert(LoopChain.LoopPredecessors == 0); 809 UpdatedPreds.insert(&LoopChain); 810 for (MachineLoop::block_iterator BI = L.block_begin(), 811 BE = L.block_end(); 812 BI != BE; ++BI) { 813 BlockChain &Chain = *BlockToChain[*BI]; 814 if (!UpdatedPreds.insert(&Chain)) 815 continue; 816 817 assert(Chain.LoopPredecessors == 0); 818 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 819 BCI != BCE; ++BCI) { 820 assert(BlockToChain[*BCI] == &Chain); 821 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 822 PE = (*BCI)->pred_end(); 823 PI != PE; ++PI) { 824 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 825 continue; 826 ++Chain.LoopPredecessors; 827 } 828 } 829 830 if (Chain.LoopPredecessors == 0) 831 BlockWorkList.push_back(*Chain.begin()); 832 } 833 834 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 835 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 836 837 DEBUG({ 838 // Crash at the end so we get all of the debugging output first. 839 bool BadLoop = false; 840 if (LoopChain.LoopPredecessors) { 841 BadLoop = true; 842 dbgs() << "Loop chain contains a block without its preds placed!\n" 843 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 844 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 845 } 846 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 847 BCI != BCE; ++BCI) { 848 dbgs() << " ... " << getBlockName(*BCI) << "\n"; 849 if (!LoopBlockSet.erase(*BCI)) { 850 // We don't mark the loop as bad here because there are real situations 851 // where this can occur. For example, with an unanalyzable fallthrough 852 // from a loop block to a non-loop block or vice versa. 853 dbgs() << "Loop chain contains a block not contained by the loop!\n" 854 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 855 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 856 << " Bad block: " << getBlockName(*BCI) << "\n"; 857 } 858 } 859 860 if (!LoopBlockSet.empty()) { 861 BadLoop = true; 862 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 863 LBE = LoopBlockSet.end(); 864 LBI != LBE; ++LBI) 865 dbgs() << "Loop contains blocks never placed into a chain!\n" 866 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 867 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 868 << " Bad block: " << getBlockName(*LBI) << "\n"; 869 } 870 assert(!BadLoop && "Detected problems with the placement of this loop."); 871 }); 872 } 873 874 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 875 // Ensure that every BB in the function has an associated chain to simplify 876 // the assumptions of the remaining algorithm. 877 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 878 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 879 MachineBasicBlock *BB = FI; 880 BlockChain *Chain 881 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 882 // Also, merge any blocks which we cannot reason about and must preserve 883 // the exact fallthrough behavior for. 884 for (;;) { 885 Cond.clear(); 886 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 887 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 888 break; 889 890 MachineFunction::iterator NextFI(std::next(FI)); 891 MachineBasicBlock *NextBB = NextFI; 892 // Ensure that the layout successor is a viable block, as we know that 893 // fallthrough is a possibility. 894 assert(NextFI != FE && "Can't fallthrough past the last block."); 895 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 896 << getBlockName(BB) << " -> " << getBlockName(NextBB) 897 << "\n"); 898 Chain->merge(NextBB, 0); 899 FI = NextFI; 900 BB = NextBB; 901 } 902 } 903 904 // Build any loop-based chains. 905 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 906 ++LI) 907 buildLoopChains(F, **LI); 908 909 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 910 911 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 912 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 913 MachineBasicBlock *BB = &*FI; 914 BlockChain &Chain = *BlockToChain[BB]; 915 if (!UpdatedPreds.insert(&Chain)) 916 continue; 917 918 assert(Chain.LoopPredecessors == 0); 919 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 920 BCI != BCE; ++BCI) { 921 assert(BlockToChain[*BCI] == &Chain); 922 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 923 PE = (*BCI)->pred_end(); 924 PI != PE; ++PI) { 925 if (BlockToChain[*PI] == &Chain) 926 continue; 927 ++Chain.LoopPredecessors; 928 } 929 } 930 931 if (Chain.LoopPredecessors == 0) 932 BlockWorkList.push_back(*Chain.begin()); 933 } 934 935 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 936 buildChain(&F.front(), FunctionChain, BlockWorkList); 937 938 #ifndef NDEBUG 939 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 940 #endif 941 DEBUG({ 942 // Crash at the end so we get all of the debugging output first. 943 bool BadFunc = false; 944 FunctionBlockSetType FunctionBlockSet; 945 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 946 FunctionBlockSet.insert(FI); 947 948 for (BlockChain::iterator BCI = FunctionChain.begin(), 949 BCE = FunctionChain.end(); 950 BCI != BCE; ++BCI) 951 if (!FunctionBlockSet.erase(*BCI)) { 952 BadFunc = true; 953 dbgs() << "Function chain contains a block not in the function!\n" 954 << " Bad block: " << getBlockName(*BCI) << "\n"; 955 } 956 957 if (!FunctionBlockSet.empty()) { 958 BadFunc = true; 959 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 960 FBE = FunctionBlockSet.end(); 961 FBI != FBE; ++FBI) 962 dbgs() << "Function contains blocks never placed into a chain!\n" 963 << " Bad block: " << getBlockName(*FBI) << "\n"; 964 } 965 assert(!BadFunc && "Detected problems with the block placement."); 966 }); 967 968 // Splice the blocks into place. 969 MachineFunction::iterator InsertPos = F.begin(); 970 for (BlockChain::iterator BI = FunctionChain.begin(), 971 BE = FunctionChain.end(); 972 BI != BE; ++BI) { 973 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 974 : " ... ") 975 << getBlockName(*BI) << "\n"); 976 if (InsertPos != MachineFunction::iterator(*BI)) 977 F.splice(InsertPos, *BI); 978 else 979 ++InsertPos; 980 981 // Update the terminator of the previous block. 982 if (BI == FunctionChain.begin()) 983 continue; 984 MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(*BI)); 985 986 // FIXME: It would be awesome of updateTerminator would just return rather 987 // than assert when the branch cannot be analyzed in order to remove this 988 // boiler plate. 989 Cond.clear(); 990 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 991 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 992 // The "PrevBB" is not yet updated to reflect current code layout, so, 993 // o. it may fall-through to a block without explict "goto" instruction 994 // before layout, and no longer fall-through it after layout; or 995 // o. just opposite. 996 // 997 // AnalyzeBranch() may return erroneous value for FBB when these two 998 // situations take place. For the first scenario FBB is mistakenly set 999 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1000 // is mistakenly pointing to "*BI". 1001 // 1002 bool needUpdateBr = true; 1003 if (!Cond.empty() && (!FBB || FBB == *BI)) { 1004 PrevBB->updateTerminator(); 1005 needUpdateBr = false; 1006 Cond.clear(); 1007 TBB = FBB = 0; 1008 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1009 // FIXME: This should never take place. 1010 TBB = FBB = 0; 1011 } 1012 } 1013 1014 // If PrevBB has a two-way branch, try to re-order the branches 1015 // such that we branch to the successor with higher weight first. 1016 if (TBB && !Cond.empty() && FBB && 1017 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1018 !TII->ReverseBranchCondition(Cond)) { 1019 DEBUG(dbgs() << "Reverse order of the two branches: " 1020 << getBlockName(PrevBB) << "\n"); 1021 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1022 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1023 DebugLoc dl; // FIXME: this is nowhere 1024 TII->RemoveBranch(*PrevBB); 1025 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1026 needUpdateBr = true; 1027 } 1028 if (needUpdateBr) 1029 PrevBB->updateTerminator(); 1030 } 1031 } 1032 1033 // Fixup the last block. 1034 Cond.clear(); 1035 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 1036 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1037 F.back().updateTerminator(); 1038 1039 // Walk through the backedges of the function now that we have fully laid out 1040 // the basic blocks and align the destination of each backedge. We don't rely 1041 // exclusively on the loop info here so that we can align backedges in 1042 // unnatural CFGs and backedges that were introduced purely because of the 1043 // loop rotations done during this layout pass. 1044 if (F.getFunction()->getAttributes(). 1045 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize)) 1046 return; 1047 unsigned Align = TLI->getPrefLoopAlignment(); 1048 if (!Align) 1049 return; // Don't care about loop alignment. 1050 if (FunctionChain.begin() == FunctionChain.end()) 1051 return; // Empty chain. 1052 1053 const BranchProbability ColdProb(1, 5); // 20% 1054 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 1055 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1056 for (BlockChain::iterator BI = std::next(FunctionChain.begin()), 1057 BE = FunctionChain.end(); 1058 BI != BE; ++BI) { 1059 // Don't align non-looping basic blocks. These are unlikely to execute 1060 // enough times to matter in practice. Note that we'll still handle 1061 // unnatural CFGs inside of a natural outer loop (the common case) and 1062 // rotated loops. 1063 MachineLoop *L = MLI->getLoopFor(*BI); 1064 if (!L) 1065 continue; 1066 1067 // If the block is cold relative to the function entry don't waste space 1068 // aligning it. 1069 BlockFrequency Freq = MBFI->getBlockFreq(*BI); 1070 if (Freq < WeightedEntryFreq) 1071 continue; 1072 1073 // If the block is cold relative to its loop header, don't align it 1074 // regardless of what edges into the block exist. 1075 MachineBasicBlock *LoopHeader = L->getHeader(); 1076 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1077 if (Freq < (LoopHeaderFreq * ColdProb)) 1078 continue; 1079 1080 // Check for the existence of a non-layout predecessor which would benefit 1081 // from aligning this block. 1082 MachineBasicBlock *LayoutPred = *std::prev(BI); 1083 1084 // Force alignment if all the predecessors are jumps. We already checked 1085 // that the block isn't cold above. 1086 if (!LayoutPred->isSuccessor(*BI)) { 1087 (*BI)->setAlignment(Align); 1088 continue; 1089 } 1090 1091 // Align this block if the layout predecessor's edge into this block is 1092 // cold relative to the block. When this is true, other predecessors make up 1093 // all of the hot entries into the block and thus alignment is likely to be 1094 // important. 1095 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI); 1096 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1097 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1098 (*BI)->setAlignment(Align); 1099 } 1100 } 1101 1102 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1103 // Check for single-block functions and skip them. 1104 if (std::next(F.begin()) == F.end()) 1105 return false; 1106 1107 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1108 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1109 MLI = &getAnalysis<MachineLoopInfo>(); 1110 TII = F.getTarget().getInstrInfo(); 1111 TLI = F.getTarget().getTargetLowering(); 1112 assert(BlockToChain.empty()); 1113 1114 buildCFGChains(F); 1115 1116 BlockToChain.clear(); 1117 ChainAllocator.DestroyAll(); 1118 1119 if (AlignAllBlock) 1120 // Align all of the blocks in the function to a specific alignment. 1121 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 1122 FI != FE; ++FI) 1123 FI->setAlignment(AlignAllBlock); 1124 1125 // We always return true as we have no way to track whether the final order 1126 // differs from the original order. 1127 return true; 1128 } 1129 1130 namespace { 1131 /// \brief A pass to compute block placement statistics. 1132 /// 1133 /// A separate pass to compute interesting statistics for evaluating block 1134 /// placement. This is separate from the actual placement pass so that they can 1135 /// be computed in the absence of any placement transformations or when using 1136 /// alternative placement strategies. 1137 class MachineBlockPlacementStats : public MachineFunctionPass { 1138 /// \brief A handle to the branch probability pass. 1139 const MachineBranchProbabilityInfo *MBPI; 1140 1141 /// \brief A handle to the function-wide block frequency pass. 1142 const MachineBlockFrequencyInfo *MBFI; 1143 1144 public: 1145 static char ID; // Pass identification, replacement for typeid 1146 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1147 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1148 } 1149 1150 bool runOnMachineFunction(MachineFunction &F) override; 1151 1152 void getAnalysisUsage(AnalysisUsage &AU) const override { 1153 AU.addRequired<MachineBranchProbabilityInfo>(); 1154 AU.addRequired<MachineBlockFrequencyInfo>(); 1155 AU.setPreservesAll(); 1156 MachineFunctionPass::getAnalysisUsage(AU); 1157 } 1158 }; 1159 } 1160 1161 char MachineBlockPlacementStats::ID = 0; 1162 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1163 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1164 "Basic Block Placement Stats", false, false) 1165 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1166 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1167 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1168 "Basic Block Placement Stats", false, false) 1169 1170 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1171 // Check for single-block functions and skip them. 1172 if (std::next(F.begin()) == F.end()) 1173 return false; 1174 1175 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1176 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1177 1178 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 1179 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 1180 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 1181 : NumUncondBranches; 1182 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 1183 : UncondBranchTakenFreq; 1184 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 1185 SE = I->succ_end(); 1186 SI != SE; ++SI) { 1187 // Skip if this successor is a fallthrough. 1188 if (I->isLayoutSuccessor(*SI)) 1189 continue; 1190 1191 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 1192 ++NumBranches; 1193 BranchTakenFreq += EdgeFreq.getFrequency(); 1194 } 1195 } 1196 1197 return false; 1198 } 1199 1200