1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachinePostDominators.h" 44 #include "llvm/CodeGen/TailDuplicator.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Allocator.h" 53 #include "llvm/Support/BlockFrequency.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "block-placement" 74 75 STATISTIC(NumCondBranches, "Number of conditional branches"); 76 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 77 STATISTIC(CondBranchTakenFreq, 78 "Potential frequency of taking conditional branches"); 79 STATISTIC(UncondBranchTakenFreq, 80 "Potential frequency of taking unconditional branches"); 81 82 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 83 cl::desc("Force the alignment of all " 84 "blocks in the function."), 85 cl::init(0), cl::Hidden); 86 87 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 88 "align-all-nofallthru-blocks", 89 cl::desc("Force the alignment of all " 90 "blocks that have no fall-through predecessors (i.e. don't add " 91 "nops that are executed)."), 92 cl::init(0), cl::Hidden); 93 94 // FIXME: Find a good default for this flag and remove the flag. 95 static cl::opt<unsigned> ExitBlockBias( 96 "block-placement-exit-block-bias", 97 cl::desc("Block frequency percentage a loop exit block needs " 98 "over the original exit to be considered the new exit."), 99 cl::init(0), cl::Hidden); 100 101 // Definition: 102 // - Outlining: placement of a basic block outside the chain or hot path. 103 104 static cl::opt<unsigned> LoopToColdBlockRatio( 105 "loop-to-cold-block-ratio", 106 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 107 "(frequency of block) is greater than this ratio"), 108 cl::init(5), cl::Hidden); 109 110 static cl::opt<bool> ForceLoopColdBlock( 111 "force-loop-cold-block", 112 cl::desc("Force outlining cold blocks from loops."), 113 cl::init(false), cl::Hidden); 114 115 static cl::opt<bool> 116 PreciseRotationCost("precise-rotation-cost", 117 cl::desc("Model the cost of loop rotation more " 118 "precisely by using profile data."), 119 cl::init(false), cl::Hidden); 120 121 static cl::opt<bool> 122 ForcePreciseRotationCost("force-precise-rotation-cost", 123 cl::desc("Force the use of precise cost " 124 "loop rotation strategy."), 125 cl::init(false), cl::Hidden); 126 127 static cl::opt<unsigned> MisfetchCost( 128 "misfetch-cost", 129 cl::desc("Cost that models the probabilistic risk of an instruction " 130 "misfetch due to a jump comparing to falling through, whose cost " 131 "is zero."), 132 cl::init(1), cl::Hidden); 133 134 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 135 cl::desc("Cost of jump instructions."), 136 cl::init(1), cl::Hidden); 137 static cl::opt<bool> 138 TailDupPlacement("tail-dup-placement", 139 cl::desc("Perform tail duplication during placement. " 140 "Creates more fallthrough opportunites in " 141 "outline branches."), 142 cl::init(true), cl::Hidden); 143 144 static cl::opt<bool> 145 BranchFoldPlacement("branch-fold-placement", 146 cl::desc("Perform branch folding during placement. " 147 "Reduces code size."), 148 cl::init(true), cl::Hidden); 149 150 // Heuristic for tail duplication. 151 static cl::opt<unsigned> TailDupPlacementThreshold( 152 "tail-dup-placement-threshold", 153 cl::desc("Instruction cutoff for tail duplication during layout. " 154 "Tail merging during layout is forced to have a threshold " 155 "that won't conflict."), cl::init(2), 156 cl::Hidden); 157 158 // Heuristic for aggressive tail duplication. 159 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 160 "tail-dup-placement-aggressive-threshold", 161 cl::desc("Instruction cutoff for aggressive tail duplication during " 162 "layout. Used at -O3. Tail merging during layout is forced to " 163 "have a threshold that won't conflict."), cl::init(4), 164 cl::Hidden); 165 166 // Heuristic for tail duplication. 167 static cl::opt<unsigned> TailDupPlacementPenalty( 168 "tail-dup-placement-penalty", 169 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 170 "Copying can increase fallthrough, but it also increases icache " 171 "pressure. This parameter controls the penalty to account for that. " 172 "Percent as integer."), 173 cl::init(2), 174 cl::Hidden); 175 176 // Heuristic for triangle chains. 177 static cl::opt<unsigned> TriangleChainCount( 178 "triangle-chain-count", 179 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 180 "triangle tail duplication heuristic to kick in. 0 to disable."), 181 cl::init(2), 182 cl::Hidden); 183 184 extern cl::opt<unsigned> StaticLikelyProb; 185 extern cl::opt<unsigned> ProfileLikelyProb; 186 187 // Internal option used to control BFI display only after MBP pass. 188 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 189 // -view-block-layout-with-bfi= 190 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 191 192 // Command line option to specify the name of the function for CFG dump 193 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 194 extern cl::opt<std::string> ViewBlockFreqFuncName; 195 196 namespace { 197 198 class BlockChain; 199 200 /// Type for our function-wide basic block -> block chain mapping. 201 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 202 203 /// A chain of blocks which will be laid out contiguously. 204 /// 205 /// This is the datastructure representing a chain of consecutive blocks that 206 /// are profitable to layout together in order to maximize fallthrough 207 /// probabilities and code locality. We also can use a block chain to represent 208 /// a sequence of basic blocks which have some external (correctness) 209 /// requirement for sequential layout. 210 /// 211 /// Chains can be built around a single basic block and can be merged to grow 212 /// them. They participate in a block-to-chain mapping, which is updated 213 /// automatically as chains are merged together. 214 class BlockChain { 215 /// The sequence of blocks belonging to this chain. 216 /// 217 /// This is the sequence of blocks for a particular chain. These will be laid 218 /// out in-order within the function. 219 SmallVector<MachineBasicBlock *, 4> Blocks; 220 221 /// A handle to the function-wide basic block to block chain mapping. 222 /// 223 /// This is retained in each block chain to simplify the computation of child 224 /// block chains for SCC-formation and iteration. We store the edges to child 225 /// basic blocks, and map them back to their associated chains using this 226 /// structure. 227 BlockToChainMapType &BlockToChain; 228 229 public: 230 /// Construct a new BlockChain. 231 /// 232 /// This builds a new block chain representing a single basic block in the 233 /// function. It also registers itself as the chain that block participates 234 /// in with the BlockToChain mapping. 235 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 236 : Blocks(1, BB), BlockToChain(BlockToChain) { 237 assert(BB && "Cannot create a chain with a null basic block"); 238 BlockToChain[BB] = this; 239 } 240 241 /// Iterator over blocks within the chain. 242 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 243 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 244 245 /// Beginning of blocks within the chain. 246 iterator begin() { return Blocks.begin(); } 247 const_iterator begin() const { return Blocks.begin(); } 248 249 /// End of blocks within the chain. 250 iterator end() { return Blocks.end(); } 251 const_iterator end() const { return Blocks.end(); } 252 253 bool remove(MachineBasicBlock* BB) { 254 for(iterator i = begin(); i != end(); ++i) { 255 if (*i == BB) { 256 Blocks.erase(i); 257 return true; 258 } 259 } 260 return false; 261 } 262 263 /// Merge a block chain into this one. 264 /// 265 /// This routine merges a block chain into this one. It takes care of forming 266 /// a contiguous sequence of basic blocks, updating the edge list, and 267 /// updating the block -> chain mapping. It does not free or tear down the 268 /// old chain, but the old chain's block list is no longer valid. 269 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 270 assert(BB && "Can't merge a null block."); 271 assert(!Blocks.empty() && "Can't merge into an empty chain."); 272 273 // Fast path in case we don't have a chain already. 274 if (!Chain) { 275 assert(!BlockToChain[BB] && 276 "Passed chain is null, but BB has entry in BlockToChain."); 277 Blocks.push_back(BB); 278 BlockToChain[BB] = this; 279 return; 280 } 281 282 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 283 assert(Chain->begin() != Chain->end()); 284 285 // Update the incoming blocks to point to this chain, and add them to the 286 // chain structure. 287 for (MachineBasicBlock *ChainBB : *Chain) { 288 Blocks.push_back(ChainBB); 289 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 290 BlockToChain[ChainBB] = this; 291 } 292 } 293 294 #ifndef NDEBUG 295 /// Dump the blocks in this chain. 296 LLVM_DUMP_METHOD void dump() { 297 for (MachineBasicBlock *MBB : *this) 298 MBB->dump(); 299 } 300 #endif // NDEBUG 301 302 /// Count of predecessors of any block within the chain which have not 303 /// yet been scheduled. In general, we will delay scheduling this chain 304 /// until those predecessors are scheduled (or we find a sufficiently good 305 /// reason to override this heuristic.) Note that when forming loop chains, 306 /// blocks outside the loop are ignored and treated as if they were already 307 /// scheduled. 308 /// 309 /// Note: This field is reinitialized multiple times - once for each loop, 310 /// and then once for the function as a whole. 311 unsigned UnscheduledPredecessors = 0; 312 }; 313 314 class MachineBlockPlacement : public MachineFunctionPass { 315 /// A type for a block filter set. 316 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 317 318 /// Pair struct containing basic block and taildup profitability 319 struct BlockAndTailDupResult { 320 MachineBasicBlock *BB; 321 bool ShouldTailDup; 322 }; 323 324 /// Triple struct containing edge weight and the edge. 325 struct WeightedEdge { 326 BlockFrequency Weight; 327 MachineBasicBlock *Src; 328 MachineBasicBlock *Dest; 329 }; 330 331 /// work lists of blocks that are ready to be laid out 332 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 333 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 334 335 /// Edges that have already been computed as optimal. 336 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 337 338 /// Machine Function 339 MachineFunction *F; 340 341 /// A handle to the branch probability pass. 342 const MachineBranchProbabilityInfo *MBPI; 343 344 /// A handle to the function-wide block frequency pass. 345 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 346 347 /// A handle to the loop info. 348 MachineLoopInfo *MLI; 349 350 /// Preferred loop exit. 351 /// Member variable for convenience. It may be removed by duplication deep 352 /// in the call stack. 353 MachineBasicBlock *PreferredLoopExit; 354 355 /// A handle to the target's instruction info. 356 const TargetInstrInfo *TII; 357 358 /// A handle to the target's lowering info. 359 const TargetLoweringBase *TLI; 360 361 /// A handle to the post dominator tree. 362 MachinePostDominatorTree *MPDT; 363 364 /// Duplicator used to duplicate tails during placement. 365 /// 366 /// Placement decisions can open up new tail duplication opportunities, but 367 /// since tail duplication affects placement decisions of later blocks, it 368 /// must be done inline. 369 TailDuplicator TailDup; 370 371 /// Allocator and owner of BlockChain structures. 372 /// 373 /// We build BlockChains lazily while processing the loop structure of 374 /// a function. To reduce malloc traffic, we allocate them using this 375 /// slab-like allocator, and destroy them after the pass completes. An 376 /// important guarantee is that this allocator produces stable pointers to 377 /// the chains. 378 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 379 380 /// Function wide BasicBlock to BlockChain mapping. 381 /// 382 /// This mapping allows efficiently moving from any given basic block to the 383 /// BlockChain it participates in, if any. We use it to, among other things, 384 /// allow implicitly defining edges between chains as the existing edges 385 /// between basic blocks. 386 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 387 388 #ifndef NDEBUG 389 /// The set of basic blocks that have terminators that cannot be fully 390 /// analyzed. These basic blocks cannot be re-ordered safely by 391 /// MachineBlockPlacement, and we must preserve physical layout of these 392 /// blocks and their successors through the pass. 393 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 394 #endif 395 396 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 397 /// if the count goes to 0, add them to the appropriate work list. 398 void markChainSuccessors( 399 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 400 const BlockFilterSet *BlockFilter = nullptr); 401 402 /// Decrease the UnscheduledPredecessors count for a single block, and 403 /// if the count goes to 0, add them to the appropriate work list. 404 void markBlockSuccessors( 405 const BlockChain &Chain, const MachineBasicBlock *BB, 406 const MachineBasicBlock *LoopHeaderBB, 407 const BlockFilterSet *BlockFilter = nullptr); 408 409 BranchProbability 410 collectViableSuccessors( 411 const MachineBasicBlock *BB, const BlockChain &Chain, 412 const BlockFilterSet *BlockFilter, 413 SmallVector<MachineBasicBlock *, 4> &Successors); 414 bool shouldPredBlockBeOutlined( 415 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 416 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 417 BranchProbability SuccProb, BranchProbability HotProb); 418 bool repeatedlyTailDuplicateBlock( 419 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 420 const MachineBasicBlock *LoopHeaderBB, 421 BlockChain &Chain, BlockFilterSet *BlockFilter, 422 MachineFunction::iterator &PrevUnplacedBlockIt); 423 bool maybeTailDuplicateBlock( 424 MachineBasicBlock *BB, MachineBasicBlock *LPred, 425 BlockChain &Chain, BlockFilterSet *BlockFilter, 426 MachineFunction::iterator &PrevUnplacedBlockIt, 427 bool &DuplicatedToLPred); 428 bool hasBetterLayoutPredecessor( 429 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 430 const BlockChain &SuccChain, BranchProbability SuccProb, 431 BranchProbability RealSuccProb, const BlockChain &Chain, 432 const BlockFilterSet *BlockFilter); 433 BlockAndTailDupResult selectBestSuccessor( 434 const MachineBasicBlock *BB, const BlockChain &Chain, 435 const BlockFilterSet *BlockFilter); 436 MachineBasicBlock *selectBestCandidateBlock( 437 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 438 MachineBasicBlock *getFirstUnplacedBlock( 439 const BlockChain &PlacedChain, 440 MachineFunction::iterator &PrevUnplacedBlockIt, 441 const BlockFilterSet *BlockFilter); 442 443 /// Add a basic block to the work list if it is appropriate. 444 /// 445 /// If the optional parameter BlockFilter is provided, only MBB 446 /// present in the set will be added to the worklist. If nullptr 447 /// is provided, no filtering occurs. 448 void fillWorkLists(const MachineBasicBlock *MBB, 449 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 450 const BlockFilterSet *BlockFilter); 451 452 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 453 BlockFilterSet *BlockFilter = nullptr); 454 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 455 const MachineBasicBlock *OldTop); 456 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 457 const BlockFilterSet &LoopBlockSet); 458 MachineBasicBlock *findBestLoopTop( 459 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 460 MachineBasicBlock *findBestLoopExit( 461 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 462 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 463 void buildLoopChains(const MachineLoop &L); 464 void rotateLoop( 465 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 466 const BlockFilterSet &LoopBlockSet); 467 void rotateLoopWithProfile( 468 BlockChain &LoopChain, const MachineLoop &L, 469 const BlockFilterSet &LoopBlockSet); 470 void buildCFGChains(); 471 void optimizeBranches(); 472 void alignBlocks(); 473 /// Returns true if a block should be tail-duplicated to increase fallthrough 474 /// opportunities. 475 bool shouldTailDuplicate(MachineBasicBlock *BB); 476 /// Check the edge frequencies to see if tail duplication will increase 477 /// fallthroughs. 478 bool isProfitableToTailDup( 479 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 480 BranchProbability QProb, 481 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 482 483 /// Check for a trellis layout. 484 bool isTrellis(const MachineBasicBlock *BB, 485 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 486 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 487 488 /// Get the best successor given a trellis layout. 489 BlockAndTailDupResult getBestTrellisSuccessor( 490 const MachineBasicBlock *BB, 491 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 492 BranchProbability AdjustedSumProb, const BlockChain &Chain, 493 const BlockFilterSet *BlockFilter); 494 495 /// Get the best pair of non-conflicting edges. 496 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 497 const MachineBasicBlock *BB, 498 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 499 500 /// Returns true if a block can tail duplicate into all unplaced 501 /// predecessors. Filters based on loop. 502 bool canTailDuplicateUnplacedPreds( 503 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 504 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 505 506 /// Find chains of triangles to tail-duplicate where a global analysis works, 507 /// but a local analysis would not find them. 508 void precomputeTriangleChains(); 509 510 public: 511 static char ID; // Pass identification, replacement for typeid 512 513 MachineBlockPlacement() : MachineFunctionPass(ID) { 514 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 515 } 516 517 bool runOnMachineFunction(MachineFunction &F) override; 518 519 bool allowTailDupPlacement() const { 520 assert(F); 521 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 522 } 523 524 void getAnalysisUsage(AnalysisUsage &AU) const override { 525 AU.addRequired<MachineBranchProbabilityInfo>(); 526 AU.addRequired<MachineBlockFrequencyInfo>(); 527 if (TailDupPlacement) 528 AU.addRequired<MachinePostDominatorTree>(); 529 AU.addRequired<MachineLoopInfo>(); 530 AU.addRequired<TargetPassConfig>(); 531 MachineFunctionPass::getAnalysisUsage(AU); 532 } 533 }; 534 535 } // end anonymous namespace 536 537 char MachineBlockPlacement::ID = 0; 538 539 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 540 541 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 542 "Branch Probability Basic Block Placement", false, false) 543 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 544 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 545 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 546 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 547 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 548 "Branch Probability Basic Block Placement", false, false) 549 550 #ifndef NDEBUG 551 /// Helper to print the name of a MBB. 552 /// 553 /// Only used by debug logging. 554 static std::string getBlockName(const MachineBasicBlock *BB) { 555 std::string Result; 556 raw_string_ostream OS(Result); 557 OS << printMBBReference(*BB); 558 OS << " ('" << BB->getName() << "')"; 559 OS.flush(); 560 return Result; 561 } 562 #endif 563 564 /// Mark a chain's successors as having one fewer preds. 565 /// 566 /// When a chain is being merged into the "placed" chain, this routine will 567 /// quickly walk the successors of each block in the chain and mark them as 568 /// having one fewer active predecessor. It also adds any successors of this 569 /// chain which reach the zero-predecessor state to the appropriate worklist. 570 void MachineBlockPlacement::markChainSuccessors( 571 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 572 const BlockFilterSet *BlockFilter) { 573 // Walk all the blocks in this chain, marking their successors as having 574 // a predecessor placed. 575 for (MachineBasicBlock *MBB : Chain) { 576 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 577 } 578 } 579 580 /// Mark a single block's successors as having one fewer preds. 581 /// 582 /// Under normal circumstances, this is only called by markChainSuccessors, 583 /// but if a block that was to be placed is completely tail-duplicated away, 584 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 585 /// for just that block. 586 void MachineBlockPlacement::markBlockSuccessors( 587 const BlockChain &Chain, const MachineBasicBlock *MBB, 588 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 589 // Add any successors for which this is the only un-placed in-loop 590 // predecessor to the worklist as a viable candidate for CFG-neutral 591 // placement. No subsequent placement of this block will violate the CFG 592 // shape, so we get to use heuristics to choose a favorable placement. 593 for (MachineBasicBlock *Succ : MBB->successors()) { 594 if (BlockFilter && !BlockFilter->count(Succ)) 595 continue; 596 BlockChain &SuccChain = *BlockToChain[Succ]; 597 // Disregard edges within a fixed chain, or edges to the loop header. 598 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 599 continue; 600 601 // This is a cross-chain edge that is within the loop, so decrement the 602 // loop predecessor count of the destination chain. 603 if (SuccChain.UnscheduledPredecessors == 0 || 604 --SuccChain.UnscheduledPredecessors > 0) 605 continue; 606 607 auto *NewBB = *SuccChain.begin(); 608 if (NewBB->isEHPad()) 609 EHPadWorkList.push_back(NewBB); 610 else 611 BlockWorkList.push_back(NewBB); 612 } 613 } 614 615 /// This helper function collects the set of successors of block 616 /// \p BB that are allowed to be its layout successors, and return 617 /// the total branch probability of edges from \p BB to those 618 /// blocks. 619 BranchProbability MachineBlockPlacement::collectViableSuccessors( 620 const MachineBasicBlock *BB, const BlockChain &Chain, 621 const BlockFilterSet *BlockFilter, 622 SmallVector<MachineBasicBlock *, 4> &Successors) { 623 // Adjust edge probabilities by excluding edges pointing to blocks that is 624 // either not in BlockFilter or is already in the current chain. Consider the 625 // following CFG: 626 // 627 // --->A 628 // | / \ 629 // | B C 630 // | \ / \ 631 // ----D E 632 // 633 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 634 // A->C is chosen as a fall-through, D won't be selected as a successor of C 635 // due to CFG constraint (the probability of C->D is not greater than 636 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 637 // when calculating the probability of C->D, D will be selected and we 638 // will get A C D B as the layout of this loop. 639 auto AdjustedSumProb = BranchProbability::getOne(); 640 for (MachineBasicBlock *Succ : BB->successors()) { 641 bool SkipSucc = false; 642 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 643 SkipSucc = true; 644 } else { 645 BlockChain *SuccChain = BlockToChain[Succ]; 646 if (SuccChain == &Chain) { 647 SkipSucc = true; 648 } else if (Succ != *SuccChain->begin()) { 649 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 650 << " -> Mid chain!\n"); 651 continue; 652 } 653 } 654 if (SkipSucc) 655 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 656 else 657 Successors.push_back(Succ); 658 } 659 660 return AdjustedSumProb; 661 } 662 663 /// The helper function returns the branch probability that is adjusted 664 /// or normalized over the new total \p AdjustedSumProb. 665 static BranchProbability 666 getAdjustedProbability(BranchProbability OrigProb, 667 BranchProbability AdjustedSumProb) { 668 BranchProbability SuccProb; 669 uint32_t SuccProbN = OrigProb.getNumerator(); 670 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 671 if (SuccProbN >= SuccProbD) 672 SuccProb = BranchProbability::getOne(); 673 else 674 SuccProb = BranchProbability(SuccProbN, SuccProbD); 675 676 return SuccProb; 677 } 678 679 /// Check if \p BB has exactly the successors in \p Successors. 680 static bool 681 hasSameSuccessors(MachineBasicBlock &BB, 682 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 683 if (BB.succ_size() != Successors.size()) 684 return false; 685 // We don't want to count self-loops 686 if (Successors.count(&BB)) 687 return false; 688 for (MachineBasicBlock *Succ : BB.successors()) 689 if (!Successors.count(Succ)) 690 return false; 691 return true; 692 } 693 694 /// Check if a block should be tail duplicated to increase fallthrough 695 /// opportunities. 696 /// \p BB Block to check. 697 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 698 // Blocks with single successors don't create additional fallthrough 699 // opportunities. Don't duplicate them. TODO: When conditional exits are 700 // analyzable, allow them to be duplicated. 701 bool IsSimple = TailDup.isSimpleBB(BB); 702 703 if (BB->succ_size() == 1) 704 return false; 705 return TailDup.shouldTailDuplicate(IsSimple, *BB); 706 } 707 708 /// Compare 2 BlockFrequency's with a small penalty for \p A. 709 /// In order to be conservative, we apply a X% penalty to account for 710 /// increased icache pressure and static heuristics. For small frequencies 711 /// we use only the numerators to improve accuracy. For simplicity, we assume the 712 /// penalty is less than 100% 713 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 714 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 715 uint64_t EntryFreq) { 716 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 717 BlockFrequency Gain = A - B; 718 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 719 } 720 721 /// Check the edge frequencies to see if tail duplication will increase 722 /// fallthroughs. It only makes sense to call this function when 723 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 724 /// always locally profitable if we would have picked \p Succ without 725 /// considering duplication. 726 bool MachineBlockPlacement::isProfitableToTailDup( 727 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 728 BranchProbability QProb, 729 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 730 // We need to do a probability calculation to make sure this is profitable. 731 // First: does succ have a successor that post-dominates? This affects the 732 // calculation. The 2 relevant cases are: 733 // BB BB 734 // | \Qout | \Qout 735 // P| C |P C 736 // = C' = C' 737 // | /Qin | /Qin 738 // | / | / 739 // Succ Succ 740 // / \ | \ V 741 // U/ =V |U \ 742 // / \ = D 743 // D E | / 744 // | / 745 // |/ 746 // PDom 747 // '=' : Branch taken for that CFG edge 748 // In the second case, Placing Succ while duplicating it into C prevents the 749 // fallthrough of Succ into either D or PDom, because they now have C as an 750 // unplaced predecessor 751 752 // Start by figuring out which case we fall into 753 MachineBasicBlock *PDom = nullptr; 754 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 755 // Only scan the relevant successors 756 auto AdjustedSuccSumProb = 757 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 758 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 759 auto BBFreq = MBFI->getBlockFreq(BB); 760 auto SuccFreq = MBFI->getBlockFreq(Succ); 761 BlockFrequency P = BBFreq * PProb; 762 BlockFrequency Qout = BBFreq * QProb; 763 uint64_t EntryFreq = MBFI->getEntryFreq(); 764 // If there are no more successors, it is profitable to copy, as it strictly 765 // increases fallthrough. 766 if (SuccSuccs.size() == 0) 767 return greaterWithBias(P, Qout, EntryFreq); 768 769 auto BestSuccSucc = BranchProbability::getZero(); 770 // Find the PDom or the best Succ if no PDom exists. 771 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 772 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 773 if (Prob > BestSuccSucc) 774 BestSuccSucc = Prob; 775 if (PDom == nullptr) 776 if (MPDT->dominates(SuccSucc, Succ)) { 777 PDom = SuccSucc; 778 break; 779 } 780 } 781 // For the comparisons, we need to know Succ's best incoming edge that isn't 782 // from BB. 783 auto SuccBestPred = BlockFrequency(0); 784 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 785 if (SuccPred == Succ || SuccPred == BB 786 || BlockToChain[SuccPred] == &Chain 787 || (BlockFilter && !BlockFilter->count(SuccPred))) 788 continue; 789 auto Freq = MBFI->getBlockFreq(SuccPred) 790 * MBPI->getEdgeProbability(SuccPred, Succ); 791 if (Freq > SuccBestPred) 792 SuccBestPred = Freq; 793 } 794 // Qin is Succ's best unplaced incoming edge that isn't BB 795 BlockFrequency Qin = SuccBestPred; 796 // If it doesn't have a post-dominating successor, here is the calculation: 797 // BB BB 798 // | \Qout | \ 799 // P| C | = 800 // = C' | C 801 // | /Qin | | 802 // | / | C' (+Succ) 803 // Succ Succ /| 804 // / \ | \/ | 805 // U/ =V | == | 806 // / \ | / \| 807 // D E D E 808 // '=' : Branch taken for that CFG edge 809 // Cost in the first case is: P + V 810 // For this calculation, we always assume P > Qout. If Qout > P 811 // The result of this function will be ignored at the caller. 812 // Let F = SuccFreq - Qin 813 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 814 815 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 816 BranchProbability UProb = BestSuccSucc; 817 BranchProbability VProb = AdjustedSuccSumProb - UProb; 818 BlockFrequency F = SuccFreq - Qin; 819 BlockFrequency V = SuccFreq * VProb; 820 BlockFrequency QinU = std::min(Qin, F) * UProb; 821 BlockFrequency BaseCost = P + V; 822 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 823 return greaterWithBias(BaseCost, DupCost, EntryFreq); 824 } 825 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 826 BranchProbability VProb = AdjustedSuccSumProb - UProb; 827 BlockFrequency U = SuccFreq * UProb; 828 BlockFrequency V = SuccFreq * VProb; 829 BlockFrequency F = SuccFreq - Qin; 830 // If there is a post-dominating successor, here is the calculation: 831 // BB BB BB BB 832 // | \Qout | \ | \Qout | \ 833 // |P C | = |P C | = 834 // = C' |P C = C' |P C 835 // | /Qin | | | /Qin | | 836 // | / | C' (+Succ) | / | C' (+Succ) 837 // Succ Succ /| Succ Succ /| 838 // | \ V | \/ | | \ V | \/ | 839 // |U \ |U /\ =? |U = |U /\ | 840 // = D = = =?| | D | = =| 841 // | / |/ D | / |/ D 842 // | / | / | = | / 843 // |/ | / |/ | = 844 // Dom Dom Dom Dom 845 // '=' : Branch taken for that CFG edge 846 // The cost for taken branches in the first case is P + U 847 // Let F = SuccFreq - Qin 848 // The cost in the second case (assuming independence), given the layout: 849 // BB, Succ, (C+Succ), D, Dom or the layout: 850 // BB, Succ, D, Dom, (C+Succ) 851 // is Qout + max(F, Qin) * U + min(F, Qin) 852 // compare P + U vs Qout + P * U + Qin. 853 // 854 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 855 // 856 // For the 3rd case, the cost is P + 2 * V 857 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 858 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 859 if (UProb > AdjustedSuccSumProb / 2 && 860 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 861 Chain, BlockFilter)) 862 // Cases 3 & 4 863 return greaterWithBias( 864 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 865 EntryFreq); 866 // Cases 1 & 2 867 return greaterWithBias((P + U), 868 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 869 std::max(Qin, F) * UProb), 870 EntryFreq); 871 } 872 873 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 874 /// successors form the lower part of a trellis. A successor set S forms the 875 /// lower part of a trellis if all of the predecessors of S are either in S or 876 /// have all of S as successors. We ignore trellises where BB doesn't have 2 877 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 878 /// are very uncommon and complex to compute optimally. Allowing edges within S 879 /// is not strictly a trellis, but the same algorithm works, so we allow it. 880 bool MachineBlockPlacement::isTrellis( 881 const MachineBasicBlock *BB, 882 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 883 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 884 // Technically BB could form a trellis with branching factor higher than 2. 885 // But that's extremely uncommon. 886 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 887 return false; 888 889 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 890 BB->succ_end()); 891 // To avoid reviewing the same predecessors twice. 892 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 893 894 for (MachineBasicBlock *Succ : ViableSuccs) { 895 int PredCount = 0; 896 for (auto SuccPred : Succ->predecessors()) { 897 // Allow triangle successors, but don't count them. 898 if (Successors.count(SuccPred)) { 899 // Make sure that it is actually a triangle. 900 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 901 if (!Successors.count(CheckSucc)) 902 return false; 903 continue; 904 } 905 const BlockChain *PredChain = BlockToChain[SuccPred]; 906 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 907 PredChain == &Chain || PredChain == BlockToChain[Succ]) 908 continue; 909 ++PredCount; 910 // Perform the successor check only once. 911 if (!SeenPreds.insert(SuccPred).second) 912 continue; 913 if (!hasSameSuccessors(*SuccPred, Successors)) 914 return false; 915 } 916 // If one of the successors has only BB as a predecessor, it is not a 917 // trellis. 918 if (PredCount < 1) 919 return false; 920 } 921 return true; 922 } 923 924 /// Pick the highest total weight pair of edges that can both be laid out. 925 /// The edges in \p Edges[0] are assumed to have a different destination than 926 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 927 /// the individual highest weight edges to the 2 different destinations, or in 928 /// case of a conflict, one of them should be replaced with a 2nd best edge. 929 std::pair<MachineBlockPlacement::WeightedEdge, 930 MachineBlockPlacement::WeightedEdge> 931 MachineBlockPlacement::getBestNonConflictingEdges( 932 const MachineBasicBlock *BB, 933 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 934 Edges) { 935 // Sort the edges, and then for each successor, find the best incoming 936 // predecessor. If the best incoming predecessors aren't the same, 937 // then that is clearly the best layout. If there is a conflict, one of the 938 // successors will have to fallthrough from the second best predecessor. We 939 // compare which combination is better overall. 940 941 // Sort for highest frequency. 942 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 943 944 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 945 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 946 auto BestA = Edges[0].begin(); 947 auto BestB = Edges[1].begin(); 948 // Arrange for the correct answer to be in BestA and BestB 949 // If the 2 best edges don't conflict, the answer is already there. 950 if (BestA->Src == BestB->Src) { 951 // Compare the total fallthrough of (Best + Second Best) for both pairs 952 auto SecondBestA = std::next(BestA); 953 auto SecondBestB = std::next(BestB); 954 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 955 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 956 if (BestAScore < BestBScore) 957 BestA = SecondBestA; 958 else 959 BestB = SecondBestB; 960 } 961 // Arrange for the BB edge to be in BestA if it exists. 962 if (BestB->Src == BB) 963 std::swap(BestA, BestB); 964 return std::make_pair(*BestA, *BestB); 965 } 966 967 /// Get the best successor from \p BB based on \p BB being part of a trellis. 968 /// We only handle trellises with 2 successors, so the algorithm is 969 /// straightforward: Find the best pair of edges that don't conflict. We find 970 /// the best incoming edge for each successor in the trellis. If those conflict, 971 /// we consider which of them should be replaced with the second best. 972 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 973 /// comes from \p BB, it will be in \p BestEdges[0] 974 MachineBlockPlacement::BlockAndTailDupResult 975 MachineBlockPlacement::getBestTrellisSuccessor( 976 const MachineBasicBlock *BB, 977 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 978 BranchProbability AdjustedSumProb, const BlockChain &Chain, 979 const BlockFilterSet *BlockFilter) { 980 981 BlockAndTailDupResult Result = {nullptr, false}; 982 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 983 BB->succ_end()); 984 985 // We assume size 2 because it's common. For general n, we would have to do 986 // the Hungarian algorithm, but it's not worth the complexity because more 987 // than 2 successors is fairly uncommon, and a trellis even more so. 988 if (Successors.size() != 2 || ViableSuccs.size() != 2) 989 return Result; 990 991 // Collect the edge frequencies of all edges that form the trellis. 992 SmallVector<WeightedEdge, 8> Edges[2]; 993 int SuccIndex = 0; 994 for (auto Succ : ViableSuccs) { 995 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 996 // Skip any placed predecessors that are not BB 997 if (SuccPred != BB) 998 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 999 BlockToChain[SuccPred] == &Chain || 1000 BlockToChain[SuccPred] == BlockToChain[Succ]) 1001 continue; 1002 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1003 MBPI->getEdgeProbability(SuccPred, Succ); 1004 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1005 } 1006 ++SuccIndex; 1007 } 1008 1009 // Pick the best combination of 2 edges from all the edges in the trellis. 1010 WeightedEdge BestA, BestB; 1011 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1012 1013 if (BestA.Src != BB) { 1014 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1015 // we shouldn't choose any successor. We've already looked and there's a 1016 // better fallthrough edge for all the successors. 1017 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1018 return Result; 1019 } 1020 1021 // Did we pick the triangle edge? If tail-duplication is profitable, do 1022 // that instead. Otherwise merge the triangle edge now while we know it is 1023 // optimal. 1024 if (BestA.Dest == BestB.Src) { 1025 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1026 // would be better. 1027 MachineBasicBlock *Succ1 = BestA.Dest; 1028 MachineBasicBlock *Succ2 = BestB.Dest; 1029 // Check to see if tail-duplication would be profitable. 1030 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1031 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1032 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1033 Chain, BlockFilter)) { 1034 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1035 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1036 dbgs() << " Selected: " << getBlockName(Succ2) 1037 << ", probability: " << Succ2Prob 1038 << " (Tail Duplicate)\n"); 1039 Result.BB = Succ2; 1040 Result.ShouldTailDup = true; 1041 return Result; 1042 } 1043 } 1044 // We have already computed the optimal edge for the other side of the 1045 // trellis. 1046 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1047 1048 auto TrellisSucc = BestA.Dest; 1049 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1050 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1051 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1052 << ", probability: " << SuccProb << " (Trellis)\n"); 1053 Result.BB = TrellisSucc; 1054 return Result; 1055 } 1056 1057 /// When the option allowTailDupPlacement() is on, this method checks if the 1058 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1059 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1060 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1061 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1062 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1063 if (!shouldTailDuplicate(Succ)) 1064 return false; 1065 1066 // For CFG checking. 1067 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1068 BB->succ_end()); 1069 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1070 // Make sure all unplaced and unfiltered predecessors can be 1071 // tail-duplicated into. 1072 // Skip any blocks that are already placed or not in this loop. 1073 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1074 || BlockToChain[Pred] == &Chain) 1075 continue; 1076 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1077 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1078 // This will result in a trellis after tail duplication, so we don't 1079 // need to copy Succ into this predecessor. In the presence 1080 // of a trellis tail duplication can continue to be profitable. 1081 // For example: 1082 // A A 1083 // |\ |\ 1084 // | \ | \ 1085 // | C | C+BB 1086 // | / | | 1087 // |/ | | 1088 // BB => BB | 1089 // |\ |\/| 1090 // | \ |/\| 1091 // | D | D 1092 // | / | / 1093 // |/ |/ 1094 // Succ Succ 1095 // 1096 // After BB was duplicated into C, the layout looks like the one on the 1097 // right. BB and C now have the same successors. When considering 1098 // whether Succ can be duplicated into all its unplaced predecessors, we 1099 // ignore C. 1100 // We can do this because C already has a profitable fallthrough, namely 1101 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1102 // duplication and for this test. 1103 // 1104 // This allows trellises to be laid out in 2 separate chains 1105 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1106 // because it allows the creation of 2 fallthrough paths with links 1107 // between them, and we correctly identify the best layout for these 1108 // CFGs. We want to extend trellises that the user created in addition 1109 // to trellises created by tail-duplication, so we just look for the 1110 // CFG. 1111 continue; 1112 return false; 1113 } 1114 } 1115 return true; 1116 } 1117 1118 /// Find chains of triangles where we believe it would be profitable to 1119 /// tail-duplicate them all, but a local analysis would not find them. 1120 /// There are 3 ways this can be profitable: 1121 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1122 /// longer chains) 1123 /// 2) The chains are statically correlated. Branch probabilities have a very 1124 /// U-shaped distribution. 1125 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1126 /// If the branches in a chain are likely to be from the same side of the 1127 /// distribution as their predecessor, but are independent at runtime, this 1128 /// transformation is profitable. (Because the cost of being wrong is a small 1129 /// fixed cost, unlike the standard triangle layout where the cost of being 1130 /// wrong scales with the # of triangles.) 1131 /// 3) The chains are dynamically correlated. If the probability that a previous 1132 /// branch was taken positively influences whether the next branch will be 1133 /// taken 1134 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1135 void MachineBlockPlacement::precomputeTriangleChains() { 1136 struct TriangleChain { 1137 std::vector<MachineBasicBlock *> Edges; 1138 1139 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1140 : Edges({src, dst}) {} 1141 1142 void append(MachineBasicBlock *dst) { 1143 assert(getKey()->isSuccessor(dst) && 1144 "Attempting to append a block that is not a successor."); 1145 Edges.push_back(dst); 1146 } 1147 1148 unsigned count() const { return Edges.size() - 1; } 1149 1150 MachineBasicBlock *getKey() const { 1151 return Edges.back(); 1152 } 1153 }; 1154 1155 if (TriangleChainCount == 0) 1156 return; 1157 1158 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1159 // Map from last block to the chain that contains it. This allows us to extend 1160 // chains as we find new triangles. 1161 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1162 for (MachineBasicBlock &BB : *F) { 1163 // If BB doesn't have 2 successors, it doesn't start a triangle. 1164 if (BB.succ_size() != 2) 1165 continue; 1166 MachineBasicBlock *PDom = nullptr; 1167 for (MachineBasicBlock *Succ : BB.successors()) { 1168 if (!MPDT->dominates(Succ, &BB)) 1169 continue; 1170 PDom = Succ; 1171 break; 1172 } 1173 // If BB doesn't have a post-dominating successor, it doesn't form a 1174 // triangle. 1175 if (PDom == nullptr) 1176 continue; 1177 // If PDom has a hint that it is low probability, skip this triangle. 1178 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1179 continue; 1180 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1181 // we're looking for. 1182 if (!shouldTailDuplicate(PDom)) 1183 continue; 1184 bool CanTailDuplicate = true; 1185 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1186 // isn't the kind of triangle we're looking for. 1187 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1188 if (Pred == &BB) 1189 continue; 1190 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1191 CanTailDuplicate = false; 1192 break; 1193 } 1194 } 1195 // If we can't tail-duplicate PDom to its predecessors, then skip this 1196 // triangle. 1197 if (!CanTailDuplicate) 1198 continue; 1199 1200 // Now we have an interesting triangle. Insert it if it's not part of an 1201 // existing chain. 1202 // Note: This cannot be replaced with a call insert() or emplace() because 1203 // the find key is BB, but the insert/emplace key is PDom. 1204 auto Found = TriangleChainMap.find(&BB); 1205 // If it is, remove the chain from the map, grow it, and put it back in the 1206 // map with the end as the new key. 1207 if (Found != TriangleChainMap.end()) { 1208 TriangleChain Chain = std::move(Found->second); 1209 TriangleChainMap.erase(Found); 1210 Chain.append(PDom); 1211 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1212 } else { 1213 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1214 assert(InsertResult.second && "Block seen twice."); 1215 (void)InsertResult; 1216 } 1217 } 1218 1219 // Iterating over a DenseMap is safe here, because the only thing in the body 1220 // of the loop is inserting into another DenseMap (ComputedEdges). 1221 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1222 for (auto &ChainPair : TriangleChainMap) { 1223 TriangleChain &Chain = ChainPair.second; 1224 // Benchmarking has shown that due to branch correlation duplicating 2 or 1225 // more triangles is profitable, despite the calculations assuming 1226 // independence. 1227 if (Chain.count() < TriangleChainCount) 1228 continue; 1229 MachineBasicBlock *dst = Chain.Edges.back(); 1230 Chain.Edges.pop_back(); 1231 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1232 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1233 << getBlockName(dst) 1234 << " as pre-computed based on triangles.\n"); 1235 1236 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1237 assert(InsertResult.second && "Block seen twice."); 1238 (void)InsertResult; 1239 1240 dst = src; 1241 } 1242 } 1243 } 1244 1245 // When profile is not present, return the StaticLikelyProb. 1246 // When profile is available, we need to handle the triangle-shape CFG. 1247 static BranchProbability getLayoutSuccessorProbThreshold( 1248 const MachineBasicBlock *BB) { 1249 if (!BB->getParent()->getFunction().hasProfileData()) 1250 return BranchProbability(StaticLikelyProb, 100); 1251 if (BB->succ_size() == 2) { 1252 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1253 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1254 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1255 /* See case 1 below for the cost analysis. For BB->Succ to 1256 * be taken with smaller cost, the following needs to hold: 1257 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1258 * So the threshold T in the calculation below 1259 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1260 * So T / (1 - T) = 2, Yielding T = 2/3 1261 * Also adding user specified branch bias, we have 1262 * T = (2/3)*(ProfileLikelyProb/50) 1263 * = (2*ProfileLikelyProb)/150) 1264 */ 1265 return BranchProbability(2 * ProfileLikelyProb, 150); 1266 } 1267 } 1268 return BranchProbability(ProfileLikelyProb, 100); 1269 } 1270 1271 /// Checks to see if the layout candidate block \p Succ has a better layout 1272 /// predecessor than \c BB. If yes, returns true. 1273 /// \p SuccProb: The probability adjusted for only remaining blocks. 1274 /// Only used for logging 1275 /// \p RealSuccProb: The un-adjusted probability. 1276 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1277 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1278 /// considered 1279 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1280 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1281 const BlockChain &SuccChain, BranchProbability SuccProb, 1282 BranchProbability RealSuccProb, const BlockChain &Chain, 1283 const BlockFilterSet *BlockFilter) { 1284 1285 // There isn't a better layout when there are no unscheduled predecessors. 1286 if (SuccChain.UnscheduledPredecessors == 0) 1287 return false; 1288 1289 // There are two basic scenarios here: 1290 // ------------------------------------- 1291 // Case 1: triangular shape CFG (if-then): 1292 // BB 1293 // | \ 1294 // | \ 1295 // | Pred 1296 // | / 1297 // Succ 1298 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1299 // set Succ as the layout successor of BB. Picking Succ as BB's 1300 // successor breaks the CFG constraints (FIXME: define these constraints). 1301 // With this layout, Pred BB 1302 // is forced to be outlined, so the overall cost will be cost of the 1303 // branch taken from BB to Pred, plus the cost of back taken branch 1304 // from Pred to Succ, as well as the additional cost associated 1305 // with the needed unconditional jump instruction from Pred To Succ. 1306 1307 // The cost of the topological order layout is the taken branch cost 1308 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1309 // must hold: 1310 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1311 // < freq(BB->Succ) * taken_branch_cost. 1312 // Ignoring unconditional jump cost, we get 1313 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1314 // prob(BB->Succ) > 2 * prob(BB->Pred) 1315 // 1316 // When real profile data is available, we can precisely compute the 1317 // probability threshold that is needed for edge BB->Succ to be considered. 1318 // Without profile data, the heuristic requires the branch bias to be 1319 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1320 // ----------------------------------------------------------------- 1321 // Case 2: diamond like CFG (if-then-else): 1322 // S 1323 // / \ 1324 // | \ 1325 // BB Pred 1326 // \ / 1327 // Succ 1328 // .. 1329 // 1330 // The current block is BB and edge BB->Succ is now being evaluated. 1331 // Note that edge S->BB was previously already selected because 1332 // prob(S->BB) > prob(S->Pred). 1333 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1334 // choose Pred, we will have a topological ordering as shown on the left 1335 // in the picture below. If we choose Succ, we have the solution as shown 1336 // on the right: 1337 // 1338 // topo-order: 1339 // 1340 // S----- ---S 1341 // | | | | 1342 // ---BB | | BB 1343 // | | | | 1344 // | Pred-- | Succ-- 1345 // | | | | 1346 // ---Succ ---Pred-- 1347 // 1348 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1349 // = freq(S->Pred) + freq(S->BB) 1350 // 1351 // If we have profile data (i.e, branch probabilities can be trusted), the 1352 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1353 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1354 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1355 // means the cost of topological order is greater. 1356 // When profile data is not available, however, we need to be more 1357 // conservative. If the branch prediction is wrong, breaking the topo-order 1358 // will actually yield a layout with large cost. For this reason, we need 1359 // strong biased branch at block S with Prob(S->BB) in order to select 1360 // BB->Succ. This is equivalent to looking the CFG backward with backward 1361 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1362 // profile data). 1363 // -------------------------------------------------------------------------- 1364 // Case 3: forked diamond 1365 // S 1366 // / \ 1367 // / \ 1368 // BB Pred 1369 // | \ / | 1370 // | \ / | 1371 // | X | 1372 // | / \ | 1373 // | / \ | 1374 // S1 S2 1375 // 1376 // The current block is BB and edge BB->S1 is now being evaluated. 1377 // As above S->BB was already selected because 1378 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1379 // 1380 // topo-order: 1381 // 1382 // S-------| ---S 1383 // | | | | 1384 // ---BB | | BB 1385 // | | | | 1386 // | Pred----| | S1---- 1387 // | | | | 1388 // --(S1 or S2) ---Pred-- 1389 // | 1390 // S2 1391 // 1392 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1393 // + min(freq(Pred->S1), freq(Pred->S2)) 1394 // Non-topo-order cost: 1395 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1396 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1397 // is 0. Then the non topo layout is better when 1398 // freq(S->Pred) < freq(BB->S1). 1399 // This is exactly what is checked below. 1400 // Note there are other shapes that apply (Pred may not be a single block, 1401 // but they all fit this general pattern.) 1402 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1403 1404 // Make sure that a hot successor doesn't have a globally more 1405 // important predecessor. 1406 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1407 bool BadCFGConflict = false; 1408 1409 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1410 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1411 (BlockFilter && !BlockFilter->count(Pred)) || 1412 BlockToChain[Pred] == &Chain || 1413 // This check is redundant except for look ahead. This function is 1414 // called for lookahead by isProfitableToTailDup when BB hasn't been 1415 // placed yet. 1416 (Pred == BB)) 1417 continue; 1418 // Do backward checking. 1419 // For all cases above, we need a backward checking to filter out edges that 1420 // are not 'strongly' biased. 1421 // BB Pred 1422 // \ / 1423 // Succ 1424 // We select edge BB->Succ if 1425 // freq(BB->Succ) > freq(Succ) * HotProb 1426 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1427 // HotProb 1428 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1429 // Case 1 is covered too, because the first equation reduces to: 1430 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1431 BlockFrequency PredEdgeFreq = 1432 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1433 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1434 BadCFGConflict = true; 1435 break; 1436 } 1437 } 1438 1439 if (BadCFGConflict) { 1440 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1441 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1442 return true; 1443 } 1444 1445 return false; 1446 } 1447 1448 /// Select the best successor for a block. 1449 /// 1450 /// This looks across all successors of a particular block and attempts to 1451 /// select the "best" one to be the layout successor. It only considers direct 1452 /// successors which also pass the block filter. It will attempt to avoid 1453 /// breaking CFG structure, but cave and break such structures in the case of 1454 /// very hot successor edges. 1455 /// 1456 /// \returns The best successor block found, or null if none are viable, along 1457 /// with a boolean indicating if tail duplication is necessary. 1458 MachineBlockPlacement::BlockAndTailDupResult 1459 MachineBlockPlacement::selectBestSuccessor( 1460 const MachineBasicBlock *BB, const BlockChain &Chain, 1461 const BlockFilterSet *BlockFilter) { 1462 const BranchProbability HotProb(StaticLikelyProb, 100); 1463 1464 BlockAndTailDupResult BestSucc = { nullptr, false }; 1465 auto BestProb = BranchProbability::getZero(); 1466 1467 SmallVector<MachineBasicBlock *, 4> Successors; 1468 auto AdjustedSumProb = 1469 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1470 1471 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1472 << "\n"); 1473 1474 // if we already precomputed the best successor for BB, return that if still 1475 // applicable. 1476 auto FoundEdge = ComputedEdges.find(BB); 1477 if (FoundEdge != ComputedEdges.end()) { 1478 MachineBasicBlock *Succ = FoundEdge->second.BB; 1479 ComputedEdges.erase(FoundEdge); 1480 BlockChain *SuccChain = BlockToChain[Succ]; 1481 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1482 SuccChain != &Chain && Succ == *SuccChain->begin()) 1483 return FoundEdge->second; 1484 } 1485 1486 // if BB is part of a trellis, Use the trellis to determine the optimal 1487 // fallthrough edges 1488 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1489 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1490 BlockFilter); 1491 1492 // For blocks with CFG violations, we may be able to lay them out anyway with 1493 // tail-duplication. We keep this vector so we can perform the probability 1494 // calculations the minimum number of times. 1495 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1496 DupCandidates; 1497 for (MachineBasicBlock *Succ : Successors) { 1498 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1499 BranchProbability SuccProb = 1500 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1501 1502 BlockChain &SuccChain = *BlockToChain[Succ]; 1503 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1504 // predecessor that yields lower global cost. 1505 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1506 Chain, BlockFilter)) { 1507 // If tail duplication would make Succ profitable, place it. 1508 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1509 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1510 continue; 1511 } 1512 1513 LLVM_DEBUG( 1514 dbgs() << " Candidate: " << getBlockName(Succ) 1515 << ", probability: " << SuccProb 1516 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1517 << "\n"); 1518 1519 if (BestSucc.BB && BestProb >= SuccProb) { 1520 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1521 continue; 1522 } 1523 1524 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1525 BestSucc.BB = Succ; 1526 BestProb = SuccProb; 1527 } 1528 // Handle the tail duplication candidates in order of decreasing probability. 1529 // Stop at the first one that is profitable. Also stop if they are less 1530 // profitable than BestSucc. Position is important because we preserve it and 1531 // prefer first best match. Here we aren't comparing in order, so we capture 1532 // the position instead. 1533 if (DupCandidates.size() != 0) { 1534 auto cmp = 1535 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1536 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1537 return std::get<0>(a) > std::get<0>(b); 1538 }; 1539 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1540 } 1541 for(auto &Tup : DupCandidates) { 1542 BranchProbability DupProb; 1543 MachineBasicBlock *Succ; 1544 std::tie(DupProb, Succ) = Tup; 1545 if (DupProb < BestProb) 1546 break; 1547 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1548 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1549 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1550 << ", probability: " << DupProb 1551 << " (Tail Duplicate)\n"); 1552 BestSucc.BB = Succ; 1553 BestSucc.ShouldTailDup = true; 1554 break; 1555 } 1556 } 1557 1558 if (BestSucc.BB) 1559 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1560 1561 return BestSucc; 1562 } 1563 1564 /// Select the best block from a worklist. 1565 /// 1566 /// This looks through the provided worklist as a list of candidate basic 1567 /// blocks and select the most profitable one to place. The definition of 1568 /// profitable only really makes sense in the context of a loop. This returns 1569 /// the most frequently visited block in the worklist, which in the case of 1570 /// a loop, is the one most desirable to be physically close to the rest of the 1571 /// loop body in order to improve i-cache behavior. 1572 /// 1573 /// \returns The best block found, or null if none are viable. 1574 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1575 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1576 // Once we need to walk the worklist looking for a candidate, cleanup the 1577 // worklist of already placed entries. 1578 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1579 // some code complexity) into the loop below. 1580 WorkList.erase(llvm::remove_if(WorkList, 1581 [&](MachineBasicBlock *BB) { 1582 return BlockToChain.lookup(BB) == &Chain; 1583 }), 1584 WorkList.end()); 1585 1586 if (WorkList.empty()) 1587 return nullptr; 1588 1589 bool IsEHPad = WorkList[0]->isEHPad(); 1590 1591 MachineBasicBlock *BestBlock = nullptr; 1592 BlockFrequency BestFreq; 1593 for (MachineBasicBlock *MBB : WorkList) { 1594 assert(MBB->isEHPad() == IsEHPad && 1595 "EHPad mismatch between block and work list."); 1596 1597 BlockChain &SuccChain = *BlockToChain[MBB]; 1598 if (&SuccChain == &Chain) 1599 continue; 1600 1601 assert(SuccChain.UnscheduledPredecessors == 0 && 1602 "Found CFG-violating block"); 1603 1604 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1605 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1606 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1607 1608 // For ehpad, we layout the least probable first as to avoid jumping back 1609 // from least probable landingpads to more probable ones. 1610 // 1611 // FIXME: Using probability is probably (!) not the best way to achieve 1612 // this. We should probably have a more principled approach to layout 1613 // cleanup code. 1614 // 1615 // The goal is to get: 1616 // 1617 // +--------------------------+ 1618 // | V 1619 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1620 // 1621 // Rather than: 1622 // 1623 // +-------------------------------------+ 1624 // V | 1625 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1626 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1627 continue; 1628 1629 BestBlock = MBB; 1630 BestFreq = CandidateFreq; 1631 } 1632 1633 return BestBlock; 1634 } 1635 1636 /// Retrieve the first unplaced basic block. 1637 /// 1638 /// This routine is called when we are unable to use the CFG to walk through 1639 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1640 /// We walk through the function's blocks in order, starting from the 1641 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1642 /// re-scanning the entire sequence on repeated calls to this routine. 1643 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1644 const BlockChain &PlacedChain, 1645 MachineFunction::iterator &PrevUnplacedBlockIt, 1646 const BlockFilterSet *BlockFilter) { 1647 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1648 ++I) { 1649 if (BlockFilter && !BlockFilter->count(&*I)) 1650 continue; 1651 if (BlockToChain[&*I] != &PlacedChain) { 1652 PrevUnplacedBlockIt = I; 1653 // Now select the head of the chain to which the unplaced block belongs 1654 // as the block to place. This will force the entire chain to be placed, 1655 // and satisfies the requirements of merging chains. 1656 return *BlockToChain[&*I]->begin(); 1657 } 1658 } 1659 return nullptr; 1660 } 1661 1662 void MachineBlockPlacement::fillWorkLists( 1663 const MachineBasicBlock *MBB, 1664 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1665 const BlockFilterSet *BlockFilter = nullptr) { 1666 BlockChain &Chain = *BlockToChain[MBB]; 1667 if (!UpdatedPreds.insert(&Chain).second) 1668 return; 1669 1670 assert( 1671 Chain.UnscheduledPredecessors == 0 && 1672 "Attempting to place block with unscheduled predecessors in worklist."); 1673 for (MachineBasicBlock *ChainBB : Chain) { 1674 assert(BlockToChain[ChainBB] == &Chain && 1675 "Block in chain doesn't match BlockToChain map."); 1676 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1677 if (BlockFilter && !BlockFilter->count(Pred)) 1678 continue; 1679 if (BlockToChain[Pred] == &Chain) 1680 continue; 1681 ++Chain.UnscheduledPredecessors; 1682 } 1683 } 1684 1685 if (Chain.UnscheduledPredecessors != 0) 1686 return; 1687 1688 MachineBasicBlock *BB = *Chain.begin(); 1689 if (BB->isEHPad()) 1690 EHPadWorkList.push_back(BB); 1691 else 1692 BlockWorkList.push_back(BB); 1693 } 1694 1695 void MachineBlockPlacement::buildChain( 1696 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1697 BlockFilterSet *BlockFilter) { 1698 assert(HeadBB && "BB must not be null.\n"); 1699 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1700 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1701 1702 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1703 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1704 MachineBasicBlock *BB = *std::prev(Chain.end()); 1705 while (true) { 1706 assert(BB && "null block found at end of chain in loop."); 1707 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1708 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1709 1710 1711 // Look for the best viable successor if there is one to place immediately 1712 // after this block. 1713 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1714 MachineBasicBlock* BestSucc = Result.BB; 1715 bool ShouldTailDup = Result.ShouldTailDup; 1716 if (allowTailDupPlacement()) 1717 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1718 1719 // If an immediate successor isn't available, look for the best viable 1720 // block among those we've identified as not violating the loop's CFG at 1721 // this point. This won't be a fallthrough, but it will increase locality. 1722 if (!BestSucc) 1723 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1724 if (!BestSucc) 1725 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1726 1727 if (!BestSucc) { 1728 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1729 if (!BestSucc) 1730 break; 1731 1732 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1733 "layout successor until the CFG reduces\n"); 1734 } 1735 1736 // Placement may have changed tail duplication opportunities. 1737 // Check for that now. 1738 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1739 // If the chosen successor was duplicated into all its predecessors, 1740 // don't bother laying it out, just go round the loop again with BB as 1741 // the chain end. 1742 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1743 BlockFilter, PrevUnplacedBlockIt)) 1744 continue; 1745 } 1746 1747 // Place this block, updating the datastructures to reflect its placement. 1748 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1749 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1750 // we selected a successor that didn't fit naturally into the CFG. 1751 SuccChain.UnscheduledPredecessors = 0; 1752 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1753 << getBlockName(BestSucc) << "\n"); 1754 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1755 Chain.merge(BestSucc, &SuccChain); 1756 BB = *std::prev(Chain.end()); 1757 } 1758 1759 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1760 << getBlockName(*Chain.begin()) << "\n"); 1761 } 1762 1763 // If bottom of block BB has only one successor OldTop, in most cases it is 1764 // profitable to move it before OldTop, except the following case: 1765 // 1766 // -->OldTop<- 1767 // | . | 1768 // | . | 1769 // | . | 1770 // ---Pred | 1771 // | | 1772 // BB----- 1773 // 1774 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1775 // layout the other successor below it, so it can't reduce taken branch. 1776 // In this case we keep its original layout. 1777 bool 1778 MachineBlockPlacement::canMoveBottomBlockToTop( 1779 const MachineBasicBlock *BottomBlock, 1780 const MachineBasicBlock *OldTop) { 1781 if (BottomBlock->pred_size() != 1) 1782 return true; 1783 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1784 if (Pred->succ_size() != 2) 1785 return true; 1786 1787 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1788 if (OtherBB == BottomBlock) 1789 OtherBB = *Pred->succ_rbegin(); 1790 if (OtherBB == OldTop) 1791 return false; 1792 1793 return true; 1794 } 1795 1796 /// Find the best loop top block for layout. 1797 /// 1798 /// Look for a block which is strictly better than the loop header for laying 1799 /// out at the top of the loop. This looks for one and only one pattern: 1800 /// a latch block with no conditional exit. This block will cause a conditional 1801 /// jump around it or will be the bottom of the loop if we lay it out in place, 1802 /// but if it it doesn't end up at the bottom of the loop for any reason, 1803 /// rotation alone won't fix it. Because such a block will always result in an 1804 /// unconditional jump (for the backedge) rotating it in front of the loop 1805 /// header is always profitable. 1806 MachineBasicBlock * 1807 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1808 const BlockFilterSet &LoopBlockSet) { 1809 // Placing the latch block before the header may introduce an extra branch 1810 // that skips this block the first time the loop is executed, which we want 1811 // to avoid when optimising for size. 1812 // FIXME: in theory there is a case that does not introduce a new branch, 1813 // i.e. when the layout predecessor does not fallthrough to the loop header. 1814 // In practice this never happens though: there always seems to be a preheader 1815 // that can fallthrough and that is also placed before the header. 1816 if (F->getFunction().optForSize()) 1817 return L.getHeader(); 1818 1819 // Check that the header hasn't been fused with a preheader block due to 1820 // crazy branches. If it has, we need to start with the header at the top to 1821 // prevent pulling the preheader into the loop body. 1822 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1823 if (!LoopBlockSet.count(*HeaderChain.begin())) 1824 return L.getHeader(); 1825 1826 LLVM_DEBUG(dbgs() << "Finding best loop top for: " 1827 << getBlockName(L.getHeader()) << "\n"); 1828 1829 BlockFrequency BestPredFreq; 1830 MachineBasicBlock *BestPred = nullptr; 1831 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1832 if (!LoopBlockSet.count(Pred)) 1833 continue; 1834 LLVM_DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1835 << Pred->succ_size() << " successors, "; 1836 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1837 if (Pred->succ_size() > 1) 1838 continue; 1839 1840 if (!canMoveBottomBlockToTop(Pred, L.getHeader())) 1841 continue; 1842 1843 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1844 if (!BestPred || PredFreq > BestPredFreq || 1845 (!(PredFreq < BestPredFreq) && 1846 Pred->isLayoutSuccessor(L.getHeader()))) { 1847 BestPred = Pred; 1848 BestPredFreq = PredFreq; 1849 } 1850 } 1851 1852 // If no direct predecessor is fine, just use the loop header. 1853 if (!BestPred) { 1854 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 1855 return L.getHeader(); 1856 } 1857 1858 // Walk backwards through any straight line of predecessors. 1859 while (BestPred->pred_size() == 1 && 1860 (*BestPred->pred_begin())->succ_size() == 1 && 1861 *BestPred->pred_begin() != L.getHeader()) 1862 BestPred = *BestPred->pred_begin(); 1863 1864 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1865 return BestPred; 1866 } 1867 1868 /// Find the best loop exiting block for layout. 1869 /// 1870 /// This routine implements the logic to analyze the loop looking for the best 1871 /// block to layout at the top of the loop. Typically this is done to maximize 1872 /// fallthrough opportunities. 1873 MachineBasicBlock * 1874 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1875 const BlockFilterSet &LoopBlockSet) { 1876 // We don't want to layout the loop linearly in all cases. If the loop header 1877 // is just a normal basic block in the loop, we want to look for what block 1878 // within the loop is the best one to layout at the top. However, if the loop 1879 // header has be pre-merged into a chain due to predecessors not having 1880 // analyzable branches, *and* the predecessor it is merged with is *not* part 1881 // of the loop, rotating the header into the middle of the loop will create 1882 // a non-contiguous range of blocks which is Very Bad. So start with the 1883 // header and only rotate if safe. 1884 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1885 if (!LoopBlockSet.count(*HeaderChain.begin())) 1886 return nullptr; 1887 1888 BlockFrequency BestExitEdgeFreq; 1889 unsigned BestExitLoopDepth = 0; 1890 MachineBasicBlock *ExitingBB = nullptr; 1891 // If there are exits to outer loops, loop rotation can severely limit 1892 // fallthrough opportunities unless it selects such an exit. Keep a set of 1893 // blocks where rotating to exit with that block will reach an outer loop. 1894 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1895 1896 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 1897 << getBlockName(L.getHeader()) << "\n"); 1898 for (MachineBasicBlock *MBB : L.getBlocks()) { 1899 BlockChain &Chain = *BlockToChain[MBB]; 1900 // Ensure that this block is at the end of a chain; otherwise it could be 1901 // mid-way through an inner loop or a successor of an unanalyzable branch. 1902 if (MBB != *std::prev(Chain.end())) 1903 continue; 1904 1905 // Now walk the successors. We need to establish whether this has a viable 1906 // exiting successor and whether it has a viable non-exiting successor. 1907 // We store the old exiting state and restore it if a viable looping 1908 // successor isn't found. 1909 MachineBasicBlock *OldExitingBB = ExitingBB; 1910 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1911 bool HasLoopingSucc = false; 1912 for (MachineBasicBlock *Succ : MBB->successors()) { 1913 if (Succ->isEHPad()) 1914 continue; 1915 if (Succ == MBB) 1916 continue; 1917 BlockChain &SuccChain = *BlockToChain[Succ]; 1918 // Don't split chains, either this chain or the successor's chain. 1919 if (&Chain == &SuccChain) { 1920 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1921 << getBlockName(Succ) << " (chain conflict)\n"); 1922 continue; 1923 } 1924 1925 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1926 if (LoopBlockSet.count(Succ)) { 1927 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1928 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1929 HasLoopingSucc = true; 1930 continue; 1931 } 1932 1933 unsigned SuccLoopDepth = 0; 1934 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1935 SuccLoopDepth = ExitLoop->getLoopDepth(); 1936 if (ExitLoop->contains(&L)) 1937 BlocksExitingToOuterLoop.insert(MBB); 1938 } 1939 1940 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1941 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1942 << getBlockName(Succ) << " [L:" << SuccLoopDepth 1943 << "] ("; 1944 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1945 // Note that we bias this toward an existing layout successor to retain 1946 // incoming order in the absence of better information. The exit must have 1947 // a frequency higher than the current exit before we consider breaking 1948 // the layout. 1949 BranchProbability Bias(100 - ExitBlockBias, 100); 1950 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1951 ExitEdgeFreq > BestExitEdgeFreq || 1952 (MBB->isLayoutSuccessor(Succ) && 1953 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1954 BestExitEdgeFreq = ExitEdgeFreq; 1955 ExitingBB = MBB; 1956 } 1957 } 1958 1959 if (!HasLoopingSucc) { 1960 // Restore the old exiting state, no viable looping successor was found. 1961 ExitingBB = OldExitingBB; 1962 BestExitEdgeFreq = OldBestExitEdgeFreq; 1963 } 1964 } 1965 // Without a candidate exiting block or with only a single block in the 1966 // loop, just use the loop header to layout the loop. 1967 if (!ExitingBB) { 1968 LLVM_DEBUG( 1969 dbgs() << " No other candidate exit blocks, using loop header\n"); 1970 return nullptr; 1971 } 1972 if (L.getNumBlocks() == 1) { 1973 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1974 return nullptr; 1975 } 1976 1977 // Also, if we have exit blocks which lead to outer loops but didn't select 1978 // one of them as the exiting block we are rotating toward, disable loop 1979 // rotation altogether. 1980 if (!BlocksExitingToOuterLoop.empty() && 1981 !BlocksExitingToOuterLoop.count(ExitingBB)) 1982 return nullptr; 1983 1984 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 1985 << "\n"); 1986 return ExitingBB; 1987 } 1988 1989 /// Check if there is a fallthrough to loop header Top. 1990 /// 1991 /// 1. Look for a Pred that can be layout before Top. 1992 /// 2. Check if Top is the most possible successor of Pred. 1993 bool 1994 MachineBlockPlacement::hasViableTopFallthrough( 1995 const MachineBasicBlock *Top, 1996 const BlockFilterSet &LoopBlockSet) { 1997 for (MachineBasicBlock *Pred : Top->predecessors()) { 1998 BlockChain *PredChain = BlockToChain[Pred]; 1999 if (!LoopBlockSet.count(Pred) && 2000 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2001 // Found a Pred block can be placed before Top. 2002 // Check if Top is the best successor of Pred. 2003 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2004 bool TopOK = true; 2005 for (MachineBasicBlock *Succ : Pred->successors()) { 2006 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2007 BlockChain *SuccChain = BlockToChain[Succ]; 2008 // Check if Succ can be placed after Pred. 2009 // Succ should not be in any chain, or it is the head of some chain. 2010 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2011 TopOK = false; 2012 break; 2013 } 2014 } 2015 if (TopOK) 2016 return true; 2017 } 2018 } 2019 return false; 2020 } 2021 2022 /// Attempt to rotate an exiting block to the bottom of the loop. 2023 /// 2024 /// Once we have built a chain, try to rotate it to line up the hot exit block 2025 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2026 /// branches. For example, if the loop has fallthrough into its header and out 2027 /// of its bottom already, don't rotate it. 2028 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2029 const MachineBasicBlock *ExitingBB, 2030 const BlockFilterSet &LoopBlockSet) { 2031 if (!ExitingBB) 2032 return; 2033 2034 MachineBasicBlock *Top = *LoopChain.begin(); 2035 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2036 2037 // If ExitingBB is already the last one in a chain then nothing to do. 2038 if (Bottom == ExitingBB) 2039 return; 2040 2041 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2042 2043 // If the header has viable fallthrough, check whether the current loop 2044 // bottom is a viable exiting block. If so, bail out as rotating will 2045 // introduce an unnecessary branch. 2046 if (ViableTopFallthrough) { 2047 for (MachineBasicBlock *Succ : Bottom->successors()) { 2048 BlockChain *SuccChain = BlockToChain[Succ]; 2049 if (!LoopBlockSet.count(Succ) && 2050 (!SuccChain || Succ == *SuccChain->begin())) 2051 return; 2052 } 2053 } 2054 2055 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2056 if (ExitIt == LoopChain.end()) 2057 return; 2058 2059 // Rotating a loop exit to the bottom when there is a fallthrough to top 2060 // trades the entry fallthrough for an exit fallthrough. 2061 // If there is no bottom->top edge, but the chosen exit block does have 2062 // a fallthrough, we break that fallthrough for nothing in return. 2063 2064 // Let's consider an example. We have a built chain of basic blocks 2065 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2066 // By doing a rotation we get 2067 // Bk+1, ..., Bn, B1, ..., Bk 2068 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2069 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2070 // It might be compensated by fallthrough Bn -> B1. 2071 // So we have a condition to avoid creation of extra branch by loop rotation. 2072 // All below must be true to avoid loop rotation: 2073 // If there is a fallthrough to top (B1) 2074 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2075 // There is no fallthrough from bottom (Bn) to top (B1). 2076 // Please note that there is no exit fallthrough from Bn because we checked it 2077 // above. 2078 if (ViableTopFallthrough) { 2079 assert(std::next(ExitIt) != LoopChain.end() && 2080 "Exit should not be last BB"); 2081 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2082 if (ExitingBB->isSuccessor(NextBlockInChain)) 2083 if (!Bottom->isSuccessor(Top)) 2084 return; 2085 } 2086 2087 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2088 << " at bottom\n"); 2089 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2090 } 2091 2092 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2093 /// 2094 /// With profile data, we can determine the cost in terms of missed fall through 2095 /// opportunities when rotating a loop chain and select the best rotation. 2096 /// Basically, there are three kinds of cost to consider for each rotation: 2097 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2098 /// the loop to the loop header. 2099 /// 2. The possibly missed fall through edges (if they exist) from the loop 2100 /// exits to BB out of the loop. 2101 /// 3. The missed fall through edge (if it exists) from the last BB to the 2102 /// first BB in the loop chain. 2103 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2104 /// We select the best rotation with the smallest cost. 2105 void MachineBlockPlacement::rotateLoopWithProfile( 2106 BlockChain &LoopChain, const MachineLoop &L, 2107 const BlockFilterSet &LoopBlockSet) { 2108 auto HeaderBB = L.getHeader(); 2109 auto HeaderIter = llvm::find(LoopChain, HeaderBB); 2110 auto RotationPos = LoopChain.end(); 2111 2112 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2113 2114 // A utility lambda that scales up a block frequency by dividing it by a 2115 // branch probability which is the reciprocal of the scale. 2116 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2117 unsigned Scale) -> BlockFrequency { 2118 if (Scale == 0) 2119 return 0; 2120 // Use operator / between BlockFrequency and BranchProbability to implement 2121 // saturating multiplication. 2122 return Freq / BranchProbability(1, Scale); 2123 }; 2124 2125 // Compute the cost of the missed fall-through edge to the loop header if the 2126 // chain head is not the loop header. As we only consider natural loops with 2127 // single header, this computation can be done only once. 2128 BlockFrequency HeaderFallThroughCost(0); 2129 for (auto *Pred : HeaderBB->predecessors()) { 2130 BlockChain *PredChain = BlockToChain[Pred]; 2131 if (!LoopBlockSet.count(Pred) && 2132 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2133 auto EdgeFreq = 2134 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 2135 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2136 // If the predecessor has only an unconditional jump to the header, we 2137 // need to consider the cost of this jump. 2138 if (Pred->succ_size() == 1) 2139 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2140 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2141 } 2142 } 2143 2144 // Here we collect all exit blocks in the loop, and for each exit we find out 2145 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2146 // as the sum of frequencies of exit edges we collect here, excluding the exit 2147 // edge from the tail of the loop chain. 2148 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2149 for (auto BB : LoopChain) { 2150 auto LargestExitEdgeProb = BranchProbability::getZero(); 2151 for (auto *Succ : BB->successors()) { 2152 BlockChain *SuccChain = BlockToChain[Succ]; 2153 if (!LoopBlockSet.count(Succ) && 2154 (!SuccChain || Succ == *SuccChain->begin())) { 2155 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2156 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2157 } 2158 } 2159 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2160 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2161 ExitsWithFreq.emplace_back(BB, ExitFreq); 2162 } 2163 } 2164 2165 // In this loop we iterate every block in the loop chain and calculate the 2166 // cost assuming the block is the head of the loop chain. When the loop ends, 2167 // we should have found the best candidate as the loop chain's head. 2168 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2169 EndIter = LoopChain.end(); 2170 Iter != EndIter; Iter++, TailIter++) { 2171 // TailIter is used to track the tail of the loop chain if the block we are 2172 // checking (pointed by Iter) is the head of the chain. 2173 if (TailIter == LoopChain.end()) 2174 TailIter = LoopChain.begin(); 2175 2176 auto TailBB = *TailIter; 2177 2178 // Calculate the cost by putting this BB to the top. 2179 BlockFrequency Cost = 0; 2180 2181 // If the current BB is the loop header, we need to take into account the 2182 // cost of the missed fall through edge from outside of the loop to the 2183 // header. 2184 if (Iter != HeaderIter) 2185 Cost += HeaderFallThroughCost; 2186 2187 // Collect the loop exit cost by summing up frequencies of all exit edges 2188 // except the one from the chain tail. 2189 for (auto &ExitWithFreq : ExitsWithFreq) 2190 if (TailBB != ExitWithFreq.first) 2191 Cost += ExitWithFreq.second; 2192 2193 // The cost of breaking the once fall-through edge from the tail to the top 2194 // of the loop chain. Here we need to consider three cases: 2195 // 1. If the tail node has only one successor, then we will get an 2196 // additional jmp instruction. So the cost here is (MisfetchCost + 2197 // JumpInstCost) * tail node frequency. 2198 // 2. If the tail node has two successors, then we may still get an 2199 // additional jmp instruction if the layout successor after the loop 2200 // chain is not its CFG successor. Note that the more frequently executed 2201 // jmp instruction will be put ahead of the other one. Assume the 2202 // frequency of those two branches are x and y, where x is the frequency 2203 // of the edge to the chain head, then the cost will be 2204 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2205 // 3. If the tail node has more than two successors (this rarely happens), 2206 // we won't consider any additional cost. 2207 if (TailBB->isSuccessor(*Iter)) { 2208 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2209 if (TailBB->succ_size() == 1) 2210 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2211 MisfetchCost + JumpInstCost); 2212 else if (TailBB->succ_size() == 2) { 2213 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2214 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2215 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2216 ? TailBBFreq * TailToHeadProb.getCompl() 2217 : TailToHeadFreq; 2218 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2219 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2220 } 2221 } 2222 2223 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2224 << getBlockName(*Iter) 2225 << " to the top: " << Cost.getFrequency() << "\n"); 2226 2227 if (Cost < SmallestRotationCost) { 2228 SmallestRotationCost = Cost; 2229 RotationPos = Iter; 2230 } 2231 } 2232 2233 if (RotationPos != LoopChain.end()) { 2234 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2235 << " to the top\n"); 2236 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2237 } 2238 } 2239 2240 /// Collect blocks in the given loop that are to be placed. 2241 /// 2242 /// When profile data is available, exclude cold blocks from the returned set; 2243 /// otherwise, collect all blocks in the loop. 2244 MachineBlockPlacement::BlockFilterSet 2245 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2246 BlockFilterSet LoopBlockSet; 2247 2248 // Filter cold blocks off from LoopBlockSet when profile data is available. 2249 // Collect the sum of frequencies of incoming edges to the loop header from 2250 // outside. If we treat the loop as a super block, this is the frequency of 2251 // the loop. Then for each block in the loop, we calculate the ratio between 2252 // its frequency and the frequency of the loop block. When it is too small, 2253 // don't add it to the loop chain. If there are outer loops, then this block 2254 // will be merged into the first outer loop chain for which this block is not 2255 // cold anymore. This needs precise profile data and we only do this when 2256 // profile data is available. 2257 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2258 BlockFrequency LoopFreq(0); 2259 for (auto LoopPred : L.getHeader()->predecessors()) 2260 if (!L.contains(LoopPred)) 2261 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2262 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2263 2264 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2265 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2266 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2267 continue; 2268 LoopBlockSet.insert(LoopBB); 2269 } 2270 } else 2271 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2272 2273 return LoopBlockSet; 2274 } 2275 2276 /// Forms basic block chains from the natural loop structures. 2277 /// 2278 /// These chains are designed to preserve the existing *structure* of the code 2279 /// as much as possible. We can then stitch the chains together in a way which 2280 /// both preserves the topological structure and minimizes taken conditional 2281 /// branches. 2282 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2283 // First recurse through any nested loops, building chains for those inner 2284 // loops. 2285 for (const MachineLoop *InnerLoop : L) 2286 buildLoopChains(*InnerLoop); 2287 2288 assert(BlockWorkList.empty() && 2289 "BlockWorkList not empty when starting to build loop chains."); 2290 assert(EHPadWorkList.empty() && 2291 "EHPadWorkList not empty when starting to build loop chains."); 2292 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2293 2294 // Check if we have profile data for this function. If yes, we will rotate 2295 // this loop by modeling costs more precisely which requires the profile data 2296 // for better layout. 2297 bool RotateLoopWithProfile = 2298 ForcePreciseRotationCost || 2299 (PreciseRotationCost && F->getFunction().hasProfileData()); 2300 2301 // First check to see if there is an obviously preferable top block for the 2302 // loop. This will default to the header, but may end up as one of the 2303 // predecessors to the header if there is one which will result in strictly 2304 // fewer branches in the loop body. 2305 // When we use profile data to rotate the loop, this is unnecessary. 2306 MachineBasicBlock *LoopTop = 2307 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2308 2309 // If we selected just the header for the loop top, look for a potentially 2310 // profitable exit block in the event that rotating the loop can eliminate 2311 // branches by placing an exit edge at the bottom. 2312 // 2313 // Loops are processed innermost to uttermost, make sure we clear 2314 // PreferredLoopExit before processing a new loop. 2315 PreferredLoopExit = nullptr; 2316 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2317 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2318 2319 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2320 2321 // FIXME: This is a really lame way of walking the chains in the loop: we 2322 // walk the blocks, and use a set to prevent visiting a particular chain 2323 // twice. 2324 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2325 assert(LoopChain.UnscheduledPredecessors == 0 && 2326 "LoopChain should not have unscheduled predecessors."); 2327 UpdatedPreds.insert(&LoopChain); 2328 2329 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2330 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2331 2332 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2333 2334 if (RotateLoopWithProfile) 2335 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2336 else 2337 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2338 2339 LLVM_DEBUG({ 2340 // Crash at the end so we get all of the debugging output first. 2341 bool BadLoop = false; 2342 if (LoopChain.UnscheduledPredecessors) { 2343 BadLoop = true; 2344 dbgs() << "Loop chain contains a block without its preds placed!\n" 2345 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2346 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2347 } 2348 for (MachineBasicBlock *ChainBB : LoopChain) { 2349 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2350 if (!LoopBlockSet.remove(ChainBB)) { 2351 // We don't mark the loop as bad here because there are real situations 2352 // where this can occur. For example, with an unanalyzable fallthrough 2353 // from a loop block to a non-loop block or vice versa. 2354 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2355 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2356 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2357 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2358 } 2359 } 2360 2361 if (!LoopBlockSet.empty()) { 2362 BadLoop = true; 2363 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2364 dbgs() << "Loop contains blocks never placed into a chain!\n" 2365 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2366 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2367 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2368 } 2369 assert(!BadLoop && "Detected problems with the placement of this loop."); 2370 }); 2371 2372 BlockWorkList.clear(); 2373 EHPadWorkList.clear(); 2374 } 2375 2376 void MachineBlockPlacement::buildCFGChains() { 2377 // Ensure that every BB in the function has an associated chain to simplify 2378 // the assumptions of the remaining algorithm. 2379 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2380 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2381 ++FI) { 2382 MachineBasicBlock *BB = &*FI; 2383 BlockChain *Chain = 2384 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2385 // Also, merge any blocks which we cannot reason about and must preserve 2386 // the exact fallthrough behavior for. 2387 while (true) { 2388 Cond.clear(); 2389 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2390 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2391 break; 2392 2393 MachineFunction::iterator NextFI = std::next(FI); 2394 MachineBasicBlock *NextBB = &*NextFI; 2395 // Ensure that the layout successor is a viable block, as we know that 2396 // fallthrough is a possibility. 2397 assert(NextFI != FE && "Can't fallthrough past the last block."); 2398 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2399 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2400 << "\n"); 2401 Chain->merge(NextBB, nullptr); 2402 #ifndef NDEBUG 2403 BlocksWithUnanalyzableExits.insert(&*BB); 2404 #endif 2405 FI = NextFI; 2406 BB = NextBB; 2407 } 2408 } 2409 2410 // Build any loop-based chains. 2411 PreferredLoopExit = nullptr; 2412 for (MachineLoop *L : *MLI) 2413 buildLoopChains(*L); 2414 2415 assert(BlockWorkList.empty() && 2416 "BlockWorkList should be empty before building final chain."); 2417 assert(EHPadWorkList.empty() && 2418 "EHPadWorkList should be empty before building final chain."); 2419 2420 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2421 for (MachineBasicBlock &MBB : *F) 2422 fillWorkLists(&MBB, UpdatedPreds); 2423 2424 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2425 buildChain(&F->front(), FunctionChain); 2426 2427 #ifndef NDEBUG 2428 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2429 #endif 2430 LLVM_DEBUG({ 2431 // Crash at the end so we get all of the debugging output first. 2432 bool BadFunc = false; 2433 FunctionBlockSetType FunctionBlockSet; 2434 for (MachineBasicBlock &MBB : *F) 2435 FunctionBlockSet.insert(&MBB); 2436 2437 for (MachineBasicBlock *ChainBB : FunctionChain) 2438 if (!FunctionBlockSet.erase(ChainBB)) { 2439 BadFunc = true; 2440 dbgs() << "Function chain contains a block not in the function!\n" 2441 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2442 } 2443 2444 if (!FunctionBlockSet.empty()) { 2445 BadFunc = true; 2446 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2447 dbgs() << "Function contains blocks never placed into a chain!\n" 2448 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2449 } 2450 assert(!BadFunc && "Detected problems with the block placement."); 2451 }); 2452 2453 // Splice the blocks into place. 2454 MachineFunction::iterator InsertPos = F->begin(); 2455 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2456 for (MachineBasicBlock *ChainBB : FunctionChain) { 2457 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2458 : " ... ") 2459 << getBlockName(ChainBB) << "\n"); 2460 if (InsertPos != MachineFunction::iterator(ChainBB)) 2461 F->splice(InsertPos, ChainBB); 2462 else 2463 ++InsertPos; 2464 2465 // Update the terminator of the previous block. 2466 if (ChainBB == *FunctionChain.begin()) 2467 continue; 2468 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2469 2470 // FIXME: It would be awesome of updateTerminator would just return rather 2471 // than assert when the branch cannot be analyzed in order to remove this 2472 // boiler plate. 2473 Cond.clear(); 2474 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2475 2476 #ifndef NDEBUG 2477 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2478 // Given the exact block placement we chose, we may actually not _need_ to 2479 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2480 // do that at this point is a bug. 2481 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2482 !PrevBB->canFallThrough()) && 2483 "Unexpected block with un-analyzable fallthrough!"); 2484 Cond.clear(); 2485 TBB = FBB = nullptr; 2486 } 2487 #endif 2488 2489 // The "PrevBB" is not yet updated to reflect current code layout, so, 2490 // o. it may fall-through to a block without explicit "goto" instruction 2491 // before layout, and no longer fall-through it after layout; or 2492 // o. just opposite. 2493 // 2494 // analyzeBranch() may return erroneous value for FBB when these two 2495 // situations take place. For the first scenario FBB is mistakenly set NULL; 2496 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2497 // mistakenly pointing to "*BI". 2498 // Thus, if the future change needs to use FBB before the layout is set, it 2499 // has to correct FBB first by using the code similar to the following: 2500 // 2501 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2502 // PrevBB->updateTerminator(); 2503 // Cond.clear(); 2504 // TBB = FBB = nullptr; 2505 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2506 // // FIXME: This should never take place. 2507 // TBB = FBB = nullptr; 2508 // } 2509 // } 2510 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2511 PrevBB->updateTerminator(); 2512 } 2513 2514 // Fixup the last block. 2515 Cond.clear(); 2516 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2517 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2518 F->back().updateTerminator(); 2519 2520 BlockWorkList.clear(); 2521 EHPadWorkList.clear(); 2522 } 2523 2524 void MachineBlockPlacement::optimizeBranches() { 2525 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2526 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2527 2528 // Now that all the basic blocks in the chain have the proper layout, 2529 // make a final call to AnalyzeBranch with AllowModify set. 2530 // Indeed, the target may be able to optimize the branches in a way we 2531 // cannot because all branches may not be analyzable. 2532 // E.g., the target may be able to remove an unconditional branch to 2533 // a fallthrough when it occurs after predicated terminators. 2534 for (MachineBasicBlock *ChainBB : FunctionChain) { 2535 Cond.clear(); 2536 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2537 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2538 // If PrevBB has a two-way branch, try to re-order the branches 2539 // such that we branch to the successor with higher probability first. 2540 if (TBB && !Cond.empty() && FBB && 2541 MBPI->getEdgeProbability(ChainBB, FBB) > 2542 MBPI->getEdgeProbability(ChainBB, TBB) && 2543 !TII->reverseBranchCondition(Cond)) { 2544 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2545 << getBlockName(ChainBB) << "\n"); 2546 LLVM_DEBUG(dbgs() << " Edge probability: " 2547 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2548 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2549 DebugLoc dl; // FIXME: this is nowhere 2550 TII->removeBranch(*ChainBB); 2551 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2552 ChainBB->updateTerminator(); 2553 } 2554 } 2555 } 2556 } 2557 2558 void MachineBlockPlacement::alignBlocks() { 2559 // Walk through the backedges of the function now that we have fully laid out 2560 // the basic blocks and align the destination of each backedge. We don't rely 2561 // exclusively on the loop info here so that we can align backedges in 2562 // unnatural CFGs and backedges that were introduced purely because of the 2563 // loop rotations done during this layout pass. 2564 if (F->getFunction().optForMinSize() || 2565 (F->getFunction().optForSize() && !TLI->alignLoopsWithOptSize())) 2566 return; 2567 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2568 if (FunctionChain.begin() == FunctionChain.end()) 2569 return; // Empty chain. 2570 2571 const BranchProbability ColdProb(1, 5); // 20% 2572 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2573 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2574 for (MachineBasicBlock *ChainBB : FunctionChain) { 2575 if (ChainBB == *FunctionChain.begin()) 2576 continue; 2577 2578 // Don't align non-looping basic blocks. These are unlikely to execute 2579 // enough times to matter in practice. Note that we'll still handle 2580 // unnatural CFGs inside of a natural outer loop (the common case) and 2581 // rotated loops. 2582 MachineLoop *L = MLI->getLoopFor(ChainBB); 2583 if (!L) 2584 continue; 2585 2586 unsigned Align = TLI->getPrefLoopAlignment(L); 2587 if (!Align) 2588 continue; // Don't care about loop alignment. 2589 2590 // If the block is cold relative to the function entry don't waste space 2591 // aligning it. 2592 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2593 if (Freq < WeightedEntryFreq) 2594 continue; 2595 2596 // If the block is cold relative to its loop header, don't align it 2597 // regardless of what edges into the block exist. 2598 MachineBasicBlock *LoopHeader = L->getHeader(); 2599 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2600 if (Freq < (LoopHeaderFreq * ColdProb)) 2601 continue; 2602 2603 // Check for the existence of a non-layout predecessor which would benefit 2604 // from aligning this block. 2605 MachineBasicBlock *LayoutPred = 2606 &*std::prev(MachineFunction::iterator(ChainBB)); 2607 2608 // Force alignment if all the predecessors are jumps. We already checked 2609 // that the block isn't cold above. 2610 if (!LayoutPred->isSuccessor(ChainBB)) { 2611 ChainBB->setAlignment(Align); 2612 continue; 2613 } 2614 2615 // Align this block if the layout predecessor's edge into this block is 2616 // cold relative to the block. When this is true, other predecessors make up 2617 // all of the hot entries into the block and thus alignment is likely to be 2618 // important. 2619 BranchProbability LayoutProb = 2620 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2621 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2622 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2623 ChainBB->setAlignment(Align); 2624 } 2625 } 2626 2627 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2628 /// it was duplicated into its chain predecessor and removed. 2629 /// \p BB - Basic block that may be duplicated. 2630 /// 2631 /// \p LPred - Chosen layout predecessor of \p BB. 2632 /// Updated to be the chain end if LPred is removed. 2633 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2634 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2635 /// Used to identify which blocks to update predecessor 2636 /// counts. 2637 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2638 /// chosen in the given order due to unnatural CFG 2639 /// only needed if \p BB is removed and 2640 /// \p PrevUnplacedBlockIt pointed to \p BB. 2641 /// @return true if \p BB was removed. 2642 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2643 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2644 const MachineBasicBlock *LoopHeaderBB, 2645 BlockChain &Chain, BlockFilterSet *BlockFilter, 2646 MachineFunction::iterator &PrevUnplacedBlockIt) { 2647 bool Removed, DuplicatedToLPred; 2648 bool DuplicatedToOriginalLPred; 2649 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2650 PrevUnplacedBlockIt, 2651 DuplicatedToLPred); 2652 if (!Removed) 2653 return false; 2654 DuplicatedToOriginalLPred = DuplicatedToLPred; 2655 // Iteratively try to duplicate again. It can happen that a block that is 2656 // duplicated into is still small enough to be duplicated again. 2657 // No need to call markBlockSuccessors in this case, as the blocks being 2658 // duplicated from here on are already scheduled. 2659 // Note that DuplicatedToLPred always implies Removed. 2660 while (DuplicatedToLPred) { 2661 assert(Removed && "Block must have been removed to be duplicated into its " 2662 "layout predecessor."); 2663 MachineBasicBlock *DupBB, *DupPred; 2664 // The removal callback causes Chain.end() to be updated when a block is 2665 // removed. On the first pass through the loop, the chain end should be the 2666 // same as it was on function entry. On subsequent passes, because we are 2667 // duplicating the block at the end of the chain, if it is removed the 2668 // chain will have shrunk by one block. 2669 BlockChain::iterator ChainEnd = Chain.end(); 2670 DupBB = *(--ChainEnd); 2671 // Now try to duplicate again. 2672 if (ChainEnd == Chain.begin()) 2673 break; 2674 DupPred = *std::prev(ChainEnd); 2675 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2676 PrevUnplacedBlockIt, 2677 DuplicatedToLPred); 2678 } 2679 // If BB was duplicated into LPred, it is now scheduled. But because it was 2680 // removed, markChainSuccessors won't be called for its chain. Instead we 2681 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2682 // at the end because repeating the tail duplication can increase the number 2683 // of unscheduled predecessors. 2684 LPred = *std::prev(Chain.end()); 2685 if (DuplicatedToOriginalLPred) 2686 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2687 return true; 2688 } 2689 2690 /// Tail duplicate \p BB into (some) predecessors if profitable. 2691 /// \p BB - Basic block that may be duplicated 2692 /// \p LPred - Chosen layout predecessor of \p BB 2693 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2694 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2695 /// Used to identify which blocks to update predecessor 2696 /// counts. 2697 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2698 /// chosen in the given order due to unnatural CFG 2699 /// only needed if \p BB is removed and 2700 /// \p PrevUnplacedBlockIt pointed to \p BB. 2701 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2702 /// only be true if the block was removed. 2703 /// \return - True if the block was duplicated into all preds and removed. 2704 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2705 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2706 BlockChain &Chain, BlockFilterSet *BlockFilter, 2707 MachineFunction::iterator &PrevUnplacedBlockIt, 2708 bool &DuplicatedToLPred) { 2709 DuplicatedToLPred = false; 2710 if (!shouldTailDuplicate(BB)) 2711 return false; 2712 2713 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 2714 << "\n"); 2715 2716 // This has to be a callback because none of it can be done after 2717 // BB is deleted. 2718 bool Removed = false; 2719 auto RemovalCallback = 2720 [&](MachineBasicBlock *RemBB) { 2721 // Signal to outer function 2722 Removed = true; 2723 2724 // Conservative default. 2725 bool InWorkList = true; 2726 // Remove from the Chain and Chain Map 2727 if (BlockToChain.count(RemBB)) { 2728 BlockChain *Chain = BlockToChain[RemBB]; 2729 InWorkList = Chain->UnscheduledPredecessors == 0; 2730 Chain->remove(RemBB); 2731 BlockToChain.erase(RemBB); 2732 } 2733 2734 // Handle the unplaced block iterator 2735 if (&(*PrevUnplacedBlockIt) == RemBB) { 2736 PrevUnplacedBlockIt++; 2737 } 2738 2739 // Handle the Work Lists 2740 if (InWorkList) { 2741 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2742 if (RemBB->isEHPad()) 2743 RemoveList = EHPadWorkList; 2744 RemoveList.erase( 2745 llvm::remove_if(RemoveList, 2746 [RemBB](MachineBasicBlock *BB) { 2747 return BB == RemBB; 2748 }), 2749 RemoveList.end()); 2750 } 2751 2752 // Handle the filter set 2753 if (BlockFilter) { 2754 BlockFilter->remove(RemBB); 2755 } 2756 2757 // Remove the block from loop info. 2758 MLI->removeBlock(RemBB); 2759 if (RemBB == PreferredLoopExit) 2760 PreferredLoopExit = nullptr; 2761 2762 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 2763 << getBlockName(RemBB) << "\n"); 2764 }; 2765 auto RemovalCallbackRef = 2766 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2767 2768 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2769 bool IsSimple = TailDup.isSimpleBB(BB); 2770 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2771 &DuplicatedPreds, &RemovalCallbackRef); 2772 2773 // Update UnscheduledPredecessors to reflect tail-duplication. 2774 DuplicatedToLPred = false; 2775 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2776 // We're only looking for unscheduled predecessors that match the filter. 2777 BlockChain* PredChain = BlockToChain[Pred]; 2778 if (Pred == LPred) 2779 DuplicatedToLPred = true; 2780 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2781 || PredChain == &Chain) 2782 continue; 2783 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2784 if (BlockFilter && !BlockFilter->count(NewSucc)) 2785 continue; 2786 BlockChain *NewChain = BlockToChain[NewSucc]; 2787 if (NewChain != &Chain && NewChain != PredChain) 2788 NewChain->UnscheduledPredecessors++; 2789 } 2790 } 2791 return Removed; 2792 } 2793 2794 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2795 if (skipFunction(MF.getFunction())) 2796 return false; 2797 2798 // Check for single-block functions and skip them. 2799 if (std::next(MF.begin()) == MF.end()) 2800 return false; 2801 2802 F = &MF; 2803 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2804 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2805 getAnalysis<MachineBlockFrequencyInfo>()); 2806 MLI = &getAnalysis<MachineLoopInfo>(); 2807 TII = MF.getSubtarget().getInstrInfo(); 2808 TLI = MF.getSubtarget().getTargetLowering(); 2809 MPDT = nullptr; 2810 2811 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2812 // there are no MachineLoops. 2813 PreferredLoopExit = nullptr; 2814 2815 assert(BlockToChain.empty() && 2816 "BlockToChain map should be empty before starting placement."); 2817 assert(ComputedEdges.empty() && 2818 "Computed Edge map should be empty before starting placement."); 2819 2820 unsigned TailDupSize = TailDupPlacementThreshold; 2821 // If only the aggressive threshold is explicitly set, use it. 2822 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 2823 TailDupPlacementThreshold.getNumOccurrences() == 0) 2824 TailDupSize = TailDupPlacementAggressiveThreshold; 2825 2826 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2827 // For aggressive optimization, we can adjust some thresholds to be less 2828 // conservative. 2829 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 2830 // At O3 we should be more willing to copy blocks for tail duplication. This 2831 // increases size pressure, so we only do it at O3 2832 // Do this unless only the regular threshold is explicitly set. 2833 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 2834 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 2835 TailDupSize = TailDupPlacementAggressiveThreshold; 2836 } 2837 2838 if (allowTailDupPlacement()) { 2839 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2840 if (MF.getFunction().optForSize()) 2841 TailDupSize = 1; 2842 bool PreRegAlloc = false; 2843 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); 2844 precomputeTriangleChains(); 2845 } 2846 2847 buildCFGChains(); 2848 2849 // Changing the layout can create new tail merging opportunities. 2850 // TailMerge can create jump into if branches that make CFG irreducible for 2851 // HW that requires structured CFG. 2852 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2853 PassConfig->getEnableTailMerge() && 2854 BranchFoldPlacement; 2855 // No tail merging opportunities if the block number is less than four. 2856 if (MF.size() > 3 && EnableTailMerge) { 2857 unsigned TailMergeSize = TailDupSize + 1; 2858 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2859 *MBPI, TailMergeSize); 2860 2861 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2862 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2863 /*AfterBlockPlacement=*/true)) { 2864 // Redo the layout if tail merging creates/removes/moves blocks. 2865 BlockToChain.clear(); 2866 ComputedEdges.clear(); 2867 // Must redo the post-dominator tree if blocks were changed. 2868 if (MPDT) 2869 MPDT->runOnMachineFunction(MF); 2870 ChainAllocator.DestroyAll(); 2871 buildCFGChains(); 2872 } 2873 } 2874 2875 optimizeBranches(); 2876 alignBlocks(); 2877 2878 BlockToChain.clear(); 2879 ComputedEdges.clear(); 2880 ChainAllocator.DestroyAll(); 2881 2882 if (AlignAllBlock) 2883 // Align all of the blocks in the function to a specific alignment. 2884 for (MachineBasicBlock &MBB : MF) 2885 MBB.setAlignment(AlignAllBlock); 2886 else if (AlignAllNonFallThruBlocks) { 2887 // Align all of the blocks that have no fall-through predecessors to a 2888 // specific alignment. 2889 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2890 auto LayoutPred = std::prev(MBI); 2891 if (!LayoutPred->isSuccessor(&*MBI)) 2892 MBI->setAlignment(AlignAllNonFallThruBlocks); 2893 } 2894 } 2895 if (ViewBlockLayoutWithBFI != GVDT_None && 2896 (ViewBlockFreqFuncName.empty() || 2897 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 2898 MBFI->view("MBP." + MF.getName(), false); 2899 } 2900 2901 2902 // We always return true as we have no way to track whether the final order 2903 // differs from the original order. 2904 return true; 2905 } 2906 2907 namespace { 2908 2909 /// A pass to compute block placement statistics. 2910 /// 2911 /// A separate pass to compute interesting statistics for evaluating block 2912 /// placement. This is separate from the actual placement pass so that they can 2913 /// be computed in the absence of any placement transformations or when using 2914 /// alternative placement strategies. 2915 class MachineBlockPlacementStats : public MachineFunctionPass { 2916 /// A handle to the branch probability pass. 2917 const MachineBranchProbabilityInfo *MBPI; 2918 2919 /// A handle to the function-wide block frequency pass. 2920 const MachineBlockFrequencyInfo *MBFI; 2921 2922 public: 2923 static char ID; // Pass identification, replacement for typeid 2924 2925 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2926 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2927 } 2928 2929 bool runOnMachineFunction(MachineFunction &F) override; 2930 2931 void getAnalysisUsage(AnalysisUsage &AU) const override { 2932 AU.addRequired<MachineBranchProbabilityInfo>(); 2933 AU.addRequired<MachineBlockFrequencyInfo>(); 2934 AU.setPreservesAll(); 2935 MachineFunctionPass::getAnalysisUsage(AU); 2936 } 2937 }; 2938 2939 } // end anonymous namespace 2940 2941 char MachineBlockPlacementStats::ID = 0; 2942 2943 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2944 2945 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2946 "Basic Block Placement Stats", false, false) 2947 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2948 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2949 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2950 "Basic Block Placement Stats", false, false) 2951 2952 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2953 // Check for single-block functions and skip them. 2954 if (std::next(F.begin()) == F.end()) 2955 return false; 2956 2957 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2958 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2959 2960 for (MachineBasicBlock &MBB : F) { 2961 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2962 Statistic &NumBranches = 2963 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2964 Statistic &BranchTakenFreq = 2965 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2966 for (MachineBasicBlock *Succ : MBB.successors()) { 2967 // Skip if this successor is a fallthrough. 2968 if (MBB.isLayoutSuccessor(Succ)) 2969 continue; 2970 2971 BlockFrequency EdgeFreq = 2972 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2973 ++NumBranches; 2974 BranchTakenFreq += EdgeFreq.getFrequency(); 2975 } 2976 } 2977 2978 return false; 2979 } 2980