1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include <algorithm> 46 using namespace llvm; 47 48 #define DEBUG_TYPE "block-placement2" 49 50 STATISTIC(NumCondBranches, "Number of conditional branches"); 51 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 52 STATISTIC(CondBranchTakenFreq, 53 "Potential frequency of taking conditional branches"); 54 STATISTIC(UncondBranchTakenFreq, 55 "Potential frequency of taking unconditional branches"); 56 57 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 58 cl::desc("Force the alignment of all " 59 "blocks in the function."), 60 cl::init(0), cl::Hidden); 61 62 // FIXME: Find a good default for this flag and remove the flag. 63 static cl::opt<unsigned> 64 ExitBlockBias("block-placement-exit-block-bias", 65 cl::desc("Block frequency percentage a loop exit block needs " 66 "over the original exit to be considered the new exit."), 67 cl::init(0), cl::Hidden); 68 69 namespace { 70 class BlockChain; 71 /// \brief Type for our function-wide basic block -> block chain mapping. 72 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 73 } 74 75 namespace { 76 /// \brief A chain of blocks which will be laid out contiguously. 77 /// 78 /// This is the datastructure representing a chain of consecutive blocks that 79 /// are profitable to layout together in order to maximize fallthrough 80 /// probabilities and code locality. We also can use a block chain to represent 81 /// a sequence of basic blocks which have some external (correctness) 82 /// requirement for sequential layout. 83 /// 84 /// Chains can be built around a single basic block and can be merged to grow 85 /// them. They participate in a block-to-chain mapping, which is updated 86 /// automatically as chains are merged together. 87 class BlockChain { 88 /// \brief The sequence of blocks belonging to this chain. 89 /// 90 /// This is the sequence of blocks for a particular chain. These will be laid 91 /// out in-order within the function. 92 SmallVector<MachineBasicBlock *, 4> Blocks; 93 94 /// \brief A handle to the function-wide basic block to block chain mapping. 95 /// 96 /// This is retained in each block chain to simplify the computation of child 97 /// block chains for SCC-formation and iteration. We store the edges to child 98 /// basic blocks, and map them back to their associated chains using this 99 /// structure. 100 BlockToChainMapType &BlockToChain; 101 102 public: 103 /// \brief Construct a new BlockChain. 104 /// 105 /// This builds a new block chain representing a single basic block in the 106 /// function. It also registers itself as the chain that block participates 107 /// in with the BlockToChain mapping. 108 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 109 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 110 assert(BB && "Cannot create a chain with a null basic block"); 111 BlockToChain[BB] = this; 112 } 113 114 /// \brief Iterator over blocks within the chain. 115 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 116 117 /// \brief Beginning of blocks within the chain. 118 iterator begin() { return Blocks.begin(); } 119 120 /// \brief End of blocks within the chain. 121 iterator end() { return Blocks.end(); } 122 123 /// \brief Merge a block chain into this one. 124 /// 125 /// This routine merges a block chain into this one. It takes care of forming 126 /// a contiguous sequence of basic blocks, updating the edge list, and 127 /// updating the block -> chain mapping. It does not free or tear down the 128 /// old chain, but the old chain's block list is no longer valid. 129 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 130 assert(BB); 131 assert(!Blocks.empty()); 132 133 // Fast path in case we don't have a chain already. 134 if (!Chain) { 135 assert(!BlockToChain[BB]); 136 Blocks.push_back(BB); 137 BlockToChain[BB] = this; 138 return; 139 } 140 141 assert(BB == *Chain->begin()); 142 assert(Chain->begin() != Chain->end()); 143 144 // Update the incoming blocks to point to this chain, and add them to the 145 // chain structure. 146 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 147 BI != BE; ++BI) { 148 Blocks.push_back(*BI); 149 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 150 BlockToChain[*BI] = this; 151 } 152 } 153 154 #ifndef NDEBUG 155 /// \brief Dump the blocks in this chain. 156 LLVM_DUMP_METHOD void dump() { 157 for (iterator I = begin(), E = end(); I != E; ++I) 158 (*I)->dump(); 159 } 160 #endif // NDEBUG 161 162 /// \brief Count of predecessors within the loop currently being processed. 163 /// 164 /// This count is updated at each loop we process to represent the number of 165 /// in-loop predecessors of this chain. 166 unsigned LoopPredecessors; 167 }; 168 } 169 170 namespace { 171 class MachineBlockPlacement : public MachineFunctionPass { 172 /// \brief A typedef for a block filter set. 173 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 174 175 /// \brief A handle to the branch probability pass. 176 const MachineBranchProbabilityInfo *MBPI; 177 178 /// \brief A handle to the function-wide block frequency pass. 179 const MachineBlockFrequencyInfo *MBFI; 180 181 /// \brief A handle to the loop info. 182 const MachineLoopInfo *MLI; 183 184 /// \brief A handle to the target's instruction info. 185 const TargetInstrInfo *TII; 186 187 /// \brief A handle to the target's lowering info. 188 const TargetLoweringBase *TLI; 189 190 /// \brief Allocator and owner of BlockChain structures. 191 /// 192 /// We build BlockChains lazily while processing the loop structure of 193 /// a function. To reduce malloc traffic, we allocate them using this 194 /// slab-like allocator, and destroy them after the pass completes. An 195 /// important guarantee is that this allocator produces stable pointers to 196 /// the chains. 197 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 198 199 /// \brief Function wide BasicBlock to BlockChain mapping. 200 /// 201 /// This mapping allows efficiently moving from any given basic block to the 202 /// BlockChain it participates in, if any. We use it to, among other things, 203 /// allow implicitly defining edges between chains as the existing edges 204 /// between basic blocks. 205 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 206 207 void markChainSuccessors(BlockChain &Chain, 208 MachineBasicBlock *LoopHeaderBB, 209 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 210 const BlockFilterSet *BlockFilter = nullptr); 211 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 212 BlockChain &Chain, 213 const BlockFilterSet *BlockFilter); 214 MachineBasicBlock *selectBestCandidateBlock( 215 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 216 const BlockFilterSet *BlockFilter); 217 MachineBasicBlock *getFirstUnplacedBlock( 218 MachineFunction &F, 219 const BlockChain &PlacedChain, 220 MachineFunction::iterator &PrevUnplacedBlockIt, 221 const BlockFilterSet *BlockFilter); 222 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 223 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 224 const BlockFilterSet *BlockFilter = nullptr); 225 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 226 const BlockFilterSet &LoopBlockSet); 227 MachineBasicBlock *findBestLoopExit(MachineFunction &F, 228 MachineLoop &L, 229 const BlockFilterSet &LoopBlockSet); 230 void buildLoopChains(MachineFunction &F, MachineLoop &L); 231 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 232 const BlockFilterSet &LoopBlockSet); 233 void buildCFGChains(MachineFunction &F); 234 235 public: 236 static char ID; // Pass identification, replacement for typeid 237 MachineBlockPlacement() : MachineFunctionPass(ID) { 238 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 239 } 240 241 bool runOnMachineFunction(MachineFunction &F) override; 242 243 void getAnalysisUsage(AnalysisUsage &AU) const override { 244 AU.addRequired<MachineBranchProbabilityInfo>(); 245 AU.addRequired<MachineBlockFrequencyInfo>(); 246 AU.addRequired<MachineLoopInfo>(); 247 MachineFunctionPass::getAnalysisUsage(AU); 248 } 249 }; 250 } 251 252 char MachineBlockPlacement::ID = 0; 253 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 254 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 255 "Branch Probability Basic Block Placement", false, false) 256 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 257 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 258 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 259 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 260 "Branch Probability Basic Block Placement", false, false) 261 262 #ifndef NDEBUG 263 /// \brief Helper to print the name of a MBB. 264 /// 265 /// Only used by debug logging. 266 static std::string getBlockName(MachineBasicBlock *BB) { 267 string_ostream OS; 268 OS << "BB#" << BB->getNumber() 269 << " (derived from LLVM BB '" << BB->getName() << "')"; 270 return OS.str(); 271 } 272 273 /// \brief Helper to print the number of a MBB. 274 /// 275 /// Only used by debug logging. 276 static std::string getBlockNum(MachineBasicBlock *BB) { 277 string_ostream OS; 278 OS << "BB#" << BB->getNumber(); 279 return OS.str(); 280 } 281 #endif 282 283 /// \brief Mark a chain's successors as having one fewer preds. 284 /// 285 /// When a chain is being merged into the "placed" chain, this routine will 286 /// quickly walk the successors of each block in the chain and mark them as 287 /// having one fewer active predecessor. It also adds any successors of this 288 /// chain which reach the zero-predecessor state to the worklist passed in. 289 void MachineBlockPlacement::markChainSuccessors( 290 BlockChain &Chain, 291 MachineBasicBlock *LoopHeaderBB, 292 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 293 const BlockFilterSet *BlockFilter) { 294 // Walk all the blocks in this chain, marking their successors as having 295 // a predecessor placed. 296 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 297 CBI != CBE; ++CBI) { 298 // Add any successors for which this is the only un-placed in-loop 299 // predecessor to the worklist as a viable candidate for CFG-neutral 300 // placement. No subsequent placement of this block will violate the CFG 301 // shape, so we get to use heuristics to choose a favorable placement. 302 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 303 SE = (*CBI)->succ_end(); 304 SI != SE; ++SI) { 305 if (BlockFilter && !BlockFilter->count(*SI)) 306 continue; 307 BlockChain &SuccChain = *BlockToChain[*SI]; 308 // Disregard edges within a fixed chain, or edges to the loop header. 309 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 310 continue; 311 312 // This is a cross-chain edge that is within the loop, so decrement the 313 // loop predecessor count of the destination chain. 314 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 315 BlockWorkList.push_back(*SuccChain.begin()); 316 } 317 } 318 } 319 320 /// \brief Select the best successor for a block. 321 /// 322 /// This looks across all successors of a particular block and attempts to 323 /// select the "best" one to be the layout successor. It only considers direct 324 /// successors which also pass the block filter. It will attempt to avoid 325 /// breaking CFG structure, but cave and break such structures in the case of 326 /// very hot successor edges. 327 /// 328 /// \returns The best successor block found, or null if none are viable. 329 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 330 MachineBasicBlock *BB, BlockChain &Chain, 331 const BlockFilterSet *BlockFilter) { 332 const BranchProbability HotProb(4, 5); // 80% 333 334 MachineBasicBlock *BestSucc = nullptr; 335 // FIXME: Due to the performance of the probability and weight routines in 336 // the MBPI analysis, we manually compute probabilities using the edge 337 // weights. This is suboptimal as it means that the somewhat subtle 338 // definition of edge weight semantics is encoded here as well. We should 339 // improve the MBPI interface to efficiently support query patterns such as 340 // this. 341 uint32_t BestWeight = 0; 342 uint32_t WeightScale = 0; 343 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 344 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 345 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 346 SE = BB->succ_end(); 347 SI != SE; ++SI) { 348 if (BlockFilter && !BlockFilter->count(*SI)) 349 continue; 350 BlockChain &SuccChain = *BlockToChain[*SI]; 351 if (&SuccChain == &Chain) { 352 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); 353 continue; 354 } 355 if (*SI != *SuccChain.begin()) { 356 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); 357 continue; 358 } 359 360 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); 361 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 362 363 // Only consider successors which are either "hot", or wouldn't violate 364 // any CFG constraints. 365 if (SuccChain.LoopPredecessors != 0) { 366 if (SuccProb < HotProb) { 367 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 368 << " (prob) (CFG conflict)\n"); 369 continue; 370 } 371 372 // Make sure that a hot successor doesn't have a globally more important 373 // predecessor. 374 BlockFrequency CandidateEdgeFreq 375 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 376 bool BadCFGConflict = false; 377 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), 378 PE = (*SI)->pred_end(); 379 PI != PE; ++PI) { 380 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || 381 BlockToChain[*PI] == &Chain) 382 continue; 383 BlockFrequency PredEdgeFreq 384 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); 385 if (PredEdgeFreq >= CandidateEdgeFreq) { 386 BadCFGConflict = true; 387 break; 388 } 389 } 390 if (BadCFGConflict) { 391 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 392 << " (prob) (non-cold CFG conflict)\n"); 393 continue; 394 } 395 } 396 397 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 398 << " (prob)" 399 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 400 << "\n"); 401 if (BestSucc && BestWeight >= SuccWeight) 402 continue; 403 BestSucc = *SI; 404 BestWeight = SuccWeight; 405 } 406 return BestSucc; 407 } 408 409 /// \brief Select the best block from a worklist. 410 /// 411 /// This looks through the provided worklist as a list of candidate basic 412 /// blocks and select the most profitable one to place. The definition of 413 /// profitable only really makes sense in the context of a loop. This returns 414 /// the most frequently visited block in the worklist, which in the case of 415 /// a loop, is the one most desirable to be physically close to the rest of the 416 /// loop body in order to improve icache behavior. 417 /// 418 /// \returns The best block found, or null if none are viable. 419 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 420 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 421 const BlockFilterSet *BlockFilter) { 422 // Once we need to walk the worklist looking for a candidate, cleanup the 423 // worklist of already placed entries. 424 // FIXME: If this shows up on profiles, it could be folded (at the cost of 425 // some code complexity) into the loop below. 426 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 427 [&](MachineBasicBlock *BB) { 428 return BlockToChain.lookup(BB) == &Chain; 429 }), 430 WorkList.end()); 431 432 MachineBasicBlock *BestBlock = nullptr; 433 BlockFrequency BestFreq; 434 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 435 WBE = WorkList.end(); 436 WBI != WBE; ++WBI) { 437 BlockChain &SuccChain = *BlockToChain[*WBI]; 438 if (&SuccChain == &Chain) { 439 DEBUG(dbgs() << " " << getBlockName(*WBI) 440 << " -> Already merged!\n"); 441 continue; 442 } 443 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 444 445 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 446 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> "; 447 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 448 if (BestBlock && BestFreq >= CandidateFreq) 449 continue; 450 BestBlock = *WBI; 451 BestFreq = CandidateFreq; 452 } 453 return BestBlock; 454 } 455 456 /// \brief Retrieve the first unplaced basic block. 457 /// 458 /// This routine is called when we are unable to use the CFG to walk through 459 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 460 /// We walk through the function's blocks in order, starting from the 461 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 462 /// re-scanning the entire sequence on repeated calls to this routine. 463 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 464 MachineFunction &F, const BlockChain &PlacedChain, 465 MachineFunction::iterator &PrevUnplacedBlockIt, 466 const BlockFilterSet *BlockFilter) { 467 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 468 ++I) { 469 if (BlockFilter && !BlockFilter->count(I)) 470 continue; 471 if (BlockToChain[I] != &PlacedChain) { 472 PrevUnplacedBlockIt = I; 473 // Now select the head of the chain to which the unplaced block belongs 474 // as the block to place. This will force the entire chain to be placed, 475 // and satisfies the requirements of merging chains. 476 return *BlockToChain[I]->begin(); 477 } 478 } 479 return nullptr; 480 } 481 482 void MachineBlockPlacement::buildChain( 483 MachineBasicBlock *BB, 484 BlockChain &Chain, 485 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 486 const BlockFilterSet *BlockFilter) { 487 assert(BB); 488 assert(BlockToChain[BB] == &Chain); 489 MachineFunction &F = *BB->getParent(); 490 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 491 492 MachineBasicBlock *LoopHeaderBB = BB; 493 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 494 BB = *std::prev(Chain.end()); 495 for (;;) { 496 assert(BB); 497 assert(BlockToChain[BB] == &Chain); 498 assert(*std::prev(Chain.end()) == BB); 499 500 // Look for the best viable successor if there is one to place immediately 501 // after this block. 502 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 503 504 // If an immediate successor isn't available, look for the best viable 505 // block among those we've identified as not violating the loop's CFG at 506 // this point. This won't be a fallthrough, but it will increase locality. 507 if (!BestSucc) 508 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 509 510 if (!BestSucc) { 511 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 512 BlockFilter); 513 if (!BestSucc) 514 break; 515 516 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 517 "layout successor until the CFG reduces\n"); 518 } 519 520 // Place this block, updating the datastructures to reflect its placement. 521 BlockChain &SuccChain = *BlockToChain[BestSucc]; 522 // Zero out LoopPredecessors for the successor we're about to merge in case 523 // we selected a successor that didn't fit naturally into the CFG. 524 SuccChain.LoopPredecessors = 0; 525 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 526 << " to " << getBlockNum(BestSucc) << "\n"); 527 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 528 Chain.merge(BestSucc, &SuccChain); 529 BB = *std::prev(Chain.end()); 530 } 531 532 DEBUG(dbgs() << "Finished forming chain for header block " 533 << getBlockNum(*Chain.begin()) << "\n"); 534 } 535 536 /// \brief Find the best loop top block for layout. 537 /// 538 /// Look for a block which is strictly better than the loop header for laying 539 /// out at the top of the loop. This looks for one and only one pattern: 540 /// a latch block with no conditional exit. This block will cause a conditional 541 /// jump around it or will be the bottom of the loop if we lay it out in place, 542 /// but if it it doesn't end up at the bottom of the loop for any reason, 543 /// rotation alone won't fix it. Because such a block will always result in an 544 /// unconditional jump (for the backedge) rotating it in front of the loop 545 /// header is always profitable. 546 MachineBasicBlock * 547 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 548 const BlockFilterSet &LoopBlockSet) { 549 // Check that the header hasn't been fused with a preheader block due to 550 // crazy branches. If it has, we need to start with the header at the top to 551 // prevent pulling the preheader into the loop body. 552 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 553 if (!LoopBlockSet.count(*HeaderChain.begin())) 554 return L.getHeader(); 555 556 DEBUG(dbgs() << "Finding best loop top for: " 557 << getBlockName(L.getHeader()) << "\n"); 558 559 BlockFrequency BestPredFreq; 560 MachineBasicBlock *BestPred = nullptr; 561 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(), 562 PE = L.getHeader()->pred_end(); 563 PI != PE; ++PI) { 564 MachineBasicBlock *Pred = *PI; 565 if (!LoopBlockSet.count(Pred)) 566 continue; 567 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 568 << Pred->succ_size() << " successors, "; 569 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 570 if (Pred->succ_size() > 1) 571 continue; 572 573 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 574 if (!BestPred || PredFreq > BestPredFreq || 575 (!(PredFreq < BestPredFreq) && 576 Pred->isLayoutSuccessor(L.getHeader()))) { 577 BestPred = Pred; 578 BestPredFreq = PredFreq; 579 } 580 } 581 582 // If no direct predecessor is fine, just use the loop header. 583 if (!BestPred) 584 return L.getHeader(); 585 586 // Walk backwards through any straight line of predecessors. 587 while (BestPred->pred_size() == 1 && 588 (*BestPred->pred_begin())->succ_size() == 1 && 589 *BestPred->pred_begin() != L.getHeader()) 590 BestPred = *BestPred->pred_begin(); 591 592 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 593 return BestPred; 594 } 595 596 597 /// \brief Find the best loop exiting block for layout. 598 /// 599 /// This routine implements the logic to analyze the loop looking for the best 600 /// block to layout at the top of the loop. Typically this is done to maximize 601 /// fallthrough opportunities. 602 MachineBasicBlock * 603 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, 604 MachineLoop &L, 605 const BlockFilterSet &LoopBlockSet) { 606 // We don't want to layout the loop linearly in all cases. If the loop header 607 // is just a normal basic block in the loop, we want to look for what block 608 // within the loop is the best one to layout at the top. However, if the loop 609 // header has be pre-merged into a chain due to predecessors not having 610 // analyzable branches, *and* the predecessor it is merged with is *not* part 611 // of the loop, rotating the header into the middle of the loop will create 612 // a non-contiguous range of blocks which is Very Bad. So start with the 613 // header and only rotate if safe. 614 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 615 if (!LoopBlockSet.count(*HeaderChain.begin())) 616 return nullptr; 617 618 BlockFrequency BestExitEdgeFreq; 619 unsigned BestExitLoopDepth = 0; 620 MachineBasicBlock *ExitingBB = nullptr; 621 // If there are exits to outer loops, loop rotation can severely limit 622 // fallthrough opportunites unless it selects such an exit. Keep a set of 623 // blocks where rotating to exit with that block will reach an outer loop. 624 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 625 626 DEBUG(dbgs() << "Finding best loop exit for: " 627 << getBlockName(L.getHeader()) << "\n"); 628 for (MachineLoop::block_iterator I = L.block_begin(), 629 E = L.block_end(); 630 I != E; ++I) { 631 BlockChain &Chain = *BlockToChain[*I]; 632 // Ensure that this block is at the end of a chain; otherwise it could be 633 // mid-way through an inner loop or a successor of an analyzable branch. 634 if (*I != *std::prev(Chain.end())) 635 continue; 636 637 // Now walk the successors. We need to establish whether this has a viable 638 // exiting successor and whether it has a viable non-exiting successor. 639 // We store the old exiting state and restore it if a viable looping 640 // successor isn't found. 641 MachineBasicBlock *OldExitingBB = ExitingBB; 642 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 643 bool HasLoopingSucc = false; 644 // FIXME: Due to the performance of the probability and weight routines in 645 // the MBPI analysis, we use the internal weights and manually compute the 646 // probabilities to avoid quadratic behavior. 647 uint32_t WeightScale = 0; 648 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 649 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 650 SE = (*I)->succ_end(); 651 SI != SE; ++SI) { 652 if ((*SI)->isLandingPad()) 653 continue; 654 if (*SI == *I) 655 continue; 656 BlockChain &SuccChain = *BlockToChain[*SI]; 657 // Don't split chains, either this chain or the successor's chain. 658 if (&Chain == &SuccChain) { 659 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 660 << getBlockName(*SI) << " (chain conflict)\n"); 661 continue; 662 } 663 664 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 665 if (LoopBlockSet.count(*SI)) { 666 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 667 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 668 HasLoopingSucc = true; 669 continue; 670 } 671 672 unsigned SuccLoopDepth = 0; 673 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) { 674 SuccLoopDepth = ExitLoop->getLoopDepth(); 675 if (ExitLoop->contains(&L)) 676 BlocksExitingToOuterLoop.insert(*I); 677 } 678 679 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 680 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 681 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 682 << getBlockName(*SI) << " [L:" << SuccLoopDepth 683 << "] ("; 684 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 685 // Note that we bias this toward an existing layout successor to retain 686 // incoming order in the absence of better information. The exit must have 687 // a frequency higher than the current exit before we consider breaking 688 // the layout. 689 BranchProbability Bias(100 - ExitBlockBias, 100); 690 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth || 691 ExitEdgeFreq > BestExitEdgeFreq || 692 ((*I)->isLayoutSuccessor(*SI) && 693 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 694 BestExitEdgeFreq = ExitEdgeFreq; 695 ExitingBB = *I; 696 } 697 } 698 699 // Restore the old exiting state, no viable looping successor was found. 700 if (!HasLoopingSucc) { 701 ExitingBB = OldExitingBB; 702 BestExitEdgeFreq = OldBestExitEdgeFreq; 703 continue; 704 } 705 } 706 // Without a candidate exiting block or with only a single block in the 707 // loop, just use the loop header to layout the loop. 708 if (!ExitingBB || L.getNumBlocks() == 1) 709 return nullptr; 710 711 // Also, if we have exit blocks which lead to outer loops but didn't select 712 // one of them as the exiting block we are rotating toward, disable loop 713 // rotation altogether. 714 if (!BlocksExitingToOuterLoop.empty() && 715 !BlocksExitingToOuterLoop.count(ExitingBB)) 716 return nullptr; 717 718 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 719 return ExitingBB; 720 } 721 722 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 723 /// 724 /// Once we have built a chain, try to rotate it to line up the hot exit block 725 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 726 /// branches. For example, if the loop has fallthrough into its header and out 727 /// of its bottom already, don't rotate it. 728 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 729 MachineBasicBlock *ExitingBB, 730 const BlockFilterSet &LoopBlockSet) { 731 if (!ExitingBB) 732 return; 733 734 MachineBasicBlock *Top = *LoopChain.begin(); 735 bool ViableTopFallthrough = false; 736 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(), 737 PE = Top->pred_end(); 738 PI != PE; ++PI) { 739 BlockChain *PredChain = BlockToChain[*PI]; 740 if (!LoopBlockSet.count(*PI) && 741 (!PredChain || *PI == *std::prev(PredChain->end()))) { 742 ViableTopFallthrough = true; 743 break; 744 } 745 } 746 747 // If the header has viable fallthrough, check whether the current loop 748 // bottom is a viable exiting block. If so, bail out as rotating will 749 // introduce an unnecessary branch. 750 if (ViableTopFallthrough) { 751 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 752 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(), 753 SE = Bottom->succ_end(); 754 SI != SE; ++SI) { 755 BlockChain *SuccChain = BlockToChain[*SI]; 756 if (!LoopBlockSet.count(*SI) && 757 (!SuccChain || *SI == *SuccChain->begin())) 758 return; 759 } 760 } 761 762 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(), 763 ExitingBB); 764 if (ExitIt == LoopChain.end()) 765 return; 766 767 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 768 } 769 770 /// \brief Forms basic block chains from the natural loop structures. 771 /// 772 /// These chains are designed to preserve the existing *structure* of the code 773 /// as much as possible. We can then stitch the chains together in a way which 774 /// both preserves the topological structure and minimizes taken conditional 775 /// branches. 776 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 777 MachineLoop &L) { 778 // First recurse through any nested loops, building chains for those inner 779 // loops. 780 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 781 buildLoopChains(F, **LI); 782 783 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 784 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 785 786 // First check to see if there is an obviously preferable top block for the 787 // loop. This will default to the header, but may end up as one of the 788 // predecessors to the header if there is one which will result in strictly 789 // fewer branches in the loop body. 790 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 791 792 // If we selected just the header for the loop top, look for a potentially 793 // profitable exit block in the event that rotating the loop can eliminate 794 // branches by placing an exit edge at the bottom. 795 MachineBasicBlock *ExitingBB = nullptr; 796 if (LoopTop == L.getHeader()) 797 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 798 799 BlockChain &LoopChain = *BlockToChain[LoopTop]; 800 801 // FIXME: This is a really lame way of walking the chains in the loop: we 802 // walk the blocks, and use a set to prevent visiting a particular chain 803 // twice. 804 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 805 assert(LoopChain.LoopPredecessors == 0); 806 UpdatedPreds.insert(&LoopChain); 807 for (MachineLoop::block_iterator BI = L.block_begin(), 808 BE = L.block_end(); 809 BI != BE; ++BI) { 810 BlockChain &Chain = *BlockToChain[*BI]; 811 if (!UpdatedPreds.insert(&Chain)) 812 continue; 813 814 assert(Chain.LoopPredecessors == 0); 815 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 816 BCI != BCE; ++BCI) { 817 assert(BlockToChain[*BCI] == &Chain); 818 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 819 PE = (*BCI)->pred_end(); 820 PI != PE; ++PI) { 821 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 822 continue; 823 ++Chain.LoopPredecessors; 824 } 825 } 826 827 if (Chain.LoopPredecessors == 0) 828 BlockWorkList.push_back(*Chain.begin()); 829 } 830 831 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 832 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 833 834 DEBUG({ 835 // Crash at the end so we get all of the debugging output first. 836 bool BadLoop = false; 837 if (LoopChain.LoopPredecessors) { 838 BadLoop = true; 839 dbgs() << "Loop chain contains a block without its preds placed!\n" 840 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 841 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 842 } 843 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 844 BCI != BCE; ++BCI) { 845 dbgs() << " ... " << getBlockName(*BCI) << "\n"; 846 if (!LoopBlockSet.erase(*BCI)) { 847 // We don't mark the loop as bad here because there are real situations 848 // where this can occur. For example, with an unanalyzable fallthrough 849 // from a loop block to a non-loop block or vice versa. 850 dbgs() << "Loop chain contains a block not contained by the loop!\n" 851 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 852 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 853 << " Bad block: " << getBlockName(*BCI) << "\n"; 854 } 855 } 856 857 if (!LoopBlockSet.empty()) { 858 BadLoop = true; 859 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 860 LBE = LoopBlockSet.end(); 861 LBI != LBE; ++LBI) 862 dbgs() << "Loop contains blocks never placed into a chain!\n" 863 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 864 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 865 << " Bad block: " << getBlockName(*LBI) << "\n"; 866 } 867 assert(!BadLoop && "Detected problems with the placement of this loop."); 868 }); 869 } 870 871 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 872 // Ensure that every BB in the function has an associated chain to simplify 873 // the assumptions of the remaining algorithm. 874 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 875 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 876 MachineBasicBlock *BB = FI; 877 BlockChain *Chain 878 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 879 // Also, merge any blocks which we cannot reason about and must preserve 880 // the exact fallthrough behavior for. 881 for (;;) { 882 Cond.clear(); 883 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 884 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 885 break; 886 887 MachineFunction::iterator NextFI(std::next(FI)); 888 MachineBasicBlock *NextBB = NextFI; 889 // Ensure that the layout successor is a viable block, as we know that 890 // fallthrough is a possibility. 891 assert(NextFI != FE && "Can't fallthrough past the last block."); 892 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 893 << getBlockName(BB) << " -> " << getBlockName(NextBB) 894 << "\n"); 895 Chain->merge(NextBB, nullptr); 896 FI = NextFI; 897 BB = NextBB; 898 } 899 } 900 901 // Build any loop-based chains. 902 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 903 ++LI) 904 buildLoopChains(F, **LI); 905 906 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 907 908 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 909 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 910 MachineBasicBlock *BB = &*FI; 911 BlockChain &Chain = *BlockToChain[BB]; 912 if (!UpdatedPreds.insert(&Chain)) 913 continue; 914 915 assert(Chain.LoopPredecessors == 0); 916 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 917 BCI != BCE; ++BCI) { 918 assert(BlockToChain[*BCI] == &Chain); 919 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 920 PE = (*BCI)->pred_end(); 921 PI != PE; ++PI) { 922 if (BlockToChain[*PI] == &Chain) 923 continue; 924 ++Chain.LoopPredecessors; 925 } 926 } 927 928 if (Chain.LoopPredecessors == 0) 929 BlockWorkList.push_back(*Chain.begin()); 930 } 931 932 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 933 buildChain(&F.front(), FunctionChain, BlockWorkList); 934 935 #ifndef NDEBUG 936 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 937 #endif 938 DEBUG({ 939 // Crash at the end so we get all of the debugging output first. 940 bool BadFunc = false; 941 FunctionBlockSetType FunctionBlockSet; 942 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 943 FunctionBlockSet.insert(FI); 944 945 for (BlockChain::iterator BCI = FunctionChain.begin(), 946 BCE = FunctionChain.end(); 947 BCI != BCE; ++BCI) 948 if (!FunctionBlockSet.erase(*BCI)) { 949 BadFunc = true; 950 dbgs() << "Function chain contains a block not in the function!\n" 951 << " Bad block: " << getBlockName(*BCI) << "\n"; 952 } 953 954 if (!FunctionBlockSet.empty()) { 955 BadFunc = true; 956 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 957 FBE = FunctionBlockSet.end(); 958 FBI != FBE; ++FBI) 959 dbgs() << "Function contains blocks never placed into a chain!\n" 960 << " Bad block: " << getBlockName(*FBI) << "\n"; 961 } 962 assert(!BadFunc && "Detected problems with the block placement."); 963 }); 964 965 // Splice the blocks into place. 966 MachineFunction::iterator InsertPos = F.begin(); 967 for (BlockChain::iterator BI = FunctionChain.begin(), 968 BE = FunctionChain.end(); 969 BI != BE; ++BI) { 970 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 971 : " ... ") 972 << getBlockName(*BI) << "\n"); 973 if (InsertPos != MachineFunction::iterator(*BI)) 974 F.splice(InsertPos, *BI); 975 else 976 ++InsertPos; 977 978 // Update the terminator of the previous block. 979 if (BI == FunctionChain.begin()) 980 continue; 981 MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(*BI)); 982 983 // FIXME: It would be awesome of updateTerminator would just return rather 984 // than assert when the branch cannot be analyzed in order to remove this 985 // boiler plate. 986 Cond.clear(); 987 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 988 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 989 // The "PrevBB" is not yet updated to reflect current code layout, so, 990 // o. it may fall-through to a block without explict "goto" instruction 991 // before layout, and no longer fall-through it after layout; or 992 // o. just opposite. 993 // 994 // AnalyzeBranch() may return erroneous value for FBB when these two 995 // situations take place. For the first scenario FBB is mistakenly set 996 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 997 // is mistakenly pointing to "*BI". 998 // 999 bool needUpdateBr = true; 1000 if (!Cond.empty() && (!FBB || FBB == *BI)) { 1001 PrevBB->updateTerminator(); 1002 needUpdateBr = false; 1003 Cond.clear(); 1004 TBB = FBB = nullptr; 1005 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1006 // FIXME: This should never take place. 1007 TBB = FBB = nullptr; 1008 } 1009 } 1010 1011 // If PrevBB has a two-way branch, try to re-order the branches 1012 // such that we branch to the successor with higher weight first. 1013 if (TBB && !Cond.empty() && FBB && 1014 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1015 !TII->ReverseBranchCondition(Cond)) { 1016 DEBUG(dbgs() << "Reverse order of the two branches: " 1017 << getBlockName(PrevBB) << "\n"); 1018 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1019 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1020 DebugLoc dl; // FIXME: this is nowhere 1021 TII->RemoveBranch(*PrevBB); 1022 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1023 needUpdateBr = true; 1024 } 1025 if (needUpdateBr) 1026 PrevBB->updateTerminator(); 1027 } 1028 } 1029 1030 // Fixup the last block. 1031 Cond.clear(); 1032 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1033 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1034 F.back().updateTerminator(); 1035 1036 // Walk through the backedges of the function now that we have fully laid out 1037 // the basic blocks and align the destination of each backedge. We don't rely 1038 // exclusively on the loop info here so that we can align backedges in 1039 // unnatural CFGs and backedges that were introduced purely because of the 1040 // loop rotations done during this layout pass. 1041 if (F.getFunction()->getAttributes(). 1042 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize)) 1043 return; 1044 unsigned Align = TLI->getPrefLoopAlignment(); 1045 if (!Align) 1046 return; // Don't care about loop alignment. 1047 if (FunctionChain.begin() == FunctionChain.end()) 1048 return; // Empty chain. 1049 1050 const BranchProbability ColdProb(1, 5); // 20% 1051 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 1052 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1053 for (BlockChain::iterator BI = std::next(FunctionChain.begin()), 1054 BE = FunctionChain.end(); 1055 BI != BE; ++BI) { 1056 // Don't align non-looping basic blocks. These are unlikely to execute 1057 // enough times to matter in practice. Note that we'll still handle 1058 // unnatural CFGs inside of a natural outer loop (the common case) and 1059 // rotated loops. 1060 MachineLoop *L = MLI->getLoopFor(*BI); 1061 if (!L) 1062 continue; 1063 1064 // If the block is cold relative to the function entry don't waste space 1065 // aligning it. 1066 BlockFrequency Freq = MBFI->getBlockFreq(*BI); 1067 if (Freq < WeightedEntryFreq) 1068 continue; 1069 1070 // If the block is cold relative to its loop header, don't align it 1071 // regardless of what edges into the block exist. 1072 MachineBasicBlock *LoopHeader = L->getHeader(); 1073 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1074 if (Freq < (LoopHeaderFreq * ColdProb)) 1075 continue; 1076 1077 // Check for the existence of a non-layout predecessor which would benefit 1078 // from aligning this block. 1079 MachineBasicBlock *LayoutPred = *std::prev(BI); 1080 1081 // Force alignment if all the predecessors are jumps. We already checked 1082 // that the block isn't cold above. 1083 if (!LayoutPred->isSuccessor(*BI)) { 1084 (*BI)->setAlignment(Align); 1085 continue; 1086 } 1087 1088 // Align this block if the layout predecessor's edge into this block is 1089 // cold relative to the block. When this is true, other predecessors make up 1090 // all of the hot entries into the block and thus alignment is likely to be 1091 // important. 1092 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI); 1093 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1094 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1095 (*BI)->setAlignment(Align); 1096 } 1097 } 1098 1099 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1100 // Check for single-block functions and skip them. 1101 if (std::next(F.begin()) == F.end()) 1102 return false; 1103 1104 if (skipOptnoneFunction(*F.getFunction())) 1105 return false; 1106 1107 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1108 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1109 MLI = &getAnalysis<MachineLoopInfo>(); 1110 TII = F.getTarget().getInstrInfo(); 1111 TLI = F.getTarget().getTargetLowering(); 1112 assert(BlockToChain.empty()); 1113 1114 buildCFGChains(F); 1115 1116 BlockToChain.clear(); 1117 ChainAllocator.DestroyAll(); 1118 1119 if (AlignAllBlock) 1120 // Align all of the blocks in the function to a specific alignment. 1121 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 1122 FI != FE; ++FI) 1123 FI->setAlignment(AlignAllBlock); 1124 1125 // We always return true as we have no way to track whether the final order 1126 // differs from the original order. 1127 return true; 1128 } 1129 1130 namespace { 1131 /// \brief A pass to compute block placement statistics. 1132 /// 1133 /// A separate pass to compute interesting statistics for evaluating block 1134 /// placement. This is separate from the actual placement pass so that they can 1135 /// be computed in the absence of any placement transformations or when using 1136 /// alternative placement strategies. 1137 class MachineBlockPlacementStats : public MachineFunctionPass { 1138 /// \brief A handle to the branch probability pass. 1139 const MachineBranchProbabilityInfo *MBPI; 1140 1141 /// \brief A handle to the function-wide block frequency pass. 1142 const MachineBlockFrequencyInfo *MBFI; 1143 1144 public: 1145 static char ID; // Pass identification, replacement for typeid 1146 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1147 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1148 } 1149 1150 bool runOnMachineFunction(MachineFunction &F) override; 1151 1152 void getAnalysisUsage(AnalysisUsage &AU) const override { 1153 AU.addRequired<MachineBranchProbabilityInfo>(); 1154 AU.addRequired<MachineBlockFrequencyInfo>(); 1155 AU.setPreservesAll(); 1156 MachineFunctionPass::getAnalysisUsage(AU); 1157 } 1158 }; 1159 } 1160 1161 char MachineBlockPlacementStats::ID = 0; 1162 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1163 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1164 "Basic Block Placement Stats", false, false) 1165 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1166 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1167 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1168 "Basic Block Placement Stats", false, false) 1169 1170 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1171 // Check for single-block functions and skip them. 1172 if (std::next(F.begin()) == F.end()) 1173 return false; 1174 1175 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1176 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1177 1178 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 1179 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 1180 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 1181 : NumUncondBranches; 1182 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 1183 : UncondBranchTakenFreq; 1184 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 1185 SE = I->succ_end(); 1186 SI != SE; ++SI) { 1187 // Skip if this successor is a fallthrough. 1188 if (I->isLayoutSuccessor(*SI)) 1189 continue; 1190 1191 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 1192 ++NumBranches; 1193 BranchTakenFreq += EdgeFreq.getFrequency(); 1194 } 1195 } 1196 1197 return false; 1198 } 1199 1200