1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #define DEBUG_TYPE "block-placement2" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 36 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include <algorithm> 47 using namespace llvm; 48 49 STATISTIC(NumCondBranches, "Number of conditional branches"); 50 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 51 STATISTIC(CondBranchTakenFreq, 52 "Potential frequency of taking conditional branches"); 53 STATISTIC(UncondBranchTakenFreq, 54 "Potential frequency of taking unconditional branches"); 55 56 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 57 cl::desc("Force the alignment of all " 58 "blocks in the function."), 59 cl::init(0), cl::Hidden); 60 61 // FIXME: Find a good default for this flag and remove the flag. 62 static cl::opt<unsigned> 63 ExitBlockBias("block-placement-exit-block-bias", 64 cl::desc("Block frequency percentage a loop exit block needs " 65 "over the original exit to be considered the new exit."), 66 cl::init(0), cl::Hidden); 67 68 namespace { 69 class BlockChain; 70 /// \brief Type for our function-wide basic block -> block chain mapping. 71 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 72 } 73 74 namespace { 75 /// \brief A chain of blocks which will be laid out contiguously. 76 /// 77 /// This is the datastructure representing a chain of consecutive blocks that 78 /// are profitable to layout together in order to maximize fallthrough 79 /// probabilities and code locality. We also can use a block chain to represent 80 /// a sequence of basic blocks which have some external (correctness) 81 /// requirement for sequential layout. 82 /// 83 /// Chains can be built around a single basic block and can be merged to grow 84 /// them. They participate in a block-to-chain mapping, which is updated 85 /// automatically as chains are merged together. 86 class BlockChain { 87 /// \brief The sequence of blocks belonging to this chain. 88 /// 89 /// This is the sequence of blocks for a particular chain. These will be laid 90 /// out in-order within the function. 91 SmallVector<MachineBasicBlock *, 4> Blocks; 92 93 /// \brief A handle to the function-wide basic block to block chain mapping. 94 /// 95 /// This is retained in each block chain to simplify the computation of child 96 /// block chains for SCC-formation and iteration. We store the edges to child 97 /// basic blocks, and map them back to their associated chains using this 98 /// structure. 99 BlockToChainMapType &BlockToChain; 100 101 public: 102 /// \brief Construct a new BlockChain. 103 /// 104 /// This builds a new block chain representing a single basic block in the 105 /// function. It also registers itself as the chain that block participates 106 /// in with the BlockToChain mapping. 107 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 108 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 109 assert(BB && "Cannot create a chain with a null basic block"); 110 BlockToChain[BB] = this; 111 } 112 113 /// \brief Iterator over blocks within the chain. 114 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 115 116 /// \brief Beginning of blocks within the chain. 117 iterator begin() { return Blocks.begin(); } 118 119 /// \brief End of blocks within the chain. 120 iterator end() { return Blocks.end(); } 121 122 /// \brief Merge a block chain into this one. 123 /// 124 /// This routine merges a block chain into this one. It takes care of forming 125 /// a contiguous sequence of basic blocks, updating the edge list, and 126 /// updating the block -> chain mapping. It does not free or tear down the 127 /// old chain, but the old chain's block list is no longer valid. 128 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 129 assert(BB); 130 assert(!Blocks.empty()); 131 132 // Fast path in case we don't have a chain already. 133 if (!Chain) { 134 assert(!BlockToChain[BB]); 135 Blocks.push_back(BB); 136 BlockToChain[BB] = this; 137 return; 138 } 139 140 assert(BB == *Chain->begin()); 141 assert(Chain->begin() != Chain->end()); 142 143 // Update the incoming blocks to point to this chain, and add them to the 144 // chain structure. 145 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 146 BI != BE; ++BI) { 147 Blocks.push_back(*BI); 148 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 149 BlockToChain[*BI] = this; 150 } 151 } 152 153 #ifndef NDEBUG 154 /// \brief Dump the blocks in this chain. 155 LLVM_DUMP_METHOD void dump() { 156 for (iterator I = begin(), E = end(); I != E; ++I) 157 (*I)->dump(); 158 } 159 #endif // NDEBUG 160 161 /// \brief Count of predecessors within the loop currently being processed. 162 /// 163 /// This count is updated at each loop we process to represent the number of 164 /// in-loop predecessors of this chain. 165 unsigned LoopPredecessors; 166 }; 167 } 168 169 namespace { 170 class MachineBlockPlacement : public MachineFunctionPass { 171 /// \brief A typedef for a block filter set. 172 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 173 174 /// \brief A handle to the branch probability pass. 175 const MachineBranchProbabilityInfo *MBPI; 176 177 /// \brief A handle to the function-wide block frequency pass. 178 const MachineBlockFrequencyInfo *MBFI; 179 180 /// \brief A handle to the loop info. 181 const MachineLoopInfo *MLI; 182 183 /// \brief A handle to the target's instruction info. 184 const TargetInstrInfo *TII; 185 186 /// \brief A handle to the target's lowering info. 187 const TargetLoweringBase *TLI; 188 189 /// \brief Allocator and owner of BlockChain structures. 190 /// 191 /// We build BlockChains lazily while processing the loop structure of 192 /// a function. To reduce malloc traffic, we allocate them using this 193 /// slab-like allocator, and destroy them after the pass completes. An 194 /// important guarantee is that this allocator produces stable pointers to 195 /// the chains. 196 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 197 198 /// \brief Function wide BasicBlock to BlockChain mapping. 199 /// 200 /// This mapping allows efficiently moving from any given basic block to the 201 /// BlockChain it participates in, if any. We use it to, among other things, 202 /// allow implicitly defining edges between chains as the existing edges 203 /// between basic blocks. 204 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 205 206 void markChainSuccessors(BlockChain &Chain, 207 MachineBasicBlock *LoopHeaderBB, 208 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 209 const BlockFilterSet *BlockFilter = 0); 210 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 211 BlockChain &Chain, 212 const BlockFilterSet *BlockFilter); 213 MachineBasicBlock *selectBestCandidateBlock( 214 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 215 const BlockFilterSet *BlockFilter); 216 MachineBasicBlock *getFirstUnplacedBlock( 217 MachineFunction &F, 218 const BlockChain &PlacedChain, 219 MachineFunction::iterator &PrevUnplacedBlockIt, 220 const BlockFilterSet *BlockFilter); 221 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 222 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 223 const BlockFilterSet *BlockFilter = 0); 224 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 225 const BlockFilterSet &LoopBlockSet); 226 MachineBasicBlock *findBestLoopExit(MachineFunction &F, 227 MachineLoop &L, 228 const BlockFilterSet &LoopBlockSet); 229 void buildLoopChains(MachineFunction &F, MachineLoop &L); 230 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 231 const BlockFilterSet &LoopBlockSet); 232 void buildCFGChains(MachineFunction &F); 233 234 public: 235 static char ID; // Pass identification, replacement for typeid 236 MachineBlockPlacement() : MachineFunctionPass(ID) { 237 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 238 } 239 240 bool runOnMachineFunction(MachineFunction &F); 241 242 void getAnalysisUsage(AnalysisUsage &AU) const { 243 AU.addRequired<MachineBranchProbabilityInfo>(); 244 AU.addRequired<MachineBlockFrequencyInfo>(); 245 AU.addRequired<MachineLoopInfo>(); 246 MachineFunctionPass::getAnalysisUsage(AU); 247 } 248 }; 249 } 250 251 char MachineBlockPlacement::ID = 0; 252 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 253 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 254 "Branch Probability Basic Block Placement", false, false) 255 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 256 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 257 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 258 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 259 "Branch Probability Basic Block Placement", false, false) 260 261 #ifndef NDEBUG 262 /// \brief Helper to print the name of a MBB. 263 /// 264 /// Only used by debug logging. 265 static std::string getBlockName(MachineBasicBlock *BB) { 266 std::string Result; 267 raw_string_ostream OS(Result); 268 OS << "BB#" << BB->getNumber() 269 << " (derived from LLVM BB '" << BB->getName() << "')"; 270 OS.flush(); 271 return Result; 272 } 273 274 /// \brief Helper to print the number of a MBB. 275 /// 276 /// Only used by debug logging. 277 static std::string getBlockNum(MachineBasicBlock *BB) { 278 std::string Result; 279 raw_string_ostream OS(Result); 280 OS << "BB#" << BB->getNumber(); 281 OS.flush(); 282 return Result; 283 } 284 #endif 285 286 /// \brief Mark a chain's successors as having one fewer preds. 287 /// 288 /// When a chain is being merged into the "placed" chain, this routine will 289 /// quickly walk the successors of each block in the chain and mark them as 290 /// having one fewer active predecessor. It also adds any successors of this 291 /// chain which reach the zero-predecessor state to the worklist passed in. 292 void MachineBlockPlacement::markChainSuccessors( 293 BlockChain &Chain, 294 MachineBasicBlock *LoopHeaderBB, 295 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 296 const BlockFilterSet *BlockFilter) { 297 // Walk all the blocks in this chain, marking their successors as having 298 // a predecessor placed. 299 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 300 CBI != CBE; ++CBI) { 301 // Add any successors for which this is the only un-placed in-loop 302 // predecessor to the worklist as a viable candidate for CFG-neutral 303 // placement. No subsequent placement of this block will violate the CFG 304 // shape, so we get to use heuristics to choose a favorable placement. 305 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 306 SE = (*CBI)->succ_end(); 307 SI != SE; ++SI) { 308 if (BlockFilter && !BlockFilter->count(*SI)) 309 continue; 310 BlockChain &SuccChain = *BlockToChain[*SI]; 311 // Disregard edges within a fixed chain, or edges to the loop header. 312 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 313 continue; 314 315 // This is a cross-chain edge that is within the loop, so decrement the 316 // loop predecessor count of the destination chain. 317 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 318 BlockWorkList.push_back(*SuccChain.begin()); 319 } 320 } 321 } 322 323 /// \brief Select the best successor for a block. 324 /// 325 /// This looks across all successors of a particular block and attempts to 326 /// select the "best" one to be the layout successor. It only considers direct 327 /// successors which also pass the block filter. It will attempt to avoid 328 /// breaking CFG structure, but cave and break such structures in the case of 329 /// very hot successor edges. 330 /// 331 /// \returns The best successor block found, or null if none are viable. 332 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 333 MachineBasicBlock *BB, BlockChain &Chain, 334 const BlockFilterSet *BlockFilter) { 335 const BranchProbability HotProb(4, 5); // 80% 336 337 MachineBasicBlock *BestSucc = 0; 338 // FIXME: Due to the performance of the probability and weight routines in 339 // the MBPI analysis, we manually compute probabilities using the edge 340 // weights. This is suboptimal as it means that the somewhat subtle 341 // definition of edge weight semantics is encoded here as well. We should 342 // improve the MBPI interface to efficiently support query patterns such as 343 // this. 344 uint32_t BestWeight = 0; 345 uint32_t WeightScale = 0; 346 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 347 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 348 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 349 SE = BB->succ_end(); 350 SI != SE; ++SI) { 351 if (BlockFilter && !BlockFilter->count(*SI)) 352 continue; 353 BlockChain &SuccChain = *BlockToChain[*SI]; 354 if (&SuccChain == &Chain) { 355 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); 356 continue; 357 } 358 if (*SI != *SuccChain.begin()) { 359 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); 360 continue; 361 } 362 363 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); 364 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 365 366 // Only consider successors which are either "hot", or wouldn't violate 367 // any CFG constraints. 368 if (SuccChain.LoopPredecessors != 0) { 369 if (SuccProb < HotProb) { 370 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 371 << " (prob) (CFG conflict)\n"); 372 continue; 373 } 374 375 // Make sure that a hot successor doesn't have a globally more important 376 // predecessor. 377 BlockFrequency CandidateEdgeFreq 378 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 379 bool BadCFGConflict = false; 380 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), 381 PE = (*SI)->pred_end(); 382 PI != PE; ++PI) { 383 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || 384 BlockToChain[*PI] == &Chain) 385 continue; 386 BlockFrequency PredEdgeFreq 387 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); 388 if (PredEdgeFreq >= CandidateEdgeFreq) { 389 BadCFGConflict = true; 390 break; 391 } 392 } 393 if (BadCFGConflict) { 394 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 395 << " (prob) (non-cold CFG conflict)\n"); 396 continue; 397 } 398 } 399 400 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 401 << " (prob)" 402 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 403 << "\n"); 404 if (BestSucc && BestWeight >= SuccWeight) 405 continue; 406 BestSucc = *SI; 407 BestWeight = SuccWeight; 408 } 409 return BestSucc; 410 } 411 412 namespace { 413 /// \brief Predicate struct to detect blocks already placed. 414 class IsBlockPlaced { 415 const BlockChain &PlacedChain; 416 const BlockToChainMapType &BlockToChain; 417 418 public: 419 IsBlockPlaced(const BlockChain &PlacedChain, 420 const BlockToChainMapType &BlockToChain) 421 : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {} 422 423 bool operator()(MachineBasicBlock *BB) const { 424 return BlockToChain.lookup(BB) == &PlacedChain; 425 } 426 }; 427 } 428 429 /// \brief Select the best block from a worklist. 430 /// 431 /// This looks through the provided worklist as a list of candidate basic 432 /// blocks and select the most profitable one to place. The definition of 433 /// profitable only really makes sense in the context of a loop. This returns 434 /// the most frequently visited block in the worklist, which in the case of 435 /// a loop, is the one most desirable to be physically close to the rest of the 436 /// loop body in order to improve icache behavior. 437 /// 438 /// \returns The best block found, or null if none are viable. 439 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 440 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 441 const BlockFilterSet *BlockFilter) { 442 // Once we need to walk the worklist looking for a candidate, cleanup the 443 // worklist of already placed entries. 444 // FIXME: If this shows up on profiles, it could be folded (at the cost of 445 // some code complexity) into the loop below. 446 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 447 IsBlockPlaced(Chain, BlockToChain)), 448 WorkList.end()); 449 450 MachineBasicBlock *BestBlock = 0; 451 BlockFrequency BestFreq; 452 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 453 WBE = WorkList.end(); 454 WBI != WBE; ++WBI) { 455 BlockChain &SuccChain = *BlockToChain[*WBI]; 456 if (&SuccChain == &Chain) { 457 DEBUG(dbgs() << " " << getBlockName(*WBI) 458 << " -> Already merged!\n"); 459 continue; 460 } 461 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 462 463 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 464 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> "; 465 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 466 if (BestBlock && BestFreq >= CandidateFreq) 467 continue; 468 BestBlock = *WBI; 469 BestFreq = CandidateFreq; 470 } 471 return BestBlock; 472 } 473 474 /// \brief Retrieve the first unplaced basic block. 475 /// 476 /// This routine is called when we are unable to use the CFG to walk through 477 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 478 /// We walk through the function's blocks in order, starting from the 479 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 480 /// re-scanning the entire sequence on repeated calls to this routine. 481 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 482 MachineFunction &F, const BlockChain &PlacedChain, 483 MachineFunction::iterator &PrevUnplacedBlockIt, 484 const BlockFilterSet *BlockFilter) { 485 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 486 ++I) { 487 if (BlockFilter && !BlockFilter->count(I)) 488 continue; 489 if (BlockToChain[I] != &PlacedChain) { 490 PrevUnplacedBlockIt = I; 491 // Now select the head of the chain to which the unplaced block belongs 492 // as the block to place. This will force the entire chain to be placed, 493 // and satisfies the requirements of merging chains. 494 return *BlockToChain[I]->begin(); 495 } 496 } 497 return 0; 498 } 499 500 void MachineBlockPlacement::buildChain( 501 MachineBasicBlock *BB, 502 BlockChain &Chain, 503 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 504 const BlockFilterSet *BlockFilter) { 505 assert(BB); 506 assert(BlockToChain[BB] == &Chain); 507 MachineFunction &F = *BB->getParent(); 508 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 509 510 MachineBasicBlock *LoopHeaderBB = BB; 511 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 512 BB = *llvm::prior(Chain.end()); 513 for (;;) { 514 assert(BB); 515 assert(BlockToChain[BB] == &Chain); 516 assert(*llvm::prior(Chain.end()) == BB); 517 518 // Look for the best viable successor if there is one to place immediately 519 // after this block. 520 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 521 522 // If an immediate successor isn't available, look for the best viable 523 // block among those we've identified as not violating the loop's CFG at 524 // this point. This won't be a fallthrough, but it will increase locality. 525 if (!BestSucc) 526 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 527 528 if (!BestSucc) { 529 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 530 BlockFilter); 531 if (!BestSucc) 532 break; 533 534 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 535 "layout successor until the CFG reduces\n"); 536 } 537 538 // Place this block, updating the datastructures to reflect its placement. 539 BlockChain &SuccChain = *BlockToChain[BestSucc]; 540 // Zero out LoopPredecessors for the successor we're about to merge in case 541 // we selected a successor that didn't fit naturally into the CFG. 542 SuccChain.LoopPredecessors = 0; 543 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 544 << " to " << getBlockNum(BestSucc) << "\n"); 545 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 546 Chain.merge(BestSucc, &SuccChain); 547 BB = *llvm::prior(Chain.end()); 548 } 549 550 DEBUG(dbgs() << "Finished forming chain for header block " 551 << getBlockNum(*Chain.begin()) << "\n"); 552 } 553 554 /// \brief Find the best loop top block for layout. 555 /// 556 /// Look for a block which is strictly better than the loop header for laying 557 /// out at the top of the loop. This looks for one and only one pattern: 558 /// a latch block with no conditional exit. This block will cause a conditional 559 /// jump around it or will be the bottom of the loop if we lay it out in place, 560 /// but if it it doesn't end up at the bottom of the loop for any reason, 561 /// rotation alone won't fix it. Because such a block will always result in an 562 /// unconditional jump (for the backedge) rotating it in front of the loop 563 /// header is always profitable. 564 MachineBasicBlock * 565 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 566 const BlockFilterSet &LoopBlockSet) { 567 // Check that the header hasn't been fused with a preheader block due to 568 // crazy branches. If it has, we need to start with the header at the top to 569 // prevent pulling the preheader into the loop body. 570 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 571 if (!LoopBlockSet.count(*HeaderChain.begin())) 572 return L.getHeader(); 573 574 DEBUG(dbgs() << "Finding best loop top for: " 575 << getBlockName(L.getHeader()) << "\n"); 576 577 BlockFrequency BestPredFreq; 578 MachineBasicBlock *BestPred = 0; 579 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(), 580 PE = L.getHeader()->pred_end(); 581 PI != PE; ++PI) { 582 MachineBasicBlock *Pred = *PI; 583 if (!LoopBlockSet.count(Pred)) 584 continue; 585 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 586 << Pred->succ_size() << " successors, "; 587 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 588 if (Pred->succ_size() > 1) 589 continue; 590 591 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 592 if (!BestPred || PredFreq > BestPredFreq || 593 (!(PredFreq < BestPredFreq) && 594 Pred->isLayoutSuccessor(L.getHeader()))) { 595 BestPred = Pred; 596 BestPredFreq = PredFreq; 597 } 598 } 599 600 // If no direct predecessor is fine, just use the loop header. 601 if (!BestPred) 602 return L.getHeader(); 603 604 // Walk backwards through any straight line of predecessors. 605 while (BestPred->pred_size() == 1 && 606 (*BestPred->pred_begin())->succ_size() == 1 && 607 *BestPred->pred_begin() != L.getHeader()) 608 BestPred = *BestPred->pred_begin(); 609 610 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 611 return BestPred; 612 } 613 614 615 /// \brief Find the best loop exiting block for layout. 616 /// 617 /// This routine implements the logic to analyze the loop looking for the best 618 /// block to layout at the top of the loop. Typically this is done to maximize 619 /// fallthrough opportunities. 620 MachineBasicBlock * 621 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, 622 MachineLoop &L, 623 const BlockFilterSet &LoopBlockSet) { 624 // We don't want to layout the loop linearly in all cases. If the loop header 625 // is just a normal basic block in the loop, we want to look for what block 626 // within the loop is the best one to layout at the top. However, if the loop 627 // header has be pre-merged into a chain due to predecessors not having 628 // analyzable branches, *and* the predecessor it is merged with is *not* part 629 // of the loop, rotating the header into the middle of the loop will create 630 // a non-contiguous range of blocks which is Very Bad. So start with the 631 // header and only rotate if safe. 632 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 633 if (!LoopBlockSet.count(*HeaderChain.begin())) 634 return 0; 635 636 BlockFrequency BestExitEdgeFreq; 637 unsigned BestExitLoopDepth = 0; 638 MachineBasicBlock *ExitingBB = 0; 639 // If there are exits to outer loops, loop rotation can severely limit 640 // fallthrough opportunites unless it selects such an exit. Keep a set of 641 // blocks where rotating to exit with that block will reach an outer loop. 642 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 643 644 DEBUG(dbgs() << "Finding best loop exit for: " 645 << getBlockName(L.getHeader()) << "\n"); 646 for (MachineLoop::block_iterator I = L.block_begin(), 647 E = L.block_end(); 648 I != E; ++I) { 649 BlockChain &Chain = *BlockToChain[*I]; 650 // Ensure that this block is at the end of a chain; otherwise it could be 651 // mid-way through an inner loop or a successor of an analyzable branch. 652 if (*I != *llvm::prior(Chain.end())) 653 continue; 654 655 // Now walk the successors. We need to establish whether this has a viable 656 // exiting successor and whether it has a viable non-exiting successor. 657 // We store the old exiting state and restore it if a viable looping 658 // successor isn't found. 659 MachineBasicBlock *OldExitingBB = ExitingBB; 660 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 661 bool HasLoopingSucc = false; 662 // FIXME: Due to the performance of the probability and weight routines in 663 // the MBPI analysis, we use the internal weights and manually compute the 664 // probabilities to avoid quadratic behavior. 665 uint32_t WeightScale = 0; 666 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 667 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 668 SE = (*I)->succ_end(); 669 SI != SE; ++SI) { 670 if ((*SI)->isLandingPad()) 671 continue; 672 if (*SI == *I) 673 continue; 674 BlockChain &SuccChain = *BlockToChain[*SI]; 675 // Don't split chains, either this chain or the successor's chain. 676 if (&Chain == &SuccChain) { 677 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 678 << getBlockName(*SI) << " (chain conflict)\n"); 679 continue; 680 } 681 682 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 683 if (LoopBlockSet.count(*SI)) { 684 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 685 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 686 HasLoopingSucc = true; 687 continue; 688 } 689 690 unsigned SuccLoopDepth = 0; 691 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) { 692 SuccLoopDepth = ExitLoop->getLoopDepth(); 693 if (ExitLoop->contains(&L)) 694 BlocksExitingToOuterLoop.insert(*I); 695 } 696 697 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 698 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 699 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 700 << getBlockName(*SI) << " [L:" << SuccLoopDepth 701 << "] ("; 702 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 703 // Note that we bias this toward an existing layout successor to retain 704 // incoming order in the absence of better information. The exit must have 705 // a frequency higher than the current exit before we consider breaking 706 // the layout. 707 BranchProbability Bias(100 - ExitBlockBias, 100); 708 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth || 709 ExitEdgeFreq > BestExitEdgeFreq || 710 ((*I)->isLayoutSuccessor(*SI) && 711 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 712 BestExitEdgeFreq = ExitEdgeFreq; 713 ExitingBB = *I; 714 } 715 } 716 717 // Restore the old exiting state, no viable looping successor was found. 718 if (!HasLoopingSucc) { 719 ExitingBB = OldExitingBB; 720 BestExitEdgeFreq = OldBestExitEdgeFreq; 721 continue; 722 } 723 } 724 // Without a candidate exiting block or with only a single block in the 725 // loop, just use the loop header to layout the loop. 726 if (!ExitingBB || L.getNumBlocks() == 1) 727 return 0; 728 729 // Also, if we have exit blocks which lead to outer loops but didn't select 730 // one of them as the exiting block we are rotating toward, disable loop 731 // rotation altogether. 732 if (!BlocksExitingToOuterLoop.empty() && 733 !BlocksExitingToOuterLoop.count(ExitingBB)) 734 return 0; 735 736 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 737 return ExitingBB; 738 } 739 740 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 741 /// 742 /// Once we have built a chain, try to rotate it to line up the hot exit block 743 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 744 /// branches. For example, if the loop has fallthrough into its header and out 745 /// of its bottom already, don't rotate it. 746 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 747 MachineBasicBlock *ExitingBB, 748 const BlockFilterSet &LoopBlockSet) { 749 if (!ExitingBB) 750 return; 751 752 MachineBasicBlock *Top = *LoopChain.begin(); 753 bool ViableTopFallthrough = false; 754 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(), 755 PE = Top->pred_end(); 756 PI != PE; ++PI) { 757 BlockChain *PredChain = BlockToChain[*PI]; 758 if (!LoopBlockSet.count(*PI) && 759 (!PredChain || *PI == *llvm::prior(PredChain->end()))) { 760 ViableTopFallthrough = true; 761 break; 762 } 763 } 764 765 // If the header has viable fallthrough, check whether the current loop 766 // bottom is a viable exiting block. If so, bail out as rotating will 767 // introduce an unnecessary branch. 768 if (ViableTopFallthrough) { 769 MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end()); 770 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(), 771 SE = Bottom->succ_end(); 772 SI != SE; ++SI) { 773 BlockChain *SuccChain = BlockToChain[*SI]; 774 if (!LoopBlockSet.count(*SI) && 775 (!SuccChain || *SI == *SuccChain->begin())) 776 return; 777 } 778 } 779 780 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(), 781 ExitingBB); 782 if (ExitIt == LoopChain.end()) 783 return; 784 785 std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end()); 786 } 787 788 /// \brief Forms basic block chains from the natural loop structures. 789 /// 790 /// These chains are designed to preserve the existing *structure* of the code 791 /// as much as possible. We can then stitch the chains together in a way which 792 /// both preserves the topological structure and minimizes taken conditional 793 /// branches. 794 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 795 MachineLoop &L) { 796 // First recurse through any nested loops, building chains for those inner 797 // loops. 798 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 799 buildLoopChains(F, **LI); 800 801 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 802 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 803 804 // First check to see if there is an obviously preferable top block for the 805 // loop. This will default to the header, but may end up as one of the 806 // predecessors to the header if there is one which will result in strictly 807 // fewer branches in the loop body. 808 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 809 810 // If we selected just the header for the loop top, look for a potentially 811 // profitable exit block in the event that rotating the loop can eliminate 812 // branches by placing an exit edge at the bottom. 813 MachineBasicBlock *ExitingBB = 0; 814 if (LoopTop == L.getHeader()) 815 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 816 817 BlockChain &LoopChain = *BlockToChain[LoopTop]; 818 819 // FIXME: This is a really lame way of walking the chains in the loop: we 820 // walk the blocks, and use a set to prevent visiting a particular chain 821 // twice. 822 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 823 assert(LoopChain.LoopPredecessors == 0); 824 UpdatedPreds.insert(&LoopChain); 825 for (MachineLoop::block_iterator BI = L.block_begin(), 826 BE = L.block_end(); 827 BI != BE; ++BI) { 828 BlockChain &Chain = *BlockToChain[*BI]; 829 if (!UpdatedPreds.insert(&Chain)) 830 continue; 831 832 assert(Chain.LoopPredecessors == 0); 833 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 834 BCI != BCE; ++BCI) { 835 assert(BlockToChain[*BCI] == &Chain); 836 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 837 PE = (*BCI)->pred_end(); 838 PI != PE; ++PI) { 839 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 840 continue; 841 ++Chain.LoopPredecessors; 842 } 843 } 844 845 if (Chain.LoopPredecessors == 0) 846 BlockWorkList.push_back(*Chain.begin()); 847 } 848 849 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 850 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 851 852 DEBUG({ 853 // Crash at the end so we get all of the debugging output first. 854 bool BadLoop = false; 855 if (LoopChain.LoopPredecessors) { 856 BadLoop = true; 857 dbgs() << "Loop chain contains a block without its preds placed!\n" 858 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 859 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 860 } 861 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 862 BCI != BCE; ++BCI) { 863 dbgs() << " ... " << getBlockName(*BCI) << "\n"; 864 if (!LoopBlockSet.erase(*BCI)) { 865 // We don't mark the loop as bad here because there are real situations 866 // where this can occur. For example, with an unanalyzable fallthrough 867 // from a loop block to a non-loop block or vice versa. 868 dbgs() << "Loop chain contains a block not contained by the loop!\n" 869 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 870 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 871 << " Bad block: " << getBlockName(*BCI) << "\n"; 872 } 873 } 874 875 if (!LoopBlockSet.empty()) { 876 BadLoop = true; 877 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 878 LBE = LoopBlockSet.end(); 879 LBI != LBE; ++LBI) 880 dbgs() << "Loop contains blocks never placed into a chain!\n" 881 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 882 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 883 << " Bad block: " << getBlockName(*LBI) << "\n"; 884 } 885 assert(!BadLoop && "Detected problems with the placement of this loop."); 886 }); 887 } 888 889 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 890 // Ensure that every BB in the function has an associated chain to simplify 891 // the assumptions of the remaining algorithm. 892 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 893 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 894 MachineBasicBlock *BB = FI; 895 BlockChain *Chain 896 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 897 // Also, merge any blocks which we cannot reason about and must preserve 898 // the exact fallthrough behavior for. 899 for (;;) { 900 Cond.clear(); 901 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 902 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 903 break; 904 905 MachineFunction::iterator NextFI(llvm::next(FI)); 906 MachineBasicBlock *NextBB = NextFI; 907 // Ensure that the layout successor is a viable block, as we know that 908 // fallthrough is a possibility. 909 assert(NextFI != FE && "Can't fallthrough past the last block."); 910 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 911 << getBlockName(BB) << " -> " << getBlockName(NextBB) 912 << "\n"); 913 Chain->merge(NextBB, 0); 914 FI = NextFI; 915 BB = NextBB; 916 } 917 } 918 919 // Build any loop-based chains. 920 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 921 ++LI) 922 buildLoopChains(F, **LI); 923 924 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 925 926 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 927 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 928 MachineBasicBlock *BB = &*FI; 929 BlockChain &Chain = *BlockToChain[BB]; 930 if (!UpdatedPreds.insert(&Chain)) 931 continue; 932 933 assert(Chain.LoopPredecessors == 0); 934 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 935 BCI != BCE; ++BCI) { 936 assert(BlockToChain[*BCI] == &Chain); 937 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 938 PE = (*BCI)->pred_end(); 939 PI != PE; ++PI) { 940 if (BlockToChain[*PI] == &Chain) 941 continue; 942 ++Chain.LoopPredecessors; 943 } 944 } 945 946 if (Chain.LoopPredecessors == 0) 947 BlockWorkList.push_back(*Chain.begin()); 948 } 949 950 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 951 buildChain(&F.front(), FunctionChain, BlockWorkList); 952 953 #ifndef NDEBUG 954 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 955 #endif 956 DEBUG({ 957 // Crash at the end so we get all of the debugging output first. 958 bool BadFunc = false; 959 FunctionBlockSetType FunctionBlockSet; 960 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 961 FunctionBlockSet.insert(FI); 962 963 for (BlockChain::iterator BCI = FunctionChain.begin(), 964 BCE = FunctionChain.end(); 965 BCI != BCE; ++BCI) 966 if (!FunctionBlockSet.erase(*BCI)) { 967 BadFunc = true; 968 dbgs() << "Function chain contains a block not in the function!\n" 969 << " Bad block: " << getBlockName(*BCI) << "\n"; 970 } 971 972 if (!FunctionBlockSet.empty()) { 973 BadFunc = true; 974 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 975 FBE = FunctionBlockSet.end(); 976 FBI != FBE; ++FBI) 977 dbgs() << "Function contains blocks never placed into a chain!\n" 978 << " Bad block: " << getBlockName(*FBI) << "\n"; 979 } 980 assert(!BadFunc && "Detected problems with the block placement."); 981 }); 982 983 // Splice the blocks into place. 984 MachineFunction::iterator InsertPos = F.begin(); 985 for (BlockChain::iterator BI = FunctionChain.begin(), 986 BE = FunctionChain.end(); 987 BI != BE; ++BI) { 988 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 989 : " ... ") 990 << getBlockName(*BI) << "\n"); 991 if (InsertPos != MachineFunction::iterator(*BI)) 992 F.splice(InsertPos, *BI); 993 else 994 ++InsertPos; 995 996 // Update the terminator of the previous block. 997 if (BI == FunctionChain.begin()) 998 continue; 999 MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI)); 1000 1001 // FIXME: It would be awesome of updateTerminator would just return rather 1002 // than assert when the branch cannot be analyzed in order to remove this 1003 // boiler plate. 1004 Cond.clear(); 1005 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 1006 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1007 // The "PrevBB" is not yet updated to reflect current code layout, so, 1008 // o. it may fall-through to a block without explict "goto" instruction 1009 // before layout, and no longer fall-through it after layout; or 1010 // o. just opposite. 1011 // 1012 // AnalyzeBranch() may return erroneous value for FBB when these two 1013 // situations take place. For the first scenario FBB is mistakenly set 1014 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1015 // is mistakenly pointing to "*BI". 1016 // 1017 bool needUpdateBr = true; 1018 if (!Cond.empty() && (!FBB || FBB == *BI)) { 1019 PrevBB->updateTerminator(); 1020 needUpdateBr = false; 1021 Cond.clear(); 1022 TBB = FBB = 0; 1023 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1024 // FIXME: This should never take place. 1025 TBB = FBB = 0; 1026 } 1027 } 1028 1029 // If PrevBB has a two-way branch, try to re-order the branches 1030 // such that we branch to the successor with higher weight first. 1031 if (TBB && !Cond.empty() && FBB && 1032 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1033 !TII->ReverseBranchCondition(Cond)) { 1034 DEBUG(dbgs() << "Reverse order of the two branches: " 1035 << getBlockName(PrevBB) << "\n"); 1036 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1037 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1038 DebugLoc dl; // FIXME: this is nowhere 1039 TII->RemoveBranch(*PrevBB); 1040 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1041 needUpdateBr = true; 1042 } 1043 if (needUpdateBr) 1044 PrevBB->updateTerminator(); 1045 } 1046 } 1047 1048 // Fixup the last block. 1049 Cond.clear(); 1050 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch. 1051 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1052 F.back().updateTerminator(); 1053 1054 // Walk through the backedges of the function now that we have fully laid out 1055 // the basic blocks and align the destination of each backedge. We don't rely 1056 // exclusively on the loop info here so that we can align backedges in 1057 // unnatural CFGs and backedges that were introduced purely because of the 1058 // loop rotations done during this layout pass. 1059 if (F.getFunction()->getAttributes(). 1060 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize)) 1061 return; 1062 unsigned Align = TLI->getPrefLoopAlignment(); 1063 if (!Align) 1064 return; // Don't care about loop alignment. 1065 if (FunctionChain.begin() == FunctionChain.end()) 1066 return; // Empty chain. 1067 1068 const BranchProbability ColdProb(1, 5); // 20% 1069 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 1070 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1071 for (BlockChain::iterator BI = llvm::next(FunctionChain.begin()), 1072 BE = FunctionChain.end(); 1073 BI != BE; ++BI) { 1074 // Don't align non-looping basic blocks. These are unlikely to execute 1075 // enough times to matter in practice. Note that we'll still handle 1076 // unnatural CFGs inside of a natural outer loop (the common case) and 1077 // rotated loops. 1078 MachineLoop *L = MLI->getLoopFor(*BI); 1079 if (!L) 1080 continue; 1081 1082 // If the block is cold relative to the function entry don't waste space 1083 // aligning it. 1084 BlockFrequency Freq = MBFI->getBlockFreq(*BI); 1085 if (Freq < WeightedEntryFreq) 1086 continue; 1087 1088 // If the block is cold relative to its loop header, don't align it 1089 // regardless of what edges into the block exist. 1090 MachineBasicBlock *LoopHeader = L->getHeader(); 1091 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1092 if (Freq < (LoopHeaderFreq * ColdProb)) 1093 continue; 1094 1095 // Check for the existence of a non-layout predecessor which would benefit 1096 // from aligning this block. 1097 MachineBasicBlock *LayoutPred = *llvm::prior(BI); 1098 1099 // Force alignment if all the predecessors are jumps. We already checked 1100 // that the block isn't cold above. 1101 if (!LayoutPred->isSuccessor(*BI)) { 1102 (*BI)->setAlignment(Align); 1103 continue; 1104 } 1105 1106 // Align this block if the layout predecessor's edge into this block is 1107 // cold relative to the block. When this is true, other predecessors make up 1108 // all of the hot entries into the block and thus alignment is likely to be 1109 // important. 1110 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI); 1111 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1112 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1113 (*BI)->setAlignment(Align); 1114 } 1115 } 1116 1117 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1118 // Check for single-block functions and skip them. 1119 if (llvm::next(F.begin()) == F.end()) 1120 return false; 1121 1122 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1123 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1124 MLI = &getAnalysis<MachineLoopInfo>(); 1125 TII = F.getTarget().getInstrInfo(); 1126 TLI = F.getTarget().getTargetLowering(); 1127 assert(BlockToChain.empty()); 1128 1129 buildCFGChains(F); 1130 1131 BlockToChain.clear(); 1132 ChainAllocator.DestroyAll(); 1133 1134 if (AlignAllBlock) 1135 // Align all of the blocks in the function to a specific alignment. 1136 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 1137 FI != FE; ++FI) 1138 FI->setAlignment(AlignAllBlock); 1139 1140 // We always return true as we have no way to track whether the final order 1141 // differs from the original order. 1142 return true; 1143 } 1144 1145 namespace { 1146 /// \brief A pass to compute block placement statistics. 1147 /// 1148 /// A separate pass to compute interesting statistics for evaluating block 1149 /// placement. This is separate from the actual placement pass so that they can 1150 /// be computed in the absence of any placement transformations or when using 1151 /// alternative placement strategies. 1152 class MachineBlockPlacementStats : public MachineFunctionPass { 1153 /// \brief A handle to the branch probability pass. 1154 const MachineBranchProbabilityInfo *MBPI; 1155 1156 /// \brief A handle to the function-wide block frequency pass. 1157 const MachineBlockFrequencyInfo *MBFI; 1158 1159 public: 1160 static char ID; // Pass identification, replacement for typeid 1161 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1162 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1163 } 1164 1165 bool runOnMachineFunction(MachineFunction &F); 1166 1167 void getAnalysisUsage(AnalysisUsage &AU) const { 1168 AU.addRequired<MachineBranchProbabilityInfo>(); 1169 AU.addRequired<MachineBlockFrequencyInfo>(); 1170 AU.setPreservesAll(); 1171 MachineFunctionPass::getAnalysisUsage(AU); 1172 } 1173 }; 1174 } 1175 1176 char MachineBlockPlacementStats::ID = 0; 1177 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1178 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1179 "Basic Block Placement Stats", false, false) 1180 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1181 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1182 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1183 "Basic Block Placement Stats", false, false) 1184 1185 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1186 // Check for single-block functions and skip them. 1187 if (llvm::next(F.begin()) == F.end()) 1188 return false; 1189 1190 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1191 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1192 1193 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 1194 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 1195 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 1196 : NumUncondBranches; 1197 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 1198 : UncondBranchTakenFreq; 1199 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 1200 SE = I->succ_end(); 1201 SI != SE; ++SI) { 1202 // Skip if this successor is a fallthrough. 1203 if (I->isLayoutSuccessor(*SI)) 1204 continue; 1205 1206 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 1207 ++NumBranches; 1208 BranchTakenFreq += EdgeFreq.getFrequency(); 1209 } 1210 } 1211 1212 return false; 1213 } 1214 1215