1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineLoopInfo.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineSizeOpts.h" 46 #include "llvm/CodeGen/TailDuplicator.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetPassConfig.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Allocator.h" 56 #include "llvm/Support/BlockFrequency.h" 57 #include "llvm/Support/BranchProbability.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <memory> 69 #include <string> 70 #include <tuple> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "block-placement" 77 78 STATISTIC(NumCondBranches, "Number of conditional branches"); 79 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 80 STATISTIC(CondBranchTakenFreq, 81 "Potential frequency of taking conditional branches"); 82 STATISTIC(UncondBranchTakenFreq, 83 "Potential frequency of taking unconditional branches"); 84 85 static cl::opt<unsigned> AlignAllBlock( 86 "align-all-blocks", 87 cl::desc("Force the alignment of all blocks in the function in log2 format " 88 "(e.g 4 means align on 16B boundaries)."), 89 cl::init(0), cl::Hidden); 90 91 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 92 "align-all-nofallthru-blocks", 93 cl::desc("Force the alignment of all blocks that have no fall-through " 94 "predecessors (i.e. don't add nops that are executed). In log2 " 95 "format (e.g 4 means align on 16B boundaries)."), 96 cl::init(0), cl::Hidden); 97 98 // FIXME: Find a good default for this flag and remove the flag. 99 static cl::opt<unsigned> ExitBlockBias( 100 "block-placement-exit-block-bias", 101 cl::desc("Block frequency percentage a loop exit block needs " 102 "over the original exit to be considered the new exit."), 103 cl::init(0), cl::Hidden); 104 105 // Definition: 106 // - Outlining: placement of a basic block outside the chain or hot path. 107 108 static cl::opt<unsigned> LoopToColdBlockRatio( 109 "loop-to-cold-block-ratio", 110 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 111 "(frequency of block) is greater than this ratio"), 112 cl::init(5), cl::Hidden); 113 114 static cl::opt<bool> ForceLoopColdBlock( 115 "force-loop-cold-block", 116 cl::desc("Force outlining cold blocks from loops."), 117 cl::init(false), cl::Hidden); 118 119 static cl::opt<bool> 120 PreciseRotationCost("precise-rotation-cost", 121 cl::desc("Model the cost of loop rotation more " 122 "precisely by using profile data."), 123 cl::init(false), cl::Hidden); 124 125 static cl::opt<bool> 126 ForcePreciseRotationCost("force-precise-rotation-cost", 127 cl::desc("Force the use of precise cost " 128 "loop rotation strategy."), 129 cl::init(false), cl::Hidden); 130 131 static cl::opt<unsigned> MisfetchCost( 132 "misfetch-cost", 133 cl::desc("Cost that models the probabilistic risk of an instruction " 134 "misfetch due to a jump comparing to falling through, whose cost " 135 "is zero."), 136 cl::init(1), cl::Hidden); 137 138 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 139 cl::desc("Cost of jump instructions."), 140 cl::init(1), cl::Hidden); 141 static cl::opt<bool> 142 TailDupPlacement("tail-dup-placement", 143 cl::desc("Perform tail duplication during placement. " 144 "Creates more fallthrough opportunites in " 145 "outline branches."), 146 cl::init(true), cl::Hidden); 147 148 static cl::opt<bool> 149 BranchFoldPlacement("branch-fold-placement", 150 cl::desc("Perform branch folding during placement. " 151 "Reduces code size."), 152 cl::init(true), cl::Hidden); 153 154 // Heuristic for tail duplication. 155 static cl::opt<unsigned> TailDupPlacementThreshold( 156 "tail-dup-placement-threshold", 157 cl::desc("Instruction cutoff for tail duplication during layout. " 158 "Tail merging during layout is forced to have a threshold " 159 "that won't conflict."), cl::init(2), 160 cl::Hidden); 161 162 // Heuristic for aggressive tail duplication. 163 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 164 "tail-dup-placement-aggressive-threshold", 165 cl::desc("Instruction cutoff for aggressive tail duplication during " 166 "layout. Used at -O3. Tail merging during layout is forced to " 167 "have a threshold that won't conflict."), cl::init(4), 168 cl::Hidden); 169 170 // Heuristic for tail duplication. 171 static cl::opt<unsigned> TailDupPlacementPenalty( 172 "tail-dup-placement-penalty", 173 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 174 "Copying can increase fallthrough, but it also increases icache " 175 "pressure. This parameter controls the penalty to account for that. " 176 "Percent as integer."), 177 cl::init(2), 178 cl::Hidden); 179 180 // Heuristic for tail duplication if profile count is used in cost model. 181 static cl::opt<unsigned> TailDupProfilePercentThreshold( 182 "tail-dup-profile-percent-threshold", 183 cl::desc("If profile count information is used in tail duplication cost " 184 "model, the gained fall through number from tail duplication " 185 "should be at least this percent of hot count."), 186 cl::init(50), cl::Hidden); 187 188 // Heuristic for triangle chains. 189 static cl::opt<unsigned> TriangleChainCount( 190 "triangle-chain-count", 191 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 192 "triangle tail duplication heuristic to kick in. 0 to disable."), 193 cl::init(2), 194 cl::Hidden); 195 196 extern cl::opt<unsigned> StaticLikelyProb; 197 extern cl::opt<unsigned> ProfileLikelyProb; 198 199 // Internal option used to control BFI display only after MBP pass. 200 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 201 // -view-block-layout-with-bfi= 202 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 203 204 // Command line option to specify the name of the function for CFG dump 205 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 206 extern cl::opt<std::string> ViewBlockFreqFuncName; 207 208 namespace { 209 210 class BlockChain; 211 212 /// Type for our function-wide basic block -> block chain mapping. 213 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 214 215 /// A chain of blocks which will be laid out contiguously. 216 /// 217 /// This is the datastructure representing a chain of consecutive blocks that 218 /// are profitable to layout together in order to maximize fallthrough 219 /// probabilities and code locality. We also can use a block chain to represent 220 /// a sequence of basic blocks which have some external (correctness) 221 /// requirement for sequential layout. 222 /// 223 /// Chains can be built around a single basic block and can be merged to grow 224 /// them. They participate in a block-to-chain mapping, which is updated 225 /// automatically as chains are merged together. 226 class BlockChain { 227 /// The sequence of blocks belonging to this chain. 228 /// 229 /// This is the sequence of blocks for a particular chain. These will be laid 230 /// out in-order within the function. 231 SmallVector<MachineBasicBlock *, 4> Blocks; 232 233 /// A handle to the function-wide basic block to block chain mapping. 234 /// 235 /// This is retained in each block chain to simplify the computation of child 236 /// block chains for SCC-formation and iteration. We store the edges to child 237 /// basic blocks, and map them back to their associated chains using this 238 /// structure. 239 BlockToChainMapType &BlockToChain; 240 241 public: 242 /// Construct a new BlockChain. 243 /// 244 /// This builds a new block chain representing a single basic block in the 245 /// function. It also registers itself as the chain that block participates 246 /// in with the BlockToChain mapping. 247 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 248 : Blocks(1, BB), BlockToChain(BlockToChain) { 249 assert(BB && "Cannot create a chain with a null basic block"); 250 BlockToChain[BB] = this; 251 } 252 253 /// Iterator over blocks within the chain. 254 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 255 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 256 257 /// Beginning of blocks within the chain. 258 iterator begin() { return Blocks.begin(); } 259 const_iterator begin() const { return Blocks.begin(); } 260 261 /// End of blocks within the chain. 262 iterator end() { return Blocks.end(); } 263 const_iterator end() const { return Blocks.end(); } 264 265 bool remove(MachineBasicBlock* BB) { 266 for(iterator i = begin(); i != end(); ++i) { 267 if (*i == BB) { 268 Blocks.erase(i); 269 return true; 270 } 271 } 272 return false; 273 } 274 275 /// Merge a block chain into this one. 276 /// 277 /// This routine merges a block chain into this one. It takes care of forming 278 /// a contiguous sequence of basic blocks, updating the edge list, and 279 /// updating the block -> chain mapping. It does not free or tear down the 280 /// old chain, but the old chain's block list is no longer valid. 281 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 282 assert(BB && "Can't merge a null block."); 283 assert(!Blocks.empty() && "Can't merge into an empty chain."); 284 285 // Fast path in case we don't have a chain already. 286 if (!Chain) { 287 assert(!BlockToChain[BB] && 288 "Passed chain is null, but BB has entry in BlockToChain."); 289 Blocks.push_back(BB); 290 BlockToChain[BB] = this; 291 return; 292 } 293 294 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 295 assert(Chain->begin() != Chain->end()); 296 297 // Update the incoming blocks to point to this chain, and add them to the 298 // chain structure. 299 for (MachineBasicBlock *ChainBB : *Chain) { 300 Blocks.push_back(ChainBB); 301 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 302 BlockToChain[ChainBB] = this; 303 } 304 } 305 306 #ifndef NDEBUG 307 /// Dump the blocks in this chain. 308 LLVM_DUMP_METHOD void dump() { 309 for (MachineBasicBlock *MBB : *this) 310 MBB->dump(); 311 } 312 #endif // NDEBUG 313 314 /// Count of predecessors of any block within the chain which have not 315 /// yet been scheduled. In general, we will delay scheduling this chain 316 /// until those predecessors are scheduled (or we find a sufficiently good 317 /// reason to override this heuristic.) Note that when forming loop chains, 318 /// blocks outside the loop are ignored and treated as if they were already 319 /// scheduled. 320 /// 321 /// Note: This field is reinitialized multiple times - once for each loop, 322 /// and then once for the function as a whole. 323 unsigned UnscheduledPredecessors = 0; 324 }; 325 326 class MachineBlockPlacement : public MachineFunctionPass { 327 /// A type for a block filter set. 328 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 329 330 /// Pair struct containing basic block and taildup profitability 331 struct BlockAndTailDupResult { 332 MachineBasicBlock *BB; 333 bool ShouldTailDup; 334 }; 335 336 /// Triple struct containing edge weight and the edge. 337 struct WeightedEdge { 338 BlockFrequency Weight; 339 MachineBasicBlock *Src; 340 MachineBasicBlock *Dest; 341 }; 342 343 /// work lists of blocks that are ready to be laid out 344 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 345 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 346 347 /// Edges that have already been computed as optimal. 348 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 349 350 /// Machine Function 351 MachineFunction *F; 352 353 /// A handle to the branch probability pass. 354 const MachineBranchProbabilityInfo *MBPI; 355 356 /// A handle to the function-wide block frequency pass. 357 std::unique_ptr<MBFIWrapper> MBFI; 358 359 /// A handle to the loop info. 360 MachineLoopInfo *MLI; 361 362 /// Preferred loop exit. 363 /// Member variable for convenience. It may be removed by duplication deep 364 /// in the call stack. 365 MachineBasicBlock *PreferredLoopExit; 366 367 /// A handle to the target's instruction info. 368 const TargetInstrInfo *TII; 369 370 /// A handle to the target's lowering info. 371 const TargetLoweringBase *TLI; 372 373 /// A handle to the post dominator tree. 374 MachinePostDominatorTree *MPDT; 375 376 ProfileSummaryInfo *PSI; 377 378 /// Duplicator used to duplicate tails during placement. 379 /// 380 /// Placement decisions can open up new tail duplication opportunities, but 381 /// since tail duplication affects placement decisions of later blocks, it 382 /// must be done inline. 383 TailDuplicator TailDup; 384 385 /// Partial tail duplication threshold. 386 BlockFrequency DupThreshold; 387 388 /// True: use block profile count to compute tail duplication cost. 389 /// False: use block frequency to compute tail duplication cost. 390 bool UseProfileCount; 391 392 /// Allocator and owner of BlockChain structures. 393 /// 394 /// We build BlockChains lazily while processing the loop structure of 395 /// a function. To reduce malloc traffic, we allocate them using this 396 /// slab-like allocator, and destroy them after the pass completes. An 397 /// important guarantee is that this allocator produces stable pointers to 398 /// the chains. 399 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 400 401 /// Function wide BasicBlock to BlockChain mapping. 402 /// 403 /// This mapping allows efficiently moving from any given basic block to the 404 /// BlockChain it participates in, if any. We use it to, among other things, 405 /// allow implicitly defining edges between chains as the existing edges 406 /// between basic blocks. 407 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 408 409 #ifndef NDEBUG 410 /// The set of basic blocks that have terminators that cannot be fully 411 /// analyzed. These basic blocks cannot be re-ordered safely by 412 /// MachineBlockPlacement, and we must preserve physical layout of these 413 /// blocks and their successors through the pass. 414 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 415 #endif 416 417 /// Get block profile count or frequency according to UseProfileCount. 418 /// The return value is used to model tail duplication cost. 419 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) { 420 if (UseProfileCount) { 421 auto Count = MBFI->getBlockProfileCount(BB); 422 if (Count) 423 return *Count; 424 else 425 return 0; 426 } else 427 return MBFI->getBlockFreq(BB); 428 } 429 430 /// Scale the DupThreshold according to basic block size. 431 BlockFrequency scaleThreshold(MachineBasicBlock *BB); 432 void initDupThreshold(); 433 434 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 435 /// if the count goes to 0, add them to the appropriate work list. 436 void markChainSuccessors( 437 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 438 const BlockFilterSet *BlockFilter = nullptr); 439 440 /// Decrease the UnscheduledPredecessors count for a single block, and 441 /// if the count goes to 0, add them to the appropriate work list. 442 void markBlockSuccessors( 443 const BlockChain &Chain, const MachineBasicBlock *BB, 444 const MachineBasicBlock *LoopHeaderBB, 445 const BlockFilterSet *BlockFilter = nullptr); 446 447 BranchProbability 448 collectViableSuccessors( 449 const MachineBasicBlock *BB, const BlockChain &Chain, 450 const BlockFilterSet *BlockFilter, 451 SmallVector<MachineBasicBlock *, 4> &Successors); 452 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred, 453 BlockFilterSet *BlockFilter); 454 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates, 455 MachineBasicBlock *BB, 456 BlockFilterSet *BlockFilter); 457 bool repeatedlyTailDuplicateBlock( 458 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 459 const MachineBasicBlock *LoopHeaderBB, 460 BlockChain &Chain, BlockFilterSet *BlockFilter, 461 MachineFunction::iterator &PrevUnplacedBlockIt); 462 bool maybeTailDuplicateBlock( 463 MachineBasicBlock *BB, MachineBasicBlock *LPred, 464 BlockChain &Chain, BlockFilterSet *BlockFilter, 465 MachineFunction::iterator &PrevUnplacedBlockIt, 466 bool &DuplicatedToLPred); 467 bool hasBetterLayoutPredecessor( 468 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 469 const BlockChain &SuccChain, BranchProbability SuccProb, 470 BranchProbability RealSuccProb, const BlockChain &Chain, 471 const BlockFilterSet *BlockFilter); 472 BlockAndTailDupResult selectBestSuccessor( 473 const MachineBasicBlock *BB, const BlockChain &Chain, 474 const BlockFilterSet *BlockFilter); 475 MachineBasicBlock *selectBestCandidateBlock( 476 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 477 MachineBasicBlock *getFirstUnplacedBlock( 478 const BlockChain &PlacedChain, 479 MachineFunction::iterator &PrevUnplacedBlockIt, 480 const BlockFilterSet *BlockFilter); 481 482 /// Add a basic block to the work list if it is appropriate. 483 /// 484 /// If the optional parameter BlockFilter is provided, only MBB 485 /// present in the set will be added to the worklist. If nullptr 486 /// is provided, no filtering occurs. 487 void fillWorkLists(const MachineBasicBlock *MBB, 488 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 489 const BlockFilterSet *BlockFilter); 490 491 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 492 BlockFilterSet *BlockFilter = nullptr); 493 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 494 const MachineBasicBlock *OldTop); 495 bool hasViableTopFallthrough(const MachineBasicBlock *Top, 496 const BlockFilterSet &LoopBlockSet); 497 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, 498 const BlockFilterSet &LoopBlockSet); 499 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, 500 const MachineBasicBlock *OldTop, 501 const MachineBasicBlock *ExitBB, 502 const BlockFilterSet &LoopBlockSet); 503 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, 504 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 505 MachineBasicBlock *findBestLoopTop( 506 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 507 MachineBasicBlock *findBestLoopExit( 508 const MachineLoop &L, const BlockFilterSet &LoopBlockSet, 509 BlockFrequency &ExitFreq); 510 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 511 void buildLoopChains(const MachineLoop &L); 512 void rotateLoop( 513 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 514 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); 515 void rotateLoopWithProfile( 516 BlockChain &LoopChain, const MachineLoop &L, 517 const BlockFilterSet &LoopBlockSet); 518 void buildCFGChains(); 519 void optimizeBranches(); 520 void alignBlocks(); 521 /// Returns true if a block should be tail-duplicated to increase fallthrough 522 /// opportunities. 523 bool shouldTailDuplicate(MachineBasicBlock *BB); 524 /// Check the edge frequencies to see if tail duplication will increase 525 /// fallthroughs. 526 bool isProfitableToTailDup( 527 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 528 BranchProbability QProb, 529 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 530 531 /// Check for a trellis layout. 532 bool isTrellis(const MachineBasicBlock *BB, 533 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 534 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 535 536 /// Get the best successor given a trellis layout. 537 BlockAndTailDupResult getBestTrellisSuccessor( 538 const MachineBasicBlock *BB, 539 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 540 BranchProbability AdjustedSumProb, const BlockChain &Chain, 541 const BlockFilterSet *BlockFilter); 542 543 /// Get the best pair of non-conflicting edges. 544 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 545 const MachineBasicBlock *BB, 546 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 547 548 /// Returns true if a block can tail duplicate into all unplaced 549 /// predecessors. Filters based on loop. 550 bool canTailDuplicateUnplacedPreds( 551 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 552 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 553 554 /// Find chains of triangles to tail-duplicate where a global analysis works, 555 /// but a local analysis would not find them. 556 void precomputeTriangleChains(); 557 558 public: 559 static char ID; // Pass identification, replacement for typeid 560 561 MachineBlockPlacement() : MachineFunctionPass(ID) { 562 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 563 } 564 565 bool runOnMachineFunction(MachineFunction &F) override; 566 567 bool allowTailDupPlacement() const { 568 assert(F); 569 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 570 } 571 572 void getAnalysisUsage(AnalysisUsage &AU) const override { 573 AU.addRequired<MachineBranchProbabilityInfo>(); 574 AU.addRequired<MachineBlockFrequencyInfo>(); 575 if (TailDupPlacement) 576 AU.addRequired<MachinePostDominatorTree>(); 577 AU.addRequired<MachineLoopInfo>(); 578 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 579 AU.addRequired<TargetPassConfig>(); 580 MachineFunctionPass::getAnalysisUsage(AU); 581 } 582 }; 583 584 } // end anonymous namespace 585 586 char MachineBlockPlacement::ID = 0; 587 588 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 589 590 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 591 "Branch Probability Basic Block Placement", false, false) 592 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 593 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 594 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 595 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 596 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 597 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 598 "Branch Probability Basic Block Placement", false, false) 599 600 #ifndef NDEBUG 601 /// Helper to print the name of a MBB. 602 /// 603 /// Only used by debug logging. 604 static std::string getBlockName(const MachineBasicBlock *BB) { 605 std::string Result; 606 raw_string_ostream OS(Result); 607 OS << printMBBReference(*BB); 608 OS << " ('" << BB->getName() << "')"; 609 OS.flush(); 610 return Result; 611 } 612 #endif 613 614 /// Mark a chain's successors as having one fewer preds. 615 /// 616 /// When a chain is being merged into the "placed" chain, this routine will 617 /// quickly walk the successors of each block in the chain and mark them as 618 /// having one fewer active predecessor. It also adds any successors of this 619 /// chain which reach the zero-predecessor state to the appropriate worklist. 620 void MachineBlockPlacement::markChainSuccessors( 621 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 622 const BlockFilterSet *BlockFilter) { 623 // Walk all the blocks in this chain, marking their successors as having 624 // a predecessor placed. 625 for (MachineBasicBlock *MBB : Chain) { 626 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 627 } 628 } 629 630 /// Mark a single block's successors as having one fewer preds. 631 /// 632 /// Under normal circumstances, this is only called by markChainSuccessors, 633 /// but if a block that was to be placed is completely tail-duplicated away, 634 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 635 /// for just that block. 636 void MachineBlockPlacement::markBlockSuccessors( 637 const BlockChain &Chain, const MachineBasicBlock *MBB, 638 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 639 // Add any successors for which this is the only un-placed in-loop 640 // predecessor to the worklist as a viable candidate for CFG-neutral 641 // placement. No subsequent placement of this block will violate the CFG 642 // shape, so we get to use heuristics to choose a favorable placement. 643 for (MachineBasicBlock *Succ : MBB->successors()) { 644 if (BlockFilter && !BlockFilter->count(Succ)) 645 continue; 646 BlockChain &SuccChain = *BlockToChain[Succ]; 647 // Disregard edges within a fixed chain, or edges to the loop header. 648 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 649 continue; 650 651 // This is a cross-chain edge that is within the loop, so decrement the 652 // loop predecessor count of the destination chain. 653 if (SuccChain.UnscheduledPredecessors == 0 || 654 --SuccChain.UnscheduledPredecessors > 0) 655 continue; 656 657 auto *NewBB = *SuccChain.begin(); 658 if (NewBB->isEHPad()) 659 EHPadWorkList.push_back(NewBB); 660 else 661 BlockWorkList.push_back(NewBB); 662 } 663 } 664 665 /// This helper function collects the set of successors of block 666 /// \p BB that are allowed to be its layout successors, and return 667 /// the total branch probability of edges from \p BB to those 668 /// blocks. 669 BranchProbability MachineBlockPlacement::collectViableSuccessors( 670 const MachineBasicBlock *BB, const BlockChain &Chain, 671 const BlockFilterSet *BlockFilter, 672 SmallVector<MachineBasicBlock *, 4> &Successors) { 673 // Adjust edge probabilities by excluding edges pointing to blocks that is 674 // either not in BlockFilter or is already in the current chain. Consider the 675 // following CFG: 676 // 677 // --->A 678 // | / \ 679 // | B C 680 // | \ / \ 681 // ----D E 682 // 683 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 684 // A->C is chosen as a fall-through, D won't be selected as a successor of C 685 // due to CFG constraint (the probability of C->D is not greater than 686 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 687 // when calculating the probability of C->D, D will be selected and we 688 // will get A C D B as the layout of this loop. 689 auto AdjustedSumProb = BranchProbability::getOne(); 690 for (MachineBasicBlock *Succ : BB->successors()) { 691 bool SkipSucc = false; 692 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 693 SkipSucc = true; 694 } else { 695 BlockChain *SuccChain = BlockToChain[Succ]; 696 if (SuccChain == &Chain) { 697 SkipSucc = true; 698 } else if (Succ != *SuccChain->begin()) { 699 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 700 << " -> Mid chain!\n"); 701 continue; 702 } 703 } 704 if (SkipSucc) 705 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 706 else 707 Successors.push_back(Succ); 708 } 709 710 return AdjustedSumProb; 711 } 712 713 /// The helper function returns the branch probability that is adjusted 714 /// or normalized over the new total \p AdjustedSumProb. 715 static BranchProbability 716 getAdjustedProbability(BranchProbability OrigProb, 717 BranchProbability AdjustedSumProb) { 718 BranchProbability SuccProb; 719 uint32_t SuccProbN = OrigProb.getNumerator(); 720 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 721 if (SuccProbN >= SuccProbD) 722 SuccProb = BranchProbability::getOne(); 723 else 724 SuccProb = BranchProbability(SuccProbN, SuccProbD); 725 726 return SuccProb; 727 } 728 729 /// Check if \p BB has exactly the successors in \p Successors. 730 static bool 731 hasSameSuccessors(MachineBasicBlock &BB, 732 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 733 if (BB.succ_size() != Successors.size()) 734 return false; 735 // We don't want to count self-loops 736 if (Successors.count(&BB)) 737 return false; 738 for (MachineBasicBlock *Succ : BB.successors()) 739 if (!Successors.count(Succ)) 740 return false; 741 return true; 742 } 743 744 /// Check if a block should be tail duplicated to increase fallthrough 745 /// opportunities. 746 /// \p BB Block to check. 747 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 748 // Blocks with single successors don't create additional fallthrough 749 // opportunities. Don't duplicate them. TODO: When conditional exits are 750 // analyzable, allow them to be duplicated. 751 bool IsSimple = TailDup.isSimpleBB(BB); 752 753 if (BB->succ_size() == 1) 754 return false; 755 return TailDup.shouldTailDuplicate(IsSimple, *BB); 756 } 757 758 /// Compare 2 BlockFrequency's with a small penalty for \p A. 759 /// In order to be conservative, we apply a X% penalty to account for 760 /// increased icache pressure and static heuristics. For small frequencies 761 /// we use only the numerators to improve accuracy. For simplicity, we assume the 762 /// penalty is less than 100% 763 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 764 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 765 uint64_t EntryFreq) { 766 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 767 BlockFrequency Gain = A - B; 768 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 769 } 770 771 /// Check the edge frequencies to see if tail duplication will increase 772 /// fallthroughs. It only makes sense to call this function when 773 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 774 /// always locally profitable if we would have picked \p Succ without 775 /// considering duplication. 776 bool MachineBlockPlacement::isProfitableToTailDup( 777 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 778 BranchProbability QProb, 779 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 780 // We need to do a probability calculation to make sure this is profitable. 781 // First: does succ have a successor that post-dominates? This affects the 782 // calculation. The 2 relevant cases are: 783 // BB BB 784 // | \Qout | \Qout 785 // P| C |P C 786 // = C' = C' 787 // | /Qin | /Qin 788 // | / | / 789 // Succ Succ 790 // / \ | \ V 791 // U/ =V |U \ 792 // / \ = D 793 // D E | / 794 // | / 795 // |/ 796 // PDom 797 // '=' : Branch taken for that CFG edge 798 // In the second case, Placing Succ while duplicating it into C prevents the 799 // fallthrough of Succ into either D or PDom, because they now have C as an 800 // unplaced predecessor 801 802 // Start by figuring out which case we fall into 803 MachineBasicBlock *PDom = nullptr; 804 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 805 // Only scan the relevant successors 806 auto AdjustedSuccSumProb = 807 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 808 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 809 auto BBFreq = MBFI->getBlockFreq(BB); 810 auto SuccFreq = MBFI->getBlockFreq(Succ); 811 BlockFrequency P = BBFreq * PProb; 812 BlockFrequency Qout = BBFreq * QProb; 813 uint64_t EntryFreq = MBFI->getEntryFreq(); 814 // If there are no more successors, it is profitable to copy, as it strictly 815 // increases fallthrough. 816 if (SuccSuccs.size() == 0) 817 return greaterWithBias(P, Qout, EntryFreq); 818 819 auto BestSuccSucc = BranchProbability::getZero(); 820 // Find the PDom or the best Succ if no PDom exists. 821 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 822 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 823 if (Prob > BestSuccSucc) 824 BestSuccSucc = Prob; 825 if (PDom == nullptr) 826 if (MPDT->dominates(SuccSucc, Succ)) { 827 PDom = SuccSucc; 828 break; 829 } 830 } 831 // For the comparisons, we need to know Succ's best incoming edge that isn't 832 // from BB. 833 auto SuccBestPred = BlockFrequency(0); 834 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 835 if (SuccPred == Succ || SuccPred == BB 836 || BlockToChain[SuccPred] == &Chain 837 || (BlockFilter && !BlockFilter->count(SuccPred))) 838 continue; 839 auto Freq = MBFI->getBlockFreq(SuccPred) 840 * MBPI->getEdgeProbability(SuccPred, Succ); 841 if (Freq > SuccBestPred) 842 SuccBestPred = Freq; 843 } 844 // Qin is Succ's best unplaced incoming edge that isn't BB 845 BlockFrequency Qin = SuccBestPred; 846 // If it doesn't have a post-dominating successor, here is the calculation: 847 // BB BB 848 // | \Qout | \ 849 // P| C | = 850 // = C' | C 851 // | /Qin | | 852 // | / | C' (+Succ) 853 // Succ Succ /| 854 // / \ | \/ | 855 // U/ =V | == | 856 // / \ | / \| 857 // D E D E 858 // '=' : Branch taken for that CFG edge 859 // Cost in the first case is: P + V 860 // For this calculation, we always assume P > Qout. If Qout > P 861 // The result of this function will be ignored at the caller. 862 // Let F = SuccFreq - Qin 863 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 864 865 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 866 BranchProbability UProb = BestSuccSucc; 867 BranchProbability VProb = AdjustedSuccSumProb - UProb; 868 BlockFrequency F = SuccFreq - Qin; 869 BlockFrequency V = SuccFreq * VProb; 870 BlockFrequency QinU = std::min(Qin, F) * UProb; 871 BlockFrequency BaseCost = P + V; 872 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 873 return greaterWithBias(BaseCost, DupCost, EntryFreq); 874 } 875 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 876 BranchProbability VProb = AdjustedSuccSumProb - UProb; 877 BlockFrequency U = SuccFreq * UProb; 878 BlockFrequency V = SuccFreq * VProb; 879 BlockFrequency F = SuccFreq - Qin; 880 // If there is a post-dominating successor, here is the calculation: 881 // BB BB BB BB 882 // | \Qout | \ | \Qout | \ 883 // |P C | = |P C | = 884 // = C' |P C = C' |P C 885 // | /Qin | | | /Qin | | 886 // | / | C' (+Succ) | / | C' (+Succ) 887 // Succ Succ /| Succ Succ /| 888 // | \ V | \/ | | \ V | \/ | 889 // |U \ |U /\ =? |U = |U /\ | 890 // = D = = =?| | D | = =| 891 // | / |/ D | / |/ D 892 // | / | / | = | / 893 // |/ | / |/ | = 894 // Dom Dom Dom Dom 895 // '=' : Branch taken for that CFG edge 896 // The cost for taken branches in the first case is P + U 897 // Let F = SuccFreq - Qin 898 // The cost in the second case (assuming independence), given the layout: 899 // BB, Succ, (C+Succ), D, Dom or the layout: 900 // BB, Succ, D, Dom, (C+Succ) 901 // is Qout + max(F, Qin) * U + min(F, Qin) 902 // compare P + U vs Qout + P * U + Qin. 903 // 904 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 905 // 906 // For the 3rd case, the cost is P + 2 * V 907 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 908 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 909 if (UProb > AdjustedSuccSumProb / 2 && 910 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 911 Chain, BlockFilter)) 912 // Cases 3 & 4 913 return greaterWithBias( 914 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 915 EntryFreq); 916 // Cases 1 & 2 917 return greaterWithBias((P + U), 918 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 919 std::max(Qin, F) * UProb), 920 EntryFreq); 921 } 922 923 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 924 /// successors form the lower part of a trellis. A successor set S forms the 925 /// lower part of a trellis if all of the predecessors of S are either in S or 926 /// have all of S as successors. We ignore trellises where BB doesn't have 2 927 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 928 /// are very uncommon and complex to compute optimally. Allowing edges within S 929 /// is not strictly a trellis, but the same algorithm works, so we allow it. 930 bool MachineBlockPlacement::isTrellis( 931 const MachineBasicBlock *BB, 932 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 933 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 934 // Technically BB could form a trellis with branching factor higher than 2. 935 // But that's extremely uncommon. 936 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 937 return false; 938 939 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 940 BB->succ_end()); 941 // To avoid reviewing the same predecessors twice. 942 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 943 944 for (MachineBasicBlock *Succ : ViableSuccs) { 945 int PredCount = 0; 946 for (auto SuccPred : Succ->predecessors()) { 947 // Allow triangle successors, but don't count them. 948 if (Successors.count(SuccPred)) { 949 // Make sure that it is actually a triangle. 950 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 951 if (!Successors.count(CheckSucc)) 952 return false; 953 continue; 954 } 955 const BlockChain *PredChain = BlockToChain[SuccPred]; 956 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 957 PredChain == &Chain || PredChain == BlockToChain[Succ]) 958 continue; 959 ++PredCount; 960 // Perform the successor check only once. 961 if (!SeenPreds.insert(SuccPred).second) 962 continue; 963 if (!hasSameSuccessors(*SuccPred, Successors)) 964 return false; 965 } 966 // If one of the successors has only BB as a predecessor, it is not a 967 // trellis. 968 if (PredCount < 1) 969 return false; 970 } 971 return true; 972 } 973 974 /// Pick the highest total weight pair of edges that can both be laid out. 975 /// The edges in \p Edges[0] are assumed to have a different destination than 976 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 977 /// the individual highest weight edges to the 2 different destinations, or in 978 /// case of a conflict, one of them should be replaced with a 2nd best edge. 979 std::pair<MachineBlockPlacement::WeightedEdge, 980 MachineBlockPlacement::WeightedEdge> 981 MachineBlockPlacement::getBestNonConflictingEdges( 982 const MachineBasicBlock *BB, 983 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 984 Edges) { 985 // Sort the edges, and then for each successor, find the best incoming 986 // predecessor. If the best incoming predecessors aren't the same, 987 // then that is clearly the best layout. If there is a conflict, one of the 988 // successors will have to fallthrough from the second best predecessor. We 989 // compare which combination is better overall. 990 991 // Sort for highest frequency. 992 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 993 994 llvm::stable_sort(Edges[0], Cmp); 995 llvm::stable_sort(Edges[1], Cmp); 996 auto BestA = Edges[0].begin(); 997 auto BestB = Edges[1].begin(); 998 // Arrange for the correct answer to be in BestA and BestB 999 // If the 2 best edges don't conflict, the answer is already there. 1000 if (BestA->Src == BestB->Src) { 1001 // Compare the total fallthrough of (Best + Second Best) for both pairs 1002 auto SecondBestA = std::next(BestA); 1003 auto SecondBestB = std::next(BestB); 1004 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 1005 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 1006 if (BestAScore < BestBScore) 1007 BestA = SecondBestA; 1008 else 1009 BestB = SecondBestB; 1010 } 1011 // Arrange for the BB edge to be in BestA if it exists. 1012 if (BestB->Src == BB) 1013 std::swap(BestA, BestB); 1014 return std::make_pair(*BestA, *BestB); 1015 } 1016 1017 /// Get the best successor from \p BB based on \p BB being part of a trellis. 1018 /// We only handle trellises with 2 successors, so the algorithm is 1019 /// straightforward: Find the best pair of edges that don't conflict. We find 1020 /// the best incoming edge for each successor in the trellis. If those conflict, 1021 /// we consider which of them should be replaced with the second best. 1022 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 1023 /// comes from \p BB, it will be in \p BestEdges[0] 1024 MachineBlockPlacement::BlockAndTailDupResult 1025 MachineBlockPlacement::getBestTrellisSuccessor( 1026 const MachineBasicBlock *BB, 1027 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 1028 BranchProbability AdjustedSumProb, const BlockChain &Chain, 1029 const BlockFilterSet *BlockFilter) { 1030 1031 BlockAndTailDupResult Result = {nullptr, false}; 1032 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1033 BB->succ_end()); 1034 1035 // We assume size 2 because it's common. For general n, we would have to do 1036 // the Hungarian algorithm, but it's not worth the complexity because more 1037 // than 2 successors is fairly uncommon, and a trellis even more so. 1038 if (Successors.size() != 2 || ViableSuccs.size() != 2) 1039 return Result; 1040 1041 // Collect the edge frequencies of all edges that form the trellis. 1042 SmallVector<WeightedEdge, 8> Edges[2]; 1043 int SuccIndex = 0; 1044 for (auto Succ : ViableSuccs) { 1045 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 1046 // Skip any placed predecessors that are not BB 1047 if (SuccPred != BB) 1048 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 1049 BlockToChain[SuccPred] == &Chain || 1050 BlockToChain[SuccPred] == BlockToChain[Succ]) 1051 continue; 1052 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1053 MBPI->getEdgeProbability(SuccPred, Succ); 1054 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1055 } 1056 ++SuccIndex; 1057 } 1058 1059 // Pick the best combination of 2 edges from all the edges in the trellis. 1060 WeightedEdge BestA, BestB; 1061 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1062 1063 if (BestA.Src != BB) { 1064 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1065 // we shouldn't choose any successor. We've already looked and there's a 1066 // better fallthrough edge for all the successors. 1067 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1068 return Result; 1069 } 1070 1071 // Did we pick the triangle edge? If tail-duplication is profitable, do 1072 // that instead. Otherwise merge the triangle edge now while we know it is 1073 // optimal. 1074 if (BestA.Dest == BestB.Src) { 1075 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1076 // would be better. 1077 MachineBasicBlock *Succ1 = BestA.Dest; 1078 MachineBasicBlock *Succ2 = BestB.Dest; 1079 // Check to see if tail-duplication would be profitable. 1080 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1081 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1082 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1083 Chain, BlockFilter)) { 1084 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1085 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1086 dbgs() << " Selected: " << getBlockName(Succ2) 1087 << ", probability: " << Succ2Prob 1088 << " (Tail Duplicate)\n"); 1089 Result.BB = Succ2; 1090 Result.ShouldTailDup = true; 1091 return Result; 1092 } 1093 } 1094 // We have already computed the optimal edge for the other side of the 1095 // trellis. 1096 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1097 1098 auto TrellisSucc = BestA.Dest; 1099 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1100 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1101 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1102 << ", probability: " << SuccProb << " (Trellis)\n"); 1103 Result.BB = TrellisSucc; 1104 return Result; 1105 } 1106 1107 /// When the option allowTailDupPlacement() is on, this method checks if the 1108 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1109 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1110 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1111 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1112 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1113 if (!shouldTailDuplicate(Succ)) 1114 return false; 1115 1116 // The result of canTailDuplicate. 1117 bool Duplicate = true; 1118 // Number of possible duplication. 1119 unsigned int NumDup = 0; 1120 1121 // For CFG checking. 1122 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1123 BB->succ_end()); 1124 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1125 // Make sure all unplaced and unfiltered predecessors can be 1126 // tail-duplicated into. 1127 // Skip any blocks that are already placed or not in this loop. 1128 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1129 || BlockToChain[Pred] == &Chain) 1130 continue; 1131 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1132 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1133 // This will result in a trellis after tail duplication, so we don't 1134 // need to copy Succ into this predecessor. In the presence 1135 // of a trellis tail duplication can continue to be profitable. 1136 // For example: 1137 // A A 1138 // |\ |\ 1139 // | \ | \ 1140 // | C | C+BB 1141 // | / | | 1142 // |/ | | 1143 // BB => BB | 1144 // |\ |\/| 1145 // | \ |/\| 1146 // | D | D 1147 // | / | / 1148 // |/ |/ 1149 // Succ Succ 1150 // 1151 // After BB was duplicated into C, the layout looks like the one on the 1152 // right. BB and C now have the same successors. When considering 1153 // whether Succ can be duplicated into all its unplaced predecessors, we 1154 // ignore C. 1155 // We can do this because C already has a profitable fallthrough, namely 1156 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1157 // duplication and for this test. 1158 // 1159 // This allows trellises to be laid out in 2 separate chains 1160 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1161 // because it allows the creation of 2 fallthrough paths with links 1162 // between them, and we correctly identify the best layout for these 1163 // CFGs. We want to extend trellises that the user created in addition 1164 // to trellises created by tail-duplication, so we just look for the 1165 // CFG. 1166 continue; 1167 Duplicate = false; 1168 continue; 1169 } 1170 NumDup++; 1171 } 1172 1173 // No possible duplication in current filter set. 1174 if (NumDup == 0) 1175 return false; 1176 1177 // If profile information is available, findDuplicateCandidates can do more 1178 // precise benefit analysis. 1179 if (F->getFunction().hasProfileData()) 1180 return true; 1181 1182 // This is mainly for function exit BB. 1183 // The integrated tail duplication is really designed for increasing 1184 // fallthrough from predecessors from Succ to its successors. We may need 1185 // other machanism to handle different cases. 1186 if (Succ->succ_size() == 0) 1187 return true; 1188 1189 // Plus the already placed predecessor. 1190 NumDup++; 1191 1192 // If the duplication candidate has more unplaced predecessors than 1193 // successors, the extra duplication can't bring more fallthrough. 1194 // 1195 // Pred1 Pred2 Pred3 1196 // \ | / 1197 // \ | / 1198 // \ | / 1199 // Dup 1200 // / \ 1201 // / \ 1202 // Succ1 Succ2 1203 // 1204 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup 1205 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2, 1206 // but the duplication into Pred3 can't increase fallthrough. 1207 // 1208 // A small number of extra duplication may not hurt too much. We need a better 1209 // heuristic to handle it. 1210 if ((NumDup > Succ->succ_size()) || !Duplicate) 1211 return false; 1212 1213 return true; 1214 } 1215 1216 /// Find chains of triangles where we believe it would be profitable to 1217 /// tail-duplicate them all, but a local analysis would not find them. 1218 /// There are 3 ways this can be profitable: 1219 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1220 /// longer chains) 1221 /// 2) The chains are statically correlated. Branch probabilities have a very 1222 /// U-shaped distribution. 1223 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1224 /// If the branches in a chain are likely to be from the same side of the 1225 /// distribution as their predecessor, but are independent at runtime, this 1226 /// transformation is profitable. (Because the cost of being wrong is a small 1227 /// fixed cost, unlike the standard triangle layout where the cost of being 1228 /// wrong scales with the # of triangles.) 1229 /// 3) The chains are dynamically correlated. If the probability that a previous 1230 /// branch was taken positively influences whether the next branch will be 1231 /// taken 1232 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1233 void MachineBlockPlacement::precomputeTriangleChains() { 1234 struct TriangleChain { 1235 std::vector<MachineBasicBlock *> Edges; 1236 1237 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1238 : Edges({src, dst}) {} 1239 1240 void append(MachineBasicBlock *dst) { 1241 assert(getKey()->isSuccessor(dst) && 1242 "Attempting to append a block that is not a successor."); 1243 Edges.push_back(dst); 1244 } 1245 1246 unsigned count() const { return Edges.size() - 1; } 1247 1248 MachineBasicBlock *getKey() const { 1249 return Edges.back(); 1250 } 1251 }; 1252 1253 if (TriangleChainCount == 0) 1254 return; 1255 1256 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1257 // Map from last block to the chain that contains it. This allows us to extend 1258 // chains as we find new triangles. 1259 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1260 for (MachineBasicBlock &BB : *F) { 1261 // If BB doesn't have 2 successors, it doesn't start a triangle. 1262 if (BB.succ_size() != 2) 1263 continue; 1264 MachineBasicBlock *PDom = nullptr; 1265 for (MachineBasicBlock *Succ : BB.successors()) { 1266 if (!MPDT->dominates(Succ, &BB)) 1267 continue; 1268 PDom = Succ; 1269 break; 1270 } 1271 // If BB doesn't have a post-dominating successor, it doesn't form a 1272 // triangle. 1273 if (PDom == nullptr) 1274 continue; 1275 // If PDom has a hint that it is low probability, skip this triangle. 1276 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1277 continue; 1278 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1279 // we're looking for. 1280 if (!shouldTailDuplicate(PDom)) 1281 continue; 1282 bool CanTailDuplicate = true; 1283 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1284 // isn't the kind of triangle we're looking for. 1285 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1286 if (Pred == &BB) 1287 continue; 1288 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1289 CanTailDuplicate = false; 1290 break; 1291 } 1292 } 1293 // If we can't tail-duplicate PDom to its predecessors, then skip this 1294 // triangle. 1295 if (!CanTailDuplicate) 1296 continue; 1297 1298 // Now we have an interesting triangle. Insert it if it's not part of an 1299 // existing chain. 1300 // Note: This cannot be replaced with a call insert() or emplace() because 1301 // the find key is BB, but the insert/emplace key is PDom. 1302 auto Found = TriangleChainMap.find(&BB); 1303 // If it is, remove the chain from the map, grow it, and put it back in the 1304 // map with the end as the new key. 1305 if (Found != TriangleChainMap.end()) { 1306 TriangleChain Chain = std::move(Found->second); 1307 TriangleChainMap.erase(Found); 1308 Chain.append(PDom); 1309 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1310 } else { 1311 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1312 assert(InsertResult.second && "Block seen twice."); 1313 (void)InsertResult; 1314 } 1315 } 1316 1317 // Iterating over a DenseMap is safe here, because the only thing in the body 1318 // of the loop is inserting into another DenseMap (ComputedEdges). 1319 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1320 for (auto &ChainPair : TriangleChainMap) { 1321 TriangleChain &Chain = ChainPair.second; 1322 // Benchmarking has shown that due to branch correlation duplicating 2 or 1323 // more triangles is profitable, despite the calculations assuming 1324 // independence. 1325 if (Chain.count() < TriangleChainCount) 1326 continue; 1327 MachineBasicBlock *dst = Chain.Edges.back(); 1328 Chain.Edges.pop_back(); 1329 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1330 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1331 << getBlockName(dst) 1332 << " as pre-computed based on triangles.\n"); 1333 1334 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1335 assert(InsertResult.second && "Block seen twice."); 1336 (void)InsertResult; 1337 1338 dst = src; 1339 } 1340 } 1341 } 1342 1343 // When profile is not present, return the StaticLikelyProb. 1344 // When profile is available, we need to handle the triangle-shape CFG. 1345 static BranchProbability getLayoutSuccessorProbThreshold( 1346 const MachineBasicBlock *BB) { 1347 if (!BB->getParent()->getFunction().hasProfileData()) 1348 return BranchProbability(StaticLikelyProb, 100); 1349 if (BB->succ_size() == 2) { 1350 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1351 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1352 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1353 /* See case 1 below for the cost analysis. For BB->Succ to 1354 * be taken with smaller cost, the following needs to hold: 1355 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1356 * So the threshold T in the calculation below 1357 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1358 * So T / (1 - T) = 2, Yielding T = 2/3 1359 * Also adding user specified branch bias, we have 1360 * T = (2/3)*(ProfileLikelyProb/50) 1361 * = (2*ProfileLikelyProb)/150) 1362 */ 1363 return BranchProbability(2 * ProfileLikelyProb, 150); 1364 } 1365 } 1366 return BranchProbability(ProfileLikelyProb, 100); 1367 } 1368 1369 /// Checks to see if the layout candidate block \p Succ has a better layout 1370 /// predecessor than \c BB. If yes, returns true. 1371 /// \p SuccProb: The probability adjusted for only remaining blocks. 1372 /// Only used for logging 1373 /// \p RealSuccProb: The un-adjusted probability. 1374 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1375 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1376 /// considered 1377 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1378 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1379 const BlockChain &SuccChain, BranchProbability SuccProb, 1380 BranchProbability RealSuccProb, const BlockChain &Chain, 1381 const BlockFilterSet *BlockFilter) { 1382 1383 // There isn't a better layout when there are no unscheduled predecessors. 1384 if (SuccChain.UnscheduledPredecessors == 0) 1385 return false; 1386 1387 // There are two basic scenarios here: 1388 // ------------------------------------- 1389 // Case 1: triangular shape CFG (if-then): 1390 // BB 1391 // | \ 1392 // | \ 1393 // | Pred 1394 // | / 1395 // Succ 1396 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1397 // set Succ as the layout successor of BB. Picking Succ as BB's 1398 // successor breaks the CFG constraints (FIXME: define these constraints). 1399 // With this layout, Pred BB 1400 // is forced to be outlined, so the overall cost will be cost of the 1401 // branch taken from BB to Pred, plus the cost of back taken branch 1402 // from Pred to Succ, as well as the additional cost associated 1403 // with the needed unconditional jump instruction from Pred To Succ. 1404 1405 // The cost of the topological order layout is the taken branch cost 1406 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1407 // must hold: 1408 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1409 // < freq(BB->Succ) * taken_branch_cost. 1410 // Ignoring unconditional jump cost, we get 1411 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1412 // prob(BB->Succ) > 2 * prob(BB->Pred) 1413 // 1414 // When real profile data is available, we can precisely compute the 1415 // probability threshold that is needed for edge BB->Succ to be considered. 1416 // Without profile data, the heuristic requires the branch bias to be 1417 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1418 // ----------------------------------------------------------------- 1419 // Case 2: diamond like CFG (if-then-else): 1420 // S 1421 // / \ 1422 // | \ 1423 // BB Pred 1424 // \ / 1425 // Succ 1426 // .. 1427 // 1428 // The current block is BB and edge BB->Succ is now being evaluated. 1429 // Note that edge S->BB was previously already selected because 1430 // prob(S->BB) > prob(S->Pred). 1431 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1432 // choose Pred, we will have a topological ordering as shown on the left 1433 // in the picture below. If we choose Succ, we have the solution as shown 1434 // on the right: 1435 // 1436 // topo-order: 1437 // 1438 // S----- ---S 1439 // | | | | 1440 // ---BB | | BB 1441 // | | | | 1442 // | Pred-- | Succ-- 1443 // | | | | 1444 // ---Succ ---Pred-- 1445 // 1446 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1447 // = freq(S->Pred) + freq(S->BB) 1448 // 1449 // If we have profile data (i.e, branch probabilities can be trusted), the 1450 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1451 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1452 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1453 // means the cost of topological order is greater. 1454 // When profile data is not available, however, we need to be more 1455 // conservative. If the branch prediction is wrong, breaking the topo-order 1456 // will actually yield a layout with large cost. For this reason, we need 1457 // strong biased branch at block S with Prob(S->BB) in order to select 1458 // BB->Succ. This is equivalent to looking the CFG backward with backward 1459 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1460 // profile data). 1461 // -------------------------------------------------------------------------- 1462 // Case 3: forked diamond 1463 // S 1464 // / \ 1465 // / \ 1466 // BB Pred 1467 // | \ / | 1468 // | \ / | 1469 // | X | 1470 // | / \ | 1471 // | / \ | 1472 // S1 S2 1473 // 1474 // The current block is BB and edge BB->S1 is now being evaluated. 1475 // As above S->BB was already selected because 1476 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1477 // 1478 // topo-order: 1479 // 1480 // S-------| ---S 1481 // | | | | 1482 // ---BB | | BB 1483 // | | | | 1484 // | Pred----| | S1---- 1485 // | | | | 1486 // --(S1 or S2) ---Pred-- 1487 // | 1488 // S2 1489 // 1490 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1491 // + min(freq(Pred->S1), freq(Pred->S2)) 1492 // Non-topo-order cost: 1493 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1494 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1495 // is 0. Then the non topo layout is better when 1496 // freq(S->Pred) < freq(BB->S1). 1497 // This is exactly what is checked below. 1498 // Note there are other shapes that apply (Pred may not be a single block, 1499 // but they all fit this general pattern.) 1500 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1501 1502 // Make sure that a hot successor doesn't have a globally more 1503 // important predecessor. 1504 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1505 bool BadCFGConflict = false; 1506 1507 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1508 BlockChain *PredChain = BlockToChain[Pred]; 1509 if (Pred == Succ || PredChain == &SuccChain || 1510 (BlockFilter && !BlockFilter->count(Pred)) || 1511 PredChain == &Chain || Pred != *std::prev(PredChain->end()) || 1512 // This check is redundant except for look ahead. This function is 1513 // called for lookahead by isProfitableToTailDup when BB hasn't been 1514 // placed yet. 1515 (Pred == BB)) 1516 continue; 1517 // Do backward checking. 1518 // For all cases above, we need a backward checking to filter out edges that 1519 // are not 'strongly' biased. 1520 // BB Pred 1521 // \ / 1522 // Succ 1523 // We select edge BB->Succ if 1524 // freq(BB->Succ) > freq(Succ) * HotProb 1525 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1526 // HotProb 1527 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1528 // Case 1 is covered too, because the first equation reduces to: 1529 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1530 BlockFrequency PredEdgeFreq = 1531 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1532 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1533 BadCFGConflict = true; 1534 break; 1535 } 1536 } 1537 1538 if (BadCFGConflict) { 1539 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1540 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1541 return true; 1542 } 1543 1544 return false; 1545 } 1546 1547 /// Select the best successor for a block. 1548 /// 1549 /// This looks across all successors of a particular block and attempts to 1550 /// select the "best" one to be the layout successor. It only considers direct 1551 /// successors which also pass the block filter. It will attempt to avoid 1552 /// breaking CFG structure, but cave and break such structures in the case of 1553 /// very hot successor edges. 1554 /// 1555 /// \returns The best successor block found, or null if none are viable, along 1556 /// with a boolean indicating if tail duplication is necessary. 1557 MachineBlockPlacement::BlockAndTailDupResult 1558 MachineBlockPlacement::selectBestSuccessor( 1559 const MachineBasicBlock *BB, const BlockChain &Chain, 1560 const BlockFilterSet *BlockFilter) { 1561 const BranchProbability HotProb(StaticLikelyProb, 100); 1562 1563 BlockAndTailDupResult BestSucc = { nullptr, false }; 1564 auto BestProb = BranchProbability::getZero(); 1565 1566 SmallVector<MachineBasicBlock *, 4> Successors; 1567 auto AdjustedSumProb = 1568 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1569 1570 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1571 << "\n"); 1572 1573 // if we already precomputed the best successor for BB, return that if still 1574 // applicable. 1575 auto FoundEdge = ComputedEdges.find(BB); 1576 if (FoundEdge != ComputedEdges.end()) { 1577 MachineBasicBlock *Succ = FoundEdge->second.BB; 1578 ComputedEdges.erase(FoundEdge); 1579 BlockChain *SuccChain = BlockToChain[Succ]; 1580 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1581 SuccChain != &Chain && Succ == *SuccChain->begin()) 1582 return FoundEdge->second; 1583 } 1584 1585 // if BB is part of a trellis, Use the trellis to determine the optimal 1586 // fallthrough edges 1587 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1588 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1589 BlockFilter); 1590 1591 // For blocks with CFG violations, we may be able to lay them out anyway with 1592 // tail-duplication. We keep this vector so we can perform the probability 1593 // calculations the minimum number of times. 1594 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4> 1595 DupCandidates; 1596 for (MachineBasicBlock *Succ : Successors) { 1597 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1598 BranchProbability SuccProb = 1599 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1600 1601 BlockChain &SuccChain = *BlockToChain[Succ]; 1602 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1603 // predecessor that yields lower global cost. 1604 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1605 Chain, BlockFilter)) { 1606 // If tail duplication would make Succ profitable, place it. 1607 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1608 DupCandidates.emplace_back(SuccProb, Succ); 1609 continue; 1610 } 1611 1612 LLVM_DEBUG( 1613 dbgs() << " Candidate: " << getBlockName(Succ) 1614 << ", probability: " << SuccProb 1615 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1616 << "\n"); 1617 1618 if (BestSucc.BB && BestProb >= SuccProb) { 1619 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1620 continue; 1621 } 1622 1623 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1624 BestSucc.BB = Succ; 1625 BestProb = SuccProb; 1626 } 1627 // Handle the tail duplication candidates in order of decreasing probability. 1628 // Stop at the first one that is profitable. Also stop if they are less 1629 // profitable than BestSucc. Position is important because we preserve it and 1630 // prefer first best match. Here we aren't comparing in order, so we capture 1631 // the position instead. 1632 llvm::stable_sort(DupCandidates, 1633 [](std::tuple<BranchProbability, MachineBasicBlock *> L, 1634 std::tuple<BranchProbability, MachineBasicBlock *> R) { 1635 return std::get<0>(L) > std::get<0>(R); 1636 }); 1637 for (auto &Tup : DupCandidates) { 1638 BranchProbability DupProb; 1639 MachineBasicBlock *Succ; 1640 std::tie(DupProb, Succ) = Tup; 1641 if (DupProb < BestProb) 1642 break; 1643 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1644 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1645 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1646 << ", probability: " << DupProb 1647 << " (Tail Duplicate)\n"); 1648 BestSucc.BB = Succ; 1649 BestSucc.ShouldTailDup = true; 1650 break; 1651 } 1652 } 1653 1654 if (BestSucc.BB) 1655 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1656 1657 return BestSucc; 1658 } 1659 1660 /// Select the best block from a worklist. 1661 /// 1662 /// This looks through the provided worklist as a list of candidate basic 1663 /// blocks and select the most profitable one to place. The definition of 1664 /// profitable only really makes sense in the context of a loop. This returns 1665 /// the most frequently visited block in the worklist, which in the case of 1666 /// a loop, is the one most desirable to be physically close to the rest of the 1667 /// loop body in order to improve i-cache behavior. 1668 /// 1669 /// \returns The best block found, or null if none are viable. 1670 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1671 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1672 // Once we need to walk the worklist looking for a candidate, cleanup the 1673 // worklist of already placed entries. 1674 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1675 // some code complexity) into the loop below. 1676 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) { 1677 return BlockToChain.lookup(BB) == &Chain; 1678 }); 1679 1680 if (WorkList.empty()) 1681 return nullptr; 1682 1683 bool IsEHPad = WorkList[0]->isEHPad(); 1684 1685 MachineBasicBlock *BestBlock = nullptr; 1686 BlockFrequency BestFreq; 1687 for (MachineBasicBlock *MBB : WorkList) { 1688 assert(MBB->isEHPad() == IsEHPad && 1689 "EHPad mismatch between block and work list."); 1690 1691 BlockChain &SuccChain = *BlockToChain[MBB]; 1692 if (&SuccChain == &Chain) 1693 continue; 1694 1695 assert(SuccChain.UnscheduledPredecessors == 0 && 1696 "Found CFG-violating block"); 1697 1698 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1699 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1700 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1701 1702 // For ehpad, we layout the least probable first as to avoid jumping back 1703 // from least probable landingpads to more probable ones. 1704 // 1705 // FIXME: Using probability is probably (!) not the best way to achieve 1706 // this. We should probably have a more principled approach to layout 1707 // cleanup code. 1708 // 1709 // The goal is to get: 1710 // 1711 // +--------------------------+ 1712 // | V 1713 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1714 // 1715 // Rather than: 1716 // 1717 // +-------------------------------------+ 1718 // V | 1719 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1720 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1721 continue; 1722 1723 BestBlock = MBB; 1724 BestFreq = CandidateFreq; 1725 } 1726 1727 return BestBlock; 1728 } 1729 1730 /// Retrieve the first unplaced basic block. 1731 /// 1732 /// This routine is called when we are unable to use the CFG to walk through 1733 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1734 /// We walk through the function's blocks in order, starting from the 1735 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1736 /// re-scanning the entire sequence on repeated calls to this routine. 1737 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1738 const BlockChain &PlacedChain, 1739 MachineFunction::iterator &PrevUnplacedBlockIt, 1740 const BlockFilterSet *BlockFilter) { 1741 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1742 ++I) { 1743 if (BlockFilter && !BlockFilter->count(&*I)) 1744 continue; 1745 if (BlockToChain[&*I] != &PlacedChain) { 1746 PrevUnplacedBlockIt = I; 1747 // Now select the head of the chain to which the unplaced block belongs 1748 // as the block to place. This will force the entire chain to be placed, 1749 // and satisfies the requirements of merging chains. 1750 return *BlockToChain[&*I]->begin(); 1751 } 1752 } 1753 return nullptr; 1754 } 1755 1756 void MachineBlockPlacement::fillWorkLists( 1757 const MachineBasicBlock *MBB, 1758 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1759 const BlockFilterSet *BlockFilter = nullptr) { 1760 BlockChain &Chain = *BlockToChain[MBB]; 1761 if (!UpdatedPreds.insert(&Chain).second) 1762 return; 1763 1764 assert( 1765 Chain.UnscheduledPredecessors == 0 && 1766 "Attempting to place block with unscheduled predecessors in worklist."); 1767 for (MachineBasicBlock *ChainBB : Chain) { 1768 assert(BlockToChain[ChainBB] == &Chain && 1769 "Block in chain doesn't match BlockToChain map."); 1770 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1771 if (BlockFilter && !BlockFilter->count(Pred)) 1772 continue; 1773 if (BlockToChain[Pred] == &Chain) 1774 continue; 1775 ++Chain.UnscheduledPredecessors; 1776 } 1777 } 1778 1779 if (Chain.UnscheduledPredecessors != 0) 1780 return; 1781 1782 MachineBasicBlock *BB = *Chain.begin(); 1783 if (BB->isEHPad()) 1784 EHPadWorkList.push_back(BB); 1785 else 1786 BlockWorkList.push_back(BB); 1787 } 1788 1789 void MachineBlockPlacement::buildChain( 1790 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1791 BlockFilterSet *BlockFilter) { 1792 assert(HeadBB && "BB must not be null.\n"); 1793 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1794 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1795 1796 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1797 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1798 MachineBasicBlock *BB = *std::prev(Chain.end()); 1799 while (true) { 1800 assert(BB && "null block found at end of chain in loop."); 1801 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1802 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1803 1804 1805 // Look for the best viable successor if there is one to place immediately 1806 // after this block. 1807 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1808 MachineBasicBlock* BestSucc = Result.BB; 1809 bool ShouldTailDup = Result.ShouldTailDup; 1810 if (allowTailDupPlacement()) 1811 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc, 1812 Chain, 1813 BlockFilter)); 1814 1815 // If an immediate successor isn't available, look for the best viable 1816 // block among those we've identified as not violating the loop's CFG at 1817 // this point. This won't be a fallthrough, but it will increase locality. 1818 if (!BestSucc) 1819 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1820 if (!BestSucc) 1821 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1822 1823 if (!BestSucc) { 1824 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1825 if (!BestSucc) 1826 break; 1827 1828 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1829 "layout successor until the CFG reduces\n"); 1830 } 1831 1832 // Placement may have changed tail duplication opportunities. 1833 // Check for that now. 1834 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1835 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1836 BlockFilter, PrevUnplacedBlockIt); 1837 // If the chosen successor was duplicated into BB, don't bother laying 1838 // it out, just go round the loop again with BB as the chain end. 1839 if (!BB->isSuccessor(BestSucc)) 1840 continue; 1841 } 1842 1843 // Place this block, updating the datastructures to reflect its placement. 1844 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1845 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1846 // we selected a successor that didn't fit naturally into the CFG. 1847 SuccChain.UnscheduledPredecessors = 0; 1848 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1849 << getBlockName(BestSucc) << "\n"); 1850 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1851 Chain.merge(BestSucc, &SuccChain); 1852 BB = *std::prev(Chain.end()); 1853 } 1854 1855 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1856 << getBlockName(*Chain.begin()) << "\n"); 1857 } 1858 1859 // If bottom of block BB has only one successor OldTop, in most cases it is 1860 // profitable to move it before OldTop, except the following case: 1861 // 1862 // -->OldTop<- 1863 // | . | 1864 // | . | 1865 // | . | 1866 // ---Pred | 1867 // | | 1868 // BB----- 1869 // 1870 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1871 // layout the other successor below it, so it can't reduce taken branch. 1872 // In this case we keep its original layout. 1873 bool 1874 MachineBlockPlacement::canMoveBottomBlockToTop( 1875 const MachineBasicBlock *BottomBlock, 1876 const MachineBasicBlock *OldTop) { 1877 if (BottomBlock->pred_size() != 1) 1878 return true; 1879 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1880 if (Pred->succ_size() != 2) 1881 return true; 1882 1883 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1884 if (OtherBB == BottomBlock) 1885 OtherBB = *Pred->succ_rbegin(); 1886 if (OtherBB == OldTop) 1887 return false; 1888 1889 return true; 1890 } 1891 1892 // Find out the possible fall through frequence to the top of a loop. 1893 BlockFrequency 1894 MachineBlockPlacement::TopFallThroughFreq( 1895 const MachineBasicBlock *Top, 1896 const BlockFilterSet &LoopBlockSet) { 1897 BlockFrequency MaxFreq = 0; 1898 for (MachineBasicBlock *Pred : Top->predecessors()) { 1899 BlockChain *PredChain = BlockToChain[Pred]; 1900 if (!LoopBlockSet.count(Pred) && 1901 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1902 // Found a Pred block can be placed before Top. 1903 // Check if Top is the best successor of Pred. 1904 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 1905 bool TopOK = true; 1906 for (MachineBasicBlock *Succ : Pred->successors()) { 1907 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 1908 BlockChain *SuccChain = BlockToChain[Succ]; 1909 // Check if Succ can be placed after Pred. 1910 // Succ should not be in any chain, or it is the head of some chain. 1911 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && 1912 (!SuccChain || Succ == *SuccChain->begin())) { 1913 TopOK = false; 1914 break; 1915 } 1916 } 1917 if (TopOK) { 1918 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1919 MBPI->getEdgeProbability(Pred, Top); 1920 if (EdgeFreq > MaxFreq) 1921 MaxFreq = EdgeFreq; 1922 } 1923 } 1924 } 1925 return MaxFreq; 1926 } 1927 1928 // Compute the fall through gains when move NewTop before OldTop. 1929 // 1930 // In following diagram, edges marked as "-" are reduced fallthrough, edges 1931 // marked as "+" are increased fallthrough, this function computes 1932 // 1933 // SUM(increased fallthrough) - SUM(decreased fallthrough) 1934 // 1935 // | 1936 // | - 1937 // V 1938 // --->OldTop 1939 // | . 1940 // | . 1941 // +| . + 1942 // | Pred ---> 1943 // | |- 1944 // | V 1945 // --- NewTop <--- 1946 // |- 1947 // V 1948 // 1949 BlockFrequency 1950 MachineBlockPlacement::FallThroughGains( 1951 const MachineBasicBlock *NewTop, 1952 const MachineBasicBlock *OldTop, 1953 const MachineBasicBlock *ExitBB, 1954 const BlockFilterSet &LoopBlockSet) { 1955 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); 1956 BlockFrequency FallThrough2Exit = 0; 1957 if (ExitBB) 1958 FallThrough2Exit = MBFI->getBlockFreq(NewTop) * 1959 MBPI->getEdgeProbability(NewTop, ExitBB); 1960 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * 1961 MBPI->getEdgeProbability(NewTop, OldTop); 1962 1963 // Find the best Pred of NewTop. 1964 MachineBasicBlock *BestPred = nullptr; 1965 BlockFrequency FallThroughFromPred = 0; 1966 for (MachineBasicBlock *Pred : NewTop->predecessors()) { 1967 if (!LoopBlockSet.count(Pred)) 1968 continue; 1969 BlockChain *PredChain = BlockToChain[Pred]; 1970 if (!PredChain || Pred == *std::prev(PredChain->end())) { 1971 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * 1972 MBPI->getEdgeProbability(Pred, NewTop); 1973 if (EdgeFreq > FallThroughFromPred) { 1974 FallThroughFromPred = EdgeFreq; 1975 BestPred = Pred; 1976 } 1977 } 1978 } 1979 1980 // If NewTop is not placed after Pred, another successor can be placed 1981 // after Pred. 1982 BlockFrequency NewFreq = 0; 1983 if (BestPred) { 1984 for (MachineBasicBlock *Succ : BestPred->successors()) { 1985 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) 1986 continue; 1987 if (ComputedEdges.find(Succ) != ComputedEdges.end()) 1988 continue; 1989 BlockChain *SuccChain = BlockToChain[Succ]; 1990 if ((SuccChain && (Succ != *SuccChain->begin())) || 1991 (SuccChain == BlockToChain[BestPred])) 1992 continue; 1993 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * 1994 MBPI->getEdgeProbability(BestPred, Succ); 1995 if (EdgeFreq > NewFreq) 1996 NewFreq = EdgeFreq; 1997 } 1998 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * 1999 MBPI->getEdgeProbability(BestPred, NewTop); 2000 if (NewFreq > OrigEdgeFreq) { 2001 // If NewTop is not the best successor of Pred, then Pred doesn't 2002 // fallthrough to NewTop. So there is no FallThroughFromPred and 2003 // NewFreq. 2004 NewFreq = 0; 2005 FallThroughFromPred = 0; 2006 } 2007 } 2008 2009 BlockFrequency Result = 0; 2010 BlockFrequency Gains = BackEdgeFreq + NewFreq; 2011 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + 2012 FallThroughFromPred; 2013 if (Gains > Lost) 2014 Result = Gains - Lost; 2015 return Result; 2016 } 2017 2018 /// Helper function of findBestLoopTop. Find the best loop top block 2019 /// from predecessors of old top. 2020 /// 2021 /// Look for a block which is strictly better than the old top for laying 2022 /// out before the old top of the loop. This looks for only two patterns: 2023 /// 2024 /// 1. a block has only one successor, the old loop top 2025 /// 2026 /// Because such a block will always result in an unconditional jump, 2027 /// rotating it in front of the old top is always profitable. 2028 /// 2029 /// 2. a block has two successors, one is old top, another is exit 2030 /// and it has more than one predecessors 2031 /// 2032 /// If it is below one of its predecessors P, only P can fall through to 2033 /// it, all other predecessors need a jump to it, and another conditional 2034 /// jump to loop header. If it is moved before loop header, all its 2035 /// predecessors jump to it, then fall through to loop header. So all its 2036 /// predecessors except P can reduce one taken branch. 2037 /// At the same time, move it before old top increases the taken branch 2038 /// to loop exit block, so the reduced taken branch will be compared with 2039 /// the increased taken branch to the loop exit block. 2040 MachineBasicBlock * 2041 MachineBlockPlacement::findBestLoopTopHelper( 2042 MachineBasicBlock *OldTop, 2043 const MachineLoop &L, 2044 const BlockFilterSet &LoopBlockSet) { 2045 // Check that the header hasn't been fused with a preheader block due to 2046 // crazy branches. If it has, we need to start with the header at the top to 2047 // prevent pulling the preheader into the loop body. 2048 BlockChain &HeaderChain = *BlockToChain[OldTop]; 2049 if (!LoopBlockSet.count(*HeaderChain.begin())) 2050 return OldTop; 2051 2052 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) 2053 << "\n"); 2054 2055 BlockFrequency BestGains = 0; 2056 MachineBasicBlock *BestPred = nullptr; 2057 for (MachineBasicBlock *Pred : OldTop->predecessors()) { 2058 if (!LoopBlockSet.count(Pred)) 2059 continue; 2060 if (Pred == L.getHeader()) 2061 continue; 2062 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has " 2063 << Pred->succ_size() << " successors, "; 2064 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 2065 if (Pred->succ_size() > 2) 2066 continue; 2067 2068 MachineBasicBlock *OtherBB = nullptr; 2069 if (Pred->succ_size() == 2) { 2070 OtherBB = *Pred->succ_begin(); 2071 if (OtherBB == OldTop) 2072 OtherBB = *Pred->succ_rbegin(); 2073 } 2074 2075 if (!canMoveBottomBlockToTop(Pred, OldTop)) 2076 continue; 2077 2078 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, 2079 LoopBlockSet); 2080 if ((Gains > 0) && (Gains > BestGains || 2081 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { 2082 BestPred = Pred; 2083 BestGains = Gains; 2084 } 2085 } 2086 2087 // If no direct predecessor is fine, just use the loop header. 2088 if (!BestPred) { 2089 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 2090 return OldTop; 2091 } 2092 2093 // Walk backwards through any straight line of predecessors. 2094 while (BestPred->pred_size() == 1 && 2095 (*BestPred->pred_begin())->succ_size() == 1 && 2096 *BestPred->pred_begin() != L.getHeader()) 2097 BestPred = *BestPred->pred_begin(); 2098 2099 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 2100 return BestPred; 2101 } 2102 2103 /// Find the best loop top block for layout. 2104 /// 2105 /// This function iteratively calls findBestLoopTopHelper, until no new better 2106 /// BB can be found. 2107 MachineBasicBlock * 2108 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 2109 const BlockFilterSet &LoopBlockSet) { 2110 // Placing the latch block before the header may introduce an extra branch 2111 // that skips this block the first time the loop is executed, which we want 2112 // to avoid when optimising for size. 2113 // FIXME: in theory there is a case that does not introduce a new branch, 2114 // i.e. when the layout predecessor does not fallthrough to the loop header. 2115 // In practice this never happens though: there always seems to be a preheader 2116 // that can fallthrough and that is also placed before the header. 2117 bool OptForSize = F->getFunction().hasOptSize() || 2118 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get()); 2119 if (OptForSize) 2120 return L.getHeader(); 2121 2122 MachineBasicBlock *OldTop = nullptr; 2123 MachineBasicBlock *NewTop = L.getHeader(); 2124 while (NewTop != OldTop) { 2125 OldTop = NewTop; 2126 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); 2127 if (NewTop != OldTop) 2128 ComputedEdges[NewTop] = { OldTop, false }; 2129 } 2130 return NewTop; 2131 } 2132 2133 /// Find the best loop exiting block for layout. 2134 /// 2135 /// This routine implements the logic to analyze the loop looking for the best 2136 /// block to layout at the top of the loop. Typically this is done to maximize 2137 /// fallthrough opportunities. 2138 MachineBasicBlock * 2139 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 2140 const BlockFilterSet &LoopBlockSet, 2141 BlockFrequency &ExitFreq) { 2142 // We don't want to layout the loop linearly in all cases. If the loop header 2143 // is just a normal basic block in the loop, we want to look for what block 2144 // within the loop is the best one to layout at the top. However, if the loop 2145 // header has be pre-merged into a chain due to predecessors not having 2146 // analyzable branches, *and* the predecessor it is merged with is *not* part 2147 // of the loop, rotating the header into the middle of the loop will create 2148 // a non-contiguous range of blocks which is Very Bad. So start with the 2149 // header and only rotate if safe. 2150 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 2151 if (!LoopBlockSet.count(*HeaderChain.begin())) 2152 return nullptr; 2153 2154 BlockFrequency BestExitEdgeFreq; 2155 unsigned BestExitLoopDepth = 0; 2156 MachineBasicBlock *ExitingBB = nullptr; 2157 // If there are exits to outer loops, loop rotation can severely limit 2158 // fallthrough opportunities unless it selects such an exit. Keep a set of 2159 // blocks where rotating to exit with that block will reach an outer loop. 2160 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 2161 2162 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 2163 << getBlockName(L.getHeader()) << "\n"); 2164 for (MachineBasicBlock *MBB : L.getBlocks()) { 2165 BlockChain &Chain = *BlockToChain[MBB]; 2166 // Ensure that this block is at the end of a chain; otherwise it could be 2167 // mid-way through an inner loop or a successor of an unanalyzable branch. 2168 if (MBB != *std::prev(Chain.end())) 2169 continue; 2170 2171 // Now walk the successors. We need to establish whether this has a viable 2172 // exiting successor and whether it has a viable non-exiting successor. 2173 // We store the old exiting state and restore it if a viable looping 2174 // successor isn't found. 2175 MachineBasicBlock *OldExitingBB = ExitingBB; 2176 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 2177 bool HasLoopingSucc = false; 2178 for (MachineBasicBlock *Succ : MBB->successors()) { 2179 if (Succ->isEHPad()) 2180 continue; 2181 if (Succ == MBB) 2182 continue; 2183 BlockChain &SuccChain = *BlockToChain[Succ]; 2184 // Don't split chains, either this chain or the successor's chain. 2185 if (&Chain == &SuccChain) { 2186 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2187 << getBlockName(Succ) << " (chain conflict)\n"); 2188 continue; 2189 } 2190 2191 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 2192 if (LoopBlockSet.count(Succ)) { 2193 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 2194 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 2195 HasLoopingSucc = true; 2196 continue; 2197 } 2198 2199 unsigned SuccLoopDepth = 0; 2200 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 2201 SuccLoopDepth = ExitLoop->getLoopDepth(); 2202 if (ExitLoop->contains(&L)) 2203 BlocksExitingToOuterLoop.insert(MBB); 2204 } 2205 2206 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 2207 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 2208 << getBlockName(Succ) << " [L:" << SuccLoopDepth 2209 << "] ("; 2210 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 2211 // Note that we bias this toward an existing layout successor to retain 2212 // incoming order in the absence of better information. The exit must have 2213 // a frequency higher than the current exit before we consider breaking 2214 // the layout. 2215 BranchProbability Bias(100 - ExitBlockBias, 100); 2216 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 2217 ExitEdgeFreq > BestExitEdgeFreq || 2218 (MBB->isLayoutSuccessor(Succ) && 2219 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 2220 BestExitEdgeFreq = ExitEdgeFreq; 2221 ExitingBB = MBB; 2222 } 2223 } 2224 2225 if (!HasLoopingSucc) { 2226 // Restore the old exiting state, no viable looping successor was found. 2227 ExitingBB = OldExitingBB; 2228 BestExitEdgeFreq = OldBestExitEdgeFreq; 2229 } 2230 } 2231 // Without a candidate exiting block or with only a single block in the 2232 // loop, just use the loop header to layout the loop. 2233 if (!ExitingBB) { 2234 LLVM_DEBUG( 2235 dbgs() << " No other candidate exit blocks, using loop header\n"); 2236 return nullptr; 2237 } 2238 if (L.getNumBlocks() == 1) { 2239 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 2240 return nullptr; 2241 } 2242 2243 // Also, if we have exit blocks which lead to outer loops but didn't select 2244 // one of them as the exiting block we are rotating toward, disable loop 2245 // rotation altogether. 2246 if (!BlocksExitingToOuterLoop.empty() && 2247 !BlocksExitingToOuterLoop.count(ExitingBB)) 2248 return nullptr; 2249 2250 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 2251 << "\n"); 2252 ExitFreq = BestExitEdgeFreq; 2253 return ExitingBB; 2254 } 2255 2256 /// Check if there is a fallthrough to loop header Top. 2257 /// 2258 /// 1. Look for a Pred that can be layout before Top. 2259 /// 2. Check if Top is the most possible successor of Pred. 2260 bool 2261 MachineBlockPlacement::hasViableTopFallthrough( 2262 const MachineBasicBlock *Top, 2263 const BlockFilterSet &LoopBlockSet) { 2264 for (MachineBasicBlock *Pred : Top->predecessors()) { 2265 BlockChain *PredChain = BlockToChain[Pred]; 2266 if (!LoopBlockSet.count(Pred) && 2267 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2268 // Found a Pred block can be placed before Top. 2269 // Check if Top is the best successor of Pred. 2270 auto TopProb = MBPI->getEdgeProbability(Pred, Top); 2271 bool TopOK = true; 2272 for (MachineBasicBlock *Succ : Pred->successors()) { 2273 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); 2274 BlockChain *SuccChain = BlockToChain[Succ]; 2275 // Check if Succ can be placed after Pred. 2276 // Succ should not be in any chain, or it is the head of some chain. 2277 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { 2278 TopOK = false; 2279 break; 2280 } 2281 } 2282 if (TopOK) 2283 return true; 2284 } 2285 } 2286 return false; 2287 } 2288 2289 /// Attempt to rotate an exiting block to the bottom of the loop. 2290 /// 2291 /// Once we have built a chain, try to rotate it to line up the hot exit block 2292 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 2293 /// branches. For example, if the loop has fallthrough into its header and out 2294 /// of its bottom already, don't rotate it. 2295 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 2296 const MachineBasicBlock *ExitingBB, 2297 BlockFrequency ExitFreq, 2298 const BlockFilterSet &LoopBlockSet) { 2299 if (!ExitingBB) 2300 return; 2301 2302 MachineBasicBlock *Top = *LoopChain.begin(); 2303 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2304 2305 // If ExitingBB is already the last one in a chain then nothing to do. 2306 if (Bottom == ExitingBB) 2307 return; 2308 2309 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); 2310 2311 // If the header has viable fallthrough, check whether the current loop 2312 // bottom is a viable exiting block. If so, bail out as rotating will 2313 // introduce an unnecessary branch. 2314 if (ViableTopFallthrough) { 2315 for (MachineBasicBlock *Succ : Bottom->successors()) { 2316 BlockChain *SuccChain = BlockToChain[Succ]; 2317 if (!LoopBlockSet.count(Succ) && 2318 (!SuccChain || Succ == *SuccChain->begin())) 2319 return; 2320 } 2321 2322 // Rotate will destroy the top fallthrough, we need to ensure the new exit 2323 // frequency is larger than top fallthrough. 2324 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); 2325 if (FallThrough2Top >= ExitFreq) 2326 return; 2327 } 2328 2329 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2330 if (ExitIt == LoopChain.end()) 2331 return; 2332 2333 // Rotating a loop exit to the bottom when there is a fallthrough to top 2334 // trades the entry fallthrough for an exit fallthrough. 2335 // If there is no bottom->top edge, but the chosen exit block does have 2336 // a fallthrough, we break that fallthrough for nothing in return. 2337 2338 // Let's consider an example. We have a built chain of basic blocks 2339 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2340 // By doing a rotation we get 2341 // Bk+1, ..., Bn, B1, ..., Bk 2342 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2343 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2344 // It might be compensated by fallthrough Bn -> B1. 2345 // So we have a condition to avoid creation of extra branch by loop rotation. 2346 // All below must be true to avoid loop rotation: 2347 // If there is a fallthrough to top (B1) 2348 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2349 // There is no fallthrough from bottom (Bn) to top (B1). 2350 // Please note that there is no exit fallthrough from Bn because we checked it 2351 // above. 2352 if (ViableTopFallthrough) { 2353 assert(std::next(ExitIt) != LoopChain.end() && 2354 "Exit should not be last BB"); 2355 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2356 if (ExitingBB->isSuccessor(NextBlockInChain)) 2357 if (!Bottom->isSuccessor(Top)) 2358 return; 2359 } 2360 2361 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2362 << " at bottom\n"); 2363 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2364 } 2365 2366 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2367 /// 2368 /// With profile data, we can determine the cost in terms of missed fall through 2369 /// opportunities when rotating a loop chain and select the best rotation. 2370 /// Basically, there are three kinds of cost to consider for each rotation: 2371 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2372 /// the loop to the loop header. 2373 /// 2. The possibly missed fall through edges (if they exist) from the loop 2374 /// exits to BB out of the loop. 2375 /// 3. The missed fall through edge (if it exists) from the last BB to the 2376 /// first BB in the loop chain. 2377 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2378 /// We select the best rotation with the smallest cost. 2379 void MachineBlockPlacement::rotateLoopWithProfile( 2380 BlockChain &LoopChain, const MachineLoop &L, 2381 const BlockFilterSet &LoopBlockSet) { 2382 auto RotationPos = LoopChain.end(); 2383 2384 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2385 2386 // A utility lambda that scales up a block frequency by dividing it by a 2387 // branch probability which is the reciprocal of the scale. 2388 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2389 unsigned Scale) -> BlockFrequency { 2390 if (Scale == 0) 2391 return 0; 2392 // Use operator / between BlockFrequency and BranchProbability to implement 2393 // saturating multiplication. 2394 return Freq / BranchProbability(1, Scale); 2395 }; 2396 2397 // Compute the cost of the missed fall-through edge to the loop header if the 2398 // chain head is not the loop header. As we only consider natural loops with 2399 // single header, this computation can be done only once. 2400 BlockFrequency HeaderFallThroughCost(0); 2401 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); 2402 for (auto *Pred : ChainHeaderBB->predecessors()) { 2403 BlockChain *PredChain = BlockToChain[Pred]; 2404 if (!LoopBlockSet.count(Pred) && 2405 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2406 auto EdgeFreq = MBFI->getBlockFreq(Pred) * 2407 MBPI->getEdgeProbability(Pred, ChainHeaderBB); 2408 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2409 // If the predecessor has only an unconditional jump to the header, we 2410 // need to consider the cost of this jump. 2411 if (Pred->succ_size() == 1) 2412 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2413 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2414 } 2415 } 2416 2417 // Here we collect all exit blocks in the loop, and for each exit we find out 2418 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2419 // as the sum of frequencies of exit edges we collect here, excluding the exit 2420 // edge from the tail of the loop chain. 2421 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2422 for (auto BB : LoopChain) { 2423 auto LargestExitEdgeProb = BranchProbability::getZero(); 2424 for (auto *Succ : BB->successors()) { 2425 BlockChain *SuccChain = BlockToChain[Succ]; 2426 if (!LoopBlockSet.count(Succ) && 2427 (!SuccChain || Succ == *SuccChain->begin())) { 2428 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2429 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2430 } 2431 } 2432 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2433 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2434 ExitsWithFreq.emplace_back(BB, ExitFreq); 2435 } 2436 } 2437 2438 // In this loop we iterate every block in the loop chain and calculate the 2439 // cost assuming the block is the head of the loop chain. When the loop ends, 2440 // we should have found the best candidate as the loop chain's head. 2441 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2442 EndIter = LoopChain.end(); 2443 Iter != EndIter; Iter++, TailIter++) { 2444 // TailIter is used to track the tail of the loop chain if the block we are 2445 // checking (pointed by Iter) is the head of the chain. 2446 if (TailIter == LoopChain.end()) 2447 TailIter = LoopChain.begin(); 2448 2449 auto TailBB = *TailIter; 2450 2451 // Calculate the cost by putting this BB to the top. 2452 BlockFrequency Cost = 0; 2453 2454 // If the current BB is the loop header, we need to take into account the 2455 // cost of the missed fall through edge from outside of the loop to the 2456 // header. 2457 if (Iter != LoopChain.begin()) 2458 Cost += HeaderFallThroughCost; 2459 2460 // Collect the loop exit cost by summing up frequencies of all exit edges 2461 // except the one from the chain tail. 2462 for (auto &ExitWithFreq : ExitsWithFreq) 2463 if (TailBB != ExitWithFreq.first) 2464 Cost += ExitWithFreq.second; 2465 2466 // The cost of breaking the once fall-through edge from the tail to the top 2467 // of the loop chain. Here we need to consider three cases: 2468 // 1. If the tail node has only one successor, then we will get an 2469 // additional jmp instruction. So the cost here is (MisfetchCost + 2470 // JumpInstCost) * tail node frequency. 2471 // 2. If the tail node has two successors, then we may still get an 2472 // additional jmp instruction if the layout successor after the loop 2473 // chain is not its CFG successor. Note that the more frequently executed 2474 // jmp instruction will be put ahead of the other one. Assume the 2475 // frequency of those two branches are x and y, where x is the frequency 2476 // of the edge to the chain head, then the cost will be 2477 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2478 // 3. If the tail node has more than two successors (this rarely happens), 2479 // we won't consider any additional cost. 2480 if (TailBB->isSuccessor(*Iter)) { 2481 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2482 if (TailBB->succ_size() == 1) 2483 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2484 MisfetchCost + JumpInstCost); 2485 else if (TailBB->succ_size() == 2) { 2486 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2487 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2488 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2489 ? TailBBFreq * TailToHeadProb.getCompl() 2490 : TailToHeadFreq; 2491 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2492 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2493 } 2494 } 2495 2496 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2497 << getBlockName(*Iter) 2498 << " to the top: " << Cost.getFrequency() << "\n"); 2499 2500 if (Cost < SmallestRotationCost) { 2501 SmallestRotationCost = Cost; 2502 RotationPos = Iter; 2503 } 2504 } 2505 2506 if (RotationPos != LoopChain.end()) { 2507 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2508 << " to the top\n"); 2509 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2510 } 2511 } 2512 2513 /// Collect blocks in the given loop that are to be placed. 2514 /// 2515 /// When profile data is available, exclude cold blocks from the returned set; 2516 /// otherwise, collect all blocks in the loop. 2517 MachineBlockPlacement::BlockFilterSet 2518 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2519 BlockFilterSet LoopBlockSet; 2520 2521 // Filter cold blocks off from LoopBlockSet when profile data is available. 2522 // Collect the sum of frequencies of incoming edges to the loop header from 2523 // outside. If we treat the loop as a super block, this is the frequency of 2524 // the loop. Then for each block in the loop, we calculate the ratio between 2525 // its frequency and the frequency of the loop block. When it is too small, 2526 // don't add it to the loop chain. If there are outer loops, then this block 2527 // will be merged into the first outer loop chain for which this block is not 2528 // cold anymore. This needs precise profile data and we only do this when 2529 // profile data is available. 2530 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2531 BlockFrequency LoopFreq(0); 2532 for (auto LoopPred : L.getHeader()->predecessors()) 2533 if (!L.contains(LoopPred)) 2534 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2535 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2536 2537 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2538 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2539 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2540 continue; 2541 LoopBlockSet.insert(LoopBB); 2542 } 2543 } else 2544 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2545 2546 return LoopBlockSet; 2547 } 2548 2549 /// Forms basic block chains from the natural loop structures. 2550 /// 2551 /// These chains are designed to preserve the existing *structure* of the code 2552 /// as much as possible. We can then stitch the chains together in a way which 2553 /// both preserves the topological structure and minimizes taken conditional 2554 /// branches. 2555 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2556 // First recurse through any nested loops, building chains for those inner 2557 // loops. 2558 for (const MachineLoop *InnerLoop : L) 2559 buildLoopChains(*InnerLoop); 2560 2561 assert(BlockWorkList.empty() && 2562 "BlockWorkList not empty when starting to build loop chains."); 2563 assert(EHPadWorkList.empty() && 2564 "EHPadWorkList not empty when starting to build loop chains."); 2565 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2566 2567 // Check if we have profile data for this function. If yes, we will rotate 2568 // this loop by modeling costs more precisely which requires the profile data 2569 // for better layout. 2570 bool RotateLoopWithProfile = 2571 ForcePreciseRotationCost || 2572 (PreciseRotationCost && F->getFunction().hasProfileData()); 2573 2574 // First check to see if there is an obviously preferable top block for the 2575 // loop. This will default to the header, but may end up as one of the 2576 // predecessors to the header if there is one which will result in strictly 2577 // fewer branches in the loop body. 2578 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 2579 2580 // If we selected just the header for the loop top, look for a potentially 2581 // profitable exit block in the event that rotating the loop can eliminate 2582 // branches by placing an exit edge at the bottom. 2583 // 2584 // Loops are processed innermost to uttermost, make sure we clear 2585 // PreferredLoopExit before processing a new loop. 2586 PreferredLoopExit = nullptr; 2587 BlockFrequency ExitFreq; 2588 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2589 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); 2590 2591 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2592 2593 // FIXME: This is a really lame way of walking the chains in the loop: we 2594 // walk the blocks, and use a set to prevent visiting a particular chain 2595 // twice. 2596 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2597 assert(LoopChain.UnscheduledPredecessors == 0 && 2598 "LoopChain should not have unscheduled predecessors."); 2599 UpdatedPreds.insert(&LoopChain); 2600 2601 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2602 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2603 2604 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2605 2606 if (RotateLoopWithProfile) 2607 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2608 else 2609 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); 2610 2611 LLVM_DEBUG({ 2612 // Crash at the end so we get all of the debugging output first. 2613 bool BadLoop = false; 2614 if (LoopChain.UnscheduledPredecessors) { 2615 BadLoop = true; 2616 dbgs() << "Loop chain contains a block without its preds placed!\n" 2617 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2618 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2619 } 2620 for (MachineBasicBlock *ChainBB : LoopChain) { 2621 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2622 if (!LoopBlockSet.remove(ChainBB)) { 2623 // We don't mark the loop as bad here because there are real situations 2624 // where this can occur. For example, with an unanalyzable fallthrough 2625 // from a loop block to a non-loop block or vice versa. 2626 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2627 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2628 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2629 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2630 } 2631 } 2632 2633 if (!LoopBlockSet.empty()) { 2634 BadLoop = true; 2635 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2636 dbgs() << "Loop contains blocks never placed into a chain!\n" 2637 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2638 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2639 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2640 } 2641 assert(!BadLoop && "Detected problems with the placement of this loop."); 2642 }); 2643 2644 BlockWorkList.clear(); 2645 EHPadWorkList.clear(); 2646 } 2647 2648 void MachineBlockPlacement::buildCFGChains() { 2649 // Ensure that every BB in the function has an associated chain to simplify 2650 // the assumptions of the remaining algorithm. 2651 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2652 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2653 ++FI) { 2654 MachineBasicBlock *BB = &*FI; 2655 BlockChain *Chain = 2656 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2657 // Also, merge any blocks which we cannot reason about and must preserve 2658 // the exact fallthrough behavior for. 2659 while (true) { 2660 Cond.clear(); 2661 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2662 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2663 break; 2664 2665 MachineFunction::iterator NextFI = std::next(FI); 2666 MachineBasicBlock *NextBB = &*NextFI; 2667 // Ensure that the layout successor is a viable block, as we know that 2668 // fallthrough is a possibility. 2669 assert(NextFI != FE && "Can't fallthrough past the last block."); 2670 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2671 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2672 << "\n"); 2673 Chain->merge(NextBB, nullptr); 2674 #ifndef NDEBUG 2675 BlocksWithUnanalyzableExits.insert(&*BB); 2676 #endif 2677 FI = NextFI; 2678 BB = NextBB; 2679 } 2680 } 2681 2682 // Build any loop-based chains. 2683 PreferredLoopExit = nullptr; 2684 for (MachineLoop *L : *MLI) 2685 buildLoopChains(*L); 2686 2687 assert(BlockWorkList.empty() && 2688 "BlockWorkList should be empty before building final chain."); 2689 assert(EHPadWorkList.empty() && 2690 "EHPadWorkList should be empty before building final chain."); 2691 2692 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2693 for (MachineBasicBlock &MBB : *F) 2694 fillWorkLists(&MBB, UpdatedPreds); 2695 2696 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2697 buildChain(&F->front(), FunctionChain); 2698 2699 #ifndef NDEBUG 2700 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2701 #endif 2702 LLVM_DEBUG({ 2703 // Crash at the end so we get all of the debugging output first. 2704 bool BadFunc = false; 2705 FunctionBlockSetType FunctionBlockSet; 2706 for (MachineBasicBlock &MBB : *F) 2707 FunctionBlockSet.insert(&MBB); 2708 2709 for (MachineBasicBlock *ChainBB : FunctionChain) 2710 if (!FunctionBlockSet.erase(ChainBB)) { 2711 BadFunc = true; 2712 dbgs() << "Function chain contains a block not in the function!\n" 2713 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2714 } 2715 2716 if (!FunctionBlockSet.empty()) { 2717 BadFunc = true; 2718 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2719 dbgs() << "Function contains blocks never placed into a chain!\n" 2720 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2721 } 2722 assert(!BadFunc && "Detected problems with the block placement."); 2723 }); 2724 2725 // Remember original layout ordering, so we can update terminators after 2726 // reordering to point to the original layout successor. 2727 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors( 2728 F->getNumBlockIDs()); 2729 { 2730 MachineBasicBlock *LastMBB = nullptr; 2731 for (auto &MBB : *F) { 2732 if (LastMBB != nullptr) 2733 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB; 2734 LastMBB = &MBB; 2735 } 2736 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr; 2737 } 2738 2739 // Splice the blocks into place. 2740 MachineFunction::iterator InsertPos = F->begin(); 2741 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2742 for (MachineBasicBlock *ChainBB : FunctionChain) { 2743 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2744 : " ... ") 2745 << getBlockName(ChainBB) << "\n"); 2746 if (InsertPos != MachineFunction::iterator(ChainBB)) 2747 F->splice(InsertPos, ChainBB); 2748 else 2749 ++InsertPos; 2750 2751 // Update the terminator of the previous block. 2752 if (ChainBB == *FunctionChain.begin()) 2753 continue; 2754 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2755 2756 // FIXME: It would be awesome of updateTerminator would just return rather 2757 // than assert when the branch cannot be analyzed in order to remove this 2758 // boiler plate. 2759 Cond.clear(); 2760 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2761 2762 #ifndef NDEBUG 2763 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2764 // Given the exact block placement we chose, we may actually not _need_ to 2765 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2766 // do that at this point is a bug. 2767 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2768 !PrevBB->canFallThrough()) && 2769 "Unexpected block with un-analyzable fallthrough!"); 2770 Cond.clear(); 2771 TBB = FBB = nullptr; 2772 } 2773 #endif 2774 2775 // The "PrevBB" is not yet updated to reflect current code layout, so, 2776 // o. it may fall-through to a block without explicit "goto" instruction 2777 // before layout, and no longer fall-through it after layout; or 2778 // o. just opposite. 2779 // 2780 // analyzeBranch() may return erroneous value for FBB when these two 2781 // situations take place. For the first scenario FBB is mistakenly set NULL; 2782 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2783 // mistakenly pointing to "*BI". 2784 // Thus, if the future change needs to use FBB before the layout is set, it 2785 // has to correct FBB first by using the code similar to the following: 2786 // 2787 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2788 // PrevBB->updateTerminator(); 2789 // Cond.clear(); 2790 // TBB = FBB = nullptr; 2791 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2792 // // FIXME: This should never take place. 2793 // TBB = FBB = nullptr; 2794 // } 2795 // } 2796 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2797 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2798 } 2799 } 2800 2801 // Fixup the last block. 2802 Cond.clear(); 2803 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2804 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) { 2805 MachineBasicBlock *PrevBB = &F->back(); 2806 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]); 2807 } 2808 2809 BlockWorkList.clear(); 2810 EHPadWorkList.clear(); 2811 } 2812 2813 void MachineBlockPlacement::optimizeBranches() { 2814 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2815 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch. 2816 2817 // Now that all the basic blocks in the chain have the proper layout, 2818 // make a final call to analyzeBranch with AllowModify set. 2819 // Indeed, the target may be able to optimize the branches in a way we 2820 // cannot because all branches may not be analyzable. 2821 // E.g., the target may be able to remove an unconditional branch to 2822 // a fallthrough when it occurs after predicated terminators. 2823 for (MachineBasicBlock *ChainBB : FunctionChain) { 2824 Cond.clear(); 2825 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch. 2826 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2827 // If PrevBB has a two-way branch, try to re-order the branches 2828 // such that we branch to the successor with higher probability first. 2829 if (TBB && !Cond.empty() && FBB && 2830 MBPI->getEdgeProbability(ChainBB, FBB) > 2831 MBPI->getEdgeProbability(ChainBB, TBB) && 2832 !TII->reverseBranchCondition(Cond)) { 2833 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2834 << getBlockName(ChainBB) << "\n"); 2835 LLVM_DEBUG(dbgs() << " Edge probability: " 2836 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2837 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2838 DebugLoc dl; // FIXME: this is nowhere 2839 TII->removeBranch(*ChainBB); 2840 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2841 } 2842 } 2843 } 2844 } 2845 2846 void MachineBlockPlacement::alignBlocks() { 2847 // Walk through the backedges of the function now that we have fully laid out 2848 // the basic blocks and align the destination of each backedge. We don't rely 2849 // exclusively on the loop info here so that we can align backedges in 2850 // unnatural CFGs and backedges that were introduced purely because of the 2851 // loop rotations done during this layout pass. 2852 if (F->getFunction().hasMinSize() || 2853 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) 2854 return; 2855 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2856 if (FunctionChain.begin() == FunctionChain.end()) 2857 return; // Empty chain. 2858 2859 const BranchProbability ColdProb(1, 5); // 20% 2860 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2861 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2862 for (MachineBasicBlock *ChainBB : FunctionChain) { 2863 if (ChainBB == *FunctionChain.begin()) 2864 continue; 2865 2866 // Don't align non-looping basic blocks. These are unlikely to execute 2867 // enough times to matter in practice. Note that we'll still handle 2868 // unnatural CFGs inside of a natural outer loop (the common case) and 2869 // rotated loops. 2870 MachineLoop *L = MLI->getLoopFor(ChainBB); 2871 if (!L) 2872 continue; 2873 2874 const Align Align = TLI->getPrefLoopAlignment(L); 2875 if (Align == 1) 2876 continue; // Don't care about loop alignment. 2877 2878 // If the block is cold relative to the function entry don't waste space 2879 // aligning it. 2880 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2881 if (Freq < WeightedEntryFreq) 2882 continue; 2883 2884 // If the block is cold relative to its loop header, don't align it 2885 // regardless of what edges into the block exist. 2886 MachineBasicBlock *LoopHeader = L->getHeader(); 2887 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2888 if (Freq < (LoopHeaderFreq * ColdProb)) 2889 continue; 2890 2891 // If the global profiles indicates so, don't align it. 2892 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) && 2893 !TLI->alignLoopsWithOptSize()) 2894 continue; 2895 2896 // Check for the existence of a non-layout predecessor which would benefit 2897 // from aligning this block. 2898 MachineBasicBlock *LayoutPred = 2899 &*std::prev(MachineFunction::iterator(ChainBB)); 2900 2901 // Force alignment if all the predecessors are jumps. We already checked 2902 // that the block isn't cold above. 2903 if (!LayoutPred->isSuccessor(ChainBB)) { 2904 ChainBB->setAlignment(Align); 2905 continue; 2906 } 2907 2908 // Align this block if the layout predecessor's edge into this block is 2909 // cold relative to the block. When this is true, other predecessors make up 2910 // all of the hot entries into the block and thus alignment is likely to be 2911 // important. 2912 BranchProbability LayoutProb = 2913 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2914 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2915 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2916 ChainBB->setAlignment(Align); 2917 } 2918 } 2919 2920 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2921 /// it was duplicated into its chain predecessor and removed. 2922 /// \p BB - Basic block that may be duplicated. 2923 /// 2924 /// \p LPred - Chosen layout predecessor of \p BB. 2925 /// Updated to be the chain end if LPred is removed. 2926 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2927 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2928 /// Used to identify which blocks to update predecessor 2929 /// counts. 2930 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2931 /// chosen in the given order due to unnatural CFG 2932 /// only needed if \p BB is removed and 2933 /// \p PrevUnplacedBlockIt pointed to \p BB. 2934 /// @return true if \p BB was removed. 2935 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2936 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2937 const MachineBasicBlock *LoopHeaderBB, 2938 BlockChain &Chain, BlockFilterSet *BlockFilter, 2939 MachineFunction::iterator &PrevUnplacedBlockIt) { 2940 bool Removed, DuplicatedToLPred; 2941 bool DuplicatedToOriginalLPred; 2942 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2943 PrevUnplacedBlockIt, 2944 DuplicatedToLPred); 2945 if (!Removed) 2946 return false; 2947 DuplicatedToOriginalLPred = DuplicatedToLPred; 2948 // Iteratively try to duplicate again. It can happen that a block that is 2949 // duplicated into is still small enough to be duplicated again. 2950 // No need to call markBlockSuccessors in this case, as the blocks being 2951 // duplicated from here on are already scheduled. 2952 while (DuplicatedToLPred && Removed) { 2953 MachineBasicBlock *DupBB, *DupPred; 2954 // The removal callback causes Chain.end() to be updated when a block is 2955 // removed. On the first pass through the loop, the chain end should be the 2956 // same as it was on function entry. On subsequent passes, because we are 2957 // duplicating the block at the end of the chain, if it is removed the 2958 // chain will have shrunk by one block. 2959 BlockChain::iterator ChainEnd = Chain.end(); 2960 DupBB = *(--ChainEnd); 2961 // Now try to duplicate again. 2962 if (ChainEnd == Chain.begin()) 2963 break; 2964 DupPred = *std::prev(ChainEnd); 2965 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2966 PrevUnplacedBlockIt, 2967 DuplicatedToLPred); 2968 } 2969 // If BB was duplicated into LPred, it is now scheduled. But because it was 2970 // removed, markChainSuccessors won't be called for its chain. Instead we 2971 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2972 // at the end because repeating the tail duplication can increase the number 2973 // of unscheduled predecessors. 2974 LPred = *std::prev(Chain.end()); 2975 if (DuplicatedToOriginalLPred) 2976 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2977 return true; 2978 } 2979 2980 /// Tail duplicate \p BB into (some) predecessors if profitable. 2981 /// \p BB - Basic block that may be duplicated 2982 /// \p LPred - Chosen layout predecessor of \p BB 2983 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2984 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2985 /// Used to identify which blocks to update predecessor 2986 /// counts. 2987 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2988 /// chosen in the given order due to unnatural CFG 2989 /// only needed if \p BB is removed and 2990 /// \p PrevUnplacedBlockIt pointed to \p BB. 2991 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. 2992 /// \return - True if the block was duplicated into all preds and removed. 2993 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2994 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2995 BlockChain &Chain, BlockFilterSet *BlockFilter, 2996 MachineFunction::iterator &PrevUnplacedBlockIt, 2997 bool &DuplicatedToLPred) { 2998 DuplicatedToLPred = false; 2999 if (!shouldTailDuplicate(BB)) 3000 return false; 3001 3002 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 3003 << "\n"); 3004 3005 // This has to be a callback because none of it can be done after 3006 // BB is deleted. 3007 bool Removed = false; 3008 auto RemovalCallback = 3009 [&](MachineBasicBlock *RemBB) { 3010 // Signal to outer function 3011 Removed = true; 3012 3013 // Conservative default. 3014 bool InWorkList = true; 3015 // Remove from the Chain and Chain Map 3016 if (BlockToChain.count(RemBB)) { 3017 BlockChain *Chain = BlockToChain[RemBB]; 3018 InWorkList = Chain->UnscheduledPredecessors == 0; 3019 Chain->remove(RemBB); 3020 BlockToChain.erase(RemBB); 3021 } 3022 3023 // Handle the unplaced block iterator 3024 if (&(*PrevUnplacedBlockIt) == RemBB) { 3025 PrevUnplacedBlockIt++; 3026 } 3027 3028 // Handle the Work Lists 3029 if (InWorkList) { 3030 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 3031 if (RemBB->isEHPad()) 3032 RemoveList = EHPadWorkList; 3033 RemoveList.erase( 3034 llvm::remove_if(RemoveList, 3035 [RemBB](MachineBasicBlock *BB) { 3036 return BB == RemBB; 3037 }), 3038 RemoveList.end()); 3039 } 3040 3041 // Handle the filter set 3042 if (BlockFilter) { 3043 BlockFilter->remove(RemBB); 3044 } 3045 3046 // Remove the block from loop info. 3047 MLI->removeBlock(RemBB); 3048 if (RemBB == PreferredLoopExit) 3049 PreferredLoopExit = nullptr; 3050 3051 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 3052 << getBlockName(RemBB) << "\n"); 3053 }; 3054 auto RemovalCallbackRef = 3055 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 3056 3057 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 3058 bool IsSimple = TailDup.isSimpleBB(BB); 3059 SmallVector<MachineBasicBlock *, 8> CandidatePreds; 3060 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr; 3061 if (F->getFunction().hasProfileData()) { 3062 // We can do partial duplication with precise profile information. 3063 findDuplicateCandidates(CandidatePreds, BB, BlockFilter); 3064 if (CandidatePreds.size() == 0) 3065 return false; 3066 if (CandidatePreds.size() < BB->pred_size()) 3067 CandidatePtr = &CandidatePreds; 3068 } 3069 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds, 3070 &RemovalCallbackRef, CandidatePtr); 3071 3072 // Update UnscheduledPredecessors to reflect tail-duplication. 3073 DuplicatedToLPred = false; 3074 for (MachineBasicBlock *Pred : DuplicatedPreds) { 3075 // We're only looking for unscheduled predecessors that match the filter. 3076 BlockChain* PredChain = BlockToChain[Pred]; 3077 if (Pred == LPred) 3078 DuplicatedToLPred = true; 3079 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 3080 || PredChain == &Chain) 3081 continue; 3082 for (MachineBasicBlock *NewSucc : Pred->successors()) { 3083 if (BlockFilter && !BlockFilter->count(NewSucc)) 3084 continue; 3085 BlockChain *NewChain = BlockToChain[NewSucc]; 3086 if (NewChain != &Chain && NewChain != PredChain) 3087 NewChain->UnscheduledPredecessors++; 3088 } 3089 } 3090 return Removed; 3091 } 3092 3093 // Count the number of actual machine instructions. 3094 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) { 3095 uint64_t InstrCount = 0; 3096 for (MachineInstr &MI : *MBB) { 3097 if (!MI.isPHI() && !MI.isMetaInstruction()) 3098 InstrCount += 1; 3099 } 3100 return InstrCount; 3101 } 3102 3103 // The size cost of duplication is the instruction size of the duplicated block. 3104 // So we should scale the threshold accordingly. But the instruction size is not 3105 // available on all targets, so we use the number of instructions instead. 3106 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) { 3107 return DupThreshold.getFrequency() * countMBBInstruction(BB); 3108 } 3109 3110 // Returns true if BB is Pred's best successor. 3111 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB, 3112 MachineBasicBlock *Pred, 3113 BlockFilterSet *BlockFilter) { 3114 if (BB == Pred) 3115 return false; 3116 if (BlockFilter && !BlockFilter->count(Pred)) 3117 return false; 3118 BlockChain *PredChain = BlockToChain[Pred]; 3119 if (PredChain && (Pred != *std::prev(PredChain->end()))) 3120 return false; 3121 3122 // Find the successor with largest probability excluding BB. 3123 BranchProbability BestProb = BranchProbability::getZero(); 3124 for (MachineBasicBlock *Succ : Pred->successors()) 3125 if (Succ != BB) { 3126 if (BlockFilter && !BlockFilter->count(Succ)) 3127 continue; 3128 BlockChain *SuccChain = BlockToChain[Succ]; 3129 if (SuccChain && (Succ != *SuccChain->begin())) 3130 continue; 3131 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ); 3132 if (SuccProb > BestProb) 3133 BestProb = SuccProb; 3134 } 3135 3136 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB); 3137 if (BBProb <= BestProb) 3138 return false; 3139 3140 // Compute the number of reduced taken branches if Pred falls through to BB 3141 // instead of another successor. Then compare it with threshold. 3142 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3143 BlockFrequency Gain = PredFreq * (BBProb - BestProb); 3144 return Gain > scaleThreshold(BB); 3145 } 3146 3147 // Find out the predecessors of BB and BB can be beneficially duplicated into 3148 // them. 3149 void MachineBlockPlacement::findDuplicateCandidates( 3150 SmallVectorImpl<MachineBasicBlock *> &Candidates, 3151 MachineBasicBlock *BB, 3152 BlockFilterSet *BlockFilter) { 3153 MachineBasicBlock *Fallthrough = nullptr; 3154 BranchProbability DefaultBranchProb = BranchProbability::getZero(); 3155 BlockFrequency BBDupThreshold(scaleThreshold(BB)); 3156 SmallVector<MachineBasicBlock *, 8> Preds(BB->pred_begin(), BB->pred_end()); 3157 SmallVector<MachineBasicBlock *, 8> Succs(BB->succ_begin(), BB->succ_end()); 3158 3159 // Sort for highest frequency. 3160 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3161 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B); 3162 }; 3163 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3164 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B); 3165 }; 3166 llvm::stable_sort(Succs, CmpSucc); 3167 llvm::stable_sort(Preds, CmpPred); 3168 3169 auto SuccIt = Succs.begin(); 3170 if (SuccIt != Succs.end()) { 3171 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl(); 3172 } 3173 3174 // For each predecessors of BB, compute the benefit of duplicating BB, 3175 // if it is larger than the threshold, add it into Candidates. 3176 // 3177 // If we have following control flow. 3178 // 3179 // PB1 PB2 PB3 PB4 3180 // \ | / /\ 3181 // \ | / / \ 3182 // \ |/ / \ 3183 // BB----/ OB 3184 // /\ 3185 // / \ 3186 // SB1 SB2 3187 // 3188 // And it can be partially duplicated as 3189 // 3190 // PB2+BB 3191 // | PB1 PB3 PB4 3192 // | | / /\ 3193 // | | / / \ 3194 // | |/ / \ 3195 // | BB----/ OB 3196 // |\ /| 3197 // | X | 3198 // |/ \| 3199 // SB2 SB1 3200 // 3201 // The benefit of duplicating into a predecessor is defined as 3202 // Orig_taken_branch - Duplicated_taken_branch 3203 // 3204 // The Orig_taken_branch is computed with the assumption that predecessor 3205 // jumps to BB and the most possible successor is laid out after BB. 3206 // 3207 // The Duplicated_taken_branch is computed with the assumption that BB is 3208 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and 3209 // SB2 for PB2 in our case). If there is no available successor, the combined 3210 // block jumps to all BB's successor, like PB3 in this example. 3211 // 3212 // If a predecessor has multiple successors, so BB can't be duplicated into 3213 // it. But it can beneficially fall through to BB, and duplicate BB into other 3214 // predecessors. 3215 for (MachineBasicBlock *Pred : Preds) { 3216 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred); 3217 3218 if (!TailDup.canTailDuplicate(BB, Pred)) { 3219 // BB can't be duplicated into Pred, but it is possible to be layout 3220 // below Pred. 3221 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) { 3222 Fallthrough = Pred; 3223 if (SuccIt != Succs.end()) 3224 SuccIt++; 3225 } 3226 continue; 3227 } 3228 3229 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb; 3230 BlockFrequency DupCost; 3231 if (SuccIt == Succs.end()) { 3232 // Jump to all successors; 3233 if (Succs.size() > 0) 3234 DupCost += PredFreq; 3235 } else { 3236 // Fallthrough to *SuccIt, jump to all other successors; 3237 DupCost += PredFreq; 3238 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt); 3239 } 3240 3241 assert(OrigCost >= DupCost); 3242 OrigCost -= DupCost; 3243 if (OrigCost > BBDupThreshold) { 3244 Candidates.push_back(Pred); 3245 if (SuccIt != Succs.end()) 3246 SuccIt++; 3247 } 3248 } 3249 3250 // No predecessors can optimally fallthrough to BB. 3251 // So we can change one duplication into fallthrough. 3252 if (!Fallthrough) { 3253 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) { 3254 Candidates[0] = Candidates.back(); 3255 Candidates.pop_back(); 3256 } 3257 } 3258 } 3259 3260 void MachineBlockPlacement::initDupThreshold() { 3261 DupThreshold = 0; 3262 if (!F->getFunction().hasProfileData()) 3263 return; 3264 3265 // We prefer to use prifile count. 3266 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold(); 3267 if (HotThreshold != UINT64_MAX) { 3268 UseProfileCount = true; 3269 DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100; 3270 return; 3271 } 3272 3273 // Profile count is not available, we can use block frequency instead. 3274 BlockFrequency MaxFreq = 0; 3275 for (MachineBasicBlock &MBB : *F) { 3276 BlockFrequency Freq = MBFI->getBlockFreq(&MBB); 3277 if (Freq > MaxFreq) 3278 MaxFreq = Freq; 3279 } 3280 3281 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 3282 DupThreshold = MaxFreq * ThresholdProb; 3283 UseProfileCount = false; 3284 } 3285 3286 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 3287 if (skipFunction(MF.getFunction())) 3288 return false; 3289 3290 // Check for single-block functions and skip them. 3291 if (std::next(MF.begin()) == MF.end()) 3292 return false; 3293 3294 F = &MF; 3295 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3296 MBFI = std::make_unique<MBFIWrapper>( 3297 getAnalysis<MachineBlockFrequencyInfo>()); 3298 MLI = &getAnalysis<MachineLoopInfo>(); 3299 TII = MF.getSubtarget().getInstrInfo(); 3300 TLI = MF.getSubtarget().getTargetLowering(); 3301 MPDT = nullptr; 3302 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3303 3304 initDupThreshold(); 3305 3306 // Initialize PreferredLoopExit to nullptr here since it may never be set if 3307 // there are no MachineLoops. 3308 PreferredLoopExit = nullptr; 3309 3310 assert(BlockToChain.empty() && 3311 "BlockToChain map should be empty before starting placement."); 3312 assert(ComputedEdges.empty() && 3313 "Computed Edge map should be empty before starting placement."); 3314 3315 unsigned TailDupSize = TailDupPlacementThreshold; 3316 // If only the aggressive threshold is explicitly set, use it. 3317 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 3318 TailDupPlacementThreshold.getNumOccurrences() == 0) 3319 TailDupSize = TailDupPlacementAggressiveThreshold; 3320 3321 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 3322 // For aggressive optimization, we can adjust some thresholds to be less 3323 // conservative. 3324 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 3325 // At O3 we should be more willing to copy blocks for tail duplication. This 3326 // increases size pressure, so we only do it at O3 3327 // Do this unless only the regular threshold is explicitly set. 3328 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 3329 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 3330 TailDupSize = TailDupPlacementAggressiveThreshold; 3331 } 3332 3333 if (allowTailDupPlacement()) { 3334 MPDT = &getAnalysis<MachinePostDominatorTree>(); 3335 bool OptForSize = MF.getFunction().hasOptSize() || 3336 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI()); 3337 if (OptForSize) 3338 TailDupSize = 1; 3339 bool PreRegAlloc = false; 3340 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI, 3341 /* LayoutMode */ true, TailDupSize); 3342 precomputeTriangleChains(); 3343 } 3344 3345 buildCFGChains(); 3346 3347 // Changing the layout can create new tail merging opportunities. 3348 // TailMerge can create jump into if branches that make CFG irreducible for 3349 // HW that requires structured CFG. 3350 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 3351 PassConfig->getEnableTailMerge() && 3352 BranchFoldPlacement; 3353 // No tail merging opportunities if the block number is less than four. 3354 if (MF.size() > 3 && EnableTailMerge) { 3355 unsigned TailMergeSize = TailDupSize + 1; 3356 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false, 3357 *MBFI, *MBPI, PSI, TailMergeSize); 3358 3359 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI, 3360 /*AfterPlacement=*/true)) { 3361 // Redo the layout if tail merging creates/removes/moves blocks. 3362 BlockToChain.clear(); 3363 ComputedEdges.clear(); 3364 // Must redo the post-dominator tree if blocks were changed. 3365 if (MPDT) 3366 MPDT->runOnMachineFunction(MF); 3367 ChainAllocator.DestroyAll(); 3368 buildCFGChains(); 3369 } 3370 } 3371 3372 optimizeBranches(); 3373 alignBlocks(); 3374 3375 BlockToChain.clear(); 3376 ComputedEdges.clear(); 3377 ChainAllocator.DestroyAll(); 3378 3379 if (AlignAllBlock) 3380 // Align all of the blocks in the function to a specific alignment. 3381 for (MachineBasicBlock &MBB : MF) 3382 MBB.setAlignment(Align(1ULL << AlignAllBlock)); 3383 else if (AlignAllNonFallThruBlocks) { 3384 // Align all of the blocks that have no fall-through predecessors to a 3385 // specific alignment. 3386 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 3387 auto LayoutPred = std::prev(MBI); 3388 if (!LayoutPred->isSuccessor(&*MBI)) 3389 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); 3390 } 3391 } 3392 if (ViewBlockLayoutWithBFI != GVDT_None && 3393 (ViewBlockFreqFuncName.empty() || 3394 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 3395 MBFI->view("MBP." + MF.getName(), false); 3396 } 3397 3398 3399 // We always return true as we have no way to track whether the final order 3400 // differs from the original order. 3401 return true; 3402 } 3403 3404 namespace { 3405 3406 /// A pass to compute block placement statistics. 3407 /// 3408 /// A separate pass to compute interesting statistics for evaluating block 3409 /// placement. This is separate from the actual placement pass so that they can 3410 /// be computed in the absence of any placement transformations or when using 3411 /// alternative placement strategies. 3412 class MachineBlockPlacementStats : public MachineFunctionPass { 3413 /// A handle to the branch probability pass. 3414 const MachineBranchProbabilityInfo *MBPI; 3415 3416 /// A handle to the function-wide block frequency pass. 3417 const MachineBlockFrequencyInfo *MBFI; 3418 3419 public: 3420 static char ID; // Pass identification, replacement for typeid 3421 3422 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 3423 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 3424 } 3425 3426 bool runOnMachineFunction(MachineFunction &F) override; 3427 3428 void getAnalysisUsage(AnalysisUsage &AU) const override { 3429 AU.addRequired<MachineBranchProbabilityInfo>(); 3430 AU.addRequired<MachineBlockFrequencyInfo>(); 3431 AU.setPreservesAll(); 3432 MachineFunctionPass::getAnalysisUsage(AU); 3433 } 3434 }; 3435 3436 } // end anonymous namespace 3437 3438 char MachineBlockPlacementStats::ID = 0; 3439 3440 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 3441 3442 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 3443 "Basic Block Placement Stats", false, false) 3444 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 3445 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 3446 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 3447 "Basic Block Placement Stats", false, false) 3448 3449 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 3450 // Check for single-block functions and skip them. 3451 if (std::next(F.begin()) == F.end()) 3452 return false; 3453 3454 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 3455 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3456 3457 for (MachineBasicBlock &MBB : F) { 3458 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 3459 Statistic &NumBranches = 3460 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 3461 Statistic &BranchTakenFreq = 3462 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 3463 for (MachineBasicBlock *Succ : MBB.successors()) { 3464 // Skip if this successor is a fallthrough. 3465 if (MBB.isLayoutSuccessor(Succ)) 3466 continue; 3467 3468 BlockFrequency EdgeFreq = 3469 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 3470 ++NumBranches; 3471 BranchTakenFreq += EdgeFreq.getFrequency(); 3472 } 3473 } 3474 3475 return false; 3476 } 3477