1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "BranchFolding.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachinePostDominators.h" 44 #include "llvm/CodeGen/TailDuplicator.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include <algorithm> 53 #include <functional> 54 #include <utility> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "block-placement" 58 59 STATISTIC(NumCondBranches, "Number of conditional branches"); 60 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 61 STATISTIC(CondBranchTakenFreq, 62 "Potential frequency of taking conditional branches"); 63 STATISTIC(UncondBranchTakenFreq, 64 "Potential frequency of taking unconditional branches"); 65 66 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks in the function."), 69 cl::init(0), cl::Hidden); 70 71 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 72 "align-all-nofallthru-blocks", 73 cl::desc("Force the alignment of all " 74 "blocks that have no fall-through predecessors (i.e. don't add " 75 "nops that are executed)."), 76 cl::init(0), cl::Hidden); 77 78 // FIXME: Find a good default for this flag and remove the flag. 79 static cl::opt<unsigned> ExitBlockBias( 80 "block-placement-exit-block-bias", 81 cl::desc("Block frequency percentage a loop exit block needs " 82 "over the original exit to be considered the new exit."), 83 cl::init(0), cl::Hidden); 84 85 // Definition: 86 // - Outlining: placement of a basic block outside the chain or hot path. 87 88 static cl::opt<unsigned> LoopToColdBlockRatio( 89 "loop-to-cold-block-ratio", 90 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 91 "(frequency of block) is greater than this ratio"), 92 cl::init(5), cl::Hidden); 93 94 static cl::opt<bool> 95 PreciseRotationCost("precise-rotation-cost", 96 cl::desc("Model the cost of loop rotation more " 97 "precisely by using profile data."), 98 cl::init(false), cl::Hidden); 99 static cl::opt<bool> 100 ForcePreciseRotationCost("force-precise-rotation-cost", 101 cl::desc("Force the use of precise cost " 102 "loop rotation strategy."), 103 cl::init(false), cl::Hidden); 104 105 static cl::opt<unsigned> MisfetchCost( 106 "misfetch-cost", 107 cl::desc("Cost that models the probabilistic risk of an instruction " 108 "misfetch due to a jump comparing to falling through, whose cost " 109 "is zero."), 110 cl::init(1), cl::Hidden); 111 112 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 113 cl::desc("Cost of jump instructions."), 114 cl::init(1), cl::Hidden); 115 static cl::opt<bool> 116 TailDupPlacement("tail-dup-placement", 117 cl::desc("Perform tail duplication during placement. " 118 "Creates more fallthrough opportunites in " 119 "outline branches."), 120 cl::init(true), cl::Hidden); 121 122 static cl::opt<bool> 123 BranchFoldPlacement("branch-fold-placement", 124 cl::desc("Perform branch folding during placement. " 125 "Reduces code size."), 126 cl::init(true), cl::Hidden); 127 128 // Heuristic for tail duplication. 129 static cl::opt<unsigned> TailDupPlacementThreshold( 130 "tail-dup-placement-threshold", 131 cl::desc("Instruction cutoff for tail duplication during layout. " 132 "Tail merging during layout is forced to have a threshold " 133 "that won't conflict."), cl::init(2), 134 cl::Hidden); 135 136 // Heuristic for tail duplication. 137 static cl::opt<unsigned> TailDupPlacementPenalty( 138 "tail-dup-placement-penalty", 139 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 140 "Copying can increase fallthrough, but it also increases icache " 141 "pressure. This parameter controls the penalty to account for that. " 142 "Percent as integer."), 143 cl::init(2), 144 cl::Hidden); 145 146 // Heuristic for triangle chains. 147 static cl::opt<unsigned> TriangleChainCount( 148 "triangle-chain-count", 149 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 150 "triangle tail duplication heuristic to kick in. 0 to disable."), 151 cl::init(2), 152 cl::Hidden); 153 154 extern cl::opt<unsigned> StaticLikelyProb; 155 extern cl::opt<unsigned> ProfileLikelyProb; 156 157 // Internal option used to control BFI display only after MBP pass. 158 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 159 // -view-block-layout-with-bfi= 160 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 161 162 // Command line option to specify the name of the function for CFG dump 163 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 164 extern cl::opt<std::string> ViewBlockFreqFuncName; 165 166 namespace { 167 class BlockChain; 168 /// \brief Type for our function-wide basic block -> block chain mapping. 169 typedef DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChainMapType; 170 } 171 172 namespace { 173 /// \brief A chain of blocks which will be laid out contiguously. 174 /// 175 /// This is the datastructure representing a chain of consecutive blocks that 176 /// are profitable to layout together in order to maximize fallthrough 177 /// probabilities and code locality. We also can use a block chain to represent 178 /// a sequence of basic blocks which have some external (correctness) 179 /// requirement for sequential layout. 180 /// 181 /// Chains can be built around a single basic block and can be merged to grow 182 /// them. They participate in a block-to-chain mapping, which is updated 183 /// automatically as chains are merged together. 184 class BlockChain { 185 /// \brief The sequence of blocks belonging to this chain. 186 /// 187 /// This is the sequence of blocks for a particular chain. These will be laid 188 /// out in-order within the function. 189 SmallVector<MachineBasicBlock *, 4> Blocks; 190 191 /// \brief A handle to the function-wide basic block to block chain mapping. 192 /// 193 /// This is retained in each block chain to simplify the computation of child 194 /// block chains for SCC-formation and iteration. We store the edges to child 195 /// basic blocks, and map them back to their associated chains using this 196 /// structure. 197 BlockToChainMapType &BlockToChain; 198 199 public: 200 /// \brief Construct a new BlockChain. 201 /// 202 /// This builds a new block chain representing a single basic block in the 203 /// function. It also registers itself as the chain that block participates 204 /// in with the BlockToChain mapping. 205 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 206 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 207 assert(BB && "Cannot create a chain with a null basic block"); 208 BlockToChain[BB] = this; 209 } 210 211 /// \brief Iterator over blocks within the chain. 212 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 213 typedef SmallVectorImpl<MachineBasicBlock *>::const_iterator const_iterator; 214 215 /// \brief Beginning of blocks within the chain. 216 iterator begin() { return Blocks.begin(); } 217 const_iterator begin() const { return Blocks.begin(); } 218 219 /// \brief End of blocks within the chain. 220 iterator end() { return Blocks.end(); } 221 const_iterator end() const { return Blocks.end(); } 222 223 bool remove(MachineBasicBlock* BB) { 224 for(iterator i = begin(); i != end(); ++i) { 225 if (*i == BB) { 226 Blocks.erase(i); 227 return true; 228 } 229 } 230 return false; 231 } 232 233 /// \brief Merge a block chain into this one. 234 /// 235 /// This routine merges a block chain into this one. It takes care of forming 236 /// a contiguous sequence of basic blocks, updating the edge list, and 237 /// updating the block -> chain mapping. It does not free or tear down the 238 /// old chain, but the old chain's block list is no longer valid. 239 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 240 assert(BB); 241 assert(!Blocks.empty()); 242 243 // Fast path in case we don't have a chain already. 244 if (!Chain) { 245 assert(!BlockToChain[BB]); 246 Blocks.push_back(BB); 247 BlockToChain[BB] = this; 248 return; 249 } 250 251 assert(BB == *Chain->begin()); 252 assert(Chain->begin() != Chain->end()); 253 254 // Update the incoming blocks to point to this chain, and add them to the 255 // chain structure. 256 for (MachineBasicBlock *ChainBB : *Chain) { 257 Blocks.push_back(ChainBB); 258 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 259 BlockToChain[ChainBB] = this; 260 } 261 } 262 263 #ifndef NDEBUG 264 /// \brief Dump the blocks in this chain. 265 LLVM_DUMP_METHOD void dump() { 266 for (MachineBasicBlock *MBB : *this) 267 MBB->dump(); 268 } 269 #endif // NDEBUG 270 271 /// \brief Count of predecessors of any block within the chain which have not 272 /// yet been scheduled. In general, we will delay scheduling this chain 273 /// until those predecessors are scheduled (or we find a sufficiently good 274 /// reason to override this heuristic.) Note that when forming loop chains, 275 /// blocks outside the loop are ignored and treated as if they were already 276 /// scheduled. 277 /// 278 /// Note: This field is reinitialized multiple times - once for each loop, 279 /// and then once for the function as a whole. 280 unsigned UnscheduledPredecessors; 281 }; 282 } 283 284 namespace { 285 class MachineBlockPlacement : public MachineFunctionPass { 286 /// \brief A typedef for a block filter set. 287 typedef SmallSetVector<const MachineBasicBlock *, 16> BlockFilterSet; 288 289 /// Pair struct containing basic block and taildup profitiability 290 struct BlockAndTailDupResult { 291 MachineBasicBlock *BB; 292 bool ShouldTailDup; 293 }; 294 295 /// Triple struct containing edge weight and the edge. 296 struct WeightedEdge { 297 BlockFrequency Weight; 298 MachineBasicBlock *Src; 299 MachineBasicBlock *Dest; 300 }; 301 302 /// \brief work lists of blocks that are ready to be laid out 303 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 304 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 305 306 /// Edges that have already been computed as optimal. 307 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 308 309 /// \brief Machine Function 310 MachineFunction *F; 311 312 /// \brief A handle to the branch probability pass. 313 const MachineBranchProbabilityInfo *MBPI; 314 315 /// \brief A handle to the function-wide block frequency pass. 316 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 317 318 /// \brief A handle to the loop info. 319 MachineLoopInfo *MLI; 320 321 /// \brief Preferred loop exit. 322 /// Member variable for convenience. It may be removed by duplication deep 323 /// in the call stack. 324 MachineBasicBlock *PreferredLoopExit; 325 326 /// \brief A handle to the target's instruction info. 327 const TargetInstrInfo *TII; 328 329 /// \brief A handle to the target's lowering info. 330 const TargetLoweringBase *TLI; 331 332 /// \brief A handle to the post dominator tree. 333 MachinePostDominatorTree *MPDT; 334 335 /// \brief Duplicator used to duplicate tails during placement. 336 /// 337 /// Placement decisions can open up new tail duplication opportunities, but 338 /// since tail duplication affects placement decisions of later blocks, it 339 /// must be done inline. 340 TailDuplicator TailDup; 341 342 /// \brief Allocator and owner of BlockChain structures. 343 /// 344 /// We build BlockChains lazily while processing the loop structure of 345 /// a function. To reduce malloc traffic, we allocate them using this 346 /// slab-like allocator, and destroy them after the pass completes. An 347 /// important guarantee is that this allocator produces stable pointers to 348 /// the chains. 349 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 350 351 /// \brief Function wide BasicBlock to BlockChain mapping. 352 /// 353 /// This mapping allows efficiently moving from any given basic block to the 354 /// BlockChain it participates in, if any. We use it to, among other things, 355 /// allow implicitly defining edges between chains as the existing edges 356 /// between basic blocks. 357 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 358 359 #ifndef NDEBUG 360 /// The set of basic blocks that have terminators that cannot be fully 361 /// analyzed. These basic blocks cannot be re-ordered safely by 362 /// MachineBlockPlacement, and we must preserve physical layout of these 363 /// blocks and their successors through the pass. 364 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 365 #endif 366 367 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 368 /// if the count goes to 0, add them to the appropriate work list. 369 void markChainSuccessors( 370 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 371 const BlockFilterSet *BlockFilter = nullptr); 372 373 /// Decrease the UnscheduledPredecessors count for a single block, and 374 /// if the count goes to 0, add them to the appropriate work list. 375 void markBlockSuccessors( 376 const BlockChain &Chain, const MachineBasicBlock *BB, 377 const MachineBasicBlock *LoopHeaderBB, 378 const BlockFilterSet *BlockFilter = nullptr); 379 380 BranchProbability 381 collectViableSuccessors( 382 const MachineBasicBlock *BB, const BlockChain &Chain, 383 const BlockFilterSet *BlockFilter, 384 SmallVector<MachineBasicBlock *, 4> &Successors); 385 bool shouldPredBlockBeOutlined( 386 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 387 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 388 BranchProbability SuccProb, BranchProbability HotProb); 389 bool repeatedlyTailDuplicateBlock( 390 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 391 const MachineBasicBlock *LoopHeaderBB, 392 BlockChain &Chain, BlockFilterSet *BlockFilter, 393 MachineFunction::iterator &PrevUnplacedBlockIt); 394 bool maybeTailDuplicateBlock( 395 MachineBasicBlock *BB, MachineBasicBlock *LPred, 396 BlockChain &Chain, BlockFilterSet *BlockFilter, 397 MachineFunction::iterator &PrevUnplacedBlockIt, 398 bool &DuplicatedToPred); 399 bool hasBetterLayoutPredecessor( 400 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 401 const BlockChain &SuccChain, BranchProbability SuccProb, 402 BranchProbability RealSuccProb, const BlockChain &Chain, 403 const BlockFilterSet *BlockFilter); 404 BlockAndTailDupResult selectBestSuccessor( 405 const MachineBasicBlock *BB, const BlockChain &Chain, 406 const BlockFilterSet *BlockFilter); 407 MachineBasicBlock *selectBestCandidateBlock( 408 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 409 MachineBasicBlock *getFirstUnplacedBlock( 410 const BlockChain &PlacedChain, 411 MachineFunction::iterator &PrevUnplacedBlockIt, 412 const BlockFilterSet *BlockFilter); 413 414 /// \brief Add a basic block to the work list if it is appropriate. 415 /// 416 /// If the optional parameter BlockFilter is provided, only MBB 417 /// present in the set will be added to the worklist. If nullptr 418 /// is provided, no filtering occurs. 419 void fillWorkLists(const MachineBasicBlock *MBB, 420 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 421 const BlockFilterSet *BlockFilter); 422 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 423 BlockFilterSet *BlockFilter = nullptr); 424 MachineBasicBlock *findBestLoopTop( 425 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 426 MachineBasicBlock *findBestLoopExit( 427 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 428 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 429 void buildLoopChains(const MachineLoop &L); 430 void rotateLoop( 431 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 432 const BlockFilterSet &LoopBlockSet); 433 void rotateLoopWithProfile( 434 BlockChain &LoopChain, const MachineLoop &L, 435 const BlockFilterSet &LoopBlockSet); 436 void buildCFGChains(); 437 void optimizeBranches(); 438 void alignBlocks(); 439 /// Returns true if a block should be tail-duplicated to increase fallthrough 440 /// opportunities. 441 bool shouldTailDuplicate(MachineBasicBlock *BB); 442 /// Check the edge frequencies to see if tail duplication will increase 443 /// fallthroughs. 444 bool isProfitableToTailDup( 445 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 446 BranchProbability AdjustedSumProb, 447 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 448 /// Check for a trellis layout. 449 bool isTrellis(const MachineBasicBlock *BB, 450 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 451 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 452 /// Get the best successor given a trellis layout. 453 BlockAndTailDupResult getBestTrellisSuccessor( 454 const MachineBasicBlock *BB, 455 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 456 BranchProbability AdjustedSumProb, const BlockChain &Chain, 457 const BlockFilterSet *BlockFilter); 458 /// Get the best pair of non-conflicting edges. 459 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 460 const MachineBasicBlock *BB, 461 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 462 /// Returns true if a block can tail duplicate into all unplaced 463 /// predecessors. Filters based on loop. 464 bool canTailDuplicateUnplacedPreds( 465 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 466 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 467 /// Find chains of triangles to tail-duplicate where a global analysis works, 468 /// but a local analysis would not find them. 469 void precomputeTriangleChains(); 470 471 public: 472 static char ID; // Pass identification, replacement for typeid 473 MachineBlockPlacement() : MachineFunctionPass(ID) { 474 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 475 } 476 477 bool runOnMachineFunction(MachineFunction &F) override; 478 479 void getAnalysisUsage(AnalysisUsage &AU) const override { 480 AU.addRequired<MachineBranchProbabilityInfo>(); 481 AU.addRequired<MachineBlockFrequencyInfo>(); 482 if (TailDupPlacement) 483 AU.addRequired<MachinePostDominatorTree>(); 484 AU.addRequired<MachineLoopInfo>(); 485 AU.addRequired<TargetPassConfig>(); 486 MachineFunctionPass::getAnalysisUsage(AU); 487 } 488 }; 489 } 490 491 char MachineBlockPlacement::ID = 0; 492 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 493 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 494 "Branch Probability Basic Block Placement", false, false) 495 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 496 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 497 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 498 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 499 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 500 "Branch Probability Basic Block Placement", false, false) 501 502 #ifndef NDEBUG 503 /// \brief Helper to print the name of a MBB. 504 /// 505 /// Only used by debug logging. 506 static std::string getBlockName(const MachineBasicBlock *BB) { 507 std::string Result; 508 raw_string_ostream OS(Result); 509 OS << "BB#" << BB->getNumber(); 510 OS << " ('" << BB->getName() << "')"; 511 OS.flush(); 512 return Result; 513 } 514 #endif 515 516 /// \brief Mark a chain's successors as having one fewer preds. 517 /// 518 /// When a chain is being merged into the "placed" chain, this routine will 519 /// quickly walk the successors of each block in the chain and mark them as 520 /// having one fewer active predecessor. It also adds any successors of this 521 /// chain which reach the zero-predecessor state to the appropriate worklist. 522 void MachineBlockPlacement::markChainSuccessors( 523 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 524 const BlockFilterSet *BlockFilter) { 525 // Walk all the blocks in this chain, marking their successors as having 526 // a predecessor placed. 527 for (MachineBasicBlock *MBB : Chain) { 528 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 529 } 530 } 531 532 /// \brief Mark a single block's successors as having one fewer preds. 533 /// 534 /// Under normal circumstances, this is only called by markChainSuccessors, 535 /// but if a block that was to be placed is completely tail-duplicated away, 536 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 537 /// for just that block. 538 void MachineBlockPlacement::markBlockSuccessors( 539 const BlockChain &Chain, const MachineBasicBlock *MBB, 540 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 541 // Add any successors for which this is the only un-placed in-loop 542 // predecessor to the worklist as a viable candidate for CFG-neutral 543 // placement. No subsequent placement of this block will violate the CFG 544 // shape, so we get to use heuristics to choose a favorable placement. 545 for (MachineBasicBlock *Succ : MBB->successors()) { 546 if (BlockFilter && !BlockFilter->count(Succ)) 547 continue; 548 BlockChain &SuccChain = *BlockToChain[Succ]; 549 // Disregard edges within a fixed chain, or edges to the loop header. 550 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 551 continue; 552 553 // This is a cross-chain edge that is within the loop, so decrement the 554 // loop predecessor count of the destination chain. 555 if (SuccChain.UnscheduledPredecessors == 0 || 556 --SuccChain.UnscheduledPredecessors > 0) 557 continue; 558 559 auto *NewBB = *SuccChain.begin(); 560 if (NewBB->isEHPad()) 561 EHPadWorkList.push_back(NewBB); 562 else 563 BlockWorkList.push_back(NewBB); 564 } 565 } 566 567 /// This helper function collects the set of successors of block 568 /// \p BB that are allowed to be its layout successors, and return 569 /// the total branch probability of edges from \p BB to those 570 /// blocks. 571 BranchProbability MachineBlockPlacement::collectViableSuccessors( 572 const MachineBasicBlock *BB, const BlockChain &Chain, 573 const BlockFilterSet *BlockFilter, 574 SmallVector<MachineBasicBlock *, 4> &Successors) { 575 // Adjust edge probabilities by excluding edges pointing to blocks that is 576 // either not in BlockFilter or is already in the current chain. Consider the 577 // following CFG: 578 // 579 // --->A 580 // | / \ 581 // | B C 582 // | \ / \ 583 // ----D E 584 // 585 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 586 // A->C is chosen as a fall-through, D won't be selected as a successor of C 587 // due to CFG constraint (the probability of C->D is not greater than 588 // HotProb to break top-order). If we exclude E that is not in BlockFilter 589 // when calculating the probability of C->D, D will be selected and we 590 // will get A C D B as the layout of this loop. 591 auto AdjustedSumProb = BranchProbability::getOne(); 592 for (MachineBasicBlock *Succ : BB->successors()) { 593 bool SkipSucc = false; 594 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 595 SkipSucc = true; 596 } else { 597 BlockChain *SuccChain = BlockToChain[Succ]; 598 if (SuccChain == &Chain) { 599 SkipSucc = true; 600 } else if (Succ != *SuccChain->begin()) { 601 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 602 continue; 603 } 604 } 605 if (SkipSucc) 606 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 607 else 608 Successors.push_back(Succ); 609 } 610 611 return AdjustedSumProb; 612 } 613 614 /// The helper function returns the branch probability that is adjusted 615 /// or normalized over the new total \p AdjustedSumProb. 616 static BranchProbability 617 getAdjustedProbability(BranchProbability OrigProb, 618 BranchProbability AdjustedSumProb) { 619 BranchProbability SuccProb; 620 uint32_t SuccProbN = OrigProb.getNumerator(); 621 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 622 if (SuccProbN >= SuccProbD) 623 SuccProb = BranchProbability::getOne(); 624 else 625 SuccProb = BranchProbability(SuccProbN, SuccProbD); 626 627 return SuccProb; 628 } 629 630 /// Check if \p BB has exactly the successors in \p Successors. 631 static bool 632 hasSameSuccessors(MachineBasicBlock &BB, 633 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 634 if (BB.succ_size() != Successors.size()) 635 return false; 636 // We don't want to count self-loops 637 if (Successors.count(&BB)) 638 return false; 639 for (MachineBasicBlock *Succ : BB.successors()) 640 if (!Successors.count(Succ)) 641 return false; 642 return true; 643 } 644 645 /// Check if a block should be tail duplicated to increase fallthrough 646 /// opportunities. 647 /// \p BB Block to check. 648 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 649 // Blocks with single successors don't create additional fallthrough 650 // opportunities. Don't duplicate them. TODO: When conditional exits are 651 // analyzable, allow them to be duplicated. 652 bool IsSimple = TailDup.isSimpleBB(BB); 653 654 if (BB->succ_size() == 1) 655 return false; 656 return TailDup.shouldTailDuplicate(IsSimple, *BB); 657 } 658 659 /// Compare 2 BlockFrequency's with a small penalty for \p A. 660 /// In order to be conservative, we apply a X% penalty to account for 661 /// increased icache pressure and static heuristics. For small frequencies 662 /// we use only the numerators to improve accuracy. For simplicity, we assume the 663 /// penalty is less than 100% 664 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 665 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 666 uint64_t EntryFreq) { 667 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 668 BlockFrequency Gain = A - B; 669 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 670 } 671 672 /// Check the edge frequencies to see if tail duplication will increase 673 /// fallthroughs. It only makes sense to call this function when 674 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 675 /// always locally profitable if we would have picked \p Succ without 676 /// considering duplication. 677 bool MachineBlockPlacement::isProfitableToTailDup( 678 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 679 BranchProbability QProb, 680 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 681 // We need to do a probability calculation to make sure this is profitable. 682 // First: does succ have a successor that post-dominates? This affects the 683 // calculation. The 2 relevant cases are: 684 // BB BB 685 // | \Qout | \Qout 686 // P| C |P C 687 // = C' = C' 688 // | /Qin | /Qin 689 // | / | / 690 // Succ Succ 691 // / \ | \ V 692 // U/ =V |U \ 693 // / \ = D 694 // D E | / 695 // | / 696 // |/ 697 // PDom 698 // '=' : Branch taken for that CFG edge 699 // In the second case, Placing Succ while duplicating it into C prevents the 700 // fallthrough of Succ into either D or PDom, because they now have C as an 701 // unplaced predecessor 702 703 // Start by figuring out which case we fall into 704 MachineBasicBlock *PDom = nullptr; 705 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 706 // Only scan the relevant successors 707 auto AdjustedSuccSumProb = 708 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 709 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 710 auto BBFreq = MBFI->getBlockFreq(BB); 711 auto SuccFreq = MBFI->getBlockFreq(Succ); 712 BlockFrequency P = BBFreq * PProb; 713 BlockFrequency Qout = BBFreq * QProb; 714 uint64_t EntryFreq = MBFI->getEntryFreq(); 715 // If there are no more successors, it is profitable to copy, as it strictly 716 // increases fallthrough. 717 if (SuccSuccs.size() == 0) 718 return greaterWithBias(P, Qout, EntryFreq); 719 720 auto BestSuccSucc = BranchProbability::getZero(); 721 // Find the PDom or the best Succ if no PDom exists. 722 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 723 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 724 if (Prob > BestSuccSucc) 725 BestSuccSucc = Prob; 726 if (PDom == nullptr) 727 if (MPDT->dominates(SuccSucc, Succ)) { 728 PDom = SuccSucc; 729 break; 730 } 731 } 732 // For the comparisons, we need to know Succ's best incoming edge that isn't 733 // from BB. 734 auto SuccBestPred = BlockFrequency(0); 735 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 736 if (SuccPred == Succ || SuccPred == BB 737 || BlockToChain[SuccPred] == &Chain 738 || (BlockFilter && !BlockFilter->count(SuccPred))) 739 continue; 740 auto Freq = MBFI->getBlockFreq(SuccPred) 741 * MBPI->getEdgeProbability(SuccPred, Succ); 742 if (Freq > SuccBestPred) 743 SuccBestPred = Freq; 744 } 745 // Qin is Succ's best unplaced incoming edge that isn't BB 746 BlockFrequency Qin = SuccBestPred; 747 // If it doesn't have a post-dominating successor, here is the calculation: 748 // BB BB 749 // | \Qout | \ 750 // P| C | = 751 // = C' | C 752 // | /Qin | | 753 // | / | C' (+Succ) 754 // Succ Succ /| 755 // / \ | \/ | 756 // U/ =V | == | 757 // / \ | / \| 758 // D E D E 759 // '=' : Branch taken for that CFG edge 760 // Cost in the first case is: P + V 761 // For this calculation, we always assume P > Qout. If Qout > P 762 // The result of this function will be ignored at the caller. 763 // Let F = SuccFreq - Qin 764 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 765 766 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 767 BranchProbability UProb = BestSuccSucc; 768 BranchProbability VProb = AdjustedSuccSumProb - UProb; 769 BlockFrequency F = SuccFreq - Qin; 770 BlockFrequency V = SuccFreq * VProb; 771 BlockFrequency QinU = std::min(Qin, F) * UProb; 772 BlockFrequency BaseCost = P + V; 773 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 774 return greaterWithBias(BaseCost, DupCost, EntryFreq); 775 } 776 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 777 BranchProbability VProb = AdjustedSuccSumProb - UProb; 778 BlockFrequency U = SuccFreq * UProb; 779 BlockFrequency V = SuccFreq * VProb; 780 BlockFrequency F = SuccFreq - Qin; 781 // If there is a post-dominating successor, here is the calculation: 782 // BB BB BB BB 783 // | \Qout | \ | \Qout | \ 784 // |P C | = |P C | = 785 // = C' |P C = C' |P C 786 // | /Qin | | | /Qin | | 787 // | / | C' (+Succ) | / | C' (+Succ) 788 // Succ Succ /| Succ Succ /| 789 // | \ V | \/ | | \ V | \/ | 790 // |U \ |U /\ =? |U = |U /\ | 791 // = D = = =?| | D | = =| 792 // | / |/ D | / |/ D 793 // | / | / | = | / 794 // |/ | / |/ | = 795 // Dom Dom Dom Dom 796 // '=' : Branch taken for that CFG edge 797 // The cost for taken branches in the first case is P + U 798 // Let F = SuccFreq - Qin 799 // The cost in the second case (assuming independence), given the layout: 800 // BB, Succ, (C+Succ), D, Dom or the layout: 801 // BB, Succ, D, Dom, (C+Succ) 802 // is Qout + max(F, Qin) * U + min(F, Qin) 803 // compare P + U vs Qout + P * U + Qin. 804 // 805 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 806 // 807 // For the 3rd case, the cost is P + 2 * V 808 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 809 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 810 if (UProb > AdjustedSuccSumProb / 2 && 811 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 812 Chain, BlockFilter)) 813 // Cases 3 & 4 814 return greaterWithBias( 815 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 816 EntryFreq); 817 // Cases 1 & 2 818 return greaterWithBias((P + U), 819 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 820 std::max(Qin, F) * UProb), 821 EntryFreq); 822 } 823 824 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 825 /// successors form the lower part of a trellis. A successor set S forms the 826 /// lower part of a trellis if all of the predecessors of S are either in S or 827 /// have all of S as successors. We ignore trellises where BB doesn't have 2 828 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 829 /// are very uncommon and complex to compute optimally. Allowing edges within S 830 /// is not strictly a trellis, but the same algorithm works, so we allow it. 831 bool MachineBlockPlacement::isTrellis( 832 const MachineBasicBlock *BB, 833 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 834 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 835 // Technically BB could form a trellis with branching factor higher than 2. 836 // But that's extremely uncommon. 837 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 838 return false; 839 840 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 841 BB->succ_end()); 842 // To avoid reviewing the same predecessors twice. 843 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 844 845 for (MachineBasicBlock *Succ : ViableSuccs) { 846 int PredCount = 0; 847 for (auto SuccPred : Succ->predecessors()) { 848 // Allow triangle successors, but don't count them. 849 if (Successors.count(SuccPred)) { 850 // Make sure that it is actually a triangle. 851 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 852 if (!Successors.count(CheckSucc)) 853 return false; 854 continue; 855 } 856 const BlockChain *PredChain = BlockToChain[SuccPred]; 857 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 858 PredChain == &Chain || PredChain == BlockToChain[Succ]) 859 continue; 860 ++PredCount; 861 // Perform the successor check only once. 862 if (!SeenPreds.insert(SuccPred).second) 863 continue; 864 if (!hasSameSuccessors(*SuccPred, Successors)) 865 return false; 866 } 867 // If one of the successors has only BB as a predecessor, it is not a 868 // trellis. 869 if (PredCount < 1) 870 return false; 871 } 872 return true; 873 } 874 875 /// Pick the highest total weight pair of edges that can both be laid out. 876 /// The edges in \p Edges[0] are assumed to have a different destination than 877 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 878 /// the individual highest weight edges to the 2 different destinations, or in 879 /// case of a conflict, one of them should be replaced with a 2nd best edge. 880 std::pair<MachineBlockPlacement::WeightedEdge, 881 MachineBlockPlacement::WeightedEdge> 882 MachineBlockPlacement::getBestNonConflictingEdges( 883 const MachineBasicBlock *BB, 884 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 885 Edges) { 886 // Sort the edges, and then for each successor, find the best incoming 887 // predecessor. If the best incoming predecessors aren't the same, 888 // then that is clearly the best layout. If there is a conflict, one of the 889 // successors will have to fallthrough from the second best predecessor. We 890 // compare which combination is better overall. 891 892 // Sort for highest frequency. 893 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 894 895 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 896 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 897 auto BestA = Edges[0].begin(); 898 auto BestB = Edges[1].begin(); 899 // Arrange for the correct answer to be in BestA and BestB 900 // If the 2 best edges don't conflict, the answer is already there. 901 if (BestA->Src == BestB->Src) { 902 // Compare the total fallthrough of (Best + Second Best) for both pairs 903 auto SecondBestA = std::next(BestA); 904 auto SecondBestB = std::next(BestB); 905 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 906 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 907 if (BestAScore < BestBScore) 908 BestA = SecondBestA; 909 else 910 BestB = SecondBestB; 911 } 912 // Arrange for the BB edge to be in BestA if it exists. 913 if (BestB->Src == BB) 914 std::swap(BestA, BestB); 915 return std::make_pair(*BestA, *BestB); 916 } 917 918 /// Get the best successor from \p BB based on \p BB being part of a trellis. 919 /// We only handle trellises with 2 successors, so the algorithm is 920 /// straightforward: Find the best pair of edges that don't conflict. We find 921 /// the best incoming edge for each successor in the trellis. If those conflict, 922 /// we consider which of them should be replaced with the second best. 923 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 924 /// comes from \p BB, it will be in \p BestEdges[0] 925 MachineBlockPlacement::BlockAndTailDupResult 926 MachineBlockPlacement::getBestTrellisSuccessor( 927 const MachineBasicBlock *BB, 928 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 929 BranchProbability AdjustedSumProb, const BlockChain &Chain, 930 const BlockFilterSet *BlockFilter) { 931 932 BlockAndTailDupResult Result = {nullptr, false}; 933 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 934 BB->succ_end()); 935 936 // We assume size 2 because it's common. For general n, we would have to do 937 // the Hungarian algorithm, but it's not worth the complexity because more 938 // than 2 successors is fairly uncommon, and a trellis even more so. 939 if (Successors.size() != 2 || ViableSuccs.size() != 2) 940 return Result; 941 942 // Collect the edge frequencies of all edges that form the trellis. 943 SmallVector<WeightedEdge, 8> Edges[2]; 944 int SuccIndex = 0; 945 for (auto Succ : ViableSuccs) { 946 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 947 // Skip any placed predecessors that are not BB 948 if (SuccPred != BB) 949 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 950 BlockToChain[SuccPred] == &Chain || 951 BlockToChain[SuccPred] == BlockToChain[Succ]) 952 continue; 953 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 954 MBPI->getEdgeProbability(SuccPred, Succ); 955 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 956 } 957 ++SuccIndex; 958 } 959 960 // Pick the best combination of 2 edges from all the edges in the trellis. 961 WeightedEdge BestA, BestB; 962 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 963 964 if (BestA.Src != BB) { 965 // If we have a trellis, and BB doesn't have the best fallthrough edges, 966 // we shouldn't choose any successor. We've already looked and there's a 967 // better fallthrough edge for all the successors. 968 DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 969 return Result; 970 } 971 972 // Did we pick the triangle edge? If tail-duplication is profitable, do 973 // that instead. Otherwise merge the triangle edge now while we know it is 974 // optimal. 975 if (BestA.Dest == BestB.Src) { 976 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 977 // would be better. 978 MachineBasicBlock *Succ1 = BestA.Dest; 979 MachineBasicBlock *Succ2 = BestB.Dest; 980 // Check to see if tail-duplication would be profitable. 981 if (TailDupPlacement && shouldTailDuplicate(Succ2) && 982 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 983 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 984 Chain, BlockFilter)) { 985 DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 986 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 987 dbgs() << " Selected: " << getBlockName(Succ2) 988 << ", probability: " << Succ2Prob << " (Tail Duplicate)\n"); 989 Result.BB = Succ2; 990 Result.ShouldTailDup = true; 991 return Result; 992 } 993 } 994 // We have already computed the optimal edge for the other side of the 995 // trellis. 996 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 997 998 auto TrellisSucc = BestA.Dest; 999 DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1000 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1001 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1002 << ", probability: " << SuccProb << " (Trellis)\n"); 1003 Result.BB = TrellisSucc; 1004 return Result; 1005 } 1006 1007 /// When the option TailDupPlacement is on, this method checks if the 1008 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1009 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1010 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1011 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1012 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1013 if (!shouldTailDuplicate(Succ)) 1014 return false; 1015 1016 // For CFG checking. 1017 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1018 BB->succ_end()); 1019 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1020 // Make sure all unplaced and unfiltered predecessors can be 1021 // tail-duplicated into. 1022 // Skip any blocks that are already placed or not in this loop. 1023 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1024 || BlockToChain[Pred] == &Chain) 1025 continue; 1026 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1027 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1028 // This will result in a trellis after tail duplication, so we don't 1029 // need to copy Succ into this predecessor. In the presence 1030 // of a trellis tail duplication can continue to be profitable. 1031 // For example: 1032 // A A 1033 // |\ |\ 1034 // | \ | \ 1035 // | C | C+BB 1036 // | / | | 1037 // |/ | | 1038 // BB => BB | 1039 // |\ |\/| 1040 // | \ |/\| 1041 // | D | D 1042 // | / | / 1043 // |/ |/ 1044 // Succ Succ 1045 // 1046 // After BB was duplicated into C, the layout looks like the one on the 1047 // right. BB and C now have the same successors. When considering 1048 // whether Succ can be duplicated into all its unplaced predecessors, we 1049 // ignore C. 1050 // We can do this because C already has a profitable fallthrough, namely 1051 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1052 // duplication and for this test. 1053 // 1054 // This allows trellises to be laid out in 2 separate chains 1055 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1056 // because it allows the creation of 2 fallthrough paths with links 1057 // between them, and we correctly identify the best layout for these 1058 // CFGs. We want to extend trellises that the user created in addition 1059 // to trellises created by tail-duplication, so we just look for the 1060 // CFG. 1061 continue; 1062 return false; 1063 } 1064 } 1065 return true; 1066 } 1067 1068 /// Find chains of triangles where we believe it would be profitable to 1069 /// tail-duplicate them all, but a local analysis would not find them. 1070 /// There are 3 ways this can be profitable: 1071 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1072 /// longer chains) 1073 /// 2) The chains are statically correlated. Branch probabilities have a very 1074 /// U-shaped distribution. 1075 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1076 /// If the branches in a chain are likely to be from the same side of the 1077 /// distribution as their predecessor, but are independent at runtime, this 1078 /// transformation is profitable. (Because the cost of being wrong is a small 1079 /// fixed cost, unlike the standard triangle layout where the cost of being 1080 /// wrong scales with the # of triangles.) 1081 /// 3) The chains are dynamically correlated. If the probability that a previous 1082 /// branch was taken positively influences whether the next branch will be 1083 /// taken 1084 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1085 void MachineBlockPlacement::precomputeTriangleChains() { 1086 struct TriangleChain { 1087 std::vector<MachineBasicBlock *> Edges; 1088 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1089 : Edges({src, dst}) {} 1090 1091 void append(MachineBasicBlock *dst) { 1092 assert(getKey()->isSuccessor(dst) && 1093 "Attempting to append a block that is not a successor."); 1094 Edges.push_back(dst); 1095 } 1096 1097 unsigned count() const { return Edges.size() - 1; } 1098 1099 MachineBasicBlock *getKey() const { 1100 return Edges.back(); 1101 } 1102 }; 1103 1104 if (TriangleChainCount == 0) 1105 return; 1106 1107 DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1108 // Map from last block to the chain that contains it. This allows us to extend 1109 // chains as we find new triangles. 1110 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1111 for (MachineBasicBlock &BB : *F) { 1112 // If BB doesn't have 2 successors, it doesn't start a triangle. 1113 if (BB.succ_size() != 2) 1114 continue; 1115 MachineBasicBlock *PDom = nullptr; 1116 for (MachineBasicBlock *Succ : BB.successors()) { 1117 if (!MPDT->dominates(Succ, &BB)) 1118 continue; 1119 PDom = Succ; 1120 break; 1121 } 1122 // If BB doesn't have a post-dominating successor, it doesn't form a 1123 // triangle. 1124 if (PDom == nullptr) 1125 continue; 1126 // If PDom has a hint that it is low probability, skip this triangle. 1127 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1128 continue; 1129 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1130 // we're looking for. 1131 if (!shouldTailDuplicate(PDom)) 1132 continue; 1133 bool CanTailDuplicate = true; 1134 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1135 // isn't the kind of triangle we're looking for. 1136 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1137 if (Pred == &BB) 1138 continue; 1139 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1140 CanTailDuplicate = false; 1141 break; 1142 } 1143 } 1144 // If we can't tail-duplicate PDom to its predecessors, then skip this 1145 // triangle. 1146 if (!CanTailDuplicate) 1147 continue; 1148 1149 // Now we have an interesting triangle. Insert it if it's not part of an 1150 // existing chain 1151 // Note: This cannot be replaced with a call insert() or emplace() because 1152 // the find key is BB, but the insert/emplace key is PDom. 1153 auto Found = TriangleChainMap.find(&BB); 1154 // If it is, remove the chain from the map, grow it, and put it back in the 1155 // map with the end as the new key. 1156 if (Found != TriangleChainMap.end()) { 1157 TriangleChain Chain = std::move(Found->second); 1158 TriangleChainMap.erase(Found); 1159 Chain.append(PDom); 1160 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1161 } else { 1162 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1163 assert(InsertResult.second && "Block seen twice."); 1164 (void)InsertResult; 1165 } 1166 } 1167 1168 // Iterating over a DenseMap is safe here, because the only thing in the body 1169 // of the loop is inserting into another DenseMap (ComputedEdges). 1170 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1171 for (auto &ChainPair : TriangleChainMap) { 1172 TriangleChain &Chain = ChainPair.second; 1173 // Benchmarking has shown that due to branch correlation duplicating 2 or 1174 // more triangles is profitable, despite the calculations assuming 1175 // independence. 1176 if (Chain.count() < TriangleChainCount) 1177 continue; 1178 MachineBasicBlock *dst = Chain.Edges.back(); 1179 Chain.Edges.pop_back(); 1180 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1181 DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" << 1182 getBlockName(dst) << " as pre-computed based on triangles.\n"); 1183 1184 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1185 assert(InsertResult.second && "Block seen twice."); 1186 (void)InsertResult; 1187 1188 dst = src; 1189 } 1190 } 1191 } 1192 1193 // When profile is not present, return the StaticLikelyProb. 1194 // When profile is available, we need to handle the triangle-shape CFG. 1195 static BranchProbability getLayoutSuccessorProbThreshold( 1196 const MachineBasicBlock *BB) { 1197 if (!BB->getParent()->getFunction()->getEntryCount()) 1198 return BranchProbability(StaticLikelyProb, 100); 1199 if (BB->succ_size() == 2) { 1200 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1201 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1202 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1203 /* See case 1 below for the cost analysis. For BB->Succ to 1204 * be taken with smaller cost, the following needs to hold: 1205 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1206 * So the threshold T in the calculation below 1207 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1208 * So T / (1 - T) = 2, Yielding T = 2/3 1209 * Also adding user specified branch bias, we have 1210 * T = (2/3)*(ProfileLikelyProb/50) 1211 * = (2*ProfileLikelyProb)/150) 1212 */ 1213 return BranchProbability(2 * ProfileLikelyProb, 150); 1214 } 1215 } 1216 return BranchProbability(ProfileLikelyProb, 100); 1217 } 1218 1219 /// Checks to see if the layout candidate block \p Succ has a better layout 1220 /// predecessor than \c BB. If yes, returns true. 1221 /// \p SuccProb: The probability adjusted for only remaining blocks. 1222 /// Only used for logging 1223 /// \p RealSuccProb: The un-adjusted probability. 1224 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1225 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1226 /// considered 1227 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1228 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1229 const BlockChain &SuccChain, BranchProbability SuccProb, 1230 BranchProbability RealSuccProb, const BlockChain &Chain, 1231 const BlockFilterSet *BlockFilter) { 1232 1233 // There isn't a better layout when there are no unscheduled predecessors. 1234 if (SuccChain.UnscheduledPredecessors == 0) 1235 return false; 1236 1237 // There are two basic scenarios here: 1238 // ------------------------------------- 1239 // Case 1: triangular shape CFG (if-then): 1240 // BB 1241 // | \ 1242 // | \ 1243 // | Pred 1244 // | / 1245 // Succ 1246 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1247 // set Succ as the layout successor of BB. Picking Succ as BB's 1248 // successor breaks the CFG constraints (FIXME: define these constraints). 1249 // With this layout, Pred BB 1250 // is forced to be outlined, so the overall cost will be cost of the 1251 // branch taken from BB to Pred, plus the cost of back taken branch 1252 // from Pred to Succ, as well as the additional cost associated 1253 // with the needed unconditional jump instruction from Pred To Succ. 1254 1255 // The cost of the topological order layout is the taken branch cost 1256 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1257 // must hold: 1258 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1259 // < freq(BB->Succ) * taken_branch_cost. 1260 // Ignoring unconditional jump cost, we get 1261 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1262 // prob(BB->Succ) > 2 * prob(BB->Pred) 1263 // 1264 // When real profile data is available, we can precisely compute the 1265 // probability threshold that is needed for edge BB->Succ to be considered. 1266 // Without profile data, the heuristic requires the branch bias to be 1267 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1268 // ----------------------------------------------------------------- 1269 // Case 2: diamond like CFG (if-then-else): 1270 // S 1271 // / \ 1272 // | \ 1273 // BB Pred 1274 // \ / 1275 // Succ 1276 // .. 1277 // 1278 // The current block is BB and edge BB->Succ is now being evaluated. 1279 // Note that edge S->BB was previously already selected because 1280 // prob(S->BB) > prob(S->Pred). 1281 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1282 // choose Pred, we will have a topological ordering as shown on the left 1283 // in the picture below. If we choose Succ, we have the solution as shown 1284 // on the right: 1285 // 1286 // topo-order: 1287 // 1288 // S----- ---S 1289 // | | | | 1290 // ---BB | | BB 1291 // | | | | 1292 // | pred-- | Succ-- 1293 // | | | | 1294 // ---succ ---pred-- 1295 // 1296 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1297 // = freq(S->Pred) + freq(S->BB) 1298 // 1299 // If we have profile data (i.e, branch probabilities can be trusted), the 1300 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1301 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1302 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1303 // means the cost of topological order is greater. 1304 // When profile data is not available, however, we need to be more 1305 // conservative. If the branch prediction is wrong, breaking the topo-order 1306 // will actually yield a layout with large cost. For this reason, we need 1307 // strong biased branch at block S with Prob(S->BB) in order to select 1308 // BB->Succ. This is equivalent to looking the CFG backward with backward 1309 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1310 // profile data). 1311 // -------------------------------------------------------------------------- 1312 // Case 3: forked diamond 1313 // S 1314 // / \ 1315 // / \ 1316 // BB Pred 1317 // | \ / | 1318 // | \ / | 1319 // | X | 1320 // | / \ | 1321 // | / \ | 1322 // S1 S2 1323 // 1324 // The current block is BB and edge BB->S1 is now being evaluated. 1325 // As above S->BB was already selected because 1326 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1327 // 1328 // topo-order: 1329 // 1330 // S-------| ---S 1331 // | | | | 1332 // ---BB | | BB 1333 // | | | | 1334 // | Pred----| | S1---- 1335 // | | | | 1336 // --(S1 or S2) ---Pred-- 1337 // | 1338 // S2 1339 // 1340 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1341 // + min(freq(Pred->S1), freq(Pred->S2)) 1342 // Non-topo-order cost: 1343 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1344 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1345 // is 0. Then the non topo layout is better when 1346 // freq(S->Pred) < freq(BB->S1). 1347 // This is exactly what is checked below. 1348 // Note there are other shapes that apply (Pred may not be a single block, 1349 // but they all fit this general pattern.) 1350 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1351 1352 // Make sure that a hot successor doesn't have a globally more 1353 // important predecessor. 1354 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1355 bool BadCFGConflict = false; 1356 1357 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1358 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1359 (BlockFilter && !BlockFilter->count(Pred)) || 1360 BlockToChain[Pred] == &Chain || 1361 // This check is redundant except for look ahead. This function is 1362 // called for lookahead by isProfitableToTailDup when BB hasn't been 1363 // placed yet. 1364 (Pred == BB)) 1365 continue; 1366 // Do backward checking. 1367 // For all cases above, we need a backward checking to filter out edges that 1368 // are not 'strongly' biased. 1369 // BB Pred 1370 // \ / 1371 // Succ 1372 // We select edge BB->Succ if 1373 // freq(BB->Succ) > freq(Succ) * HotProb 1374 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1375 // HotProb 1376 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1377 // Case 1 is covered too, because the first equation reduces to: 1378 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1379 BlockFrequency PredEdgeFreq = 1380 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1381 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1382 BadCFGConflict = true; 1383 break; 1384 } 1385 } 1386 1387 if (BadCFGConflict) { 1388 DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb 1389 << " (prob) (non-cold CFG conflict)\n"); 1390 return true; 1391 } 1392 1393 return false; 1394 } 1395 1396 /// \brief Select the best successor for a block. 1397 /// 1398 /// This looks across all successors of a particular block and attempts to 1399 /// select the "best" one to be the layout successor. It only considers direct 1400 /// successors which also pass the block filter. It will attempt to avoid 1401 /// breaking CFG structure, but cave and break such structures in the case of 1402 /// very hot successor edges. 1403 /// 1404 /// \returns The best successor block found, or null if none are viable, along 1405 /// with a boolean indicating if tail duplication is necessary. 1406 MachineBlockPlacement::BlockAndTailDupResult 1407 MachineBlockPlacement::selectBestSuccessor( 1408 const MachineBasicBlock *BB, const BlockChain &Chain, 1409 const BlockFilterSet *BlockFilter) { 1410 const BranchProbability HotProb(StaticLikelyProb, 100); 1411 1412 BlockAndTailDupResult BestSucc = { nullptr, false }; 1413 auto BestProb = BranchProbability::getZero(); 1414 1415 SmallVector<MachineBasicBlock *, 4> Successors; 1416 auto AdjustedSumProb = 1417 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1418 1419 DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n"); 1420 1421 // if we already precomputed the best successor for BB, return that if still 1422 // applicable. 1423 auto FoundEdge = ComputedEdges.find(BB); 1424 if (FoundEdge != ComputedEdges.end()) { 1425 MachineBasicBlock *Succ = FoundEdge->second.BB; 1426 ComputedEdges.erase(FoundEdge); 1427 BlockChain *SuccChain = BlockToChain[Succ]; 1428 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1429 SuccChain != &Chain && Succ == *SuccChain->begin()) 1430 return FoundEdge->second; 1431 } 1432 1433 // if BB is part of a trellis, Use the trellis to determine the optimal 1434 // fallthrough edges 1435 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1436 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1437 BlockFilter); 1438 1439 // For blocks with CFG violations, we may be able to lay them out anyway with 1440 // tail-duplication. We keep this vector so we can perform the probability 1441 // calculations the minimum number of times. 1442 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1443 DupCandidates; 1444 for (MachineBasicBlock *Succ : Successors) { 1445 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1446 BranchProbability SuccProb = 1447 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1448 1449 BlockChain &SuccChain = *BlockToChain[Succ]; 1450 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1451 // predecessor that yields lower global cost. 1452 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1453 Chain, BlockFilter)) { 1454 // If tail duplication would make Succ profitable, place it. 1455 if (TailDupPlacement && shouldTailDuplicate(Succ)) 1456 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1457 continue; 1458 } 1459 1460 DEBUG( 1461 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1462 << SuccProb 1463 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1464 << "\n"); 1465 1466 if (BestSucc.BB && BestProb >= SuccProb) { 1467 DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1468 continue; 1469 } 1470 1471 DEBUG(dbgs() << " Setting it as best candidate\n"); 1472 BestSucc.BB = Succ; 1473 BestProb = SuccProb; 1474 } 1475 // Handle the tail duplication candidates in order of decreasing probability. 1476 // Stop at the first one that is profitable. Also stop if they are less 1477 // profitable than BestSucc. Position is important because we preserve it and 1478 // prefer first best match. Here we aren't comparing in order, so we capture 1479 // the position instead. 1480 if (DupCandidates.size() != 0) { 1481 auto cmp = 1482 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1483 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1484 return std::get<0>(a) > std::get<0>(b); 1485 }; 1486 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1487 } 1488 for(auto &Tup : DupCandidates) { 1489 BranchProbability DupProb; 1490 MachineBasicBlock *Succ; 1491 std::tie(DupProb, Succ) = Tup; 1492 if (DupProb < BestProb) 1493 break; 1494 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1495 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1496 DEBUG( 1497 dbgs() << " Candidate: " << getBlockName(Succ) << ", probability: " 1498 << DupProb 1499 << " (Tail Duplicate)\n"); 1500 BestSucc.BB = Succ; 1501 BestSucc.ShouldTailDup = true; 1502 break; 1503 } 1504 } 1505 1506 if (BestSucc.BB) 1507 DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1508 1509 return BestSucc; 1510 } 1511 1512 /// \brief Select the best block from a worklist. 1513 /// 1514 /// This looks through the provided worklist as a list of candidate basic 1515 /// blocks and select the most profitable one to place. The definition of 1516 /// profitable only really makes sense in the context of a loop. This returns 1517 /// the most frequently visited block in the worklist, which in the case of 1518 /// a loop, is the one most desirable to be physically close to the rest of the 1519 /// loop body in order to improve i-cache behavior. 1520 /// 1521 /// \returns The best block found, or null if none are viable. 1522 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1523 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1524 // Once we need to walk the worklist looking for a candidate, cleanup the 1525 // worklist of already placed entries. 1526 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1527 // some code complexity) into the loop below. 1528 WorkList.erase(remove_if(WorkList, 1529 [&](MachineBasicBlock *BB) { 1530 return BlockToChain.lookup(BB) == &Chain; 1531 }), 1532 WorkList.end()); 1533 1534 if (WorkList.empty()) 1535 return nullptr; 1536 1537 bool IsEHPad = WorkList[0]->isEHPad(); 1538 1539 MachineBasicBlock *BestBlock = nullptr; 1540 BlockFrequency BestFreq; 1541 for (MachineBasicBlock *MBB : WorkList) { 1542 assert(MBB->isEHPad() == IsEHPad); 1543 1544 BlockChain &SuccChain = *BlockToChain[MBB]; 1545 if (&SuccChain == &Chain) 1546 continue; 1547 1548 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 1549 1550 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1551 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1552 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1553 1554 // For ehpad, we layout the least probable first as to avoid jumping back 1555 // from least probable landingpads to more probable ones. 1556 // 1557 // FIXME: Using probability is probably (!) not the best way to achieve 1558 // this. We should probably have a more principled approach to layout 1559 // cleanup code. 1560 // 1561 // The goal is to get: 1562 // 1563 // +--------------------------+ 1564 // | V 1565 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1566 // 1567 // Rather than: 1568 // 1569 // +-------------------------------------+ 1570 // V | 1571 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1572 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1573 continue; 1574 1575 BestBlock = MBB; 1576 BestFreq = CandidateFreq; 1577 } 1578 1579 return BestBlock; 1580 } 1581 1582 /// \brief Retrieve the first unplaced basic block. 1583 /// 1584 /// This routine is called when we are unable to use the CFG to walk through 1585 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1586 /// We walk through the function's blocks in order, starting from the 1587 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1588 /// re-scanning the entire sequence on repeated calls to this routine. 1589 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1590 const BlockChain &PlacedChain, 1591 MachineFunction::iterator &PrevUnplacedBlockIt, 1592 const BlockFilterSet *BlockFilter) { 1593 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1594 ++I) { 1595 if (BlockFilter && !BlockFilter->count(&*I)) 1596 continue; 1597 if (BlockToChain[&*I] != &PlacedChain) { 1598 PrevUnplacedBlockIt = I; 1599 // Now select the head of the chain to which the unplaced block belongs 1600 // as the block to place. This will force the entire chain to be placed, 1601 // and satisfies the requirements of merging chains. 1602 return *BlockToChain[&*I]->begin(); 1603 } 1604 } 1605 return nullptr; 1606 } 1607 1608 void MachineBlockPlacement::fillWorkLists( 1609 const MachineBasicBlock *MBB, 1610 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1611 const BlockFilterSet *BlockFilter = nullptr) { 1612 BlockChain &Chain = *BlockToChain[MBB]; 1613 if (!UpdatedPreds.insert(&Chain).second) 1614 return; 1615 1616 assert(Chain.UnscheduledPredecessors == 0); 1617 for (MachineBasicBlock *ChainBB : Chain) { 1618 assert(BlockToChain[ChainBB] == &Chain); 1619 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1620 if (BlockFilter && !BlockFilter->count(Pred)) 1621 continue; 1622 if (BlockToChain[Pred] == &Chain) 1623 continue; 1624 ++Chain.UnscheduledPredecessors; 1625 } 1626 } 1627 1628 if (Chain.UnscheduledPredecessors != 0) 1629 return; 1630 1631 MachineBasicBlock *BB = *Chain.begin(); 1632 if (BB->isEHPad()) 1633 EHPadWorkList.push_back(BB); 1634 else 1635 BlockWorkList.push_back(BB); 1636 } 1637 1638 void MachineBlockPlacement::buildChain( 1639 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1640 BlockFilterSet *BlockFilter) { 1641 assert(HeadBB && "BB must not be null.\n"); 1642 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1643 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1644 1645 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1646 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1647 MachineBasicBlock *BB = *std::prev(Chain.end()); 1648 for (;;) { 1649 assert(BB && "null block found at end of chain in loop."); 1650 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1651 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1652 1653 1654 // Look for the best viable successor if there is one to place immediately 1655 // after this block. 1656 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1657 MachineBasicBlock* BestSucc = Result.BB; 1658 bool ShouldTailDup = Result.ShouldTailDup; 1659 if (TailDupPlacement) 1660 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1661 1662 // If an immediate successor isn't available, look for the best viable 1663 // block among those we've identified as not violating the loop's CFG at 1664 // this point. This won't be a fallthrough, but it will increase locality. 1665 if (!BestSucc) 1666 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1667 if (!BestSucc) 1668 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1669 1670 if (!BestSucc) { 1671 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1672 if (!BestSucc) 1673 break; 1674 1675 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1676 "layout successor until the CFG reduces\n"); 1677 } 1678 1679 // Placement may have changed tail duplication opportunities. 1680 // Check for that now. 1681 if (TailDupPlacement && BestSucc && ShouldTailDup) { 1682 // If the chosen successor was duplicated into all its predecessors, 1683 // don't bother laying it out, just go round the loop again with BB as 1684 // the chain end. 1685 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1686 BlockFilter, PrevUnplacedBlockIt)) 1687 continue; 1688 } 1689 1690 // Place this block, updating the datastructures to reflect its placement. 1691 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1692 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1693 // we selected a successor that didn't fit naturally into the CFG. 1694 SuccChain.UnscheduledPredecessors = 0; 1695 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1696 << getBlockName(BestSucc) << "\n"); 1697 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1698 Chain.merge(BestSucc, &SuccChain); 1699 BB = *std::prev(Chain.end()); 1700 } 1701 1702 DEBUG(dbgs() << "Finished forming chain for header block " 1703 << getBlockName(*Chain.begin()) << "\n"); 1704 } 1705 1706 /// \brief Find the best loop top block for layout. 1707 /// 1708 /// Look for a block which is strictly better than the loop header for laying 1709 /// out at the top of the loop. This looks for one and only one pattern: 1710 /// a latch block with no conditional exit. This block will cause a conditional 1711 /// jump around it or will be the bottom of the loop if we lay it out in place, 1712 /// but if it it doesn't end up at the bottom of the loop for any reason, 1713 /// rotation alone won't fix it. Because such a block will always result in an 1714 /// unconditional jump (for the backedge) rotating it in front of the loop 1715 /// header is always profitable. 1716 MachineBasicBlock * 1717 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1718 const BlockFilterSet &LoopBlockSet) { 1719 // Placing the latch block before the header may introduce an extra branch 1720 // that skips this block the first time the loop is executed, which we want 1721 // to avoid when optimising for size. 1722 // FIXME: in theory there is a case that does not introduce a new branch, 1723 // i.e. when the layout predecessor does not fallthrough to the loop header. 1724 // In practice this never happens though: there always seems to be a preheader 1725 // that can fallthrough and that is also placed before the header. 1726 if (F->getFunction()->optForSize()) 1727 return L.getHeader(); 1728 1729 // Check that the header hasn't been fused with a preheader block due to 1730 // crazy branches. If it has, we need to start with the header at the top to 1731 // prevent pulling the preheader into the loop body. 1732 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1733 if (!LoopBlockSet.count(*HeaderChain.begin())) 1734 return L.getHeader(); 1735 1736 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 1737 << "\n"); 1738 1739 BlockFrequency BestPredFreq; 1740 MachineBasicBlock *BestPred = nullptr; 1741 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1742 if (!LoopBlockSet.count(Pred)) 1743 continue; 1744 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1745 << Pred->succ_size() << " successors, "; 1746 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1747 if (Pred->succ_size() > 1) 1748 continue; 1749 1750 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1751 if (!BestPred || PredFreq > BestPredFreq || 1752 (!(PredFreq < BestPredFreq) && 1753 Pred->isLayoutSuccessor(L.getHeader()))) { 1754 BestPred = Pred; 1755 BestPredFreq = PredFreq; 1756 } 1757 } 1758 1759 // If no direct predecessor is fine, just use the loop header. 1760 if (!BestPred) { 1761 DEBUG(dbgs() << " final top unchanged\n"); 1762 return L.getHeader(); 1763 } 1764 1765 // Walk backwards through any straight line of predecessors. 1766 while (BestPred->pred_size() == 1 && 1767 (*BestPred->pred_begin())->succ_size() == 1 && 1768 *BestPred->pred_begin() != L.getHeader()) 1769 BestPred = *BestPred->pred_begin(); 1770 1771 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1772 return BestPred; 1773 } 1774 1775 /// \brief Find the best loop exiting block for layout. 1776 /// 1777 /// This routine implements the logic to analyze the loop looking for the best 1778 /// block to layout at the top of the loop. Typically this is done to maximize 1779 /// fallthrough opportunities. 1780 MachineBasicBlock * 1781 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1782 const BlockFilterSet &LoopBlockSet) { 1783 // We don't want to layout the loop linearly in all cases. If the loop header 1784 // is just a normal basic block in the loop, we want to look for what block 1785 // within the loop is the best one to layout at the top. However, if the loop 1786 // header has be pre-merged into a chain due to predecessors not having 1787 // analyzable branches, *and* the predecessor it is merged with is *not* part 1788 // of the loop, rotating the header into the middle of the loop will create 1789 // a non-contiguous range of blocks which is Very Bad. So start with the 1790 // header and only rotate if safe. 1791 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1792 if (!LoopBlockSet.count(*HeaderChain.begin())) 1793 return nullptr; 1794 1795 BlockFrequency BestExitEdgeFreq; 1796 unsigned BestExitLoopDepth = 0; 1797 MachineBasicBlock *ExitingBB = nullptr; 1798 // If there are exits to outer loops, loop rotation can severely limit 1799 // fallthrough opportunities unless it selects such an exit. Keep a set of 1800 // blocks where rotating to exit with that block will reach an outer loop. 1801 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1802 1803 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 1804 << "\n"); 1805 for (MachineBasicBlock *MBB : L.getBlocks()) { 1806 BlockChain &Chain = *BlockToChain[MBB]; 1807 // Ensure that this block is at the end of a chain; otherwise it could be 1808 // mid-way through an inner loop or a successor of an unanalyzable branch. 1809 if (MBB != *std::prev(Chain.end())) 1810 continue; 1811 1812 // Now walk the successors. We need to establish whether this has a viable 1813 // exiting successor and whether it has a viable non-exiting successor. 1814 // We store the old exiting state and restore it if a viable looping 1815 // successor isn't found. 1816 MachineBasicBlock *OldExitingBB = ExitingBB; 1817 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1818 bool HasLoopingSucc = false; 1819 for (MachineBasicBlock *Succ : MBB->successors()) { 1820 if (Succ->isEHPad()) 1821 continue; 1822 if (Succ == MBB) 1823 continue; 1824 BlockChain &SuccChain = *BlockToChain[Succ]; 1825 // Don't split chains, either this chain or the successor's chain. 1826 if (&Chain == &SuccChain) { 1827 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1828 << getBlockName(Succ) << " (chain conflict)\n"); 1829 continue; 1830 } 1831 1832 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1833 if (LoopBlockSet.count(Succ)) { 1834 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1835 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1836 HasLoopingSucc = true; 1837 continue; 1838 } 1839 1840 unsigned SuccLoopDepth = 0; 1841 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1842 SuccLoopDepth = ExitLoop->getLoopDepth(); 1843 if (ExitLoop->contains(&L)) 1844 BlocksExitingToOuterLoop.insert(MBB); 1845 } 1846 1847 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1848 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1849 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 1850 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1851 // Note that we bias this toward an existing layout successor to retain 1852 // incoming order in the absence of better information. The exit must have 1853 // a frequency higher than the current exit before we consider breaking 1854 // the layout. 1855 BranchProbability Bias(100 - ExitBlockBias, 100); 1856 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1857 ExitEdgeFreq > BestExitEdgeFreq || 1858 (MBB->isLayoutSuccessor(Succ) && 1859 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1860 BestExitEdgeFreq = ExitEdgeFreq; 1861 ExitingBB = MBB; 1862 } 1863 } 1864 1865 if (!HasLoopingSucc) { 1866 // Restore the old exiting state, no viable looping successor was found. 1867 ExitingBB = OldExitingBB; 1868 BestExitEdgeFreq = OldBestExitEdgeFreq; 1869 } 1870 } 1871 // Without a candidate exiting block or with only a single block in the 1872 // loop, just use the loop header to layout the loop. 1873 if (!ExitingBB) { 1874 DEBUG(dbgs() << " No other candidate exit blocks, using loop header\n"); 1875 return nullptr; 1876 } 1877 if (L.getNumBlocks() == 1) { 1878 DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1879 return nullptr; 1880 } 1881 1882 // Also, if we have exit blocks which lead to outer loops but didn't select 1883 // one of them as the exiting block we are rotating toward, disable loop 1884 // rotation altogether. 1885 if (!BlocksExitingToOuterLoop.empty() && 1886 !BlocksExitingToOuterLoop.count(ExitingBB)) 1887 return nullptr; 1888 1889 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 1890 return ExitingBB; 1891 } 1892 1893 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 1894 /// 1895 /// Once we have built a chain, try to rotate it to line up the hot exit block 1896 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1897 /// branches. For example, if the loop has fallthrough into its header and out 1898 /// of its bottom already, don't rotate it. 1899 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1900 const MachineBasicBlock *ExitingBB, 1901 const BlockFilterSet &LoopBlockSet) { 1902 if (!ExitingBB) 1903 return; 1904 1905 MachineBasicBlock *Top = *LoopChain.begin(); 1906 bool ViableTopFallthrough = false; 1907 for (MachineBasicBlock *Pred : Top->predecessors()) { 1908 BlockChain *PredChain = BlockToChain[Pred]; 1909 if (!LoopBlockSet.count(Pred) && 1910 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1911 ViableTopFallthrough = true; 1912 break; 1913 } 1914 } 1915 1916 // If the header has viable fallthrough, check whether the current loop 1917 // bottom is a viable exiting block. If so, bail out as rotating will 1918 // introduce an unnecessary branch. 1919 if (ViableTopFallthrough) { 1920 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 1921 for (MachineBasicBlock *Succ : Bottom->successors()) { 1922 BlockChain *SuccChain = BlockToChain[Succ]; 1923 if (!LoopBlockSet.count(Succ) && 1924 (!SuccChain || Succ == *SuccChain->begin())) 1925 return; 1926 } 1927 } 1928 1929 BlockChain::iterator ExitIt = find(LoopChain, ExitingBB); 1930 if (ExitIt == LoopChain.end()) 1931 return; 1932 1933 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 1934 } 1935 1936 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 1937 /// 1938 /// With profile data, we can determine the cost in terms of missed fall through 1939 /// opportunities when rotating a loop chain and select the best rotation. 1940 /// Basically, there are three kinds of cost to consider for each rotation: 1941 /// 1. The possibly missed fall through edge (if it exists) from BB out of 1942 /// the loop to the loop header. 1943 /// 2. The possibly missed fall through edges (if they exist) from the loop 1944 /// exits to BB out of the loop. 1945 /// 3. The missed fall through edge (if it exists) from the last BB to the 1946 /// first BB in the loop chain. 1947 /// Therefore, the cost for a given rotation is the sum of costs listed above. 1948 /// We select the best rotation with the smallest cost. 1949 void MachineBlockPlacement::rotateLoopWithProfile( 1950 BlockChain &LoopChain, const MachineLoop &L, 1951 const BlockFilterSet &LoopBlockSet) { 1952 auto HeaderBB = L.getHeader(); 1953 auto HeaderIter = find(LoopChain, HeaderBB); 1954 auto RotationPos = LoopChain.end(); 1955 1956 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 1957 1958 // A utility lambda that scales up a block frequency by dividing it by a 1959 // branch probability which is the reciprocal of the scale. 1960 auto ScaleBlockFrequency = [](BlockFrequency Freq, 1961 unsigned Scale) -> BlockFrequency { 1962 if (Scale == 0) 1963 return 0; 1964 // Use operator / between BlockFrequency and BranchProbability to implement 1965 // saturating multiplication. 1966 return Freq / BranchProbability(1, Scale); 1967 }; 1968 1969 // Compute the cost of the missed fall-through edge to the loop header if the 1970 // chain head is not the loop header. As we only consider natural loops with 1971 // single header, this computation can be done only once. 1972 BlockFrequency HeaderFallThroughCost(0); 1973 for (auto *Pred : HeaderBB->predecessors()) { 1974 BlockChain *PredChain = BlockToChain[Pred]; 1975 if (!LoopBlockSet.count(Pred) && 1976 (!PredChain || Pred == *std::prev(PredChain->end()))) { 1977 auto EdgeFreq = 1978 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 1979 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 1980 // If the predecessor has only an unconditional jump to the header, we 1981 // need to consider the cost of this jump. 1982 if (Pred->succ_size() == 1) 1983 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 1984 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 1985 } 1986 } 1987 1988 // Here we collect all exit blocks in the loop, and for each exit we find out 1989 // its hottest exit edge. For each loop rotation, we define the loop exit cost 1990 // as the sum of frequencies of exit edges we collect here, excluding the exit 1991 // edge from the tail of the loop chain. 1992 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 1993 for (auto BB : LoopChain) { 1994 auto LargestExitEdgeProb = BranchProbability::getZero(); 1995 for (auto *Succ : BB->successors()) { 1996 BlockChain *SuccChain = BlockToChain[Succ]; 1997 if (!LoopBlockSet.count(Succ) && 1998 (!SuccChain || Succ == *SuccChain->begin())) { 1999 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2000 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2001 } 2002 } 2003 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2004 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2005 ExitsWithFreq.emplace_back(BB, ExitFreq); 2006 } 2007 } 2008 2009 // In this loop we iterate every block in the loop chain and calculate the 2010 // cost assuming the block is the head of the loop chain. When the loop ends, 2011 // we should have found the best candidate as the loop chain's head. 2012 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2013 EndIter = LoopChain.end(); 2014 Iter != EndIter; Iter++, TailIter++) { 2015 // TailIter is used to track the tail of the loop chain if the block we are 2016 // checking (pointed by Iter) is the head of the chain. 2017 if (TailIter == LoopChain.end()) 2018 TailIter = LoopChain.begin(); 2019 2020 auto TailBB = *TailIter; 2021 2022 // Calculate the cost by putting this BB to the top. 2023 BlockFrequency Cost = 0; 2024 2025 // If the current BB is the loop header, we need to take into account the 2026 // cost of the missed fall through edge from outside of the loop to the 2027 // header. 2028 if (Iter != HeaderIter) 2029 Cost += HeaderFallThroughCost; 2030 2031 // Collect the loop exit cost by summing up frequencies of all exit edges 2032 // except the one from the chain tail. 2033 for (auto &ExitWithFreq : ExitsWithFreq) 2034 if (TailBB != ExitWithFreq.first) 2035 Cost += ExitWithFreq.second; 2036 2037 // The cost of breaking the once fall-through edge from the tail to the top 2038 // of the loop chain. Here we need to consider three cases: 2039 // 1. If the tail node has only one successor, then we will get an 2040 // additional jmp instruction. So the cost here is (MisfetchCost + 2041 // JumpInstCost) * tail node frequency. 2042 // 2. If the tail node has two successors, then we may still get an 2043 // additional jmp instruction if the layout successor after the loop 2044 // chain is not its CFG successor. Note that the more frequently executed 2045 // jmp instruction will be put ahead of the other one. Assume the 2046 // frequency of those two branches are x and y, where x is the frequency 2047 // of the edge to the chain head, then the cost will be 2048 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2049 // 3. If the tail node has more than two successors (this rarely happens), 2050 // we won't consider any additional cost. 2051 if (TailBB->isSuccessor(*Iter)) { 2052 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2053 if (TailBB->succ_size() == 1) 2054 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2055 MisfetchCost + JumpInstCost); 2056 else if (TailBB->succ_size() == 2) { 2057 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2058 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2059 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2060 ? TailBBFreq * TailToHeadProb.getCompl() 2061 : TailToHeadFreq; 2062 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2063 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2064 } 2065 } 2066 2067 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 2068 << " to the top: " << Cost.getFrequency() << "\n"); 2069 2070 if (Cost < SmallestRotationCost) { 2071 SmallestRotationCost = Cost; 2072 RotationPos = Iter; 2073 } 2074 } 2075 2076 if (RotationPos != LoopChain.end()) { 2077 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2078 << " to the top\n"); 2079 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2080 } 2081 } 2082 2083 /// \brief Collect blocks in the given loop that are to be placed. 2084 /// 2085 /// When profile data is available, exclude cold blocks from the returned set; 2086 /// otherwise, collect all blocks in the loop. 2087 MachineBlockPlacement::BlockFilterSet 2088 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2089 BlockFilterSet LoopBlockSet; 2090 2091 // Filter cold blocks off from LoopBlockSet when profile data is available. 2092 // Collect the sum of frequencies of incoming edges to the loop header from 2093 // outside. If we treat the loop as a super block, this is the frequency of 2094 // the loop. Then for each block in the loop, we calculate the ratio between 2095 // its frequency and the frequency of the loop block. When it is too small, 2096 // don't add it to the loop chain. If there are outer loops, then this block 2097 // will be merged into the first outer loop chain for which this block is not 2098 // cold anymore. This needs precise profile data and we only do this when 2099 // profile data is available. 2100 if (F->getFunction()->getEntryCount()) { 2101 BlockFrequency LoopFreq(0); 2102 for (auto LoopPred : L.getHeader()->predecessors()) 2103 if (!L.contains(LoopPred)) 2104 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2105 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2106 2107 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2108 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2109 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2110 continue; 2111 LoopBlockSet.insert(LoopBB); 2112 } 2113 } else 2114 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2115 2116 return LoopBlockSet; 2117 } 2118 2119 /// \brief Forms basic block chains from the natural loop structures. 2120 /// 2121 /// These chains are designed to preserve the existing *structure* of the code 2122 /// as much as possible. We can then stitch the chains together in a way which 2123 /// both preserves the topological structure and minimizes taken conditional 2124 /// branches. 2125 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2126 // First recurse through any nested loops, building chains for those inner 2127 // loops. 2128 for (const MachineLoop *InnerLoop : L) 2129 buildLoopChains(*InnerLoop); 2130 2131 assert(BlockWorkList.empty()); 2132 assert(EHPadWorkList.empty()); 2133 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2134 2135 // Check if we have profile data for this function. If yes, we will rotate 2136 // this loop by modeling costs more precisely which requires the profile data 2137 // for better layout. 2138 bool RotateLoopWithProfile = 2139 ForcePreciseRotationCost || 2140 (PreciseRotationCost && F->getFunction()->getEntryCount()); 2141 2142 // First check to see if there is an obviously preferable top block for the 2143 // loop. This will default to the header, but may end up as one of the 2144 // predecessors to the header if there is one which will result in strictly 2145 // fewer branches in the loop body. 2146 // When we use profile data to rotate the loop, this is unnecessary. 2147 MachineBasicBlock *LoopTop = 2148 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2149 2150 // If we selected just the header for the loop top, look for a potentially 2151 // profitable exit block in the event that rotating the loop can eliminate 2152 // branches by placing an exit edge at the bottom. 2153 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2154 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2155 2156 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2157 2158 // FIXME: This is a really lame way of walking the chains in the loop: we 2159 // walk the blocks, and use a set to prevent visiting a particular chain 2160 // twice. 2161 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2162 assert(LoopChain.UnscheduledPredecessors == 0); 2163 UpdatedPreds.insert(&LoopChain); 2164 2165 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2166 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2167 2168 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2169 2170 if (RotateLoopWithProfile) 2171 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2172 else 2173 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2174 2175 DEBUG({ 2176 // Crash at the end so we get all of the debugging output first. 2177 bool BadLoop = false; 2178 if (LoopChain.UnscheduledPredecessors) { 2179 BadLoop = true; 2180 dbgs() << "Loop chain contains a block without its preds placed!\n" 2181 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2182 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2183 } 2184 for (MachineBasicBlock *ChainBB : LoopChain) { 2185 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2186 if (!LoopBlockSet.remove(ChainBB)) { 2187 // We don't mark the loop as bad here because there are real situations 2188 // where this can occur. For example, with an unanalyzable fallthrough 2189 // from a loop block to a non-loop block or vice versa. 2190 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2191 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2192 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2193 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2194 } 2195 } 2196 2197 if (!LoopBlockSet.empty()) { 2198 BadLoop = true; 2199 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2200 dbgs() << "Loop contains blocks never placed into a chain!\n" 2201 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2202 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2203 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2204 } 2205 assert(!BadLoop && "Detected problems with the placement of this loop."); 2206 }); 2207 2208 BlockWorkList.clear(); 2209 EHPadWorkList.clear(); 2210 } 2211 2212 void MachineBlockPlacement::buildCFGChains() { 2213 // Ensure that every BB in the function has an associated chain to simplify 2214 // the assumptions of the remaining algorithm. 2215 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2216 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2217 ++FI) { 2218 MachineBasicBlock *BB = &*FI; 2219 BlockChain *Chain = 2220 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2221 // Also, merge any blocks which we cannot reason about and must preserve 2222 // the exact fallthrough behavior for. 2223 for (;;) { 2224 Cond.clear(); 2225 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2226 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2227 break; 2228 2229 MachineFunction::iterator NextFI = std::next(FI); 2230 MachineBasicBlock *NextBB = &*NextFI; 2231 // Ensure that the layout successor is a viable block, as we know that 2232 // fallthrough is a possibility. 2233 assert(NextFI != FE && "Can't fallthrough past the last block."); 2234 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2235 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2236 << "\n"); 2237 Chain->merge(NextBB, nullptr); 2238 #ifndef NDEBUG 2239 BlocksWithUnanalyzableExits.insert(&*BB); 2240 #endif 2241 FI = NextFI; 2242 BB = NextBB; 2243 } 2244 } 2245 2246 // Build any loop-based chains. 2247 PreferredLoopExit = nullptr; 2248 for (MachineLoop *L : *MLI) 2249 buildLoopChains(*L); 2250 2251 assert(BlockWorkList.empty()); 2252 assert(EHPadWorkList.empty()); 2253 2254 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2255 for (MachineBasicBlock &MBB : *F) 2256 fillWorkLists(&MBB, UpdatedPreds); 2257 2258 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2259 buildChain(&F->front(), FunctionChain); 2260 2261 #ifndef NDEBUG 2262 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 2263 #endif 2264 DEBUG({ 2265 // Crash at the end so we get all of the debugging output first. 2266 bool BadFunc = false; 2267 FunctionBlockSetType FunctionBlockSet; 2268 for (MachineBasicBlock &MBB : *F) 2269 FunctionBlockSet.insert(&MBB); 2270 2271 for (MachineBasicBlock *ChainBB : FunctionChain) 2272 if (!FunctionBlockSet.erase(ChainBB)) { 2273 BadFunc = true; 2274 dbgs() << "Function chain contains a block not in the function!\n" 2275 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2276 } 2277 2278 if (!FunctionBlockSet.empty()) { 2279 BadFunc = true; 2280 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2281 dbgs() << "Function contains blocks never placed into a chain!\n" 2282 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2283 } 2284 assert(!BadFunc && "Detected problems with the block placement."); 2285 }); 2286 2287 // Splice the blocks into place. 2288 MachineFunction::iterator InsertPos = F->begin(); 2289 DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); 2290 for (MachineBasicBlock *ChainBB : FunctionChain) { 2291 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2292 : " ... ") 2293 << getBlockName(ChainBB) << "\n"); 2294 if (InsertPos != MachineFunction::iterator(ChainBB)) 2295 F->splice(InsertPos, ChainBB); 2296 else 2297 ++InsertPos; 2298 2299 // Update the terminator of the previous block. 2300 if (ChainBB == *FunctionChain.begin()) 2301 continue; 2302 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2303 2304 // FIXME: It would be awesome of updateTerminator would just return rather 2305 // than assert when the branch cannot be analyzed in order to remove this 2306 // boiler plate. 2307 Cond.clear(); 2308 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2309 2310 #ifndef NDEBUG 2311 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2312 // Given the exact block placement we chose, we may actually not _need_ to 2313 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2314 // do that at this point is a bug. 2315 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2316 !PrevBB->canFallThrough()) && 2317 "Unexpected block with un-analyzable fallthrough!"); 2318 Cond.clear(); 2319 TBB = FBB = nullptr; 2320 } 2321 #endif 2322 2323 // The "PrevBB" is not yet updated to reflect current code layout, so, 2324 // o. it may fall-through to a block without explicit "goto" instruction 2325 // before layout, and no longer fall-through it after layout; or 2326 // o. just opposite. 2327 // 2328 // analyzeBranch() may return erroneous value for FBB when these two 2329 // situations take place. For the first scenario FBB is mistakenly set NULL; 2330 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2331 // mistakenly pointing to "*BI". 2332 // Thus, if the future change needs to use FBB before the layout is set, it 2333 // has to correct FBB first by using the code similar to the following: 2334 // 2335 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2336 // PrevBB->updateTerminator(); 2337 // Cond.clear(); 2338 // TBB = FBB = nullptr; 2339 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2340 // // FIXME: This should never take place. 2341 // TBB = FBB = nullptr; 2342 // } 2343 // } 2344 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2345 PrevBB->updateTerminator(); 2346 } 2347 2348 // Fixup the last block. 2349 Cond.clear(); 2350 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2351 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2352 F->back().updateTerminator(); 2353 2354 BlockWorkList.clear(); 2355 EHPadWorkList.clear(); 2356 } 2357 2358 void MachineBlockPlacement::optimizeBranches() { 2359 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2360 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2361 2362 // Now that all the basic blocks in the chain have the proper layout, 2363 // make a final call to AnalyzeBranch with AllowModify set. 2364 // Indeed, the target may be able to optimize the branches in a way we 2365 // cannot because all branches may not be analyzable. 2366 // E.g., the target may be able to remove an unconditional branch to 2367 // a fallthrough when it occurs after predicated terminators. 2368 for (MachineBasicBlock *ChainBB : FunctionChain) { 2369 Cond.clear(); 2370 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2371 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2372 // If PrevBB has a two-way branch, try to re-order the branches 2373 // such that we branch to the successor with higher probability first. 2374 if (TBB && !Cond.empty() && FBB && 2375 MBPI->getEdgeProbability(ChainBB, FBB) > 2376 MBPI->getEdgeProbability(ChainBB, TBB) && 2377 !TII->reverseBranchCondition(Cond)) { 2378 DEBUG(dbgs() << "Reverse order of the two branches: " 2379 << getBlockName(ChainBB) << "\n"); 2380 DEBUG(dbgs() << " Edge probability: " 2381 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2382 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2383 DebugLoc dl; // FIXME: this is nowhere 2384 TII->removeBranch(*ChainBB); 2385 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2386 ChainBB->updateTerminator(); 2387 } 2388 } 2389 } 2390 } 2391 2392 void MachineBlockPlacement::alignBlocks() { 2393 // Walk through the backedges of the function now that we have fully laid out 2394 // the basic blocks and align the destination of each backedge. We don't rely 2395 // exclusively on the loop info here so that we can align backedges in 2396 // unnatural CFGs and backedges that were introduced purely because of the 2397 // loop rotations done during this layout pass. 2398 if (F->getFunction()->optForSize()) 2399 return; 2400 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2401 if (FunctionChain.begin() == FunctionChain.end()) 2402 return; // Empty chain. 2403 2404 const BranchProbability ColdProb(1, 5); // 20% 2405 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2406 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2407 for (MachineBasicBlock *ChainBB : FunctionChain) { 2408 if (ChainBB == *FunctionChain.begin()) 2409 continue; 2410 2411 // Don't align non-looping basic blocks. These are unlikely to execute 2412 // enough times to matter in practice. Note that we'll still handle 2413 // unnatural CFGs inside of a natural outer loop (the common case) and 2414 // rotated loops. 2415 MachineLoop *L = MLI->getLoopFor(ChainBB); 2416 if (!L) 2417 continue; 2418 2419 unsigned Align = TLI->getPrefLoopAlignment(L); 2420 if (!Align) 2421 continue; // Don't care about loop alignment. 2422 2423 // If the block is cold relative to the function entry don't waste space 2424 // aligning it. 2425 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2426 if (Freq < WeightedEntryFreq) 2427 continue; 2428 2429 // If the block is cold relative to its loop header, don't align it 2430 // regardless of what edges into the block exist. 2431 MachineBasicBlock *LoopHeader = L->getHeader(); 2432 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2433 if (Freq < (LoopHeaderFreq * ColdProb)) 2434 continue; 2435 2436 // Check for the existence of a non-layout predecessor which would benefit 2437 // from aligning this block. 2438 MachineBasicBlock *LayoutPred = 2439 &*std::prev(MachineFunction::iterator(ChainBB)); 2440 2441 // Force alignment if all the predecessors are jumps. We already checked 2442 // that the block isn't cold above. 2443 if (!LayoutPred->isSuccessor(ChainBB)) { 2444 ChainBB->setAlignment(Align); 2445 continue; 2446 } 2447 2448 // Align this block if the layout predecessor's edge into this block is 2449 // cold relative to the block. When this is true, other predecessors make up 2450 // all of the hot entries into the block and thus alignment is likely to be 2451 // important. 2452 BranchProbability LayoutProb = 2453 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2454 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2455 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2456 ChainBB->setAlignment(Align); 2457 } 2458 } 2459 2460 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2461 /// it was duplicated into its chain predecessor and removed. 2462 /// \p BB - Basic block that may be duplicated. 2463 /// 2464 /// \p LPred - Chosen layout predecessor of \p BB. 2465 /// Updated to be the chain end if LPred is removed. 2466 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2467 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2468 /// Used to identify which blocks to update predecessor 2469 /// counts. 2470 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2471 /// chosen in the given order due to unnatural CFG 2472 /// only needed if \p BB is removed and 2473 /// \p PrevUnplacedBlockIt pointed to \p BB. 2474 /// @return true if \p BB was removed. 2475 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2476 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2477 const MachineBasicBlock *LoopHeaderBB, 2478 BlockChain &Chain, BlockFilterSet *BlockFilter, 2479 MachineFunction::iterator &PrevUnplacedBlockIt) { 2480 bool Removed, DuplicatedToLPred; 2481 bool DuplicatedToOriginalLPred; 2482 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2483 PrevUnplacedBlockIt, 2484 DuplicatedToLPred); 2485 if (!Removed) 2486 return false; 2487 DuplicatedToOriginalLPred = DuplicatedToLPred; 2488 // Iteratively try to duplicate again. It can happen that a block that is 2489 // duplicated into is still small enough to be duplicated again. 2490 // No need to call markBlockSuccessors in this case, as the blocks being 2491 // duplicated from here on are already scheduled. 2492 // Note that DuplicatedToLPred always implies Removed. 2493 while (DuplicatedToLPred) { 2494 assert (Removed && "Block must have been removed to be duplicated into its " 2495 "layout predecessor."); 2496 MachineBasicBlock *DupBB, *DupPred; 2497 // The removal callback causes Chain.end() to be updated when a block is 2498 // removed. On the first pass through the loop, the chain end should be the 2499 // same as it was on function entry. On subsequent passes, because we are 2500 // duplicating the block at the end of the chain, if it is removed the 2501 // chain will have shrunk by one block. 2502 BlockChain::iterator ChainEnd = Chain.end(); 2503 DupBB = *(--ChainEnd); 2504 // Now try to duplicate again. 2505 if (ChainEnd == Chain.begin()) 2506 break; 2507 DupPred = *std::prev(ChainEnd); 2508 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2509 PrevUnplacedBlockIt, 2510 DuplicatedToLPred); 2511 } 2512 // If BB was duplicated into LPred, it is now scheduled. But because it was 2513 // removed, markChainSuccessors won't be called for its chain. Instead we 2514 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2515 // at the end because repeating the tail duplication can increase the number 2516 // of unscheduled predecessors. 2517 LPred = *std::prev(Chain.end()); 2518 if (DuplicatedToOriginalLPred) 2519 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2520 return true; 2521 } 2522 2523 /// Tail duplicate \p BB into (some) predecessors if profitable. 2524 /// \p BB - Basic block that may be duplicated 2525 /// \p LPred - Chosen layout predecessor of \p BB 2526 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2527 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2528 /// Used to identify which blocks to update predecessor 2529 /// counts. 2530 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2531 /// chosen in the given order due to unnatural CFG 2532 /// only needed if \p BB is removed and 2533 /// \p PrevUnplacedBlockIt pointed to \p BB. 2534 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2535 /// only be true if the block was removed. 2536 /// \return - True if the block was duplicated into all preds and removed. 2537 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2538 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2539 BlockChain &Chain, BlockFilterSet *BlockFilter, 2540 MachineFunction::iterator &PrevUnplacedBlockIt, 2541 bool &DuplicatedToLPred) { 2542 DuplicatedToLPred = false; 2543 if (!shouldTailDuplicate(BB)) 2544 return false; 2545 2546 DEBUG(dbgs() << "Redoing tail duplication for Succ#" 2547 << BB->getNumber() << "\n"); 2548 2549 // This has to be a callback because none of it can be done after 2550 // BB is deleted. 2551 bool Removed = false; 2552 auto RemovalCallback = 2553 [&](MachineBasicBlock *RemBB) { 2554 // Signal to outer function 2555 Removed = true; 2556 2557 // Conservative default. 2558 bool InWorkList = true; 2559 // Remove from the Chain and Chain Map 2560 if (BlockToChain.count(RemBB)) { 2561 BlockChain *Chain = BlockToChain[RemBB]; 2562 InWorkList = Chain->UnscheduledPredecessors == 0; 2563 Chain->remove(RemBB); 2564 BlockToChain.erase(RemBB); 2565 } 2566 2567 // Handle the unplaced block iterator 2568 if (&(*PrevUnplacedBlockIt) == RemBB) { 2569 PrevUnplacedBlockIt++; 2570 } 2571 2572 // Handle the Work Lists 2573 if (InWorkList) { 2574 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2575 if (RemBB->isEHPad()) 2576 RemoveList = EHPadWorkList; 2577 RemoveList.erase( 2578 remove_if(RemoveList, 2579 [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}), 2580 RemoveList.end()); 2581 } 2582 2583 // Handle the filter set 2584 if (BlockFilter) { 2585 BlockFilter->remove(RemBB); 2586 } 2587 2588 // Remove the block from loop info. 2589 MLI->removeBlock(RemBB); 2590 if (RemBB == PreferredLoopExit) 2591 PreferredLoopExit = nullptr; 2592 2593 DEBUG(dbgs() << "TailDuplicator deleted block: " 2594 << getBlockName(RemBB) << "\n"); 2595 }; 2596 auto RemovalCallbackRef = 2597 llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2598 2599 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2600 bool IsSimple = TailDup.isSimpleBB(BB); 2601 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2602 &DuplicatedPreds, &RemovalCallbackRef); 2603 2604 // Update UnscheduledPredecessors to reflect tail-duplication. 2605 DuplicatedToLPred = false; 2606 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2607 // We're only looking for unscheduled predecessors that match the filter. 2608 BlockChain* PredChain = BlockToChain[Pred]; 2609 if (Pred == LPred) 2610 DuplicatedToLPred = true; 2611 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2612 || PredChain == &Chain) 2613 continue; 2614 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2615 if (BlockFilter && !BlockFilter->count(NewSucc)) 2616 continue; 2617 BlockChain *NewChain = BlockToChain[NewSucc]; 2618 if (NewChain != &Chain && NewChain != PredChain) 2619 NewChain->UnscheduledPredecessors++; 2620 } 2621 } 2622 return Removed; 2623 } 2624 2625 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2626 if (skipFunction(*MF.getFunction())) 2627 return false; 2628 2629 // Check for single-block functions and skip them. 2630 if (std::next(MF.begin()) == MF.end()) 2631 return false; 2632 2633 F = &MF; 2634 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2635 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2636 getAnalysis<MachineBlockFrequencyInfo>()); 2637 MLI = &getAnalysis<MachineLoopInfo>(); 2638 TII = MF.getSubtarget().getInstrInfo(); 2639 TLI = MF.getSubtarget().getTargetLowering(); 2640 MPDT = nullptr; 2641 2642 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2643 // there are no MachineLoops. 2644 PreferredLoopExit = nullptr; 2645 2646 assert(BlockToChain.empty()); 2647 assert(ComputedEdges.empty()); 2648 2649 if (TailDupPlacement) { 2650 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2651 unsigned TailDupSize = TailDupPlacementThreshold; 2652 if (MF.getFunction()->optForSize()) 2653 TailDupSize = 1; 2654 TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize); 2655 precomputeTriangleChains(); 2656 } 2657 2658 buildCFGChains(); 2659 2660 // Changing the layout can create new tail merging opportunities. 2661 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2662 // TailMerge can create jump into if branches that make CFG irreducible for 2663 // HW that requires structured CFG. 2664 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2665 PassConfig->getEnableTailMerge() && 2666 BranchFoldPlacement; 2667 // No tail merging opportunities if the block number is less than four. 2668 if (MF.size() > 3 && EnableTailMerge) { 2669 unsigned TailMergeSize = TailDupPlacementThreshold + 1; 2670 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2671 *MBPI, TailMergeSize); 2672 2673 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2674 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2675 /*AfterBlockPlacement=*/true)) { 2676 // Redo the layout if tail merging creates/removes/moves blocks. 2677 BlockToChain.clear(); 2678 ComputedEdges.clear(); 2679 // Must redo the post-dominator tree if blocks were changed. 2680 if (MPDT) 2681 MPDT->runOnMachineFunction(MF); 2682 ChainAllocator.DestroyAll(); 2683 buildCFGChains(); 2684 } 2685 } 2686 2687 optimizeBranches(); 2688 alignBlocks(); 2689 2690 BlockToChain.clear(); 2691 ComputedEdges.clear(); 2692 ChainAllocator.DestroyAll(); 2693 2694 if (AlignAllBlock) 2695 // Align all of the blocks in the function to a specific alignment. 2696 for (MachineBasicBlock &MBB : MF) 2697 MBB.setAlignment(AlignAllBlock); 2698 else if (AlignAllNonFallThruBlocks) { 2699 // Align all of the blocks that have no fall-through predecessors to a 2700 // specific alignment. 2701 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2702 auto LayoutPred = std::prev(MBI); 2703 if (!LayoutPred->isSuccessor(&*MBI)) 2704 MBI->setAlignment(AlignAllNonFallThruBlocks); 2705 } 2706 } 2707 if (ViewBlockLayoutWithBFI != GVDT_None && 2708 (ViewBlockFreqFuncName.empty() || 2709 F->getFunction()->getName().equals(ViewBlockFreqFuncName))) { 2710 MBFI->view("MBP." + MF.getName(), false); 2711 } 2712 2713 2714 // We always return true as we have no way to track whether the final order 2715 // differs from the original order. 2716 return true; 2717 } 2718 2719 namespace { 2720 /// \brief A pass to compute block placement statistics. 2721 /// 2722 /// A separate pass to compute interesting statistics for evaluating block 2723 /// placement. This is separate from the actual placement pass so that they can 2724 /// be computed in the absence of any placement transformations or when using 2725 /// alternative placement strategies. 2726 class MachineBlockPlacementStats : public MachineFunctionPass { 2727 /// \brief A handle to the branch probability pass. 2728 const MachineBranchProbabilityInfo *MBPI; 2729 2730 /// \brief A handle to the function-wide block frequency pass. 2731 const MachineBlockFrequencyInfo *MBFI; 2732 2733 public: 2734 static char ID; // Pass identification, replacement for typeid 2735 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2736 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2737 } 2738 2739 bool runOnMachineFunction(MachineFunction &F) override; 2740 2741 void getAnalysisUsage(AnalysisUsage &AU) const override { 2742 AU.addRequired<MachineBranchProbabilityInfo>(); 2743 AU.addRequired<MachineBlockFrequencyInfo>(); 2744 AU.setPreservesAll(); 2745 MachineFunctionPass::getAnalysisUsage(AU); 2746 } 2747 }; 2748 } 2749 2750 char MachineBlockPlacementStats::ID = 0; 2751 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2752 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2753 "Basic Block Placement Stats", false, false) 2754 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2755 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2756 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2757 "Basic Block Placement Stats", false, false) 2758 2759 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2760 // Check for single-block functions and skip them. 2761 if (std::next(F.begin()) == F.end()) 2762 return false; 2763 2764 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2765 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2766 2767 for (MachineBasicBlock &MBB : F) { 2768 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2769 Statistic &NumBranches = 2770 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2771 Statistic &BranchTakenFreq = 2772 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2773 for (MachineBasicBlock *Succ : MBB.successors()) { 2774 // Skip if this successor is a fallthrough. 2775 if (MBB.isLayoutSuccessor(Succ)) 2776 continue; 2777 2778 BlockFrequency EdgeFreq = 2779 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2780 ++NumBranches; 2781 BranchTakenFreq += EdgeFreq.getFrequency(); 2782 } 2783 } 2784 2785 return false; 2786 } 2787