1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements basic block placement transformations using the CFG 10 // structure and branch probability estimates. 11 // 12 // The pass strives to preserve the structure of the CFG (that is, retain 13 // a topological ordering of basic blocks) in the absence of a *strong* signal 14 // to the contrary from probabilities. However, within the CFG structure, it 15 // attempts to choose an ordering which favors placing more likely sequences of 16 // blocks adjacent to each other. 17 // 18 // The algorithm works from the inner-most loop within a function outward, and 19 // at each stage walks through the basic blocks, trying to coalesce them into 20 // sequential chains where allowed by the CFG (or demanded by heavy 21 // probabilities). Finally, it walks the blocks in topological order, and the 22 // first time it reaches a chain of basic blocks, it schedules them in the 23 // function in-order. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "BranchFolding.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineLoopInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachinePostDominators.h" 44 #include "llvm/CodeGen/TailDuplicator.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Allocator.h" 53 #include "llvm/Support/BlockFrequency.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "block-placement" 74 75 STATISTIC(NumCondBranches, "Number of conditional branches"); 76 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 77 STATISTIC(CondBranchTakenFreq, 78 "Potential frequency of taking conditional branches"); 79 STATISTIC(UncondBranchTakenFreq, 80 "Potential frequency of taking unconditional branches"); 81 82 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 83 cl::desc("Force the alignment of all " 84 "blocks in the function."), 85 cl::init(0), cl::Hidden); 86 87 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 88 "align-all-nofallthru-blocks", 89 cl::desc("Force the alignment of all " 90 "blocks that have no fall-through predecessors (i.e. don't add " 91 "nops that are executed)."), 92 cl::init(0), cl::Hidden); 93 94 // FIXME: Find a good default for this flag and remove the flag. 95 static cl::opt<unsigned> ExitBlockBias( 96 "block-placement-exit-block-bias", 97 cl::desc("Block frequency percentage a loop exit block needs " 98 "over the original exit to be considered the new exit."), 99 cl::init(0), cl::Hidden); 100 101 // Definition: 102 // - Outlining: placement of a basic block outside the chain or hot path. 103 104 static cl::opt<unsigned> LoopToColdBlockRatio( 105 "loop-to-cold-block-ratio", 106 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 107 "(frequency of block) is greater than this ratio"), 108 cl::init(5), cl::Hidden); 109 110 static cl::opt<bool> ForceLoopColdBlock( 111 "force-loop-cold-block", 112 cl::desc("Force outlining cold blocks from loops."), 113 cl::init(false), cl::Hidden); 114 115 static cl::opt<bool> 116 PreciseRotationCost("precise-rotation-cost", 117 cl::desc("Model the cost of loop rotation more " 118 "precisely by using profile data."), 119 cl::init(false), cl::Hidden); 120 121 static cl::opt<bool> 122 ForcePreciseRotationCost("force-precise-rotation-cost", 123 cl::desc("Force the use of precise cost " 124 "loop rotation strategy."), 125 cl::init(false), cl::Hidden); 126 127 static cl::opt<unsigned> MisfetchCost( 128 "misfetch-cost", 129 cl::desc("Cost that models the probabilistic risk of an instruction " 130 "misfetch due to a jump comparing to falling through, whose cost " 131 "is zero."), 132 cl::init(1), cl::Hidden); 133 134 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 135 cl::desc("Cost of jump instructions."), 136 cl::init(1), cl::Hidden); 137 static cl::opt<bool> 138 TailDupPlacement("tail-dup-placement", 139 cl::desc("Perform tail duplication during placement. " 140 "Creates more fallthrough opportunites in " 141 "outline branches."), 142 cl::init(true), cl::Hidden); 143 144 static cl::opt<bool> 145 BranchFoldPlacement("branch-fold-placement", 146 cl::desc("Perform branch folding during placement. " 147 "Reduces code size."), 148 cl::init(true), cl::Hidden); 149 150 // Heuristic for tail duplication. 151 static cl::opt<unsigned> TailDupPlacementThreshold( 152 "tail-dup-placement-threshold", 153 cl::desc("Instruction cutoff for tail duplication during layout. " 154 "Tail merging during layout is forced to have a threshold " 155 "that won't conflict."), cl::init(2), 156 cl::Hidden); 157 158 // Heuristic for aggressive tail duplication. 159 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( 160 "tail-dup-placement-aggressive-threshold", 161 cl::desc("Instruction cutoff for aggressive tail duplication during " 162 "layout. Used at -O3. Tail merging during layout is forced to " 163 "have a threshold that won't conflict."), cl::init(4), 164 cl::Hidden); 165 166 // Heuristic for tail duplication. 167 static cl::opt<unsigned> TailDupPlacementPenalty( 168 "tail-dup-placement-penalty", 169 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " 170 "Copying can increase fallthrough, but it also increases icache " 171 "pressure. This parameter controls the penalty to account for that. " 172 "Percent as integer."), 173 cl::init(2), 174 cl::Hidden); 175 176 // Heuristic for triangle chains. 177 static cl::opt<unsigned> TriangleChainCount( 178 "triangle-chain-count", 179 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " 180 "triangle tail duplication heuristic to kick in. 0 to disable."), 181 cl::init(2), 182 cl::Hidden); 183 184 extern cl::opt<unsigned> StaticLikelyProb; 185 extern cl::opt<unsigned> ProfileLikelyProb; 186 187 // Internal option used to control BFI display only after MBP pass. 188 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp: 189 // -view-block-layout-with-bfi= 190 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; 191 192 // Command line option to specify the name of the function for CFG dump 193 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= 194 extern cl::opt<std::string> ViewBlockFreqFuncName; 195 196 namespace { 197 198 class BlockChain; 199 200 /// Type for our function-wide basic block -> block chain mapping. 201 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; 202 203 /// A chain of blocks which will be laid out contiguously. 204 /// 205 /// This is the datastructure representing a chain of consecutive blocks that 206 /// are profitable to layout together in order to maximize fallthrough 207 /// probabilities and code locality. We also can use a block chain to represent 208 /// a sequence of basic blocks which have some external (correctness) 209 /// requirement for sequential layout. 210 /// 211 /// Chains can be built around a single basic block and can be merged to grow 212 /// them. They participate in a block-to-chain mapping, which is updated 213 /// automatically as chains are merged together. 214 class BlockChain { 215 /// The sequence of blocks belonging to this chain. 216 /// 217 /// This is the sequence of blocks for a particular chain. These will be laid 218 /// out in-order within the function. 219 SmallVector<MachineBasicBlock *, 4> Blocks; 220 221 /// A handle to the function-wide basic block to block chain mapping. 222 /// 223 /// This is retained in each block chain to simplify the computation of child 224 /// block chains for SCC-formation and iteration. We store the edges to child 225 /// basic blocks, and map them back to their associated chains using this 226 /// structure. 227 BlockToChainMapType &BlockToChain; 228 229 public: 230 /// Construct a new BlockChain. 231 /// 232 /// This builds a new block chain representing a single basic block in the 233 /// function. It also registers itself as the chain that block participates 234 /// in with the BlockToChain mapping. 235 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 236 : Blocks(1, BB), BlockToChain(BlockToChain) { 237 assert(BB && "Cannot create a chain with a null basic block"); 238 BlockToChain[BB] = this; 239 } 240 241 /// Iterator over blocks within the chain. 242 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; 243 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; 244 245 /// Beginning of blocks within the chain. 246 iterator begin() { return Blocks.begin(); } 247 const_iterator begin() const { return Blocks.begin(); } 248 249 /// End of blocks within the chain. 250 iterator end() { return Blocks.end(); } 251 const_iterator end() const { return Blocks.end(); } 252 253 bool remove(MachineBasicBlock* BB) { 254 for(iterator i = begin(); i != end(); ++i) { 255 if (*i == BB) { 256 Blocks.erase(i); 257 return true; 258 } 259 } 260 return false; 261 } 262 263 /// Merge a block chain into this one. 264 /// 265 /// This routine merges a block chain into this one. It takes care of forming 266 /// a contiguous sequence of basic blocks, updating the edge list, and 267 /// updating the block -> chain mapping. It does not free or tear down the 268 /// old chain, but the old chain's block list is no longer valid. 269 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 270 assert(BB && "Can't merge a null block."); 271 assert(!Blocks.empty() && "Can't merge into an empty chain."); 272 273 // Fast path in case we don't have a chain already. 274 if (!Chain) { 275 assert(!BlockToChain[BB] && 276 "Passed chain is null, but BB has entry in BlockToChain."); 277 Blocks.push_back(BB); 278 BlockToChain[BB] = this; 279 return; 280 } 281 282 assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); 283 assert(Chain->begin() != Chain->end()); 284 285 // Update the incoming blocks to point to this chain, and add them to the 286 // chain structure. 287 for (MachineBasicBlock *ChainBB : *Chain) { 288 Blocks.push_back(ChainBB); 289 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); 290 BlockToChain[ChainBB] = this; 291 } 292 } 293 294 #ifndef NDEBUG 295 /// Dump the blocks in this chain. 296 LLVM_DUMP_METHOD void dump() { 297 for (MachineBasicBlock *MBB : *this) 298 MBB->dump(); 299 } 300 #endif // NDEBUG 301 302 /// Count of predecessors of any block within the chain which have not 303 /// yet been scheduled. In general, we will delay scheduling this chain 304 /// until those predecessors are scheduled (or we find a sufficiently good 305 /// reason to override this heuristic.) Note that when forming loop chains, 306 /// blocks outside the loop are ignored and treated as if they were already 307 /// scheduled. 308 /// 309 /// Note: This field is reinitialized multiple times - once for each loop, 310 /// and then once for the function as a whole. 311 unsigned UnscheduledPredecessors = 0; 312 }; 313 314 class MachineBlockPlacement : public MachineFunctionPass { 315 /// A type for a block filter set. 316 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; 317 318 /// Pair struct containing basic block and taildup profitability 319 struct BlockAndTailDupResult { 320 MachineBasicBlock *BB; 321 bool ShouldTailDup; 322 }; 323 324 /// Triple struct containing edge weight and the edge. 325 struct WeightedEdge { 326 BlockFrequency Weight; 327 MachineBasicBlock *Src; 328 MachineBasicBlock *Dest; 329 }; 330 331 /// work lists of blocks that are ready to be laid out 332 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 333 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 334 335 /// Edges that have already been computed as optimal. 336 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; 337 338 /// Machine Function 339 MachineFunction *F; 340 341 /// A handle to the branch probability pass. 342 const MachineBranchProbabilityInfo *MBPI; 343 344 /// A handle to the function-wide block frequency pass. 345 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; 346 347 /// A handle to the loop info. 348 MachineLoopInfo *MLI; 349 350 /// Preferred loop exit. 351 /// Member variable for convenience. It may be removed by duplication deep 352 /// in the call stack. 353 MachineBasicBlock *PreferredLoopExit; 354 355 /// A handle to the target's instruction info. 356 const TargetInstrInfo *TII; 357 358 /// A handle to the target's lowering info. 359 const TargetLoweringBase *TLI; 360 361 /// A handle to the post dominator tree. 362 MachinePostDominatorTree *MPDT; 363 364 /// Duplicator used to duplicate tails during placement. 365 /// 366 /// Placement decisions can open up new tail duplication opportunities, but 367 /// since tail duplication affects placement decisions of later blocks, it 368 /// must be done inline. 369 TailDuplicator TailDup; 370 371 /// Allocator and owner of BlockChain structures. 372 /// 373 /// We build BlockChains lazily while processing the loop structure of 374 /// a function. To reduce malloc traffic, we allocate them using this 375 /// slab-like allocator, and destroy them after the pass completes. An 376 /// important guarantee is that this allocator produces stable pointers to 377 /// the chains. 378 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 379 380 /// Function wide BasicBlock to BlockChain mapping. 381 /// 382 /// This mapping allows efficiently moving from any given basic block to the 383 /// BlockChain it participates in, if any. We use it to, among other things, 384 /// allow implicitly defining edges between chains as the existing edges 385 /// between basic blocks. 386 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; 387 388 #ifndef NDEBUG 389 /// The set of basic blocks that have terminators that cannot be fully 390 /// analyzed. These basic blocks cannot be re-ordered safely by 391 /// MachineBlockPlacement, and we must preserve physical layout of these 392 /// blocks and their successors through the pass. 393 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; 394 #endif 395 396 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and 397 /// if the count goes to 0, add them to the appropriate work list. 398 void markChainSuccessors( 399 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 400 const BlockFilterSet *BlockFilter = nullptr); 401 402 /// Decrease the UnscheduledPredecessors count for a single block, and 403 /// if the count goes to 0, add them to the appropriate work list. 404 void markBlockSuccessors( 405 const BlockChain &Chain, const MachineBasicBlock *BB, 406 const MachineBasicBlock *LoopHeaderBB, 407 const BlockFilterSet *BlockFilter = nullptr); 408 409 BranchProbability 410 collectViableSuccessors( 411 const MachineBasicBlock *BB, const BlockChain &Chain, 412 const BlockFilterSet *BlockFilter, 413 SmallVector<MachineBasicBlock *, 4> &Successors); 414 bool shouldPredBlockBeOutlined( 415 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 416 const BlockChain &Chain, const BlockFilterSet *BlockFilter, 417 BranchProbability SuccProb, BranchProbability HotProb); 418 bool repeatedlyTailDuplicateBlock( 419 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 420 const MachineBasicBlock *LoopHeaderBB, 421 BlockChain &Chain, BlockFilterSet *BlockFilter, 422 MachineFunction::iterator &PrevUnplacedBlockIt); 423 bool maybeTailDuplicateBlock( 424 MachineBasicBlock *BB, MachineBasicBlock *LPred, 425 BlockChain &Chain, BlockFilterSet *BlockFilter, 426 MachineFunction::iterator &PrevUnplacedBlockIt, 427 bool &DuplicatedToLPred); 428 bool hasBetterLayoutPredecessor( 429 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 430 const BlockChain &SuccChain, BranchProbability SuccProb, 431 BranchProbability RealSuccProb, const BlockChain &Chain, 432 const BlockFilterSet *BlockFilter); 433 BlockAndTailDupResult selectBestSuccessor( 434 const MachineBasicBlock *BB, const BlockChain &Chain, 435 const BlockFilterSet *BlockFilter); 436 MachineBasicBlock *selectBestCandidateBlock( 437 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); 438 MachineBasicBlock *getFirstUnplacedBlock( 439 const BlockChain &PlacedChain, 440 MachineFunction::iterator &PrevUnplacedBlockIt, 441 const BlockFilterSet *BlockFilter); 442 443 /// Add a basic block to the work list if it is appropriate. 444 /// 445 /// If the optional parameter BlockFilter is provided, only MBB 446 /// present in the set will be added to the worklist. If nullptr 447 /// is provided, no filtering occurs. 448 void fillWorkLists(const MachineBasicBlock *MBB, 449 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 450 const BlockFilterSet *BlockFilter); 451 452 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, 453 BlockFilterSet *BlockFilter = nullptr); 454 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, 455 const MachineBasicBlock *OldTop); 456 MachineBasicBlock *findBestLoopTop( 457 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 458 MachineBasicBlock *findBestLoopExit( 459 const MachineLoop &L, const BlockFilterSet &LoopBlockSet); 460 BlockFilterSet collectLoopBlockSet(const MachineLoop &L); 461 void buildLoopChains(const MachineLoop &L); 462 void rotateLoop( 463 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, 464 const BlockFilterSet &LoopBlockSet); 465 void rotateLoopWithProfile( 466 BlockChain &LoopChain, const MachineLoop &L, 467 const BlockFilterSet &LoopBlockSet); 468 void buildCFGChains(); 469 void optimizeBranches(); 470 void alignBlocks(); 471 /// Returns true if a block should be tail-duplicated to increase fallthrough 472 /// opportunities. 473 bool shouldTailDuplicate(MachineBasicBlock *BB); 474 /// Check the edge frequencies to see if tail duplication will increase 475 /// fallthroughs. 476 bool isProfitableToTailDup( 477 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 478 BranchProbability QProb, 479 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 480 481 /// Check for a trellis layout. 482 bool isTrellis(const MachineBasicBlock *BB, 483 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 484 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 485 486 /// Get the best successor given a trellis layout. 487 BlockAndTailDupResult getBestTrellisSuccessor( 488 const MachineBasicBlock *BB, 489 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 490 BranchProbability AdjustedSumProb, const BlockChain &Chain, 491 const BlockFilterSet *BlockFilter); 492 493 /// Get the best pair of non-conflicting edges. 494 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( 495 const MachineBasicBlock *BB, 496 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); 497 498 /// Returns true if a block can tail duplicate into all unplaced 499 /// predecessors. Filters based on loop. 500 bool canTailDuplicateUnplacedPreds( 501 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 502 const BlockChain &Chain, const BlockFilterSet *BlockFilter); 503 504 /// Find chains of triangles to tail-duplicate where a global analysis works, 505 /// but a local analysis would not find them. 506 void precomputeTriangleChains(); 507 508 public: 509 static char ID; // Pass identification, replacement for typeid 510 511 MachineBlockPlacement() : MachineFunctionPass(ID) { 512 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 513 } 514 515 bool runOnMachineFunction(MachineFunction &F) override; 516 517 bool allowTailDupPlacement() const { 518 assert(F); 519 return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); 520 } 521 522 void getAnalysisUsage(AnalysisUsage &AU) const override { 523 AU.addRequired<MachineBranchProbabilityInfo>(); 524 AU.addRequired<MachineBlockFrequencyInfo>(); 525 if (TailDupPlacement) 526 AU.addRequired<MachinePostDominatorTree>(); 527 AU.addRequired<MachineLoopInfo>(); 528 AU.addRequired<TargetPassConfig>(); 529 MachineFunctionPass::getAnalysisUsage(AU); 530 } 531 }; 532 533 } // end anonymous namespace 534 535 char MachineBlockPlacement::ID = 0; 536 537 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 538 539 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, 540 "Branch Probability Basic Block Placement", false, false) 541 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 542 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 543 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 544 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 545 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, 546 "Branch Probability Basic Block Placement", false, false) 547 548 #ifndef NDEBUG 549 /// Helper to print the name of a MBB. 550 /// 551 /// Only used by debug logging. 552 static std::string getBlockName(const MachineBasicBlock *BB) { 553 std::string Result; 554 raw_string_ostream OS(Result); 555 OS << printMBBReference(*BB); 556 OS << " ('" << BB->getName() << "')"; 557 OS.flush(); 558 return Result; 559 } 560 #endif 561 562 /// Mark a chain's successors as having one fewer preds. 563 /// 564 /// When a chain is being merged into the "placed" chain, this routine will 565 /// quickly walk the successors of each block in the chain and mark them as 566 /// having one fewer active predecessor. It also adds any successors of this 567 /// chain which reach the zero-predecessor state to the appropriate worklist. 568 void MachineBlockPlacement::markChainSuccessors( 569 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, 570 const BlockFilterSet *BlockFilter) { 571 // Walk all the blocks in this chain, marking their successors as having 572 // a predecessor placed. 573 for (MachineBasicBlock *MBB : Chain) { 574 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); 575 } 576 } 577 578 /// Mark a single block's successors as having one fewer preds. 579 /// 580 /// Under normal circumstances, this is only called by markChainSuccessors, 581 /// but if a block that was to be placed is completely tail-duplicated away, 582 /// and was duplicated into the chain end, we need to redo markBlockSuccessors 583 /// for just that block. 584 void MachineBlockPlacement::markBlockSuccessors( 585 const BlockChain &Chain, const MachineBasicBlock *MBB, 586 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { 587 // Add any successors for which this is the only un-placed in-loop 588 // predecessor to the worklist as a viable candidate for CFG-neutral 589 // placement. No subsequent placement of this block will violate the CFG 590 // shape, so we get to use heuristics to choose a favorable placement. 591 for (MachineBasicBlock *Succ : MBB->successors()) { 592 if (BlockFilter && !BlockFilter->count(Succ)) 593 continue; 594 BlockChain &SuccChain = *BlockToChain[Succ]; 595 // Disregard edges within a fixed chain, or edges to the loop header. 596 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 597 continue; 598 599 // This is a cross-chain edge that is within the loop, so decrement the 600 // loop predecessor count of the destination chain. 601 if (SuccChain.UnscheduledPredecessors == 0 || 602 --SuccChain.UnscheduledPredecessors > 0) 603 continue; 604 605 auto *NewBB = *SuccChain.begin(); 606 if (NewBB->isEHPad()) 607 EHPadWorkList.push_back(NewBB); 608 else 609 BlockWorkList.push_back(NewBB); 610 } 611 } 612 613 /// This helper function collects the set of successors of block 614 /// \p BB that are allowed to be its layout successors, and return 615 /// the total branch probability of edges from \p BB to those 616 /// blocks. 617 BranchProbability MachineBlockPlacement::collectViableSuccessors( 618 const MachineBasicBlock *BB, const BlockChain &Chain, 619 const BlockFilterSet *BlockFilter, 620 SmallVector<MachineBasicBlock *, 4> &Successors) { 621 // Adjust edge probabilities by excluding edges pointing to blocks that is 622 // either not in BlockFilter or is already in the current chain. Consider the 623 // following CFG: 624 // 625 // --->A 626 // | / \ 627 // | B C 628 // | \ / \ 629 // ----D E 630 // 631 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 632 // A->C is chosen as a fall-through, D won't be selected as a successor of C 633 // due to CFG constraint (the probability of C->D is not greater than 634 // HotProb to break topo-order). If we exclude E that is not in BlockFilter 635 // when calculating the probability of C->D, D will be selected and we 636 // will get A C D B as the layout of this loop. 637 auto AdjustedSumProb = BranchProbability::getOne(); 638 for (MachineBasicBlock *Succ : BB->successors()) { 639 bool SkipSucc = false; 640 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 641 SkipSucc = true; 642 } else { 643 BlockChain *SuccChain = BlockToChain[Succ]; 644 if (SuccChain == &Chain) { 645 SkipSucc = true; 646 } else if (Succ != *SuccChain->begin()) { 647 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ) 648 << " -> Mid chain!\n"); 649 continue; 650 } 651 } 652 if (SkipSucc) 653 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 654 else 655 Successors.push_back(Succ); 656 } 657 658 return AdjustedSumProb; 659 } 660 661 /// The helper function returns the branch probability that is adjusted 662 /// or normalized over the new total \p AdjustedSumProb. 663 static BranchProbability 664 getAdjustedProbability(BranchProbability OrigProb, 665 BranchProbability AdjustedSumProb) { 666 BranchProbability SuccProb; 667 uint32_t SuccProbN = OrigProb.getNumerator(); 668 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 669 if (SuccProbN >= SuccProbD) 670 SuccProb = BranchProbability::getOne(); 671 else 672 SuccProb = BranchProbability(SuccProbN, SuccProbD); 673 674 return SuccProb; 675 } 676 677 /// Check if \p BB has exactly the successors in \p Successors. 678 static bool 679 hasSameSuccessors(MachineBasicBlock &BB, 680 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { 681 if (BB.succ_size() != Successors.size()) 682 return false; 683 // We don't want to count self-loops 684 if (Successors.count(&BB)) 685 return false; 686 for (MachineBasicBlock *Succ : BB.successors()) 687 if (!Successors.count(Succ)) 688 return false; 689 return true; 690 } 691 692 /// Check if a block should be tail duplicated to increase fallthrough 693 /// opportunities. 694 /// \p BB Block to check. 695 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { 696 // Blocks with single successors don't create additional fallthrough 697 // opportunities. Don't duplicate them. TODO: When conditional exits are 698 // analyzable, allow them to be duplicated. 699 bool IsSimple = TailDup.isSimpleBB(BB); 700 701 if (BB->succ_size() == 1) 702 return false; 703 return TailDup.shouldTailDuplicate(IsSimple, *BB); 704 } 705 706 /// Compare 2 BlockFrequency's with a small penalty for \p A. 707 /// In order to be conservative, we apply a X% penalty to account for 708 /// increased icache pressure and static heuristics. For small frequencies 709 /// we use only the numerators to improve accuracy. For simplicity, we assume the 710 /// penalty is less than 100% 711 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. 712 static bool greaterWithBias(BlockFrequency A, BlockFrequency B, 713 uint64_t EntryFreq) { 714 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); 715 BlockFrequency Gain = A - B; 716 return (Gain / ThresholdProb).getFrequency() >= EntryFreq; 717 } 718 719 /// Check the edge frequencies to see if tail duplication will increase 720 /// fallthroughs. It only makes sense to call this function when 721 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is 722 /// always locally profitable if we would have picked \p Succ without 723 /// considering duplication. 724 bool MachineBlockPlacement::isProfitableToTailDup( 725 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 726 BranchProbability QProb, 727 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 728 // We need to do a probability calculation to make sure this is profitable. 729 // First: does succ have a successor that post-dominates? This affects the 730 // calculation. The 2 relevant cases are: 731 // BB BB 732 // | \Qout | \Qout 733 // P| C |P C 734 // = C' = C' 735 // | /Qin | /Qin 736 // | / | / 737 // Succ Succ 738 // / \ | \ V 739 // U/ =V |U \ 740 // / \ = D 741 // D E | / 742 // | / 743 // |/ 744 // PDom 745 // '=' : Branch taken for that CFG edge 746 // In the second case, Placing Succ while duplicating it into C prevents the 747 // fallthrough of Succ into either D or PDom, because they now have C as an 748 // unplaced predecessor 749 750 // Start by figuring out which case we fall into 751 MachineBasicBlock *PDom = nullptr; 752 SmallVector<MachineBasicBlock *, 4> SuccSuccs; 753 // Only scan the relevant successors 754 auto AdjustedSuccSumProb = 755 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); 756 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); 757 auto BBFreq = MBFI->getBlockFreq(BB); 758 auto SuccFreq = MBFI->getBlockFreq(Succ); 759 BlockFrequency P = BBFreq * PProb; 760 BlockFrequency Qout = BBFreq * QProb; 761 uint64_t EntryFreq = MBFI->getEntryFreq(); 762 // If there are no more successors, it is profitable to copy, as it strictly 763 // increases fallthrough. 764 if (SuccSuccs.size() == 0) 765 return greaterWithBias(P, Qout, EntryFreq); 766 767 auto BestSuccSucc = BranchProbability::getZero(); 768 // Find the PDom or the best Succ if no PDom exists. 769 for (MachineBasicBlock *SuccSucc : SuccSuccs) { 770 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); 771 if (Prob > BestSuccSucc) 772 BestSuccSucc = Prob; 773 if (PDom == nullptr) 774 if (MPDT->dominates(SuccSucc, Succ)) { 775 PDom = SuccSucc; 776 break; 777 } 778 } 779 // For the comparisons, we need to know Succ's best incoming edge that isn't 780 // from BB. 781 auto SuccBestPred = BlockFrequency(0); 782 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 783 if (SuccPred == Succ || SuccPred == BB 784 || BlockToChain[SuccPred] == &Chain 785 || (BlockFilter && !BlockFilter->count(SuccPred))) 786 continue; 787 auto Freq = MBFI->getBlockFreq(SuccPred) 788 * MBPI->getEdgeProbability(SuccPred, Succ); 789 if (Freq > SuccBestPred) 790 SuccBestPred = Freq; 791 } 792 // Qin is Succ's best unplaced incoming edge that isn't BB 793 BlockFrequency Qin = SuccBestPred; 794 // If it doesn't have a post-dominating successor, here is the calculation: 795 // BB BB 796 // | \Qout | \ 797 // P| C | = 798 // = C' | C 799 // | /Qin | | 800 // | / | C' (+Succ) 801 // Succ Succ /| 802 // / \ | \/ | 803 // U/ =V | == | 804 // / \ | / \| 805 // D E D E 806 // '=' : Branch taken for that CFG edge 807 // Cost in the first case is: P + V 808 // For this calculation, we always assume P > Qout. If Qout > P 809 // The result of this function will be ignored at the caller. 810 // Let F = SuccFreq - Qin 811 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V 812 813 if (PDom == nullptr || !Succ->isSuccessor(PDom)) { 814 BranchProbability UProb = BestSuccSucc; 815 BranchProbability VProb = AdjustedSuccSumProb - UProb; 816 BlockFrequency F = SuccFreq - Qin; 817 BlockFrequency V = SuccFreq * VProb; 818 BlockFrequency QinU = std::min(Qin, F) * UProb; 819 BlockFrequency BaseCost = P + V; 820 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; 821 return greaterWithBias(BaseCost, DupCost, EntryFreq); 822 } 823 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); 824 BranchProbability VProb = AdjustedSuccSumProb - UProb; 825 BlockFrequency U = SuccFreq * UProb; 826 BlockFrequency V = SuccFreq * VProb; 827 BlockFrequency F = SuccFreq - Qin; 828 // If there is a post-dominating successor, here is the calculation: 829 // BB BB BB BB 830 // | \Qout | \ | \Qout | \ 831 // |P C | = |P C | = 832 // = C' |P C = C' |P C 833 // | /Qin | | | /Qin | | 834 // | / | C' (+Succ) | / | C' (+Succ) 835 // Succ Succ /| Succ Succ /| 836 // | \ V | \/ | | \ V | \/ | 837 // |U \ |U /\ =? |U = |U /\ | 838 // = D = = =?| | D | = =| 839 // | / |/ D | / |/ D 840 // | / | / | = | / 841 // |/ | / |/ | = 842 // Dom Dom Dom Dom 843 // '=' : Branch taken for that CFG edge 844 // The cost for taken branches in the first case is P + U 845 // Let F = SuccFreq - Qin 846 // The cost in the second case (assuming independence), given the layout: 847 // BB, Succ, (C+Succ), D, Dom or the layout: 848 // BB, Succ, D, Dom, (C+Succ) 849 // is Qout + max(F, Qin) * U + min(F, Qin) 850 // compare P + U vs Qout + P * U + Qin. 851 // 852 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. 853 // 854 // For the 3rd case, the cost is P + 2 * V 855 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V 856 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V 857 if (UProb > AdjustedSuccSumProb / 2 && 858 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, 859 Chain, BlockFilter)) 860 // Cases 3 & 4 861 return greaterWithBias( 862 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), 863 EntryFreq); 864 // Cases 1 & 2 865 return greaterWithBias((P + U), 866 (Qout + std::min(Qin, F) * AdjustedSuccSumProb + 867 std::max(Qin, F) * UProb), 868 EntryFreq); 869 } 870 871 /// Check for a trellis layout. \p BB is the upper part of a trellis if its 872 /// successors form the lower part of a trellis. A successor set S forms the 873 /// lower part of a trellis if all of the predecessors of S are either in S or 874 /// have all of S as successors. We ignore trellises where BB doesn't have 2 875 /// successors because for fewer than 2, it's trivial, and for 3 or greater they 876 /// are very uncommon and complex to compute optimally. Allowing edges within S 877 /// is not strictly a trellis, but the same algorithm works, so we allow it. 878 bool MachineBlockPlacement::isTrellis( 879 const MachineBasicBlock *BB, 880 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 881 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 882 // Technically BB could form a trellis with branching factor higher than 2. 883 // But that's extremely uncommon. 884 if (BB->succ_size() != 2 || ViableSuccs.size() != 2) 885 return false; 886 887 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), 888 BB->succ_end()); 889 // To avoid reviewing the same predecessors twice. 890 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; 891 892 for (MachineBasicBlock *Succ : ViableSuccs) { 893 int PredCount = 0; 894 for (auto SuccPred : Succ->predecessors()) { 895 // Allow triangle successors, but don't count them. 896 if (Successors.count(SuccPred)) { 897 // Make sure that it is actually a triangle. 898 for (MachineBasicBlock *CheckSucc : SuccPred->successors()) 899 if (!Successors.count(CheckSucc)) 900 return false; 901 continue; 902 } 903 const BlockChain *PredChain = BlockToChain[SuccPred]; 904 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || 905 PredChain == &Chain || PredChain == BlockToChain[Succ]) 906 continue; 907 ++PredCount; 908 // Perform the successor check only once. 909 if (!SeenPreds.insert(SuccPred).second) 910 continue; 911 if (!hasSameSuccessors(*SuccPred, Successors)) 912 return false; 913 } 914 // If one of the successors has only BB as a predecessor, it is not a 915 // trellis. 916 if (PredCount < 1) 917 return false; 918 } 919 return true; 920 } 921 922 /// Pick the highest total weight pair of edges that can both be laid out. 923 /// The edges in \p Edges[0] are assumed to have a different destination than 924 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either 925 /// the individual highest weight edges to the 2 different destinations, or in 926 /// case of a conflict, one of them should be replaced with a 2nd best edge. 927 std::pair<MachineBlockPlacement::WeightedEdge, 928 MachineBlockPlacement::WeightedEdge> 929 MachineBlockPlacement::getBestNonConflictingEdges( 930 const MachineBasicBlock *BB, 931 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> 932 Edges) { 933 // Sort the edges, and then for each successor, find the best incoming 934 // predecessor. If the best incoming predecessors aren't the same, 935 // then that is clearly the best layout. If there is a conflict, one of the 936 // successors will have to fallthrough from the second best predecessor. We 937 // compare which combination is better overall. 938 939 // Sort for highest frequency. 940 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; 941 942 std::stable_sort(Edges[0].begin(), Edges[0].end(), Cmp); 943 std::stable_sort(Edges[1].begin(), Edges[1].end(), Cmp); 944 auto BestA = Edges[0].begin(); 945 auto BestB = Edges[1].begin(); 946 // Arrange for the correct answer to be in BestA and BestB 947 // If the 2 best edges don't conflict, the answer is already there. 948 if (BestA->Src == BestB->Src) { 949 // Compare the total fallthrough of (Best + Second Best) for both pairs 950 auto SecondBestA = std::next(BestA); 951 auto SecondBestB = std::next(BestB); 952 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; 953 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; 954 if (BestAScore < BestBScore) 955 BestA = SecondBestA; 956 else 957 BestB = SecondBestB; 958 } 959 // Arrange for the BB edge to be in BestA if it exists. 960 if (BestB->Src == BB) 961 std::swap(BestA, BestB); 962 return std::make_pair(*BestA, *BestB); 963 } 964 965 /// Get the best successor from \p BB based on \p BB being part of a trellis. 966 /// We only handle trellises with 2 successors, so the algorithm is 967 /// straightforward: Find the best pair of edges that don't conflict. We find 968 /// the best incoming edge for each successor in the trellis. If those conflict, 969 /// we consider which of them should be replaced with the second best. 970 /// Upon return the two best edges will be in \p BestEdges. If one of the edges 971 /// comes from \p BB, it will be in \p BestEdges[0] 972 MachineBlockPlacement::BlockAndTailDupResult 973 MachineBlockPlacement::getBestTrellisSuccessor( 974 const MachineBasicBlock *BB, 975 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, 976 BranchProbability AdjustedSumProb, const BlockChain &Chain, 977 const BlockFilterSet *BlockFilter) { 978 979 BlockAndTailDupResult Result = {nullptr, false}; 980 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 981 BB->succ_end()); 982 983 // We assume size 2 because it's common. For general n, we would have to do 984 // the Hungarian algorithm, but it's not worth the complexity because more 985 // than 2 successors is fairly uncommon, and a trellis even more so. 986 if (Successors.size() != 2 || ViableSuccs.size() != 2) 987 return Result; 988 989 // Collect the edge frequencies of all edges that form the trellis. 990 SmallVector<WeightedEdge, 8> Edges[2]; 991 int SuccIndex = 0; 992 for (auto Succ : ViableSuccs) { 993 for (MachineBasicBlock *SuccPred : Succ->predecessors()) { 994 // Skip any placed predecessors that are not BB 995 if (SuccPred != BB) 996 if ((BlockFilter && !BlockFilter->count(SuccPred)) || 997 BlockToChain[SuccPred] == &Chain || 998 BlockToChain[SuccPred] == BlockToChain[Succ]) 999 continue; 1000 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * 1001 MBPI->getEdgeProbability(SuccPred, Succ); 1002 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); 1003 } 1004 ++SuccIndex; 1005 } 1006 1007 // Pick the best combination of 2 edges from all the edges in the trellis. 1008 WeightedEdge BestA, BestB; 1009 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); 1010 1011 if (BestA.Src != BB) { 1012 // If we have a trellis, and BB doesn't have the best fallthrough edges, 1013 // we shouldn't choose any successor. We've already looked and there's a 1014 // better fallthrough edge for all the successors. 1015 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); 1016 return Result; 1017 } 1018 1019 // Did we pick the triangle edge? If tail-duplication is profitable, do 1020 // that instead. Otherwise merge the triangle edge now while we know it is 1021 // optimal. 1022 if (BestA.Dest == BestB.Src) { 1023 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 1024 // would be better. 1025 MachineBasicBlock *Succ1 = BestA.Dest; 1026 MachineBasicBlock *Succ2 = BestB.Dest; 1027 // Check to see if tail-duplication would be profitable. 1028 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && 1029 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && 1030 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), 1031 Chain, BlockFilter)) { 1032 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( 1033 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); 1034 dbgs() << " Selected: " << getBlockName(Succ2) 1035 << ", probability: " << Succ2Prob 1036 << " (Tail Duplicate)\n"); 1037 Result.BB = Succ2; 1038 Result.ShouldTailDup = true; 1039 return Result; 1040 } 1041 } 1042 // We have already computed the optimal edge for the other side of the 1043 // trellis. 1044 ComputedEdges[BestB.Src] = { BestB.Dest, false }; 1045 1046 auto TrellisSucc = BestA.Dest; 1047 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( 1048 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); 1049 dbgs() << " Selected: " << getBlockName(TrellisSucc) 1050 << ", probability: " << SuccProb << " (Trellis)\n"); 1051 Result.BB = TrellisSucc; 1052 return Result; 1053 } 1054 1055 /// When the option allowTailDupPlacement() is on, this method checks if the 1056 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated 1057 /// into all of its unplaced, unfiltered predecessors, that are not BB. 1058 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( 1059 const MachineBasicBlock *BB, MachineBasicBlock *Succ, 1060 const BlockChain &Chain, const BlockFilterSet *BlockFilter) { 1061 if (!shouldTailDuplicate(Succ)) 1062 return false; 1063 1064 // For CFG checking. 1065 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), 1066 BB->succ_end()); 1067 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1068 // Make sure all unplaced and unfiltered predecessors can be 1069 // tail-duplicated into. 1070 // Skip any blocks that are already placed or not in this loop. 1071 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) 1072 || BlockToChain[Pred] == &Chain) 1073 continue; 1074 if (!TailDup.canTailDuplicate(Succ, Pred)) { 1075 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) 1076 // This will result in a trellis after tail duplication, so we don't 1077 // need to copy Succ into this predecessor. In the presence 1078 // of a trellis tail duplication can continue to be profitable. 1079 // For example: 1080 // A A 1081 // |\ |\ 1082 // | \ | \ 1083 // | C | C+BB 1084 // | / | | 1085 // |/ | | 1086 // BB => BB | 1087 // |\ |\/| 1088 // | \ |/\| 1089 // | D | D 1090 // | / | / 1091 // |/ |/ 1092 // Succ Succ 1093 // 1094 // After BB was duplicated into C, the layout looks like the one on the 1095 // right. BB and C now have the same successors. When considering 1096 // whether Succ can be duplicated into all its unplaced predecessors, we 1097 // ignore C. 1098 // We can do this because C already has a profitable fallthrough, namely 1099 // D. TODO(iteratee): ignore sufficiently cold predecessors for 1100 // duplication and for this test. 1101 // 1102 // This allows trellises to be laid out in 2 separate chains 1103 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic 1104 // because it allows the creation of 2 fallthrough paths with links 1105 // between them, and we correctly identify the best layout for these 1106 // CFGs. We want to extend trellises that the user created in addition 1107 // to trellises created by tail-duplication, so we just look for the 1108 // CFG. 1109 continue; 1110 return false; 1111 } 1112 } 1113 return true; 1114 } 1115 1116 /// Find chains of triangles where we believe it would be profitable to 1117 /// tail-duplicate them all, but a local analysis would not find them. 1118 /// There are 3 ways this can be profitable: 1119 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with 1120 /// longer chains) 1121 /// 2) The chains are statically correlated. Branch probabilities have a very 1122 /// U-shaped distribution. 1123 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] 1124 /// If the branches in a chain are likely to be from the same side of the 1125 /// distribution as their predecessor, but are independent at runtime, this 1126 /// transformation is profitable. (Because the cost of being wrong is a small 1127 /// fixed cost, unlike the standard triangle layout where the cost of being 1128 /// wrong scales with the # of triangles.) 1129 /// 3) The chains are dynamically correlated. If the probability that a previous 1130 /// branch was taken positively influences whether the next branch will be 1131 /// taken 1132 /// We believe that 2 and 3 are common enough to justify the small margin in 1. 1133 void MachineBlockPlacement::precomputeTriangleChains() { 1134 struct TriangleChain { 1135 std::vector<MachineBasicBlock *> Edges; 1136 1137 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) 1138 : Edges({src, dst}) {} 1139 1140 void append(MachineBasicBlock *dst) { 1141 assert(getKey()->isSuccessor(dst) && 1142 "Attempting to append a block that is not a successor."); 1143 Edges.push_back(dst); 1144 } 1145 1146 unsigned count() const { return Edges.size() - 1; } 1147 1148 MachineBasicBlock *getKey() const { 1149 return Edges.back(); 1150 } 1151 }; 1152 1153 if (TriangleChainCount == 0) 1154 return; 1155 1156 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); 1157 // Map from last block to the chain that contains it. This allows us to extend 1158 // chains as we find new triangles. 1159 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; 1160 for (MachineBasicBlock &BB : *F) { 1161 // If BB doesn't have 2 successors, it doesn't start a triangle. 1162 if (BB.succ_size() != 2) 1163 continue; 1164 MachineBasicBlock *PDom = nullptr; 1165 for (MachineBasicBlock *Succ : BB.successors()) { 1166 if (!MPDT->dominates(Succ, &BB)) 1167 continue; 1168 PDom = Succ; 1169 break; 1170 } 1171 // If BB doesn't have a post-dominating successor, it doesn't form a 1172 // triangle. 1173 if (PDom == nullptr) 1174 continue; 1175 // If PDom has a hint that it is low probability, skip this triangle. 1176 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) 1177 continue; 1178 // If PDom isn't eligible for duplication, this isn't the kind of triangle 1179 // we're looking for. 1180 if (!shouldTailDuplicate(PDom)) 1181 continue; 1182 bool CanTailDuplicate = true; 1183 // If PDom can't tail-duplicate into it's non-BB predecessors, then this 1184 // isn't the kind of triangle we're looking for. 1185 for (MachineBasicBlock* Pred : PDom->predecessors()) { 1186 if (Pred == &BB) 1187 continue; 1188 if (!TailDup.canTailDuplicate(PDom, Pred)) { 1189 CanTailDuplicate = false; 1190 break; 1191 } 1192 } 1193 // If we can't tail-duplicate PDom to its predecessors, then skip this 1194 // triangle. 1195 if (!CanTailDuplicate) 1196 continue; 1197 1198 // Now we have an interesting triangle. Insert it if it's not part of an 1199 // existing chain. 1200 // Note: This cannot be replaced with a call insert() or emplace() because 1201 // the find key is BB, but the insert/emplace key is PDom. 1202 auto Found = TriangleChainMap.find(&BB); 1203 // If it is, remove the chain from the map, grow it, and put it back in the 1204 // map with the end as the new key. 1205 if (Found != TriangleChainMap.end()) { 1206 TriangleChain Chain = std::move(Found->second); 1207 TriangleChainMap.erase(Found); 1208 Chain.append(PDom); 1209 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); 1210 } else { 1211 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); 1212 assert(InsertResult.second && "Block seen twice."); 1213 (void)InsertResult; 1214 } 1215 } 1216 1217 // Iterating over a DenseMap is safe here, because the only thing in the body 1218 // of the loop is inserting into another DenseMap (ComputedEdges). 1219 // ComputedEdges is never iterated, so this doesn't lead to non-determinism. 1220 for (auto &ChainPair : TriangleChainMap) { 1221 TriangleChain &Chain = ChainPair.second; 1222 // Benchmarking has shown that due to branch correlation duplicating 2 or 1223 // more triangles is profitable, despite the calculations assuming 1224 // independence. 1225 if (Chain.count() < TriangleChainCount) 1226 continue; 1227 MachineBasicBlock *dst = Chain.Edges.back(); 1228 Chain.Edges.pop_back(); 1229 for (MachineBasicBlock *src : reverse(Chain.Edges)) { 1230 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" 1231 << getBlockName(dst) 1232 << " as pre-computed based on triangles.\n"); 1233 1234 auto InsertResult = ComputedEdges.insert({src, {dst, true}}); 1235 assert(InsertResult.second && "Block seen twice."); 1236 (void)InsertResult; 1237 1238 dst = src; 1239 } 1240 } 1241 } 1242 1243 // When profile is not present, return the StaticLikelyProb. 1244 // When profile is available, we need to handle the triangle-shape CFG. 1245 static BranchProbability getLayoutSuccessorProbThreshold( 1246 const MachineBasicBlock *BB) { 1247 if (!BB->getParent()->getFunction().hasProfileData()) 1248 return BranchProbability(StaticLikelyProb, 100); 1249 if (BB->succ_size() == 2) { 1250 const MachineBasicBlock *Succ1 = *BB->succ_begin(); 1251 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); 1252 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { 1253 /* See case 1 below for the cost analysis. For BB->Succ to 1254 * be taken with smaller cost, the following needs to hold: 1255 * Prob(BB->Succ) > 2 * Prob(BB->Pred) 1256 * So the threshold T in the calculation below 1257 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) 1258 * So T / (1 - T) = 2, Yielding T = 2/3 1259 * Also adding user specified branch bias, we have 1260 * T = (2/3)*(ProfileLikelyProb/50) 1261 * = (2*ProfileLikelyProb)/150) 1262 */ 1263 return BranchProbability(2 * ProfileLikelyProb, 150); 1264 } 1265 } 1266 return BranchProbability(ProfileLikelyProb, 100); 1267 } 1268 1269 /// Checks to see if the layout candidate block \p Succ has a better layout 1270 /// predecessor than \c BB. If yes, returns true. 1271 /// \p SuccProb: The probability adjusted for only remaining blocks. 1272 /// Only used for logging 1273 /// \p RealSuccProb: The un-adjusted probability. 1274 /// \p Chain: The chain that BB belongs to and Succ is being considered for. 1275 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being 1276 /// considered 1277 bool MachineBlockPlacement::hasBetterLayoutPredecessor( 1278 const MachineBasicBlock *BB, const MachineBasicBlock *Succ, 1279 const BlockChain &SuccChain, BranchProbability SuccProb, 1280 BranchProbability RealSuccProb, const BlockChain &Chain, 1281 const BlockFilterSet *BlockFilter) { 1282 1283 // There isn't a better layout when there are no unscheduled predecessors. 1284 if (SuccChain.UnscheduledPredecessors == 0) 1285 return false; 1286 1287 // There are two basic scenarios here: 1288 // ------------------------------------- 1289 // Case 1: triangular shape CFG (if-then): 1290 // BB 1291 // | \ 1292 // | \ 1293 // | Pred 1294 // | / 1295 // Succ 1296 // In this case, we are evaluating whether to select edge -> Succ, e.g. 1297 // set Succ as the layout successor of BB. Picking Succ as BB's 1298 // successor breaks the CFG constraints (FIXME: define these constraints). 1299 // With this layout, Pred BB 1300 // is forced to be outlined, so the overall cost will be cost of the 1301 // branch taken from BB to Pred, plus the cost of back taken branch 1302 // from Pred to Succ, as well as the additional cost associated 1303 // with the needed unconditional jump instruction from Pred To Succ. 1304 1305 // The cost of the topological order layout is the taken branch cost 1306 // from BB to Succ, so to make BB->Succ a viable candidate, the following 1307 // must hold: 1308 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost 1309 // < freq(BB->Succ) * taken_branch_cost. 1310 // Ignoring unconditional jump cost, we get 1311 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., 1312 // prob(BB->Succ) > 2 * prob(BB->Pred) 1313 // 1314 // When real profile data is available, we can precisely compute the 1315 // probability threshold that is needed for edge BB->Succ to be considered. 1316 // Without profile data, the heuristic requires the branch bias to be 1317 // a lot larger to make sure the signal is very strong (e.g. 80% default). 1318 // ----------------------------------------------------------------- 1319 // Case 2: diamond like CFG (if-then-else): 1320 // S 1321 // / \ 1322 // | \ 1323 // BB Pred 1324 // \ / 1325 // Succ 1326 // .. 1327 // 1328 // The current block is BB and edge BB->Succ is now being evaluated. 1329 // Note that edge S->BB was previously already selected because 1330 // prob(S->BB) > prob(S->Pred). 1331 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we 1332 // choose Pred, we will have a topological ordering as shown on the left 1333 // in the picture below. If we choose Succ, we have the solution as shown 1334 // on the right: 1335 // 1336 // topo-order: 1337 // 1338 // S----- ---S 1339 // | | | | 1340 // ---BB | | BB 1341 // | | | | 1342 // | Pred-- | Succ-- 1343 // | | | | 1344 // ---Succ ---Pred-- 1345 // 1346 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred) 1347 // = freq(S->Pred) + freq(S->BB) 1348 // 1349 // If we have profile data (i.e, branch probabilities can be trusted), the 1350 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * 1351 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). 1352 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which 1353 // means the cost of topological order is greater. 1354 // When profile data is not available, however, we need to be more 1355 // conservative. If the branch prediction is wrong, breaking the topo-order 1356 // will actually yield a layout with large cost. For this reason, we need 1357 // strong biased branch at block S with Prob(S->BB) in order to select 1358 // BB->Succ. This is equivalent to looking the CFG backward with backward 1359 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without 1360 // profile data). 1361 // -------------------------------------------------------------------------- 1362 // Case 3: forked diamond 1363 // S 1364 // / \ 1365 // / \ 1366 // BB Pred 1367 // | \ / | 1368 // | \ / | 1369 // | X | 1370 // | / \ | 1371 // | / \ | 1372 // S1 S2 1373 // 1374 // The current block is BB and edge BB->S1 is now being evaluated. 1375 // As above S->BB was already selected because 1376 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). 1377 // 1378 // topo-order: 1379 // 1380 // S-------| ---S 1381 // | | | | 1382 // ---BB | | BB 1383 // | | | | 1384 // | Pred----| | S1---- 1385 // | | | | 1386 // --(S1 or S2) ---Pred-- 1387 // | 1388 // S2 1389 // 1390 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) 1391 // + min(freq(Pred->S1), freq(Pred->S2)) 1392 // Non-topo-order cost: 1393 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). 1394 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) 1395 // is 0. Then the non topo layout is better when 1396 // freq(S->Pred) < freq(BB->S1). 1397 // This is exactly what is checked below. 1398 // Note there are other shapes that apply (Pred may not be a single block, 1399 // but they all fit this general pattern.) 1400 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); 1401 1402 // Make sure that a hot successor doesn't have a globally more 1403 // important predecessor. 1404 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; 1405 bool BadCFGConflict = false; 1406 1407 for (MachineBasicBlock *Pred : Succ->predecessors()) { 1408 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 1409 (BlockFilter && !BlockFilter->count(Pred)) || 1410 BlockToChain[Pred] == &Chain || 1411 // This check is redundant except for look ahead. This function is 1412 // called for lookahead by isProfitableToTailDup when BB hasn't been 1413 // placed yet. 1414 (Pred == BB)) 1415 continue; 1416 // Do backward checking. 1417 // For all cases above, we need a backward checking to filter out edges that 1418 // are not 'strongly' biased. 1419 // BB Pred 1420 // \ / 1421 // Succ 1422 // We select edge BB->Succ if 1423 // freq(BB->Succ) > freq(Succ) * HotProb 1424 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * 1425 // HotProb 1426 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb 1427 // Case 1 is covered too, because the first equation reduces to: 1428 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) 1429 BlockFrequency PredEdgeFreq = 1430 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 1431 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { 1432 BadCFGConflict = true; 1433 break; 1434 } 1435 } 1436 1437 if (BadCFGConflict) { 1438 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> " 1439 << SuccProb << " (prob) (non-cold CFG conflict)\n"); 1440 return true; 1441 } 1442 1443 return false; 1444 } 1445 1446 /// Select the best successor for a block. 1447 /// 1448 /// This looks across all successors of a particular block and attempts to 1449 /// select the "best" one to be the layout successor. It only considers direct 1450 /// successors which also pass the block filter. It will attempt to avoid 1451 /// breaking CFG structure, but cave and break such structures in the case of 1452 /// very hot successor edges. 1453 /// 1454 /// \returns The best successor block found, or null if none are viable, along 1455 /// with a boolean indicating if tail duplication is necessary. 1456 MachineBlockPlacement::BlockAndTailDupResult 1457 MachineBlockPlacement::selectBestSuccessor( 1458 const MachineBasicBlock *BB, const BlockChain &Chain, 1459 const BlockFilterSet *BlockFilter) { 1460 const BranchProbability HotProb(StaticLikelyProb, 100); 1461 1462 BlockAndTailDupResult BestSucc = { nullptr, false }; 1463 auto BestProb = BranchProbability::getZero(); 1464 1465 SmallVector<MachineBasicBlock *, 4> Successors; 1466 auto AdjustedSumProb = 1467 collectViableSuccessors(BB, Chain, BlockFilter, Successors); 1468 1469 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) 1470 << "\n"); 1471 1472 // if we already precomputed the best successor for BB, return that if still 1473 // applicable. 1474 auto FoundEdge = ComputedEdges.find(BB); 1475 if (FoundEdge != ComputedEdges.end()) { 1476 MachineBasicBlock *Succ = FoundEdge->second.BB; 1477 ComputedEdges.erase(FoundEdge); 1478 BlockChain *SuccChain = BlockToChain[Succ]; 1479 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && 1480 SuccChain != &Chain && Succ == *SuccChain->begin()) 1481 return FoundEdge->second; 1482 } 1483 1484 // if BB is part of a trellis, Use the trellis to determine the optimal 1485 // fallthrough edges 1486 if (isTrellis(BB, Successors, Chain, BlockFilter)) 1487 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, 1488 BlockFilter); 1489 1490 // For blocks with CFG violations, we may be able to lay them out anyway with 1491 // tail-duplication. We keep this vector so we can perform the probability 1492 // calculations the minimum number of times. 1493 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> 1494 DupCandidates; 1495 for (MachineBasicBlock *Succ : Successors) { 1496 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 1497 BranchProbability SuccProb = 1498 getAdjustedProbability(RealSuccProb, AdjustedSumProb); 1499 1500 BlockChain &SuccChain = *BlockToChain[Succ]; 1501 // Skip the edge \c BB->Succ if block \c Succ has a better layout 1502 // predecessor that yields lower global cost. 1503 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, 1504 Chain, BlockFilter)) { 1505 // If tail duplication would make Succ profitable, place it. 1506 if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) 1507 DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); 1508 continue; 1509 } 1510 1511 LLVM_DEBUG( 1512 dbgs() << " Candidate: " << getBlockName(Succ) 1513 << ", probability: " << SuccProb 1514 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 1515 << "\n"); 1516 1517 if (BestSucc.BB && BestProb >= SuccProb) { 1518 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n"); 1519 continue; 1520 } 1521 1522 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n"); 1523 BestSucc.BB = Succ; 1524 BestProb = SuccProb; 1525 } 1526 // Handle the tail duplication candidates in order of decreasing probability. 1527 // Stop at the first one that is profitable. Also stop if they are less 1528 // profitable than BestSucc. Position is important because we preserve it and 1529 // prefer first best match. Here we aren't comparing in order, so we capture 1530 // the position instead. 1531 if (DupCandidates.size() != 0) { 1532 auto cmp = 1533 [](const std::tuple<BranchProbability, MachineBasicBlock *> &a, 1534 const std::tuple<BranchProbability, MachineBasicBlock *> &b) { 1535 return std::get<0>(a) > std::get<0>(b); 1536 }; 1537 std::stable_sort(DupCandidates.begin(), DupCandidates.end(), cmp); 1538 } 1539 for(auto &Tup : DupCandidates) { 1540 BranchProbability DupProb; 1541 MachineBasicBlock *Succ; 1542 std::tie(DupProb, Succ) = Tup; 1543 if (DupProb < BestProb) 1544 break; 1545 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) 1546 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { 1547 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ) 1548 << ", probability: " << DupProb 1549 << " (Tail Duplicate)\n"); 1550 BestSucc.BB = Succ; 1551 BestSucc.ShouldTailDup = true; 1552 break; 1553 } 1554 } 1555 1556 if (BestSucc.BB) 1557 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n"); 1558 1559 return BestSucc; 1560 } 1561 1562 /// Select the best block from a worklist. 1563 /// 1564 /// This looks through the provided worklist as a list of candidate basic 1565 /// blocks and select the most profitable one to place. The definition of 1566 /// profitable only really makes sense in the context of a loop. This returns 1567 /// the most frequently visited block in the worklist, which in the case of 1568 /// a loop, is the one most desirable to be physically close to the rest of the 1569 /// loop body in order to improve i-cache behavior. 1570 /// 1571 /// \returns The best block found, or null if none are viable. 1572 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 1573 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 1574 // Once we need to walk the worklist looking for a candidate, cleanup the 1575 // worklist of already placed entries. 1576 // FIXME: If this shows up on profiles, it could be folded (at the cost of 1577 // some code complexity) into the loop below. 1578 WorkList.erase(llvm::remove_if(WorkList, 1579 [&](MachineBasicBlock *BB) { 1580 return BlockToChain.lookup(BB) == &Chain; 1581 }), 1582 WorkList.end()); 1583 1584 if (WorkList.empty()) 1585 return nullptr; 1586 1587 bool IsEHPad = WorkList[0]->isEHPad(); 1588 1589 MachineBasicBlock *BestBlock = nullptr; 1590 BlockFrequency BestFreq; 1591 for (MachineBasicBlock *MBB : WorkList) { 1592 assert(MBB->isEHPad() == IsEHPad && 1593 "EHPad mismatch between block and work list."); 1594 1595 BlockChain &SuccChain = *BlockToChain[MBB]; 1596 if (&SuccChain == &Chain) 1597 continue; 1598 1599 assert(SuccChain.UnscheduledPredecessors == 0 && 1600 "Found CFG-violating block"); 1601 1602 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 1603 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 1604 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 1605 1606 // For ehpad, we layout the least probable first as to avoid jumping back 1607 // from least probable landingpads to more probable ones. 1608 // 1609 // FIXME: Using probability is probably (!) not the best way to achieve 1610 // this. We should probably have a more principled approach to layout 1611 // cleanup code. 1612 // 1613 // The goal is to get: 1614 // 1615 // +--------------------------+ 1616 // | V 1617 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 1618 // 1619 // Rather than: 1620 // 1621 // +-------------------------------------+ 1622 // V | 1623 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 1624 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 1625 continue; 1626 1627 BestBlock = MBB; 1628 BestFreq = CandidateFreq; 1629 } 1630 1631 return BestBlock; 1632 } 1633 1634 /// Retrieve the first unplaced basic block. 1635 /// 1636 /// This routine is called when we are unable to use the CFG to walk through 1637 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 1638 /// We walk through the function's blocks in order, starting from the 1639 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 1640 /// re-scanning the entire sequence on repeated calls to this routine. 1641 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 1642 const BlockChain &PlacedChain, 1643 MachineFunction::iterator &PrevUnplacedBlockIt, 1644 const BlockFilterSet *BlockFilter) { 1645 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; 1646 ++I) { 1647 if (BlockFilter && !BlockFilter->count(&*I)) 1648 continue; 1649 if (BlockToChain[&*I] != &PlacedChain) { 1650 PrevUnplacedBlockIt = I; 1651 // Now select the head of the chain to which the unplaced block belongs 1652 // as the block to place. This will force the entire chain to be placed, 1653 // and satisfies the requirements of merging chains. 1654 return *BlockToChain[&*I]->begin(); 1655 } 1656 } 1657 return nullptr; 1658 } 1659 1660 void MachineBlockPlacement::fillWorkLists( 1661 const MachineBasicBlock *MBB, 1662 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 1663 const BlockFilterSet *BlockFilter = nullptr) { 1664 BlockChain &Chain = *BlockToChain[MBB]; 1665 if (!UpdatedPreds.insert(&Chain).second) 1666 return; 1667 1668 assert( 1669 Chain.UnscheduledPredecessors == 0 && 1670 "Attempting to place block with unscheduled predecessors in worklist."); 1671 for (MachineBasicBlock *ChainBB : Chain) { 1672 assert(BlockToChain[ChainBB] == &Chain && 1673 "Block in chain doesn't match BlockToChain map."); 1674 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 1675 if (BlockFilter && !BlockFilter->count(Pred)) 1676 continue; 1677 if (BlockToChain[Pred] == &Chain) 1678 continue; 1679 ++Chain.UnscheduledPredecessors; 1680 } 1681 } 1682 1683 if (Chain.UnscheduledPredecessors != 0) 1684 return; 1685 1686 MachineBasicBlock *BB = *Chain.begin(); 1687 if (BB->isEHPad()) 1688 EHPadWorkList.push_back(BB); 1689 else 1690 BlockWorkList.push_back(BB); 1691 } 1692 1693 void MachineBlockPlacement::buildChain( 1694 const MachineBasicBlock *HeadBB, BlockChain &Chain, 1695 BlockFilterSet *BlockFilter) { 1696 assert(HeadBB && "BB must not be null.\n"); 1697 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); 1698 MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); 1699 1700 const MachineBasicBlock *LoopHeaderBB = HeadBB; 1701 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); 1702 MachineBasicBlock *BB = *std::prev(Chain.end()); 1703 while (true) { 1704 assert(BB && "null block found at end of chain in loop."); 1705 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); 1706 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); 1707 1708 1709 // Look for the best viable successor if there is one to place immediately 1710 // after this block. 1711 auto Result = selectBestSuccessor(BB, Chain, BlockFilter); 1712 MachineBasicBlock* BestSucc = Result.BB; 1713 bool ShouldTailDup = Result.ShouldTailDup; 1714 if (allowTailDupPlacement()) 1715 ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); 1716 1717 // If an immediate successor isn't available, look for the best viable 1718 // block among those we've identified as not violating the loop's CFG at 1719 // this point. This won't be a fallthrough, but it will increase locality. 1720 if (!BestSucc) 1721 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 1722 if (!BestSucc) 1723 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 1724 1725 if (!BestSucc) { 1726 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); 1727 if (!BestSucc) 1728 break; 1729 1730 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 1731 "layout successor until the CFG reduces\n"); 1732 } 1733 1734 // Placement may have changed tail duplication opportunities. 1735 // Check for that now. 1736 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { 1737 // If the chosen successor was duplicated into all its predecessors, 1738 // don't bother laying it out, just go round the loop again with BB as 1739 // the chain end. 1740 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, 1741 BlockFilter, PrevUnplacedBlockIt)) 1742 continue; 1743 } 1744 1745 // Place this block, updating the datastructures to reflect its placement. 1746 BlockChain &SuccChain = *BlockToChain[BestSucc]; 1747 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 1748 // we selected a successor that didn't fit naturally into the CFG. 1749 SuccChain.UnscheduledPredecessors = 0; 1750 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 1751 << getBlockName(BestSucc) << "\n"); 1752 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); 1753 Chain.merge(BestSucc, &SuccChain); 1754 BB = *std::prev(Chain.end()); 1755 } 1756 1757 LLVM_DEBUG(dbgs() << "Finished forming chain for header block " 1758 << getBlockName(*Chain.begin()) << "\n"); 1759 } 1760 1761 // If bottom of block BB has only one successor OldTop, in most cases it is 1762 // profitable to move it before OldTop, except the following case: 1763 // 1764 // -->OldTop<- 1765 // | . | 1766 // | . | 1767 // | . | 1768 // ---Pred | 1769 // | | 1770 // BB----- 1771 // 1772 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't 1773 // layout the other successor below it, so it can't reduce taken branch. 1774 // In this case we keep its original layout. 1775 bool 1776 MachineBlockPlacement::canMoveBottomBlockToTop( 1777 const MachineBasicBlock *BottomBlock, 1778 const MachineBasicBlock *OldTop) { 1779 if (BottomBlock->pred_size() != 1) 1780 return true; 1781 MachineBasicBlock *Pred = *BottomBlock->pred_begin(); 1782 if (Pred->succ_size() != 2) 1783 return true; 1784 1785 MachineBasicBlock *OtherBB = *Pred->succ_begin(); 1786 if (OtherBB == BottomBlock) 1787 OtherBB = *Pred->succ_rbegin(); 1788 if (OtherBB == OldTop) 1789 return false; 1790 1791 return true; 1792 } 1793 1794 /// Find the best loop top block for layout. 1795 /// 1796 /// Look for a block which is strictly better than the loop header for laying 1797 /// out at the top of the loop. This looks for one and only one pattern: 1798 /// a latch block with no conditional exit. This block will cause a conditional 1799 /// jump around it or will be the bottom of the loop if we lay it out in place, 1800 /// but if it it doesn't end up at the bottom of the loop for any reason, 1801 /// rotation alone won't fix it. Because such a block will always result in an 1802 /// unconditional jump (for the backedge) rotating it in front of the loop 1803 /// header is always profitable. 1804 MachineBasicBlock * 1805 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, 1806 const BlockFilterSet &LoopBlockSet) { 1807 // Placing the latch block before the header may introduce an extra branch 1808 // that skips this block the first time the loop is executed, which we want 1809 // to avoid when optimising for size. 1810 // FIXME: in theory there is a case that does not introduce a new branch, 1811 // i.e. when the layout predecessor does not fallthrough to the loop header. 1812 // In practice this never happens though: there always seems to be a preheader 1813 // that can fallthrough and that is also placed before the header. 1814 if (F->getFunction().optForSize()) 1815 return L.getHeader(); 1816 1817 // Check that the header hasn't been fused with a preheader block due to 1818 // crazy branches. If it has, we need to start with the header at the top to 1819 // prevent pulling the preheader into the loop body. 1820 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1821 if (!LoopBlockSet.count(*HeaderChain.begin())) 1822 return L.getHeader(); 1823 1824 LLVM_DEBUG(dbgs() << "Finding best loop top for: " 1825 << getBlockName(L.getHeader()) << "\n"); 1826 1827 BlockFrequency BestPredFreq; 1828 MachineBasicBlock *BestPred = nullptr; 1829 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 1830 if (!LoopBlockSet.count(Pred)) 1831 continue; 1832 LLVM_DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", has " 1833 << Pred->succ_size() << " successors, "; 1834 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 1835 if (Pred->succ_size() > 1) 1836 continue; 1837 1838 if (!canMoveBottomBlockToTop(Pred, L.getHeader())) 1839 continue; 1840 1841 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 1842 if (!BestPred || PredFreq > BestPredFreq || 1843 (!(PredFreq < BestPredFreq) && 1844 Pred->isLayoutSuccessor(L.getHeader()))) { 1845 BestPred = Pred; 1846 BestPredFreq = PredFreq; 1847 } 1848 } 1849 1850 // If no direct predecessor is fine, just use the loop header. 1851 if (!BestPred) { 1852 LLVM_DEBUG(dbgs() << " final top unchanged\n"); 1853 return L.getHeader(); 1854 } 1855 1856 // Walk backwards through any straight line of predecessors. 1857 while (BestPred->pred_size() == 1 && 1858 (*BestPred->pred_begin())->succ_size() == 1 && 1859 *BestPred->pred_begin() != L.getHeader()) 1860 BestPred = *BestPred->pred_begin(); 1861 1862 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 1863 return BestPred; 1864 } 1865 1866 /// Find the best loop exiting block for layout. 1867 /// 1868 /// This routine implements the logic to analyze the loop looking for the best 1869 /// block to layout at the top of the loop. Typically this is done to maximize 1870 /// fallthrough opportunities. 1871 MachineBasicBlock * 1872 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, 1873 const BlockFilterSet &LoopBlockSet) { 1874 // We don't want to layout the loop linearly in all cases. If the loop header 1875 // is just a normal basic block in the loop, we want to look for what block 1876 // within the loop is the best one to layout at the top. However, if the loop 1877 // header has be pre-merged into a chain due to predecessors not having 1878 // analyzable branches, *and* the predecessor it is merged with is *not* part 1879 // of the loop, rotating the header into the middle of the loop will create 1880 // a non-contiguous range of blocks which is Very Bad. So start with the 1881 // header and only rotate if safe. 1882 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 1883 if (!LoopBlockSet.count(*HeaderChain.begin())) 1884 return nullptr; 1885 1886 BlockFrequency BestExitEdgeFreq; 1887 unsigned BestExitLoopDepth = 0; 1888 MachineBasicBlock *ExitingBB = nullptr; 1889 // If there are exits to outer loops, loop rotation can severely limit 1890 // fallthrough opportunities unless it selects such an exit. Keep a set of 1891 // blocks where rotating to exit with that block will reach an outer loop. 1892 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 1893 1894 LLVM_DEBUG(dbgs() << "Finding best loop exit for: " 1895 << getBlockName(L.getHeader()) << "\n"); 1896 for (MachineBasicBlock *MBB : L.getBlocks()) { 1897 BlockChain &Chain = *BlockToChain[MBB]; 1898 // Ensure that this block is at the end of a chain; otherwise it could be 1899 // mid-way through an inner loop or a successor of an unanalyzable branch. 1900 if (MBB != *std::prev(Chain.end())) 1901 continue; 1902 1903 // Now walk the successors. We need to establish whether this has a viable 1904 // exiting successor and whether it has a viable non-exiting successor. 1905 // We store the old exiting state and restore it if a viable looping 1906 // successor isn't found. 1907 MachineBasicBlock *OldExitingBB = ExitingBB; 1908 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 1909 bool HasLoopingSucc = false; 1910 for (MachineBasicBlock *Succ : MBB->successors()) { 1911 if (Succ->isEHPad()) 1912 continue; 1913 if (Succ == MBB) 1914 continue; 1915 BlockChain &SuccChain = *BlockToChain[Succ]; 1916 // Don't split chains, either this chain or the successor's chain. 1917 if (&Chain == &SuccChain) { 1918 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1919 << getBlockName(Succ) << " (chain conflict)\n"); 1920 continue; 1921 } 1922 1923 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 1924 if (LoopBlockSet.count(Succ)) { 1925 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 1926 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 1927 HasLoopingSucc = true; 1928 continue; 1929 } 1930 1931 unsigned SuccLoopDepth = 0; 1932 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 1933 SuccLoopDepth = ExitLoop->getLoopDepth(); 1934 if (ExitLoop->contains(&L)) 1935 BlocksExitingToOuterLoop.insert(MBB); 1936 } 1937 1938 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 1939 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 1940 << getBlockName(Succ) << " [L:" << SuccLoopDepth 1941 << "] ("; 1942 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 1943 // Note that we bias this toward an existing layout successor to retain 1944 // incoming order in the absence of better information. The exit must have 1945 // a frequency higher than the current exit before we consider breaking 1946 // the layout. 1947 BranchProbability Bias(100 - ExitBlockBias, 100); 1948 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 1949 ExitEdgeFreq > BestExitEdgeFreq || 1950 (MBB->isLayoutSuccessor(Succ) && 1951 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 1952 BestExitEdgeFreq = ExitEdgeFreq; 1953 ExitingBB = MBB; 1954 } 1955 } 1956 1957 if (!HasLoopingSucc) { 1958 // Restore the old exiting state, no viable looping successor was found. 1959 ExitingBB = OldExitingBB; 1960 BestExitEdgeFreq = OldBestExitEdgeFreq; 1961 } 1962 } 1963 // Without a candidate exiting block or with only a single block in the 1964 // loop, just use the loop header to layout the loop. 1965 if (!ExitingBB) { 1966 LLVM_DEBUG( 1967 dbgs() << " No other candidate exit blocks, using loop header\n"); 1968 return nullptr; 1969 } 1970 if (L.getNumBlocks() == 1) { 1971 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n"); 1972 return nullptr; 1973 } 1974 1975 // Also, if we have exit blocks which lead to outer loops but didn't select 1976 // one of them as the exiting block we are rotating toward, disable loop 1977 // rotation altogether. 1978 if (!BlocksExitingToOuterLoop.empty() && 1979 !BlocksExitingToOuterLoop.count(ExitingBB)) 1980 return nullptr; 1981 1982 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) 1983 << "\n"); 1984 return ExitingBB; 1985 } 1986 1987 /// Attempt to rotate an exiting block to the bottom of the loop. 1988 /// 1989 /// Once we have built a chain, try to rotate it to line up the hot exit block 1990 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 1991 /// branches. For example, if the loop has fallthrough into its header and out 1992 /// of its bottom already, don't rotate it. 1993 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 1994 const MachineBasicBlock *ExitingBB, 1995 const BlockFilterSet &LoopBlockSet) { 1996 if (!ExitingBB) 1997 return; 1998 1999 MachineBasicBlock *Top = *LoopChain.begin(); 2000 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 2001 2002 // If ExitingBB is already the last one in a chain then nothing to do. 2003 if (Bottom == ExitingBB) 2004 return; 2005 2006 bool ViableTopFallthrough = false; 2007 for (MachineBasicBlock *Pred : Top->predecessors()) { 2008 BlockChain *PredChain = BlockToChain[Pred]; 2009 if (!LoopBlockSet.count(Pred) && 2010 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2011 ViableTopFallthrough = true; 2012 break; 2013 } 2014 } 2015 2016 // If the header has viable fallthrough, check whether the current loop 2017 // bottom is a viable exiting block. If so, bail out as rotating will 2018 // introduce an unnecessary branch. 2019 if (ViableTopFallthrough) { 2020 for (MachineBasicBlock *Succ : Bottom->successors()) { 2021 BlockChain *SuccChain = BlockToChain[Succ]; 2022 if (!LoopBlockSet.count(Succ) && 2023 (!SuccChain || Succ == *SuccChain->begin())) 2024 return; 2025 } 2026 } 2027 2028 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); 2029 if (ExitIt == LoopChain.end()) 2030 return; 2031 2032 // Rotating a loop exit to the bottom when there is a fallthrough to top 2033 // trades the entry fallthrough for an exit fallthrough. 2034 // If there is no bottom->top edge, but the chosen exit block does have 2035 // a fallthrough, we break that fallthrough for nothing in return. 2036 2037 // Let's consider an example. We have a built chain of basic blocks 2038 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. 2039 // By doing a rotation we get 2040 // Bk+1, ..., Bn, B1, ..., Bk 2041 // Break of fallthrough to B1 is compensated by a fallthrough from Bk. 2042 // If we had a fallthrough Bk -> Bk+1 it is broken now. 2043 // It might be compensated by fallthrough Bn -> B1. 2044 // So we have a condition to avoid creation of extra branch by loop rotation. 2045 // All below must be true to avoid loop rotation: 2046 // If there is a fallthrough to top (B1) 2047 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1) 2048 // There is no fallthrough from bottom (Bn) to top (B1). 2049 // Please note that there is no exit fallthrough from Bn because we checked it 2050 // above. 2051 if (ViableTopFallthrough) { 2052 assert(std::next(ExitIt) != LoopChain.end() && 2053 "Exit should not be last BB"); 2054 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); 2055 if (ExitingBB->isSuccessor(NextBlockInChain)) 2056 if (!Bottom->isSuccessor(Top)) 2057 return; 2058 } 2059 2060 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) 2061 << " at bottom\n"); 2062 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 2063 } 2064 2065 /// Attempt to rotate a loop based on profile data to reduce branch cost. 2066 /// 2067 /// With profile data, we can determine the cost in terms of missed fall through 2068 /// opportunities when rotating a loop chain and select the best rotation. 2069 /// Basically, there are three kinds of cost to consider for each rotation: 2070 /// 1. The possibly missed fall through edge (if it exists) from BB out of 2071 /// the loop to the loop header. 2072 /// 2. The possibly missed fall through edges (if they exist) from the loop 2073 /// exits to BB out of the loop. 2074 /// 3. The missed fall through edge (if it exists) from the last BB to the 2075 /// first BB in the loop chain. 2076 /// Therefore, the cost for a given rotation is the sum of costs listed above. 2077 /// We select the best rotation with the smallest cost. 2078 void MachineBlockPlacement::rotateLoopWithProfile( 2079 BlockChain &LoopChain, const MachineLoop &L, 2080 const BlockFilterSet &LoopBlockSet) { 2081 auto HeaderBB = L.getHeader(); 2082 auto HeaderIter = llvm::find(LoopChain, HeaderBB); 2083 auto RotationPos = LoopChain.end(); 2084 2085 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 2086 2087 // A utility lambda that scales up a block frequency by dividing it by a 2088 // branch probability which is the reciprocal of the scale. 2089 auto ScaleBlockFrequency = [](BlockFrequency Freq, 2090 unsigned Scale) -> BlockFrequency { 2091 if (Scale == 0) 2092 return 0; 2093 // Use operator / between BlockFrequency and BranchProbability to implement 2094 // saturating multiplication. 2095 return Freq / BranchProbability(1, Scale); 2096 }; 2097 2098 // Compute the cost of the missed fall-through edge to the loop header if the 2099 // chain head is not the loop header. As we only consider natural loops with 2100 // single header, this computation can be done only once. 2101 BlockFrequency HeaderFallThroughCost(0); 2102 for (auto *Pred : HeaderBB->predecessors()) { 2103 BlockChain *PredChain = BlockToChain[Pred]; 2104 if (!LoopBlockSet.count(Pred) && 2105 (!PredChain || Pred == *std::prev(PredChain->end()))) { 2106 auto EdgeFreq = 2107 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 2108 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 2109 // If the predecessor has only an unconditional jump to the header, we 2110 // need to consider the cost of this jump. 2111 if (Pred->succ_size() == 1) 2112 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 2113 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 2114 } 2115 } 2116 2117 // Here we collect all exit blocks in the loop, and for each exit we find out 2118 // its hottest exit edge. For each loop rotation, we define the loop exit cost 2119 // as the sum of frequencies of exit edges we collect here, excluding the exit 2120 // edge from the tail of the loop chain. 2121 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 2122 for (auto BB : LoopChain) { 2123 auto LargestExitEdgeProb = BranchProbability::getZero(); 2124 for (auto *Succ : BB->successors()) { 2125 BlockChain *SuccChain = BlockToChain[Succ]; 2126 if (!LoopBlockSet.count(Succ) && 2127 (!SuccChain || Succ == *SuccChain->begin())) { 2128 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 2129 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 2130 } 2131 } 2132 if (LargestExitEdgeProb > BranchProbability::getZero()) { 2133 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 2134 ExitsWithFreq.emplace_back(BB, ExitFreq); 2135 } 2136 } 2137 2138 // In this loop we iterate every block in the loop chain and calculate the 2139 // cost assuming the block is the head of the loop chain. When the loop ends, 2140 // we should have found the best candidate as the loop chain's head. 2141 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 2142 EndIter = LoopChain.end(); 2143 Iter != EndIter; Iter++, TailIter++) { 2144 // TailIter is used to track the tail of the loop chain if the block we are 2145 // checking (pointed by Iter) is the head of the chain. 2146 if (TailIter == LoopChain.end()) 2147 TailIter = LoopChain.begin(); 2148 2149 auto TailBB = *TailIter; 2150 2151 // Calculate the cost by putting this BB to the top. 2152 BlockFrequency Cost = 0; 2153 2154 // If the current BB is the loop header, we need to take into account the 2155 // cost of the missed fall through edge from outside of the loop to the 2156 // header. 2157 if (Iter != HeaderIter) 2158 Cost += HeaderFallThroughCost; 2159 2160 // Collect the loop exit cost by summing up frequencies of all exit edges 2161 // except the one from the chain tail. 2162 for (auto &ExitWithFreq : ExitsWithFreq) 2163 if (TailBB != ExitWithFreq.first) 2164 Cost += ExitWithFreq.second; 2165 2166 // The cost of breaking the once fall-through edge from the tail to the top 2167 // of the loop chain. Here we need to consider three cases: 2168 // 1. If the tail node has only one successor, then we will get an 2169 // additional jmp instruction. So the cost here is (MisfetchCost + 2170 // JumpInstCost) * tail node frequency. 2171 // 2. If the tail node has two successors, then we may still get an 2172 // additional jmp instruction if the layout successor after the loop 2173 // chain is not its CFG successor. Note that the more frequently executed 2174 // jmp instruction will be put ahead of the other one. Assume the 2175 // frequency of those two branches are x and y, where x is the frequency 2176 // of the edge to the chain head, then the cost will be 2177 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 2178 // 3. If the tail node has more than two successors (this rarely happens), 2179 // we won't consider any additional cost. 2180 if (TailBB->isSuccessor(*Iter)) { 2181 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 2182 if (TailBB->succ_size() == 1) 2183 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 2184 MisfetchCost + JumpInstCost); 2185 else if (TailBB->succ_size() == 2) { 2186 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 2187 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 2188 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 2189 ? TailBBFreq * TailToHeadProb.getCompl() 2190 : TailToHeadFreq; 2191 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 2192 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 2193 } 2194 } 2195 2196 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " 2197 << getBlockName(*Iter) 2198 << " to the top: " << Cost.getFrequency() << "\n"); 2199 2200 if (Cost < SmallestRotationCost) { 2201 SmallestRotationCost = Cost; 2202 RotationPos = Iter; 2203 } 2204 } 2205 2206 if (RotationPos != LoopChain.end()) { 2207 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 2208 << " to the top\n"); 2209 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 2210 } 2211 } 2212 2213 /// Collect blocks in the given loop that are to be placed. 2214 /// 2215 /// When profile data is available, exclude cold blocks from the returned set; 2216 /// otherwise, collect all blocks in the loop. 2217 MachineBlockPlacement::BlockFilterSet 2218 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { 2219 BlockFilterSet LoopBlockSet; 2220 2221 // Filter cold blocks off from LoopBlockSet when profile data is available. 2222 // Collect the sum of frequencies of incoming edges to the loop header from 2223 // outside. If we treat the loop as a super block, this is the frequency of 2224 // the loop. Then for each block in the loop, we calculate the ratio between 2225 // its frequency and the frequency of the loop block. When it is too small, 2226 // don't add it to the loop chain. If there are outer loops, then this block 2227 // will be merged into the first outer loop chain for which this block is not 2228 // cold anymore. This needs precise profile data and we only do this when 2229 // profile data is available. 2230 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { 2231 BlockFrequency LoopFreq(0); 2232 for (auto LoopPred : L.getHeader()->predecessors()) 2233 if (!L.contains(LoopPred)) 2234 LoopFreq += MBFI->getBlockFreq(LoopPred) * 2235 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 2236 2237 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 2238 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 2239 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 2240 continue; 2241 LoopBlockSet.insert(LoopBB); 2242 } 2243 } else 2244 LoopBlockSet.insert(L.block_begin(), L.block_end()); 2245 2246 return LoopBlockSet; 2247 } 2248 2249 /// Forms basic block chains from the natural loop structures. 2250 /// 2251 /// These chains are designed to preserve the existing *structure* of the code 2252 /// as much as possible. We can then stitch the chains together in a way which 2253 /// both preserves the topological structure and minimizes taken conditional 2254 /// branches. 2255 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { 2256 // First recurse through any nested loops, building chains for those inner 2257 // loops. 2258 for (const MachineLoop *InnerLoop : L) 2259 buildLoopChains(*InnerLoop); 2260 2261 assert(BlockWorkList.empty() && 2262 "BlockWorkList not empty when starting to build loop chains."); 2263 assert(EHPadWorkList.empty() && 2264 "EHPadWorkList not empty when starting to build loop chains."); 2265 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); 2266 2267 // Check if we have profile data for this function. If yes, we will rotate 2268 // this loop by modeling costs more precisely which requires the profile data 2269 // for better layout. 2270 bool RotateLoopWithProfile = 2271 ForcePreciseRotationCost || 2272 (PreciseRotationCost && F->getFunction().hasProfileData()); 2273 2274 // First check to see if there is an obviously preferable top block for the 2275 // loop. This will default to the header, but may end up as one of the 2276 // predecessors to the header if there is one which will result in strictly 2277 // fewer branches in the loop body. 2278 // When we use profile data to rotate the loop, this is unnecessary. 2279 MachineBasicBlock *LoopTop = 2280 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 2281 2282 // If we selected just the header for the loop top, look for a potentially 2283 // profitable exit block in the event that rotating the loop can eliminate 2284 // branches by placing an exit edge at the bottom. 2285 // 2286 // Loops are processed innermost to uttermost, make sure we clear 2287 // PreferredLoopExit before processing a new loop. 2288 PreferredLoopExit = nullptr; 2289 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 2290 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet); 2291 2292 BlockChain &LoopChain = *BlockToChain[LoopTop]; 2293 2294 // FIXME: This is a really lame way of walking the chains in the loop: we 2295 // walk the blocks, and use a set to prevent visiting a particular chain 2296 // twice. 2297 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2298 assert(LoopChain.UnscheduledPredecessors == 0 && 2299 "LoopChain should not have unscheduled predecessors."); 2300 UpdatedPreds.insert(&LoopChain); 2301 2302 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2303 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); 2304 2305 buildChain(LoopTop, LoopChain, &LoopBlockSet); 2306 2307 if (RotateLoopWithProfile) 2308 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 2309 else 2310 rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet); 2311 2312 LLVM_DEBUG({ 2313 // Crash at the end so we get all of the debugging output first. 2314 bool BadLoop = false; 2315 if (LoopChain.UnscheduledPredecessors) { 2316 BadLoop = true; 2317 dbgs() << "Loop chain contains a block without its preds placed!\n" 2318 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2319 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 2320 } 2321 for (MachineBasicBlock *ChainBB : LoopChain) { 2322 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 2323 if (!LoopBlockSet.remove(ChainBB)) { 2324 // We don't mark the loop as bad here because there are real situations 2325 // where this can occur. For example, with an unanalyzable fallthrough 2326 // from a loop block to a non-loop block or vice versa. 2327 dbgs() << "Loop chain contains a block not contained by the loop!\n" 2328 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2329 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2330 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2331 } 2332 } 2333 2334 if (!LoopBlockSet.empty()) { 2335 BadLoop = true; 2336 for (const MachineBasicBlock *LoopBB : LoopBlockSet) 2337 dbgs() << "Loop contains blocks never placed into a chain!\n" 2338 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 2339 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 2340 << " Bad block: " << getBlockName(LoopBB) << "\n"; 2341 } 2342 assert(!BadLoop && "Detected problems with the placement of this loop."); 2343 }); 2344 2345 BlockWorkList.clear(); 2346 EHPadWorkList.clear(); 2347 } 2348 2349 void MachineBlockPlacement::buildCFGChains() { 2350 // Ensure that every BB in the function has an associated chain to simplify 2351 // the assumptions of the remaining algorithm. 2352 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2353 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; 2354 ++FI) { 2355 MachineBasicBlock *BB = &*FI; 2356 BlockChain *Chain = 2357 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 2358 // Also, merge any blocks which we cannot reason about and must preserve 2359 // the exact fallthrough behavior for. 2360 while (true) { 2361 Cond.clear(); 2362 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2363 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 2364 break; 2365 2366 MachineFunction::iterator NextFI = std::next(FI); 2367 MachineBasicBlock *NextBB = &*NextFI; 2368 // Ensure that the layout successor is a viable block, as we know that 2369 // fallthrough is a possibility. 2370 assert(NextFI != FE && "Can't fallthrough past the last block."); 2371 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 2372 << getBlockName(BB) << " -> " << getBlockName(NextBB) 2373 << "\n"); 2374 Chain->merge(NextBB, nullptr); 2375 #ifndef NDEBUG 2376 BlocksWithUnanalyzableExits.insert(&*BB); 2377 #endif 2378 FI = NextFI; 2379 BB = NextBB; 2380 } 2381 } 2382 2383 // Build any loop-based chains. 2384 PreferredLoopExit = nullptr; 2385 for (MachineLoop *L : *MLI) 2386 buildLoopChains(*L); 2387 2388 assert(BlockWorkList.empty() && 2389 "BlockWorkList should be empty before building final chain."); 2390 assert(EHPadWorkList.empty() && 2391 "EHPadWorkList should be empty before building final chain."); 2392 2393 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 2394 for (MachineBasicBlock &MBB : *F) 2395 fillWorkLists(&MBB, UpdatedPreds); 2396 2397 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2398 buildChain(&F->front(), FunctionChain); 2399 2400 #ifndef NDEBUG 2401 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; 2402 #endif 2403 LLVM_DEBUG({ 2404 // Crash at the end so we get all of the debugging output first. 2405 bool BadFunc = false; 2406 FunctionBlockSetType FunctionBlockSet; 2407 for (MachineBasicBlock &MBB : *F) 2408 FunctionBlockSet.insert(&MBB); 2409 2410 for (MachineBasicBlock *ChainBB : FunctionChain) 2411 if (!FunctionBlockSet.erase(ChainBB)) { 2412 BadFunc = true; 2413 dbgs() << "Function chain contains a block not in the function!\n" 2414 << " Bad block: " << getBlockName(ChainBB) << "\n"; 2415 } 2416 2417 if (!FunctionBlockSet.empty()) { 2418 BadFunc = true; 2419 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 2420 dbgs() << "Function contains blocks never placed into a chain!\n" 2421 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 2422 } 2423 assert(!BadFunc && "Detected problems with the block placement."); 2424 }); 2425 2426 // Splice the blocks into place. 2427 MachineFunction::iterator InsertPos = F->begin(); 2428 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); 2429 for (MachineBasicBlock *ChainBB : FunctionChain) { 2430 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 2431 : " ... ") 2432 << getBlockName(ChainBB) << "\n"); 2433 if (InsertPos != MachineFunction::iterator(ChainBB)) 2434 F->splice(InsertPos, ChainBB); 2435 else 2436 ++InsertPos; 2437 2438 // Update the terminator of the previous block. 2439 if (ChainBB == *FunctionChain.begin()) 2440 continue; 2441 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 2442 2443 // FIXME: It would be awesome of updateTerminator would just return rather 2444 // than assert when the branch cannot be analyzed in order to remove this 2445 // boiler plate. 2446 Cond.clear(); 2447 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2448 2449 #ifndef NDEBUG 2450 if (!BlocksWithUnanalyzableExits.count(PrevBB)) { 2451 // Given the exact block placement we chose, we may actually not _need_ to 2452 // be able to edit PrevBB's terminator sequence, but not being _able_ to 2453 // do that at this point is a bug. 2454 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || 2455 !PrevBB->canFallThrough()) && 2456 "Unexpected block with un-analyzable fallthrough!"); 2457 Cond.clear(); 2458 TBB = FBB = nullptr; 2459 } 2460 #endif 2461 2462 // The "PrevBB" is not yet updated to reflect current code layout, so, 2463 // o. it may fall-through to a block without explicit "goto" instruction 2464 // before layout, and no longer fall-through it after layout; or 2465 // o. just opposite. 2466 // 2467 // analyzeBranch() may return erroneous value for FBB when these two 2468 // situations take place. For the first scenario FBB is mistakenly set NULL; 2469 // for the 2nd scenario, the FBB, which is expected to be NULL, is 2470 // mistakenly pointing to "*BI". 2471 // Thus, if the future change needs to use FBB before the layout is set, it 2472 // has to correct FBB first by using the code similar to the following: 2473 // 2474 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 2475 // PrevBB->updateTerminator(); 2476 // Cond.clear(); 2477 // TBB = FBB = nullptr; 2478 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { 2479 // // FIXME: This should never take place. 2480 // TBB = FBB = nullptr; 2481 // } 2482 // } 2483 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) 2484 PrevBB->updateTerminator(); 2485 } 2486 2487 // Fixup the last block. 2488 Cond.clear(); 2489 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2490 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) 2491 F->back().updateTerminator(); 2492 2493 BlockWorkList.clear(); 2494 EHPadWorkList.clear(); 2495 } 2496 2497 void MachineBlockPlacement::optimizeBranches() { 2498 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2499 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 2500 2501 // Now that all the basic blocks in the chain have the proper layout, 2502 // make a final call to AnalyzeBranch with AllowModify set. 2503 // Indeed, the target may be able to optimize the branches in a way we 2504 // cannot because all branches may not be analyzable. 2505 // E.g., the target may be able to remove an unconditional branch to 2506 // a fallthrough when it occurs after predicated terminators. 2507 for (MachineBasicBlock *ChainBB : FunctionChain) { 2508 Cond.clear(); 2509 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 2510 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { 2511 // If PrevBB has a two-way branch, try to re-order the branches 2512 // such that we branch to the successor with higher probability first. 2513 if (TBB && !Cond.empty() && FBB && 2514 MBPI->getEdgeProbability(ChainBB, FBB) > 2515 MBPI->getEdgeProbability(ChainBB, TBB) && 2516 !TII->reverseBranchCondition(Cond)) { 2517 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " 2518 << getBlockName(ChainBB) << "\n"); 2519 LLVM_DEBUG(dbgs() << " Edge probability: " 2520 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " 2521 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); 2522 DebugLoc dl; // FIXME: this is nowhere 2523 TII->removeBranch(*ChainBB); 2524 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); 2525 ChainBB->updateTerminator(); 2526 } 2527 } 2528 } 2529 } 2530 2531 void MachineBlockPlacement::alignBlocks() { 2532 // Walk through the backedges of the function now that we have fully laid out 2533 // the basic blocks and align the destination of each backedge. We don't rely 2534 // exclusively on the loop info here so that we can align backedges in 2535 // unnatural CFGs and backedges that were introduced purely because of the 2536 // loop rotations done during this layout pass. 2537 if (F->getFunction().optForMinSize() || 2538 (F->getFunction().optForSize() && !TLI->alignLoopsWithOptSize())) 2539 return; 2540 BlockChain &FunctionChain = *BlockToChain[&F->front()]; 2541 if (FunctionChain.begin() == FunctionChain.end()) 2542 return; // Empty chain. 2543 2544 const BranchProbability ColdProb(1, 5); // 20% 2545 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); 2546 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 2547 for (MachineBasicBlock *ChainBB : FunctionChain) { 2548 if (ChainBB == *FunctionChain.begin()) 2549 continue; 2550 2551 // Don't align non-looping basic blocks. These are unlikely to execute 2552 // enough times to matter in practice. Note that we'll still handle 2553 // unnatural CFGs inside of a natural outer loop (the common case) and 2554 // rotated loops. 2555 MachineLoop *L = MLI->getLoopFor(ChainBB); 2556 if (!L) 2557 continue; 2558 2559 unsigned Align = TLI->getPrefLoopAlignment(L); 2560 if (!Align) 2561 continue; // Don't care about loop alignment. 2562 2563 // If the block is cold relative to the function entry don't waste space 2564 // aligning it. 2565 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 2566 if (Freq < WeightedEntryFreq) 2567 continue; 2568 2569 // If the block is cold relative to its loop header, don't align it 2570 // regardless of what edges into the block exist. 2571 MachineBasicBlock *LoopHeader = L->getHeader(); 2572 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 2573 if (Freq < (LoopHeaderFreq * ColdProb)) 2574 continue; 2575 2576 // Check for the existence of a non-layout predecessor which would benefit 2577 // from aligning this block. 2578 MachineBasicBlock *LayoutPred = 2579 &*std::prev(MachineFunction::iterator(ChainBB)); 2580 2581 // Force alignment if all the predecessors are jumps. We already checked 2582 // that the block isn't cold above. 2583 if (!LayoutPred->isSuccessor(ChainBB)) { 2584 ChainBB->setAlignment(Align); 2585 continue; 2586 } 2587 2588 // Align this block if the layout predecessor's edge into this block is 2589 // cold relative to the block. When this is true, other predecessors make up 2590 // all of the hot entries into the block and thus alignment is likely to be 2591 // important. 2592 BranchProbability LayoutProb = 2593 MBPI->getEdgeProbability(LayoutPred, ChainBB); 2594 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 2595 if (LayoutEdgeFreq <= (Freq * ColdProb)) 2596 ChainBB->setAlignment(Align); 2597 } 2598 } 2599 2600 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if 2601 /// it was duplicated into its chain predecessor and removed. 2602 /// \p BB - Basic block that may be duplicated. 2603 /// 2604 /// \p LPred - Chosen layout predecessor of \p BB. 2605 /// Updated to be the chain end if LPred is removed. 2606 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2607 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2608 /// Used to identify which blocks to update predecessor 2609 /// counts. 2610 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2611 /// chosen in the given order due to unnatural CFG 2612 /// only needed if \p BB is removed and 2613 /// \p PrevUnplacedBlockIt pointed to \p BB. 2614 /// @return true if \p BB was removed. 2615 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( 2616 MachineBasicBlock *BB, MachineBasicBlock *&LPred, 2617 const MachineBasicBlock *LoopHeaderBB, 2618 BlockChain &Chain, BlockFilterSet *BlockFilter, 2619 MachineFunction::iterator &PrevUnplacedBlockIt) { 2620 bool Removed, DuplicatedToLPred; 2621 bool DuplicatedToOriginalLPred; 2622 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, 2623 PrevUnplacedBlockIt, 2624 DuplicatedToLPred); 2625 if (!Removed) 2626 return false; 2627 DuplicatedToOriginalLPred = DuplicatedToLPred; 2628 // Iteratively try to duplicate again. It can happen that a block that is 2629 // duplicated into is still small enough to be duplicated again. 2630 // No need to call markBlockSuccessors in this case, as the blocks being 2631 // duplicated from here on are already scheduled. 2632 // Note that DuplicatedToLPred always implies Removed. 2633 while (DuplicatedToLPred) { 2634 assert(Removed && "Block must have been removed to be duplicated into its " 2635 "layout predecessor."); 2636 MachineBasicBlock *DupBB, *DupPred; 2637 // The removal callback causes Chain.end() to be updated when a block is 2638 // removed. On the first pass through the loop, the chain end should be the 2639 // same as it was on function entry. On subsequent passes, because we are 2640 // duplicating the block at the end of the chain, if it is removed the 2641 // chain will have shrunk by one block. 2642 BlockChain::iterator ChainEnd = Chain.end(); 2643 DupBB = *(--ChainEnd); 2644 // Now try to duplicate again. 2645 if (ChainEnd == Chain.begin()) 2646 break; 2647 DupPred = *std::prev(ChainEnd); 2648 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, 2649 PrevUnplacedBlockIt, 2650 DuplicatedToLPred); 2651 } 2652 // If BB was duplicated into LPred, it is now scheduled. But because it was 2653 // removed, markChainSuccessors won't be called for its chain. Instead we 2654 // call markBlockSuccessors for LPred to achieve the same effect. This must go 2655 // at the end because repeating the tail duplication can increase the number 2656 // of unscheduled predecessors. 2657 LPred = *std::prev(Chain.end()); 2658 if (DuplicatedToOriginalLPred) 2659 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); 2660 return true; 2661 } 2662 2663 /// Tail duplicate \p BB into (some) predecessors if profitable. 2664 /// \p BB - Basic block that may be duplicated 2665 /// \p LPred - Chosen layout predecessor of \p BB 2666 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. 2667 /// \p BlockFilter - Set of blocks that belong to the loop being laid out. 2668 /// Used to identify which blocks to update predecessor 2669 /// counts. 2670 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was 2671 /// chosen in the given order due to unnatural CFG 2672 /// only needed if \p BB is removed and 2673 /// \p PrevUnplacedBlockIt pointed to \p BB. 2674 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will 2675 /// only be true if the block was removed. 2676 /// \return - True if the block was duplicated into all preds and removed. 2677 bool MachineBlockPlacement::maybeTailDuplicateBlock( 2678 MachineBasicBlock *BB, MachineBasicBlock *LPred, 2679 BlockChain &Chain, BlockFilterSet *BlockFilter, 2680 MachineFunction::iterator &PrevUnplacedBlockIt, 2681 bool &DuplicatedToLPred) { 2682 DuplicatedToLPred = false; 2683 if (!shouldTailDuplicate(BB)) 2684 return false; 2685 2686 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() 2687 << "\n"); 2688 2689 // This has to be a callback because none of it can be done after 2690 // BB is deleted. 2691 bool Removed = false; 2692 auto RemovalCallback = 2693 [&](MachineBasicBlock *RemBB) { 2694 // Signal to outer function 2695 Removed = true; 2696 2697 // Conservative default. 2698 bool InWorkList = true; 2699 // Remove from the Chain and Chain Map 2700 if (BlockToChain.count(RemBB)) { 2701 BlockChain *Chain = BlockToChain[RemBB]; 2702 InWorkList = Chain->UnscheduledPredecessors == 0; 2703 Chain->remove(RemBB); 2704 BlockToChain.erase(RemBB); 2705 } 2706 2707 // Handle the unplaced block iterator 2708 if (&(*PrevUnplacedBlockIt) == RemBB) { 2709 PrevUnplacedBlockIt++; 2710 } 2711 2712 // Handle the Work Lists 2713 if (InWorkList) { 2714 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; 2715 if (RemBB->isEHPad()) 2716 RemoveList = EHPadWorkList; 2717 RemoveList.erase( 2718 llvm::remove_if(RemoveList, 2719 [RemBB](MachineBasicBlock *BB) { 2720 return BB == RemBB; 2721 }), 2722 RemoveList.end()); 2723 } 2724 2725 // Handle the filter set 2726 if (BlockFilter) { 2727 BlockFilter->remove(RemBB); 2728 } 2729 2730 // Remove the block from loop info. 2731 MLI->removeBlock(RemBB); 2732 if (RemBB == PreferredLoopExit) 2733 PreferredLoopExit = nullptr; 2734 2735 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " 2736 << getBlockName(RemBB) << "\n"); 2737 }; 2738 auto RemovalCallbackRef = 2739 function_ref<void(MachineBasicBlock*)>(RemovalCallback); 2740 2741 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; 2742 bool IsSimple = TailDup.isSimpleBB(BB); 2743 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, 2744 &DuplicatedPreds, &RemovalCallbackRef); 2745 2746 // Update UnscheduledPredecessors to reflect tail-duplication. 2747 DuplicatedToLPred = false; 2748 for (MachineBasicBlock *Pred : DuplicatedPreds) { 2749 // We're only looking for unscheduled predecessors that match the filter. 2750 BlockChain* PredChain = BlockToChain[Pred]; 2751 if (Pred == LPred) 2752 DuplicatedToLPred = true; 2753 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) 2754 || PredChain == &Chain) 2755 continue; 2756 for (MachineBasicBlock *NewSucc : Pred->successors()) { 2757 if (BlockFilter && !BlockFilter->count(NewSucc)) 2758 continue; 2759 BlockChain *NewChain = BlockToChain[NewSucc]; 2760 if (NewChain != &Chain && NewChain != PredChain) 2761 NewChain->UnscheduledPredecessors++; 2762 } 2763 } 2764 return Removed; 2765 } 2766 2767 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { 2768 if (skipFunction(MF.getFunction())) 2769 return false; 2770 2771 // Check for single-block functions and skip them. 2772 if (std::next(MF.begin()) == MF.end()) 2773 return false; 2774 2775 F = &MF; 2776 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2777 MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( 2778 getAnalysis<MachineBlockFrequencyInfo>()); 2779 MLI = &getAnalysis<MachineLoopInfo>(); 2780 TII = MF.getSubtarget().getInstrInfo(); 2781 TLI = MF.getSubtarget().getTargetLowering(); 2782 MPDT = nullptr; 2783 2784 // Initialize PreferredLoopExit to nullptr here since it may never be set if 2785 // there are no MachineLoops. 2786 PreferredLoopExit = nullptr; 2787 2788 assert(BlockToChain.empty() && 2789 "BlockToChain map should be empty before starting placement."); 2790 assert(ComputedEdges.empty() && 2791 "Computed Edge map should be empty before starting placement."); 2792 2793 unsigned TailDupSize = TailDupPlacementThreshold; 2794 // If only the aggressive threshold is explicitly set, use it. 2795 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && 2796 TailDupPlacementThreshold.getNumOccurrences() == 0) 2797 TailDupSize = TailDupPlacementAggressiveThreshold; 2798 2799 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 2800 // For aggressive optimization, we can adjust some thresholds to be less 2801 // conservative. 2802 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { 2803 // At O3 we should be more willing to copy blocks for tail duplication. This 2804 // increases size pressure, so we only do it at O3 2805 // Do this unless only the regular threshold is explicitly set. 2806 if (TailDupPlacementThreshold.getNumOccurrences() == 0 || 2807 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) 2808 TailDupSize = TailDupPlacementAggressiveThreshold; 2809 } 2810 2811 if (allowTailDupPlacement()) { 2812 MPDT = &getAnalysis<MachinePostDominatorTree>(); 2813 if (MF.getFunction().optForSize()) 2814 TailDupSize = 1; 2815 bool PreRegAlloc = false; 2816 TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); 2817 precomputeTriangleChains(); 2818 } 2819 2820 buildCFGChains(); 2821 2822 // Changing the layout can create new tail merging opportunities. 2823 // TailMerge can create jump into if branches that make CFG irreducible for 2824 // HW that requires structured CFG. 2825 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && 2826 PassConfig->getEnableTailMerge() && 2827 BranchFoldPlacement; 2828 // No tail merging opportunities if the block number is less than four. 2829 if (MF.size() > 3 && EnableTailMerge) { 2830 unsigned TailMergeSize = TailDupSize + 1; 2831 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, 2832 *MBPI, TailMergeSize); 2833 2834 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), 2835 getAnalysisIfAvailable<MachineModuleInfo>(), MLI, 2836 /*AfterBlockPlacement=*/true)) { 2837 // Redo the layout if tail merging creates/removes/moves blocks. 2838 BlockToChain.clear(); 2839 ComputedEdges.clear(); 2840 // Must redo the post-dominator tree if blocks were changed. 2841 if (MPDT) 2842 MPDT->runOnMachineFunction(MF); 2843 ChainAllocator.DestroyAll(); 2844 buildCFGChains(); 2845 } 2846 } 2847 2848 optimizeBranches(); 2849 alignBlocks(); 2850 2851 BlockToChain.clear(); 2852 ComputedEdges.clear(); 2853 ChainAllocator.DestroyAll(); 2854 2855 if (AlignAllBlock) 2856 // Align all of the blocks in the function to a specific alignment. 2857 for (MachineBasicBlock &MBB : MF) 2858 MBB.setAlignment(AlignAllBlock); 2859 else if (AlignAllNonFallThruBlocks) { 2860 // Align all of the blocks that have no fall-through predecessors to a 2861 // specific alignment. 2862 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { 2863 auto LayoutPred = std::prev(MBI); 2864 if (!LayoutPred->isSuccessor(&*MBI)) 2865 MBI->setAlignment(AlignAllNonFallThruBlocks); 2866 } 2867 } 2868 if (ViewBlockLayoutWithBFI != GVDT_None && 2869 (ViewBlockFreqFuncName.empty() || 2870 F->getFunction().getName().equals(ViewBlockFreqFuncName))) { 2871 MBFI->view("MBP." + MF.getName(), false); 2872 } 2873 2874 2875 // We always return true as we have no way to track whether the final order 2876 // differs from the original order. 2877 return true; 2878 } 2879 2880 namespace { 2881 2882 /// A pass to compute block placement statistics. 2883 /// 2884 /// A separate pass to compute interesting statistics for evaluating block 2885 /// placement. This is separate from the actual placement pass so that they can 2886 /// be computed in the absence of any placement transformations or when using 2887 /// alternative placement strategies. 2888 class MachineBlockPlacementStats : public MachineFunctionPass { 2889 /// A handle to the branch probability pass. 2890 const MachineBranchProbabilityInfo *MBPI; 2891 2892 /// A handle to the function-wide block frequency pass. 2893 const MachineBlockFrequencyInfo *MBFI; 2894 2895 public: 2896 static char ID; // Pass identification, replacement for typeid 2897 2898 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 2899 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 2900 } 2901 2902 bool runOnMachineFunction(MachineFunction &F) override; 2903 2904 void getAnalysisUsage(AnalysisUsage &AU) const override { 2905 AU.addRequired<MachineBranchProbabilityInfo>(); 2906 AU.addRequired<MachineBlockFrequencyInfo>(); 2907 AU.setPreservesAll(); 2908 MachineFunctionPass::getAnalysisUsage(AU); 2909 } 2910 }; 2911 2912 } // end anonymous namespace 2913 2914 char MachineBlockPlacementStats::ID = 0; 2915 2916 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 2917 2918 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 2919 "Basic Block Placement Stats", false, false) 2920 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 2921 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2922 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 2923 "Basic Block Placement Stats", false, false) 2924 2925 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 2926 // Check for single-block functions and skip them. 2927 if (std::next(F.begin()) == F.end()) 2928 return false; 2929 2930 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 2931 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2932 2933 for (MachineBasicBlock &MBB : F) { 2934 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 2935 Statistic &NumBranches = 2936 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 2937 Statistic &BranchTakenFreq = 2938 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 2939 for (MachineBasicBlock *Succ : MBB.successors()) { 2940 // Skip if this successor is a fallthrough. 2941 if (MBB.isLayoutSuccessor(Succ)) 2942 continue; 2943 2944 BlockFrequency EdgeFreq = 2945 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 2946 ++NumBranches; 2947 BranchTakenFreq += EdgeFreq.getFrequency(); 2948 } 2949 } 2950 2951 return false; 2952 } 2953