1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFunctionPass.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/Support/Allocator.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetSubtargetInfo.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "block-placement" 52 53 STATISTIC(NumCondBranches, "Number of conditional branches"); 54 STATISTIC(NumUncondBranches, "Number of unconditional branches"); 55 STATISTIC(CondBranchTakenFreq, 56 "Potential frequency of taking conditional branches"); 57 STATISTIC(UncondBranchTakenFreq, 58 "Potential frequency of taking unconditional branches"); 59 60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 61 cl::desc("Force the alignment of all " 62 "blocks in the function."), 63 cl::init(0), cl::Hidden); 64 65 static cl::opt<unsigned> AlignAllNonFallThruBlocks( 66 "align-all-nofallthru-blocks", 67 cl::desc("Force the alignment of all " 68 "blocks that have no fall-through predecessors (i.e. don't add " 69 "nops that are executed)."), 70 cl::init(0), cl::Hidden); 71 72 // FIXME: Find a good default for this flag and remove the flag. 73 static cl::opt<unsigned> ExitBlockBias( 74 "block-placement-exit-block-bias", 75 cl::desc("Block frequency percentage a loop exit block needs " 76 "over the original exit to be considered the new exit."), 77 cl::init(0), cl::Hidden); 78 79 static cl::opt<bool> OutlineOptionalBranches( 80 "outline-optional-branches", 81 cl::desc("Put completely optional branches, i.e. branches with a common " 82 "post dominator, out of line."), 83 cl::init(false), cl::Hidden); 84 85 static cl::opt<unsigned> OutlineOptionalThreshold( 86 "outline-optional-threshold", 87 cl::desc("Don't outline optional branches that are a single block with an " 88 "instruction count below this threshold"), 89 cl::init(4), cl::Hidden); 90 91 static cl::opt<unsigned> LoopToColdBlockRatio( 92 "loop-to-cold-block-ratio", 93 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " 94 "(frequency of block) is greater than this ratio"), 95 cl::init(5), cl::Hidden); 96 97 static cl::opt<bool> 98 PreciseRotationCost("precise-rotation-cost", 99 cl::desc("Model the cost of loop rotation more " 100 "precisely by using profile data."), 101 cl::init(false), cl::Hidden); 102 103 static cl::opt<unsigned> MisfetchCost( 104 "misfetch-cost", 105 cl::desc("Cost that models the probablistic risk of an instruction " 106 "misfetch due to a jump comparing to falling through, whose cost " 107 "is zero."), 108 cl::init(1), cl::Hidden); 109 110 static cl::opt<unsigned> JumpInstCost("jump-inst-cost", 111 cl::desc("Cost of jump instructions."), 112 cl::init(1), cl::Hidden); 113 114 namespace { 115 class BlockChain; 116 /// \brief Type for our function-wide basic block -> block chain mapping. 117 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 118 } 119 120 namespace { 121 /// \brief A chain of blocks which will be laid out contiguously. 122 /// 123 /// This is the datastructure representing a chain of consecutive blocks that 124 /// are profitable to layout together in order to maximize fallthrough 125 /// probabilities and code locality. We also can use a block chain to represent 126 /// a sequence of basic blocks which have some external (correctness) 127 /// requirement for sequential layout. 128 /// 129 /// Chains can be built around a single basic block and can be merged to grow 130 /// them. They participate in a block-to-chain mapping, which is updated 131 /// automatically as chains are merged together. 132 class BlockChain { 133 /// \brief The sequence of blocks belonging to this chain. 134 /// 135 /// This is the sequence of blocks for a particular chain. These will be laid 136 /// out in-order within the function. 137 SmallVector<MachineBasicBlock *, 4> Blocks; 138 139 /// \brief A handle to the function-wide basic block to block chain mapping. 140 /// 141 /// This is retained in each block chain to simplify the computation of child 142 /// block chains for SCC-formation and iteration. We store the edges to child 143 /// basic blocks, and map them back to their associated chains using this 144 /// structure. 145 BlockToChainMapType &BlockToChain; 146 147 public: 148 /// \brief Construct a new BlockChain. 149 /// 150 /// This builds a new block chain representing a single basic block in the 151 /// function. It also registers itself as the chain that block participates 152 /// in with the BlockToChain mapping. 153 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 154 : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { 155 assert(BB && "Cannot create a chain with a null basic block"); 156 BlockToChain[BB] = this; 157 } 158 159 /// \brief Iterator over blocks within the chain. 160 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 161 162 /// \brief Beginning of blocks within the chain. 163 iterator begin() { return Blocks.begin(); } 164 165 /// \brief End of blocks within the chain. 166 iterator end() { return Blocks.end(); } 167 168 /// \brief Merge a block chain into this one. 169 /// 170 /// This routine merges a block chain into this one. It takes care of forming 171 /// a contiguous sequence of basic blocks, updating the edge list, and 172 /// updating the block -> chain mapping. It does not free or tear down the 173 /// old chain, but the old chain's block list is no longer valid. 174 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 175 assert(BB); 176 assert(!Blocks.empty()); 177 178 // Fast path in case we don't have a chain already. 179 if (!Chain) { 180 assert(!BlockToChain[BB]); 181 Blocks.push_back(BB); 182 BlockToChain[BB] = this; 183 return; 184 } 185 186 assert(BB == *Chain->begin()); 187 assert(Chain->begin() != Chain->end()); 188 189 // Update the incoming blocks to point to this chain, and add them to the 190 // chain structure. 191 for (MachineBasicBlock *ChainBB : *Chain) { 192 Blocks.push_back(ChainBB); 193 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); 194 BlockToChain[ChainBB] = this; 195 } 196 } 197 198 #ifndef NDEBUG 199 /// \brief Dump the blocks in this chain. 200 LLVM_DUMP_METHOD void dump() { 201 for (MachineBasicBlock *MBB : *this) 202 MBB->dump(); 203 } 204 #endif // NDEBUG 205 206 /// \brief Count of predecessors of any block within the chain which have not 207 /// yet been scheduled. In general, we will delay scheduling this chain 208 /// until those predecessors are scheduled (or we find a sufficiently good 209 /// reason to override this heuristic.) Note that when forming loop chains, 210 /// blocks outside the loop are ignored and treated as if they were already 211 /// scheduled. 212 /// 213 /// Note: This field is reinitialized multiple times - once for each loop, 214 /// and then once for the function as a whole. 215 unsigned UnscheduledPredecessors; 216 }; 217 } 218 219 namespace { 220 class MachineBlockPlacement : public MachineFunctionPass { 221 /// \brief A typedef for a block filter set. 222 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 223 224 /// \brief A handle to the branch probability pass. 225 const MachineBranchProbabilityInfo *MBPI; 226 227 /// \brief A handle to the function-wide block frequency pass. 228 const MachineBlockFrequencyInfo *MBFI; 229 230 /// \brief A handle to the loop info. 231 const MachineLoopInfo *MLI; 232 233 /// \brief A handle to the target's instruction info. 234 const TargetInstrInfo *TII; 235 236 /// \brief A handle to the target's lowering info. 237 const TargetLoweringBase *TLI; 238 239 /// \brief A handle to the post dominator tree. 240 MachineDominatorTree *MDT; 241 242 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate 243 /// all terminators of the MachineFunction. 244 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; 245 246 /// \brief Allocator and owner of BlockChain structures. 247 /// 248 /// We build BlockChains lazily while processing the loop structure of 249 /// a function. To reduce malloc traffic, we allocate them using this 250 /// slab-like allocator, and destroy them after the pass completes. An 251 /// important guarantee is that this allocator produces stable pointers to 252 /// the chains. 253 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 254 255 /// \brief Function wide BasicBlock to BlockChain mapping. 256 /// 257 /// This mapping allows efficiently moving from any given basic block to the 258 /// BlockChain it participates in, if any. We use it to, among other things, 259 /// allow implicitly defining edges between chains as the existing edges 260 /// between basic blocks. 261 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 262 263 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 264 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 265 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 266 const BlockFilterSet *BlockFilter = nullptr); 267 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 268 BlockChain &Chain, 269 const BlockFilterSet *BlockFilter); 270 MachineBasicBlock * 271 selectBestCandidateBlock(BlockChain &Chain, 272 SmallVectorImpl<MachineBasicBlock *> &WorkList); 273 MachineBasicBlock * 274 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain, 275 MachineFunction::iterator &PrevUnplacedBlockIt, 276 const BlockFilterSet *BlockFilter); 277 278 /// \brief Add a basic block to the work list if it is apropriate. 279 /// 280 /// If the optional parameter BlockFilter is provided, only MBB 281 /// present in the set will be added to the worklist. If nullptr 282 /// is provided, no filtering occurs. 283 void fillWorkLists(MachineBasicBlock *MBB, 284 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 285 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 286 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 287 const BlockFilterSet *BlockFilter); 288 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 289 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 290 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 291 const BlockFilterSet *BlockFilter = nullptr); 292 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 293 const BlockFilterSet &LoopBlockSet); 294 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L, 295 const BlockFilterSet &LoopBlockSet); 296 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L); 297 void buildLoopChains(MachineFunction &F, MachineLoop &L); 298 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 299 const BlockFilterSet &LoopBlockSet); 300 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, 301 const BlockFilterSet &LoopBlockSet); 302 void buildCFGChains(MachineFunction &F); 303 304 public: 305 static char ID; // Pass identification, replacement for typeid 306 MachineBlockPlacement() : MachineFunctionPass(ID) { 307 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 308 } 309 310 bool runOnMachineFunction(MachineFunction &F) override; 311 312 void getAnalysisUsage(AnalysisUsage &AU) const override { 313 AU.addRequired<MachineBranchProbabilityInfo>(); 314 AU.addRequired<MachineBlockFrequencyInfo>(); 315 AU.addRequired<MachineDominatorTree>(); 316 AU.addRequired<MachineLoopInfo>(); 317 MachineFunctionPass::getAnalysisUsage(AU); 318 } 319 }; 320 } 321 322 char MachineBlockPlacement::ID = 0; 323 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 324 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", 325 "Branch Probability Basic Block Placement", false, false) 326 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 327 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 328 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 329 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 330 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", 331 "Branch Probability Basic Block Placement", false, false) 332 333 #ifndef NDEBUG 334 /// \brief Helper to print the name of a MBB. 335 /// 336 /// Only used by debug logging. 337 static std::string getBlockName(MachineBasicBlock *BB) { 338 std::string Result; 339 raw_string_ostream OS(Result); 340 OS << "BB#" << BB->getNumber(); 341 OS << " ('" << BB->getName() << "')"; 342 OS.flush(); 343 return Result; 344 } 345 #endif 346 347 /// \brief Mark a chain's successors as having one fewer preds. 348 /// 349 /// When a chain is being merged into the "placed" chain, this routine will 350 /// quickly walk the successors of each block in the chain and mark them as 351 /// having one fewer active predecessor. It also adds any successors of this 352 /// chain which reach the zero-predecessor state to the worklist passed in. 353 void MachineBlockPlacement::markChainSuccessors( 354 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, 355 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 356 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 357 const BlockFilterSet *BlockFilter) { 358 // Walk all the blocks in this chain, marking their successors as having 359 // a predecessor placed. 360 for (MachineBasicBlock *MBB : Chain) { 361 // Add any successors for which this is the only un-placed in-loop 362 // predecessor to the worklist as a viable candidate for CFG-neutral 363 // placement. No subsequent placement of this block will violate the CFG 364 // shape, so we get to use heuristics to choose a favorable placement. 365 for (MachineBasicBlock *Succ : MBB->successors()) { 366 if (BlockFilter && !BlockFilter->count(Succ)) 367 continue; 368 BlockChain &SuccChain = *BlockToChain[Succ]; 369 // Disregard edges within a fixed chain, or edges to the loop header. 370 if (&Chain == &SuccChain || Succ == LoopHeaderBB) 371 continue; 372 373 // This is a cross-chain edge that is within the loop, so decrement the 374 // loop predecessor count of the destination chain. 375 if (SuccChain.UnscheduledPredecessors == 0 || 376 --SuccChain.UnscheduledPredecessors > 0) 377 continue; 378 379 auto *MBB = *SuccChain.begin(); 380 if (MBB->isEHPad()) 381 EHPadWorkList.push_back(MBB); 382 else 383 BlockWorkList.push_back(MBB); 384 } 385 } 386 } 387 388 /// \brief Select the best successor for a block. 389 /// 390 /// This looks across all successors of a particular block and attempts to 391 /// select the "best" one to be the layout successor. It only considers direct 392 /// successors which also pass the block filter. It will attempt to avoid 393 /// breaking CFG structure, but cave and break such structures in the case of 394 /// very hot successor edges. 395 /// 396 /// \returns The best successor block found, or null if none are viable. 397 MachineBasicBlock * 398 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, 399 BlockChain &Chain, 400 const BlockFilterSet *BlockFilter) { 401 const BranchProbability HotProb(4, 5); // 80% 402 403 MachineBasicBlock *BestSucc = nullptr; 404 auto BestProb = BranchProbability::getZero(); 405 406 // Adjust edge probabilities by excluding edges pointing to blocks that is 407 // either not in BlockFilter or is already in the current chain. Consider the 408 // following CFG: 409 // 410 // --->A 411 // | / \ 412 // | B C 413 // | \ / \ 414 // ----D E 415 // 416 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after 417 // A->C is chosen as a fall-through, D won't be selected as a successor of C 418 // due to CFG constraint (the probability of C->D is not greater than 419 // HotProb). If we exclude E that is not in BlockFilter when calculating the 420 // probability of C->D, D will be selected and we will get A C D B as the 421 // layout of this loop. 422 auto AdjustedSumProb = BranchProbability::getOne(); 423 SmallVector<MachineBasicBlock *, 4> Successors; 424 for (MachineBasicBlock *Succ : BB->successors()) { 425 bool SkipSucc = false; 426 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { 427 SkipSucc = true; 428 } else { 429 BlockChain *SuccChain = BlockToChain[Succ]; 430 if (SuccChain == &Chain) { 431 SkipSucc = true; 432 } else if (Succ != *SuccChain->begin()) { 433 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 434 continue; 435 } 436 } 437 if (SkipSucc) 438 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); 439 else 440 Successors.push_back(Succ); 441 } 442 443 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 444 for (MachineBasicBlock *Succ : Successors) { 445 BranchProbability SuccProb; 446 uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator(); 447 uint32_t SuccProbD = AdjustedSumProb.getNumerator(); 448 if (SuccProbN >= SuccProbD) 449 SuccProb = BranchProbability::getOne(); 450 else 451 SuccProb = BranchProbability(SuccProbN, SuccProbD); 452 453 // If we outline optional branches, look whether Succ is unavoidable, i.e. 454 // dominates all terminators of the MachineFunction. If it does, other 455 // successors must be optional. Don't do this for cold branches. 456 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() && 457 UnavoidableBlocks.count(Succ) > 0) { 458 auto HasShortOptionalBranch = [&]() { 459 for (MachineBasicBlock *Pred : Succ->predecessors()) { 460 // Check whether there is an unplaced optional branch. 461 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 462 BlockToChain[Pred] == &Chain) 463 continue; 464 // Check whether the optional branch has exactly one BB. 465 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) 466 continue; 467 // Check whether the optional branch is small. 468 if (Pred->size() < OutlineOptionalThreshold) 469 return true; 470 } 471 return false; 472 }; 473 if (!HasShortOptionalBranch()) 474 return Succ; 475 } 476 477 // Only consider successors which are either "hot", or wouldn't violate 478 // any CFG constraints. 479 BlockChain &SuccChain = *BlockToChain[Succ]; 480 if (SuccChain.UnscheduledPredecessors != 0) { 481 if (SuccProb < HotProb) { 482 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 483 << " (prob) (CFG conflict)\n"); 484 continue; 485 } 486 487 // Make sure that a hot successor doesn't have a globally more 488 // important predecessor. 489 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); 490 BlockFrequency CandidateEdgeFreq = 491 MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl(); 492 bool BadCFGConflict = false; 493 for (MachineBasicBlock *Pred : Succ->predecessors()) { 494 if (Pred == Succ || BlockToChain[Pred] == &SuccChain || 495 (BlockFilter && !BlockFilter->count(Pred)) || 496 BlockToChain[Pred] == &Chain) 497 continue; 498 BlockFrequency PredEdgeFreq = 499 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 500 if (PredEdgeFreq >= CandidateEdgeFreq) { 501 BadCFGConflict = true; 502 break; 503 } 504 } 505 if (BadCFGConflict) { 506 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 507 << " (prob) (non-cold CFG conflict)\n"); 508 continue; 509 } 510 } 511 512 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 513 << " (prob)" 514 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") 515 << "\n"); 516 if (BestSucc && BestProb >= SuccProb) 517 continue; 518 BestSucc = Succ; 519 BestProb = SuccProb; 520 } 521 return BestSucc; 522 } 523 524 /// \brief Select the best block from a worklist. 525 /// 526 /// This looks through the provided worklist as a list of candidate basic 527 /// blocks and select the most profitable one to place. The definition of 528 /// profitable only really makes sense in the context of a loop. This returns 529 /// the most frequently visited block in the worklist, which in the case of 530 /// a loop, is the one most desirable to be physically close to the rest of the 531 /// loop body in order to improve icache behavior. 532 /// 533 /// \returns The best block found, or null if none are viable. 534 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 535 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { 536 // Once we need to walk the worklist looking for a candidate, cleanup the 537 // worklist of already placed entries. 538 // FIXME: If this shows up on profiles, it could be folded (at the cost of 539 // some code complexity) into the loop below. 540 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 541 [&](MachineBasicBlock *BB) { 542 return BlockToChain.lookup(BB) == &Chain; 543 }), 544 WorkList.end()); 545 546 if (WorkList.empty()) 547 return nullptr; 548 549 bool IsEHPad = WorkList[0]->isEHPad(); 550 551 MachineBasicBlock *BestBlock = nullptr; 552 BlockFrequency BestFreq; 553 for (MachineBasicBlock *MBB : WorkList) { 554 assert(MBB->isEHPad() == IsEHPad); 555 556 BlockChain &SuccChain = *BlockToChain[MBB]; 557 if (&SuccChain == &Chain) 558 continue; 559 560 assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); 561 562 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); 563 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; 564 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 565 566 // For ehpad, we layout the least probable first as to avoid jumping back 567 // from least probable landingpads to more probable ones. 568 // 569 // FIXME: Using probability is probably (!) not the best way to achieve 570 // this. We should probably have a more principled approach to layout 571 // cleanup code. 572 // 573 // The goal is to get: 574 // 575 // +--------------------------+ 576 // | V 577 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume 578 // 579 // Rather than: 580 // 581 // +-------------------------------------+ 582 // V | 583 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup 584 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) 585 continue; 586 587 BestBlock = MBB; 588 BestFreq = CandidateFreq; 589 } 590 591 return BestBlock; 592 } 593 594 /// \brief Retrieve the first unplaced basic block. 595 /// 596 /// This routine is called when we are unable to use the CFG to walk through 597 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 598 /// We walk through the function's blocks in order, starting from the 599 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 600 /// re-scanning the entire sequence on repeated calls to this routine. 601 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 602 MachineFunction &F, const BlockChain &PlacedChain, 603 MachineFunction::iterator &PrevUnplacedBlockIt, 604 const BlockFilterSet *BlockFilter) { 605 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 606 ++I) { 607 if (BlockFilter && !BlockFilter->count(&*I)) 608 continue; 609 if (BlockToChain[&*I] != &PlacedChain) { 610 PrevUnplacedBlockIt = I; 611 // Now select the head of the chain to which the unplaced block belongs 612 // as the block to place. This will force the entire chain to be placed, 613 // and satisfies the requirements of merging chains. 614 return *BlockToChain[&*I]->begin(); 615 } 616 } 617 return nullptr; 618 } 619 620 void MachineBlockPlacement::fillWorkLists( 621 MachineBasicBlock *MBB, 622 SmallPtrSetImpl<BlockChain *> &UpdatedPreds, 623 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 624 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 625 const BlockFilterSet *BlockFilter = nullptr) { 626 BlockChain &Chain = *BlockToChain[MBB]; 627 if (!UpdatedPreds.insert(&Chain).second) 628 return; 629 630 assert(Chain.UnscheduledPredecessors == 0); 631 for (MachineBasicBlock *ChainBB : Chain) { 632 assert(BlockToChain[ChainBB] == &Chain); 633 for (MachineBasicBlock *Pred : ChainBB->predecessors()) { 634 if (BlockFilter && !BlockFilter->count(Pred)) 635 continue; 636 if (BlockToChain[Pred] == &Chain) 637 continue; 638 ++Chain.UnscheduledPredecessors; 639 } 640 } 641 642 if (Chain.UnscheduledPredecessors != 0) 643 return; 644 645 MBB = *Chain.begin(); 646 if (MBB->isEHPad()) 647 EHPadWorkList.push_back(MBB); 648 else 649 BlockWorkList.push_back(MBB); 650 } 651 652 void MachineBlockPlacement::buildChain( 653 MachineBasicBlock *BB, BlockChain &Chain, 654 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 655 SmallVectorImpl<MachineBasicBlock *> &EHPadWorkList, 656 const BlockFilterSet *BlockFilter) { 657 assert(BB); 658 assert(BlockToChain[BB] == &Chain); 659 MachineFunction &F = *BB->getParent(); 660 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 661 662 MachineBasicBlock *LoopHeaderBB = BB; 663 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 664 BlockFilter); 665 BB = *std::prev(Chain.end()); 666 for (;;) { 667 assert(BB); 668 assert(BlockToChain[BB] == &Chain); 669 assert(*std::prev(Chain.end()) == BB); 670 671 // Look for the best viable successor if there is one to place immediately 672 // after this block. 673 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 674 675 // If an immediate successor isn't available, look for the best viable 676 // block among those we've identified as not violating the loop's CFG at 677 // this point. This won't be a fallthrough, but it will increase locality. 678 if (!BestSucc) 679 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); 680 if (!BestSucc) 681 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); 682 683 if (!BestSucc) { 684 BestSucc = 685 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter); 686 if (!BestSucc) 687 break; 688 689 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 690 "layout successor until the CFG reduces\n"); 691 } 692 693 // Place this block, updating the datastructures to reflect its placement. 694 BlockChain &SuccChain = *BlockToChain[BestSucc]; 695 // Zero out UnscheduledPredecessors for the successor we're about to merge in case 696 // we selected a successor that didn't fit naturally into the CFG. 697 SuccChain.UnscheduledPredecessors = 0; 698 DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " 699 << getBlockName(BestSucc) << "\n"); 700 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, EHPadWorkList, 701 BlockFilter); 702 Chain.merge(BestSucc, &SuccChain); 703 BB = *std::prev(Chain.end()); 704 } 705 706 DEBUG(dbgs() << "Finished forming chain for header block " 707 << getBlockName(*Chain.begin()) << "\n"); 708 } 709 710 /// \brief Find the best loop top block for layout. 711 /// 712 /// Look for a block which is strictly better than the loop header for laying 713 /// out at the top of the loop. This looks for one and only one pattern: 714 /// a latch block with no conditional exit. This block will cause a conditional 715 /// jump around it or will be the bottom of the loop if we lay it out in place, 716 /// but if it it doesn't end up at the bottom of the loop for any reason, 717 /// rotation alone won't fix it. Because such a block will always result in an 718 /// unconditional jump (for the backedge) rotating it in front of the loop 719 /// header is always profitable. 720 MachineBasicBlock * 721 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 722 const BlockFilterSet &LoopBlockSet) { 723 // Check that the header hasn't been fused with a preheader block due to 724 // crazy branches. If it has, we need to start with the header at the top to 725 // prevent pulling the preheader into the loop body. 726 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 727 if (!LoopBlockSet.count(*HeaderChain.begin())) 728 return L.getHeader(); 729 730 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) 731 << "\n"); 732 733 BlockFrequency BestPredFreq; 734 MachineBasicBlock *BestPred = nullptr; 735 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { 736 if (!LoopBlockSet.count(Pred)) 737 continue; 738 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 739 << Pred->succ_size() << " successors, "; 740 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 741 if (Pred->succ_size() > 1) 742 continue; 743 744 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 745 if (!BestPred || PredFreq > BestPredFreq || 746 (!(PredFreq < BestPredFreq) && 747 Pred->isLayoutSuccessor(L.getHeader()))) { 748 BestPred = Pred; 749 BestPredFreq = PredFreq; 750 } 751 } 752 753 // If no direct predecessor is fine, just use the loop header. 754 if (!BestPred) { 755 DEBUG(dbgs() << " final top unchanged\n"); 756 return L.getHeader(); 757 } 758 759 // Walk backwards through any straight line of predecessors. 760 while (BestPred->pred_size() == 1 && 761 (*BestPred->pred_begin())->succ_size() == 1 && 762 *BestPred->pred_begin() != L.getHeader()) 763 BestPred = *BestPred->pred_begin(); 764 765 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 766 return BestPred; 767 } 768 769 /// \brief Find the best loop exiting block for layout. 770 /// 771 /// This routine implements the logic to analyze the loop looking for the best 772 /// block to layout at the top of the loop. Typically this is done to maximize 773 /// fallthrough opportunities. 774 MachineBasicBlock * 775 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L, 776 const BlockFilterSet &LoopBlockSet) { 777 // We don't want to layout the loop linearly in all cases. If the loop header 778 // is just a normal basic block in the loop, we want to look for what block 779 // within the loop is the best one to layout at the top. However, if the loop 780 // header has be pre-merged into a chain due to predecessors not having 781 // analyzable branches, *and* the predecessor it is merged with is *not* part 782 // of the loop, rotating the header into the middle of the loop will create 783 // a non-contiguous range of blocks which is Very Bad. So start with the 784 // header and only rotate if safe. 785 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 786 if (!LoopBlockSet.count(*HeaderChain.begin())) 787 return nullptr; 788 789 BlockFrequency BestExitEdgeFreq; 790 unsigned BestExitLoopDepth = 0; 791 MachineBasicBlock *ExitingBB = nullptr; 792 // If there are exits to outer loops, loop rotation can severely limit 793 // fallthrough opportunites unless it selects such an exit. Keep a set of 794 // blocks where rotating to exit with that block will reach an outer loop. 795 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 796 797 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) 798 << "\n"); 799 for (MachineBasicBlock *MBB : L.getBlocks()) { 800 BlockChain &Chain = *BlockToChain[MBB]; 801 // Ensure that this block is at the end of a chain; otherwise it could be 802 // mid-way through an inner loop or a successor of an unanalyzable branch. 803 if (MBB != *std::prev(Chain.end())) 804 continue; 805 806 // Now walk the successors. We need to establish whether this has a viable 807 // exiting successor and whether it has a viable non-exiting successor. 808 // We store the old exiting state and restore it if a viable looping 809 // successor isn't found. 810 MachineBasicBlock *OldExitingBB = ExitingBB; 811 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 812 bool HasLoopingSucc = false; 813 for (MachineBasicBlock *Succ : MBB->successors()) { 814 if (Succ->isEHPad()) 815 continue; 816 if (Succ == MBB) 817 continue; 818 BlockChain &SuccChain = *BlockToChain[Succ]; 819 // Don't split chains, either this chain or the successor's chain. 820 if (&Chain == &SuccChain) { 821 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 822 << getBlockName(Succ) << " (chain conflict)\n"); 823 continue; 824 } 825 826 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); 827 if (LoopBlockSet.count(Succ)) { 828 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " 829 << getBlockName(Succ) << " (" << SuccProb << ")\n"); 830 HasLoopingSucc = true; 831 continue; 832 } 833 834 unsigned SuccLoopDepth = 0; 835 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { 836 SuccLoopDepth = ExitLoop->getLoopDepth(); 837 if (ExitLoop->contains(&L)) 838 BlocksExitingToOuterLoop.insert(MBB); 839 } 840 841 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; 842 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " 843 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; 844 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 845 // Note that we bias this toward an existing layout successor to retain 846 // incoming order in the absence of better information. The exit must have 847 // a frequency higher than the current exit before we consider breaking 848 // the layout. 849 BranchProbability Bias(100 - ExitBlockBias, 100); 850 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || 851 ExitEdgeFreq > BestExitEdgeFreq || 852 (MBB->isLayoutSuccessor(Succ) && 853 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 854 BestExitEdgeFreq = ExitEdgeFreq; 855 ExitingBB = MBB; 856 } 857 } 858 859 if (!HasLoopingSucc) { 860 // Restore the old exiting state, no viable looping successor was found. 861 ExitingBB = OldExitingBB; 862 BestExitEdgeFreq = OldBestExitEdgeFreq; 863 } 864 } 865 // Without a candidate exiting block or with only a single block in the 866 // loop, just use the loop header to layout the loop. 867 if (!ExitingBB || L.getNumBlocks() == 1) 868 return nullptr; 869 870 // Also, if we have exit blocks which lead to outer loops but didn't select 871 // one of them as the exiting block we are rotating toward, disable loop 872 // rotation altogether. 873 if (!BlocksExitingToOuterLoop.empty() && 874 !BlocksExitingToOuterLoop.count(ExitingBB)) 875 return nullptr; 876 877 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 878 return ExitingBB; 879 } 880 881 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 882 /// 883 /// Once we have built a chain, try to rotate it to line up the hot exit block 884 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 885 /// branches. For example, if the loop has fallthrough into its header and out 886 /// of its bottom already, don't rotate it. 887 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 888 MachineBasicBlock *ExitingBB, 889 const BlockFilterSet &LoopBlockSet) { 890 if (!ExitingBB) 891 return; 892 893 MachineBasicBlock *Top = *LoopChain.begin(); 894 bool ViableTopFallthrough = false; 895 for (MachineBasicBlock *Pred : Top->predecessors()) { 896 BlockChain *PredChain = BlockToChain[Pred]; 897 if (!LoopBlockSet.count(Pred) && 898 (!PredChain || Pred == *std::prev(PredChain->end()))) { 899 ViableTopFallthrough = true; 900 break; 901 } 902 } 903 904 // If the header has viable fallthrough, check whether the current loop 905 // bottom is a viable exiting block. If so, bail out as rotating will 906 // introduce an unnecessary branch. 907 if (ViableTopFallthrough) { 908 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 909 for (MachineBasicBlock *Succ : Bottom->successors()) { 910 BlockChain *SuccChain = BlockToChain[Succ]; 911 if (!LoopBlockSet.count(Succ) && 912 (!SuccChain || Succ == *SuccChain->begin())) 913 return; 914 } 915 } 916 917 BlockChain::iterator ExitIt = 918 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); 919 if (ExitIt == LoopChain.end()) 920 return; 921 922 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 923 } 924 925 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. 926 /// 927 /// With profile data, we can determine the cost in terms of missed fall through 928 /// opportunities when rotating a loop chain and select the best rotation. 929 /// Basically, there are three kinds of cost to consider for each rotation: 930 /// 1. The possibly missed fall through edge (if it exists) from BB out of 931 /// the loop to the loop header. 932 /// 2. The possibly missed fall through edges (if they exist) from the loop 933 /// exits to BB out of the loop. 934 /// 3. The missed fall through edge (if it exists) from the last BB to the 935 /// first BB in the loop chain. 936 /// Therefore, the cost for a given rotation is the sum of costs listed above. 937 /// We select the best rotation with the smallest cost. 938 void MachineBlockPlacement::rotateLoopWithProfile( 939 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { 940 auto HeaderBB = L.getHeader(); 941 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); 942 auto RotationPos = LoopChain.end(); 943 944 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); 945 946 // A utility lambda that scales up a block frequency by dividing it by a 947 // branch probability which is the reciprocal of the scale. 948 auto ScaleBlockFrequency = [](BlockFrequency Freq, 949 unsigned Scale) -> BlockFrequency { 950 if (Scale == 0) 951 return 0; 952 // Use operator / between BlockFrequency and BranchProbability to implement 953 // saturating multiplication. 954 return Freq / BranchProbability(1, Scale); 955 }; 956 957 // Compute the cost of the missed fall-through edge to the loop header if the 958 // chain head is not the loop header. As we only consider natural loops with 959 // single header, this computation can be done only once. 960 BlockFrequency HeaderFallThroughCost(0); 961 for (auto *Pred : HeaderBB->predecessors()) { 962 BlockChain *PredChain = BlockToChain[Pred]; 963 if (!LoopBlockSet.count(Pred) && 964 (!PredChain || Pred == *std::prev(PredChain->end()))) { 965 auto EdgeFreq = 966 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); 967 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); 968 // If the predecessor has only an unconditional jump to the header, we 969 // need to consider the cost of this jump. 970 if (Pred->succ_size() == 1) 971 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); 972 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); 973 } 974 } 975 976 // Here we collect all exit blocks in the loop, and for each exit we find out 977 // its hottest exit edge. For each loop rotation, we define the loop exit cost 978 // as the sum of frequencies of exit edges we collect here, excluding the exit 979 // edge from the tail of the loop chain. 980 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; 981 for (auto BB : LoopChain) { 982 auto LargestExitEdgeProb = BranchProbability::getZero(); 983 for (auto *Succ : BB->successors()) { 984 BlockChain *SuccChain = BlockToChain[Succ]; 985 if (!LoopBlockSet.count(Succ) && 986 (!SuccChain || Succ == *SuccChain->begin())) { 987 auto SuccProb = MBPI->getEdgeProbability(BB, Succ); 988 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); 989 } 990 } 991 if (LargestExitEdgeProb > BranchProbability::getZero()) { 992 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; 993 ExitsWithFreq.emplace_back(BB, ExitFreq); 994 } 995 } 996 997 // In this loop we iterate every block in the loop chain and calculate the 998 // cost assuming the block is the head of the loop chain. When the loop ends, 999 // we should have found the best candidate as the loop chain's head. 1000 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), 1001 EndIter = LoopChain.end(); 1002 Iter != EndIter; Iter++, TailIter++) { 1003 // TailIter is used to track the tail of the loop chain if the block we are 1004 // checking (pointed by Iter) is the head of the chain. 1005 if (TailIter == LoopChain.end()) 1006 TailIter = LoopChain.begin(); 1007 1008 auto TailBB = *TailIter; 1009 1010 // Calculate the cost by putting this BB to the top. 1011 BlockFrequency Cost = 0; 1012 1013 // If the current BB is the loop header, we need to take into account the 1014 // cost of the missed fall through edge from outside of the loop to the 1015 // header. 1016 if (Iter != HeaderIter) 1017 Cost += HeaderFallThroughCost; 1018 1019 // Collect the loop exit cost by summing up frequencies of all exit edges 1020 // except the one from the chain tail. 1021 for (auto &ExitWithFreq : ExitsWithFreq) 1022 if (TailBB != ExitWithFreq.first) 1023 Cost += ExitWithFreq.second; 1024 1025 // The cost of breaking the once fall-through edge from the tail to the top 1026 // of the loop chain. Here we need to consider three cases: 1027 // 1. If the tail node has only one successor, then we will get an 1028 // additional jmp instruction. So the cost here is (MisfetchCost + 1029 // JumpInstCost) * tail node frequency. 1030 // 2. If the tail node has two successors, then we may still get an 1031 // additional jmp instruction if the layout successor after the loop 1032 // chain is not its CFG successor. Note that the more frequently executed 1033 // jmp instruction will be put ahead of the other one. Assume the 1034 // frequency of those two branches are x and y, where x is the frequency 1035 // of the edge to the chain head, then the cost will be 1036 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. 1037 // 3. If the tail node has more than two successors (this rarely happens), 1038 // we won't consider any additional cost. 1039 if (TailBB->isSuccessor(*Iter)) { 1040 auto TailBBFreq = MBFI->getBlockFreq(TailBB); 1041 if (TailBB->succ_size() == 1) 1042 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), 1043 MisfetchCost + JumpInstCost); 1044 else if (TailBB->succ_size() == 2) { 1045 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); 1046 auto TailToHeadFreq = TailBBFreq * TailToHeadProb; 1047 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) 1048 ? TailBBFreq * TailToHeadProb.getCompl() 1049 : TailToHeadFreq; 1050 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + 1051 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); 1052 } 1053 } 1054 1055 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) 1056 << " to the top: " << Cost.getFrequency() << "\n"); 1057 1058 if (Cost < SmallestRotationCost) { 1059 SmallestRotationCost = Cost; 1060 RotationPos = Iter; 1061 } 1062 } 1063 1064 if (RotationPos != LoopChain.end()) { 1065 DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) 1066 << " to the top\n"); 1067 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); 1068 } 1069 } 1070 1071 /// \brief Collect blocks in the given loop that are to be placed. 1072 /// 1073 /// When profile data is available, exclude cold blocks from the returned set; 1074 /// otherwise, collect all blocks in the loop. 1075 MachineBlockPlacement::BlockFilterSet 1076 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) { 1077 BlockFilterSet LoopBlockSet; 1078 1079 // Filter cold blocks off from LoopBlockSet when profile data is available. 1080 // Collect the sum of frequencies of incoming edges to the loop header from 1081 // outside. If we treat the loop as a super block, this is the frequency of 1082 // the loop. Then for each block in the loop, we calculate the ratio between 1083 // its frequency and the frequency of the loop block. When it is too small, 1084 // don't add it to the loop chain. If there are outer loops, then this block 1085 // will be merged into the first outer loop chain for which this block is not 1086 // cold anymore. This needs precise profile data and we only do this when 1087 // profile data is available. 1088 if (F.getFunction()->getEntryCount()) { 1089 BlockFrequency LoopFreq(0); 1090 for (auto LoopPred : L.getHeader()->predecessors()) 1091 if (!L.contains(LoopPred)) 1092 LoopFreq += MBFI->getBlockFreq(LoopPred) * 1093 MBPI->getEdgeProbability(LoopPred, L.getHeader()); 1094 1095 for (MachineBasicBlock *LoopBB : L.getBlocks()) { 1096 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); 1097 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) 1098 continue; 1099 LoopBlockSet.insert(LoopBB); 1100 } 1101 } else 1102 LoopBlockSet.insert(L.block_begin(), L.block_end()); 1103 1104 return LoopBlockSet; 1105 } 1106 1107 /// \brief Forms basic block chains from the natural loop structures. 1108 /// 1109 /// These chains are designed to preserve the existing *structure* of the code 1110 /// as much as possible. We can then stitch the chains together in a way which 1111 /// both preserves the topological structure and minimizes taken conditional 1112 /// branches. 1113 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 1114 MachineLoop &L) { 1115 // First recurse through any nested loops, building chains for those inner 1116 // loops. 1117 for (MachineLoop *InnerLoop : L) 1118 buildLoopChains(F, *InnerLoop); 1119 1120 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1121 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1122 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L); 1123 1124 // Check if we have profile data for this function. If yes, we will rotate 1125 // this loop by modeling costs more precisely which requires the profile data 1126 // for better layout. 1127 bool RotateLoopWithProfile = 1128 PreciseRotationCost && F.getFunction()->getEntryCount(); 1129 1130 // First check to see if there is an obviously preferable top block for the 1131 // loop. This will default to the header, but may end up as one of the 1132 // predecessors to the header if there is one which will result in strictly 1133 // fewer branches in the loop body. 1134 // When we use profile data to rotate the loop, this is unnecessary. 1135 MachineBasicBlock *LoopTop = 1136 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); 1137 1138 // If we selected just the header for the loop top, look for a potentially 1139 // profitable exit block in the event that rotating the loop can eliminate 1140 // branches by placing an exit edge at the bottom. 1141 MachineBasicBlock *ExitingBB = nullptr; 1142 if (!RotateLoopWithProfile && LoopTop == L.getHeader()) 1143 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 1144 1145 BlockChain &LoopChain = *BlockToChain[LoopTop]; 1146 1147 // FIXME: This is a really lame way of walking the chains in the loop: we 1148 // walk the blocks, and use a set to prevent visiting a particular chain 1149 // twice. 1150 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1151 assert(LoopChain.UnscheduledPredecessors == 0); 1152 UpdatedPreds.insert(&LoopChain); 1153 1154 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1155 fillWorkLists(LoopBB, UpdatedPreds, BlockWorkList, EHPadWorkList, 1156 &LoopBlockSet); 1157 1158 buildChain(LoopTop, LoopChain, BlockWorkList, EHPadWorkList, &LoopBlockSet); 1159 1160 if (RotateLoopWithProfile) 1161 rotateLoopWithProfile(LoopChain, L, LoopBlockSet); 1162 else 1163 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 1164 1165 DEBUG({ 1166 // Crash at the end so we get all of the debugging output first. 1167 bool BadLoop = false; 1168 if (LoopChain.UnscheduledPredecessors) { 1169 BadLoop = true; 1170 dbgs() << "Loop chain contains a block without its preds placed!\n" 1171 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1172 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 1173 } 1174 for (MachineBasicBlock *ChainBB : LoopChain) { 1175 dbgs() << " ... " << getBlockName(ChainBB) << "\n"; 1176 if (!LoopBlockSet.erase(ChainBB)) { 1177 // We don't mark the loop as bad here because there are real situations 1178 // where this can occur. For example, with an unanalyzable fallthrough 1179 // from a loop block to a non-loop block or vice versa. 1180 dbgs() << "Loop chain contains a block not contained by the loop!\n" 1181 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1182 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1183 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1184 } 1185 } 1186 1187 if (!LoopBlockSet.empty()) { 1188 BadLoop = true; 1189 for (MachineBasicBlock *LoopBB : LoopBlockSet) 1190 dbgs() << "Loop contains blocks never placed into a chain!\n" 1191 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 1192 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 1193 << " Bad block: " << getBlockName(LoopBB) << "\n"; 1194 } 1195 assert(!BadLoop && "Detected problems with the placement of this loop."); 1196 }); 1197 } 1198 1199 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 1200 // Ensure that every BB in the function has an associated chain to simplify 1201 // the assumptions of the remaining algorithm. 1202 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 1203 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 1204 MachineBasicBlock *BB = &*FI; 1205 BlockChain *Chain = 1206 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 1207 // Also, merge any blocks which we cannot reason about and must preserve 1208 // the exact fallthrough behavior for. 1209 for (;;) { 1210 Cond.clear(); 1211 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1212 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 1213 break; 1214 1215 MachineFunction::iterator NextFI = std::next(FI); 1216 MachineBasicBlock *NextBB = &*NextFI; 1217 // Ensure that the layout successor is a viable block, as we know that 1218 // fallthrough is a possibility. 1219 assert(NextFI != FE && "Can't fallthrough past the last block."); 1220 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 1221 << getBlockName(BB) << " -> " << getBlockName(NextBB) 1222 << "\n"); 1223 Chain->merge(NextBB, nullptr); 1224 FI = NextFI; 1225 BB = NextBB; 1226 } 1227 } 1228 1229 if (OutlineOptionalBranches) { 1230 // Find the nearest common dominator of all of F's terminators. 1231 MachineBasicBlock *Terminator = nullptr; 1232 for (MachineBasicBlock &MBB : F) { 1233 if (MBB.succ_size() == 0) { 1234 if (Terminator == nullptr) 1235 Terminator = &MBB; 1236 else 1237 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); 1238 } 1239 } 1240 1241 // MBBs dominating this common dominator are unavoidable. 1242 UnavoidableBlocks.clear(); 1243 for (MachineBasicBlock &MBB : F) { 1244 if (MDT->dominates(&MBB, Terminator)) { 1245 UnavoidableBlocks.insert(&MBB); 1246 } 1247 } 1248 } 1249 1250 // Build any loop-based chains. 1251 for (MachineLoop *L : *MLI) 1252 buildLoopChains(F, *L); 1253 1254 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 1255 SmallVector<MachineBasicBlock *, 16> EHPadWorkList; 1256 1257 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 1258 for (MachineBasicBlock &MBB : F) 1259 fillWorkLists(&MBB, UpdatedPreds, BlockWorkList, EHPadWorkList); 1260 1261 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 1262 buildChain(&F.front(), FunctionChain, BlockWorkList, EHPadWorkList); 1263 1264 #ifndef NDEBUG 1265 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 1266 #endif 1267 DEBUG({ 1268 // Crash at the end so we get all of the debugging output first. 1269 bool BadFunc = false; 1270 FunctionBlockSetType FunctionBlockSet; 1271 for (MachineBasicBlock &MBB : F) 1272 FunctionBlockSet.insert(&MBB); 1273 1274 for (MachineBasicBlock *ChainBB : FunctionChain) 1275 if (!FunctionBlockSet.erase(ChainBB)) { 1276 BadFunc = true; 1277 dbgs() << "Function chain contains a block not in the function!\n" 1278 << " Bad block: " << getBlockName(ChainBB) << "\n"; 1279 } 1280 1281 if (!FunctionBlockSet.empty()) { 1282 BadFunc = true; 1283 for (MachineBasicBlock *RemainingBB : FunctionBlockSet) 1284 dbgs() << "Function contains blocks never placed into a chain!\n" 1285 << " Bad block: " << getBlockName(RemainingBB) << "\n"; 1286 } 1287 assert(!BadFunc && "Detected problems with the block placement."); 1288 }); 1289 1290 // Splice the blocks into place. 1291 MachineFunction::iterator InsertPos = F.begin(); 1292 for (MachineBasicBlock *ChainBB : FunctionChain) { 1293 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " 1294 : " ... ") 1295 << getBlockName(ChainBB) << "\n"); 1296 if (InsertPos != MachineFunction::iterator(ChainBB)) 1297 F.splice(InsertPos, ChainBB); 1298 else 1299 ++InsertPos; 1300 1301 // Update the terminator of the previous block. 1302 if (ChainBB == *FunctionChain.begin()) 1303 continue; 1304 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); 1305 1306 // FIXME: It would be awesome of updateTerminator would just return rather 1307 // than assert when the branch cannot be analyzed in order to remove this 1308 // boiler plate. 1309 Cond.clear(); 1310 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1311 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1312 // The "PrevBB" is not yet updated to reflect current code layout, so, 1313 // o. it may fall-through to a block without explict "goto" instruction 1314 // before layout, and no longer fall-through it after layout; or 1315 // o. just opposite. 1316 // 1317 // AnalyzeBranch() may return erroneous value for FBB when these two 1318 // situations take place. For the first scenario FBB is mistakenly set 1319 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 1320 // is mistakenly pointing to "*BI". 1321 // 1322 bool needUpdateBr = true; 1323 if (!Cond.empty() && (!FBB || FBB == ChainBB)) { 1324 PrevBB->updateTerminator(); 1325 needUpdateBr = false; 1326 Cond.clear(); 1327 TBB = FBB = nullptr; 1328 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1329 // FIXME: This should never take place. 1330 TBB = FBB = nullptr; 1331 } 1332 } 1333 1334 // If PrevBB has a two-way branch, try to re-order the branches 1335 // such that we branch to the successor with higher probability first. 1336 if (TBB && !Cond.empty() && FBB && 1337 MBPI->getEdgeProbability(PrevBB, FBB) > 1338 MBPI->getEdgeProbability(PrevBB, TBB) && 1339 !TII->ReverseBranchCondition(Cond)) { 1340 DEBUG(dbgs() << "Reverse order of the two branches: " 1341 << getBlockName(PrevBB) << "\n"); 1342 DEBUG(dbgs() << " Edge probability: " 1343 << MBPI->getEdgeProbability(PrevBB, FBB) << " vs " 1344 << MBPI->getEdgeProbability(PrevBB, TBB) << "\n"); 1345 DebugLoc dl; // FIXME: this is nowhere 1346 TII->RemoveBranch(*PrevBB); 1347 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1348 needUpdateBr = true; 1349 } 1350 if (needUpdateBr) 1351 PrevBB->updateTerminator(); 1352 } 1353 } 1354 1355 // Fixup the last block. 1356 Cond.clear(); 1357 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1358 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1359 F.back().updateTerminator(); 1360 1361 // Walk through the backedges of the function now that we have fully laid out 1362 // the basic blocks and align the destination of each backedge. We don't rely 1363 // exclusively on the loop info here so that we can align backedges in 1364 // unnatural CFGs and backedges that were introduced purely because of the 1365 // loop rotations done during this layout pass. 1366 // FIXME: Use Function::optForSize(). 1367 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 1368 return; 1369 if (FunctionChain.begin() == FunctionChain.end()) 1370 return; // Empty chain. 1371 1372 const BranchProbability ColdProb(1, 5); // 20% 1373 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front()); 1374 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1375 for (MachineBasicBlock *ChainBB : FunctionChain) { 1376 if (ChainBB == *FunctionChain.begin()) 1377 continue; 1378 1379 // Don't align non-looping basic blocks. These are unlikely to execute 1380 // enough times to matter in practice. Note that we'll still handle 1381 // unnatural CFGs inside of a natural outer loop (the common case) and 1382 // rotated loops. 1383 MachineLoop *L = MLI->getLoopFor(ChainBB); 1384 if (!L) 1385 continue; 1386 1387 unsigned Align = TLI->getPrefLoopAlignment(L); 1388 if (!Align) 1389 continue; // Don't care about loop alignment. 1390 1391 // If the block is cold relative to the function entry don't waste space 1392 // aligning it. 1393 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); 1394 if (Freq < WeightedEntryFreq) 1395 continue; 1396 1397 // If the block is cold relative to its loop header, don't align it 1398 // regardless of what edges into the block exist. 1399 MachineBasicBlock *LoopHeader = L->getHeader(); 1400 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1401 if (Freq < (LoopHeaderFreq * ColdProb)) 1402 continue; 1403 1404 // Check for the existence of a non-layout predecessor which would benefit 1405 // from aligning this block. 1406 MachineBasicBlock *LayoutPred = 1407 &*std::prev(MachineFunction::iterator(ChainBB)); 1408 1409 // Force alignment if all the predecessors are jumps. We already checked 1410 // that the block isn't cold above. 1411 if (!LayoutPred->isSuccessor(ChainBB)) { 1412 ChainBB->setAlignment(Align); 1413 continue; 1414 } 1415 1416 // Align this block if the layout predecessor's edge into this block is 1417 // cold relative to the block. When this is true, other predecessors make up 1418 // all of the hot entries into the block and thus alignment is likely to be 1419 // important. 1420 BranchProbability LayoutProb = 1421 MBPI->getEdgeProbability(LayoutPred, ChainBB); 1422 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1423 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1424 ChainBB->setAlignment(Align); 1425 } 1426 } 1427 1428 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1429 // Check for single-block functions and skip them. 1430 if (std::next(F.begin()) == F.end()) 1431 return false; 1432 1433 if (skipOptnoneFunction(*F.getFunction())) 1434 return false; 1435 1436 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1437 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1438 MLI = &getAnalysis<MachineLoopInfo>(); 1439 TII = F.getSubtarget().getInstrInfo(); 1440 TLI = F.getSubtarget().getTargetLowering(); 1441 MDT = &getAnalysis<MachineDominatorTree>(); 1442 assert(BlockToChain.empty()); 1443 1444 buildCFGChains(F); 1445 1446 BlockToChain.clear(); 1447 ChainAllocator.DestroyAll(); 1448 1449 if (AlignAllBlock) 1450 // Align all of the blocks in the function to a specific alignment. 1451 for (MachineBasicBlock &MBB : F) 1452 MBB.setAlignment(AlignAllBlock); 1453 else if (AlignAllNonFallThruBlocks) { 1454 // Align all of the blocks that have no fall-through predecessors to a 1455 // specific alignment. 1456 for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) { 1457 auto LayoutPred = std::prev(MBI); 1458 if (!LayoutPred->isSuccessor(&*MBI)) 1459 MBI->setAlignment(AlignAllNonFallThruBlocks); 1460 } 1461 } 1462 1463 // We always return true as we have no way to track whether the final order 1464 // differs from the original order. 1465 return true; 1466 } 1467 1468 namespace { 1469 /// \brief A pass to compute block placement statistics. 1470 /// 1471 /// A separate pass to compute interesting statistics for evaluating block 1472 /// placement. This is separate from the actual placement pass so that they can 1473 /// be computed in the absence of any placement transformations or when using 1474 /// alternative placement strategies. 1475 class MachineBlockPlacementStats : public MachineFunctionPass { 1476 /// \brief A handle to the branch probability pass. 1477 const MachineBranchProbabilityInfo *MBPI; 1478 1479 /// \brief A handle to the function-wide block frequency pass. 1480 const MachineBlockFrequencyInfo *MBFI; 1481 1482 public: 1483 static char ID; // Pass identification, replacement for typeid 1484 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1485 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1486 } 1487 1488 bool runOnMachineFunction(MachineFunction &F) override; 1489 1490 void getAnalysisUsage(AnalysisUsage &AU) const override { 1491 AU.addRequired<MachineBranchProbabilityInfo>(); 1492 AU.addRequired<MachineBlockFrequencyInfo>(); 1493 AU.setPreservesAll(); 1494 MachineFunctionPass::getAnalysisUsage(AU); 1495 } 1496 }; 1497 } 1498 1499 char MachineBlockPlacementStats::ID = 0; 1500 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1501 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1502 "Basic Block Placement Stats", false, false) 1503 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1504 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1505 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1506 "Basic Block Placement Stats", false, false) 1507 1508 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1509 // Check for single-block functions and skip them. 1510 if (std::next(F.begin()) == F.end()) 1511 return false; 1512 1513 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1514 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1515 1516 for (MachineBasicBlock &MBB : F) { 1517 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); 1518 Statistic &NumBranches = 1519 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; 1520 Statistic &BranchTakenFreq = 1521 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; 1522 for (MachineBasicBlock *Succ : MBB.successors()) { 1523 // Skip if this successor is a fallthrough. 1524 if (MBB.isLayoutSuccessor(Succ)) 1525 continue; 1526 1527 BlockFrequency EdgeFreq = 1528 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); 1529 ++NumBranches; 1530 BranchTakenFreq += EdgeFreq.getFrequency(); 1531 } 1532 } 1533 1534 return false; 1535 } 1536