1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements basic block placement transformations using the CFG 11 // structure and branch probability estimates. 12 // 13 // The pass strives to preserve the structure of the CFG (that is, retain 14 // a topological ordering of basic blocks) in the absence of a *strong* signal 15 // to the contrary from probabilities. However, within the CFG structure, it 16 // attempts to choose an ordering which favors placing more likely sequences of 17 // blocks adjacent to each other. 18 // 19 // The algorithm works from the inner-most loop within a function outward, and 20 // at each stage walks through the basic blocks, trying to coalesce them into 21 // sequential chains where allowed by the CFG (or demanded by heavy 22 // probabilities). Finally, it walks the blocks in topological order, and the 23 // first time it reaches a chain of basic blocks, it schedules them in the 24 // function in-order. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineFunctionPass.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Target/TargetInstrInfo.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include <algorithm> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "block-placement2" 50 51 STATISTIC(NumCondBranches, "Number of conditional branches"); 52 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 53 STATISTIC(CondBranchTakenFreq, 54 "Potential frequency of taking conditional branches"); 55 STATISTIC(UncondBranchTakenFreq, 56 "Potential frequency of taking unconditional branches"); 57 58 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 59 cl::desc("Force the alignment of all " 60 "blocks in the function."), 61 cl::init(0), cl::Hidden); 62 63 // FIXME: Find a good default for this flag and remove the flag. 64 static cl::opt<unsigned> 65 ExitBlockBias("block-placement-exit-block-bias", 66 cl::desc("Block frequency percentage a loop exit block needs " 67 "over the original exit to be considered the new exit."), 68 cl::init(0), cl::Hidden); 69 70 namespace { 71 class BlockChain; 72 /// \brief Type for our function-wide basic block -> block chain mapping. 73 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 74 } 75 76 namespace { 77 /// \brief A chain of blocks which will be laid out contiguously. 78 /// 79 /// This is the datastructure representing a chain of consecutive blocks that 80 /// are profitable to layout together in order to maximize fallthrough 81 /// probabilities and code locality. We also can use a block chain to represent 82 /// a sequence of basic blocks which have some external (correctness) 83 /// requirement for sequential layout. 84 /// 85 /// Chains can be built around a single basic block and can be merged to grow 86 /// them. They participate in a block-to-chain mapping, which is updated 87 /// automatically as chains are merged together. 88 class BlockChain { 89 /// \brief The sequence of blocks belonging to this chain. 90 /// 91 /// This is the sequence of blocks for a particular chain. These will be laid 92 /// out in-order within the function. 93 SmallVector<MachineBasicBlock *, 4> Blocks; 94 95 /// \brief A handle to the function-wide basic block to block chain mapping. 96 /// 97 /// This is retained in each block chain to simplify the computation of child 98 /// block chains for SCC-formation and iteration. We store the edges to child 99 /// basic blocks, and map them back to their associated chains using this 100 /// structure. 101 BlockToChainMapType &BlockToChain; 102 103 public: 104 /// \brief Construct a new BlockChain. 105 /// 106 /// This builds a new block chain representing a single basic block in the 107 /// function. It also registers itself as the chain that block participates 108 /// in with the BlockToChain mapping. 109 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 110 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 111 assert(BB && "Cannot create a chain with a null basic block"); 112 BlockToChain[BB] = this; 113 } 114 115 /// \brief Iterator over blocks within the chain. 116 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 117 118 /// \brief Beginning of blocks within the chain. 119 iterator begin() { return Blocks.begin(); } 120 121 /// \brief End of blocks within the chain. 122 iterator end() { return Blocks.end(); } 123 124 /// \brief Merge a block chain into this one. 125 /// 126 /// This routine merges a block chain into this one. It takes care of forming 127 /// a contiguous sequence of basic blocks, updating the edge list, and 128 /// updating the block -> chain mapping. It does not free or tear down the 129 /// old chain, but the old chain's block list is no longer valid. 130 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 131 assert(BB); 132 assert(!Blocks.empty()); 133 134 // Fast path in case we don't have a chain already. 135 if (!Chain) { 136 assert(!BlockToChain[BB]); 137 Blocks.push_back(BB); 138 BlockToChain[BB] = this; 139 return; 140 } 141 142 assert(BB == *Chain->begin()); 143 assert(Chain->begin() != Chain->end()); 144 145 // Update the incoming blocks to point to this chain, and add them to the 146 // chain structure. 147 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 148 BI != BE; ++BI) { 149 Blocks.push_back(*BI); 150 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 151 BlockToChain[*BI] = this; 152 } 153 } 154 155 #ifndef NDEBUG 156 /// \brief Dump the blocks in this chain. 157 LLVM_DUMP_METHOD void dump() { 158 for (iterator I = begin(), E = end(); I != E; ++I) 159 (*I)->dump(); 160 } 161 #endif // NDEBUG 162 163 /// \brief Count of predecessors within the loop currently being processed. 164 /// 165 /// This count is updated at each loop we process to represent the number of 166 /// in-loop predecessors of this chain. 167 unsigned LoopPredecessors; 168 }; 169 } 170 171 namespace { 172 class MachineBlockPlacement : public MachineFunctionPass { 173 /// \brief A typedef for a block filter set. 174 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 175 176 /// \brief A handle to the branch probability pass. 177 const MachineBranchProbabilityInfo *MBPI; 178 179 /// \brief A handle to the function-wide block frequency pass. 180 const MachineBlockFrequencyInfo *MBFI; 181 182 /// \brief A handle to the loop info. 183 const MachineLoopInfo *MLI; 184 185 /// \brief A handle to the target's instruction info. 186 const TargetInstrInfo *TII; 187 188 /// \brief A handle to the target's lowering info. 189 const TargetLoweringBase *TLI; 190 191 /// \brief Allocator and owner of BlockChain structures. 192 /// 193 /// We build BlockChains lazily while processing the loop structure of 194 /// a function. To reduce malloc traffic, we allocate them using this 195 /// slab-like allocator, and destroy them after the pass completes. An 196 /// important guarantee is that this allocator produces stable pointers to 197 /// the chains. 198 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 199 200 /// \brief Function wide BasicBlock to BlockChain mapping. 201 /// 202 /// This mapping allows efficiently moving from any given basic block to the 203 /// BlockChain it participates in, if any. We use it to, among other things, 204 /// allow implicitly defining edges between chains as the existing edges 205 /// between basic blocks. 206 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 207 208 void markChainSuccessors(BlockChain &Chain, 209 MachineBasicBlock *LoopHeaderBB, 210 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 211 const BlockFilterSet *BlockFilter = nullptr); 212 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 213 BlockChain &Chain, 214 const BlockFilterSet *BlockFilter); 215 MachineBasicBlock *selectBestCandidateBlock( 216 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 217 const BlockFilterSet *BlockFilter); 218 MachineBasicBlock *getFirstUnplacedBlock( 219 MachineFunction &F, 220 const BlockChain &PlacedChain, 221 MachineFunction::iterator &PrevUnplacedBlockIt, 222 const BlockFilterSet *BlockFilter); 223 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 224 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 225 const BlockFilterSet *BlockFilter = nullptr); 226 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 227 const BlockFilterSet &LoopBlockSet); 228 MachineBasicBlock *findBestLoopExit(MachineFunction &F, 229 MachineLoop &L, 230 const BlockFilterSet &LoopBlockSet); 231 void buildLoopChains(MachineFunction &F, MachineLoop &L); 232 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 233 const BlockFilterSet &LoopBlockSet); 234 void buildCFGChains(MachineFunction &F); 235 236 public: 237 static char ID; // Pass identification, replacement for typeid 238 MachineBlockPlacement() : MachineFunctionPass(ID) { 239 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 240 } 241 242 bool runOnMachineFunction(MachineFunction &F) override; 243 244 void getAnalysisUsage(AnalysisUsage &AU) const override { 245 AU.addRequired<MachineBranchProbabilityInfo>(); 246 AU.addRequired<MachineBlockFrequencyInfo>(); 247 AU.addRequired<MachineLoopInfo>(); 248 MachineFunctionPass::getAnalysisUsage(AU); 249 } 250 }; 251 } 252 253 char MachineBlockPlacement::ID = 0; 254 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 255 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 256 "Branch Probability Basic Block Placement", false, false) 257 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 258 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 259 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 260 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 261 "Branch Probability Basic Block Placement", false, false) 262 263 #ifndef NDEBUG 264 /// \brief Helper to print the name of a MBB. 265 /// 266 /// Only used by debug logging. 267 static std::string getBlockName(MachineBasicBlock *BB) { 268 std::string Result; 269 raw_string_ostream OS(Result); 270 OS << "BB#" << BB->getNumber() 271 << " (derived from LLVM BB '" << BB->getName() << "')"; 272 OS.flush(); 273 return Result; 274 } 275 276 /// \brief Helper to print the number of a MBB. 277 /// 278 /// Only used by debug logging. 279 static std::string getBlockNum(MachineBasicBlock *BB) { 280 std::string Result; 281 raw_string_ostream OS(Result); 282 OS << "BB#" << BB->getNumber(); 283 OS.flush(); 284 return Result; 285 } 286 #endif 287 288 /// \brief Mark a chain's successors as having one fewer preds. 289 /// 290 /// When a chain is being merged into the "placed" chain, this routine will 291 /// quickly walk the successors of each block in the chain and mark them as 292 /// having one fewer active predecessor. It also adds any successors of this 293 /// chain which reach the zero-predecessor state to the worklist passed in. 294 void MachineBlockPlacement::markChainSuccessors( 295 BlockChain &Chain, 296 MachineBasicBlock *LoopHeaderBB, 297 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 298 const BlockFilterSet *BlockFilter) { 299 // Walk all the blocks in this chain, marking their successors as having 300 // a predecessor placed. 301 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 302 CBI != CBE; ++CBI) { 303 // Add any successors for which this is the only un-placed in-loop 304 // predecessor to the worklist as a viable candidate for CFG-neutral 305 // placement. No subsequent placement of this block will violate the CFG 306 // shape, so we get to use heuristics to choose a favorable placement. 307 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 308 SE = (*CBI)->succ_end(); 309 SI != SE; ++SI) { 310 if (BlockFilter && !BlockFilter->count(*SI)) 311 continue; 312 BlockChain &SuccChain = *BlockToChain[*SI]; 313 // Disregard edges within a fixed chain, or edges to the loop header. 314 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 315 continue; 316 317 // This is a cross-chain edge that is within the loop, so decrement the 318 // loop predecessor count of the destination chain. 319 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 320 BlockWorkList.push_back(*SuccChain.begin()); 321 } 322 } 323 } 324 325 /// \brief Select the best successor for a block. 326 /// 327 /// This looks across all successors of a particular block and attempts to 328 /// select the "best" one to be the layout successor. It only considers direct 329 /// successors which also pass the block filter. It will attempt to avoid 330 /// breaking CFG structure, but cave and break such structures in the case of 331 /// very hot successor edges. 332 /// 333 /// \returns The best successor block found, or null if none are viable. 334 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 335 MachineBasicBlock *BB, BlockChain &Chain, 336 const BlockFilterSet *BlockFilter) { 337 const BranchProbability HotProb(4, 5); // 80% 338 339 MachineBasicBlock *BestSucc = nullptr; 340 // FIXME: Due to the performance of the probability and weight routines in 341 // the MBPI analysis, we manually compute probabilities using the edge 342 // weights. This is suboptimal as it means that the somewhat subtle 343 // definition of edge weight semantics is encoded here as well. We should 344 // improve the MBPI interface to efficiently support query patterns such as 345 // this. 346 uint32_t BestWeight = 0; 347 uint32_t WeightScale = 0; 348 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 349 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 350 for (MachineBasicBlock *Succ : BB->successors()) { 351 if (BlockFilter && !BlockFilter->count(Succ)) 352 continue; 353 BlockChain &SuccChain = *BlockToChain[Succ]; 354 if (&SuccChain == &Chain) { 355 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Already merged!\n"); 356 continue; 357 } 358 if (Succ != *SuccChain.begin()) { 359 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); 360 continue; 361 } 362 363 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ); 364 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 365 366 // Only consider successors which are either "hot", or wouldn't violate 367 // any CFG constraints. 368 if (SuccChain.LoopPredecessors != 0) { 369 if (SuccProb < HotProb) { 370 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 371 << " (prob) (CFG conflict)\n"); 372 continue; 373 } 374 375 // Make sure that a hot successor doesn't have a globally more 376 // important predecessor. 377 BlockFrequency CandidateEdgeFreq = 378 MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 379 bool BadCFGConflict = false; 380 for (MachineBasicBlock *Pred : Succ->predecessors()) { 381 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || 382 BlockToChain[Pred] == &Chain) 383 continue; 384 BlockFrequency PredEdgeFreq = 385 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); 386 if (PredEdgeFreq >= CandidateEdgeFreq) { 387 BadCFGConflict = true; 388 break; 389 } 390 } 391 if (BadCFGConflict) { 392 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 393 << " (prob) (non-cold CFG conflict)\n"); 394 continue; 395 } 396 } 397 398 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb 399 << " (prob)" 400 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 401 << "\n"); 402 if (BestSucc && BestWeight >= SuccWeight) 403 continue; 404 BestSucc = Succ; 405 BestWeight = SuccWeight; 406 } 407 return BestSucc; 408 } 409 410 /// \brief Select the best block from a worklist. 411 /// 412 /// This looks through the provided worklist as a list of candidate basic 413 /// blocks and select the most profitable one to place. The definition of 414 /// profitable only really makes sense in the context of a loop. This returns 415 /// the most frequently visited block in the worklist, which in the case of 416 /// a loop, is the one most desirable to be physically close to the rest of the 417 /// loop body in order to improve icache behavior. 418 /// 419 /// \returns The best block found, or null if none are viable. 420 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 421 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 422 const BlockFilterSet *BlockFilter) { 423 // Once we need to walk the worklist looking for a candidate, cleanup the 424 // worklist of already placed entries. 425 // FIXME: If this shows up on profiles, it could be folded (at the cost of 426 // some code complexity) into the loop below. 427 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 428 [&](MachineBasicBlock *BB) { 429 return BlockToChain.lookup(BB) == &Chain; 430 }), 431 WorkList.end()); 432 433 MachineBasicBlock *BestBlock = nullptr; 434 BlockFrequency BestFreq; 435 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 436 WBE = WorkList.end(); 437 WBI != WBE; ++WBI) { 438 BlockChain &SuccChain = *BlockToChain[*WBI]; 439 if (&SuccChain == &Chain) { 440 DEBUG(dbgs() << " " << getBlockName(*WBI) 441 << " -> Already merged!\n"); 442 continue; 443 } 444 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 445 446 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 447 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> "; 448 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 449 if (BestBlock && BestFreq >= CandidateFreq) 450 continue; 451 BestBlock = *WBI; 452 BestFreq = CandidateFreq; 453 } 454 return BestBlock; 455 } 456 457 /// \brief Retrieve the first unplaced basic block. 458 /// 459 /// This routine is called when we are unable to use the CFG to walk through 460 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 461 /// We walk through the function's blocks in order, starting from the 462 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 463 /// re-scanning the entire sequence on repeated calls to this routine. 464 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 465 MachineFunction &F, const BlockChain &PlacedChain, 466 MachineFunction::iterator &PrevUnplacedBlockIt, 467 const BlockFilterSet *BlockFilter) { 468 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 469 ++I) { 470 if (BlockFilter && !BlockFilter->count(I)) 471 continue; 472 if (BlockToChain[I] != &PlacedChain) { 473 PrevUnplacedBlockIt = I; 474 // Now select the head of the chain to which the unplaced block belongs 475 // as the block to place. This will force the entire chain to be placed, 476 // and satisfies the requirements of merging chains. 477 return *BlockToChain[I]->begin(); 478 } 479 } 480 return nullptr; 481 } 482 483 void MachineBlockPlacement::buildChain( 484 MachineBasicBlock *BB, 485 BlockChain &Chain, 486 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 487 const BlockFilterSet *BlockFilter) { 488 assert(BB); 489 assert(BlockToChain[BB] == &Chain); 490 MachineFunction &F = *BB->getParent(); 491 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 492 493 MachineBasicBlock *LoopHeaderBB = BB; 494 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 495 BB = *std::prev(Chain.end()); 496 for (;;) { 497 assert(BB); 498 assert(BlockToChain[BB] == &Chain); 499 assert(*std::prev(Chain.end()) == BB); 500 501 // Look for the best viable successor if there is one to place immediately 502 // after this block. 503 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 504 505 // If an immediate successor isn't available, look for the best viable 506 // block among those we've identified as not violating the loop's CFG at 507 // this point. This won't be a fallthrough, but it will increase locality. 508 if (!BestSucc) 509 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 510 511 if (!BestSucc) { 512 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 513 BlockFilter); 514 if (!BestSucc) 515 break; 516 517 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 518 "layout successor until the CFG reduces\n"); 519 } 520 521 // Place this block, updating the datastructures to reflect its placement. 522 BlockChain &SuccChain = *BlockToChain[BestSucc]; 523 // Zero out LoopPredecessors for the successor we're about to merge in case 524 // we selected a successor that didn't fit naturally into the CFG. 525 SuccChain.LoopPredecessors = 0; 526 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 527 << " to " << getBlockNum(BestSucc) << "\n"); 528 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 529 Chain.merge(BestSucc, &SuccChain); 530 BB = *std::prev(Chain.end()); 531 } 532 533 DEBUG(dbgs() << "Finished forming chain for header block " 534 << getBlockNum(*Chain.begin()) << "\n"); 535 } 536 537 /// \brief Find the best loop top block for layout. 538 /// 539 /// Look for a block which is strictly better than the loop header for laying 540 /// out at the top of the loop. This looks for one and only one pattern: 541 /// a latch block with no conditional exit. This block will cause a conditional 542 /// jump around it or will be the bottom of the loop if we lay it out in place, 543 /// but if it it doesn't end up at the bottom of the loop for any reason, 544 /// rotation alone won't fix it. Because such a block will always result in an 545 /// unconditional jump (for the backedge) rotating it in front of the loop 546 /// header is always profitable. 547 MachineBasicBlock * 548 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 549 const BlockFilterSet &LoopBlockSet) { 550 // Check that the header hasn't been fused with a preheader block due to 551 // crazy branches. If it has, we need to start with the header at the top to 552 // prevent pulling the preheader into the loop body. 553 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 554 if (!LoopBlockSet.count(*HeaderChain.begin())) 555 return L.getHeader(); 556 557 DEBUG(dbgs() << "Finding best loop top for: " 558 << getBlockName(L.getHeader()) << "\n"); 559 560 BlockFrequency BestPredFreq; 561 MachineBasicBlock *BestPred = nullptr; 562 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(), 563 PE = L.getHeader()->pred_end(); 564 PI != PE; ++PI) { 565 MachineBasicBlock *Pred = *PI; 566 if (!LoopBlockSet.count(Pred)) 567 continue; 568 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 569 << Pred->succ_size() << " successors, "; 570 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 571 if (Pred->succ_size() > 1) 572 continue; 573 574 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 575 if (!BestPred || PredFreq > BestPredFreq || 576 (!(PredFreq < BestPredFreq) && 577 Pred->isLayoutSuccessor(L.getHeader()))) { 578 BestPred = Pred; 579 BestPredFreq = PredFreq; 580 } 581 } 582 583 // If no direct predecessor is fine, just use the loop header. 584 if (!BestPred) 585 return L.getHeader(); 586 587 // Walk backwards through any straight line of predecessors. 588 while (BestPred->pred_size() == 1 && 589 (*BestPred->pred_begin())->succ_size() == 1 && 590 *BestPred->pred_begin() != L.getHeader()) 591 BestPred = *BestPred->pred_begin(); 592 593 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 594 return BestPred; 595 } 596 597 598 /// \brief Find the best loop exiting block for layout. 599 /// 600 /// This routine implements the logic to analyze the loop looking for the best 601 /// block to layout at the top of the loop. Typically this is done to maximize 602 /// fallthrough opportunities. 603 MachineBasicBlock * 604 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, 605 MachineLoop &L, 606 const BlockFilterSet &LoopBlockSet) { 607 // We don't want to layout the loop linearly in all cases. If the loop header 608 // is just a normal basic block in the loop, we want to look for what block 609 // within the loop is the best one to layout at the top. However, if the loop 610 // header has be pre-merged into a chain due to predecessors not having 611 // analyzable branches, *and* the predecessor it is merged with is *not* part 612 // of the loop, rotating the header into the middle of the loop will create 613 // a non-contiguous range of blocks which is Very Bad. So start with the 614 // header and only rotate if safe. 615 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 616 if (!LoopBlockSet.count(*HeaderChain.begin())) 617 return nullptr; 618 619 BlockFrequency BestExitEdgeFreq; 620 unsigned BestExitLoopDepth = 0; 621 MachineBasicBlock *ExitingBB = nullptr; 622 // If there are exits to outer loops, loop rotation can severely limit 623 // fallthrough opportunites unless it selects such an exit. Keep a set of 624 // blocks where rotating to exit with that block will reach an outer loop. 625 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 626 627 DEBUG(dbgs() << "Finding best loop exit for: " 628 << getBlockName(L.getHeader()) << "\n"); 629 for (MachineLoop::block_iterator I = L.block_begin(), 630 E = L.block_end(); 631 I != E; ++I) { 632 BlockChain &Chain = *BlockToChain[*I]; 633 // Ensure that this block is at the end of a chain; otherwise it could be 634 // mid-way through an inner loop or a successor of an analyzable branch. 635 if (*I != *std::prev(Chain.end())) 636 continue; 637 638 // Now walk the successors. We need to establish whether this has a viable 639 // exiting successor and whether it has a viable non-exiting successor. 640 // We store the old exiting state and restore it if a viable looping 641 // successor isn't found. 642 MachineBasicBlock *OldExitingBB = ExitingBB; 643 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 644 bool HasLoopingSucc = false; 645 // FIXME: Due to the performance of the probability and weight routines in 646 // the MBPI analysis, we use the internal weights and manually compute the 647 // probabilities to avoid quadratic behavior. 648 uint32_t WeightScale = 0; 649 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 650 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 651 SE = (*I)->succ_end(); 652 SI != SE; ++SI) { 653 if ((*SI)->isLandingPad()) 654 continue; 655 if (*SI == *I) 656 continue; 657 BlockChain &SuccChain = *BlockToChain[*SI]; 658 // Don't split chains, either this chain or the successor's chain. 659 if (&Chain == &SuccChain) { 660 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 661 << getBlockName(*SI) << " (chain conflict)\n"); 662 continue; 663 } 664 665 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 666 if (LoopBlockSet.count(*SI)) { 667 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 668 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 669 HasLoopingSucc = true; 670 continue; 671 } 672 673 unsigned SuccLoopDepth = 0; 674 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) { 675 SuccLoopDepth = ExitLoop->getLoopDepth(); 676 if (ExitLoop->contains(&L)) 677 BlocksExitingToOuterLoop.insert(*I); 678 } 679 680 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 681 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 682 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 683 << getBlockName(*SI) << " [L:" << SuccLoopDepth 684 << "] ("; 685 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 686 // Note that we bias this toward an existing layout successor to retain 687 // incoming order in the absence of better information. The exit must have 688 // a frequency higher than the current exit before we consider breaking 689 // the layout. 690 BranchProbability Bias(100 - ExitBlockBias, 100); 691 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth || 692 ExitEdgeFreq > BestExitEdgeFreq || 693 ((*I)->isLayoutSuccessor(*SI) && 694 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 695 BestExitEdgeFreq = ExitEdgeFreq; 696 ExitingBB = *I; 697 } 698 } 699 700 // Restore the old exiting state, no viable looping successor was found. 701 if (!HasLoopingSucc) { 702 ExitingBB = OldExitingBB; 703 BestExitEdgeFreq = OldBestExitEdgeFreq; 704 continue; 705 } 706 } 707 // Without a candidate exiting block or with only a single block in the 708 // loop, just use the loop header to layout the loop. 709 if (!ExitingBB || L.getNumBlocks() == 1) 710 return nullptr; 711 712 // Also, if we have exit blocks which lead to outer loops but didn't select 713 // one of them as the exiting block we are rotating toward, disable loop 714 // rotation altogether. 715 if (!BlocksExitingToOuterLoop.empty() && 716 !BlocksExitingToOuterLoop.count(ExitingBB)) 717 return nullptr; 718 719 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 720 return ExitingBB; 721 } 722 723 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 724 /// 725 /// Once we have built a chain, try to rotate it to line up the hot exit block 726 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 727 /// branches. For example, if the loop has fallthrough into its header and out 728 /// of its bottom already, don't rotate it. 729 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 730 MachineBasicBlock *ExitingBB, 731 const BlockFilterSet &LoopBlockSet) { 732 if (!ExitingBB) 733 return; 734 735 MachineBasicBlock *Top = *LoopChain.begin(); 736 bool ViableTopFallthrough = false; 737 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(), 738 PE = Top->pred_end(); 739 PI != PE; ++PI) { 740 BlockChain *PredChain = BlockToChain[*PI]; 741 if (!LoopBlockSet.count(*PI) && 742 (!PredChain || *PI == *std::prev(PredChain->end()))) { 743 ViableTopFallthrough = true; 744 break; 745 } 746 } 747 748 // If the header has viable fallthrough, check whether the current loop 749 // bottom is a viable exiting block. If so, bail out as rotating will 750 // introduce an unnecessary branch. 751 if (ViableTopFallthrough) { 752 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 753 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(), 754 SE = Bottom->succ_end(); 755 SI != SE; ++SI) { 756 BlockChain *SuccChain = BlockToChain[*SI]; 757 if (!LoopBlockSet.count(*SI) && 758 (!SuccChain || *SI == *SuccChain->begin())) 759 return; 760 } 761 } 762 763 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(), 764 ExitingBB); 765 if (ExitIt == LoopChain.end()) 766 return; 767 768 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 769 } 770 771 /// \brief Forms basic block chains from the natural loop structures. 772 /// 773 /// These chains are designed to preserve the existing *structure* of the code 774 /// as much as possible. We can then stitch the chains together in a way which 775 /// both preserves the topological structure and minimizes taken conditional 776 /// branches. 777 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 778 MachineLoop &L) { 779 // First recurse through any nested loops, building chains for those inner 780 // loops. 781 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 782 buildLoopChains(F, **LI); 783 784 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 785 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 786 787 // First check to see if there is an obviously preferable top block for the 788 // loop. This will default to the header, but may end up as one of the 789 // predecessors to the header if there is one which will result in strictly 790 // fewer branches in the loop body. 791 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 792 793 // If we selected just the header for the loop top, look for a potentially 794 // profitable exit block in the event that rotating the loop can eliminate 795 // branches by placing an exit edge at the bottom. 796 MachineBasicBlock *ExitingBB = nullptr; 797 if (LoopTop == L.getHeader()) 798 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 799 800 BlockChain &LoopChain = *BlockToChain[LoopTop]; 801 802 // FIXME: This is a really lame way of walking the chains in the loop: we 803 // walk the blocks, and use a set to prevent visiting a particular chain 804 // twice. 805 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 806 assert(LoopChain.LoopPredecessors == 0); 807 UpdatedPreds.insert(&LoopChain); 808 for (MachineLoop::block_iterator BI = L.block_begin(), 809 BE = L.block_end(); 810 BI != BE; ++BI) { 811 BlockChain &Chain = *BlockToChain[*BI]; 812 if (!UpdatedPreds.insert(&Chain).second) 813 continue; 814 815 assert(Chain.LoopPredecessors == 0); 816 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 817 BCI != BCE; ++BCI) { 818 assert(BlockToChain[*BCI] == &Chain); 819 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 820 PE = (*BCI)->pred_end(); 821 PI != PE; ++PI) { 822 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 823 continue; 824 ++Chain.LoopPredecessors; 825 } 826 } 827 828 if (Chain.LoopPredecessors == 0) 829 BlockWorkList.push_back(*Chain.begin()); 830 } 831 832 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 833 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 834 835 DEBUG({ 836 // Crash at the end so we get all of the debugging output first. 837 bool BadLoop = false; 838 if (LoopChain.LoopPredecessors) { 839 BadLoop = true; 840 dbgs() << "Loop chain contains a block without its preds placed!\n" 841 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 842 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 843 } 844 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 845 BCI != BCE; ++BCI) { 846 dbgs() << " ... " << getBlockName(*BCI) << "\n"; 847 if (!LoopBlockSet.erase(*BCI)) { 848 // We don't mark the loop as bad here because there are real situations 849 // where this can occur. For example, with an unanalyzable fallthrough 850 // from a loop block to a non-loop block or vice versa. 851 dbgs() << "Loop chain contains a block not contained by the loop!\n" 852 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 853 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 854 << " Bad block: " << getBlockName(*BCI) << "\n"; 855 } 856 } 857 858 if (!LoopBlockSet.empty()) { 859 BadLoop = true; 860 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 861 LBE = LoopBlockSet.end(); 862 LBI != LBE; ++LBI) 863 dbgs() << "Loop contains blocks never placed into a chain!\n" 864 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 865 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 866 << " Bad block: " << getBlockName(*LBI) << "\n"; 867 } 868 assert(!BadLoop && "Detected problems with the placement of this loop."); 869 }); 870 } 871 872 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 873 // Ensure that every BB in the function has an associated chain to simplify 874 // the assumptions of the remaining algorithm. 875 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 876 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 877 MachineBasicBlock *BB = FI; 878 BlockChain *Chain 879 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 880 // Also, merge any blocks which we cannot reason about and must preserve 881 // the exact fallthrough behavior for. 882 for (;;) { 883 Cond.clear(); 884 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 885 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 886 break; 887 888 MachineFunction::iterator NextFI(std::next(FI)); 889 MachineBasicBlock *NextBB = NextFI; 890 // Ensure that the layout successor is a viable block, as we know that 891 // fallthrough is a possibility. 892 assert(NextFI != FE && "Can't fallthrough past the last block."); 893 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 894 << getBlockName(BB) << " -> " << getBlockName(NextBB) 895 << "\n"); 896 Chain->merge(NextBB, nullptr); 897 FI = NextFI; 898 BB = NextBB; 899 } 900 } 901 902 // Build any loop-based chains. 903 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 904 ++LI) 905 buildLoopChains(F, **LI); 906 907 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 908 909 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 910 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 911 MachineBasicBlock *BB = &*FI; 912 BlockChain &Chain = *BlockToChain[BB]; 913 if (!UpdatedPreds.insert(&Chain).second) 914 continue; 915 916 assert(Chain.LoopPredecessors == 0); 917 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 918 BCI != BCE; ++BCI) { 919 assert(BlockToChain[*BCI] == &Chain); 920 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 921 PE = (*BCI)->pred_end(); 922 PI != PE; ++PI) { 923 if (BlockToChain[*PI] == &Chain) 924 continue; 925 ++Chain.LoopPredecessors; 926 } 927 } 928 929 if (Chain.LoopPredecessors == 0) 930 BlockWorkList.push_back(*Chain.begin()); 931 } 932 933 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 934 buildChain(&F.front(), FunctionChain, BlockWorkList); 935 936 #ifndef NDEBUG 937 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 938 #endif 939 DEBUG({ 940 // Crash at the end so we get all of the debugging output first. 941 bool BadFunc = false; 942 FunctionBlockSetType FunctionBlockSet; 943 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 944 FunctionBlockSet.insert(FI); 945 946 for (BlockChain::iterator BCI = FunctionChain.begin(), 947 BCE = FunctionChain.end(); 948 BCI != BCE; ++BCI) 949 if (!FunctionBlockSet.erase(*BCI)) { 950 BadFunc = true; 951 dbgs() << "Function chain contains a block not in the function!\n" 952 << " Bad block: " << getBlockName(*BCI) << "\n"; 953 } 954 955 if (!FunctionBlockSet.empty()) { 956 BadFunc = true; 957 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 958 FBE = FunctionBlockSet.end(); 959 FBI != FBE; ++FBI) 960 dbgs() << "Function contains blocks never placed into a chain!\n" 961 << " Bad block: " << getBlockName(*FBI) << "\n"; 962 } 963 assert(!BadFunc && "Detected problems with the block placement."); 964 }); 965 966 // Splice the blocks into place. 967 MachineFunction::iterator InsertPos = F.begin(); 968 for (BlockChain::iterator BI = FunctionChain.begin(), 969 BE = FunctionChain.end(); 970 BI != BE; ++BI) { 971 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 972 : " ... ") 973 << getBlockName(*BI) << "\n"); 974 if (InsertPos != MachineFunction::iterator(*BI)) 975 F.splice(InsertPos, *BI); 976 else 977 ++InsertPos; 978 979 // Update the terminator of the previous block. 980 if (BI == FunctionChain.begin()) 981 continue; 982 MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(*BI)); 983 984 // FIXME: It would be awesome of updateTerminator would just return rather 985 // than assert when the branch cannot be analyzed in order to remove this 986 // boiler plate. 987 Cond.clear(); 988 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 989 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 990 // The "PrevBB" is not yet updated to reflect current code layout, so, 991 // o. it may fall-through to a block without explict "goto" instruction 992 // before layout, and no longer fall-through it after layout; or 993 // o. just opposite. 994 // 995 // AnalyzeBranch() may return erroneous value for FBB when these two 996 // situations take place. For the first scenario FBB is mistakenly set 997 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 998 // is mistakenly pointing to "*BI". 999 // 1000 bool needUpdateBr = true; 1001 if (!Cond.empty() && (!FBB || FBB == *BI)) { 1002 PrevBB->updateTerminator(); 1003 needUpdateBr = false; 1004 Cond.clear(); 1005 TBB = FBB = nullptr; 1006 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 1007 // FIXME: This should never take place. 1008 TBB = FBB = nullptr; 1009 } 1010 } 1011 1012 // If PrevBB has a two-way branch, try to re-order the branches 1013 // such that we branch to the successor with higher weight first. 1014 if (TBB && !Cond.empty() && FBB && 1015 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 1016 !TII->ReverseBranchCondition(Cond)) { 1017 DEBUG(dbgs() << "Reverse order of the two branches: " 1018 << getBlockName(PrevBB) << "\n"); 1019 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 1020 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 1021 DebugLoc dl; // FIXME: this is nowhere 1022 TII->RemoveBranch(*PrevBB); 1023 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 1024 needUpdateBr = true; 1025 } 1026 if (needUpdateBr) 1027 PrevBB->updateTerminator(); 1028 } 1029 } 1030 1031 // Fixup the last block. 1032 Cond.clear(); 1033 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 1034 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 1035 F.back().updateTerminator(); 1036 1037 // Walk through the backedges of the function now that we have fully laid out 1038 // the basic blocks and align the destination of each backedge. We don't rely 1039 // exclusively on the loop info here so that we can align backedges in 1040 // unnatural CFGs and backedges that were introduced purely because of the 1041 // loop rotations done during this layout pass. 1042 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 1043 return; 1044 if (FunctionChain.begin() == FunctionChain.end()) 1045 return; // Empty chain. 1046 1047 const BranchProbability ColdProb(1, 5); // 20% 1048 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 1049 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 1050 for (BlockChain::iterator BI = std::next(FunctionChain.begin()), 1051 BE = FunctionChain.end(); 1052 BI != BE; ++BI) { 1053 // Don't align non-looping basic blocks. These are unlikely to execute 1054 // enough times to matter in practice. Note that we'll still handle 1055 // unnatural CFGs inside of a natural outer loop (the common case) and 1056 // rotated loops. 1057 MachineLoop *L = MLI->getLoopFor(*BI); 1058 if (!L) 1059 continue; 1060 1061 unsigned Align = TLI->getPrefLoopAlignment(L); 1062 if (!Align) 1063 continue; // Don't care about loop alignment. 1064 1065 // If the block is cold relative to the function entry don't waste space 1066 // aligning it. 1067 BlockFrequency Freq = MBFI->getBlockFreq(*BI); 1068 if (Freq < WeightedEntryFreq) 1069 continue; 1070 1071 // If the block is cold relative to its loop header, don't align it 1072 // regardless of what edges into the block exist. 1073 MachineBasicBlock *LoopHeader = L->getHeader(); 1074 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 1075 if (Freq < (LoopHeaderFreq * ColdProb)) 1076 continue; 1077 1078 // Check for the existence of a non-layout predecessor which would benefit 1079 // from aligning this block. 1080 MachineBasicBlock *LayoutPred = *std::prev(BI); 1081 1082 // Force alignment if all the predecessors are jumps. We already checked 1083 // that the block isn't cold above. 1084 if (!LayoutPred->isSuccessor(*BI)) { 1085 (*BI)->setAlignment(Align); 1086 continue; 1087 } 1088 1089 // Align this block if the layout predecessor's edge into this block is 1090 // cold relative to the block. When this is true, other predecessors make up 1091 // all of the hot entries into the block and thus alignment is likely to be 1092 // important. 1093 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI); 1094 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 1095 if (LayoutEdgeFreq <= (Freq * ColdProb)) 1096 (*BI)->setAlignment(Align); 1097 } 1098 } 1099 1100 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 1101 // Check for single-block functions and skip them. 1102 if (std::next(F.begin()) == F.end()) 1103 return false; 1104 1105 if (skipOptnoneFunction(*F.getFunction())) 1106 return false; 1107 1108 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1109 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1110 MLI = &getAnalysis<MachineLoopInfo>(); 1111 TII = F.getSubtarget().getInstrInfo(); 1112 TLI = F.getSubtarget().getTargetLowering(); 1113 assert(BlockToChain.empty()); 1114 1115 buildCFGChains(F); 1116 1117 BlockToChain.clear(); 1118 ChainAllocator.DestroyAll(); 1119 1120 if (AlignAllBlock) 1121 // Align all of the blocks in the function to a specific alignment. 1122 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 1123 FI != FE; ++FI) 1124 FI->setAlignment(AlignAllBlock); 1125 1126 // We always return true as we have no way to track whether the final order 1127 // differs from the original order. 1128 return true; 1129 } 1130 1131 namespace { 1132 /// \brief A pass to compute block placement statistics. 1133 /// 1134 /// A separate pass to compute interesting statistics for evaluating block 1135 /// placement. This is separate from the actual placement pass so that they can 1136 /// be computed in the absence of any placement transformations or when using 1137 /// alternative placement strategies. 1138 class MachineBlockPlacementStats : public MachineFunctionPass { 1139 /// \brief A handle to the branch probability pass. 1140 const MachineBranchProbabilityInfo *MBPI; 1141 1142 /// \brief A handle to the function-wide block frequency pass. 1143 const MachineBlockFrequencyInfo *MBFI; 1144 1145 public: 1146 static char ID; // Pass identification, replacement for typeid 1147 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 1148 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 1149 } 1150 1151 bool runOnMachineFunction(MachineFunction &F) override; 1152 1153 void getAnalysisUsage(AnalysisUsage &AU) const override { 1154 AU.addRequired<MachineBranchProbabilityInfo>(); 1155 AU.addRequired<MachineBlockFrequencyInfo>(); 1156 AU.setPreservesAll(); 1157 MachineFunctionPass::getAnalysisUsage(AU); 1158 } 1159 }; 1160 } 1161 1162 char MachineBlockPlacementStats::ID = 0; 1163 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 1164 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 1165 "Basic Block Placement Stats", false, false) 1166 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 1167 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 1168 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 1169 "Basic Block Placement Stats", false, false) 1170 1171 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 1172 // Check for single-block functions and skip them. 1173 if (std::next(F.begin()) == F.end()) 1174 return false; 1175 1176 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 1177 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1178 1179 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 1180 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 1181 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 1182 : NumUncondBranches; 1183 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 1184 : UncondBranchTakenFreq; 1185 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 1186 SE = I->succ_end(); 1187 SI != SE; ++SI) { 1188 // Skip if this successor is a fallthrough. 1189 if (I->isLayoutSuccessor(*SI)) 1190 continue; 1191 1192 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 1193 ++NumBranches; 1194 BranchTakenFreq += EdgeFreq.getFrequency(); 1195 } 1196 } 1197 1198 return false; 1199 } 1200 1201