1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "BranchFolding.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
38 #include "llvm/CodeGen/MachineDominators.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/TailDuplicator.h"
44 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetLowering.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 #include <algorithm>
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "block-placement"
55 
56 STATISTIC(NumCondBranches, "Number of conditional branches");
57 STATISTIC(NumUncondBranches, "Number of unconditional branches");
58 STATISTIC(CondBranchTakenFreq,
59           "Potential frequency of taking conditional branches");
60 STATISTIC(UncondBranchTakenFreq,
61           "Potential frequency of taking unconditional branches");
62 
63 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
64                                        cl::desc("Force the alignment of all "
65                                                 "blocks in the function."),
66                                        cl::init(0), cl::Hidden);
67 
68 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
69     "align-all-nofallthru-blocks",
70     cl::desc("Force the alignment of all "
71              "blocks that have no fall-through predecessors (i.e. don't add "
72              "nops that are executed)."),
73     cl::init(0), cl::Hidden);
74 
75 // FIXME: Find a good default for this flag and remove the flag.
76 static cl::opt<unsigned> ExitBlockBias(
77     "block-placement-exit-block-bias",
78     cl::desc("Block frequency percentage a loop exit block needs "
79              "over the original exit to be considered the new exit."),
80     cl::init(0), cl::Hidden);
81 
82 // Definition:
83 // - Outlining: placement of a basic block outside the chain or hot path.
84 
85 static cl::opt<bool> OutlineOptionalBranches(
86     "outline-optional-branches",
87     cl::desc("Outlining optional branches will place blocks that are optional "
88               "branches, i.e. branches with a common post dominator, outside "
89               "the hot path or chain"),
90     cl::init(false), cl::Hidden);
91 
92 static cl::opt<unsigned> OutlineOptionalThreshold(
93     "outline-optional-threshold",
94     cl::desc("Don't outline optional branches that are a single block with an "
95              "instruction count below this threshold"),
96     cl::init(4), cl::Hidden);
97 
98 static cl::opt<unsigned> LoopToColdBlockRatio(
99     "loop-to-cold-block-ratio",
100     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
101              "(frequency of block) is greater than this ratio"),
102     cl::init(5), cl::Hidden);
103 
104 static cl::opt<bool>
105     PreciseRotationCost("precise-rotation-cost",
106                         cl::desc("Model the cost of loop rotation more "
107                                  "precisely by using profile data."),
108                         cl::init(false), cl::Hidden);
109 static cl::opt<bool>
110     ForcePreciseRotationCost("force-precise-rotation-cost",
111                              cl::desc("Force the use of precise cost "
112                                       "loop rotation strategy."),
113                              cl::init(false), cl::Hidden);
114 
115 static cl::opt<unsigned> MisfetchCost(
116     "misfetch-cost",
117     cl::desc("Cost that models the probabilistic risk of an instruction "
118              "misfetch due to a jump comparing to falling through, whose cost "
119              "is zero."),
120     cl::init(1), cl::Hidden);
121 
122 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
123                                       cl::desc("Cost of jump instructions."),
124                                       cl::init(1), cl::Hidden);
125 static cl::opt<bool>
126 TailDupPlacement("tail-dup-placement",
127               cl::desc("Perform tail duplication during placement. "
128                        "Creates more fallthrough opportunites in "
129                        "outline branches."),
130               cl::init(true), cl::Hidden);
131 
132 static cl::opt<bool>
133 BranchFoldPlacement("branch-fold-placement",
134               cl::desc("Perform branch folding during placement. "
135                        "Reduces code size."),
136               cl::init(true), cl::Hidden);
137 
138 // Heuristic for tail duplication.
139 static cl::opt<unsigned> TailDuplicatePlacementThreshold(
140     "tail-dup-placement-threshold",
141     cl::desc("Instruction cutoff for tail duplication during layout. "
142              "Tail merging during layout is forced to have a threshold "
143              "that won't conflict."), cl::init(2),
144     cl::Hidden);
145 
146 extern cl::opt<unsigned> StaticLikelyProb;
147 extern cl::opt<unsigned> ProfileLikelyProb;
148 
149 namespace {
150 class BlockChain;
151 /// \brief Type for our function-wide basic block -> block chain mapping.
152 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
153 }
154 
155 namespace {
156 /// \brief A chain of blocks which will be laid out contiguously.
157 ///
158 /// This is the datastructure representing a chain of consecutive blocks that
159 /// are profitable to layout together in order to maximize fallthrough
160 /// probabilities and code locality. We also can use a block chain to represent
161 /// a sequence of basic blocks which have some external (correctness)
162 /// requirement for sequential layout.
163 ///
164 /// Chains can be built around a single basic block and can be merged to grow
165 /// them. They participate in a block-to-chain mapping, which is updated
166 /// automatically as chains are merged together.
167 class BlockChain {
168   /// \brief The sequence of blocks belonging to this chain.
169   ///
170   /// This is the sequence of blocks for a particular chain. These will be laid
171   /// out in-order within the function.
172   SmallVector<MachineBasicBlock *, 4> Blocks;
173 
174   /// \brief A handle to the function-wide basic block to block chain mapping.
175   ///
176   /// This is retained in each block chain to simplify the computation of child
177   /// block chains for SCC-formation and iteration. We store the edges to child
178   /// basic blocks, and map them back to their associated chains using this
179   /// structure.
180   BlockToChainMapType &BlockToChain;
181 
182 public:
183   /// \brief Construct a new BlockChain.
184   ///
185   /// This builds a new block chain representing a single basic block in the
186   /// function. It also registers itself as the chain that block participates
187   /// in with the BlockToChain mapping.
188   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
189       : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) {
190     assert(BB && "Cannot create a chain with a null basic block");
191     BlockToChain[BB] = this;
192   }
193 
194   /// \brief Iterator over blocks within the chain.
195   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
196 
197   /// \brief Beginning of blocks within the chain.
198   iterator begin() { return Blocks.begin(); }
199 
200   /// \brief End of blocks within the chain.
201   iterator end() { return Blocks.end(); }
202 
203   bool remove(MachineBasicBlock* BB) {
204     for(iterator i = begin(); i != end(); ++i) {
205       if (*i == BB) {
206         Blocks.erase(i);
207         return true;
208       }
209     }
210     return false;
211   }
212 
213   /// \brief Merge a block chain into this one.
214   ///
215   /// This routine merges a block chain into this one. It takes care of forming
216   /// a contiguous sequence of basic blocks, updating the edge list, and
217   /// updating the block -> chain mapping. It does not free or tear down the
218   /// old chain, but the old chain's block list is no longer valid.
219   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
220     assert(BB);
221     assert(!Blocks.empty());
222 
223     // Fast path in case we don't have a chain already.
224     if (!Chain) {
225       assert(!BlockToChain[BB]);
226       Blocks.push_back(BB);
227       BlockToChain[BB] = this;
228       return;
229     }
230 
231     assert(BB == *Chain->begin());
232     assert(Chain->begin() != Chain->end());
233 
234     // Update the incoming blocks to point to this chain, and add them to the
235     // chain structure.
236     for (MachineBasicBlock *ChainBB : *Chain) {
237       Blocks.push_back(ChainBB);
238       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
239       BlockToChain[ChainBB] = this;
240     }
241   }
242 
243 #ifndef NDEBUG
244   /// \brief Dump the blocks in this chain.
245   LLVM_DUMP_METHOD void dump() {
246     for (MachineBasicBlock *MBB : *this)
247       MBB->dump();
248   }
249 #endif // NDEBUG
250 
251   /// \brief Count of predecessors of any block within the chain which have not
252   /// yet been scheduled.  In general, we will delay scheduling this chain
253   /// until those predecessors are scheduled (or we find a sufficiently good
254   /// reason to override this heuristic.)  Note that when forming loop chains,
255   /// blocks outside the loop are ignored and treated as if they were already
256   /// scheduled.
257   ///
258   /// Note: This field is reinitialized multiple times - once for each loop,
259   /// and then once for the function as a whole.
260   unsigned UnscheduledPredecessors;
261 };
262 }
263 
264 namespace {
265 class MachineBlockPlacement : public MachineFunctionPass {
266   /// \brief A typedef for a block filter set.
267   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
268 
269   /// \brief work lists of blocks that are ready to be laid out
270   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
271   SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
272 
273   /// \brief Machine Function
274   MachineFunction *F;
275 
276   /// \brief A handle to the branch probability pass.
277   const MachineBranchProbabilityInfo *MBPI;
278 
279   /// \brief A handle to the function-wide block frequency pass.
280   std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
281 
282   /// \brief A handle to the loop info.
283   MachineLoopInfo *MLI;
284 
285   /// \brief Preferred loop exit.
286   /// Member variable for convenience. It may be removed by duplication deep
287   /// in the call stack.
288   MachineBasicBlock *PreferredLoopExit;
289 
290   /// \brief A handle to the target's instruction info.
291   const TargetInstrInfo *TII;
292 
293   /// \brief A handle to the target's lowering info.
294   const TargetLoweringBase *TLI;
295 
296   /// \brief A handle to the post dominator tree.
297   MachineDominatorTree *MDT;
298 
299   /// \brief Duplicator used to duplicate tails during placement.
300   ///
301   /// Placement decisions can open up new tail duplication opportunities, but
302   /// since tail duplication affects placement decisions of later blocks, it
303   /// must be done inline.
304   TailDuplicator TailDup;
305 
306   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
307   /// all terminators of the MachineFunction.
308   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
309 
310   /// \brief Allocator and owner of BlockChain structures.
311   ///
312   /// We build BlockChains lazily while processing the loop structure of
313   /// a function. To reduce malloc traffic, we allocate them using this
314   /// slab-like allocator, and destroy them after the pass completes. An
315   /// important guarantee is that this allocator produces stable pointers to
316   /// the chains.
317   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
318 
319   /// \brief Function wide BasicBlock to BlockChain mapping.
320   ///
321   /// This mapping allows efficiently moving from any given basic block to the
322   /// BlockChain it participates in, if any. We use it to, among other things,
323   /// allow implicitly defining edges between chains as the existing edges
324   /// between basic blocks.
325   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
326 
327   /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
328   /// if the count goes to 0, add them to the appropriate work list.
329   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
330                            const BlockFilterSet *BlockFilter = nullptr);
331 
332   /// Decrease the UnscheduledPredecessors count for a single block, and
333   /// if the count goes to 0, add them to the appropriate work list.
334   void markBlockSuccessors(
335       BlockChain &Chain, MachineBasicBlock *BB, MachineBasicBlock *LoopHeaderBB,
336       const BlockFilterSet *BlockFilter = nullptr);
337 
338 
339   BranchProbability
340   collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain,
341                           const BlockFilterSet *BlockFilter,
342                           SmallVector<MachineBasicBlock *, 4> &Successors);
343   bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ,
344                                  BlockChain &Chain,
345                                  const BlockFilterSet *BlockFilter,
346                                  BranchProbability SuccProb,
347                                  BranchProbability HotProb);
348   bool repeatedlyTailDuplicateBlock(
349       MachineBasicBlock *BB, MachineBasicBlock *&LPred,
350       MachineBasicBlock *LoopHeaderBB,
351       BlockChain &Chain, BlockFilterSet *BlockFilter,
352       MachineFunction::iterator &PrevUnplacedBlockIt);
353   bool maybeTailDuplicateBlock(MachineBasicBlock *BB, MachineBasicBlock *LPred,
354                                const BlockChain &Chain,
355                                BlockFilterSet *BlockFilter,
356                                MachineFunction::iterator &PrevUnplacedBlockIt,
357                                bool &DuplicatedToPred);
358   bool
359   hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ,
360                              BlockChain &SuccChain, BranchProbability SuccProb,
361                              BranchProbability RealSuccProb, BlockChain &Chain,
362                              const BlockFilterSet *BlockFilter);
363   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
364                                          BlockChain &Chain,
365                                          const BlockFilterSet *BlockFilter);
366   MachineBasicBlock *
367   selectBestCandidateBlock(BlockChain &Chain,
368                            SmallVectorImpl<MachineBasicBlock *> &WorkList);
369   MachineBasicBlock *
370   getFirstUnplacedBlock(const BlockChain &PlacedChain,
371                         MachineFunction::iterator &PrevUnplacedBlockIt,
372                         const BlockFilterSet *BlockFilter);
373 
374   /// \brief Add a basic block to the work list if it is appropriate.
375   ///
376   /// If the optional parameter BlockFilter is provided, only MBB
377   /// present in the set will be added to the worklist. If nullptr
378   /// is provided, no filtering occurs.
379   void fillWorkLists(MachineBasicBlock *MBB,
380                      SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
381                      const BlockFilterSet *BlockFilter);
382   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
383                   BlockFilterSet *BlockFilter = nullptr);
384   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
385                                      const BlockFilterSet &LoopBlockSet);
386   MachineBasicBlock *findBestLoopExit(MachineLoop &L,
387                                       const BlockFilterSet &LoopBlockSet);
388   BlockFilterSet collectLoopBlockSet(MachineLoop &L);
389   void buildLoopChains(MachineLoop &L);
390   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
391                   const BlockFilterSet &LoopBlockSet);
392   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
393                              const BlockFilterSet &LoopBlockSet);
394   void collectMustExecuteBBs();
395   void buildCFGChains();
396   void optimizeBranches();
397   void alignBlocks();
398 
399 public:
400   static char ID; // Pass identification, replacement for typeid
401   MachineBlockPlacement() : MachineFunctionPass(ID) {
402     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
403   }
404 
405   bool runOnMachineFunction(MachineFunction &F) override;
406 
407   void getAnalysisUsage(AnalysisUsage &AU) const override {
408     AU.addRequired<MachineBranchProbabilityInfo>();
409     AU.addRequired<MachineBlockFrequencyInfo>();
410     AU.addRequired<MachineDominatorTree>();
411     AU.addRequired<MachineLoopInfo>();
412     AU.addRequired<TargetPassConfig>();
413     MachineFunctionPass::getAnalysisUsage(AU);
414   }
415 };
416 }
417 
418 char MachineBlockPlacement::ID = 0;
419 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
420 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
421                       "Branch Probability Basic Block Placement", false, false)
422 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
423 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
424 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
425 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
426 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
427                     "Branch Probability Basic Block Placement", false, false)
428 
429 #ifndef NDEBUG
430 /// \brief Helper to print the name of a MBB.
431 ///
432 /// Only used by debug logging.
433 static std::string getBlockName(MachineBasicBlock *BB) {
434   std::string Result;
435   raw_string_ostream OS(Result);
436   OS << "BB#" << BB->getNumber();
437   OS << " ('" << BB->getName() << "')";
438   OS.flush();
439   return Result;
440 }
441 #endif
442 
443 /// \brief Mark a chain's successors as having one fewer preds.
444 ///
445 /// When a chain is being merged into the "placed" chain, this routine will
446 /// quickly walk the successors of each block in the chain and mark them as
447 /// having one fewer active predecessor. It also adds any successors of this
448 /// chain which reach the zero-predecessor state to the appropriate worklist.
449 void MachineBlockPlacement::markChainSuccessors(
450     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
451     const BlockFilterSet *BlockFilter) {
452   // Walk all the blocks in this chain, marking their successors as having
453   // a predecessor placed.
454   for (MachineBasicBlock *MBB : Chain) {
455     markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
456   }
457 }
458 
459 /// \brief Mark a single block's successors as having one fewer preds.
460 ///
461 /// Under normal circumstances, this is only called by markChainSuccessors,
462 /// but if a block that was to be placed is completely tail-duplicated away,
463 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
464 /// for just that block.
465 void MachineBlockPlacement::markBlockSuccessors(
466     BlockChain &Chain, MachineBasicBlock *MBB, MachineBasicBlock *LoopHeaderBB,
467     const BlockFilterSet *BlockFilter) {
468   // Add any successors for which this is the only un-placed in-loop
469   // predecessor to the worklist as a viable candidate for CFG-neutral
470   // placement. No subsequent placement of this block will violate the CFG
471   // shape, so we get to use heuristics to choose a favorable placement.
472   for (MachineBasicBlock *Succ : MBB->successors()) {
473     if (BlockFilter && !BlockFilter->count(Succ))
474       continue;
475     BlockChain &SuccChain = *BlockToChain[Succ];
476     // Disregard edges within a fixed chain, or edges to the loop header.
477     if (&Chain == &SuccChain || Succ == LoopHeaderBB)
478       continue;
479 
480     // This is a cross-chain edge that is within the loop, so decrement the
481     // loop predecessor count of the destination chain.
482     if (SuccChain.UnscheduledPredecessors == 0 ||
483         --SuccChain.UnscheduledPredecessors > 0)
484       continue;
485 
486     auto *NewBB = *SuccChain.begin();
487     if (NewBB->isEHPad())
488       EHPadWorkList.push_back(NewBB);
489     else
490       BlockWorkList.push_back(NewBB);
491   }
492 }
493 
494 /// This helper function collects the set of successors of block
495 /// \p BB that are allowed to be its layout successors, and return
496 /// the total branch probability of edges from \p BB to those
497 /// blocks.
498 BranchProbability MachineBlockPlacement::collectViableSuccessors(
499     MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter,
500     SmallVector<MachineBasicBlock *, 4> &Successors) {
501   // Adjust edge probabilities by excluding edges pointing to blocks that is
502   // either not in BlockFilter or is already in the current chain. Consider the
503   // following CFG:
504   //
505   //     --->A
506   //     |  / \
507   //     | B   C
508   //     |  \ / \
509   //     ----D   E
510   //
511   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
512   // A->C is chosen as a fall-through, D won't be selected as a successor of C
513   // due to CFG constraint (the probability of C->D is not greater than
514   // HotProb to break top-order). If we exclude E that is not in BlockFilter
515   // when calculating the  probability of C->D, D will be selected and we
516   // will get A C D B as the layout of this loop.
517   auto AdjustedSumProb = BranchProbability::getOne();
518   for (MachineBasicBlock *Succ : BB->successors()) {
519     bool SkipSucc = false;
520     if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
521       SkipSucc = true;
522     } else {
523       BlockChain *SuccChain = BlockToChain[Succ];
524       if (SuccChain == &Chain) {
525         SkipSucc = true;
526       } else if (Succ != *SuccChain->begin()) {
527         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
528         continue;
529       }
530     }
531     if (SkipSucc)
532       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
533     else
534       Successors.push_back(Succ);
535   }
536 
537   return AdjustedSumProb;
538 }
539 
540 /// The helper function returns the branch probability that is adjusted
541 /// or normalized over the new total \p AdjustedSumProb.
542 static BranchProbability
543 getAdjustedProbability(BranchProbability OrigProb,
544                        BranchProbability AdjustedSumProb) {
545   BranchProbability SuccProb;
546   uint32_t SuccProbN = OrigProb.getNumerator();
547   uint32_t SuccProbD = AdjustedSumProb.getNumerator();
548   if (SuccProbN >= SuccProbD)
549     SuccProb = BranchProbability::getOne();
550   else
551     SuccProb = BranchProbability(SuccProbN, SuccProbD);
552 
553   return SuccProb;
554 }
555 
556 /// When the option OutlineOptionalBranches is on, this method
557 /// checks if the fallthrough candidate block \p Succ (of block
558 /// \p BB) also has other unscheduled predecessor blocks which
559 /// are also successors of \p BB (forming triangular shape CFG).
560 /// If none of such predecessors are small, it returns true.
561 /// The caller can choose to select \p Succ as the layout successors
562 /// so that \p Succ's predecessors (optional branches) can be
563 /// outlined.
564 /// FIXME: fold this with more general layout cost analysis.
565 bool MachineBlockPlacement::shouldPredBlockBeOutlined(
566     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain,
567     const BlockFilterSet *BlockFilter, BranchProbability SuccProb,
568     BranchProbability HotProb) {
569   if (!OutlineOptionalBranches)
570     return false;
571   // If we outline optional branches, look whether Succ is unavoidable, i.e.
572   // dominates all terminators of the MachineFunction. If it does, other
573   // successors must be optional. Don't do this for cold branches.
574   if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) {
575     for (MachineBasicBlock *Pred : Succ->predecessors()) {
576       // Check whether there is an unplaced optional branch.
577       if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
578           BlockToChain[Pred] == &Chain)
579         continue;
580       // Check whether the optional branch has exactly one BB.
581       if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
582         continue;
583       // Check whether the optional branch is small.
584       if (Pred->size() < OutlineOptionalThreshold)
585         return false;
586     }
587     return true;
588   } else
589     return false;
590 }
591 
592 // When profile is not present, return the StaticLikelyProb.
593 // When profile is available, we need to handle the triangle-shape CFG.
594 static BranchProbability getLayoutSuccessorProbThreshold(
595       MachineBasicBlock *BB) {
596   if (!BB->getParent()->getFunction()->getEntryCount())
597     return BranchProbability(StaticLikelyProb, 100);
598   if (BB->succ_size() == 2) {
599     const MachineBasicBlock *Succ1 = *BB->succ_begin();
600     const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
601     if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
602       /* See case 1 below for the cost analysis. For BB->Succ to
603        * be taken with smaller cost, the following needs to hold:
604        *   Prob(BB->Succ) > 2* Prob(BB->Pred)
605        *   So the threshold T
606        *   T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1,
607        * We have  T + T/2 = 1, i.e. T = 2/3. Also adding user specified
608        * branch bias, we have
609        *   T = (2/3)*(ProfileLikelyProb/50)
610        *     = (2*ProfileLikelyProb)/150)
611        */
612       return BranchProbability(2 * ProfileLikelyProb, 150);
613     }
614   }
615   return BranchProbability(ProfileLikelyProb, 100);
616 }
617 
618 /// Checks to see if the layout candidate block \p Succ has a better layout
619 /// predecessor than \c BB. If yes, returns true.
620 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
621     MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain,
622     BranchProbability SuccProb, BranchProbability RealSuccProb,
623     BlockChain &Chain, const BlockFilterSet *BlockFilter) {
624 
625   // There isn't a better layout when there are no unscheduled predecessors.
626   if (SuccChain.UnscheduledPredecessors == 0)
627     return false;
628 
629   // There are two basic scenarios here:
630   // -------------------------------------
631   // Case 1: triangular shape CFG (if-then):
632   //     BB
633   //     | \
634   //     |  \
635   //     |   Pred
636   //     |   /
637   //     Succ
638   // In this case, we are evaluating whether to select edge -> Succ, e.g.
639   // set Succ as the layout successor of BB. Picking Succ as BB's
640   // successor breaks the CFG constraints (FIXME: define these constraints).
641   // With this layout, Pred BB
642   // is forced to be outlined, so the overall cost will be cost of the
643   // branch taken from BB to Pred, plus the cost of back taken branch
644   // from Pred to Succ, as well as the additional cost associated
645   // with the needed unconditional jump instruction from Pred To Succ.
646 
647   // The cost of the topological order layout is the taken branch cost
648   // from BB to Succ, so to make BB->Succ a viable candidate, the following
649   // must hold:
650   //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
651   //      < freq(BB->Succ) *  taken_branch_cost.
652   // Ignoring unconditional jump cost, we get
653   //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
654   //    prob(BB->Succ) > 2 * prob(BB->Pred)
655   //
656   // When real profile data is available, we can precisely compute the
657   // probability threshold that is needed for edge BB->Succ to be considered.
658   // Without profile data, the heuristic requires the branch bias to be
659   // a lot larger to make sure the signal is very strong (e.g. 80% default).
660   // -----------------------------------------------------------------
661   // Case 2: diamond like CFG (if-then-else):
662   //     S
663   //    / \
664   //   |   \
665   //  BB    Pred
666   //   \    /
667   //    Succ
668   //    ..
669   //
670   // The current block is BB and edge BB->Succ is now being evaluated.
671   // Note that edge S->BB was previously already selected because
672   // prob(S->BB) > prob(S->Pred).
673   // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
674   // choose Pred, we will have a topological ordering as shown on the left
675   // in the picture below. If we choose Succ, we have the solution as shown
676   // on the right:
677   //
678   //   topo-order:
679   //
680   //       S-----                             ---S
681   //       |    |                             |  |
682   //    ---BB   |                             |  BB
683   //    |       |                             |  |
684   //    |  pred--                             |  Succ--
685   //    |  |                                  |       |
686   //    ---succ                               ---pred--
687   //
688   // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred)
689   //      = freq(S->Pred) + freq(S->BB)
690   //
691   // If we have profile data (i.e, branch probabilities can be trusted), the
692   // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
693   // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
694   // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
695   // means the cost of topological order is greater.
696   // When profile data is not available, however, we need to be more
697   // conservative. If the branch prediction is wrong, breaking the topo-order
698   // will actually yield a layout with large cost. For this reason, we need
699   // strong biased branch at block S with Prob(S->BB) in order to select
700   // BB->Succ. This is equivalent to looking the CFG backward with backward
701   // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
702   // profile data).
703   // --------------------------------------------------------------------------
704   // Case 3: forked diamond
705   //       S
706   //      / \
707   //     /   \
708   //   BB    Pred
709   //   | \   / |
710   //   |  \ /  |
711   //   |   X   |
712   //   |  / \  |
713   //   | /   \ |
714   //   S1     S2
715   //
716   // The current block is BB and edge BB->S1 is now being evaluated.
717   // As above S->BB was already selected because
718   // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
719   //
720   // topo-order:
721   //
722   //     S-------|                     ---S
723   //     |       |                     |  |
724   //  ---BB      |                     |  BB
725   //  |          |                     |  |
726   //  |  Pred----|                     |  S1----
727   //  |  |                             |       |
728   //  --(S1 or S2)                     ---Pred--
729   //
730   // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
731   //    + min(freq(Pred->S1), freq(Pred->S2))
732   // Non-topo-order cost:
733   // In the worst case, S2 will not get laid out after Pred.
734   // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
735   // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
736   // is 0. Then the non topo layout is better when
737   // freq(S->Pred) < freq(BB->S1).
738   // This is exactly what is checked below.
739   // Note there are other shapes that apply (Pred may not be a single block,
740   // but they all fit this general pattern.)
741   BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
742 
743   // Make sure that a hot successor doesn't have a globally more
744   // important predecessor.
745   BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
746   bool BadCFGConflict = false;
747 
748   for (MachineBasicBlock *Pred : Succ->predecessors()) {
749     if (Pred == Succ || BlockToChain[Pred] == &SuccChain ||
750         (BlockFilter && !BlockFilter->count(Pred)) ||
751         BlockToChain[Pred] == &Chain)
752       continue;
753     // Do backward checking.
754     // For all cases above, we need a backward checking to filter out edges that
755     // are not 'strongly' biased. With profile data available, the check is
756     // mostly redundant for case 2 (when threshold prob is set at 50%) unless S
757     // has more than two successors.
758     // BB  Pred
759     //  \ /
760     //  Succ
761     // We select edge BB->Succ if
762     //      freq(BB->Succ) > freq(Succ) * HotProb
763     //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
764     //      HotProb
765     //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
766     // Case 1 is covered too, because the first equation reduces to:
767     // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
768     BlockFrequency PredEdgeFreq =
769         MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
770     if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
771       BadCFGConflict = true;
772       break;
773     }
774   }
775 
776   if (BadCFGConflict) {
777     DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " << SuccProb
778                  << " (prob) (non-cold CFG conflict)\n");
779     return true;
780   }
781 
782   return false;
783 }
784 
785 /// \brief Select the best successor for a block.
786 ///
787 /// This looks across all successors of a particular block and attempts to
788 /// select the "best" one to be the layout successor. It only considers direct
789 /// successors which also pass the block filter. It will attempt to avoid
790 /// breaking CFG structure, but cave and break such structures in the case of
791 /// very hot successor edges.
792 ///
793 /// \returns The best successor block found, or null if none are viable.
794 MachineBasicBlock *
795 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
796                                            BlockChain &Chain,
797                                            const BlockFilterSet *BlockFilter) {
798   const BranchProbability HotProb(StaticLikelyProb, 100);
799 
800   MachineBasicBlock *BestSucc = nullptr;
801   auto BestProb = BranchProbability::getZero();
802 
803   SmallVector<MachineBasicBlock *, 4> Successors;
804   auto AdjustedSumProb =
805       collectViableSuccessors(BB, Chain, BlockFilter, Successors);
806 
807   DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) << "\n");
808   for (MachineBasicBlock *Succ : Successors) {
809     auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
810     BranchProbability SuccProb =
811         getAdjustedProbability(RealSuccProb, AdjustedSumProb);
812 
813     // This heuristic is off by default.
814     if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb,
815                                   HotProb))
816       return Succ;
817 
818     BlockChain &SuccChain = *BlockToChain[Succ];
819     // Skip the edge \c BB->Succ if block \c Succ has a better layout
820     // predecessor that yields lower global cost.
821     if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
822                                    Chain, BlockFilter))
823       continue;
824 
825     DEBUG(
826         dbgs() << "    Candidate: " << getBlockName(Succ) << ", probability: "
827                << SuccProb
828                << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
829                << "\n");
830 
831     if (BestSucc && BestProb >= SuccProb) {
832       DEBUG(dbgs() << "    Not the best candidate, continuing\n");
833       continue;
834     }
835 
836     DEBUG(dbgs() << "    Setting it as best candidate\n");
837     BestSucc = Succ;
838     BestProb = SuccProb;
839   }
840   if (BestSucc)
841     DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc) << "\n");
842 
843   return BestSucc;
844 }
845 
846 /// \brief Select the best block from a worklist.
847 ///
848 /// This looks through the provided worklist as a list of candidate basic
849 /// blocks and select the most profitable one to place. The definition of
850 /// profitable only really makes sense in the context of a loop. This returns
851 /// the most frequently visited block in the worklist, which in the case of
852 /// a loop, is the one most desirable to be physically close to the rest of the
853 /// loop body in order to improve i-cache behavior.
854 ///
855 /// \returns The best block found, or null if none are viable.
856 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
857     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
858   // Once we need to walk the worklist looking for a candidate, cleanup the
859   // worklist of already placed entries.
860   // FIXME: If this shows up on profiles, it could be folded (at the cost of
861   // some code complexity) into the loop below.
862   WorkList.erase(remove_if(WorkList,
863                            [&](MachineBasicBlock *BB) {
864                              return BlockToChain.lookup(BB) == &Chain;
865                            }),
866                  WorkList.end());
867 
868   if (WorkList.empty())
869     return nullptr;
870 
871   bool IsEHPad = WorkList[0]->isEHPad();
872 
873   MachineBasicBlock *BestBlock = nullptr;
874   BlockFrequency BestFreq;
875   for (MachineBasicBlock *MBB : WorkList) {
876     assert(MBB->isEHPad() == IsEHPad);
877 
878     BlockChain &SuccChain = *BlockToChain[MBB];
879     if (&SuccChain == &Chain)
880       continue;
881 
882     assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block");
883 
884     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
885     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
886           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
887 
888     // For ehpad, we layout the least probable first as to avoid jumping back
889     // from least probable landingpads to more probable ones.
890     //
891     // FIXME: Using probability is probably (!) not the best way to achieve
892     // this. We should probably have a more principled approach to layout
893     // cleanup code.
894     //
895     // The goal is to get:
896     //
897     //                 +--------------------------+
898     //                 |                          V
899     // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume
900     //
901     // Rather than:
902     //
903     //                 +-------------------------------------+
904     //                 V                                     |
905     // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup
906     if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
907       continue;
908 
909     BestBlock = MBB;
910     BestFreq = CandidateFreq;
911   }
912 
913   return BestBlock;
914 }
915 
916 /// \brief Retrieve the first unplaced basic block.
917 ///
918 /// This routine is called when we are unable to use the CFG to walk through
919 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
920 /// We walk through the function's blocks in order, starting from the
921 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
922 /// re-scanning the entire sequence on repeated calls to this routine.
923 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
924     const BlockChain &PlacedChain,
925     MachineFunction::iterator &PrevUnplacedBlockIt,
926     const BlockFilterSet *BlockFilter) {
927   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
928        ++I) {
929     if (BlockFilter && !BlockFilter->count(&*I))
930       continue;
931     if (BlockToChain[&*I] != &PlacedChain) {
932       PrevUnplacedBlockIt = I;
933       // Now select the head of the chain to which the unplaced block belongs
934       // as the block to place. This will force the entire chain to be placed,
935       // and satisfies the requirements of merging chains.
936       return *BlockToChain[&*I]->begin();
937     }
938   }
939   return nullptr;
940 }
941 
942 void MachineBlockPlacement::fillWorkLists(
943     MachineBasicBlock *MBB,
944     SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
945     const BlockFilterSet *BlockFilter = nullptr) {
946   BlockChain &Chain = *BlockToChain[MBB];
947   if (!UpdatedPreds.insert(&Chain).second)
948     return;
949 
950   assert(Chain.UnscheduledPredecessors == 0);
951   for (MachineBasicBlock *ChainBB : Chain) {
952     assert(BlockToChain[ChainBB] == &Chain);
953     for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
954       if (BlockFilter && !BlockFilter->count(Pred))
955         continue;
956       if (BlockToChain[Pred] == &Chain)
957         continue;
958       ++Chain.UnscheduledPredecessors;
959     }
960   }
961 
962   if (Chain.UnscheduledPredecessors != 0)
963     return;
964 
965   MBB = *Chain.begin();
966   if (MBB->isEHPad())
967     EHPadWorkList.push_back(MBB);
968   else
969     BlockWorkList.push_back(MBB);
970 }
971 
972 void MachineBlockPlacement::buildChain(
973     MachineBasicBlock *BB, BlockChain &Chain,
974     BlockFilterSet *BlockFilter) {
975   assert(BB && "BB must not be null.\n");
976   assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n");
977   MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
978 
979   MachineBasicBlock *LoopHeaderBB = BB;
980   markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
981   BB = *std::prev(Chain.end());
982   for (;;) {
983     assert(BB && "null block found at end of chain in loop.");
984     assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
985     assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
986 
987 
988     // Look for the best viable successor if there is one to place immediately
989     // after this block.
990     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
991 
992     // If an immediate successor isn't available, look for the best viable
993     // block among those we've identified as not violating the loop's CFG at
994     // this point. This won't be a fallthrough, but it will increase locality.
995     if (!BestSucc)
996       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
997     if (!BestSucc)
998       BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
999 
1000     if (!BestSucc) {
1001       BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1002       if (!BestSucc)
1003         break;
1004 
1005       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1006                       "layout successor until the CFG reduces\n");
1007     }
1008 
1009     // Placement may have changed tail duplication opportunities.
1010     // Check for that now.
1011     if (TailDupPlacement && BestSucc) {
1012       // If the chosen successor was duplicated into all its predecessors,
1013       // don't bother laying it out, just go round the loop again with BB as
1014       // the chain end.
1015       if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1016                                        BlockFilter, PrevUnplacedBlockIt))
1017         continue;
1018     }
1019 
1020     // Place this block, updating the datastructures to reflect its placement.
1021     BlockChain &SuccChain = *BlockToChain[BestSucc];
1022     // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1023     // we selected a successor that didn't fit naturally into the CFG.
1024     SuccChain.UnscheduledPredecessors = 0;
1025     DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1026                  << getBlockName(BestSucc) << "\n");
1027     markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1028     Chain.merge(BestSucc, &SuccChain);
1029     BB = *std::prev(Chain.end());
1030   }
1031 
1032   DEBUG(dbgs() << "Finished forming chain for header block "
1033                << getBlockName(*Chain.begin()) << "\n");
1034 }
1035 
1036 /// \brief Find the best loop top block for layout.
1037 ///
1038 /// Look for a block which is strictly better than the loop header for laying
1039 /// out at the top of the loop. This looks for one and only one pattern:
1040 /// a latch block with no conditional exit. This block will cause a conditional
1041 /// jump around it or will be the bottom of the loop if we lay it out in place,
1042 /// but if it it doesn't end up at the bottom of the loop for any reason,
1043 /// rotation alone won't fix it. Because such a block will always result in an
1044 /// unconditional jump (for the backedge) rotating it in front of the loop
1045 /// header is always profitable.
1046 MachineBasicBlock *
1047 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
1048                                        const BlockFilterSet &LoopBlockSet) {
1049   // Placing the latch block before the header may introduce an extra branch
1050   // that skips this block the first time the loop is executed, which we want
1051   // to avoid when optimising for size.
1052   // FIXME: in theory there is a case that does not introduce a new branch,
1053   // i.e. when the layout predecessor does not fallthrough to the loop header.
1054   // In practice this never happens though: there always seems to be a preheader
1055   // that can fallthrough and that is also placed before the header.
1056   if (F->getFunction()->optForSize())
1057     return L.getHeader();
1058 
1059   // Check that the header hasn't been fused with a preheader block due to
1060   // crazy branches. If it has, we need to start with the header at the top to
1061   // prevent pulling the preheader into the loop body.
1062   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1063   if (!LoopBlockSet.count(*HeaderChain.begin()))
1064     return L.getHeader();
1065 
1066   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
1067                << "\n");
1068 
1069   BlockFrequency BestPredFreq;
1070   MachineBasicBlock *BestPred = nullptr;
1071   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
1072     if (!LoopBlockSet.count(Pred))
1073       continue;
1074     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", has "
1075                  << Pred->succ_size() << " successors, ";
1076           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
1077     if (Pred->succ_size() > 1)
1078       continue;
1079 
1080     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
1081     if (!BestPred || PredFreq > BestPredFreq ||
1082         (!(PredFreq < BestPredFreq) &&
1083          Pred->isLayoutSuccessor(L.getHeader()))) {
1084       BestPred = Pred;
1085       BestPredFreq = PredFreq;
1086     }
1087   }
1088 
1089   // If no direct predecessor is fine, just use the loop header.
1090   if (!BestPred) {
1091     DEBUG(dbgs() << "    final top unchanged\n");
1092     return L.getHeader();
1093   }
1094 
1095   // Walk backwards through any straight line of predecessors.
1096   while (BestPred->pred_size() == 1 &&
1097          (*BestPred->pred_begin())->succ_size() == 1 &&
1098          *BestPred->pred_begin() != L.getHeader())
1099     BestPred = *BestPred->pred_begin();
1100 
1101   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
1102   return BestPred;
1103 }
1104 
1105 /// \brief Find the best loop exiting block for layout.
1106 ///
1107 /// This routine implements the logic to analyze the loop looking for the best
1108 /// block to layout at the top of the loop. Typically this is done to maximize
1109 /// fallthrough opportunities.
1110 MachineBasicBlock *
1111 MachineBlockPlacement::findBestLoopExit(MachineLoop &L,
1112                                         const BlockFilterSet &LoopBlockSet) {
1113   // We don't want to layout the loop linearly in all cases. If the loop header
1114   // is just a normal basic block in the loop, we want to look for what block
1115   // within the loop is the best one to layout at the top. However, if the loop
1116   // header has be pre-merged into a chain due to predecessors not having
1117   // analyzable branches, *and* the predecessor it is merged with is *not* part
1118   // of the loop, rotating the header into the middle of the loop will create
1119   // a non-contiguous range of blocks which is Very Bad. So start with the
1120   // header and only rotate if safe.
1121   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
1122   if (!LoopBlockSet.count(*HeaderChain.begin()))
1123     return nullptr;
1124 
1125   BlockFrequency BestExitEdgeFreq;
1126   unsigned BestExitLoopDepth = 0;
1127   MachineBasicBlock *ExitingBB = nullptr;
1128   // If there are exits to outer loops, loop rotation can severely limit
1129   // fallthrough opportunities unless it selects such an exit. Keep a set of
1130   // blocks where rotating to exit with that block will reach an outer loop.
1131   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
1132 
1133   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
1134                << "\n");
1135   for (MachineBasicBlock *MBB : L.getBlocks()) {
1136     BlockChain &Chain = *BlockToChain[MBB];
1137     // Ensure that this block is at the end of a chain; otherwise it could be
1138     // mid-way through an inner loop or a successor of an unanalyzable branch.
1139     if (MBB != *std::prev(Chain.end()))
1140       continue;
1141 
1142     // Now walk the successors. We need to establish whether this has a viable
1143     // exiting successor and whether it has a viable non-exiting successor.
1144     // We store the old exiting state and restore it if a viable looping
1145     // successor isn't found.
1146     MachineBasicBlock *OldExitingBB = ExitingBB;
1147     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
1148     bool HasLoopingSucc = false;
1149     for (MachineBasicBlock *Succ : MBB->successors()) {
1150       if (Succ->isEHPad())
1151         continue;
1152       if (Succ == MBB)
1153         continue;
1154       BlockChain &SuccChain = *BlockToChain[Succ];
1155       // Don't split chains, either this chain or the successor's chain.
1156       if (&Chain == &SuccChain) {
1157         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1158                      << getBlockName(Succ) << " (chain conflict)\n");
1159         continue;
1160       }
1161 
1162       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
1163       if (LoopBlockSet.count(Succ)) {
1164         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
1165                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
1166         HasLoopingSucc = true;
1167         continue;
1168       }
1169 
1170       unsigned SuccLoopDepth = 0;
1171       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
1172         SuccLoopDepth = ExitLoop->getLoopDepth();
1173         if (ExitLoop->contains(&L))
1174           BlocksExitingToOuterLoop.insert(MBB);
1175       }
1176 
1177       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
1178       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
1179                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
1180             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
1181       // Note that we bias this toward an existing layout successor to retain
1182       // incoming order in the absence of better information. The exit must have
1183       // a frequency higher than the current exit before we consider breaking
1184       // the layout.
1185       BranchProbability Bias(100 - ExitBlockBias, 100);
1186       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
1187           ExitEdgeFreq > BestExitEdgeFreq ||
1188           (MBB->isLayoutSuccessor(Succ) &&
1189            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
1190         BestExitEdgeFreq = ExitEdgeFreq;
1191         ExitingBB = MBB;
1192       }
1193     }
1194 
1195     if (!HasLoopingSucc) {
1196       // Restore the old exiting state, no viable looping successor was found.
1197       ExitingBB = OldExitingBB;
1198       BestExitEdgeFreq = OldBestExitEdgeFreq;
1199     }
1200   }
1201   // Without a candidate exiting block or with only a single block in the
1202   // loop, just use the loop header to layout the loop.
1203   if (!ExitingBB) {
1204     DEBUG(dbgs() << "    No other candidate exit blocks, using loop header\n");
1205     return nullptr;
1206   }
1207   if (L.getNumBlocks() == 1) {
1208     DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n");
1209     return nullptr;
1210   }
1211 
1212   // Also, if we have exit blocks which lead to outer loops but didn't select
1213   // one of them as the exiting block we are rotating toward, disable loop
1214   // rotation altogether.
1215   if (!BlocksExitingToOuterLoop.empty() &&
1216       !BlocksExitingToOuterLoop.count(ExitingBB))
1217     return nullptr;
1218 
1219   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
1220   return ExitingBB;
1221 }
1222 
1223 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
1224 ///
1225 /// Once we have built a chain, try to rotate it to line up the hot exit block
1226 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
1227 /// branches. For example, if the loop has fallthrough into its header and out
1228 /// of its bottom already, don't rotate it.
1229 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
1230                                        MachineBasicBlock *ExitingBB,
1231                                        const BlockFilterSet &LoopBlockSet) {
1232   if (!ExitingBB)
1233     return;
1234 
1235   MachineBasicBlock *Top = *LoopChain.begin();
1236   bool ViableTopFallthrough = false;
1237   for (MachineBasicBlock *Pred : Top->predecessors()) {
1238     BlockChain *PredChain = BlockToChain[Pred];
1239     if (!LoopBlockSet.count(Pred) &&
1240         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1241       ViableTopFallthrough = true;
1242       break;
1243     }
1244   }
1245 
1246   // If the header has viable fallthrough, check whether the current loop
1247   // bottom is a viable exiting block. If so, bail out as rotating will
1248   // introduce an unnecessary branch.
1249   if (ViableTopFallthrough) {
1250     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
1251     for (MachineBasicBlock *Succ : Bottom->successors()) {
1252       BlockChain *SuccChain = BlockToChain[Succ];
1253       if (!LoopBlockSet.count(Succ) &&
1254           (!SuccChain || Succ == *SuccChain->begin()))
1255         return;
1256     }
1257   }
1258 
1259   BlockChain::iterator ExitIt = find(LoopChain, ExitingBB);
1260   if (ExitIt == LoopChain.end())
1261     return;
1262 
1263   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
1264 }
1265 
1266 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
1267 ///
1268 /// With profile data, we can determine the cost in terms of missed fall through
1269 /// opportunities when rotating a loop chain and select the best rotation.
1270 /// Basically, there are three kinds of cost to consider for each rotation:
1271 ///    1. The possibly missed fall through edge (if it exists) from BB out of
1272 ///    the loop to the loop header.
1273 ///    2. The possibly missed fall through edges (if they exist) from the loop
1274 ///    exits to BB out of the loop.
1275 ///    3. The missed fall through edge (if it exists) from the last BB to the
1276 ///    first BB in the loop chain.
1277 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
1278 ///  We select the best rotation with the smallest cost.
1279 void MachineBlockPlacement::rotateLoopWithProfile(
1280     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
1281   auto HeaderBB = L.getHeader();
1282   auto HeaderIter = find(LoopChain, HeaderBB);
1283   auto RotationPos = LoopChain.end();
1284 
1285   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
1286 
1287   // A utility lambda that scales up a block frequency by dividing it by a
1288   // branch probability which is the reciprocal of the scale.
1289   auto ScaleBlockFrequency = [](BlockFrequency Freq,
1290                                 unsigned Scale) -> BlockFrequency {
1291     if (Scale == 0)
1292       return 0;
1293     // Use operator / between BlockFrequency and BranchProbability to implement
1294     // saturating multiplication.
1295     return Freq / BranchProbability(1, Scale);
1296   };
1297 
1298   // Compute the cost of the missed fall-through edge to the loop header if the
1299   // chain head is not the loop header. As we only consider natural loops with
1300   // single header, this computation can be done only once.
1301   BlockFrequency HeaderFallThroughCost(0);
1302   for (auto *Pred : HeaderBB->predecessors()) {
1303     BlockChain *PredChain = BlockToChain[Pred];
1304     if (!LoopBlockSet.count(Pred) &&
1305         (!PredChain || Pred == *std::prev(PredChain->end()))) {
1306       auto EdgeFreq =
1307           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
1308       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
1309       // If the predecessor has only an unconditional jump to the header, we
1310       // need to consider the cost of this jump.
1311       if (Pred->succ_size() == 1)
1312         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
1313       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
1314     }
1315   }
1316 
1317   // Here we collect all exit blocks in the loop, and for each exit we find out
1318   // its hottest exit edge. For each loop rotation, we define the loop exit cost
1319   // as the sum of frequencies of exit edges we collect here, excluding the exit
1320   // edge from the tail of the loop chain.
1321   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
1322   for (auto BB : LoopChain) {
1323     auto LargestExitEdgeProb = BranchProbability::getZero();
1324     for (auto *Succ : BB->successors()) {
1325       BlockChain *SuccChain = BlockToChain[Succ];
1326       if (!LoopBlockSet.count(Succ) &&
1327           (!SuccChain || Succ == *SuccChain->begin())) {
1328         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
1329         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
1330       }
1331     }
1332     if (LargestExitEdgeProb > BranchProbability::getZero()) {
1333       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
1334       ExitsWithFreq.emplace_back(BB, ExitFreq);
1335     }
1336   }
1337 
1338   // In this loop we iterate every block in the loop chain and calculate the
1339   // cost assuming the block is the head of the loop chain. When the loop ends,
1340   // we should have found the best candidate as the loop chain's head.
1341   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
1342             EndIter = LoopChain.end();
1343        Iter != EndIter; Iter++, TailIter++) {
1344     // TailIter is used to track the tail of the loop chain if the block we are
1345     // checking (pointed by Iter) is the head of the chain.
1346     if (TailIter == LoopChain.end())
1347       TailIter = LoopChain.begin();
1348 
1349     auto TailBB = *TailIter;
1350 
1351     // Calculate the cost by putting this BB to the top.
1352     BlockFrequency Cost = 0;
1353 
1354     // If the current BB is the loop header, we need to take into account the
1355     // cost of the missed fall through edge from outside of the loop to the
1356     // header.
1357     if (Iter != HeaderIter)
1358       Cost += HeaderFallThroughCost;
1359 
1360     // Collect the loop exit cost by summing up frequencies of all exit edges
1361     // except the one from the chain tail.
1362     for (auto &ExitWithFreq : ExitsWithFreq)
1363       if (TailBB != ExitWithFreq.first)
1364         Cost += ExitWithFreq.second;
1365 
1366     // The cost of breaking the once fall-through edge from the tail to the top
1367     // of the loop chain. Here we need to consider three cases:
1368     // 1. If the tail node has only one successor, then we will get an
1369     //    additional jmp instruction. So the cost here is (MisfetchCost +
1370     //    JumpInstCost) * tail node frequency.
1371     // 2. If the tail node has two successors, then we may still get an
1372     //    additional jmp instruction if the layout successor after the loop
1373     //    chain is not its CFG successor. Note that the more frequently executed
1374     //    jmp instruction will be put ahead of the other one. Assume the
1375     //    frequency of those two branches are x and y, where x is the frequency
1376     //    of the edge to the chain head, then the cost will be
1377     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
1378     // 3. If the tail node has more than two successors (this rarely happens),
1379     //    we won't consider any additional cost.
1380     if (TailBB->isSuccessor(*Iter)) {
1381       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
1382       if (TailBB->succ_size() == 1)
1383         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
1384                                     MisfetchCost + JumpInstCost);
1385       else if (TailBB->succ_size() == 2) {
1386         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
1387         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
1388         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
1389                                   ? TailBBFreq * TailToHeadProb.getCompl()
1390                                   : TailToHeadFreq;
1391         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
1392                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
1393       }
1394     }
1395 
1396     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter)
1397                  << " to the top: " << Cost.getFrequency() << "\n");
1398 
1399     if (Cost < SmallestRotationCost) {
1400       SmallestRotationCost = Cost;
1401       RotationPos = Iter;
1402     }
1403   }
1404 
1405   if (RotationPos != LoopChain.end()) {
1406     DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
1407                  << " to the top\n");
1408     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
1409   }
1410 }
1411 
1412 /// \brief Collect blocks in the given loop that are to be placed.
1413 ///
1414 /// When profile data is available, exclude cold blocks from the returned set;
1415 /// otherwise, collect all blocks in the loop.
1416 MachineBlockPlacement::BlockFilterSet
1417 MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) {
1418   BlockFilterSet LoopBlockSet;
1419 
1420   // Filter cold blocks off from LoopBlockSet when profile data is available.
1421   // Collect the sum of frequencies of incoming edges to the loop header from
1422   // outside. If we treat the loop as a super block, this is the frequency of
1423   // the loop. Then for each block in the loop, we calculate the ratio between
1424   // its frequency and the frequency of the loop block. When it is too small,
1425   // don't add it to the loop chain. If there are outer loops, then this block
1426   // will be merged into the first outer loop chain for which this block is not
1427   // cold anymore. This needs precise profile data and we only do this when
1428   // profile data is available.
1429   if (F->getFunction()->getEntryCount()) {
1430     BlockFrequency LoopFreq(0);
1431     for (auto LoopPred : L.getHeader()->predecessors())
1432       if (!L.contains(LoopPred))
1433         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1434                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1435 
1436     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1437       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1438       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1439         continue;
1440       LoopBlockSet.insert(LoopBB);
1441     }
1442   } else
1443     LoopBlockSet.insert(L.block_begin(), L.block_end());
1444 
1445   return LoopBlockSet;
1446 }
1447 
1448 /// \brief Forms basic block chains from the natural loop structures.
1449 ///
1450 /// These chains are designed to preserve the existing *structure* of the code
1451 /// as much as possible. We can then stitch the chains together in a way which
1452 /// both preserves the topological structure and minimizes taken conditional
1453 /// branches.
1454 void MachineBlockPlacement::buildLoopChains(MachineLoop &L) {
1455   // First recurse through any nested loops, building chains for those inner
1456   // loops.
1457   for (MachineLoop *InnerLoop : L)
1458     buildLoopChains(*InnerLoop);
1459 
1460   assert(BlockWorkList.empty());
1461   assert(EHPadWorkList.empty());
1462   BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
1463 
1464   // Check if we have profile data for this function. If yes, we will rotate
1465   // this loop by modeling costs more precisely which requires the profile data
1466   // for better layout.
1467   bool RotateLoopWithProfile =
1468       ForcePreciseRotationCost ||
1469       (PreciseRotationCost && F->getFunction()->getEntryCount());
1470 
1471   // First check to see if there is an obviously preferable top block for the
1472   // loop. This will default to the header, but may end up as one of the
1473   // predecessors to the header if there is one which will result in strictly
1474   // fewer branches in the loop body.
1475   // When we use profile data to rotate the loop, this is unnecessary.
1476   MachineBasicBlock *LoopTop =
1477       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1478 
1479   // If we selected just the header for the loop top, look for a potentially
1480   // profitable exit block in the event that rotating the loop can eliminate
1481   // branches by placing an exit edge at the bottom.
1482   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1483     PreferredLoopExit = findBestLoopExit(L, LoopBlockSet);
1484 
1485   BlockChain &LoopChain = *BlockToChain[LoopTop];
1486 
1487   // FIXME: This is a really lame way of walking the chains in the loop: we
1488   // walk the blocks, and use a set to prevent visiting a particular chain
1489   // twice.
1490   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1491   assert(LoopChain.UnscheduledPredecessors == 0);
1492   UpdatedPreds.insert(&LoopChain);
1493 
1494   for (MachineBasicBlock *LoopBB : LoopBlockSet)
1495     fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
1496 
1497   buildChain(LoopTop, LoopChain, &LoopBlockSet);
1498 
1499   if (RotateLoopWithProfile)
1500     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1501   else
1502     rotateLoop(LoopChain, PreferredLoopExit, LoopBlockSet);
1503 
1504   DEBUG({
1505     // Crash at the end so we get all of the debugging output first.
1506     bool BadLoop = false;
1507     if (LoopChain.UnscheduledPredecessors) {
1508       BadLoop = true;
1509       dbgs() << "Loop chain contains a block without its preds placed!\n"
1510              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1511              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1512     }
1513     for (MachineBasicBlock *ChainBB : LoopChain) {
1514       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1515       if (!LoopBlockSet.erase(ChainBB)) {
1516         // We don't mark the loop as bad here because there are real situations
1517         // where this can occur. For example, with an unanalyzable fallthrough
1518         // from a loop block to a non-loop block or vice versa.
1519         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1520                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1521                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1522                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1523       }
1524     }
1525 
1526     if (!LoopBlockSet.empty()) {
1527       BadLoop = true;
1528       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1529         dbgs() << "Loop contains blocks never placed into a chain!\n"
1530                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1531                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1532                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1533     }
1534     assert(!BadLoop && "Detected problems with the placement of this loop.");
1535   });
1536 
1537   BlockWorkList.clear();
1538   EHPadWorkList.clear();
1539 }
1540 
1541 /// When OutlineOpitonalBranches is on, this method collects BBs that
1542 /// dominates all terminator blocks of the function \p F.
1543 void MachineBlockPlacement::collectMustExecuteBBs() {
1544   if (OutlineOptionalBranches) {
1545     // Find the nearest common dominator of all of F's terminators.
1546     MachineBasicBlock *Terminator = nullptr;
1547     for (MachineBasicBlock &MBB : *F) {
1548       if (MBB.succ_size() == 0) {
1549         if (Terminator == nullptr)
1550           Terminator = &MBB;
1551         else
1552           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1553       }
1554     }
1555 
1556     // MBBs dominating this common dominator are unavoidable.
1557     UnavoidableBlocks.clear();
1558     for (MachineBasicBlock &MBB : *F) {
1559       if (MDT->dominates(&MBB, Terminator)) {
1560         UnavoidableBlocks.insert(&MBB);
1561       }
1562     }
1563   }
1564 }
1565 
1566 void MachineBlockPlacement::buildCFGChains() {
1567   // Ensure that every BB in the function has an associated chain to simplify
1568   // the assumptions of the remaining algorithm.
1569   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1570   for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
1571        ++FI) {
1572     MachineBasicBlock *BB = &*FI;
1573     BlockChain *Chain =
1574         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1575     // Also, merge any blocks which we cannot reason about and must preserve
1576     // the exact fallthrough behavior for.
1577     for (;;) {
1578       Cond.clear();
1579       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1580       if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1581         break;
1582 
1583       MachineFunction::iterator NextFI = std::next(FI);
1584       MachineBasicBlock *NextBB = &*NextFI;
1585       // Ensure that the layout successor is a viable block, as we know that
1586       // fallthrough is a possibility.
1587       assert(NextFI != FE && "Can't fallthrough past the last block.");
1588       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1589                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1590                    << "\n");
1591       Chain->merge(NextBB, nullptr);
1592       FI = NextFI;
1593       BB = NextBB;
1594     }
1595   }
1596 
1597   // Turned on with OutlineOptionalBranches option
1598   collectMustExecuteBBs();
1599 
1600   // Build any loop-based chains.
1601   PreferredLoopExit = nullptr;
1602   for (MachineLoop *L : *MLI)
1603     buildLoopChains(*L);
1604 
1605   assert(BlockWorkList.empty());
1606   assert(EHPadWorkList.empty());
1607 
1608   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1609   for (MachineBasicBlock &MBB : *F)
1610     fillWorkLists(&MBB, UpdatedPreds);
1611 
1612   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1613   buildChain(&F->front(), FunctionChain);
1614 
1615 #ifndef NDEBUG
1616   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1617 #endif
1618   DEBUG({
1619     // Crash at the end so we get all of the debugging output first.
1620     bool BadFunc = false;
1621     FunctionBlockSetType FunctionBlockSet;
1622     for (MachineBasicBlock &MBB : *F)
1623       FunctionBlockSet.insert(&MBB);
1624 
1625     for (MachineBasicBlock *ChainBB : FunctionChain)
1626       if (!FunctionBlockSet.erase(ChainBB)) {
1627         BadFunc = true;
1628         dbgs() << "Function chain contains a block not in the function!\n"
1629                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1630       }
1631 
1632     if (!FunctionBlockSet.empty()) {
1633       BadFunc = true;
1634       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1635         dbgs() << "Function contains blocks never placed into a chain!\n"
1636                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1637     }
1638     assert(!BadFunc && "Detected problems with the block placement.");
1639   });
1640 
1641   // Splice the blocks into place.
1642   MachineFunction::iterator InsertPos = F->begin();
1643   DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n");
1644   for (MachineBasicBlock *ChainBB : FunctionChain) {
1645     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1646                                                        : "          ... ")
1647                  << getBlockName(ChainBB) << "\n");
1648     if (InsertPos != MachineFunction::iterator(ChainBB))
1649       F->splice(InsertPos, ChainBB);
1650     else
1651       ++InsertPos;
1652 
1653     // Update the terminator of the previous block.
1654     if (ChainBB == *FunctionChain.begin())
1655       continue;
1656     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1657 
1658     // FIXME: It would be awesome of updateTerminator would just return rather
1659     // than assert when the branch cannot be analyzed in order to remove this
1660     // boiler plate.
1661     Cond.clear();
1662     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1663 
1664     // The "PrevBB" is not yet updated to reflect current code layout, so,
1665     //   o. it may fall-through to a block without explicit "goto" instruction
1666     //      before layout, and no longer fall-through it after layout; or
1667     //   o. just opposite.
1668     //
1669     // analyzeBranch() may return erroneous value for FBB when these two
1670     // situations take place. For the first scenario FBB is mistakenly set NULL;
1671     // for the 2nd scenario, the FBB, which is expected to be NULL, is
1672     // mistakenly pointing to "*BI".
1673     // Thus, if the future change needs to use FBB before the layout is set, it
1674     // has to correct FBB first by using the code similar to the following:
1675     //
1676     // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1677     //   PrevBB->updateTerminator();
1678     //   Cond.clear();
1679     //   TBB = FBB = nullptr;
1680     //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1681     //     // FIXME: This should never take place.
1682     //     TBB = FBB = nullptr;
1683     //   }
1684     // }
1685     if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
1686       PrevBB->updateTerminator();
1687   }
1688 
1689   // Fixup the last block.
1690   Cond.clear();
1691   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1692   if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
1693     F->back().updateTerminator();
1694 
1695   BlockWorkList.clear();
1696   EHPadWorkList.clear();
1697 }
1698 
1699 void MachineBlockPlacement::optimizeBranches() {
1700   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1701   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1702 
1703   // Now that all the basic blocks in the chain have the proper layout,
1704   // make a final call to AnalyzeBranch with AllowModify set.
1705   // Indeed, the target may be able to optimize the branches in a way we
1706   // cannot because all branches may not be analyzable.
1707   // E.g., the target may be able to remove an unconditional branch to
1708   // a fallthrough when it occurs after predicated terminators.
1709   for (MachineBasicBlock *ChainBB : FunctionChain) {
1710     Cond.clear();
1711     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1712     if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
1713       // If PrevBB has a two-way branch, try to re-order the branches
1714       // such that we branch to the successor with higher probability first.
1715       if (TBB && !Cond.empty() && FBB &&
1716           MBPI->getEdgeProbability(ChainBB, FBB) >
1717               MBPI->getEdgeProbability(ChainBB, TBB) &&
1718           !TII->reverseBranchCondition(Cond)) {
1719         DEBUG(dbgs() << "Reverse order of the two branches: "
1720                      << getBlockName(ChainBB) << "\n");
1721         DEBUG(dbgs() << "    Edge probability: "
1722                      << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
1723                      << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
1724         DebugLoc dl; // FIXME: this is nowhere
1725         TII->removeBranch(*ChainBB);
1726         TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
1727         ChainBB->updateTerminator();
1728       }
1729     }
1730   }
1731 }
1732 
1733 void MachineBlockPlacement::alignBlocks() {
1734   // Walk through the backedges of the function now that we have fully laid out
1735   // the basic blocks and align the destination of each backedge. We don't rely
1736   // exclusively on the loop info here so that we can align backedges in
1737   // unnatural CFGs and backedges that were introduced purely because of the
1738   // loop rotations done during this layout pass.
1739   if (F->getFunction()->optForSize())
1740     return;
1741   BlockChain &FunctionChain = *BlockToChain[&F->front()];
1742   if (FunctionChain.begin() == FunctionChain.end())
1743     return; // Empty chain.
1744 
1745   const BranchProbability ColdProb(1, 5); // 20%
1746   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
1747   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1748   for (MachineBasicBlock *ChainBB : FunctionChain) {
1749     if (ChainBB == *FunctionChain.begin())
1750       continue;
1751 
1752     // Don't align non-looping basic blocks. These are unlikely to execute
1753     // enough times to matter in practice. Note that we'll still handle
1754     // unnatural CFGs inside of a natural outer loop (the common case) and
1755     // rotated loops.
1756     MachineLoop *L = MLI->getLoopFor(ChainBB);
1757     if (!L)
1758       continue;
1759 
1760     unsigned Align = TLI->getPrefLoopAlignment(L);
1761     if (!Align)
1762       continue; // Don't care about loop alignment.
1763 
1764     // If the block is cold relative to the function entry don't waste space
1765     // aligning it.
1766     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1767     if (Freq < WeightedEntryFreq)
1768       continue;
1769 
1770     // If the block is cold relative to its loop header, don't align it
1771     // regardless of what edges into the block exist.
1772     MachineBasicBlock *LoopHeader = L->getHeader();
1773     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1774     if (Freq < (LoopHeaderFreq * ColdProb))
1775       continue;
1776 
1777     // Check for the existence of a non-layout predecessor which would benefit
1778     // from aligning this block.
1779     MachineBasicBlock *LayoutPred =
1780         &*std::prev(MachineFunction::iterator(ChainBB));
1781 
1782     // Force alignment if all the predecessors are jumps. We already checked
1783     // that the block isn't cold above.
1784     if (!LayoutPred->isSuccessor(ChainBB)) {
1785       ChainBB->setAlignment(Align);
1786       continue;
1787     }
1788 
1789     // Align this block if the layout predecessor's edge into this block is
1790     // cold relative to the block. When this is true, other predecessors make up
1791     // all of the hot entries into the block and thus alignment is likely to be
1792     // important.
1793     BranchProbability LayoutProb =
1794         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1795     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1796     if (LayoutEdgeFreq <= (Freq * ColdProb))
1797       ChainBB->setAlignment(Align);
1798   }
1799 }
1800 
1801 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
1802 /// it was duplicated into its chain predecessor and removed.
1803 /// \p BB    - Basic block that may be duplicated.
1804 ///
1805 /// \p LPred - Chosen layout predecessor of \p BB.
1806 ///            Updated to be the chain end if LPred is removed.
1807 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
1808 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
1809 ///                  Used to identify which blocks to update predecessor
1810 ///                  counts.
1811 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
1812 ///                          chosen in the given order due to unnatural CFG
1813 ///                          only needed if \p BB is removed and
1814 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
1815 /// @return true if \p BB was removed.
1816 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
1817     MachineBasicBlock *BB, MachineBasicBlock *&LPred,
1818     MachineBasicBlock *LoopHeaderBB,
1819     BlockChain &Chain, BlockFilterSet *BlockFilter,
1820     MachineFunction::iterator &PrevUnplacedBlockIt) {
1821   bool Removed, DuplicatedToLPred;
1822   bool DuplicatedToOriginalLPred;
1823   Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
1824                                     PrevUnplacedBlockIt,
1825                                     DuplicatedToLPred);
1826   if (!Removed)
1827     return false;
1828   DuplicatedToOriginalLPred = DuplicatedToLPred;
1829   // Iteratively try to duplicate again. It can happen that a block that is
1830   // duplicated into is still small enough to be duplicated again.
1831   // No need to call markBlockSuccessors in this case, as the blocks being
1832   // duplicated from here on are already scheduled.
1833   // Note that DuplicatedToLPred always implies Removed.
1834   while (DuplicatedToLPred) {
1835     assert (Removed && "Block must have been removed to be duplicated into its "
1836             "layout predecessor.");
1837     MachineBasicBlock *DupBB, *DupPred;
1838     // The removal callback causes Chain.end() to be updated when a block is
1839     // removed. On the first pass through the loop, the chain end should be the
1840     // same as it was on function entry. On subsequent passes, because we are
1841     // duplicating the block at the end of the chain, if it is removed the
1842     // chain will have shrunk by one block.
1843     BlockChain::iterator ChainEnd = Chain.end();
1844     DupBB = *(--ChainEnd);
1845     // Now try to duplicate again.
1846     if (ChainEnd == Chain.begin())
1847       break;
1848     DupPred = *std::prev(ChainEnd);
1849     Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
1850                                       PrevUnplacedBlockIt,
1851                                       DuplicatedToLPred);
1852   }
1853   // If BB was duplicated into LPred, it is now scheduled. But because it was
1854   // removed, markChainSuccessors won't be called for its chain. Instead we
1855   // call markBlockSuccessors for LPred to achieve the same effect. This must go
1856   // at the end because repeating the tail duplication can increase the number
1857   // of unscheduled predecessors.
1858   LPred = *std::prev(Chain.end());
1859   if (DuplicatedToOriginalLPred)
1860     markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
1861   return true;
1862 }
1863 
1864 /// Tail duplicate \p BB into (some) predecessors if profitable.
1865 /// \p BB    - Basic block that may be duplicated
1866 /// \p LPred - Chosen layout predecessor of \p BB
1867 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
1868 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
1869 ///                  Used to identify which blocks to update predecessor
1870 ///                  counts.
1871 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
1872 ///                          chosen in the given order due to unnatural CFG
1873 ///                          only needed if \p BB is removed and
1874 ///                          \p PrevUnplacedBlockIt pointed to \p BB.
1875 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
1876 ///                        only be true if the block was removed.
1877 /// \return  - True if the block was duplicated into all preds and removed.
1878 bool MachineBlockPlacement::maybeTailDuplicateBlock(
1879     MachineBasicBlock *BB, MachineBasicBlock *LPred,
1880     const BlockChain &Chain, BlockFilterSet *BlockFilter,
1881     MachineFunction::iterator &PrevUnplacedBlockIt,
1882     bool &DuplicatedToLPred) {
1883 
1884   DuplicatedToLPred = false;
1885   DEBUG(dbgs() << "Redoing tail duplication for Succ#"
1886         << BB->getNumber() << "\n");
1887   bool IsSimple = TailDup.isSimpleBB(BB);
1888   // Blocks with single successors don't create additional fallthrough
1889   // opportunities. Don't duplicate them. TODO: When conditional exits are
1890   // analyzable, allow them to be duplicated.
1891   if (!IsSimple && BB->succ_size() == 1)
1892     return false;
1893   if (!TailDup.shouldTailDuplicate(IsSimple, *BB))
1894     return false;
1895   // This has to be a callback because none of it can be done after
1896   // BB is deleted.
1897   bool Removed = false;
1898   auto RemovalCallback =
1899       [&](MachineBasicBlock *RemBB) {
1900         // Signal to outer function
1901         Removed = true;
1902 
1903         // Conservative default.
1904         bool InWorkList = true;
1905         // Remove from the Chain and Chain Map
1906         if (BlockToChain.count(RemBB)) {
1907           BlockChain *Chain = BlockToChain[RemBB];
1908           InWorkList = Chain->UnscheduledPredecessors == 0;
1909           Chain->remove(RemBB);
1910           BlockToChain.erase(RemBB);
1911         }
1912 
1913         // Handle the unplaced block iterator
1914         if (&(*PrevUnplacedBlockIt) == RemBB) {
1915           PrevUnplacedBlockIt++;
1916         }
1917 
1918         // Handle the Work Lists
1919         if (InWorkList) {
1920           SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
1921           if (RemBB->isEHPad())
1922             RemoveList = EHPadWorkList;
1923           RemoveList.erase(
1924               remove_if(RemoveList,
1925                         [RemBB](MachineBasicBlock *BB) {return BB == RemBB;}),
1926               RemoveList.end());
1927         }
1928 
1929         // Handle the filter set
1930         if (BlockFilter) {
1931           BlockFilter->erase(RemBB);
1932         }
1933 
1934         // Remove the block from loop info.
1935         MLI->removeBlock(RemBB);
1936         if (RemBB == PreferredLoopExit)
1937           PreferredLoopExit = nullptr;
1938 
1939         DEBUG(dbgs() << "TailDuplicator deleted block: "
1940               << getBlockName(RemBB) << "\n");
1941       };
1942   auto RemovalCallbackRef =
1943       llvm::function_ref<void(MachineBasicBlock*)>(RemovalCallback);
1944 
1945   SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
1946   TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
1947                                  &DuplicatedPreds, &RemovalCallbackRef);
1948 
1949   // Update UnscheduledPredecessors to reflect tail-duplication.
1950   DuplicatedToLPred = false;
1951   for (MachineBasicBlock *Pred : DuplicatedPreds) {
1952     // We're only looking for unscheduled predecessors that match the filter.
1953     BlockChain* PredChain = BlockToChain[Pred];
1954     if (Pred == LPred)
1955       DuplicatedToLPred = true;
1956     if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
1957         || PredChain == &Chain)
1958       continue;
1959     for (MachineBasicBlock *NewSucc : Pred->successors()) {
1960       if (BlockFilter && !BlockFilter->count(NewSucc))
1961         continue;
1962       BlockChain *NewChain = BlockToChain[NewSucc];
1963       if (NewChain != &Chain && NewChain != PredChain)
1964         NewChain->UnscheduledPredecessors++;
1965     }
1966   }
1967   return Removed;
1968 }
1969 
1970 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
1971   if (skipFunction(*MF.getFunction()))
1972     return false;
1973 
1974   // Check for single-block functions and skip them.
1975   if (std::next(MF.begin()) == MF.end())
1976     return false;
1977 
1978   F = &MF;
1979   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1980   MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>(
1981       getAnalysis<MachineBlockFrequencyInfo>());
1982   MLI = &getAnalysis<MachineLoopInfo>();
1983   TII = MF.getSubtarget().getInstrInfo();
1984   TLI = MF.getSubtarget().getTargetLowering();
1985   MDT = &getAnalysis<MachineDominatorTree>();
1986 
1987   // Initialize PreferredLoopExit to nullptr here since it may never be set if
1988   // there are no MachineLoops.
1989   PreferredLoopExit = nullptr;
1990 
1991   if (TailDupPlacement) {
1992     unsigned TailDupSize = TailDuplicatePlacementThreshold;
1993     if (MF.getFunction()->optForSize())
1994       TailDupSize = 1;
1995     TailDup.initMF(MF, MBPI, /* LayoutMode */ true, TailDupSize);
1996   }
1997 
1998   assert(BlockToChain.empty());
1999 
2000   buildCFGChains();
2001 
2002   // Changing the layout can create new tail merging opportunities.
2003   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
2004   // TailMerge can create jump into if branches that make CFG irreducible for
2005   // HW that requires structured CFG.
2006   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
2007                          PassConfig->getEnableTailMerge() &&
2008                          BranchFoldPlacement;
2009   // No tail merging opportunities if the block number is less than four.
2010   if (MF.size() > 3 && EnableTailMerge) {
2011     unsigned TailMergeSize = TailDuplicatePlacementThreshold + 1;
2012     BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
2013                     *MBPI, TailMergeSize);
2014 
2015     if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
2016                             getAnalysisIfAvailable<MachineModuleInfo>(), MLI,
2017                             /*AfterBlockPlacement=*/true)) {
2018       // Redo the layout if tail merging creates/removes/moves blocks.
2019       BlockToChain.clear();
2020       // Must redo the dominator tree if blocks were changed.
2021       MDT->runOnMachineFunction(MF);
2022       ChainAllocator.DestroyAll();
2023       buildCFGChains();
2024     }
2025   }
2026 
2027   optimizeBranches();
2028   alignBlocks();
2029 
2030   BlockToChain.clear();
2031   ChainAllocator.DestroyAll();
2032 
2033   if (AlignAllBlock)
2034     // Align all of the blocks in the function to a specific alignment.
2035     for (MachineBasicBlock &MBB : MF)
2036       MBB.setAlignment(AlignAllBlock);
2037   else if (AlignAllNonFallThruBlocks) {
2038     // Align all of the blocks that have no fall-through predecessors to a
2039     // specific alignment.
2040     for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
2041       auto LayoutPred = std::prev(MBI);
2042       if (!LayoutPred->isSuccessor(&*MBI))
2043         MBI->setAlignment(AlignAllNonFallThruBlocks);
2044     }
2045   }
2046 
2047   // We always return true as we have no way to track whether the final order
2048   // differs from the original order.
2049   return true;
2050 }
2051 
2052 namespace {
2053 /// \brief A pass to compute block placement statistics.
2054 ///
2055 /// A separate pass to compute interesting statistics for evaluating block
2056 /// placement. This is separate from the actual placement pass so that they can
2057 /// be computed in the absence of any placement transformations or when using
2058 /// alternative placement strategies.
2059 class MachineBlockPlacementStats : public MachineFunctionPass {
2060   /// \brief A handle to the branch probability pass.
2061   const MachineBranchProbabilityInfo *MBPI;
2062 
2063   /// \brief A handle to the function-wide block frequency pass.
2064   const MachineBlockFrequencyInfo *MBFI;
2065 
2066 public:
2067   static char ID; // Pass identification, replacement for typeid
2068   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
2069     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
2070   }
2071 
2072   bool runOnMachineFunction(MachineFunction &F) override;
2073 
2074   void getAnalysisUsage(AnalysisUsage &AU) const override {
2075     AU.addRequired<MachineBranchProbabilityInfo>();
2076     AU.addRequired<MachineBlockFrequencyInfo>();
2077     AU.setPreservesAll();
2078     MachineFunctionPass::getAnalysisUsage(AU);
2079   }
2080 };
2081 }
2082 
2083 char MachineBlockPlacementStats::ID = 0;
2084 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
2085 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
2086                       "Basic Block Placement Stats", false, false)
2087 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
2088 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2089 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
2090                     "Basic Block Placement Stats", false, false)
2091 
2092 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
2093   // Check for single-block functions and skip them.
2094   if (std::next(F.begin()) == F.end())
2095     return false;
2096 
2097   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
2098   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2099 
2100   for (MachineBasicBlock &MBB : F) {
2101     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
2102     Statistic &NumBranches =
2103         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
2104     Statistic &BranchTakenFreq =
2105         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
2106     for (MachineBasicBlock *Succ : MBB.successors()) {
2107       // Skip if this successor is a fallthrough.
2108       if (MBB.isLayoutSuccessor(Succ))
2109         continue;
2110 
2111       BlockFrequency EdgeFreq =
2112           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
2113       ++NumBranches;
2114       BranchTakenFreq += EdgeFreq.getFrequency();
2115     }
2116   }
2117 
2118   return false;
2119 }
2120