1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <algorithm>
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "block-placement"
52 
53 STATISTIC(NumCondBranches, "Number of conditional branches");
54 STATISTIC(NumUncondBranches, "Number of unconditional branches");
55 STATISTIC(CondBranchTakenFreq,
56           "Potential frequency of taking conditional branches");
57 STATISTIC(UncondBranchTakenFreq,
58           "Potential frequency of taking unconditional branches");
59 
60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61                                        cl::desc("Force the alignment of all "
62                                                 "blocks in the function."),
63                                        cl::init(0), cl::Hidden);
64 
65 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
66     "align-all-nofallthru-blocks",
67     cl::desc("Force the alignment of all "
68              "blocks that have no fall-through predecessors (i.e. don't add "
69              "nops that are executed)."),
70     cl::init(0), cl::Hidden);
71 
72 // FIXME: Find a good default for this flag and remove the flag.
73 static cl::opt<unsigned> ExitBlockBias(
74     "block-placement-exit-block-bias",
75     cl::desc("Block frequency percentage a loop exit block needs "
76              "over the original exit to be considered the new exit."),
77     cl::init(0), cl::Hidden);
78 
79 static cl::opt<bool> OutlineOptionalBranches(
80     "outline-optional-branches",
81     cl::desc("Put completely optional branches, i.e. branches with a common "
82              "post dominator, out of line."),
83     cl::init(false), cl::Hidden);
84 
85 static cl::opt<unsigned> OutlineOptionalThreshold(
86     "outline-optional-threshold",
87     cl::desc("Don't outline optional branches that are a single block with an "
88              "instruction count below this threshold"),
89     cl::init(4), cl::Hidden);
90 
91 static cl::opt<unsigned> LoopToColdBlockRatio(
92     "loop-to-cold-block-ratio",
93     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
94              "(frequency of block) is greater than this ratio"),
95     cl::init(5), cl::Hidden);
96 
97 static cl::opt<bool>
98     PreciseRotationCost("precise-rotation-cost",
99                         cl::desc("Model the cost of loop rotation more "
100                                  "precisely by using profile data."),
101                         cl::init(false), cl::Hidden);
102 
103 static cl::opt<unsigned> MisfetchCost(
104     "misfetch-cost",
105     cl::desc("Cost that models the probablistic risk of an instruction "
106              "misfetch due to a jump comparing to falling through, whose cost "
107              "is zero."),
108     cl::init(1), cl::Hidden);
109 
110 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
111                                       cl::desc("Cost of jump instructions."),
112                                       cl::init(1), cl::Hidden);
113 
114 namespace {
115 class BlockChain;
116 /// \brief Type for our function-wide basic block -> block chain mapping.
117 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
118 }
119 
120 namespace {
121 /// \brief A chain of blocks which will be laid out contiguously.
122 ///
123 /// This is the datastructure representing a chain of consecutive blocks that
124 /// are profitable to layout together in order to maximize fallthrough
125 /// probabilities and code locality. We also can use a block chain to represent
126 /// a sequence of basic blocks which have some external (correctness)
127 /// requirement for sequential layout.
128 ///
129 /// Chains can be built around a single basic block and can be merged to grow
130 /// them. They participate in a block-to-chain mapping, which is updated
131 /// automatically as chains are merged together.
132 class BlockChain {
133   /// \brief The sequence of blocks belonging to this chain.
134   ///
135   /// This is the sequence of blocks for a particular chain. These will be laid
136   /// out in-order within the function.
137   SmallVector<MachineBasicBlock *, 4> Blocks;
138 
139   /// \brief A handle to the function-wide basic block to block chain mapping.
140   ///
141   /// This is retained in each block chain to simplify the computation of child
142   /// block chains for SCC-formation and iteration. We store the edges to child
143   /// basic blocks, and map them back to their associated chains using this
144   /// structure.
145   BlockToChainMapType &BlockToChain;
146 
147 public:
148   /// \brief Construct a new BlockChain.
149   ///
150   /// This builds a new block chain representing a single basic block in the
151   /// function. It also registers itself as the chain that block participates
152   /// in with the BlockToChain mapping.
153   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
154       : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
155     assert(BB && "Cannot create a chain with a null basic block");
156     BlockToChain[BB] = this;
157   }
158 
159   /// \brief Iterator over blocks within the chain.
160   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
161 
162   /// \brief Beginning of blocks within the chain.
163   iterator begin() { return Blocks.begin(); }
164 
165   /// \brief End of blocks within the chain.
166   iterator end() { return Blocks.end(); }
167 
168   /// \brief Merge a block chain into this one.
169   ///
170   /// This routine merges a block chain into this one. It takes care of forming
171   /// a contiguous sequence of basic blocks, updating the edge list, and
172   /// updating the block -> chain mapping. It does not free or tear down the
173   /// old chain, but the old chain's block list is no longer valid.
174   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
175     assert(BB);
176     assert(!Blocks.empty());
177 
178     // Fast path in case we don't have a chain already.
179     if (!Chain) {
180       assert(!BlockToChain[BB]);
181       Blocks.push_back(BB);
182       BlockToChain[BB] = this;
183       return;
184     }
185 
186     assert(BB == *Chain->begin());
187     assert(Chain->begin() != Chain->end());
188 
189     // Update the incoming blocks to point to this chain, and add them to the
190     // chain structure.
191     for (MachineBasicBlock *ChainBB : *Chain) {
192       Blocks.push_back(ChainBB);
193       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
194       BlockToChain[ChainBB] = this;
195     }
196   }
197 
198 #ifndef NDEBUG
199   /// \brief Dump the blocks in this chain.
200   LLVM_DUMP_METHOD void dump() {
201     for (MachineBasicBlock *MBB : *this)
202       MBB->dump();
203   }
204 #endif // NDEBUG
205 
206   /// \brief Count of predecessors within the loop currently being processed.
207   ///
208   /// This count is updated at each loop we process to represent the number of
209   /// in-loop predecessors of this chain.
210   unsigned LoopPredecessors;
211 };
212 }
213 
214 namespace {
215 class MachineBlockPlacement : public MachineFunctionPass {
216   /// \brief A typedef for a block filter set.
217   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
218 
219   /// \brief A handle to the branch probability pass.
220   const MachineBranchProbabilityInfo *MBPI;
221 
222   /// \brief A handle to the function-wide block frequency pass.
223   const MachineBlockFrequencyInfo *MBFI;
224 
225   /// \brief A handle to the loop info.
226   const MachineLoopInfo *MLI;
227 
228   /// \brief A handle to the target's instruction info.
229   const TargetInstrInfo *TII;
230 
231   /// \brief A handle to the target's lowering info.
232   const TargetLoweringBase *TLI;
233 
234   /// \brief A handle to the post dominator tree.
235   MachineDominatorTree *MDT;
236 
237   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
238   /// all terminators of the MachineFunction.
239   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
240 
241   /// \brief Allocator and owner of BlockChain structures.
242   ///
243   /// We build BlockChains lazily while processing the loop structure of
244   /// a function. To reduce malloc traffic, we allocate them using this
245   /// slab-like allocator, and destroy them after the pass completes. An
246   /// important guarantee is that this allocator produces stable pointers to
247   /// the chains.
248   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
249 
250   /// \brief Function wide BasicBlock to BlockChain mapping.
251   ///
252   /// This mapping allows efficiently moving from any given basic block to the
253   /// BlockChain it participates in, if any. We use it to, among other things,
254   /// allow implicitly defining edges between chains as the existing edges
255   /// between basic blocks.
256   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
257 
258   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
259                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
260                            const BlockFilterSet *BlockFilter = nullptr);
261   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
262                                          BlockChain &Chain,
263                                          const BlockFilterSet *BlockFilter);
264   MachineBasicBlock *
265   selectBestCandidateBlock(BlockChain &Chain,
266                            SmallVectorImpl<MachineBasicBlock *> &WorkList,
267                            const BlockFilterSet *BlockFilter);
268   MachineBasicBlock *
269   getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
270                         MachineFunction::iterator &PrevUnplacedBlockIt,
271                         const BlockFilterSet *BlockFilter);
272   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
273                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
274                   const BlockFilterSet *BlockFilter = nullptr);
275   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
276                                      const BlockFilterSet &LoopBlockSet);
277   MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
278                                       const BlockFilterSet &LoopBlockSet);
279   BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
280   void buildLoopChains(MachineFunction &F, MachineLoop &L);
281   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
282                   const BlockFilterSet &LoopBlockSet);
283   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
284                              const BlockFilterSet &LoopBlockSet);
285   void buildCFGChains(MachineFunction &F);
286 
287 public:
288   static char ID; // Pass identification, replacement for typeid
289   MachineBlockPlacement() : MachineFunctionPass(ID) {
290     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
291   }
292 
293   bool runOnMachineFunction(MachineFunction &F) override;
294 
295   void getAnalysisUsage(AnalysisUsage &AU) const override {
296     AU.addRequired<MachineBranchProbabilityInfo>();
297     AU.addRequired<MachineBlockFrequencyInfo>();
298     AU.addRequired<MachineDominatorTree>();
299     AU.addRequired<MachineLoopInfo>();
300     MachineFunctionPass::getAnalysisUsage(AU);
301   }
302 };
303 }
304 
305 char MachineBlockPlacement::ID = 0;
306 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
307 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
308                       "Branch Probability Basic Block Placement", false, false)
309 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
310 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
311 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
312 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
313 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
314                     "Branch Probability Basic Block Placement", false, false)
315 
316 #ifndef NDEBUG
317 /// \brief Helper to print the name of a MBB.
318 ///
319 /// Only used by debug logging.
320 static std::string getBlockName(MachineBasicBlock *BB) {
321   std::string Result;
322   raw_string_ostream OS(Result);
323   OS << "BB#" << BB->getNumber();
324   OS << " (derived from LLVM BB '" << BB->getName() << "')";
325   OS.flush();
326   return Result;
327 }
328 
329 /// \brief Helper to print the number of a MBB.
330 ///
331 /// Only used by debug logging.
332 static std::string getBlockNum(MachineBasicBlock *BB) {
333   std::string Result;
334   raw_string_ostream OS(Result);
335   OS << "BB#" << BB->getNumber();
336   OS.flush();
337   return Result;
338 }
339 #endif
340 
341 /// \brief Mark a chain's successors as having one fewer preds.
342 ///
343 /// When a chain is being merged into the "placed" chain, this routine will
344 /// quickly walk the successors of each block in the chain and mark them as
345 /// having one fewer active predecessor. It also adds any successors of this
346 /// chain which reach the zero-predecessor state to the worklist passed in.
347 void MachineBlockPlacement::markChainSuccessors(
348     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
349     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
350     const BlockFilterSet *BlockFilter) {
351   // Walk all the blocks in this chain, marking their successors as having
352   // a predecessor placed.
353   for (MachineBasicBlock *MBB : Chain) {
354     // Add any successors for which this is the only un-placed in-loop
355     // predecessor to the worklist as a viable candidate for CFG-neutral
356     // placement. No subsequent placement of this block will violate the CFG
357     // shape, so we get to use heuristics to choose a favorable placement.
358     for (MachineBasicBlock *Succ : MBB->successors()) {
359       if (BlockFilter && !BlockFilter->count(Succ))
360         continue;
361       BlockChain &SuccChain = *BlockToChain[Succ];
362       // Disregard edges within a fixed chain, or edges to the loop header.
363       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
364         continue;
365 
366       // This is a cross-chain edge that is within the loop, so decrement the
367       // loop predecessor count of the destination chain.
368       if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
369         BlockWorkList.push_back(*SuccChain.begin());
370     }
371   }
372 }
373 
374 /// \brief Select the best successor for a block.
375 ///
376 /// This looks across all successors of a particular block and attempts to
377 /// select the "best" one to be the layout successor. It only considers direct
378 /// successors which also pass the block filter. It will attempt to avoid
379 /// breaking CFG structure, but cave and break such structures in the case of
380 /// very hot successor edges.
381 ///
382 /// \returns The best successor block found, or null if none are viable.
383 MachineBasicBlock *
384 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
385                                            BlockChain &Chain,
386                                            const BlockFilterSet *BlockFilter) {
387   const BranchProbability HotProb(4, 5); // 80%
388 
389   MachineBasicBlock *BestSucc = nullptr;
390   auto BestProb = BranchProbability::getZero();
391 
392   // Adjust edge probabilities by excluding edges pointing to blocks that is
393   // either not in BlockFilter or is already in the current chain. Consider the
394   // following CFG:
395   //
396   //     --->A
397   //     |  / \
398   //     | B   C
399   //     |  \ / \
400   //     ----D   E
401   //
402   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
403   // A->C is chosen as a fall-through, D won't be selected as a successor of C
404   // due to CFG constraint (the probability of C->D is not greater than
405   // HotProb). If we exclude E that is not in BlockFilter when calculating the
406   // probability of C->D, D will be selected and we will get A C D B as the
407   // layout of this loop.
408   auto AdjustedSumProb = BranchProbability::getOne();
409   SmallVector<MachineBasicBlock *, 4> Successors;
410   for (MachineBasicBlock *Succ : BB->successors()) {
411     bool SkipSucc = false;
412     if (BlockFilter && !BlockFilter->count(Succ)) {
413       SkipSucc = true;
414     } else {
415       BlockChain *SuccChain = BlockToChain[Succ];
416       if (SuccChain == &Chain) {
417         DEBUG(dbgs() << "    " << getBlockName(Succ)
418                      << " -> Already merged!\n");
419         SkipSucc = true;
420       } else if (Succ != *SuccChain->begin()) {
421         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
422         continue;
423       }
424     }
425     if (SkipSucc)
426       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
427     else
428       Successors.push_back(Succ);
429   }
430 
431   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
432   for (MachineBasicBlock *Succ : Successors) {
433     BranchProbability SuccProb;
434     uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator();
435     uint32_t SuccProbD = AdjustedSumProb.getNumerator();
436     if (SuccProbN >= SuccProbD)
437       SuccProb = BranchProbability::getOne();
438     else
439       SuccProb = BranchProbability(SuccProbN, SuccProbD);
440 
441     // If we outline optional branches, look whether Succ is unavoidable, i.e.
442     // dominates all terminators of the MachineFunction. If it does, other
443     // successors must be optional. Don't do this for cold branches.
444     if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
445         UnavoidableBlocks.count(Succ) > 0) {
446       auto HasShortOptionalBranch = [&]() {
447         for (MachineBasicBlock *Pred : Succ->predecessors()) {
448           // Check whether there is an unplaced optional branch.
449           if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
450               BlockToChain[Pred] == &Chain)
451             continue;
452           // Check whether the optional branch has exactly one BB.
453           if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
454             continue;
455           // Check whether the optional branch is small.
456           if (Pred->size() < OutlineOptionalThreshold)
457             return true;
458         }
459         return false;
460       };
461       if (!HasShortOptionalBranch())
462         return Succ;
463     }
464 
465     // Only consider successors which are either "hot", or wouldn't violate
466     // any CFG constraints.
467     BlockChain &SuccChain = *BlockToChain[Succ];
468     if (SuccChain.LoopPredecessors != 0) {
469       if (SuccProb < HotProb) {
470         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
471                      << " (prob) (CFG conflict)\n");
472         continue;
473       }
474 
475       // Make sure that a hot successor doesn't have a globally more
476       // important predecessor.
477       auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
478       BlockFrequency CandidateEdgeFreq =
479           MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl();
480       bool BadCFGConflict = false;
481       for (MachineBasicBlock *Pred : Succ->predecessors()) {
482         if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
483             BlockToChain[Pred] == &Chain)
484           continue;
485         BlockFrequency PredEdgeFreq =
486             MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
487         if (PredEdgeFreq >= CandidateEdgeFreq) {
488           BadCFGConflict = true;
489           break;
490         }
491       }
492       if (BadCFGConflict) {
493         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
494                      << " (prob) (non-cold CFG conflict)\n");
495         continue;
496       }
497     }
498 
499     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
500                  << " (prob)"
501                  << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
502                  << "\n");
503     if (BestSucc && BestProb >= SuccProb)
504       continue;
505     BestSucc = Succ;
506     BestProb = SuccProb;
507   }
508   return BestSucc;
509 }
510 
511 /// \brief Select the best block from a worklist.
512 ///
513 /// This looks through the provided worklist as a list of candidate basic
514 /// blocks and select the most profitable one to place. The definition of
515 /// profitable only really makes sense in the context of a loop. This returns
516 /// the most frequently visited block in the worklist, which in the case of
517 /// a loop, is the one most desirable to be physically close to the rest of the
518 /// loop body in order to improve icache behavior.
519 ///
520 /// \returns The best block found, or null if none are viable.
521 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
522     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
523     const BlockFilterSet *BlockFilter) {
524   // Once we need to walk the worklist looking for a candidate, cleanup the
525   // worklist of already placed entries.
526   // FIXME: If this shows up on profiles, it could be folded (at the cost of
527   // some code complexity) into the loop below.
528   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
529                                 [&](MachineBasicBlock *BB) {
530                                   return BlockToChain.lookup(BB) == &Chain;
531                                 }),
532                  WorkList.end());
533 
534   MachineBasicBlock *BestBlock = nullptr;
535   BlockFrequency BestFreq;
536   for (MachineBasicBlock *MBB : WorkList) {
537     BlockChain &SuccChain = *BlockToChain[MBB];
538     if (&SuccChain == &Chain) {
539       DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> Already merged!\n");
540       continue;
541     }
542     assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
543 
544     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
545     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
546           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
547     if (BestBlock && BestFreq >= CandidateFreq)
548       continue;
549     BestBlock = MBB;
550     BestFreq = CandidateFreq;
551   }
552   return BestBlock;
553 }
554 
555 /// \brief Retrieve the first unplaced basic block.
556 ///
557 /// This routine is called when we are unable to use the CFG to walk through
558 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
559 /// We walk through the function's blocks in order, starting from the
560 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
561 /// re-scanning the entire sequence on repeated calls to this routine.
562 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
563     MachineFunction &F, const BlockChain &PlacedChain,
564     MachineFunction::iterator &PrevUnplacedBlockIt,
565     const BlockFilterSet *BlockFilter) {
566   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
567        ++I) {
568     if (BlockFilter && !BlockFilter->count(&*I))
569       continue;
570     if (BlockToChain[&*I] != &PlacedChain) {
571       PrevUnplacedBlockIt = I;
572       // Now select the head of the chain to which the unplaced block belongs
573       // as the block to place. This will force the entire chain to be placed,
574       // and satisfies the requirements of merging chains.
575       return *BlockToChain[&*I]->begin();
576     }
577   }
578   return nullptr;
579 }
580 
581 void MachineBlockPlacement::buildChain(
582     MachineBasicBlock *BB, BlockChain &Chain,
583     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
584     const BlockFilterSet *BlockFilter) {
585   assert(BB);
586   assert(BlockToChain[BB] == &Chain);
587   MachineFunction &F = *BB->getParent();
588   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
589 
590   MachineBasicBlock *LoopHeaderBB = BB;
591   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
592   BB = *std::prev(Chain.end());
593   for (;;) {
594     assert(BB);
595     assert(BlockToChain[BB] == &Chain);
596     assert(*std::prev(Chain.end()) == BB);
597 
598     // Look for the best viable successor if there is one to place immediately
599     // after this block.
600     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
601 
602     // If an immediate successor isn't available, look for the best viable
603     // block among those we've identified as not violating the loop's CFG at
604     // this point. This won't be a fallthrough, but it will increase locality.
605     if (!BestSucc)
606       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
607 
608     if (!BestSucc) {
609       BestSucc =
610           getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
611       if (!BestSucc)
612         break;
613 
614       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
615                       "layout successor until the CFG reduces\n");
616     }
617 
618     // Place this block, updating the datastructures to reflect its placement.
619     BlockChain &SuccChain = *BlockToChain[BestSucc];
620     // Zero out LoopPredecessors for the successor we're about to merge in case
621     // we selected a successor that didn't fit naturally into the CFG.
622     SuccChain.LoopPredecessors = 0;
623     DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
624                  << getBlockNum(BestSucc) << "\n");
625     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
626     Chain.merge(BestSucc, &SuccChain);
627     BB = *std::prev(Chain.end());
628   }
629 
630   DEBUG(dbgs() << "Finished forming chain for header block "
631                << getBlockNum(*Chain.begin()) << "\n");
632 }
633 
634 /// \brief Find the best loop top block for layout.
635 ///
636 /// Look for a block which is strictly better than the loop header for laying
637 /// out at the top of the loop. This looks for one and only one pattern:
638 /// a latch block with no conditional exit. This block will cause a conditional
639 /// jump around it or will be the bottom of the loop if we lay it out in place,
640 /// but if it it doesn't end up at the bottom of the loop for any reason,
641 /// rotation alone won't fix it. Because such a block will always result in an
642 /// unconditional jump (for the backedge) rotating it in front of the loop
643 /// header is always profitable.
644 MachineBasicBlock *
645 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
646                                        const BlockFilterSet &LoopBlockSet) {
647   // Check that the header hasn't been fused with a preheader block due to
648   // crazy branches. If it has, we need to start with the header at the top to
649   // prevent pulling the preheader into the loop body.
650   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
651   if (!LoopBlockSet.count(*HeaderChain.begin()))
652     return L.getHeader();
653 
654   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
655                << "\n");
656 
657   BlockFrequency BestPredFreq;
658   MachineBasicBlock *BestPred = nullptr;
659   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
660     if (!LoopBlockSet.count(Pred))
661       continue;
662     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
663                  << Pred->succ_size() << " successors, ";
664           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
665     if (Pred->succ_size() > 1)
666       continue;
667 
668     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
669     if (!BestPred || PredFreq > BestPredFreq ||
670         (!(PredFreq < BestPredFreq) &&
671          Pred->isLayoutSuccessor(L.getHeader()))) {
672       BestPred = Pred;
673       BestPredFreq = PredFreq;
674     }
675   }
676 
677   // If no direct predecessor is fine, just use the loop header.
678   if (!BestPred)
679     return L.getHeader();
680 
681   // Walk backwards through any straight line of predecessors.
682   while (BestPred->pred_size() == 1 &&
683          (*BestPred->pred_begin())->succ_size() == 1 &&
684          *BestPred->pred_begin() != L.getHeader())
685     BestPred = *BestPred->pred_begin();
686 
687   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
688   return BestPred;
689 }
690 
691 /// \brief Find the best loop exiting block for layout.
692 ///
693 /// This routine implements the logic to analyze the loop looking for the best
694 /// block to layout at the top of the loop. Typically this is done to maximize
695 /// fallthrough opportunities.
696 MachineBasicBlock *
697 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
698                                         const BlockFilterSet &LoopBlockSet) {
699   // We don't want to layout the loop linearly in all cases. If the loop header
700   // is just a normal basic block in the loop, we want to look for what block
701   // within the loop is the best one to layout at the top. However, if the loop
702   // header has be pre-merged into a chain due to predecessors not having
703   // analyzable branches, *and* the predecessor it is merged with is *not* part
704   // of the loop, rotating the header into the middle of the loop will create
705   // a non-contiguous range of blocks which is Very Bad. So start with the
706   // header and only rotate if safe.
707   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
708   if (!LoopBlockSet.count(*HeaderChain.begin()))
709     return nullptr;
710 
711   BlockFrequency BestExitEdgeFreq;
712   unsigned BestExitLoopDepth = 0;
713   MachineBasicBlock *ExitingBB = nullptr;
714   // If there are exits to outer loops, loop rotation can severely limit
715   // fallthrough opportunites unless it selects such an exit. Keep a set of
716   // blocks where rotating to exit with that block will reach an outer loop.
717   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
718 
719   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
720                << "\n");
721   for (MachineBasicBlock *MBB : L.getBlocks()) {
722     BlockChain &Chain = *BlockToChain[MBB];
723     // Ensure that this block is at the end of a chain; otherwise it could be
724     // mid-way through an inner loop or a successor of an unanalyzable branch.
725     if (MBB != *std::prev(Chain.end()))
726       continue;
727 
728     // Now walk the successors. We need to establish whether this has a viable
729     // exiting successor and whether it has a viable non-exiting successor.
730     // We store the old exiting state and restore it if a viable looping
731     // successor isn't found.
732     MachineBasicBlock *OldExitingBB = ExitingBB;
733     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
734     bool HasLoopingSucc = false;
735     for (MachineBasicBlock *Succ : MBB->successors()) {
736       if (Succ->isEHPad())
737         continue;
738       if (Succ == MBB)
739         continue;
740       BlockChain &SuccChain = *BlockToChain[Succ];
741       // Don't split chains, either this chain or the successor's chain.
742       if (&Chain == &SuccChain) {
743         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
744                      << getBlockName(Succ) << " (chain conflict)\n");
745         continue;
746       }
747 
748       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
749       if (LoopBlockSet.count(Succ)) {
750         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
751                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
752         HasLoopingSucc = true;
753         continue;
754       }
755 
756       unsigned SuccLoopDepth = 0;
757       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
758         SuccLoopDepth = ExitLoop->getLoopDepth();
759         if (ExitLoop->contains(&L))
760           BlocksExitingToOuterLoop.insert(MBB);
761       }
762 
763       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
764       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
765                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
766             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
767       // Note that we bias this toward an existing layout successor to retain
768       // incoming order in the absence of better information. The exit must have
769       // a frequency higher than the current exit before we consider breaking
770       // the layout.
771       BranchProbability Bias(100 - ExitBlockBias, 100);
772       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
773           ExitEdgeFreq > BestExitEdgeFreq ||
774           (MBB->isLayoutSuccessor(Succ) &&
775            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
776         BestExitEdgeFreq = ExitEdgeFreq;
777         ExitingBB = MBB;
778       }
779     }
780 
781     if (!HasLoopingSucc) {
782       // Restore the old exiting state, no viable looping successor was found.
783       ExitingBB = OldExitingBB;
784       BestExitEdgeFreq = OldBestExitEdgeFreq;
785       continue;
786     }
787   }
788   // Without a candidate exiting block or with only a single block in the
789   // loop, just use the loop header to layout the loop.
790   if (!ExitingBB || L.getNumBlocks() == 1)
791     return nullptr;
792 
793   // Also, if we have exit blocks which lead to outer loops but didn't select
794   // one of them as the exiting block we are rotating toward, disable loop
795   // rotation altogether.
796   if (!BlocksExitingToOuterLoop.empty() &&
797       !BlocksExitingToOuterLoop.count(ExitingBB))
798     return nullptr;
799 
800   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
801   return ExitingBB;
802 }
803 
804 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
805 ///
806 /// Once we have built a chain, try to rotate it to line up the hot exit block
807 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
808 /// branches. For example, if the loop has fallthrough into its header and out
809 /// of its bottom already, don't rotate it.
810 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
811                                        MachineBasicBlock *ExitingBB,
812                                        const BlockFilterSet &LoopBlockSet) {
813   if (!ExitingBB)
814     return;
815 
816   MachineBasicBlock *Top = *LoopChain.begin();
817   bool ViableTopFallthrough = false;
818   for (MachineBasicBlock *Pred : Top->predecessors()) {
819     BlockChain *PredChain = BlockToChain[Pred];
820     if (!LoopBlockSet.count(Pred) &&
821         (!PredChain || Pred == *std::prev(PredChain->end()))) {
822       ViableTopFallthrough = true;
823       break;
824     }
825   }
826 
827   // If the header has viable fallthrough, check whether the current loop
828   // bottom is a viable exiting block. If so, bail out as rotating will
829   // introduce an unnecessary branch.
830   if (ViableTopFallthrough) {
831     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
832     for (MachineBasicBlock *Succ : Bottom->successors()) {
833       BlockChain *SuccChain = BlockToChain[Succ];
834       if (!LoopBlockSet.count(Succ) &&
835           (!SuccChain || Succ == *SuccChain->begin()))
836         return;
837     }
838   }
839 
840   BlockChain::iterator ExitIt =
841       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
842   if (ExitIt == LoopChain.end())
843     return;
844 
845   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
846 }
847 
848 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
849 ///
850 /// With profile data, we can determine the cost in terms of missed fall through
851 /// opportunities when rotating a loop chain and select the best rotation.
852 /// Basically, there are three kinds of cost to consider for each rotation:
853 ///    1. The possibly missed fall through edge (if it exists) from BB out of
854 ///    the loop to the loop header.
855 ///    2. The possibly missed fall through edges (if they exist) from the loop
856 ///    exits to BB out of the loop.
857 ///    3. The missed fall through edge (if it exists) from the last BB to the
858 ///    first BB in the loop chain.
859 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
860 ///  We select the best rotation with the smallest cost.
861 void MachineBlockPlacement::rotateLoopWithProfile(
862     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
863   auto HeaderBB = L.getHeader();
864   auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
865   auto RotationPos = LoopChain.end();
866 
867   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
868 
869   // A utility lambda that scales up a block frequency by dividing it by a
870   // branch probability which is the reciprocal of the scale.
871   auto ScaleBlockFrequency = [](BlockFrequency Freq,
872                                 unsigned Scale) -> BlockFrequency {
873     if (Scale == 0)
874       return 0;
875     // Use operator / between BlockFrequency and BranchProbability to implement
876     // saturating multiplication.
877     return Freq / BranchProbability(1, Scale);
878   };
879 
880   // Compute the cost of the missed fall-through edge to the loop header if the
881   // chain head is not the loop header. As we only consider natural loops with
882   // single header, this computation can be done only once.
883   BlockFrequency HeaderFallThroughCost(0);
884   for (auto *Pred : HeaderBB->predecessors()) {
885     BlockChain *PredChain = BlockToChain[Pred];
886     if (!LoopBlockSet.count(Pred) &&
887         (!PredChain || Pred == *std::prev(PredChain->end()))) {
888       auto EdgeFreq =
889           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
890       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
891       // If the predecessor has only an unconditional jump to the header, we
892       // need to consider the cost of this jump.
893       if (Pred->succ_size() == 1)
894         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
895       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
896     }
897   }
898 
899   // Here we collect all exit blocks in the loop, and for each exit we find out
900   // its hottest exit edge. For each loop rotation, we define the loop exit cost
901   // as the sum of frequencies of exit edges we collect here, excluding the exit
902   // edge from the tail of the loop chain.
903   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
904   for (auto BB : LoopChain) {
905     auto LargestExitEdgeProb = BranchProbability::getZero();
906     for (auto *Succ : BB->successors()) {
907       BlockChain *SuccChain = BlockToChain[Succ];
908       if (!LoopBlockSet.count(Succ) &&
909           (!SuccChain || Succ == *SuccChain->begin())) {
910         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
911         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
912       }
913     }
914     if (LargestExitEdgeProb > BranchProbability::getZero()) {
915       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
916       ExitsWithFreq.emplace_back(BB, ExitFreq);
917     }
918   }
919 
920   // In this loop we iterate every block in the loop chain and calculate the
921   // cost assuming the block is the head of the loop chain. When the loop ends,
922   // we should have found the best candidate as the loop chain's head.
923   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
924             EndIter = LoopChain.end();
925        Iter != EndIter; Iter++, TailIter++) {
926     // TailIter is used to track the tail of the loop chain if the block we are
927     // checking (pointed by Iter) is the head of the chain.
928     if (TailIter == LoopChain.end())
929       TailIter = LoopChain.begin();
930 
931     auto TailBB = *TailIter;
932 
933     // Calculate the cost by putting this BB to the top.
934     BlockFrequency Cost = 0;
935 
936     // If the current BB is the loop header, we need to take into account the
937     // cost of the missed fall through edge from outside of the loop to the
938     // header.
939     if (Iter != HeaderIter)
940       Cost += HeaderFallThroughCost;
941 
942     // Collect the loop exit cost by summing up frequencies of all exit edges
943     // except the one from the chain tail.
944     for (auto &ExitWithFreq : ExitsWithFreq)
945       if (TailBB != ExitWithFreq.first)
946         Cost += ExitWithFreq.second;
947 
948     // The cost of breaking the once fall-through edge from the tail to the top
949     // of the loop chain. Here we need to consider three cases:
950     // 1. If the tail node has only one successor, then we will get an
951     //    additional jmp instruction. So the cost here is (MisfetchCost +
952     //    JumpInstCost) * tail node frequency.
953     // 2. If the tail node has two successors, then we may still get an
954     //    additional jmp instruction if the layout successor after the loop
955     //    chain is not its CFG successor. Note that the more frequently executed
956     //    jmp instruction will be put ahead of the other one. Assume the
957     //    frequency of those two branches are x and y, where x is the frequency
958     //    of the edge to the chain head, then the cost will be
959     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
960     // 3. If the tail node has more than two successors (this rarely happens),
961     //    we won't consider any additional cost.
962     if (TailBB->isSuccessor(*Iter)) {
963       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
964       if (TailBB->succ_size() == 1)
965         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
966                                     MisfetchCost + JumpInstCost);
967       else if (TailBB->succ_size() == 2) {
968         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
969         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
970         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
971                                   ? TailBBFreq * TailToHeadProb.getCompl()
972                                   : TailToHeadFreq;
973         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
974                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
975       }
976     }
977 
978     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter)
979                  << " to the top: " << Cost.getFrequency() << "\n");
980 
981     if (Cost < SmallestRotationCost) {
982       SmallestRotationCost = Cost;
983       RotationPos = Iter;
984     }
985   }
986 
987   if (RotationPos != LoopChain.end()) {
988     DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos)
989                  << " to the top\n");
990     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
991   }
992 }
993 
994 /// \brief Collect blocks in the given loop that are to be placed.
995 ///
996 /// When profile data is available, exclude cold blocks from the returned set;
997 /// otherwise, collect all blocks in the loop.
998 MachineBlockPlacement::BlockFilterSet
999 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
1000   BlockFilterSet LoopBlockSet;
1001 
1002   // Filter cold blocks off from LoopBlockSet when profile data is available.
1003   // Collect the sum of frequencies of incoming edges to the loop header from
1004   // outside. If we treat the loop as a super block, this is the frequency of
1005   // the loop. Then for each block in the loop, we calculate the ratio between
1006   // its frequency and the frequency of the loop block. When it is too small,
1007   // don't add it to the loop chain. If there are outer loops, then this block
1008   // will be merged into the first outer loop chain for which this block is not
1009   // cold anymore. This needs precise profile data and we only do this when
1010   // profile data is available.
1011   if (F.getFunction()->getEntryCount()) {
1012     BlockFrequency LoopFreq(0);
1013     for (auto LoopPred : L.getHeader()->predecessors())
1014       if (!L.contains(LoopPred))
1015         LoopFreq += MBFI->getBlockFreq(LoopPred) *
1016                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
1017 
1018     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1019       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1020       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1021         continue;
1022       LoopBlockSet.insert(LoopBB);
1023     }
1024   } else
1025     LoopBlockSet.insert(L.block_begin(), L.block_end());
1026 
1027   return LoopBlockSet;
1028 }
1029 
1030 /// \brief Forms basic block chains from the natural loop structures.
1031 ///
1032 /// These chains are designed to preserve the existing *structure* of the code
1033 /// as much as possible. We can then stitch the chains together in a way which
1034 /// both preserves the topological structure and minimizes taken conditional
1035 /// branches.
1036 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
1037                                             MachineLoop &L) {
1038   // First recurse through any nested loops, building chains for those inner
1039   // loops.
1040   for (MachineLoop *InnerLoop : L)
1041     buildLoopChains(F, *InnerLoop);
1042 
1043   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1044   BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
1045 
1046   // Check if we have profile data for this function. If yes, we will rotate
1047   // this loop by modeling costs more precisely which requires the profile data
1048   // for better layout.
1049   bool RotateLoopWithProfile =
1050       PreciseRotationCost && F.getFunction()->getEntryCount();
1051 
1052   // First check to see if there is an obviously preferable top block for the
1053   // loop. This will default to the header, but may end up as one of the
1054   // predecessors to the header if there is one which will result in strictly
1055   // fewer branches in the loop body.
1056   // When we use profile data to rotate the loop, this is unnecessary.
1057   MachineBasicBlock *LoopTop =
1058       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1059 
1060   // If we selected just the header for the loop top, look for a potentially
1061   // profitable exit block in the event that rotating the loop can eliminate
1062   // branches by placing an exit edge at the bottom.
1063   MachineBasicBlock *ExitingBB = nullptr;
1064   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1065     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
1066 
1067   BlockChain &LoopChain = *BlockToChain[LoopTop];
1068 
1069   // FIXME: This is a really lame way of walking the chains in the loop: we
1070   // walk the blocks, and use a set to prevent visiting a particular chain
1071   // twice.
1072   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1073   assert(LoopChain.LoopPredecessors == 0);
1074   UpdatedPreds.insert(&LoopChain);
1075 
1076   for (MachineBasicBlock *LoopBB : LoopBlockSet) {
1077     BlockChain &Chain = *BlockToChain[LoopBB];
1078     if (!UpdatedPreds.insert(&Chain).second)
1079       continue;
1080 
1081     assert(Chain.LoopPredecessors == 0);
1082     for (MachineBasicBlock *ChainBB : Chain) {
1083       assert(BlockToChain[ChainBB] == &Chain);
1084       for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1085         if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred))
1086           continue;
1087         ++Chain.LoopPredecessors;
1088       }
1089     }
1090 
1091     if (Chain.LoopPredecessors == 0)
1092       BlockWorkList.push_back(*Chain.begin());
1093   }
1094 
1095   buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
1096 
1097   if (RotateLoopWithProfile)
1098     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1099   else
1100     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1101 
1102   DEBUG({
1103     // Crash at the end so we get all of the debugging output first.
1104     bool BadLoop = false;
1105     if (LoopChain.LoopPredecessors) {
1106       BadLoop = true;
1107       dbgs() << "Loop chain contains a block without its preds placed!\n"
1108              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1109              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1110     }
1111     for (MachineBasicBlock *ChainBB : LoopChain) {
1112       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
1113       if (!LoopBlockSet.erase(ChainBB)) {
1114         // We don't mark the loop as bad here because there are real situations
1115         // where this can occur. For example, with an unanalyzable fallthrough
1116         // from a loop block to a non-loop block or vice versa.
1117         dbgs() << "Loop chain contains a block not contained by the loop!\n"
1118                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1119                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1120                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1121       }
1122     }
1123 
1124     if (!LoopBlockSet.empty()) {
1125       BadLoop = true;
1126       for (MachineBasicBlock *LoopBB : LoopBlockSet)
1127         dbgs() << "Loop contains blocks never placed into a chain!\n"
1128                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
1129                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1130                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
1131     }
1132     assert(!BadLoop && "Detected problems with the placement of this loop.");
1133   });
1134 }
1135 
1136 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
1137   // Ensure that every BB in the function has an associated chain to simplify
1138   // the assumptions of the remaining algorithm.
1139   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1140   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
1141     MachineBasicBlock *BB = &*FI;
1142     BlockChain *Chain =
1143         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1144     // Also, merge any blocks which we cannot reason about and must preserve
1145     // the exact fallthrough behavior for.
1146     for (;;) {
1147       Cond.clear();
1148       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1149       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1150         break;
1151 
1152       MachineFunction::iterator NextFI = std::next(FI);
1153       MachineBasicBlock *NextBB = &*NextFI;
1154       // Ensure that the layout successor is a viable block, as we know that
1155       // fallthrough is a possibility.
1156       assert(NextFI != FE && "Can't fallthrough past the last block.");
1157       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1158                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
1159                    << "\n");
1160       Chain->merge(NextBB, nullptr);
1161       FI = NextFI;
1162       BB = NextBB;
1163     }
1164   }
1165 
1166   if (OutlineOptionalBranches) {
1167     // Find the nearest common dominator of all of F's terminators.
1168     MachineBasicBlock *Terminator = nullptr;
1169     for (MachineBasicBlock &MBB : F) {
1170       if (MBB.succ_size() == 0) {
1171         if (Terminator == nullptr)
1172           Terminator = &MBB;
1173         else
1174           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1175       }
1176     }
1177 
1178     // MBBs dominating this common dominator are unavoidable.
1179     UnavoidableBlocks.clear();
1180     for (MachineBasicBlock &MBB : F) {
1181       if (MDT->dominates(&MBB, Terminator)) {
1182         UnavoidableBlocks.insert(&MBB);
1183       }
1184     }
1185   }
1186 
1187   // Build any loop-based chains.
1188   for (MachineLoop *L : *MLI)
1189     buildLoopChains(F, *L);
1190 
1191   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1192 
1193   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1194   for (MachineBasicBlock &MBB : F) {
1195     BlockChain &Chain = *BlockToChain[&MBB];
1196     if (!UpdatedPreds.insert(&Chain).second)
1197       continue;
1198 
1199     assert(Chain.LoopPredecessors == 0);
1200     for (MachineBasicBlock *ChainBB : Chain) {
1201       assert(BlockToChain[ChainBB] == &Chain);
1202       for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1203         if (BlockToChain[Pred] == &Chain)
1204           continue;
1205         ++Chain.LoopPredecessors;
1206       }
1207     }
1208 
1209     if (Chain.LoopPredecessors == 0)
1210       BlockWorkList.push_back(*Chain.begin());
1211   }
1212 
1213   BlockChain &FunctionChain = *BlockToChain[&F.front()];
1214   buildChain(&F.front(), FunctionChain, BlockWorkList);
1215 
1216 #ifndef NDEBUG
1217   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1218 #endif
1219   DEBUG({
1220     // Crash at the end so we get all of the debugging output first.
1221     bool BadFunc = false;
1222     FunctionBlockSetType FunctionBlockSet;
1223     for (MachineBasicBlock &MBB : F)
1224       FunctionBlockSet.insert(&MBB);
1225 
1226     for (MachineBasicBlock *ChainBB : FunctionChain)
1227       if (!FunctionBlockSet.erase(ChainBB)) {
1228         BadFunc = true;
1229         dbgs() << "Function chain contains a block not in the function!\n"
1230                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
1231       }
1232 
1233     if (!FunctionBlockSet.empty()) {
1234       BadFunc = true;
1235       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1236         dbgs() << "Function contains blocks never placed into a chain!\n"
1237                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
1238     }
1239     assert(!BadFunc && "Detected problems with the block placement.");
1240   });
1241 
1242   // Splice the blocks into place.
1243   MachineFunction::iterator InsertPos = F.begin();
1244   for (MachineBasicBlock *ChainBB : FunctionChain) {
1245     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1246                                                        : "          ... ")
1247                  << getBlockName(ChainBB) << "\n");
1248     if (InsertPos != MachineFunction::iterator(ChainBB))
1249       F.splice(InsertPos, ChainBB);
1250     else
1251       ++InsertPos;
1252 
1253     // Update the terminator of the previous block.
1254     if (ChainBB == *FunctionChain.begin())
1255       continue;
1256     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1257 
1258     // FIXME: It would be awesome of updateTerminator would just return rather
1259     // than assert when the branch cannot be analyzed in order to remove this
1260     // boiler plate.
1261     Cond.clear();
1262     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1263     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1264       // The "PrevBB" is not yet updated to reflect current code layout, so,
1265       //   o. it may fall-through to a block without explict "goto" instruction
1266       //      before layout, and no longer fall-through it after layout; or
1267       //   o. just opposite.
1268       //
1269       // AnalyzeBranch() may return erroneous value for FBB when these two
1270       // situations take place. For the first scenario FBB is mistakenly set
1271       // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1272       // is mistakenly pointing to "*BI".
1273       //
1274       bool needUpdateBr = true;
1275       if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1276         PrevBB->updateTerminator();
1277         needUpdateBr = false;
1278         Cond.clear();
1279         TBB = FBB = nullptr;
1280         if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1281           // FIXME: This should never take place.
1282           TBB = FBB = nullptr;
1283         }
1284       }
1285 
1286       // If PrevBB has a two-way branch, try to re-order the branches
1287       // such that we branch to the successor with higher probability first.
1288       if (TBB && !Cond.empty() && FBB &&
1289           MBPI->getEdgeProbability(PrevBB, FBB) >
1290               MBPI->getEdgeProbability(PrevBB, TBB) &&
1291           !TII->ReverseBranchCondition(Cond)) {
1292         DEBUG(dbgs() << "Reverse order of the two branches: "
1293                      << getBlockName(PrevBB) << "\n");
1294         DEBUG(dbgs() << "    Edge probability: "
1295                      << MBPI->getEdgeProbability(PrevBB, FBB) << " vs "
1296                      << MBPI->getEdgeProbability(PrevBB, TBB) << "\n");
1297         DebugLoc dl; // FIXME: this is nowhere
1298         TII->RemoveBranch(*PrevBB);
1299         TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1300         needUpdateBr = true;
1301       }
1302       if (needUpdateBr)
1303         PrevBB->updateTerminator();
1304     }
1305   }
1306 
1307   // Fixup the last block.
1308   Cond.clear();
1309   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1310   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1311     F.back().updateTerminator();
1312 
1313   // Walk through the backedges of the function now that we have fully laid out
1314   // the basic blocks and align the destination of each backedge. We don't rely
1315   // exclusively on the loop info here so that we can align backedges in
1316   // unnatural CFGs and backedges that were introduced purely because of the
1317   // loop rotations done during this layout pass.
1318   // FIXME: Use Function::optForSize().
1319   if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
1320     return;
1321   if (FunctionChain.begin() == FunctionChain.end())
1322     return; // Empty chain.
1323 
1324   const BranchProbability ColdProb(1, 5); // 20%
1325   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
1326   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1327   for (MachineBasicBlock *ChainBB : FunctionChain) {
1328     if (ChainBB == *FunctionChain.begin())
1329       continue;
1330 
1331     // Don't align non-looping basic blocks. These are unlikely to execute
1332     // enough times to matter in practice. Note that we'll still handle
1333     // unnatural CFGs inside of a natural outer loop (the common case) and
1334     // rotated loops.
1335     MachineLoop *L = MLI->getLoopFor(ChainBB);
1336     if (!L)
1337       continue;
1338 
1339     unsigned Align = TLI->getPrefLoopAlignment(L);
1340     if (!Align)
1341       continue; // Don't care about loop alignment.
1342 
1343     // If the block is cold relative to the function entry don't waste space
1344     // aligning it.
1345     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1346     if (Freq < WeightedEntryFreq)
1347       continue;
1348 
1349     // If the block is cold relative to its loop header, don't align it
1350     // regardless of what edges into the block exist.
1351     MachineBasicBlock *LoopHeader = L->getHeader();
1352     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1353     if (Freq < (LoopHeaderFreq * ColdProb))
1354       continue;
1355 
1356     // Check for the existence of a non-layout predecessor which would benefit
1357     // from aligning this block.
1358     MachineBasicBlock *LayoutPred =
1359         &*std::prev(MachineFunction::iterator(ChainBB));
1360 
1361     // Force alignment if all the predecessors are jumps. We already checked
1362     // that the block isn't cold above.
1363     if (!LayoutPred->isSuccessor(ChainBB)) {
1364       ChainBB->setAlignment(Align);
1365       continue;
1366     }
1367 
1368     // Align this block if the layout predecessor's edge into this block is
1369     // cold relative to the block. When this is true, other predecessors make up
1370     // all of the hot entries into the block and thus alignment is likely to be
1371     // important.
1372     BranchProbability LayoutProb =
1373         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1374     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1375     if (LayoutEdgeFreq <= (Freq * ColdProb))
1376       ChainBB->setAlignment(Align);
1377   }
1378 }
1379 
1380 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1381   // Check for single-block functions and skip them.
1382   if (std::next(F.begin()) == F.end())
1383     return false;
1384 
1385   if (skipOptnoneFunction(*F.getFunction()))
1386     return false;
1387 
1388   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1389   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1390   MLI = &getAnalysis<MachineLoopInfo>();
1391   TII = F.getSubtarget().getInstrInfo();
1392   TLI = F.getSubtarget().getTargetLowering();
1393   MDT = &getAnalysis<MachineDominatorTree>();
1394   assert(BlockToChain.empty());
1395 
1396   buildCFGChains(F);
1397 
1398   BlockToChain.clear();
1399   ChainAllocator.DestroyAll();
1400 
1401   if (AlignAllBlock)
1402     // Align all of the blocks in the function to a specific alignment.
1403     for (MachineBasicBlock &MBB : F)
1404       MBB.setAlignment(AlignAllBlock);
1405   else if (AlignAllNonFallThruBlocks) {
1406     // Align all of the blocks that have no fall-through predecessors to a
1407     // specific alignment.
1408     for (auto MBI = std::next(F.begin()), MBE = F.end(); MBI != MBE; ++MBI) {
1409       auto LayoutPred = std::prev(MBI);
1410       if (!LayoutPred->isSuccessor(&*MBI))
1411         MBI->setAlignment(AlignAllNonFallThruBlocks);
1412     }
1413   }
1414 
1415   // We always return true as we have no way to track whether the final order
1416   // differs from the original order.
1417   return true;
1418 }
1419 
1420 namespace {
1421 /// \brief A pass to compute block placement statistics.
1422 ///
1423 /// A separate pass to compute interesting statistics for evaluating block
1424 /// placement. This is separate from the actual placement pass so that they can
1425 /// be computed in the absence of any placement transformations or when using
1426 /// alternative placement strategies.
1427 class MachineBlockPlacementStats : public MachineFunctionPass {
1428   /// \brief A handle to the branch probability pass.
1429   const MachineBranchProbabilityInfo *MBPI;
1430 
1431   /// \brief A handle to the function-wide block frequency pass.
1432   const MachineBlockFrequencyInfo *MBFI;
1433 
1434 public:
1435   static char ID; // Pass identification, replacement for typeid
1436   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1437     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1438   }
1439 
1440   bool runOnMachineFunction(MachineFunction &F) override;
1441 
1442   void getAnalysisUsage(AnalysisUsage &AU) const override {
1443     AU.addRequired<MachineBranchProbabilityInfo>();
1444     AU.addRequired<MachineBlockFrequencyInfo>();
1445     AU.setPreservesAll();
1446     MachineFunctionPass::getAnalysisUsage(AU);
1447   }
1448 };
1449 }
1450 
1451 char MachineBlockPlacementStats::ID = 0;
1452 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1453 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1454                       "Basic Block Placement Stats", false, false)
1455 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1456 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1457 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1458                     "Basic Block Placement Stats", false, false)
1459 
1460 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1461   // Check for single-block functions and skip them.
1462   if (std::next(F.begin()) == F.end())
1463     return false;
1464 
1465   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1466   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1467 
1468   for (MachineBasicBlock &MBB : F) {
1469     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1470     Statistic &NumBranches =
1471         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1472     Statistic &BranchTakenFreq =
1473         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1474     for (MachineBasicBlock *Succ : MBB.successors()) {
1475       // Skip if this successor is a fallthrough.
1476       if (MBB.isLayoutSuccessor(Succ))
1477         continue;
1478 
1479       BlockFrequency EdgeFreq =
1480           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1481       ++NumBranches;
1482       BranchTakenFreq += EdgeFreq.getFrequency();
1483     }
1484   }
1485 
1486   return false;
1487 }
1488