1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 
40 using namespace llvm;
41 
42 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
43     SourceMgr &SM, const SlotMapping &IRSlots)
44   : MF(MF), SM(&SM), IRSlots(IRSlots) {
45 }
46 
47 namespace {
48 
49 /// A wrapper struct around the 'MachineOperand' struct that includes a source
50 /// range and other attributes.
51 struct ParsedMachineOperand {
52   MachineOperand Operand;
53   StringRef::iterator Begin;
54   StringRef::iterator End;
55   Optional<unsigned> TiedDefIdx;
56 
57   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
58                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
59       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
60     if (TiedDefIdx)
61       assert(Operand.isReg() && Operand.isUse() &&
62              "Only used register operands can be tied");
63   }
64 };
65 
66 class MIParser {
67   MachineFunction &MF;
68   SMDiagnostic &Error;
69   StringRef Source, CurrentSource;
70   MIToken Token;
71   const PerFunctionMIParsingState &PFS;
72   /// Maps from instruction names to op codes.
73   StringMap<unsigned> Names2InstrOpCodes;
74   /// Maps from register names to registers.
75   StringMap<unsigned> Names2Regs;
76   /// Maps from register mask names to register masks.
77   StringMap<const uint32_t *> Names2RegMasks;
78   /// Maps from subregister names to subregister indices.
79   StringMap<unsigned> Names2SubRegIndices;
80   /// Maps from slot numbers to function's unnamed basic blocks.
81   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
82   /// Maps from slot numbers to function's unnamed values.
83   DenseMap<unsigned, const Value *> Slots2Values;
84   /// Maps from target index names to target indices.
85   StringMap<int> Names2TargetIndices;
86   /// Maps from direct target flag names to the direct target flag values.
87   StringMap<unsigned> Names2DirectTargetFlags;
88   /// Maps from direct target flag names to the bitmask target flag values.
89   StringMap<unsigned> Names2BitmaskTargetFlags;
90 
91 public:
92   MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
93            StringRef Source);
94 
95   /// \p SkipChar gives the number of characters to skip before looking
96   /// for the next token.
97   void lex(unsigned SkipChar = 0);
98 
99   /// Report an error at the current location with the given message.
100   ///
101   /// This function always return true.
102   bool error(const Twine &Msg);
103 
104   /// Report an error at the given location with the given message.
105   ///
106   /// This function always return true.
107   bool error(StringRef::iterator Loc, const Twine &Msg);
108 
109   bool
110   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
111   bool parseBasicBlocks();
112   bool parse(MachineInstr *&MI);
113   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
114   bool parseStandaloneNamedRegister(unsigned &Reg);
115   bool parseStandaloneVirtualRegister(unsigned &Reg);
116   bool parseStandaloneStackObject(int &FI);
117   bool parseStandaloneMDNode(MDNode *&Node);
118 
119   bool
120   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
121   bool parseBasicBlock(MachineBasicBlock &MBB);
122   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
123   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
124 
125   bool parseRegister(unsigned &Reg);
126   bool parseRegisterFlag(unsigned &Flags);
127   bool parseSubRegisterIndex(unsigned &SubReg);
128   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
129   bool parseSize(unsigned &Size);
130   bool parseRegisterOperand(MachineOperand &Dest,
131                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
132   bool parseImmediateOperand(MachineOperand &Dest);
133   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
134                        const Constant *&C);
135   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
136   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
137   bool parseTypedImmediateOperand(MachineOperand &Dest);
138   bool parseFPImmediateOperand(MachineOperand &Dest);
139   bool parseMBBReference(MachineBasicBlock *&MBB);
140   bool parseMBBOperand(MachineOperand &Dest);
141   bool parseStackFrameIndex(int &FI);
142   bool parseStackObjectOperand(MachineOperand &Dest);
143   bool parseFixedStackFrameIndex(int &FI);
144   bool parseFixedStackObjectOperand(MachineOperand &Dest);
145   bool parseGlobalValue(GlobalValue *&GV);
146   bool parseGlobalAddressOperand(MachineOperand &Dest);
147   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
148   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
149   bool parseJumpTableIndexOperand(MachineOperand &Dest);
150   bool parseExternalSymbolOperand(MachineOperand &Dest);
151   bool parseMDNode(MDNode *&Node);
152   bool parseMetadataOperand(MachineOperand &Dest);
153   bool parseCFIOffset(int &Offset);
154   bool parseCFIRegister(unsigned &Reg);
155   bool parseCFIOperand(MachineOperand &Dest);
156   bool parseIRBlock(BasicBlock *&BB, const Function &F);
157   bool parseBlockAddressOperand(MachineOperand &Dest);
158   bool parseIntrinsicOperand(MachineOperand &Dest);
159   bool parsePredicateOperand(MachineOperand &Dest);
160   bool parseTargetIndexOperand(MachineOperand &Dest);
161   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
162   bool parseMachineOperand(MachineOperand &Dest,
163                            Optional<unsigned> &TiedDefIdx);
164   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
165                                          Optional<unsigned> &TiedDefIdx);
166   bool parseOffset(int64_t &Offset);
167   bool parseAlignment(unsigned &Alignment);
168   bool parseOperandsOffset(MachineOperand &Op);
169   bool parseIRValue(const Value *&V);
170   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
171   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
172   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
173   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
174 
175 private:
176   /// Convert the integer literal in the current token into an unsigned integer.
177   ///
178   /// Return true if an error occurred.
179   bool getUnsigned(unsigned &Result);
180 
181   /// Convert the integer literal in the current token into an uint64.
182   ///
183   /// Return true if an error occurred.
184   bool getUint64(uint64_t &Result);
185 
186   /// If the current token is of the given kind, consume it and return false.
187   /// Otherwise report an error and return true.
188   bool expectAndConsume(MIToken::TokenKind TokenKind);
189 
190   /// If the current token is of the given kind, consume it and return true.
191   /// Otherwise return false.
192   bool consumeIfPresent(MIToken::TokenKind TokenKind);
193 
194   void initNames2InstrOpCodes();
195 
196   /// Try to convert an instruction name to an opcode. Return true if the
197   /// instruction name is invalid.
198   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
199 
200   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
201 
202   bool assignRegisterTies(MachineInstr &MI,
203                           ArrayRef<ParsedMachineOperand> Operands);
204 
205   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
206                               const MCInstrDesc &MCID);
207 
208   void initNames2Regs();
209 
210   /// Try to convert a register name to a register number. Return true if the
211   /// register name is invalid.
212   bool getRegisterByName(StringRef RegName, unsigned &Reg);
213 
214   void initNames2RegMasks();
215 
216   /// Check if the given identifier is a name of a register mask.
217   ///
218   /// Return null if the identifier isn't a register mask.
219   const uint32_t *getRegMask(StringRef Identifier);
220 
221   void initNames2SubRegIndices();
222 
223   /// Check if the given identifier is a name of a subregister index.
224   ///
225   /// Return 0 if the name isn't a subregister index class.
226   unsigned getSubRegIndex(StringRef Name);
227 
228   const BasicBlock *getIRBlock(unsigned Slot);
229   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
230 
231   const Value *getIRValue(unsigned Slot);
232 
233   void initNames2TargetIndices();
234 
235   /// Try to convert a name of target index to the corresponding target index.
236   ///
237   /// Return true if the name isn't a name of a target index.
238   bool getTargetIndex(StringRef Name, int &Index);
239 
240   void initNames2DirectTargetFlags();
241 
242   /// Try to convert a name of a direct target flag to the corresponding
243   /// target flag.
244   ///
245   /// Return true if the name isn't a name of a direct flag.
246   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
247 
248   void initNames2BitmaskTargetFlags();
249 
250   /// Try to convert a name of a bitmask target flag to the corresponding
251   /// target flag.
252   ///
253   /// Return true if the name isn't a name of a bitmask target flag.
254   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
255 };
256 
257 } // end anonymous namespace
258 
259 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
260                    StringRef Source)
261     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
262 {}
263 
264 void MIParser::lex(unsigned SkipChar) {
265   CurrentSource = lexMIToken(
266       CurrentSource.data() + SkipChar, Token,
267       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
268 }
269 
270 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
271 
272 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
273   const SourceMgr &SM = *PFS.SM;
274   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
275   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
276   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
277     // Create an ordinary diagnostic when the source manager's buffer is the
278     // source string.
279     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
280     return true;
281   }
282   // Create a diagnostic for a YAML string literal.
283   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
284                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
285                        Source, None, None);
286   return true;
287 }
288 
289 static const char *toString(MIToken::TokenKind TokenKind) {
290   switch (TokenKind) {
291   case MIToken::comma:
292     return "','";
293   case MIToken::equal:
294     return "'='";
295   case MIToken::colon:
296     return "':'";
297   case MIToken::lparen:
298     return "'('";
299   case MIToken::rparen:
300     return "')'";
301   default:
302     return "<unknown token>";
303   }
304 }
305 
306 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
307   if (Token.isNot(TokenKind))
308     return error(Twine("expected ") + toString(TokenKind));
309   lex();
310   return false;
311 }
312 
313 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
314   if (Token.isNot(TokenKind))
315     return false;
316   lex();
317   return true;
318 }
319 
320 bool MIParser::parseBasicBlockDefinition(
321     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
322   assert(Token.is(MIToken::MachineBasicBlockLabel));
323   unsigned ID = 0;
324   if (getUnsigned(ID))
325     return true;
326   auto Loc = Token.location();
327   auto Name = Token.stringValue();
328   lex();
329   bool HasAddressTaken = false;
330   bool IsLandingPad = false;
331   unsigned Alignment = 0;
332   BasicBlock *BB = nullptr;
333   if (consumeIfPresent(MIToken::lparen)) {
334     do {
335       // TODO: Report an error when multiple same attributes are specified.
336       switch (Token.kind()) {
337       case MIToken::kw_address_taken:
338         HasAddressTaken = true;
339         lex();
340         break;
341       case MIToken::kw_landing_pad:
342         IsLandingPad = true;
343         lex();
344         break;
345       case MIToken::kw_align:
346         if (parseAlignment(Alignment))
347           return true;
348         break;
349       case MIToken::IRBlock:
350         // TODO: Report an error when both name and ir block are specified.
351         if (parseIRBlock(BB, *MF.getFunction()))
352           return true;
353         lex();
354         break;
355       default:
356         break;
357       }
358     } while (consumeIfPresent(MIToken::comma));
359     if (expectAndConsume(MIToken::rparen))
360       return true;
361   }
362   if (expectAndConsume(MIToken::colon))
363     return true;
364 
365   if (!Name.empty()) {
366     BB = dyn_cast_or_null<BasicBlock>(
367         MF.getFunction()->getValueSymbolTable().lookup(Name));
368     if (!BB)
369       return error(Loc, Twine("basic block '") + Name +
370                             "' is not defined in the function '" +
371                             MF.getName() + "'");
372   }
373   auto *MBB = MF.CreateMachineBasicBlock(BB);
374   MF.insert(MF.end(), MBB);
375   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
376   if (!WasInserted)
377     return error(Loc, Twine("redefinition of machine basic block with id #") +
378                           Twine(ID));
379   if (Alignment)
380     MBB->setAlignment(Alignment);
381   if (HasAddressTaken)
382     MBB->setHasAddressTaken();
383   MBB->setIsEHPad(IsLandingPad);
384   return false;
385 }
386 
387 bool MIParser::parseBasicBlockDefinitions(
388     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
389   lex();
390   // Skip until the first machine basic block.
391   while (Token.is(MIToken::Newline))
392     lex();
393   if (Token.isErrorOrEOF())
394     return Token.isError();
395   if (Token.isNot(MIToken::MachineBasicBlockLabel))
396     return error("expected a basic block definition before instructions");
397   unsigned BraceDepth = 0;
398   do {
399     if (parseBasicBlockDefinition(MBBSlots))
400       return true;
401     bool IsAfterNewline = false;
402     // Skip until the next machine basic block.
403     while (true) {
404       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
405           Token.isErrorOrEOF())
406         break;
407       else if (Token.is(MIToken::MachineBasicBlockLabel))
408         return error("basic block definition should be located at the start of "
409                      "the line");
410       else if (consumeIfPresent(MIToken::Newline)) {
411         IsAfterNewline = true;
412         continue;
413       }
414       IsAfterNewline = false;
415       if (Token.is(MIToken::lbrace))
416         ++BraceDepth;
417       if (Token.is(MIToken::rbrace)) {
418         if (!BraceDepth)
419           return error("extraneous closing brace ('}')");
420         --BraceDepth;
421       }
422       lex();
423     }
424     // Verify that we closed all of the '{' at the end of a file or a block.
425     if (!Token.isError() && BraceDepth)
426       return error("expected '}'"); // FIXME: Report a note that shows '{'.
427   } while (!Token.isErrorOrEOF());
428   return Token.isError();
429 }
430 
431 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
432   assert(Token.is(MIToken::kw_liveins));
433   lex();
434   if (expectAndConsume(MIToken::colon))
435     return true;
436   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
437     return false;
438   do {
439     if (Token.isNot(MIToken::NamedRegister))
440       return error("expected a named register");
441     unsigned Reg = 0;
442     if (parseRegister(Reg))
443       return true;
444     MBB.addLiveIn(Reg);
445     lex();
446   } while (consumeIfPresent(MIToken::comma));
447   return false;
448 }
449 
450 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
451   assert(Token.is(MIToken::kw_successors));
452   lex();
453   if (expectAndConsume(MIToken::colon))
454     return true;
455   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
456     return false;
457   do {
458     if (Token.isNot(MIToken::MachineBasicBlock))
459       return error("expected a machine basic block reference");
460     MachineBasicBlock *SuccMBB = nullptr;
461     if (parseMBBReference(SuccMBB))
462       return true;
463     lex();
464     unsigned Weight = 0;
465     if (consumeIfPresent(MIToken::lparen)) {
466       if (Token.isNot(MIToken::IntegerLiteral))
467         return error("expected an integer literal after '('");
468       if (getUnsigned(Weight))
469         return true;
470       lex();
471       if (expectAndConsume(MIToken::rparen))
472         return true;
473     }
474     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
475   } while (consumeIfPresent(MIToken::comma));
476   MBB.normalizeSuccProbs();
477   return false;
478 }
479 
480 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
481   // Skip the definition.
482   assert(Token.is(MIToken::MachineBasicBlockLabel));
483   lex();
484   if (consumeIfPresent(MIToken::lparen)) {
485     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
486       lex();
487     consumeIfPresent(MIToken::rparen);
488   }
489   consumeIfPresent(MIToken::colon);
490 
491   // Parse the liveins and successors.
492   // N.B: Multiple lists of successors and liveins are allowed and they're
493   // merged into one.
494   // Example:
495   //   liveins: %edi
496   //   liveins: %esi
497   //
498   // is equivalent to
499   //   liveins: %edi, %esi
500   while (true) {
501     if (Token.is(MIToken::kw_successors)) {
502       if (parseBasicBlockSuccessors(MBB))
503         return true;
504     } else if (Token.is(MIToken::kw_liveins)) {
505       if (parseBasicBlockLiveins(MBB))
506         return true;
507     } else if (consumeIfPresent(MIToken::Newline)) {
508       continue;
509     } else
510       break;
511     if (!Token.isNewlineOrEOF())
512       return error("expected line break at the end of a list");
513     lex();
514   }
515 
516   // Parse the instructions.
517   bool IsInBundle = false;
518   MachineInstr *PrevMI = nullptr;
519   while (true) {
520     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
521       return false;
522     else if (consumeIfPresent(MIToken::Newline))
523       continue;
524     if (consumeIfPresent(MIToken::rbrace)) {
525       // The first parsing pass should verify that all closing '}' have an
526       // opening '{'.
527       assert(IsInBundle);
528       IsInBundle = false;
529       continue;
530     }
531     MachineInstr *MI = nullptr;
532     if (parse(MI))
533       return true;
534     MBB.insert(MBB.end(), MI);
535     if (IsInBundle) {
536       PrevMI->setFlag(MachineInstr::BundledSucc);
537       MI->setFlag(MachineInstr::BundledPred);
538     }
539     PrevMI = MI;
540     if (Token.is(MIToken::lbrace)) {
541       if (IsInBundle)
542         return error("nested instruction bundles are not allowed");
543       lex();
544       // This instruction is the start of the bundle.
545       MI->setFlag(MachineInstr::BundledSucc);
546       IsInBundle = true;
547       if (!Token.is(MIToken::Newline))
548         // The next instruction can be on the same line.
549         continue;
550     }
551     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
552     lex();
553   }
554   return false;
555 }
556 
557 bool MIParser::parseBasicBlocks() {
558   lex();
559   // Skip until the first machine basic block.
560   while (Token.is(MIToken::Newline))
561     lex();
562   if (Token.isErrorOrEOF())
563     return Token.isError();
564   // The first parsing pass should have verified that this token is a MBB label
565   // in the 'parseBasicBlockDefinitions' method.
566   assert(Token.is(MIToken::MachineBasicBlockLabel));
567   do {
568     MachineBasicBlock *MBB = nullptr;
569     if (parseMBBReference(MBB))
570       return true;
571     if (parseBasicBlock(*MBB))
572       return true;
573     // The method 'parseBasicBlock' should parse the whole block until the next
574     // block or the end of file.
575     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
576   } while (Token.isNot(MIToken::Eof));
577   return false;
578 }
579 
580 bool MIParser::parse(MachineInstr *&MI) {
581   // Parse any register operands before '='
582   MachineOperand MO = MachineOperand::CreateImm(0);
583   SmallVector<ParsedMachineOperand, 8> Operands;
584   while (Token.isRegister() || Token.isRegisterFlag()) {
585     auto Loc = Token.location();
586     Optional<unsigned> TiedDefIdx;
587     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
588       return true;
589     Operands.push_back(
590         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
591     if (Token.isNot(MIToken::comma))
592       break;
593     lex();
594   }
595   if (!Operands.empty() && expectAndConsume(MIToken::equal))
596     return true;
597 
598   unsigned OpCode, Flags = 0;
599   if (Token.isError() || parseInstruction(OpCode, Flags))
600     return true;
601 
602   // Parse the remaining machine operands.
603   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
604          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
605     auto Loc = Token.location();
606     Optional<unsigned> TiedDefIdx;
607     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
608       return true;
609     Operands.push_back(
610         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
611     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
612         Token.is(MIToken::lbrace))
613       break;
614     if (Token.isNot(MIToken::comma))
615       return error("expected ',' before the next machine operand");
616     lex();
617   }
618 
619   DebugLoc DebugLocation;
620   if (Token.is(MIToken::kw_debug_location)) {
621     lex();
622     if (Token.isNot(MIToken::exclaim))
623       return error("expected a metadata node after 'debug-location'");
624     MDNode *Node = nullptr;
625     if (parseMDNode(Node))
626       return true;
627     DebugLocation = DebugLoc(Node);
628   }
629 
630   // Parse the machine memory operands.
631   SmallVector<MachineMemOperand *, 2> MemOperands;
632   if (Token.is(MIToken::coloncolon)) {
633     lex();
634     while (!Token.isNewlineOrEOF()) {
635       MachineMemOperand *MemOp = nullptr;
636       if (parseMachineMemoryOperand(MemOp))
637         return true;
638       MemOperands.push_back(MemOp);
639       if (Token.isNewlineOrEOF())
640         break;
641       if (Token.isNot(MIToken::comma))
642         return error("expected ',' before the next machine memory operand");
643       lex();
644     }
645   }
646 
647   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
648   if (!MCID.isVariadic()) {
649     // FIXME: Move the implicit operand verification to the machine verifier.
650     if (verifyImplicitOperands(Operands, MCID))
651       return true;
652   }
653 
654   // TODO: Check for extraneous machine operands.
655   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
656   MI->setFlags(Flags);
657   for (const auto &Operand : Operands)
658     MI->addOperand(MF, Operand.Operand);
659   if (assignRegisterTies(*MI, Operands))
660     return true;
661   if (MemOperands.empty())
662     return false;
663   MachineInstr::mmo_iterator MemRefs =
664       MF.allocateMemRefsArray(MemOperands.size());
665   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
666   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
667   return false;
668 }
669 
670 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
671   lex();
672   if (Token.isNot(MIToken::MachineBasicBlock))
673     return error("expected a machine basic block reference");
674   if (parseMBBReference(MBB))
675     return true;
676   lex();
677   if (Token.isNot(MIToken::Eof))
678     return error(
679         "expected end of string after the machine basic block reference");
680   return false;
681 }
682 
683 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
684   lex();
685   if (Token.isNot(MIToken::NamedRegister))
686     return error("expected a named register");
687   if (parseRegister(Reg))
688     return true;
689   lex();
690   if (Token.isNot(MIToken::Eof))
691     return error("expected end of string after the register reference");
692   return false;
693 }
694 
695 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
696   lex();
697   if (Token.isNot(MIToken::VirtualRegister))
698     return error("expected a virtual register");
699   if (parseRegister(Reg))
700     return true;
701   lex();
702   if (Token.isNot(MIToken::Eof))
703     return error("expected end of string after the register reference");
704   return false;
705 }
706 
707 bool MIParser::parseStandaloneStackObject(int &FI) {
708   lex();
709   if (Token.isNot(MIToken::StackObject))
710     return error("expected a stack object");
711   if (parseStackFrameIndex(FI))
712     return true;
713   if (Token.isNot(MIToken::Eof))
714     return error("expected end of string after the stack object reference");
715   return false;
716 }
717 
718 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
719   lex();
720   if (Token.isNot(MIToken::exclaim))
721     return error("expected a metadata node");
722   if (parseMDNode(Node))
723     return true;
724   if (Token.isNot(MIToken::Eof))
725     return error("expected end of string after the metadata node");
726   return false;
727 }
728 
729 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
730   assert(MO.isImplicit());
731   return MO.isDef() ? "implicit-def" : "implicit";
732 }
733 
734 static std::string getRegisterName(const TargetRegisterInfo *TRI,
735                                    unsigned Reg) {
736   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
737   return StringRef(TRI->getName(Reg)).lower();
738 }
739 
740 /// Return true if the parsed machine operands contain a given machine operand.
741 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
742                                 ArrayRef<ParsedMachineOperand> Operands) {
743   for (const auto &I : Operands) {
744     if (ImplicitOperand.isIdenticalTo(I.Operand))
745       return true;
746   }
747   return false;
748 }
749 
750 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
751                                       const MCInstrDesc &MCID) {
752   if (MCID.isCall())
753     // We can't verify call instructions as they can contain arbitrary implicit
754     // register and register mask operands.
755     return false;
756 
757   // Gather all the expected implicit operands.
758   SmallVector<MachineOperand, 4> ImplicitOperands;
759   if (MCID.ImplicitDefs)
760     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
761       ImplicitOperands.push_back(
762           MachineOperand::CreateReg(*ImpDefs, true, true));
763   if (MCID.ImplicitUses)
764     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
765       ImplicitOperands.push_back(
766           MachineOperand::CreateReg(*ImpUses, false, true));
767 
768   const auto *TRI = MF.getSubtarget().getRegisterInfo();
769   assert(TRI && "Expected target register info");
770   for (const auto &I : ImplicitOperands) {
771     if (isImplicitOperandIn(I, Operands))
772       continue;
773     return error(Operands.empty() ? Token.location() : Operands.back().End,
774                  Twine("missing implicit register operand '") +
775                      printImplicitRegisterFlag(I) + " %" +
776                      getRegisterName(TRI, I.getReg()) + "'");
777   }
778   return false;
779 }
780 
781 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
782   if (Token.is(MIToken::kw_frame_setup)) {
783     Flags |= MachineInstr::FrameSetup;
784     lex();
785   }
786   if (Token.isNot(MIToken::Identifier))
787     return error("expected a machine instruction");
788   StringRef InstrName = Token.stringValue();
789   if (parseInstrName(InstrName, OpCode))
790     return error(Twine("unknown machine instruction name '") + InstrName + "'");
791   lex();
792   return false;
793 }
794 
795 bool MIParser::parseRegister(unsigned &Reg) {
796   switch (Token.kind()) {
797   case MIToken::underscore:
798     Reg = 0;
799     break;
800   case MIToken::NamedRegister: {
801     StringRef Name = Token.stringValue();
802     if (getRegisterByName(Name, Reg))
803       return error(Twine("unknown register name '") + Name + "'");
804     break;
805   }
806   case MIToken::VirtualRegister: {
807     unsigned ID;
808     if (getUnsigned(ID))
809       return true;
810     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
811     if (RegInfo == PFS.VirtualRegisterSlots.end())
812       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
813                    "'");
814     Reg = RegInfo->second;
815     break;
816   }
817   // TODO: Parse other register kinds.
818   default:
819     llvm_unreachable("The current token should be a register");
820   }
821   return false;
822 }
823 
824 bool MIParser::parseRegisterFlag(unsigned &Flags) {
825   const unsigned OldFlags = Flags;
826   switch (Token.kind()) {
827   case MIToken::kw_implicit:
828     Flags |= RegState::Implicit;
829     break;
830   case MIToken::kw_implicit_define:
831     Flags |= RegState::ImplicitDefine;
832     break;
833   case MIToken::kw_def:
834     Flags |= RegState::Define;
835     break;
836   case MIToken::kw_dead:
837     Flags |= RegState::Dead;
838     break;
839   case MIToken::kw_killed:
840     Flags |= RegState::Kill;
841     break;
842   case MIToken::kw_undef:
843     Flags |= RegState::Undef;
844     break;
845   case MIToken::kw_internal:
846     Flags |= RegState::InternalRead;
847     break;
848   case MIToken::kw_early_clobber:
849     Flags |= RegState::EarlyClobber;
850     break;
851   case MIToken::kw_debug_use:
852     Flags |= RegState::Debug;
853     break;
854   default:
855     llvm_unreachable("The current token should be a register flag");
856   }
857   if (OldFlags == Flags)
858     // We know that the same flag is specified more than once when the flags
859     // weren't modified.
860     return error("duplicate '" + Token.stringValue() + "' register flag");
861   lex();
862   return false;
863 }
864 
865 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
866   assert(Token.is(MIToken::dot));
867   lex();
868   if (Token.isNot(MIToken::Identifier))
869     return error("expected a subregister index after '.'");
870   auto Name = Token.stringValue();
871   SubReg = getSubRegIndex(Name);
872   if (!SubReg)
873     return error(Twine("use of unknown subregister index '") + Name + "'");
874   lex();
875   return false;
876 }
877 
878 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
879   if (!consumeIfPresent(MIToken::kw_tied_def))
880     return true;
881   if (Token.isNot(MIToken::IntegerLiteral))
882     return error("expected an integer literal after 'tied-def'");
883   if (getUnsigned(TiedDefIdx))
884     return true;
885   lex();
886   if (expectAndConsume(MIToken::rparen))
887     return true;
888   return false;
889 }
890 
891 bool MIParser::parseSize(unsigned &Size) {
892   if (Token.isNot(MIToken::IntegerLiteral))
893     return error("expected an integer literal for the size");
894   if (getUnsigned(Size))
895     return true;
896   lex();
897   if (expectAndConsume(MIToken::rparen))
898     return true;
899   return false;
900 }
901 
902 bool MIParser::assignRegisterTies(MachineInstr &MI,
903                                   ArrayRef<ParsedMachineOperand> Operands) {
904   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
905   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
906     if (!Operands[I].TiedDefIdx)
907       continue;
908     // The parser ensures that this operand is a register use, so we just have
909     // to check the tied-def operand.
910     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
911     if (DefIdx >= E)
912       return error(Operands[I].Begin,
913                    Twine("use of invalid tied-def operand index '" +
914                          Twine(DefIdx) + "'; instruction has only ") +
915                        Twine(E) + " operands");
916     const auto &DefOperand = Operands[DefIdx].Operand;
917     if (!DefOperand.isReg() || !DefOperand.isDef())
918       // FIXME: add note with the def operand.
919       return error(Operands[I].Begin,
920                    Twine("use of invalid tied-def operand index '") +
921                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
922                        " isn't a defined register");
923     // Check that the tied-def operand wasn't tied elsewhere.
924     for (const auto &TiedPair : TiedRegisterPairs) {
925       if (TiedPair.first == DefIdx)
926         return error(Operands[I].Begin,
927                      Twine("the tied-def operand #") + Twine(DefIdx) +
928                          " is already tied with another register operand");
929     }
930     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
931   }
932   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
933   // indices must be less than tied max.
934   for (const auto &TiedPair : TiedRegisterPairs)
935     MI.tieOperands(TiedPair.first, TiedPair.second);
936   return false;
937 }
938 
939 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
940                                     Optional<unsigned> &TiedDefIdx,
941                                     bool IsDef) {
942   unsigned Reg;
943   unsigned Flags = IsDef ? RegState::Define : 0;
944   while (Token.isRegisterFlag()) {
945     if (parseRegisterFlag(Flags))
946       return true;
947   }
948   if (!Token.isRegister())
949     return error("expected a register after register flags");
950   if (parseRegister(Reg))
951     return true;
952   lex();
953   unsigned SubReg = 0;
954   if (Token.is(MIToken::dot)) {
955     if (parseSubRegisterIndex(SubReg))
956       return true;
957     if (!TargetRegisterInfo::isVirtualRegister(Reg))
958       return error("subregister index expects a virtual register");
959   }
960   MachineRegisterInfo &MRI = MF.getRegInfo();
961   if ((Flags & RegState::Define) == 0) {
962     if (consumeIfPresent(MIToken::lparen)) {
963       unsigned Idx;
964       if (!parseRegisterTiedDefIndex(Idx))
965         TiedDefIdx = Idx;
966       else {
967         // Try a redundant low-level type.
968         LLT Ty;
969         if (parseLowLevelType(Token.location(), Ty))
970           return error("expected tied-def or low-level type after '('");
971 
972         if (expectAndConsume(MIToken::rparen))
973           return true;
974 
975         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
976           return error("inconsistent type for generic virtual register");
977 
978         MRI.setType(Reg, Ty);
979       }
980     }
981   } else if (consumeIfPresent(MIToken::lparen)) {
982     // Virtual registers may have a size with GlobalISel.
983     if (!TargetRegisterInfo::isVirtualRegister(Reg))
984       return error("unexpected size on physical register");
985     if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>())
986       return error("unexpected size on non-generic virtual register");
987 
988     LLT Ty;
989     if (parseLowLevelType(Token.location(), Ty))
990       return true;
991 
992     if (expectAndConsume(MIToken::rparen))
993       return true;
994 
995     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
996       return error("inconsistent type for generic virtual register");
997 
998     MRI.setType(Reg, Ty);
999   } else if (PFS.GenericVRegs.count(Reg)) {
1000     // Generic virtual registers must have a size.
1001     // If we end up here this means the size hasn't been specified and
1002     // this is bad!
1003     return error("generic virtual registers must have a size");
1004   }
1005   Dest = MachineOperand::CreateReg(
1006       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1007       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1008       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1009       Flags & RegState::InternalRead);
1010   return false;
1011 }
1012 
1013 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1014   assert(Token.is(MIToken::IntegerLiteral));
1015   const APSInt &Int = Token.integerValue();
1016   if (Int.getMinSignedBits() > 64)
1017     return error("integer literal is too large to be an immediate operand");
1018   Dest = MachineOperand::CreateImm(Int.getExtValue());
1019   lex();
1020   return false;
1021 }
1022 
1023 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1024                                const Constant *&C) {
1025   auto Source = StringValue.str(); // The source has to be null terminated.
1026   SMDiagnostic Err;
1027   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1028                          &PFS.IRSlots);
1029   if (!C)
1030     return error(Loc + Err.getColumnNo(), Err.getMessage());
1031   return false;
1032 }
1033 
1034 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1035   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1036     return true;
1037   lex();
1038   return false;
1039 }
1040 
1041 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1042   if (Token.is(MIToken::Identifier) && Token.stringValue() == "unsized") {
1043     lex();
1044     Ty = LLT::unsized();
1045     return false;
1046   } else if (Token.is(MIToken::ScalarType)) {
1047     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1048     lex();
1049     return false;
1050   } else if (Token.is(MIToken::PointerType)) {
1051     Ty = LLT::pointer(APSInt(Token.range().drop_front()).getZExtValue());
1052     lex();
1053     return false;
1054   }
1055 
1056   // Now we're looking for a vector.
1057   if (Token.isNot(MIToken::less))
1058     return error(Loc,
1059                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1060 
1061   lex();
1062 
1063   if (Token.isNot(MIToken::IntegerLiteral))
1064     return error(Loc, "expected <N x sM> for vctor type");
1065   uint64_t NumElements = Token.integerValue().getZExtValue();
1066   lex();
1067 
1068   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1069     return error(Loc, "expected '<N x sM>' for vector type");
1070   lex();
1071 
1072   if (Token.isNot(MIToken::ScalarType))
1073     return error(Loc, "expected '<N x sM>' for vector type");
1074   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1075   lex();
1076 
1077   if (Token.isNot(MIToken::greater))
1078     return error(Loc, "expected '<N x sM>' for vector type");
1079   lex();
1080 
1081   Ty = LLT::vector(NumElements, ScalarSize);
1082   return false;
1083 }
1084 
1085 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1086   assert(Token.is(MIToken::IntegerType));
1087   auto Loc = Token.location();
1088   lex();
1089   if (Token.isNot(MIToken::IntegerLiteral))
1090     return error("expected an integer literal");
1091   const Constant *C = nullptr;
1092   if (parseIRConstant(Loc, C))
1093     return true;
1094   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1095   return false;
1096 }
1097 
1098 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1099   auto Loc = Token.location();
1100   lex();
1101   if (Token.isNot(MIToken::FloatingPointLiteral))
1102     return error("expected a floating point literal");
1103   const Constant *C = nullptr;
1104   if (parseIRConstant(Loc, C))
1105     return true;
1106   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1107   return false;
1108 }
1109 
1110 bool MIParser::getUnsigned(unsigned &Result) {
1111   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1112   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1113   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1114   if (Val64 == Limit)
1115     return error("expected 32-bit integer (too large)");
1116   Result = Val64;
1117   return false;
1118 }
1119 
1120 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1121   assert(Token.is(MIToken::MachineBasicBlock) ||
1122          Token.is(MIToken::MachineBasicBlockLabel));
1123   unsigned Number;
1124   if (getUnsigned(Number))
1125     return true;
1126   auto MBBInfo = PFS.MBBSlots.find(Number);
1127   if (MBBInfo == PFS.MBBSlots.end())
1128     return error(Twine("use of undefined machine basic block #") +
1129                  Twine(Number));
1130   MBB = MBBInfo->second;
1131   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1132     return error(Twine("the name of machine basic block #") + Twine(Number) +
1133                  " isn't '" + Token.stringValue() + "'");
1134   return false;
1135 }
1136 
1137 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1138   MachineBasicBlock *MBB;
1139   if (parseMBBReference(MBB))
1140     return true;
1141   Dest = MachineOperand::CreateMBB(MBB);
1142   lex();
1143   return false;
1144 }
1145 
1146 bool MIParser::parseStackFrameIndex(int &FI) {
1147   assert(Token.is(MIToken::StackObject));
1148   unsigned ID;
1149   if (getUnsigned(ID))
1150     return true;
1151   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1152   if (ObjectInfo == PFS.StackObjectSlots.end())
1153     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1154                  "'");
1155   StringRef Name;
1156   if (const auto *Alloca =
1157           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1158     Name = Alloca->getName();
1159   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1160     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1161                  "' isn't '" + Token.stringValue() + "'");
1162   lex();
1163   FI = ObjectInfo->second;
1164   return false;
1165 }
1166 
1167 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1168   int FI;
1169   if (parseStackFrameIndex(FI))
1170     return true;
1171   Dest = MachineOperand::CreateFI(FI);
1172   return false;
1173 }
1174 
1175 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1176   assert(Token.is(MIToken::FixedStackObject));
1177   unsigned ID;
1178   if (getUnsigned(ID))
1179     return true;
1180   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1181   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1182     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1183                  Twine(ID) + "'");
1184   lex();
1185   FI = ObjectInfo->second;
1186   return false;
1187 }
1188 
1189 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1190   int FI;
1191   if (parseFixedStackFrameIndex(FI))
1192     return true;
1193   Dest = MachineOperand::CreateFI(FI);
1194   return false;
1195 }
1196 
1197 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1198   switch (Token.kind()) {
1199   case MIToken::NamedGlobalValue: {
1200     const Module *M = MF.getFunction()->getParent();
1201     GV = M->getNamedValue(Token.stringValue());
1202     if (!GV)
1203       return error(Twine("use of undefined global value '") + Token.range() +
1204                    "'");
1205     break;
1206   }
1207   case MIToken::GlobalValue: {
1208     unsigned GVIdx;
1209     if (getUnsigned(GVIdx))
1210       return true;
1211     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1212       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1213                    "'");
1214     GV = PFS.IRSlots.GlobalValues[GVIdx];
1215     break;
1216   }
1217   default:
1218     llvm_unreachable("The current token should be a global value");
1219   }
1220   return false;
1221 }
1222 
1223 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1224   GlobalValue *GV = nullptr;
1225   if (parseGlobalValue(GV))
1226     return true;
1227   lex();
1228   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1229   if (parseOperandsOffset(Dest))
1230     return true;
1231   return false;
1232 }
1233 
1234 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1235   assert(Token.is(MIToken::ConstantPoolItem));
1236   unsigned ID;
1237   if (getUnsigned(ID))
1238     return true;
1239   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1240   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1241     return error("use of undefined constant '%const." + Twine(ID) + "'");
1242   lex();
1243   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1244   if (parseOperandsOffset(Dest))
1245     return true;
1246   return false;
1247 }
1248 
1249 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1250   assert(Token.is(MIToken::JumpTableIndex));
1251   unsigned ID;
1252   if (getUnsigned(ID))
1253     return true;
1254   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1255   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1256     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1257   lex();
1258   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1259   return false;
1260 }
1261 
1262 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1263   assert(Token.is(MIToken::ExternalSymbol));
1264   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1265   lex();
1266   Dest = MachineOperand::CreateES(Symbol);
1267   if (parseOperandsOffset(Dest))
1268     return true;
1269   return false;
1270 }
1271 
1272 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1273   assert(Token.is(MIToken::SubRegisterIndex));
1274   StringRef Name = Token.stringValue();
1275   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1276   if (SubRegIndex == 0)
1277     return error(Twine("unknown subregister index '") + Name + "'");
1278   lex();
1279   Dest = MachineOperand::CreateImm(SubRegIndex);
1280   return false;
1281 }
1282 
1283 bool MIParser::parseMDNode(MDNode *&Node) {
1284   assert(Token.is(MIToken::exclaim));
1285   auto Loc = Token.location();
1286   lex();
1287   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1288     return error("expected metadata id after '!'");
1289   unsigned ID;
1290   if (getUnsigned(ID))
1291     return true;
1292   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1293   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1294     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1295   lex();
1296   Node = NodeInfo->second.get();
1297   return false;
1298 }
1299 
1300 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1301   MDNode *Node = nullptr;
1302   if (parseMDNode(Node))
1303     return true;
1304   Dest = MachineOperand::CreateMetadata(Node);
1305   return false;
1306 }
1307 
1308 bool MIParser::parseCFIOffset(int &Offset) {
1309   if (Token.isNot(MIToken::IntegerLiteral))
1310     return error("expected a cfi offset");
1311   if (Token.integerValue().getMinSignedBits() > 32)
1312     return error("expected a 32 bit integer (the cfi offset is too large)");
1313   Offset = (int)Token.integerValue().getExtValue();
1314   lex();
1315   return false;
1316 }
1317 
1318 bool MIParser::parseCFIRegister(unsigned &Reg) {
1319   if (Token.isNot(MIToken::NamedRegister))
1320     return error("expected a cfi register");
1321   unsigned LLVMReg;
1322   if (parseRegister(LLVMReg))
1323     return true;
1324   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1325   assert(TRI && "Expected target register info");
1326   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1327   if (DwarfReg < 0)
1328     return error("invalid DWARF register");
1329   Reg = (unsigned)DwarfReg;
1330   lex();
1331   return false;
1332 }
1333 
1334 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1335   auto Kind = Token.kind();
1336   lex();
1337   auto &MMI = MF.getMMI();
1338   int Offset;
1339   unsigned Reg;
1340   unsigned CFIIndex;
1341   switch (Kind) {
1342   case MIToken::kw_cfi_same_value:
1343     if (parseCFIRegister(Reg))
1344       return true;
1345     CFIIndex =
1346         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1347     break;
1348   case MIToken::kw_cfi_offset:
1349     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1350         parseCFIOffset(Offset))
1351       return true;
1352     CFIIndex =
1353         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1354     break;
1355   case MIToken::kw_cfi_def_cfa_register:
1356     if (parseCFIRegister(Reg))
1357       return true;
1358     CFIIndex =
1359         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1360     break;
1361   case MIToken::kw_cfi_def_cfa_offset:
1362     if (parseCFIOffset(Offset))
1363       return true;
1364     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1365     CFIIndex = MMI.addFrameInst(
1366         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1367     break;
1368   case MIToken::kw_cfi_def_cfa:
1369     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1370         parseCFIOffset(Offset))
1371       return true;
1372     // NB: MCCFIInstruction::createDefCfa negates the offset.
1373     CFIIndex =
1374         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1375     break;
1376   default:
1377     // TODO: Parse the other CFI operands.
1378     llvm_unreachable("The current token should be a cfi operand");
1379   }
1380   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1381   return false;
1382 }
1383 
1384 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1385   switch (Token.kind()) {
1386   case MIToken::NamedIRBlock: {
1387     BB = dyn_cast_or_null<BasicBlock>(
1388         F.getValueSymbolTable().lookup(Token.stringValue()));
1389     if (!BB)
1390       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1391     break;
1392   }
1393   case MIToken::IRBlock: {
1394     unsigned SlotNumber = 0;
1395     if (getUnsigned(SlotNumber))
1396       return true;
1397     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1398     if (!BB)
1399       return error(Twine("use of undefined IR block '%ir-block.") +
1400                    Twine(SlotNumber) + "'");
1401     break;
1402   }
1403   default:
1404     llvm_unreachable("The current token should be an IR block reference");
1405   }
1406   return false;
1407 }
1408 
1409 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1410   assert(Token.is(MIToken::kw_blockaddress));
1411   lex();
1412   if (expectAndConsume(MIToken::lparen))
1413     return true;
1414   if (Token.isNot(MIToken::GlobalValue) &&
1415       Token.isNot(MIToken::NamedGlobalValue))
1416     return error("expected a global value");
1417   GlobalValue *GV = nullptr;
1418   if (parseGlobalValue(GV))
1419     return true;
1420   auto *F = dyn_cast<Function>(GV);
1421   if (!F)
1422     return error("expected an IR function reference");
1423   lex();
1424   if (expectAndConsume(MIToken::comma))
1425     return true;
1426   BasicBlock *BB = nullptr;
1427   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1428     return error("expected an IR block reference");
1429   if (parseIRBlock(BB, *F))
1430     return true;
1431   lex();
1432   if (expectAndConsume(MIToken::rparen))
1433     return true;
1434   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1435   if (parseOperandsOffset(Dest))
1436     return true;
1437   return false;
1438 }
1439 
1440 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1441   assert(Token.is(MIToken::kw_intrinsic));
1442   lex();
1443   if (expectAndConsume(MIToken::lparen))
1444     return error("expected syntax intrinsic(@llvm.whatever)");
1445 
1446   if (Token.isNot(MIToken::NamedGlobalValue))
1447     return error("expected syntax intrinsic(@llvm.whatever)");
1448 
1449   std::string Name = Token.stringValue();
1450   lex();
1451 
1452   if (expectAndConsume(MIToken::rparen))
1453     return error("expected ')' to terminate intrinsic name");
1454 
1455   // Find out what intrinsic we're dealing with, first try the global namespace
1456   // and then the target's private intrinsics if that fails.
1457   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1458   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1459   if (ID == Intrinsic::not_intrinsic && TII)
1460     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1461 
1462   if (ID == Intrinsic::not_intrinsic)
1463     return error("unknown intrinsic name");
1464   Dest = MachineOperand::CreateIntrinsicID(ID);
1465 
1466   return false;
1467 }
1468 
1469 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1470   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1471   bool IsFloat = Token.is(MIToken::kw_floatpred);
1472   lex();
1473 
1474   if (expectAndConsume(MIToken::lparen))
1475     return error("expected syntax intpred(whatever) or floatpred(whatever");
1476 
1477   if (Token.isNot(MIToken::Identifier))
1478     return error("whatever");
1479 
1480   CmpInst::Predicate Pred;
1481   if (IsFloat) {
1482     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1483                .Case("false", CmpInst::FCMP_FALSE)
1484                .Case("oeq", CmpInst::FCMP_OEQ)
1485                .Case("ogt", CmpInst::FCMP_OGT)
1486                .Case("oge", CmpInst::FCMP_OGE)
1487                .Case("olt", CmpInst::FCMP_OLT)
1488                .Case("ole", CmpInst::FCMP_OLE)
1489                .Case("one", CmpInst::FCMP_ONE)
1490                .Case("ord", CmpInst::FCMP_ORD)
1491                .Case("uno", CmpInst::FCMP_UNO)
1492                .Case("ueq", CmpInst::FCMP_UEQ)
1493                .Case("ugt", CmpInst::FCMP_UGT)
1494                .Case("uge", CmpInst::FCMP_UGE)
1495                .Case("ult", CmpInst::FCMP_ULT)
1496                .Case("ule", CmpInst::FCMP_ULE)
1497                .Case("une", CmpInst::FCMP_UNE)
1498                .Case("true", CmpInst::FCMP_TRUE)
1499                .Default(CmpInst::BAD_FCMP_PREDICATE);
1500     if (!CmpInst::isFPPredicate(Pred))
1501       return error("invalid floating-point predicate");
1502   } else {
1503     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1504                .Case("eq", CmpInst::ICMP_EQ)
1505                .Case("ne", CmpInst::ICMP_NE)
1506                .Case("sgt", CmpInst::ICMP_SGT)
1507                .Case("sge", CmpInst::ICMP_SGE)
1508                .Case("slt", CmpInst::ICMP_SLT)
1509                .Case("sle", CmpInst::ICMP_SLE)
1510                .Case("ugt", CmpInst::ICMP_UGT)
1511                .Case("uge", CmpInst::ICMP_UGE)
1512                .Case("ult", CmpInst::ICMP_ULT)
1513                .Case("ule", CmpInst::ICMP_ULE)
1514                .Default(CmpInst::BAD_ICMP_PREDICATE);
1515     if (!CmpInst::isIntPredicate(Pred))
1516       return error("invalid integer predicate");
1517   }
1518 
1519   lex();
1520   Dest = MachineOperand::CreatePredicate(Pred);
1521   if (expectAndConsume(MIToken::rparen))
1522     return error("predicate should be terminated by ')'.");
1523 
1524   return false;
1525 }
1526 
1527 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1528   assert(Token.is(MIToken::kw_target_index));
1529   lex();
1530   if (expectAndConsume(MIToken::lparen))
1531     return true;
1532   if (Token.isNot(MIToken::Identifier))
1533     return error("expected the name of the target index");
1534   int Index = 0;
1535   if (getTargetIndex(Token.stringValue(), Index))
1536     return error("use of undefined target index '" + Token.stringValue() + "'");
1537   lex();
1538   if (expectAndConsume(MIToken::rparen))
1539     return true;
1540   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1541   if (parseOperandsOffset(Dest))
1542     return true;
1543   return false;
1544 }
1545 
1546 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1547   assert(Token.is(MIToken::kw_liveout));
1548   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1549   assert(TRI && "Expected target register info");
1550   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1551   lex();
1552   if (expectAndConsume(MIToken::lparen))
1553     return true;
1554   while (true) {
1555     if (Token.isNot(MIToken::NamedRegister))
1556       return error("expected a named register");
1557     unsigned Reg = 0;
1558     if (parseRegister(Reg))
1559       return true;
1560     lex();
1561     Mask[Reg / 32] |= 1U << (Reg % 32);
1562     // TODO: Report an error if the same register is used more than once.
1563     if (Token.isNot(MIToken::comma))
1564       break;
1565     lex();
1566   }
1567   if (expectAndConsume(MIToken::rparen))
1568     return true;
1569   Dest = MachineOperand::CreateRegLiveOut(Mask);
1570   return false;
1571 }
1572 
1573 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1574                                    Optional<unsigned> &TiedDefIdx) {
1575   switch (Token.kind()) {
1576   case MIToken::kw_implicit:
1577   case MIToken::kw_implicit_define:
1578   case MIToken::kw_def:
1579   case MIToken::kw_dead:
1580   case MIToken::kw_killed:
1581   case MIToken::kw_undef:
1582   case MIToken::kw_internal:
1583   case MIToken::kw_early_clobber:
1584   case MIToken::kw_debug_use:
1585   case MIToken::underscore:
1586   case MIToken::NamedRegister:
1587   case MIToken::VirtualRegister:
1588     return parseRegisterOperand(Dest, TiedDefIdx);
1589   case MIToken::IntegerLiteral:
1590     return parseImmediateOperand(Dest);
1591   case MIToken::IntegerType:
1592     return parseTypedImmediateOperand(Dest);
1593   case MIToken::kw_half:
1594   case MIToken::kw_float:
1595   case MIToken::kw_double:
1596   case MIToken::kw_x86_fp80:
1597   case MIToken::kw_fp128:
1598   case MIToken::kw_ppc_fp128:
1599     return parseFPImmediateOperand(Dest);
1600   case MIToken::MachineBasicBlock:
1601     return parseMBBOperand(Dest);
1602   case MIToken::StackObject:
1603     return parseStackObjectOperand(Dest);
1604   case MIToken::FixedStackObject:
1605     return parseFixedStackObjectOperand(Dest);
1606   case MIToken::GlobalValue:
1607   case MIToken::NamedGlobalValue:
1608     return parseGlobalAddressOperand(Dest);
1609   case MIToken::ConstantPoolItem:
1610     return parseConstantPoolIndexOperand(Dest);
1611   case MIToken::JumpTableIndex:
1612     return parseJumpTableIndexOperand(Dest);
1613   case MIToken::ExternalSymbol:
1614     return parseExternalSymbolOperand(Dest);
1615   case MIToken::SubRegisterIndex:
1616     return parseSubRegisterIndexOperand(Dest);
1617   case MIToken::exclaim:
1618     return parseMetadataOperand(Dest);
1619   case MIToken::kw_cfi_same_value:
1620   case MIToken::kw_cfi_offset:
1621   case MIToken::kw_cfi_def_cfa_register:
1622   case MIToken::kw_cfi_def_cfa_offset:
1623   case MIToken::kw_cfi_def_cfa:
1624     return parseCFIOperand(Dest);
1625   case MIToken::kw_blockaddress:
1626     return parseBlockAddressOperand(Dest);
1627   case MIToken::kw_intrinsic:
1628     return parseIntrinsicOperand(Dest);
1629   case MIToken::kw_target_index:
1630     return parseTargetIndexOperand(Dest);
1631   case MIToken::kw_liveout:
1632     return parseLiveoutRegisterMaskOperand(Dest);
1633   case MIToken::kw_floatpred:
1634   case MIToken::kw_intpred:
1635     return parsePredicateOperand(Dest);
1636   case MIToken::Error:
1637     return true;
1638   case MIToken::Identifier:
1639     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1640       Dest = MachineOperand::CreateRegMask(RegMask);
1641       lex();
1642       break;
1643     }
1644     LLVM_FALLTHROUGH;
1645   default:
1646     // FIXME: Parse the MCSymbol machine operand.
1647     return error("expected a machine operand");
1648   }
1649   return false;
1650 }
1651 
1652 bool MIParser::parseMachineOperandAndTargetFlags(
1653     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1654   unsigned TF = 0;
1655   bool HasTargetFlags = false;
1656   if (Token.is(MIToken::kw_target_flags)) {
1657     HasTargetFlags = true;
1658     lex();
1659     if (expectAndConsume(MIToken::lparen))
1660       return true;
1661     if (Token.isNot(MIToken::Identifier))
1662       return error("expected the name of the target flag");
1663     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1664       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1665         return error("use of undefined target flag '" + Token.stringValue() +
1666                      "'");
1667     }
1668     lex();
1669     while (Token.is(MIToken::comma)) {
1670       lex();
1671       if (Token.isNot(MIToken::Identifier))
1672         return error("expected the name of the target flag");
1673       unsigned BitFlag = 0;
1674       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1675         return error("use of undefined target flag '" + Token.stringValue() +
1676                      "'");
1677       // TODO: Report an error when using a duplicate bit target flag.
1678       TF |= BitFlag;
1679       lex();
1680     }
1681     if (expectAndConsume(MIToken::rparen))
1682       return true;
1683   }
1684   auto Loc = Token.location();
1685   if (parseMachineOperand(Dest, TiedDefIdx))
1686     return true;
1687   if (!HasTargetFlags)
1688     return false;
1689   if (Dest.isReg())
1690     return error(Loc, "register operands can't have target flags");
1691   Dest.setTargetFlags(TF);
1692   return false;
1693 }
1694 
1695 bool MIParser::parseOffset(int64_t &Offset) {
1696   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1697     return false;
1698   StringRef Sign = Token.range();
1699   bool IsNegative = Token.is(MIToken::minus);
1700   lex();
1701   if (Token.isNot(MIToken::IntegerLiteral))
1702     return error("expected an integer literal after '" + Sign + "'");
1703   if (Token.integerValue().getMinSignedBits() > 64)
1704     return error("expected 64-bit integer (too large)");
1705   Offset = Token.integerValue().getExtValue();
1706   if (IsNegative)
1707     Offset = -Offset;
1708   lex();
1709   return false;
1710 }
1711 
1712 bool MIParser::parseAlignment(unsigned &Alignment) {
1713   assert(Token.is(MIToken::kw_align));
1714   lex();
1715   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1716     return error("expected an integer literal after 'align'");
1717   if (getUnsigned(Alignment))
1718     return true;
1719   lex();
1720   return false;
1721 }
1722 
1723 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1724   int64_t Offset = 0;
1725   if (parseOffset(Offset))
1726     return true;
1727   Op.setOffset(Offset);
1728   return false;
1729 }
1730 
1731 bool MIParser::parseIRValue(const Value *&V) {
1732   switch (Token.kind()) {
1733   case MIToken::NamedIRValue: {
1734     V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1735     break;
1736   }
1737   case MIToken::IRValue: {
1738     unsigned SlotNumber = 0;
1739     if (getUnsigned(SlotNumber))
1740       return true;
1741     V = getIRValue(SlotNumber);
1742     break;
1743   }
1744   case MIToken::NamedGlobalValue:
1745   case MIToken::GlobalValue: {
1746     GlobalValue *GV = nullptr;
1747     if (parseGlobalValue(GV))
1748       return true;
1749     V = GV;
1750     break;
1751   }
1752   case MIToken::QuotedIRValue: {
1753     const Constant *C = nullptr;
1754     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1755       return true;
1756     V = C;
1757     break;
1758   }
1759   default:
1760     llvm_unreachable("The current token should be an IR block reference");
1761   }
1762   if (!V)
1763     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1764   return false;
1765 }
1766 
1767 bool MIParser::getUint64(uint64_t &Result) {
1768   assert(Token.hasIntegerValue());
1769   if (Token.integerValue().getActiveBits() > 64)
1770     return error("expected 64-bit integer (too large)");
1771   Result = Token.integerValue().getZExtValue();
1772   return false;
1773 }
1774 
1775 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1776   const auto OldFlags = Flags;
1777   switch (Token.kind()) {
1778   case MIToken::kw_volatile:
1779     Flags |= MachineMemOperand::MOVolatile;
1780     break;
1781   case MIToken::kw_non_temporal:
1782     Flags |= MachineMemOperand::MONonTemporal;
1783     break;
1784   case MIToken::kw_dereferenceable:
1785     Flags |= MachineMemOperand::MODereferenceable;
1786     break;
1787   case MIToken::kw_invariant:
1788     Flags |= MachineMemOperand::MOInvariant;
1789     break;
1790   // TODO: parse the target specific memory operand flags.
1791   default:
1792     llvm_unreachable("The current token should be a memory operand flag");
1793   }
1794   if (OldFlags == Flags)
1795     // We know that the same flag is specified more than once when the flags
1796     // weren't modified.
1797     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1798   lex();
1799   return false;
1800 }
1801 
1802 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1803   switch (Token.kind()) {
1804   case MIToken::kw_stack:
1805     PSV = MF.getPSVManager().getStack();
1806     break;
1807   case MIToken::kw_got:
1808     PSV = MF.getPSVManager().getGOT();
1809     break;
1810   case MIToken::kw_jump_table:
1811     PSV = MF.getPSVManager().getJumpTable();
1812     break;
1813   case MIToken::kw_constant_pool:
1814     PSV = MF.getPSVManager().getConstantPool();
1815     break;
1816   case MIToken::FixedStackObject: {
1817     int FI;
1818     if (parseFixedStackFrameIndex(FI))
1819       return true;
1820     PSV = MF.getPSVManager().getFixedStack(FI);
1821     // The token was already consumed, so use return here instead of break.
1822     return false;
1823   }
1824   case MIToken::StackObject: {
1825     int FI;
1826     if (parseStackFrameIndex(FI))
1827       return true;
1828     PSV = MF.getPSVManager().getFixedStack(FI);
1829     // The token was already consumed, so use return here instead of break.
1830     return false;
1831   }
1832   case MIToken::kw_call_entry: {
1833     lex();
1834     switch (Token.kind()) {
1835     case MIToken::GlobalValue:
1836     case MIToken::NamedGlobalValue: {
1837       GlobalValue *GV = nullptr;
1838       if (parseGlobalValue(GV))
1839         return true;
1840       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1841       break;
1842     }
1843     case MIToken::ExternalSymbol:
1844       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1845           MF.createExternalSymbolName(Token.stringValue()));
1846       break;
1847     default:
1848       return error(
1849           "expected a global value or an external symbol after 'call-entry'");
1850     }
1851     break;
1852   }
1853   default:
1854     llvm_unreachable("The current token should be pseudo source value");
1855   }
1856   lex();
1857   return false;
1858 }
1859 
1860 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1861   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1862       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1863       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1864       Token.is(MIToken::kw_call_entry)) {
1865     const PseudoSourceValue *PSV = nullptr;
1866     if (parseMemoryPseudoSourceValue(PSV))
1867       return true;
1868     int64_t Offset = 0;
1869     if (parseOffset(Offset))
1870       return true;
1871     Dest = MachinePointerInfo(PSV, Offset);
1872     return false;
1873   }
1874   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1875       Token.isNot(MIToken::GlobalValue) &&
1876       Token.isNot(MIToken::NamedGlobalValue) &&
1877       Token.isNot(MIToken::QuotedIRValue))
1878     return error("expected an IR value reference");
1879   const Value *V = nullptr;
1880   if (parseIRValue(V))
1881     return true;
1882   if (!V->getType()->isPointerTy())
1883     return error("expected a pointer IR value");
1884   lex();
1885   int64_t Offset = 0;
1886   if (parseOffset(Offset))
1887     return true;
1888   Dest = MachinePointerInfo(V, Offset);
1889   return false;
1890 }
1891 
1892 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1893   if (expectAndConsume(MIToken::lparen))
1894     return true;
1895   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1896   while (Token.isMemoryOperandFlag()) {
1897     if (parseMemoryOperandFlag(Flags))
1898       return true;
1899   }
1900   if (Token.isNot(MIToken::Identifier) ||
1901       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1902     return error("expected 'load' or 'store' memory operation");
1903   if (Token.stringValue() == "load")
1904     Flags |= MachineMemOperand::MOLoad;
1905   else
1906     Flags |= MachineMemOperand::MOStore;
1907   lex();
1908 
1909   if (Token.isNot(MIToken::IntegerLiteral))
1910     return error("expected the size integer literal after memory operation");
1911   uint64_t Size;
1912   if (getUint64(Size))
1913     return true;
1914   lex();
1915 
1916   MachinePointerInfo Ptr = MachinePointerInfo();
1917   if (Token.is(MIToken::Identifier)) {
1918     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1919     if (Token.stringValue() != Word)
1920       return error(Twine("expected '") + Word + "'");
1921     lex();
1922 
1923     if (parseMachinePointerInfo(Ptr))
1924       return true;
1925   }
1926   unsigned BaseAlignment = Size;
1927   AAMDNodes AAInfo;
1928   MDNode *Range = nullptr;
1929   while (consumeIfPresent(MIToken::comma)) {
1930     switch (Token.kind()) {
1931     case MIToken::kw_align:
1932       if (parseAlignment(BaseAlignment))
1933         return true;
1934       break;
1935     case MIToken::md_tbaa:
1936       lex();
1937       if (parseMDNode(AAInfo.TBAA))
1938         return true;
1939       break;
1940     case MIToken::md_alias_scope:
1941       lex();
1942       if (parseMDNode(AAInfo.Scope))
1943         return true;
1944       break;
1945     case MIToken::md_noalias:
1946       lex();
1947       if (parseMDNode(AAInfo.NoAlias))
1948         return true;
1949       break;
1950     case MIToken::md_range:
1951       lex();
1952       if (parseMDNode(Range))
1953         return true;
1954       break;
1955     // TODO: Report an error on duplicate metadata nodes.
1956     default:
1957       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1958                    "'!noalias' or '!range'");
1959     }
1960   }
1961   if (expectAndConsume(MIToken::rparen))
1962     return true;
1963   Dest =
1964       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1965   return false;
1966 }
1967 
1968 void MIParser::initNames2InstrOpCodes() {
1969   if (!Names2InstrOpCodes.empty())
1970     return;
1971   const auto *TII = MF.getSubtarget().getInstrInfo();
1972   assert(TII && "Expected target instruction info");
1973   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1974     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1975 }
1976 
1977 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1978   initNames2InstrOpCodes();
1979   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1980   if (InstrInfo == Names2InstrOpCodes.end())
1981     return true;
1982   OpCode = InstrInfo->getValue();
1983   return false;
1984 }
1985 
1986 void MIParser::initNames2Regs() {
1987   if (!Names2Regs.empty())
1988     return;
1989   // The '%noreg' register is the register 0.
1990   Names2Regs.insert(std::make_pair("noreg", 0));
1991   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1992   assert(TRI && "Expected target register info");
1993   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1994     bool WasInserted =
1995         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1996             .second;
1997     (void)WasInserted;
1998     assert(WasInserted && "Expected registers to be unique case-insensitively");
1999   }
2000 }
2001 
2002 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2003   initNames2Regs();
2004   auto RegInfo = Names2Regs.find(RegName);
2005   if (RegInfo == Names2Regs.end())
2006     return true;
2007   Reg = RegInfo->getValue();
2008   return false;
2009 }
2010 
2011 void MIParser::initNames2RegMasks() {
2012   if (!Names2RegMasks.empty())
2013     return;
2014   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2015   assert(TRI && "Expected target register info");
2016   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2017   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2018   assert(RegMasks.size() == RegMaskNames.size());
2019   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2020     Names2RegMasks.insert(
2021         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2022 }
2023 
2024 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2025   initNames2RegMasks();
2026   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2027   if (RegMaskInfo == Names2RegMasks.end())
2028     return nullptr;
2029   return RegMaskInfo->getValue();
2030 }
2031 
2032 void MIParser::initNames2SubRegIndices() {
2033   if (!Names2SubRegIndices.empty())
2034     return;
2035   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2036   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2037     Names2SubRegIndices.insert(
2038         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2039 }
2040 
2041 unsigned MIParser::getSubRegIndex(StringRef Name) {
2042   initNames2SubRegIndices();
2043   auto SubRegInfo = Names2SubRegIndices.find(Name);
2044   if (SubRegInfo == Names2SubRegIndices.end())
2045     return 0;
2046   return SubRegInfo->getValue();
2047 }
2048 
2049 static void initSlots2BasicBlocks(
2050     const Function &F,
2051     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2052   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2053   MST.incorporateFunction(F);
2054   for (auto &BB : F) {
2055     if (BB.hasName())
2056       continue;
2057     int Slot = MST.getLocalSlot(&BB);
2058     if (Slot == -1)
2059       continue;
2060     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2061   }
2062 }
2063 
2064 static const BasicBlock *getIRBlockFromSlot(
2065     unsigned Slot,
2066     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2067   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2068   if (BlockInfo == Slots2BasicBlocks.end())
2069     return nullptr;
2070   return BlockInfo->second;
2071 }
2072 
2073 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2074   if (Slots2BasicBlocks.empty())
2075     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2076   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2077 }
2078 
2079 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2080   if (&F == MF.getFunction())
2081     return getIRBlock(Slot);
2082   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2083   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2084   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2085 }
2086 
2087 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2088                            DenseMap<unsigned, const Value *> &Slots2Values) {
2089   int Slot = MST.getLocalSlot(V);
2090   if (Slot == -1)
2091     return;
2092   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2093 }
2094 
2095 /// Creates the mapping from slot numbers to function's unnamed IR values.
2096 static void initSlots2Values(const Function &F,
2097                              DenseMap<unsigned, const Value *> &Slots2Values) {
2098   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2099   MST.incorporateFunction(F);
2100   for (const auto &Arg : F.args())
2101     mapValueToSlot(&Arg, MST, Slots2Values);
2102   for (const auto &BB : F) {
2103     mapValueToSlot(&BB, MST, Slots2Values);
2104     for (const auto &I : BB)
2105       mapValueToSlot(&I, MST, Slots2Values);
2106   }
2107 }
2108 
2109 const Value *MIParser::getIRValue(unsigned Slot) {
2110   if (Slots2Values.empty())
2111     initSlots2Values(*MF.getFunction(), Slots2Values);
2112   auto ValueInfo = Slots2Values.find(Slot);
2113   if (ValueInfo == Slots2Values.end())
2114     return nullptr;
2115   return ValueInfo->second;
2116 }
2117 
2118 void MIParser::initNames2TargetIndices() {
2119   if (!Names2TargetIndices.empty())
2120     return;
2121   const auto *TII = MF.getSubtarget().getInstrInfo();
2122   assert(TII && "Expected target instruction info");
2123   auto Indices = TII->getSerializableTargetIndices();
2124   for (const auto &I : Indices)
2125     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2126 }
2127 
2128 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2129   initNames2TargetIndices();
2130   auto IndexInfo = Names2TargetIndices.find(Name);
2131   if (IndexInfo == Names2TargetIndices.end())
2132     return true;
2133   Index = IndexInfo->second;
2134   return false;
2135 }
2136 
2137 void MIParser::initNames2DirectTargetFlags() {
2138   if (!Names2DirectTargetFlags.empty())
2139     return;
2140   const auto *TII = MF.getSubtarget().getInstrInfo();
2141   assert(TII && "Expected target instruction info");
2142   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2143   for (const auto &I : Flags)
2144     Names2DirectTargetFlags.insert(
2145         std::make_pair(StringRef(I.second), I.first));
2146 }
2147 
2148 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2149   initNames2DirectTargetFlags();
2150   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2151   if (FlagInfo == Names2DirectTargetFlags.end())
2152     return true;
2153   Flag = FlagInfo->second;
2154   return false;
2155 }
2156 
2157 void MIParser::initNames2BitmaskTargetFlags() {
2158   if (!Names2BitmaskTargetFlags.empty())
2159     return;
2160   const auto *TII = MF.getSubtarget().getInstrInfo();
2161   assert(TII && "Expected target instruction info");
2162   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2163   for (const auto &I : Flags)
2164     Names2BitmaskTargetFlags.insert(
2165         std::make_pair(StringRef(I.second), I.first));
2166 }
2167 
2168 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2169   initNames2BitmaskTargetFlags();
2170   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2171   if (FlagInfo == Names2BitmaskTargetFlags.end())
2172     return true;
2173   Flag = FlagInfo->second;
2174   return false;
2175 }
2176 
2177 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2178                                              StringRef Src,
2179                                              SMDiagnostic &Error) {
2180   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2181 }
2182 
2183 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS,
2184                                     StringRef Src, SMDiagnostic &Error) {
2185   return MIParser(PFS, Error, Src).parseBasicBlocks();
2186 }
2187 
2188 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS,
2189                              MachineBasicBlock *&MBB, StringRef Src,
2190                              SMDiagnostic &Error) {
2191   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2192 }
2193 
2194 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
2195                                        unsigned &Reg, StringRef Src,
2196                                        SMDiagnostic &Error) {
2197   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2198 }
2199 
2200 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
2201                                          unsigned &Reg, StringRef Src,
2202                                          SMDiagnostic &Error) {
2203   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg);
2204 }
2205 
2206 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS,
2207                                      int &FI, StringRef Src,
2208                                      SMDiagnostic &Error) {
2209   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2210 }
2211 
2212 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS,
2213                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2214   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2215 }
2216