1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 40 using namespace llvm; 41 42 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 43 SourceMgr &SM, const SlotMapping &IRSlots) 44 : MF(MF), SM(&SM), IRSlots(IRSlots) { 45 } 46 47 namespace { 48 49 /// A wrapper struct around the 'MachineOperand' struct that includes a source 50 /// range and other attributes. 51 struct ParsedMachineOperand { 52 MachineOperand Operand; 53 StringRef::iterator Begin; 54 StringRef::iterator End; 55 Optional<unsigned> TiedDefIdx; 56 57 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 58 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 59 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 60 if (TiedDefIdx) 61 assert(Operand.isReg() && Operand.isUse() && 62 "Only used register operands can be tied"); 63 } 64 }; 65 66 class MIParser { 67 MachineFunction &MF; 68 SMDiagnostic &Error; 69 StringRef Source, CurrentSource; 70 MIToken Token; 71 const PerFunctionMIParsingState &PFS; 72 /// Maps from instruction names to op codes. 73 StringMap<unsigned> Names2InstrOpCodes; 74 /// Maps from register names to registers. 75 StringMap<unsigned> Names2Regs; 76 /// Maps from register mask names to register masks. 77 StringMap<const uint32_t *> Names2RegMasks; 78 /// Maps from subregister names to subregister indices. 79 StringMap<unsigned> Names2SubRegIndices; 80 /// Maps from slot numbers to function's unnamed basic blocks. 81 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 82 /// Maps from slot numbers to function's unnamed values. 83 DenseMap<unsigned, const Value *> Slots2Values; 84 /// Maps from target index names to target indices. 85 StringMap<int> Names2TargetIndices; 86 /// Maps from direct target flag names to the direct target flag values. 87 StringMap<unsigned> Names2DirectTargetFlags; 88 /// Maps from direct target flag names to the bitmask target flag values. 89 StringMap<unsigned> Names2BitmaskTargetFlags; 90 91 public: 92 MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 93 StringRef Source); 94 95 /// \p SkipChar gives the number of characters to skip before looking 96 /// for the next token. 97 void lex(unsigned SkipChar = 0); 98 99 /// Report an error at the current location with the given message. 100 /// 101 /// This function always return true. 102 bool error(const Twine &Msg); 103 104 /// Report an error at the given location with the given message. 105 /// 106 /// This function always return true. 107 bool error(StringRef::iterator Loc, const Twine &Msg); 108 109 bool 110 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 111 bool parseBasicBlocks(); 112 bool parse(MachineInstr *&MI); 113 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 114 bool parseStandaloneNamedRegister(unsigned &Reg); 115 bool parseStandaloneVirtualRegister(unsigned &Reg); 116 bool parseStandaloneStackObject(int &FI); 117 bool parseStandaloneMDNode(MDNode *&Node); 118 119 bool 120 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 121 bool parseBasicBlock(MachineBasicBlock &MBB); 122 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 123 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 124 125 bool parseRegister(unsigned &Reg); 126 bool parseRegisterFlag(unsigned &Flags); 127 bool parseSubRegisterIndex(unsigned &SubReg); 128 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 129 bool parseSize(unsigned &Size); 130 bool parseRegisterOperand(MachineOperand &Dest, 131 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 132 bool parseImmediateOperand(MachineOperand &Dest); 133 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 134 const Constant *&C); 135 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 136 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 137 bool parseTypedImmediateOperand(MachineOperand &Dest); 138 bool parseFPImmediateOperand(MachineOperand &Dest); 139 bool parseMBBReference(MachineBasicBlock *&MBB); 140 bool parseMBBOperand(MachineOperand &Dest); 141 bool parseStackFrameIndex(int &FI); 142 bool parseStackObjectOperand(MachineOperand &Dest); 143 bool parseFixedStackFrameIndex(int &FI); 144 bool parseFixedStackObjectOperand(MachineOperand &Dest); 145 bool parseGlobalValue(GlobalValue *&GV); 146 bool parseGlobalAddressOperand(MachineOperand &Dest); 147 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 148 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 149 bool parseJumpTableIndexOperand(MachineOperand &Dest); 150 bool parseExternalSymbolOperand(MachineOperand &Dest); 151 bool parseMDNode(MDNode *&Node); 152 bool parseMetadataOperand(MachineOperand &Dest); 153 bool parseCFIOffset(int &Offset); 154 bool parseCFIRegister(unsigned &Reg); 155 bool parseCFIOperand(MachineOperand &Dest); 156 bool parseIRBlock(BasicBlock *&BB, const Function &F); 157 bool parseBlockAddressOperand(MachineOperand &Dest); 158 bool parseIntrinsicOperand(MachineOperand &Dest); 159 bool parsePredicateOperand(MachineOperand &Dest); 160 bool parseTargetIndexOperand(MachineOperand &Dest); 161 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 162 bool parseMachineOperand(MachineOperand &Dest, 163 Optional<unsigned> &TiedDefIdx); 164 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 165 Optional<unsigned> &TiedDefIdx); 166 bool parseOffset(int64_t &Offset); 167 bool parseAlignment(unsigned &Alignment); 168 bool parseOperandsOffset(MachineOperand &Op); 169 bool parseIRValue(const Value *&V); 170 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 171 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 172 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 173 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 174 175 private: 176 /// Convert the integer literal in the current token into an unsigned integer. 177 /// 178 /// Return true if an error occurred. 179 bool getUnsigned(unsigned &Result); 180 181 /// Convert the integer literal in the current token into an uint64. 182 /// 183 /// Return true if an error occurred. 184 bool getUint64(uint64_t &Result); 185 186 /// If the current token is of the given kind, consume it and return false. 187 /// Otherwise report an error and return true. 188 bool expectAndConsume(MIToken::TokenKind TokenKind); 189 190 /// If the current token is of the given kind, consume it and return true. 191 /// Otherwise return false. 192 bool consumeIfPresent(MIToken::TokenKind TokenKind); 193 194 void initNames2InstrOpCodes(); 195 196 /// Try to convert an instruction name to an opcode. Return true if the 197 /// instruction name is invalid. 198 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 199 200 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 201 202 bool assignRegisterTies(MachineInstr &MI, 203 ArrayRef<ParsedMachineOperand> Operands); 204 205 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 206 const MCInstrDesc &MCID); 207 208 void initNames2Regs(); 209 210 /// Try to convert a register name to a register number. Return true if the 211 /// register name is invalid. 212 bool getRegisterByName(StringRef RegName, unsigned &Reg); 213 214 void initNames2RegMasks(); 215 216 /// Check if the given identifier is a name of a register mask. 217 /// 218 /// Return null if the identifier isn't a register mask. 219 const uint32_t *getRegMask(StringRef Identifier); 220 221 void initNames2SubRegIndices(); 222 223 /// Check if the given identifier is a name of a subregister index. 224 /// 225 /// Return 0 if the name isn't a subregister index class. 226 unsigned getSubRegIndex(StringRef Name); 227 228 const BasicBlock *getIRBlock(unsigned Slot); 229 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 230 231 const Value *getIRValue(unsigned Slot); 232 233 void initNames2TargetIndices(); 234 235 /// Try to convert a name of target index to the corresponding target index. 236 /// 237 /// Return true if the name isn't a name of a target index. 238 bool getTargetIndex(StringRef Name, int &Index); 239 240 void initNames2DirectTargetFlags(); 241 242 /// Try to convert a name of a direct target flag to the corresponding 243 /// target flag. 244 /// 245 /// Return true if the name isn't a name of a direct flag. 246 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 247 248 void initNames2BitmaskTargetFlags(); 249 250 /// Try to convert a name of a bitmask target flag to the corresponding 251 /// target flag. 252 /// 253 /// Return true if the name isn't a name of a bitmask target flag. 254 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 255 }; 256 257 } // end anonymous namespace 258 259 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 260 StringRef Source) 261 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 262 {} 263 264 void MIParser::lex(unsigned SkipChar) { 265 CurrentSource = lexMIToken( 266 CurrentSource.data() + SkipChar, Token, 267 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 268 } 269 270 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 271 272 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 273 const SourceMgr &SM = *PFS.SM; 274 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 275 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 276 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 277 // Create an ordinary diagnostic when the source manager's buffer is the 278 // source string. 279 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 280 return true; 281 } 282 // Create a diagnostic for a YAML string literal. 283 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 284 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 285 Source, None, None); 286 return true; 287 } 288 289 static const char *toString(MIToken::TokenKind TokenKind) { 290 switch (TokenKind) { 291 case MIToken::comma: 292 return "','"; 293 case MIToken::equal: 294 return "'='"; 295 case MIToken::colon: 296 return "':'"; 297 case MIToken::lparen: 298 return "'('"; 299 case MIToken::rparen: 300 return "')'"; 301 default: 302 return "<unknown token>"; 303 } 304 } 305 306 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 307 if (Token.isNot(TokenKind)) 308 return error(Twine("expected ") + toString(TokenKind)); 309 lex(); 310 return false; 311 } 312 313 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 314 if (Token.isNot(TokenKind)) 315 return false; 316 lex(); 317 return true; 318 } 319 320 bool MIParser::parseBasicBlockDefinition( 321 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 322 assert(Token.is(MIToken::MachineBasicBlockLabel)); 323 unsigned ID = 0; 324 if (getUnsigned(ID)) 325 return true; 326 auto Loc = Token.location(); 327 auto Name = Token.stringValue(); 328 lex(); 329 bool HasAddressTaken = false; 330 bool IsLandingPad = false; 331 unsigned Alignment = 0; 332 BasicBlock *BB = nullptr; 333 if (consumeIfPresent(MIToken::lparen)) { 334 do { 335 // TODO: Report an error when multiple same attributes are specified. 336 switch (Token.kind()) { 337 case MIToken::kw_address_taken: 338 HasAddressTaken = true; 339 lex(); 340 break; 341 case MIToken::kw_landing_pad: 342 IsLandingPad = true; 343 lex(); 344 break; 345 case MIToken::kw_align: 346 if (parseAlignment(Alignment)) 347 return true; 348 break; 349 case MIToken::IRBlock: 350 // TODO: Report an error when both name and ir block are specified. 351 if (parseIRBlock(BB, *MF.getFunction())) 352 return true; 353 lex(); 354 break; 355 default: 356 break; 357 } 358 } while (consumeIfPresent(MIToken::comma)); 359 if (expectAndConsume(MIToken::rparen)) 360 return true; 361 } 362 if (expectAndConsume(MIToken::colon)) 363 return true; 364 365 if (!Name.empty()) { 366 BB = dyn_cast_or_null<BasicBlock>( 367 MF.getFunction()->getValueSymbolTable().lookup(Name)); 368 if (!BB) 369 return error(Loc, Twine("basic block '") + Name + 370 "' is not defined in the function '" + 371 MF.getName() + "'"); 372 } 373 auto *MBB = MF.CreateMachineBasicBlock(BB); 374 MF.insert(MF.end(), MBB); 375 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 376 if (!WasInserted) 377 return error(Loc, Twine("redefinition of machine basic block with id #") + 378 Twine(ID)); 379 if (Alignment) 380 MBB->setAlignment(Alignment); 381 if (HasAddressTaken) 382 MBB->setHasAddressTaken(); 383 MBB->setIsEHPad(IsLandingPad); 384 return false; 385 } 386 387 bool MIParser::parseBasicBlockDefinitions( 388 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 389 lex(); 390 // Skip until the first machine basic block. 391 while (Token.is(MIToken::Newline)) 392 lex(); 393 if (Token.isErrorOrEOF()) 394 return Token.isError(); 395 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 396 return error("expected a basic block definition before instructions"); 397 unsigned BraceDepth = 0; 398 do { 399 if (parseBasicBlockDefinition(MBBSlots)) 400 return true; 401 bool IsAfterNewline = false; 402 // Skip until the next machine basic block. 403 while (true) { 404 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 405 Token.isErrorOrEOF()) 406 break; 407 else if (Token.is(MIToken::MachineBasicBlockLabel)) 408 return error("basic block definition should be located at the start of " 409 "the line"); 410 else if (consumeIfPresent(MIToken::Newline)) { 411 IsAfterNewline = true; 412 continue; 413 } 414 IsAfterNewline = false; 415 if (Token.is(MIToken::lbrace)) 416 ++BraceDepth; 417 if (Token.is(MIToken::rbrace)) { 418 if (!BraceDepth) 419 return error("extraneous closing brace ('}')"); 420 --BraceDepth; 421 } 422 lex(); 423 } 424 // Verify that we closed all of the '{' at the end of a file or a block. 425 if (!Token.isError() && BraceDepth) 426 return error("expected '}'"); // FIXME: Report a note that shows '{'. 427 } while (!Token.isErrorOrEOF()); 428 return Token.isError(); 429 } 430 431 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 432 assert(Token.is(MIToken::kw_liveins)); 433 lex(); 434 if (expectAndConsume(MIToken::colon)) 435 return true; 436 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 437 return false; 438 do { 439 if (Token.isNot(MIToken::NamedRegister)) 440 return error("expected a named register"); 441 unsigned Reg = 0; 442 if (parseRegister(Reg)) 443 return true; 444 MBB.addLiveIn(Reg); 445 lex(); 446 } while (consumeIfPresent(MIToken::comma)); 447 return false; 448 } 449 450 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 451 assert(Token.is(MIToken::kw_successors)); 452 lex(); 453 if (expectAndConsume(MIToken::colon)) 454 return true; 455 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 456 return false; 457 do { 458 if (Token.isNot(MIToken::MachineBasicBlock)) 459 return error("expected a machine basic block reference"); 460 MachineBasicBlock *SuccMBB = nullptr; 461 if (parseMBBReference(SuccMBB)) 462 return true; 463 lex(); 464 unsigned Weight = 0; 465 if (consumeIfPresent(MIToken::lparen)) { 466 if (Token.isNot(MIToken::IntegerLiteral)) 467 return error("expected an integer literal after '('"); 468 if (getUnsigned(Weight)) 469 return true; 470 lex(); 471 if (expectAndConsume(MIToken::rparen)) 472 return true; 473 } 474 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 475 } while (consumeIfPresent(MIToken::comma)); 476 MBB.normalizeSuccProbs(); 477 return false; 478 } 479 480 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 481 // Skip the definition. 482 assert(Token.is(MIToken::MachineBasicBlockLabel)); 483 lex(); 484 if (consumeIfPresent(MIToken::lparen)) { 485 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 486 lex(); 487 consumeIfPresent(MIToken::rparen); 488 } 489 consumeIfPresent(MIToken::colon); 490 491 // Parse the liveins and successors. 492 // N.B: Multiple lists of successors and liveins are allowed and they're 493 // merged into one. 494 // Example: 495 // liveins: %edi 496 // liveins: %esi 497 // 498 // is equivalent to 499 // liveins: %edi, %esi 500 while (true) { 501 if (Token.is(MIToken::kw_successors)) { 502 if (parseBasicBlockSuccessors(MBB)) 503 return true; 504 } else if (Token.is(MIToken::kw_liveins)) { 505 if (parseBasicBlockLiveins(MBB)) 506 return true; 507 } else if (consumeIfPresent(MIToken::Newline)) { 508 continue; 509 } else 510 break; 511 if (!Token.isNewlineOrEOF()) 512 return error("expected line break at the end of a list"); 513 lex(); 514 } 515 516 // Parse the instructions. 517 bool IsInBundle = false; 518 MachineInstr *PrevMI = nullptr; 519 while (true) { 520 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 521 return false; 522 else if (consumeIfPresent(MIToken::Newline)) 523 continue; 524 if (consumeIfPresent(MIToken::rbrace)) { 525 // The first parsing pass should verify that all closing '}' have an 526 // opening '{'. 527 assert(IsInBundle); 528 IsInBundle = false; 529 continue; 530 } 531 MachineInstr *MI = nullptr; 532 if (parse(MI)) 533 return true; 534 MBB.insert(MBB.end(), MI); 535 if (IsInBundle) { 536 PrevMI->setFlag(MachineInstr::BundledSucc); 537 MI->setFlag(MachineInstr::BundledPred); 538 } 539 PrevMI = MI; 540 if (Token.is(MIToken::lbrace)) { 541 if (IsInBundle) 542 return error("nested instruction bundles are not allowed"); 543 lex(); 544 // This instruction is the start of the bundle. 545 MI->setFlag(MachineInstr::BundledSucc); 546 IsInBundle = true; 547 if (!Token.is(MIToken::Newline)) 548 // The next instruction can be on the same line. 549 continue; 550 } 551 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 552 lex(); 553 } 554 return false; 555 } 556 557 bool MIParser::parseBasicBlocks() { 558 lex(); 559 // Skip until the first machine basic block. 560 while (Token.is(MIToken::Newline)) 561 lex(); 562 if (Token.isErrorOrEOF()) 563 return Token.isError(); 564 // The first parsing pass should have verified that this token is a MBB label 565 // in the 'parseBasicBlockDefinitions' method. 566 assert(Token.is(MIToken::MachineBasicBlockLabel)); 567 do { 568 MachineBasicBlock *MBB = nullptr; 569 if (parseMBBReference(MBB)) 570 return true; 571 if (parseBasicBlock(*MBB)) 572 return true; 573 // The method 'parseBasicBlock' should parse the whole block until the next 574 // block or the end of file. 575 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 576 } while (Token.isNot(MIToken::Eof)); 577 return false; 578 } 579 580 bool MIParser::parse(MachineInstr *&MI) { 581 // Parse any register operands before '=' 582 MachineOperand MO = MachineOperand::CreateImm(0); 583 SmallVector<ParsedMachineOperand, 8> Operands; 584 while (Token.isRegister() || Token.isRegisterFlag()) { 585 auto Loc = Token.location(); 586 Optional<unsigned> TiedDefIdx; 587 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 588 return true; 589 Operands.push_back( 590 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 591 if (Token.isNot(MIToken::comma)) 592 break; 593 lex(); 594 } 595 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 596 return true; 597 598 unsigned OpCode, Flags = 0; 599 if (Token.isError() || parseInstruction(OpCode, Flags)) 600 return true; 601 602 // Parse the remaining machine operands. 603 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 604 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 605 auto Loc = Token.location(); 606 Optional<unsigned> TiedDefIdx; 607 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 608 return true; 609 Operands.push_back( 610 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 611 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 612 Token.is(MIToken::lbrace)) 613 break; 614 if (Token.isNot(MIToken::comma)) 615 return error("expected ',' before the next machine operand"); 616 lex(); 617 } 618 619 DebugLoc DebugLocation; 620 if (Token.is(MIToken::kw_debug_location)) { 621 lex(); 622 if (Token.isNot(MIToken::exclaim)) 623 return error("expected a metadata node after 'debug-location'"); 624 MDNode *Node = nullptr; 625 if (parseMDNode(Node)) 626 return true; 627 DebugLocation = DebugLoc(Node); 628 } 629 630 // Parse the machine memory operands. 631 SmallVector<MachineMemOperand *, 2> MemOperands; 632 if (Token.is(MIToken::coloncolon)) { 633 lex(); 634 while (!Token.isNewlineOrEOF()) { 635 MachineMemOperand *MemOp = nullptr; 636 if (parseMachineMemoryOperand(MemOp)) 637 return true; 638 MemOperands.push_back(MemOp); 639 if (Token.isNewlineOrEOF()) 640 break; 641 if (Token.isNot(MIToken::comma)) 642 return error("expected ',' before the next machine memory operand"); 643 lex(); 644 } 645 } 646 647 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 648 if (!MCID.isVariadic()) { 649 // FIXME: Move the implicit operand verification to the machine verifier. 650 if (verifyImplicitOperands(Operands, MCID)) 651 return true; 652 } 653 654 // TODO: Check for extraneous machine operands. 655 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 656 MI->setFlags(Flags); 657 for (const auto &Operand : Operands) 658 MI->addOperand(MF, Operand.Operand); 659 if (assignRegisterTies(*MI, Operands)) 660 return true; 661 if (MemOperands.empty()) 662 return false; 663 MachineInstr::mmo_iterator MemRefs = 664 MF.allocateMemRefsArray(MemOperands.size()); 665 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 666 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 667 return false; 668 } 669 670 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 671 lex(); 672 if (Token.isNot(MIToken::MachineBasicBlock)) 673 return error("expected a machine basic block reference"); 674 if (parseMBBReference(MBB)) 675 return true; 676 lex(); 677 if (Token.isNot(MIToken::Eof)) 678 return error( 679 "expected end of string after the machine basic block reference"); 680 return false; 681 } 682 683 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 684 lex(); 685 if (Token.isNot(MIToken::NamedRegister)) 686 return error("expected a named register"); 687 if (parseRegister(Reg)) 688 return true; 689 lex(); 690 if (Token.isNot(MIToken::Eof)) 691 return error("expected end of string after the register reference"); 692 return false; 693 } 694 695 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) { 696 lex(); 697 if (Token.isNot(MIToken::VirtualRegister)) 698 return error("expected a virtual register"); 699 if (parseRegister(Reg)) 700 return true; 701 lex(); 702 if (Token.isNot(MIToken::Eof)) 703 return error("expected end of string after the register reference"); 704 return false; 705 } 706 707 bool MIParser::parseStandaloneStackObject(int &FI) { 708 lex(); 709 if (Token.isNot(MIToken::StackObject)) 710 return error("expected a stack object"); 711 if (parseStackFrameIndex(FI)) 712 return true; 713 if (Token.isNot(MIToken::Eof)) 714 return error("expected end of string after the stack object reference"); 715 return false; 716 } 717 718 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 719 lex(); 720 if (Token.isNot(MIToken::exclaim)) 721 return error("expected a metadata node"); 722 if (parseMDNode(Node)) 723 return true; 724 if (Token.isNot(MIToken::Eof)) 725 return error("expected end of string after the metadata node"); 726 return false; 727 } 728 729 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 730 assert(MO.isImplicit()); 731 return MO.isDef() ? "implicit-def" : "implicit"; 732 } 733 734 static std::string getRegisterName(const TargetRegisterInfo *TRI, 735 unsigned Reg) { 736 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 737 return StringRef(TRI->getName(Reg)).lower(); 738 } 739 740 /// Return true if the parsed machine operands contain a given machine operand. 741 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 742 ArrayRef<ParsedMachineOperand> Operands) { 743 for (const auto &I : Operands) { 744 if (ImplicitOperand.isIdenticalTo(I.Operand)) 745 return true; 746 } 747 return false; 748 } 749 750 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 751 const MCInstrDesc &MCID) { 752 if (MCID.isCall()) 753 // We can't verify call instructions as they can contain arbitrary implicit 754 // register and register mask operands. 755 return false; 756 757 // Gather all the expected implicit operands. 758 SmallVector<MachineOperand, 4> ImplicitOperands; 759 if (MCID.ImplicitDefs) 760 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 761 ImplicitOperands.push_back( 762 MachineOperand::CreateReg(*ImpDefs, true, true)); 763 if (MCID.ImplicitUses) 764 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 765 ImplicitOperands.push_back( 766 MachineOperand::CreateReg(*ImpUses, false, true)); 767 768 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 769 assert(TRI && "Expected target register info"); 770 for (const auto &I : ImplicitOperands) { 771 if (isImplicitOperandIn(I, Operands)) 772 continue; 773 return error(Operands.empty() ? Token.location() : Operands.back().End, 774 Twine("missing implicit register operand '") + 775 printImplicitRegisterFlag(I) + " %" + 776 getRegisterName(TRI, I.getReg()) + "'"); 777 } 778 return false; 779 } 780 781 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 782 if (Token.is(MIToken::kw_frame_setup)) { 783 Flags |= MachineInstr::FrameSetup; 784 lex(); 785 } 786 if (Token.isNot(MIToken::Identifier)) 787 return error("expected a machine instruction"); 788 StringRef InstrName = Token.stringValue(); 789 if (parseInstrName(InstrName, OpCode)) 790 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 791 lex(); 792 return false; 793 } 794 795 bool MIParser::parseRegister(unsigned &Reg) { 796 switch (Token.kind()) { 797 case MIToken::underscore: 798 Reg = 0; 799 break; 800 case MIToken::NamedRegister: { 801 StringRef Name = Token.stringValue(); 802 if (getRegisterByName(Name, Reg)) 803 return error(Twine("unknown register name '") + Name + "'"); 804 break; 805 } 806 case MIToken::VirtualRegister: { 807 unsigned ID; 808 if (getUnsigned(ID)) 809 return true; 810 const auto RegInfo = PFS.VirtualRegisterSlots.find(ID); 811 if (RegInfo == PFS.VirtualRegisterSlots.end()) 812 return error(Twine("use of undefined virtual register '%") + Twine(ID) + 813 "'"); 814 Reg = RegInfo->second; 815 break; 816 } 817 // TODO: Parse other register kinds. 818 default: 819 llvm_unreachable("The current token should be a register"); 820 } 821 return false; 822 } 823 824 bool MIParser::parseRegisterFlag(unsigned &Flags) { 825 const unsigned OldFlags = Flags; 826 switch (Token.kind()) { 827 case MIToken::kw_implicit: 828 Flags |= RegState::Implicit; 829 break; 830 case MIToken::kw_implicit_define: 831 Flags |= RegState::ImplicitDefine; 832 break; 833 case MIToken::kw_def: 834 Flags |= RegState::Define; 835 break; 836 case MIToken::kw_dead: 837 Flags |= RegState::Dead; 838 break; 839 case MIToken::kw_killed: 840 Flags |= RegState::Kill; 841 break; 842 case MIToken::kw_undef: 843 Flags |= RegState::Undef; 844 break; 845 case MIToken::kw_internal: 846 Flags |= RegState::InternalRead; 847 break; 848 case MIToken::kw_early_clobber: 849 Flags |= RegState::EarlyClobber; 850 break; 851 case MIToken::kw_debug_use: 852 Flags |= RegState::Debug; 853 break; 854 default: 855 llvm_unreachable("The current token should be a register flag"); 856 } 857 if (OldFlags == Flags) 858 // We know that the same flag is specified more than once when the flags 859 // weren't modified. 860 return error("duplicate '" + Token.stringValue() + "' register flag"); 861 lex(); 862 return false; 863 } 864 865 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 866 assert(Token.is(MIToken::dot)); 867 lex(); 868 if (Token.isNot(MIToken::Identifier)) 869 return error("expected a subregister index after '.'"); 870 auto Name = Token.stringValue(); 871 SubReg = getSubRegIndex(Name); 872 if (!SubReg) 873 return error(Twine("use of unknown subregister index '") + Name + "'"); 874 lex(); 875 return false; 876 } 877 878 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 879 if (!consumeIfPresent(MIToken::kw_tied_def)) 880 return true; 881 if (Token.isNot(MIToken::IntegerLiteral)) 882 return error("expected an integer literal after 'tied-def'"); 883 if (getUnsigned(TiedDefIdx)) 884 return true; 885 lex(); 886 if (expectAndConsume(MIToken::rparen)) 887 return true; 888 return false; 889 } 890 891 bool MIParser::parseSize(unsigned &Size) { 892 if (Token.isNot(MIToken::IntegerLiteral)) 893 return error("expected an integer literal for the size"); 894 if (getUnsigned(Size)) 895 return true; 896 lex(); 897 if (expectAndConsume(MIToken::rparen)) 898 return true; 899 return false; 900 } 901 902 bool MIParser::assignRegisterTies(MachineInstr &MI, 903 ArrayRef<ParsedMachineOperand> Operands) { 904 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 905 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 906 if (!Operands[I].TiedDefIdx) 907 continue; 908 // The parser ensures that this operand is a register use, so we just have 909 // to check the tied-def operand. 910 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 911 if (DefIdx >= E) 912 return error(Operands[I].Begin, 913 Twine("use of invalid tied-def operand index '" + 914 Twine(DefIdx) + "'; instruction has only ") + 915 Twine(E) + " operands"); 916 const auto &DefOperand = Operands[DefIdx].Operand; 917 if (!DefOperand.isReg() || !DefOperand.isDef()) 918 // FIXME: add note with the def operand. 919 return error(Operands[I].Begin, 920 Twine("use of invalid tied-def operand index '") + 921 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 922 " isn't a defined register"); 923 // Check that the tied-def operand wasn't tied elsewhere. 924 for (const auto &TiedPair : TiedRegisterPairs) { 925 if (TiedPair.first == DefIdx) 926 return error(Operands[I].Begin, 927 Twine("the tied-def operand #") + Twine(DefIdx) + 928 " is already tied with another register operand"); 929 } 930 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 931 } 932 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 933 // indices must be less than tied max. 934 for (const auto &TiedPair : TiedRegisterPairs) 935 MI.tieOperands(TiedPair.first, TiedPair.second); 936 return false; 937 } 938 939 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 940 Optional<unsigned> &TiedDefIdx, 941 bool IsDef) { 942 unsigned Reg; 943 unsigned Flags = IsDef ? RegState::Define : 0; 944 while (Token.isRegisterFlag()) { 945 if (parseRegisterFlag(Flags)) 946 return true; 947 } 948 if (!Token.isRegister()) 949 return error("expected a register after register flags"); 950 if (parseRegister(Reg)) 951 return true; 952 lex(); 953 unsigned SubReg = 0; 954 if (Token.is(MIToken::dot)) { 955 if (parseSubRegisterIndex(SubReg)) 956 return true; 957 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 958 return error("subregister index expects a virtual register"); 959 } 960 MachineRegisterInfo &MRI = MF.getRegInfo(); 961 if ((Flags & RegState::Define) == 0) { 962 if (consumeIfPresent(MIToken::lparen)) { 963 unsigned Idx; 964 if (!parseRegisterTiedDefIndex(Idx)) 965 TiedDefIdx = Idx; 966 else { 967 // Try a redundant low-level type. 968 LLT Ty; 969 if (parseLowLevelType(Token.location(), Ty)) 970 return error("expected tied-def or low-level type after '('"); 971 972 if (expectAndConsume(MIToken::rparen)) 973 return true; 974 975 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 976 return error("inconsistent type for generic virtual register"); 977 978 MRI.setType(Reg, Ty); 979 } 980 } 981 } else if (consumeIfPresent(MIToken::lparen)) { 982 // Virtual registers may have a size with GlobalISel. 983 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 984 return error("unexpected size on physical register"); 985 if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>()) 986 return error("unexpected size on non-generic virtual register"); 987 988 LLT Ty; 989 if (parseLowLevelType(Token.location(), Ty)) 990 return true; 991 992 if (expectAndConsume(MIToken::rparen)) 993 return true; 994 995 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 996 return error("inconsistent type for generic virtual register"); 997 998 MRI.setType(Reg, Ty); 999 } else if (PFS.GenericVRegs.count(Reg)) { 1000 // Generic virtual registers must have a size. 1001 // If we end up here this means the size hasn't been specified and 1002 // this is bad! 1003 return error("generic virtual registers must have a size"); 1004 } 1005 Dest = MachineOperand::CreateReg( 1006 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1007 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1008 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1009 Flags & RegState::InternalRead); 1010 return false; 1011 } 1012 1013 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1014 assert(Token.is(MIToken::IntegerLiteral)); 1015 const APSInt &Int = Token.integerValue(); 1016 if (Int.getMinSignedBits() > 64) 1017 return error("integer literal is too large to be an immediate operand"); 1018 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1019 lex(); 1020 return false; 1021 } 1022 1023 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1024 const Constant *&C) { 1025 auto Source = StringValue.str(); // The source has to be null terminated. 1026 SMDiagnostic Err; 1027 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(), 1028 &PFS.IRSlots); 1029 if (!C) 1030 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1031 return false; 1032 } 1033 1034 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1035 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1036 return true; 1037 lex(); 1038 return false; 1039 } 1040 1041 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1042 if (Token.is(MIToken::Identifier) && Token.stringValue() == "unsized") { 1043 lex(); 1044 Ty = LLT::unsized(); 1045 return false; 1046 } else if (Token.is(MIToken::ScalarType)) { 1047 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1048 lex(); 1049 return false; 1050 } else if (Token.is(MIToken::PointerType)) { 1051 Ty = LLT::pointer(APSInt(Token.range().drop_front()).getZExtValue()); 1052 lex(); 1053 return false; 1054 } 1055 1056 // Now we're looking for a vector. 1057 if (Token.isNot(MIToken::less)) 1058 return error(Loc, 1059 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1060 1061 lex(); 1062 1063 if (Token.isNot(MIToken::IntegerLiteral)) 1064 return error(Loc, "expected <N x sM> for vctor type"); 1065 uint64_t NumElements = Token.integerValue().getZExtValue(); 1066 lex(); 1067 1068 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1069 return error(Loc, "expected '<N x sM>' for vector type"); 1070 lex(); 1071 1072 if (Token.isNot(MIToken::ScalarType)) 1073 return error(Loc, "expected '<N x sM>' for vector type"); 1074 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1075 lex(); 1076 1077 if (Token.isNot(MIToken::greater)) 1078 return error(Loc, "expected '<N x sM>' for vector type"); 1079 lex(); 1080 1081 Ty = LLT::vector(NumElements, ScalarSize); 1082 return false; 1083 } 1084 1085 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1086 assert(Token.is(MIToken::IntegerType)); 1087 auto Loc = Token.location(); 1088 lex(); 1089 if (Token.isNot(MIToken::IntegerLiteral)) 1090 return error("expected an integer literal"); 1091 const Constant *C = nullptr; 1092 if (parseIRConstant(Loc, C)) 1093 return true; 1094 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1095 return false; 1096 } 1097 1098 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1099 auto Loc = Token.location(); 1100 lex(); 1101 if (Token.isNot(MIToken::FloatingPointLiteral)) 1102 return error("expected a floating point literal"); 1103 const Constant *C = nullptr; 1104 if (parseIRConstant(Loc, C)) 1105 return true; 1106 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1107 return false; 1108 } 1109 1110 bool MIParser::getUnsigned(unsigned &Result) { 1111 assert(Token.hasIntegerValue() && "Expected a token with an integer value"); 1112 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1113 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1114 if (Val64 == Limit) 1115 return error("expected 32-bit integer (too large)"); 1116 Result = Val64; 1117 return false; 1118 } 1119 1120 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1121 assert(Token.is(MIToken::MachineBasicBlock) || 1122 Token.is(MIToken::MachineBasicBlockLabel)); 1123 unsigned Number; 1124 if (getUnsigned(Number)) 1125 return true; 1126 auto MBBInfo = PFS.MBBSlots.find(Number); 1127 if (MBBInfo == PFS.MBBSlots.end()) 1128 return error(Twine("use of undefined machine basic block #") + 1129 Twine(Number)); 1130 MBB = MBBInfo->second; 1131 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1132 return error(Twine("the name of machine basic block #") + Twine(Number) + 1133 " isn't '" + Token.stringValue() + "'"); 1134 return false; 1135 } 1136 1137 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1138 MachineBasicBlock *MBB; 1139 if (parseMBBReference(MBB)) 1140 return true; 1141 Dest = MachineOperand::CreateMBB(MBB); 1142 lex(); 1143 return false; 1144 } 1145 1146 bool MIParser::parseStackFrameIndex(int &FI) { 1147 assert(Token.is(MIToken::StackObject)); 1148 unsigned ID; 1149 if (getUnsigned(ID)) 1150 return true; 1151 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1152 if (ObjectInfo == PFS.StackObjectSlots.end()) 1153 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1154 "'"); 1155 StringRef Name; 1156 if (const auto *Alloca = 1157 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1158 Name = Alloca->getName(); 1159 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1160 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1161 "' isn't '" + Token.stringValue() + "'"); 1162 lex(); 1163 FI = ObjectInfo->second; 1164 return false; 1165 } 1166 1167 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1168 int FI; 1169 if (parseStackFrameIndex(FI)) 1170 return true; 1171 Dest = MachineOperand::CreateFI(FI); 1172 return false; 1173 } 1174 1175 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1176 assert(Token.is(MIToken::FixedStackObject)); 1177 unsigned ID; 1178 if (getUnsigned(ID)) 1179 return true; 1180 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1181 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1182 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1183 Twine(ID) + "'"); 1184 lex(); 1185 FI = ObjectInfo->second; 1186 return false; 1187 } 1188 1189 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1190 int FI; 1191 if (parseFixedStackFrameIndex(FI)) 1192 return true; 1193 Dest = MachineOperand::CreateFI(FI); 1194 return false; 1195 } 1196 1197 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1198 switch (Token.kind()) { 1199 case MIToken::NamedGlobalValue: { 1200 const Module *M = MF.getFunction()->getParent(); 1201 GV = M->getNamedValue(Token.stringValue()); 1202 if (!GV) 1203 return error(Twine("use of undefined global value '") + Token.range() + 1204 "'"); 1205 break; 1206 } 1207 case MIToken::GlobalValue: { 1208 unsigned GVIdx; 1209 if (getUnsigned(GVIdx)) 1210 return true; 1211 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1212 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1213 "'"); 1214 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1215 break; 1216 } 1217 default: 1218 llvm_unreachable("The current token should be a global value"); 1219 } 1220 return false; 1221 } 1222 1223 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1224 GlobalValue *GV = nullptr; 1225 if (parseGlobalValue(GV)) 1226 return true; 1227 lex(); 1228 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1229 if (parseOperandsOffset(Dest)) 1230 return true; 1231 return false; 1232 } 1233 1234 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1235 assert(Token.is(MIToken::ConstantPoolItem)); 1236 unsigned ID; 1237 if (getUnsigned(ID)) 1238 return true; 1239 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1240 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1241 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1242 lex(); 1243 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1244 if (parseOperandsOffset(Dest)) 1245 return true; 1246 return false; 1247 } 1248 1249 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1250 assert(Token.is(MIToken::JumpTableIndex)); 1251 unsigned ID; 1252 if (getUnsigned(ID)) 1253 return true; 1254 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1255 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1256 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1257 lex(); 1258 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1259 return false; 1260 } 1261 1262 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1263 assert(Token.is(MIToken::ExternalSymbol)); 1264 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1265 lex(); 1266 Dest = MachineOperand::CreateES(Symbol); 1267 if (parseOperandsOffset(Dest)) 1268 return true; 1269 return false; 1270 } 1271 1272 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1273 assert(Token.is(MIToken::SubRegisterIndex)); 1274 StringRef Name = Token.stringValue(); 1275 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1276 if (SubRegIndex == 0) 1277 return error(Twine("unknown subregister index '") + Name + "'"); 1278 lex(); 1279 Dest = MachineOperand::CreateImm(SubRegIndex); 1280 return false; 1281 } 1282 1283 bool MIParser::parseMDNode(MDNode *&Node) { 1284 assert(Token.is(MIToken::exclaim)); 1285 auto Loc = Token.location(); 1286 lex(); 1287 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1288 return error("expected metadata id after '!'"); 1289 unsigned ID; 1290 if (getUnsigned(ID)) 1291 return true; 1292 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1293 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1294 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1295 lex(); 1296 Node = NodeInfo->second.get(); 1297 return false; 1298 } 1299 1300 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1301 MDNode *Node = nullptr; 1302 if (parseMDNode(Node)) 1303 return true; 1304 Dest = MachineOperand::CreateMetadata(Node); 1305 return false; 1306 } 1307 1308 bool MIParser::parseCFIOffset(int &Offset) { 1309 if (Token.isNot(MIToken::IntegerLiteral)) 1310 return error("expected a cfi offset"); 1311 if (Token.integerValue().getMinSignedBits() > 32) 1312 return error("expected a 32 bit integer (the cfi offset is too large)"); 1313 Offset = (int)Token.integerValue().getExtValue(); 1314 lex(); 1315 return false; 1316 } 1317 1318 bool MIParser::parseCFIRegister(unsigned &Reg) { 1319 if (Token.isNot(MIToken::NamedRegister)) 1320 return error("expected a cfi register"); 1321 unsigned LLVMReg; 1322 if (parseRegister(LLVMReg)) 1323 return true; 1324 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1325 assert(TRI && "Expected target register info"); 1326 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1327 if (DwarfReg < 0) 1328 return error("invalid DWARF register"); 1329 Reg = (unsigned)DwarfReg; 1330 lex(); 1331 return false; 1332 } 1333 1334 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1335 auto Kind = Token.kind(); 1336 lex(); 1337 auto &MMI = MF.getMMI(); 1338 int Offset; 1339 unsigned Reg; 1340 unsigned CFIIndex; 1341 switch (Kind) { 1342 case MIToken::kw_cfi_same_value: 1343 if (parseCFIRegister(Reg)) 1344 return true; 1345 CFIIndex = 1346 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1347 break; 1348 case MIToken::kw_cfi_offset: 1349 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1350 parseCFIOffset(Offset)) 1351 return true; 1352 CFIIndex = 1353 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1354 break; 1355 case MIToken::kw_cfi_def_cfa_register: 1356 if (parseCFIRegister(Reg)) 1357 return true; 1358 CFIIndex = 1359 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1360 break; 1361 case MIToken::kw_cfi_def_cfa_offset: 1362 if (parseCFIOffset(Offset)) 1363 return true; 1364 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1365 CFIIndex = MMI.addFrameInst( 1366 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1367 break; 1368 case MIToken::kw_cfi_def_cfa: 1369 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1370 parseCFIOffset(Offset)) 1371 return true; 1372 // NB: MCCFIInstruction::createDefCfa negates the offset. 1373 CFIIndex = 1374 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1375 break; 1376 default: 1377 // TODO: Parse the other CFI operands. 1378 llvm_unreachable("The current token should be a cfi operand"); 1379 } 1380 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1381 return false; 1382 } 1383 1384 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1385 switch (Token.kind()) { 1386 case MIToken::NamedIRBlock: { 1387 BB = dyn_cast_or_null<BasicBlock>( 1388 F.getValueSymbolTable().lookup(Token.stringValue())); 1389 if (!BB) 1390 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1391 break; 1392 } 1393 case MIToken::IRBlock: { 1394 unsigned SlotNumber = 0; 1395 if (getUnsigned(SlotNumber)) 1396 return true; 1397 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1398 if (!BB) 1399 return error(Twine("use of undefined IR block '%ir-block.") + 1400 Twine(SlotNumber) + "'"); 1401 break; 1402 } 1403 default: 1404 llvm_unreachable("The current token should be an IR block reference"); 1405 } 1406 return false; 1407 } 1408 1409 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1410 assert(Token.is(MIToken::kw_blockaddress)); 1411 lex(); 1412 if (expectAndConsume(MIToken::lparen)) 1413 return true; 1414 if (Token.isNot(MIToken::GlobalValue) && 1415 Token.isNot(MIToken::NamedGlobalValue)) 1416 return error("expected a global value"); 1417 GlobalValue *GV = nullptr; 1418 if (parseGlobalValue(GV)) 1419 return true; 1420 auto *F = dyn_cast<Function>(GV); 1421 if (!F) 1422 return error("expected an IR function reference"); 1423 lex(); 1424 if (expectAndConsume(MIToken::comma)) 1425 return true; 1426 BasicBlock *BB = nullptr; 1427 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1428 return error("expected an IR block reference"); 1429 if (parseIRBlock(BB, *F)) 1430 return true; 1431 lex(); 1432 if (expectAndConsume(MIToken::rparen)) 1433 return true; 1434 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1435 if (parseOperandsOffset(Dest)) 1436 return true; 1437 return false; 1438 } 1439 1440 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1441 assert(Token.is(MIToken::kw_intrinsic)); 1442 lex(); 1443 if (expectAndConsume(MIToken::lparen)) 1444 return error("expected syntax intrinsic(@llvm.whatever)"); 1445 1446 if (Token.isNot(MIToken::NamedGlobalValue)) 1447 return error("expected syntax intrinsic(@llvm.whatever)"); 1448 1449 std::string Name = Token.stringValue(); 1450 lex(); 1451 1452 if (expectAndConsume(MIToken::rparen)) 1453 return error("expected ')' to terminate intrinsic name"); 1454 1455 // Find out what intrinsic we're dealing with, first try the global namespace 1456 // and then the target's private intrinsics if that fails. 1457 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1458 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1459 if (ID == Intrinsic::not_intrinsic && TII) 1460 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1461 1462 if (ID == Intrinsic::not_intrinsic) 1463 return error("unknown intrinsic name"); 1464 Dest = MachineOperand::CreateIntrinsicID(ID); 1465 1466 return false; 1467 } 1468 1469 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1470 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1471 bool IsFloat = Token.is(MIToken::kw_floatpred); 1472 lex(); 1473 1474 if (expectAndConsume(MIToken::lparen)) 1475 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1476 1477 if (Token.isNot(MIToken::Identifier)) 1478 return error("whatever"); 1479 1480 CmpInst::Predicate Pred; 1481 if (IsFloat) { 1482 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1483 .Case("false", CmpInst::FCMP_FALSE) 1484 .Case("oeq", CmpInst::FCMP_OEQ) 1485 .Case("ogt", CmpInst::FCMP_OGT) 1486 .Case("oge", CmpInst::FCMP_OGE) 1487 .Case("olt", CmpInst::FCMP_OLT) 1488 .Case("ole", CmpInst::FCMP_OLE) 1489 .Case("one", CmpInst::FCMP_ONE) 1490 .Case("ord", CmpInst::FCMP_ORD) 1491 .Case("uno", CmpInst::FCMP_UNO) 1492 .Case("ueq", CmpInst::FCMP_UEQ) 1493 .Case("ugt", CmpInst::FCMP_UGT) 1494 .Case("uge", CmpInst::FCMP_UGE) 1495 .Case("ult", CmpInst::FCMP_ULT) 1496 .Case("ule", CmpInst::FCMP_ULE) 1497 .Case("une", CmpInst::FCMP_UNE) 1498 .Case("true", CmpInst::FCMP_TRUE) 1499 .Default(CmpInst::BAD_FCMP_PREDICATE); 1500 if (!CmpInst::isFPPredicate(Pred)) 1501 return error("invalid floating-point predicate"); 1502 } else { 1503 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1504 .Case("eq", CmpInst::ICMP_EQ) 1505 .Case("ne", CmpInst::ICMP_NE) 1506 .Case("sgt", CmpInst::ICMP_SGT) 1507 .Case("sge", CmpInst::ICMP_SGE) 1508 .Case("slt", CmpInst::ICMP_SLT) 1509 .Case("sle", CmpInst::ICMP_SLE) 1510 .Case("ugt", CmpInst::ICMP_UGT) 1511 .Case("uge", CmpInst::ICMP_UGE) 1512 .Case("ult", CmpInst::ICMP_ULT) 1513 .Case("ule", CmpInst::ICMP_ULE) 1514 .Default(CmpInst::BAD_ICMP_PREDICATE); 1515 if (!CmpInst::isIntPredicate(Pred)) 1516 return error("invalid integer predicate"); 1517 } 1518 1519 lex(); 1520 Dest = MachineOperand::CreatePredicate(Pred); 1521 if (expectAndConsume(MIToken::rparen)) 1522 return error("predicate should be terminated by ')'."); 1523 1524 return false; 1525 } 1526 1527 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1528 assert(Token.is(MIToken::kw_target_index)); 1529 lex(); 1530 if (expectAndConsume(MIToken::lparen)) 1531 return true; 1532 if (Token.isNot(MIToken::Identifier)) 1533 return error("expected the name of the target index"); 1534 int Index = 0; 1535 if (getTargetIndex(Token.stringValue(), Index)) 1536 return error("use of undefined target index '" + Token.stringValue() + "'"); 1537 lex(); 1538 if (expectAndConsume(MIToken::rparen)) 1539 return true; 1540 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1541 if (parseOperandsOffset(Dest)) 1542 return true; 1543 return false; 1544 } 1545 1546 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1547 assert(Token.is(MIToken::kw_liveout)); 1548 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1549 assert(TRI && "Expected target register info"); 1550 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1551 lex(); 1552 if (expectAndConsume(MIToken::lparen)) 1553 return true; 1554 while (true) { 1555 if (Token.isNot(MIToken::NamedRegister)) 1556 return error("expected a named register"); 1557 unsigned Reg = 0; 1558 if (parseRegister(Reg)) 1559 return true; 1560 lex(); 1561 Mask[Reg / 32] |= 1U << (Reg % 32); 1562 // TODO: Report an error if the same register is used more than once. 1563 if (Token.isNot(MIToken::comma)) 1564 break; 1565 lex(); 1566 } 1567 if (expectAndConsume(MIToken::rparen)) 1568 return true; 1569 Dest = MachineOperand::CreateRegLiveOut(Mask); 1570 return false; 1571 } 1572 1573 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1574 Optional<unsigned> &TiedDefIdx) { 1575 switch (Token.kind()) { 1576 case MIToken::kw_implicit: 1577 case MIToken::kw_implicit_define: 1578 case MIToken::kw_def: 1579 case MIToken::kw_dead: 1580 case MIToken::kw_killed: 1581 case MIToken::kw_undef: 1582 case MIToken::kw_internal: 1583 case MIToken::kw_early_clobber: 1584 case MIToken::kw_debug_use: 1585 case MIToken::underscore: 1586 case MIToken::NamedRegister: 1587 case MIToken::VirtualRegister: 1588 return parseRegisterOperand(Dest, TiedDefIdx); 1589 case MIToken::IntegerLiteral: 1590 return parseImmediateOperand(Dest); 1591 case MIToken::IntegerType: 1592 return parseTypedImmediateOperand(Dest); 1593 case MIToken::kw_half: 1594 case MIToken::kw_float: 1595 case MIToken::kw_double: 1596 case MIToken::kw_x86_fp80: 1597 case MIToken::kw_fp128: 1598 case MIToken::kw_ppc_fp128: 1599 return parseFPImmediateOperand(Dest); 1600 case MIToken::MachineBasicBlock: 1601 return parseMBBOperand(Dest); 1602 case MIToken::StackObject: 1603 return parseStackObjectOperand(Dest); 1604 case MIToken::FixedStackObject: 1605 return parseFixedStackObjectOperand(Dest); 1606 case MIToken::GlobalValue: 1607 case MIToken::NamedGlobalValue: 1608 return parseGlobalAddressOperand(Dest); 1609 case MIToken::ConstantPoolItem: 1610 return parseConstantPoolIndexOperand(Dest); 1611 case MIToken::JumpTableIndex: 1612 return parseJumpTableIndexOperand(Dest); 1613 case MIToken::ExternalSymbol: 1614 return parseExternalSymbolOperand(Dest); 1615 case MIToken::SubRegisterIndex: 1616 return parseSubRegisterIndexOperand(Dest); 1617 case MIToken::exclaim: 1618 return parseMetadataOperand(Dest); 1619 case MIToken::kw_cfi_same_value: 1620 case MIToken::kw_cfi_offset: 1621 case MIToken::kw_cfi_def_cfa_register: 1622 case MIToken::kw_cfi_def_cfa_offset: 1623 case MIToken::kw_cfi_def_cfa: 1624 return parseCFIOperand(Dest); 1625 case MIToken::kw_blockaddress: 1626 return parseBlockAddressOperand(Dest); 1627 case MIToken::kw_intrinsic: 1628 return parseIntrinsicOperand(Dest); 1629 case MIToken::kw_target_index: 1630 return parseTargetIndexOperand(Dest); 1631 case MIToken::kw_liveout: 1632 return parseLiveoutRegisterMaskOperand(Dest); 1633 case MIToken::kw_floatpred: 1634 case MIToken::kw_intpred: 1635 return parsePredicateOperand(Dest); 1636 case MIToken::Error: 1637 return true; 1638 case MIToken::Identifier: 1639 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1640 Dest = MachineOperand::CreateRegMask(RegMask); 1641 lex(); 1642 break; 1643 } 1644 LLVM_FALLTHROUGH; 1645 default: 1646 // FIXME: Parse the MCSymbol machine operand. 1647 return error("expected a machine operand"); 1648 } 1649 return false; 1650 } 1651 1652 bool MIParser::parseMachineOperandAndTargetFlags( 1653 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1654 unsigned TF = 0; 1655 bool HasTargetFlags = false; 1656 if (Token.is(MIToken::kw_target_flags)) { 1657 HasTargetFlags = true; 1658 lex(); 1659 if (expectAndConsume(MIToken::lparen)) 1660 return true; 1661 if (Token.isNot(MIToken::Identifier)) 1662 return error("expected the name of the target flag"); 1663 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1664 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1665 return error("use of undefined target flag '" + Token.stringValue() + 1666 "'"); 1667 } 1668 lex(); 1669 while (Token.is(MIToken::comma)) { 1670 lex(); 1671 if (Token.isNot(MIToken::Identifier)) 1672 return error("expected the name of the target flag"); 1673 unsigned BitFlag = 0; 1674 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1675 return error("use of undefined target flag '" + Token.stringValue() + 1676 "'"); 1677 // TODO: Report an error when using a duplicate bit target flag. 1678 TF |= BitFlag; 1679 lex(); 1680 } 1681 if (expectAndConsume(MIToken::rparen)) 1682 return true; 1683 } 1684 auto Loc = Token.location(); 1685 if (parseMachineOperand(Dest, TiedDefIdx)) 1686 return true; 1687 if (!HasTargetFlags) 1688 return false; 1689 if (Dest.isReg()) 1690 return error(Loc, "register operands can't have target flags"); 1691 Dest.setTargetFlags(TF); 1692 return false; 1693 } 1694 1695 bool MIParser::parseOffset(int64_t &Offset) { 1696 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1697 return false; 1698 StringRef Sign = Token.range(); 1699 bool IsNegative = Token.is(MIToken::minus); 1700 lex(); 1701 if (Token.isNot(MIToken::IntegerLiteral)) 1702 return error("expected an integer literal after '" + Sign + "'"); 1703 if (Token.integerValue().getMinSignedBits() > 64) 1704 return error("expected 64-bit integer (too large)"); 1705 Offset = Token.integerValue().getExtValue(); 1706 if (IsNegative) 1707 Offset = -Offset; 1708 lex(); 1709 return false; 1710 } 1711 1712 bool MIParser::parseAlignment(unsigned &Alignment) { 1713 assert(Token.is(MIToken::kw_align)); 1714 lex(); 1715 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1716 return error("expected an integer literal after 'align'"); 1717 if (getUnsigned(Alignment)) 1718 return true; 1719 lex(); 1720 return false; 1721 } 1722 1723 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1724 int64_t Offset = 0; 1725 if (parseOffset(Offset)) 1726 return true; 1727 Op.setOffset(Offset); 1728 return false; 1729 } 1730 1731 bool MIParser::parseIRValue(const Value *&V) { 1732 switch (Token.kind()) { 1733 case MIToken::NamedIRValue: { 1734 V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue()); 1735 break; 1736 } 1737 case MIToken::IRValue: { 1738 unsigned SlotNumber = 0; 1739 if (getUnsigned(SlotNumber)) 1740 return true; 1741 V = getIRValue(SlotNumber); 1742 break; 1743 } 1744 case MIToken::NamedGlobalValue: 1745 case MIToken::GlobalValue: { 1746 GlobalValue *GV = nullptr; 1747 if (parseGlobalValue(GV)) 1748 return true; 1749 V = GV; 1750 break; 1751 } 1752 case MIToken::QuotedIRValue: { 1753 const Constant *C = nullptr; 1754 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1755 return true; 1756 V = C; 1757 break; 1758 } 1759 default: 1760 llvm_unreachable("The current token should be an IR block reference"); 1761 } 1762 if (!V) 1763 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1764 return false; 1765 } 1766 1767 bool MIParser::getUint64(uint64_t &Result) { 1768 assert(Token.hasIntegerValue()); 1769 if (Token.integerValue().getActiveBits() > 64) 1770 return error("expected 64-bit integer (too large)"); 1771 Result = Token.integerValue().getZExtValue(); 1772 return false; 1773 } 1774 1775 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1776 const auto OldFlags = Flags; 1777 switch (Token.kind()) { 1778 case MIToken::kw_volatile: 1779 Flags |= MachineMemOperand::MOVolatile; 1780 break; 1781 case MIToken::kw_non_temporal: 1782 Flags |= MachineMemOperand::MONonTemporal; 1783 break; 1784 case MIToken::kw_dereferenceable: 1785 Flags |= MachineMemOperand::MODereferenceable; 1786 break; 1787 case MIToken::kw_invariant: 1788 Flags |= MachineMemOperand::MOInvariant; 1789 break; 1790 // TODO: parse the target specific memory operand flags. 1791 default: 1792 llvm_unreachable("The current token should be a memory operand flag"); 1793 } 1794 if (OldFlags == Flags) 1795 // We know that the same flag is specified more than once when the flags 1796 // weren't modified. 1797 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1798 lex(); 1799 return false; 1800 } 1801 1802 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1803 switch (Token.kind()) { 1804 case MIToken::kw_stack: 1805 PSV = MF.getPSVManager().getStack(); 1806 break; 1807 case MIToken::kw_got: 1808 PSV = MF.getPSVManager().getGOT(); 1809 break; 1810 case MIToken::kw_jump_table: 1811 PSV = MF.getPSVManager().getJumpTable(); 1812 break; 1813 case MIToken::kw_constant_pool: 1814 PSV = MF.getPSVManager().getConstantPool(); 1815 break; 1816 case MIToken::FixedStackObject: { 1817 int FI; 1818 if (parseFixedStackFrameIndex(FI)) 1819 return true; 1820 PSV = MF.getPSVManager().getFixedStack(FI); 1821 // The token was already consumed, so use return here instead of break. 1822 return false; 1823 } 1824 case MIToken::StackObject: { 1825 int FI; 1826 if (parseStackFrameIndex(FI)) 1827 return true; 1828 PSV = MF.getPSVManager().getFixedStack(FI); 1829 // The token was already consumed, so use return here instead of break. 1830 return false; 1831 } 1832 case MIToken::kw_call_entry: { 1833 lex(); 1834 switch (Token.kind()) { 1835 case MIToken::GlobalValue: 1836 case MIToken::NamedGlobalValue: { 1837 GlobalValue *GV = nullptr; 1838 if (parseGlobalValue(GV)) 1839 return true; 1840 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1841 break; 1842 } 1843 case MIToken::ExternalSymbol: 1844 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1845 MF.createExternalSymbolName(Token.stringValue())); 1846 break; 1847 default: 1848 return error( 1849 "expected a global value or an external symbol after 'call-entry'"); 1850 } 1851 break; 1852 } 1853 default: 1854 llvm_unreachable("The current token should be pseudo source value"); 1855 } 1856 lex(); 1857 return false; 1858 } 1859 1860 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1861 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1862 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1863 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1864 Token.is(MIToken::kw_call_entry)) { 1865 const PseudoSourceValue *PSV = nullptr; 1866 if (parseMemoryPseudoSourceValue(PSV)) 1867 return true; 1868 int64_t Offset = 0; 1869 if (parseOffset(Offset)) 1870 return true; 1871 Dest = MachinePointerInfo(PSV, Offset); 1872 return false; 1873 } 1874 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1875 Token.isNot(MIToken::GlobalValue) && 1876 Token.isNot(MIToken::NamedGlobalValue) && 1877 Token.isNot(MIToken::QuotedIRValue)) 1878 return error("expected an IR value reference"); 1879 const Value *V = nullptr; 1880 if (parseIRValue(V)) 1881 return true; 1882 if (!V->getType()->isPointerTy()) 1883 return error("expected a pointer IR value"); 1884 lex(); 1885 int64_t Offset = 0; 1886 if (parseOffset(Offset)) 1887 return true; 1888 Dest = MachinePointerInfo(V, Offset); 1889 return false; 1890 } 1891 1892 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1893 if (expectAndConsume(MIToken::lparen)) 1894 return true; 1895 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 1896 while (Token.isMemoryOperandFlag()) { 1897 if (parseMemoryOperandFlag(Flags)) 1898 return true; 1899 } 1900 if (Token.isNot(MIToken::Identifier) || 1901 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1902 return error("expected 'load' or 'store' memory operation"); 1903 if (Token.stringValue() == "load") 1904 Flags |= MachineMemOperand::MOLoad; 1905 else 1906 Flags |= MachineMemOperand::MOStore; 1907 lex(); 1908 1909 if (Token.isNot(MIToken::IntegerLiteral)) 1910 return error("expected the size integer literal after memory operation"); 1911 uint64_t Size; 1912 if (getUint64(Size)) 1913 return true; 1914 lex(); 1915 1916 MachinePointerInfo Ptr = MachinePointerInfo(); 1917 if (Token.is(MIToken::Identifier)) { 1918 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1919 if (Token.stringValue() != Word) 1920 return error(Twine("expected '") + Word + "'"); 1921 lex(); 1922 1923 if (parseMachinePointerInfo(Ptr)) 1924 return true; 1925 } 1926 unsigned BaseAlignment = Size; 1927 AAMDNodes AAInfo; 1928 MDNode *Range = nullptr; 1929 while (consumeIfPresent(MIToken::comma)) { 1930 switch (Token.kind()) { 1931 case MIToken::kw_align: 1932 if (parseAlignment(BaseAlignment)) 1933 return true; 1934 break; 1935 case MIToken::md_tbaa: 1936 lex(); 1937 if (parseMDNode(AAInfo.TBAA)) 1938 return true; 1939 break; 1940 case MIToken::md_alias_scope: 1941 lex(); 1942 if (parseMDNode(AAInfo.Scope)) 1943 return true; 1944 break; 1945 case MIToken::md_noalias: 1946 lex(); 1947 if (parseMDNode(AAInfo.NoAlias)) 1948 return true; 1949 break; 1950 case MIToken::md_range: 1951 lex(); 1952 if (parseMDNode(Range)) 1953 return true; 1954 break; 1955 // TODO: Report an error on duplicate metadata nodes. 1956 default: 1957 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 1958 "'!noalias' or '!range'"); 1959 } 1960 } 1961 if (expectAndConsume(MIToken::rparen)) 1962 return true; 1963 Dest = 1964 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 1965 return false; 1966 } 1967 1968 void MIParser::initNames2InstrOpCodes() { 1969 if (!Names2InstrOpCodes.empty()) 1970 return; 1971 const auto *TII = MF.getSubtarget().getInstrInfo(); 1972 assert(TII && "Expected target instruction info"); 1973 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 1974 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 1975 } 1976 1977 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 1978 initNames2InstrOpCodes(); 1979 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 1980 if (InstrInfo == Names2InstrOpCodes.end()) 1981 return true; 1982 OpCode = InstrInfo->getValue(); 1983 return false; 1984 } 1985 1986 void MIParser::initNames2Regs() { 1987 if (!Names2Regs.empty()) 1988 return; 1989 // The '%noreg' register is the register 0. 1990 Names2Regs.insert(std::make_pair("noreg", 0)); 1991 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1992 assert(TRI && "Expected target register info"); 1993 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 1994 bool WasInserted = 1995 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 1996 .second; 1997 (void)WasInserted; 1998 assert(WasInserted && "Expected registers to be unique case-insensitively"); 1999 } 2000 } 2001 2002 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2003 initNames2Regs(); 2004 auto RegInfo = Names2Regs.find(RegName); 2005 if (RegInfo == Names2Regs.end()) 2006 return true; 2007 Reg = RegInfo->getValue(); 2008 return false; 2009 } 2010 2011 void MIParser::initNames2RegMasks() { 2012 if (!Names2RegMasks.empty()) 2013 return; 2014 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2015 assert(TRI && "Expected target register info"); 2016 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2017 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2018 assert(RegMasks.size() == RegMaskNames.size()); 2019 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2020 Names2RegMasks.insert( 2021 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2022 } 2023 2024 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2025 initNames2RegMasks(); 2026 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2027 if (RegMaskInfo == Names2RegMasks.end()) 2028 return nullptr; 2029 return RegMaskInfo->getValue(); 2030 } 2031 2032 void MIParser::initNames2SubRegIndices() { 2033 if (!Names2SubRegIndices.empty()) 2034 return; 2035 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2036 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2037 Names2SubRegIndices.insert( 2038 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2039 } 2040 2041 unsigned MIParser::getSubRegIndex(StringRef Name) { 2042 initNames2SubRegIndices(); 2043 auto SubRegInfo = Names2SubRegIndices.find(Name); 2044 if (SubRegInfo == Names2SubRegIndices.end()) 2045 return 0; 2046 return SubRegInfo->getValue(); 2047 } 2048 2049 static void initSlots2BasicBlocks( 2050 const Function &F, 2051 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2052 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2053 MST.incorporateFunction(F); 2054 for (auto &BB : F) { 2055 if (BB.hasName()) 2056 continue; 2057 int Slot = MST.getLocalSlot(&BB); 2058 if (Slot == -1) 2059 continue; 2060 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2061 } 2062 } 2063 2064 static const BasicBlock *getIRBlockFromSlot( 2065 unsigned Slot, 2066 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2067 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2068 if (BlockInfo == Slots2BasicBlocks.end()) 2069 return nullptr; 2070 return BlockInfo->second; 2071 } 2072 2073 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2074 if (Slots2BasicBlocks.empty()) 2075 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2076 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2077 } 2078 2079 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2080 if (&F == MF.getFunction()) 2081 return getIRBlock(Slot); 2082 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2083 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2084 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2085 } 2086 2087 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2088 DenseMap<unsigned, const Value *> &Slots2Values) { 2089 int Slot = MST.getLocalSlot(V); 2090 if (Slot == -1) 2091 return; 2092 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2093 } 2094 2095 /// Creates the mapping from slot numbers to function's unnamed IR values. 2096 static void initSlots2Values(const Function &F, 2097 DenseMap<unsigned, const Value *> &Slots2Values) { 2098 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2099 MST.incorporateFunction(F); 2100 for (const auto &Arg : F.args()) 2101 mapValueToSlot(&Arg, MST, Slots2Values); 2102 for (const auto &BB : F) { 2103 mapValueToSlot(&BB, MST, Slots2Values); 2104 for (const auto &I : BB) 2105 mapValueToSlot(&I, MST, Slots2Values); 2106 } 2107 } 2108 2109 const Value *MIParser::getIRValue(unsigned Slot) { 2110 if (Slots2Values.empty()) 2111 initSlots2Values(*MF.getFunction(), Slots2Values); 2112 auto ValueInfo = Slots2Values.find(Slot); 2113 if (ValueInfo == Slots2Values.end()) 2114 return nullptr; 2115 return ValueInfo->second; 2116 } 2117 2118 void MIParser::initNames2TargetIndices() { 2119 if (!Names2TargetIndices.empty()) 2120 return; 2121 const auto *TII = MF.getSubtarget().getInstrInfo(); 2122 assert(TII && "Expected target instruction info"); 2123 auto Indices = TII->getSerializableTargetIndices(); 2124 for (const auto &I : Indices) 2125 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2126 } 2127 2128 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2129 initNames2TargetIndices(); 2130 auto IndexInfo = Names2TargetIndices.find(Name); 2131 if (IndexInfo == Names2TargetIndices.end()) 2132 return true; 2133 Index = IndexInfo->second; 2134 return false; 2135 } 2136 2137 void MIParser::initNames2DirectTargetFlags() { 2138 if (!Names2DirectTargetFlags.empty()) 2139 return; 2140 const auto *TII = MF.getSubtarget().getInstrInfo(); 2141 assert(TII && "Expected target instruction info"); 2142 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2143 for (const auto &I : Flags) 2144 Names2DirectTargetFlags.insert( 2145 std::make_pair(StringRef(I.second), I.first)); 2146 } 2147 2148 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2149 initNames2DirectTargetFlags(); 2150 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2151 if (FlagInfo == Names2DirectTargetFlags.end()) 2152 return true; 2153 Flag = FlagInfo->second; 2154 return false; 2155 } 2156 2157 void MIParser::initNames2BitmaskTargetFlags() { 2158 if (!Names2BitmaskTargetFlags.empty()) 2159 return; 2160 const auto *TII = MF.getSubtarget().getInstrInfo(); 2161 assert(TII && "Expected target instruction info"); 2162 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2163 for (const auto &I : Flags) 2164 Names2BitmaskTargetFlags.insert( 2165 std::make_pair(StringRef(I.second), I.first)); 2166 } 2167 2168 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2169 initNames2BitmaskTargetFlags(); 2170 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2171 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2172 return true; 2173 Flag = FlagInfo->second; 2174 return false; 2175 } 2176 2177 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2178 StringRef Src, 2179 SMDiagnostic &Error) { 2180 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2181 } 2182 2183 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS, 2184 StringRef Src, SMDiagnostic &Error) { 2185 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2186 } 2187 2188 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS, 2189 MachineBasicBlock *&MBB, StringRef Src, 2190 SMDiagnostic &Error) { 2191 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2192 } 2193 2194 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS, 2195 unsigned &Reg, StringRef Src, 2196 SMDiagnostic &Error) { 2197 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2198 } 2199 2200 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS, 2201 unsigned &Reg, StringRef Src, 2202 SMDiagnostic &Error) { 2203 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg); 2204 } 2205 2206 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS, 2207 int &FI, StringRef Src, 2208 SMDiagnostic &Error) { 2209 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2210 } 2211 2212 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS, 2213 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2214 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2215 } 2216