1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 
40 using namespace llvm;
41 
42 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
43     SourceMgr &SM, const SlotMapping &IRSlots)
44   : MF(MF), SM(&SM), IRSlots(IRSlots) {
45 }
46 
47 namespace {
48 
49 /// A wrapper struct around the 'MachineOperand' struct that includes a source
50 /// range and other attributes.
51 struct ParsedMachineOperand {
52   MachineOperand Operand;
53   StringRef::iterator Begin;
54   StringRef::iterator End;
55   Optional<unsigned> TiedDefIdx;
56 
57   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
58                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
59       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
60     if (TiedDefIdx)
61       assert(Operand.isReg() && Operand.isUse() &&
62              "Only used register operands can be tied");
63   }
64 };
65 
66 class MIParser {
67   MachineFunction &MF;
68   SMDiagnostic &Error;
69   StringRef Source, CurrentSource;
70   MIToken Token;
71   const PerFunctionMIParsingState &PFS;
72   /// Maps from instruction names to op codes.
73   StringMap<unsigned> Names2InstrOpCodes;
74   /// Maps from register names to registers.
75   StringMap<unsigned> Names2Regs;
76   /// Maps from register mask names to register masks.
77   StringMap<const uint32_t *> Names2RegMasks;
78   /// Maps from subregister names to subregister indices.
79   StringMap<unsigned> Names2SubRegIndices;
80   /// Maps from slot numbers to function's unnamed basic blocks.
81   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
82   /// Maps from slot numbers to function's unnamed values.
83   DenseMap<unsigned, const Value *> Slots2Values;
84   /// Maps from target index names to target indices.
85   StringMap<int> Names2TargetIndices;
86   /// Maps from direct target flag names to the direct target flag values.
87   StringMap<unsigned> Names2DirectTargetFlags;
88   /// Maps from direct target flag names to the bitmask target flag values.
89   StringMap<unsigned> Names2BitmaskTargetFlags;
90 
91 public:
92   MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
93            StringRef Source);
94 
95   /// \p SkipChar gives the number of characters to skip before looking
96   /// for the next token.
97   void lex(unsigned SkipChar = 0);
98 
99   /// Report an error at the current location with the given message.
100   ///
101   /// This function always return true.
102   bool error(const Twine &Msg);
103 
104   /// Report an error at the given location with the given message.
105   ///
106   /// This function always return true.
107   bool error(StringRef::iterator Loc, const Twine &Msg);
108 
109   bool
110   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
111   bool parseBasicBlocks();
112   bool parse(MachineInstr *&MI);
113   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
114   bool parseStandaloneNamedRegister(unsigned &Reg);
115   bool parseStandaloneVirtualRegister(unsigned &Reg);
116   bool parseStandaloneStackObject(int &FI);
117   bool parseStandaloneMDNode(MDNode *&Node);
118 
119   bool
120   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
121   bool parseBasicBlock(MachineBasicBlock &MBB);
122   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
123   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
124 
125   bool parseRegister(unsigned &Reg);
126   bool parseRegisterFlag(unsigned &Flags);
127   bool parseSubRegisterIndex(unsigned &SubReg);
128   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
129   bool parseSize(unsigned &Size);
130   bool parseRegisterOperand(MachineOperand &Dest,
131                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
132   bool parseImmediateOperand(MachineOperand &Dest);
133   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
134                        const Constant *&C);
135   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
136   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
137   bool parseTypedImmediateOperand(MachineOperand &Dest);
138   bool parseFPImmediateOperand(MachineOperand &Dest);
139   bool parseMBBReference(MachineBasicBlock *&MBB);
140   bool parseMBBOperand(MachineOperand &Dest);
141   bool parseStackFrameIndex(int &FI);
142   bool parseStackObjectOperand(MachineOperand &Dest);
143   bool parseFixedStackFrameIndex(int &FI);
144   bool parseFixedStackObjectOperand(MachineOperand &Dest);
145   bool parseGlobalValue(GlobalValue *&GV);
146   bool parseGlobalAddressOperand(MachineOperand &Dest);
147   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
148   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
149   bool parseJumpTableIndexOperand(MachineOperand &Dest);
150   bool parseExternalSymbolOperand(MachineOperand &Dest);
151   bool parseMDNode(MDNode *&Node);
152   bool parseMetadataOperand(MachineOperand &Dest);
153   bool parseCFIOffset(int &Offset);
154   bool parseCFIRegister(unsigned &Reg);
155   bool parseCFIOperand(MachineOperand &Dest);
156   bool parseIRBlock(BasicBlock *&BB, const Function &F);
157   bool parseBlockAddressOperand(MachineOperand &Dest);
158   bool parseIntrinsicOperand(MachineOperand &Dest);
159   bool parsePredicateOperand(MachineOperand &Dest);
160   bool parseTargetIndexOperand(MachineOperand &Dest);
161   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
162   bool parseMachineOperand(MachineOperand &Dest,
163                            Optional<unsigned> &TiedDefIdx);
164   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
165                                          Optional<unsigned> &TiedDefIdx);
166   bool parseOffset(int64_t &Offset);
167   bool parseAlignment(unsigned &Alignment);
168   bool parseOperandsOffset(MachineOperand &Op);
169   bool parseIRValue(const Value *&V);
170   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
171   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
172   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
173   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
174 
175 private:
176   /// Convert the integer literal in the current token into an unsigned integer.
177   ///
178   /// Return true if an error occurred.
179   bool getUnsigned(unsigned &Result);
180 
181   /// Convert the integer literal in the current token into an uint64.
182   ///
183   /// Return true if an error occurred.
184   bool getUint64(uint64_t &Result);
185 
186   /// If the current token is of the given kind, consume it and return false.
187   /// Otherwise report an error and return true.
188   bool expectAndConsume(MIToken::TokenKind TokenKind);
189 
190   /// If the current token is of the given kind, consume it and return true.
191   /// Otherwise return false.
192   bool consumeIfPresent(MIToken::TokenKind TokenKind);
193 
194   void initNames2InstrOpCodes();
195 
196   /// Try to convert an instruction name to an opcode. Return true if the
197   /// instruction name is invalid.
198   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
199 
200   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
201 
202   bool assignRegisterTies(MachineInstr &MI,
203                           ArrayRef<ParsedMachineOperand> Operands);
204 
205   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
206                               const MCInstrDesc &MCID);
207 
208   void initNames2Regs();
209 
210   /// Try to convert a register name to a register number. Return true if the
211   /// register name is invalid.
212   bool getRegisterByName(StringRef RegName, unsigned &Reg);
213 
214   void initNames2RegMasks();
215 
216   /// Check if the given identifier is a name of a register mask.
217   ///
218   /// Return null if the identifier isn't a register mask.
219   const uint32_t *getRegMask(StringRef Identifier);
220 
221   void initNames2SubRegIndices();
222 
223   /// Check if the given identifier is a name of a subregister index.
224   ///
225   /// Return 0 if the name isn't a subregister index class.
226   unsigned getSubRegIndex(StringRef Name);
227 
228   const BasicBlock *getIRBlock(unsigned Slot);
229   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
230 
231   const Value *getIRValue(unsigned Slot);
232 
233   void initNames2TargetIndices();
234 
235   /// Try to convert a name of target index to the corresponding target index.
236   ///
237   /// Return true if the name isn't a name of a target index.
238   bool getTargetIndex(StringRef Name, int &Index);
239 
240   void initNames2DirectTargetFlags();
241 
242   /// Try to convert a name of a direct target flag to the corresponding
243   /// target flag.
244   ///
245   /// Return true if the name isn't a name of a direct flag.
246   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
247 
248   void initNames2BitmaskTargetFlags();
249 
250   /// Try to convert a name of a bitmask target flag to the corresponding
251   /// target flag.
252   ///
253   /// Return true if the name isn't a name of a bitmask target flag.
254   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
255 };
256 
257 } // end anonymous namespace
258 
259 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
260                    StringRef Source)
261     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
262 {}
263 
264 void MIParser::lex(unsigned SkipChar) {
265   CurrentSource = lexMIToken(
266       CurrentSource.data() + SkipChar, Token,
267       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
268 }
269 
270 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
271 
272 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
273   const SourceMgr &SM = *PFS.SM;
274   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
275   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
276   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
277     // Create an ordinary diagnostic when the source manager's buffer is the
278     // source string.
279     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
280     return true;
281   }
282   // Create a diagnostic for a YAML string literal.
283   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
284                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
285                        Source, None, None);
286   return true;
287 }
288 
289 static const char *toString(MIToken::TokenKind TokenKind) {
290   switch (TokenKind) {
291   case MIToken::comma:
292     return "','";
293   case MIToken::equal:
294     return "'='";
295   case MIToken::colon:
296     return "':'";
297   case MIToken::lparen:
298     return "'('";
299   case MIToken::rparen:
300     return "')'";
301   default:
302     return "<unknown token>";
303   }
304 }
305 
306 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
307   if (Token.isNot(TokenKind))
308     return error(Twine("expected ") + toString(TokenKind));
309   lex();
310   return false;
311 }
312 
313 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
314   if (Token.isNot(TokenKind))
315     return false;
316   lex();
317   return true;
318 }
319 
320 bool MIParser::parseBasicBlockDefinition(
321     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
322   assert(Token.is(MIToken::MachineBasicBlockLabel));
323   unsigned ID = 0;
324   if (getUnsigned(ID))
325     return true;
326   auto Loc = Token.location();
327   auto Name = Token.stringValue();
328   lex();
329   bool HasAddressTaken = false;
330   bool IsLandingPad = false;
331   unsigned Alignment = 0;
332   BasicBlock *BB = nullptr;
333   if (consumeIfPresent(MIToken::lparen)) {
334     do {
335       // TODO: Report an error when multiple same attributes are specified.
336       switch (Token.kind()) {
337       case MIToken::kw_address_taken:
338         HasAddressTaken = true;
339         lex();
340         break;
341       case MIToken::kw_landing_pad:
342         IsLandingPad = true;
343         lex();
344         break;
345       case MIToken::kw_align:
346         if (parseAlignment(Alignment))
347           return true;
348         break;
349       case MIToken::IRBlock:
350         // TODO: Report an error when both name and ir block are specified.
351         if (parseIRBlock(BB, *MF.getFunction()))
352           return true;
353         lex();
354         break;
355       default:
356         break;
357       }
358     } while (consumeIfPresent(MIToken::comma));
359     if (expectAndConsume(MIToken::rparen))
360       return true;
361   }
362   if (expectAndConsume(MIToken::colon))
363     return true;
364 
365   if (!Name.empty()) {
366     BB = dyn_cast_or_null<BasicBlock>(
367         MF.getFunction()->getValueSymbolTable().lookup(Name));
368     if (!BB)
369       return error(Loc, Twine("basic block '") + Name +
370                             "' is not defined in the function '" +
371                             MF.getName() + "'");
372   }
373   auto *MBB = MF.CreateMachineBasicBlock(BB);
374   MF.insert(MF.end(), MBB);
375   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
376   if (!WasInserted)
377     return error(Loc, Twine("redefinition of machine basic block with id #") +
378                           Twine(ID));
379   if (Alignment)
380     MBB->setAlignment(Alignment);
381   if (HasAddressTaken)
382     MBB->setHasAddressTaken();
383   MBB->setIsEHPad(IsLandingPad);
384   return false;
385 }
386 
387 bool MIParser::parseBasicBlockDefinitions(
388     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
389   lex();
390   // Skip until the first machine basic block.
391   while (Token.is(MIToken::Newline))
392     lex();
393   if (Token.isErrorOrEOF())
394     return Token.isError();
395   if (Token.isNot(MIToken::MachineBasicBlockLabel))
396     return error("expected a basic block definition before instructions");
397   unsigned BraceDepth = 0;
398   do {
399     if (parseBasicBlockDefinition(MBBSlots))
400       return true;
401     bool IsAfterNewline = false;
402     // Skip until the next machine basic block.
403     while (true) {
404       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
405           Token.isErrorOrEOF())
406         break;
407       else if (Token.is(MIToken::MachineBasicBlockLabel))
408         return error("basic block definition should be located at the start of "
409                      "the line");
410       else if (consumeIfPresent(MIToken::Newline)) {
411         IsAfterNewline = true;
412         continue;
413       }
414       IsAfterNewline = false;
415       if (Token.is(MIToken::lbrace))
416         ++BraceDepth;
417       if (Token.is(MIToken::rbrace)) {
418         if (!BraceDepth)
419           return error("extraneous closing brace ('}')");
420         --BraceDepth;
421       }
422       lex();
423     }
424     // Verify that we closed all of the '{' at the end of a file or a block.
425     if (!Token.isError() && BraceDepth)
426       return error("expected '}'"); // FIXME: Report a note that shows '{'.
427   } while (!Token.isErrorOrEOF());
428   return Token.isError();
429 }
430 
431 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
432   assert(Token.is(MIToken::kw_liveins));
433   lex();
434   if (expectAndConsume(MIToken::colon))
435     return true;
436   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
437     return false;
438   do {
439     if (Token.isNot(MIToken::NamedRegister))
440       return error("expected a named register");
441     unsigned Reg = 0;
442     if (parseRegister(Reg))
443       return true;
444     MBB.addLiveIn(Reg);
445     lex();
446   } while (consumeIfPresent(MIToken::comma));
447   return false;
448 }
449 
450 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
451   assert(Token.is(MIToken::kw_successors));
452   lex();
453   if (expectAndConsume(MIToken::colon))
454     return true;
455   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
456     return false;
457   do {
458     if (Token.isNot(MIToken::MachineBasicBlock))
459       return error("expected a machine basic block reference");
460     MachineBasicBlock *SuccMBB = nullptr;
461     if (parseMBBReference(SuccMBB))
462       return true;
463     lex();
464     unsigned Weight = 0;
465     if (consumeIfPresent(MIToken::lparen)) {
466       if (Token.isNot(MIToken::IntegerLiteral))
467         return error("expected an integer literal after '('");
468       if (getUnsigned(Weight))
469         return true;
470       lex();
471       if (expectAndConsume(MIToken::rparen))
472         return true;
473     }
474     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
475   } while (consumeIfPresent(MIToken::comma));
476   MBB.normalizeSuccProbs();
477   return false;
478 }
479 
480 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
481   // Skip the definition.
482   assert(Token.is(MIToken::MachineBasicBlockLabel));
483   lex();
484   if (consumeIfPresent(MIToken::lparen)) {
485     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
486       lex();
487     consumeIfPresent(MIToken::rparen);
488   }
489   consumeIfPresent(MIToken::colon);
490 
491   // Parse the liveins and successors.
492   // N.B: Multiple lists of successors and liveins are allowed and they're
493   // merged into one.
494   // Example:
495   //   liveins: %edi
496   //   liveins: %esi
497   //
498   // is equivalent to
499   //   liveins: %edi, %esi
500   while (true) {
501     if (Token.is(MIToken::kw_successors)) {
502       if (parseBasicBlockSuccessors(MBB))
503         return true;
504     } else if (Token.is(MIToken::kw_liveins)) {
505       if (parseBasicBlockLiveins(MBB))
506         return true;
507     } else if (consumeIfPresent(MIToken::Newline)) {
508       continue;
509     } else
510       break;
511     if (!Token.isNewlineOrEOF())
512       return error("expected line break at the end of a list");
513     lex();
514   }
515 
516   // Parse the instructions.
517   bool IsInBundle = false;
518   MachineInstr *PrevMI = nullptr;
519   while (true) {
520     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
521       return false;
522     else if (consumeIfPresent(MIToken::Newline))
523       continue;
524     if (consumeIfPresent(MIToken::rbrace)) {
525       // The first parsing pass should verify that all closing '}' have an
526       // opening '{'.
527       assert(IsInBundle);
528       IsInBundle = false;
529       continue;
530     }
531     MachineInstr *MI = nullptr;
532     if (parse(MI))
533       return true;
534     MBB.insert(MBB.end(), MI);
535     if (IsInBundle) {
536       PrevMI->setFlag(MachineInstr::BundledSucc);
537       MI->setFlag(MachineInstr::BundledPred);
538     }
539     PrevMI = MI;
540     if (Token.is(MIToken::lbrace)) {
541       if (IsInBundle)
542         return error("nested instruction bundles are not allowed");
543       lex();
544       // This instruction is the start of the bundle.
545       MI->setFlag(MachineInstr::BundledSucc);
546       IsInBundle = true;
547       if (!Token.is(MIToken::Newline))
548         // The next instruction can be on the same line.
549         continue;
550     }
551     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
552     lex();
553   }
554   return false;
555 }
556 
557 bool MIParser::parseBasicBlocks() {
558   lex();
559   // Skip until the first machine basic block.
560   while (Token.is(MIToken::Newline))
561     lex();
562   if (Token.isErrorOrEOF())
563     return Token.isError();
564   // The first parsing pass should have verified that this token is a MBB label
565   // in the 'parseBasicBlockDefinitions' method.
566   assert(Token.is(MIToken::MachineBasicBlockLabel));
567   do {
568     MachineBasicBlock *MBB = nullptr;
569     if (parseMBBReference(MBB))
570       return true;
571     if (parseBasicBlock(*MBB))
572       return true;
573     // The method 'parseBasicBlock' should parse the whole block until the next
574     // block or the end of file.
575     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
576   } while (Token.isNot(MIToken::Eof));
577   return false;
578 }
579 
580 bool MIParser::parse(MachineInstr *&MI) {
581   // Parse any register operands before '='
582   MachineOperand MO = MachineOperand::CreateImm(0);
583   SmallVector<ParsedMachineOperand, 8> Operands;
584   while (Token.isRegister() || Token.isRegisterFlag()) {
585     auto Loc = Token.location();
586     Optional<unsigned> TiedDefIdx;
587     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
588       return true;
589     Operands.push_back(
590         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
591     if (Token.isNot(MIToken::comma))
592       break;
593     lex();
594   }
595   if (!Operands.empty() && expectAndConsume(MIToken::equal))
596     return true;
597 
598   unsigned OpCode, Flags = 0;
599   if (Token.isError() || parseInstruction(OpCode, Flags))
600     return true;
601 
602   SmallVector<LLT, 1> Tys;
603   if (isPreISelGenericOpcode(OpCode)) {
604     // For generic opcode, at least one type is mandatory.
605     auto Loc = Token.location();
606     bool ManyTypes = Token.is(MIToken::lbrace);
607     if (ManyTypes)
608       lex();
609 
610     // Now actually parse the type(s).
611     do {
612       Tys.resize(Tys.size() + 1);
613       if (parseLowLevelType(Loc, Tys[Tys.size() - 1]))
614         return true;
615     } while (ManyTypes && consumeIfPresent(MIToken::comma));
616 
617     if (ManyTypes)
618       expectAndConsume(MIToken::rbrace);
619   }
620 
621   // Parse the remaining machine operands.
622   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
623          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
624     auto Loc = Token.location();
625     Optional<unsigned> TiedDefIdx;
626     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
627       return true;
628     Operands.push_back(
629         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
630     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
631         Token.is(MIToken::lbrace))
632       break;
633     if (Token.isNot(MIToken::comma))
634       return error("expected ',' before the next machine operand");
635     lex();
636   }
637 
638   DebugLoc DebugLocation;
639   if (Token.is(MIToken::kw_debug_location)) {
640     lex();
641     if (Token.isNot(MIToken::exclaim))
642       return error("expected a metadata node after 'debug-location'");
643     MDNode *Node = nullptr;
644     if (parseMDNode(Node))
645       return true;
646     DebugLocation = DebugLoc(Node);
647   }
648 
649   // Parse the machine memory operands.
650   SmallVector<MachineMemOperand *, 2> MemOperands;
651   if (Token.is(MIToken::coloncolon)) {
652     lex();
653     while (!Token.isNewlineOrEOF()) {
654       MachineMemOperand *MemOp = nullptr;
655       if (parseMachineMemoryOperand(MemOp))
656         return true;
657       MemOperands.push_back(MemOp);
658       if (Token.isNewlineOrEOF())
659         break;
660       if (Token.isNot(MIToken::comma))
661         return error("expected ',' before the next machine memory operand");
662       lex();
663     }
664   }
665 
666   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
667   if (!MCID.isVariadic()) {
668     // FIXME: Move the implicit operand verification to the machine verifier.
669     if (verifyImplicitOperands(Operands, MCID))
670       return true;
671   }
672 
673   // TODO: Check for extraneous machine operands.
674   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
675   MI->setFlags(Flags);
676   if (Tys.size() > 0) {
677     for (unsigned i = 0; i < Tys.size(); ++i)
678       MI->setType(Tys[i], i);
679   }
680   for (const auto &Operand : Operands)
681     MI->addOperand(MF, Operand.Operand);
682   if (assignRegisterTies(*MI, Operands))
683     return true;
684   if (MemOperands.empty())
685     return false;
686   MachineInstr::mmo_iterator MemRefs =
687       MF.allocateMemRefsArray(MemOperands.size());
688   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
689   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
690   return false;
691 }
692 
693 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
694   lex();
695   if (Token.isNot(MIToken::MachineBasicBlock))
696     return error("expected a machine basic block reference");
697   if (parseMBBReference(MBB))
698     return true;
699   lex();
700   if (Token.isNot(MIToken::Eof))
701     return error(
702         "expected end of string after the machine basic block reference");
703   return false;
704 }
705 
706 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
707   lex();
708   if (Token.isNot(MIToken::NamedRegister))
709     return error("expected a named register");
710   if (parseRegister(Reg))
711     return true;
712   lex();
713   if (Token.isNot(MIToken::Eof))
714     return error("expected end of string after the register reference");
715   return false;
716 }
717 
718 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
719   lex();
720   if (Token.isNot(MIToken::VirtualRegister))
721     return error("expected a virtual register");
722   if (parseRegister(Reg))
723     return true;
724   lex();
725   if (Token.isNot(MIToken::Eof))
726     return error("expected end of string after the register reference");
727   return false;
728 }
729 
730 bool MIParser::parseStandaloneStackObject(int &FI) {
731   lex();
732   if (Token.isNot(MIToken::StackObject))
733     return error("expected a stack object");
734   if (parseStackFrameIndex(FI))
735     return true;
736   if (Token.isNot(MIToken::Eof))
737     return error("expected end of string after the stack object reference");
738   return false;
739 }
740 
741 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
742   lex();
743   if (Token.isNot(MIToken::exclaim))
744     return error("expected a metadata node");
745   if (parseMDNode(Node))
746     return true;
747   if (Token.isNot(MIToken::Eof))
748     return error("expected end of string after the metadata node");
749   return false;
750 }
751 
752 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
753   assert(MO.isImplicit());
754   return MO.isDef() ? "implicit-def" : "implicit";
755 }
756 
757 static std::string getRegisterName(const TargetRegisterInfo *TRI,
758                                    unsigned Reg) {
759   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
760   return StringRef(TRI->getName(Reg)).lower();
761 }
762 
763 /// Return true if the parsed machine operands contain a given machine operand.
764 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
765                                 ArrayRef<ParsedMachineOperand> Operands) {
766   for (const auto &I : Operands) {
767     if (ImplicitOperand.isIdenticalTo(I.Operand))
768       return true;
769   }
770   return false;
771 }
772 
773 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
774                                       const MCInstrDesc &MCID) {
775   if (MCID.isCall())
776     // We can't verify call instructions as they can contain arbitrary implicit
777     // register and register mask operands.
778     return false;
779 
780   // Gather all the expected implicit operands.
781   SmallVector<MachineOperand, 4> ImplicitOperands;
782   if (MCID.ImplicitDefs)
783     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
784       ImplicitOperands.push_back(
785           MachineOperand::CreateReg(*ImpDefs, true, true));
786   if (MCID.ImplicitUses)
787     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
788       ImplicitOperands.push_back(
789           MachineOperand::CreateReg(*ImpUses, false, true));
790 
791   const auto *TRI = MF.getSubtarget().getRegisterInfo();
792   assert(TRI && "Expected target register info");
793   for (const auto &I : ImplicitOperands) {
794     if (isImplicitOperandIn(I, Operands))
795       continue;
796     return error(Operands.empty() ? Token.location() : Operands.back().End,
797                  Twine("missing implicit register operand '") +
798                      printImplicitRegisterFlag(I) + " %" +
799                      getRegisterName(TRI, I.getReg()) + "'");
800   }
801   return false;
802 }
803 
804 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
805   if (Token.is(MIToken::kw_frame_setup)) {
806     Flags |= MachineInstr::FrameSetup;
807     lex();
808   }
809   if (Token.isNot(MIToken::Identifier))
810     return error("expected a machine instruction");
811   StringRef InstrName = Token.stringValue();
812   if (parseInstrName(InstrName, OpCode))
813     return error(Twine("unknown machine instruction name '") + InstrName + "'");
814   lex();
815   return false;
816 }
817 
818 bool MIParser::parseRegister(unsigned &Reg) {
819   switch (Token.kind()) {
820   case MIToken::underscore:
821     Reg = 0;
822     break;
823   case MIToken::NamedRegister: {
824     StringRef Name = Token.stringValue();
825     if (getRegisterByName(Name, Reg))
826       return error(Twine("unknown register name '") + Name + "'");
827     break;
828   }
829   case MIToken::VirtualRegister: {
830     unsigned ID;
831     if (getUnsigned(ID))
832       return true;
833     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
834     if (RegInfo == PFS.VirtualRegisterSlots.end())
835       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
836                    "'");
837     Reg = RegInfo->second;
838     break;
839   }
840   // TODO: Parse other register kinds.
841   default:
842     llvm_unreachable("The current token should be a register");
843   }
844   return false;
845 }
846 
847 bool MIParser::parseRegisterFlag(unsigned &Flags) {
848   const unsigned OldFlags = Flags;
849   switch (Token.kind()) {
850   case MIToken::kw_implicit:
851     Flags |= RegState::Implicit;
852     break;
853   case MIToken::kw_implicit_define:
854     Flags |= RegState::ImplicitDefine;
855     break;
856   case MIToken::kw_def:
857     Flags |= RegState::Define;
858     break;
859   case MIToken::kw_dead:
860     Flags |= RegState::Dead;
861     break;
862   case MIToken::kw_killed:
863     Flags |= RegState::Kill;
864     break;
865   case MIToken::kw_undef:
866     Flags |= RegState::Undef;
867     break;
868   case MIToken::kw_internal:
869     Flags |= RegState::InternalRead;
870     break;
871   case MIToken::kw_early_clobber:
872     Flags |= RegState::EarlyClobber;
873     break;
874   case MIToken::kw_debug_use:
875     Flags |= RegState::Debug;
876     break;
877   default:
878     llvm_unreachable("The current token should be a register flag");
879   }
880   if (OldFlags == Flags)
881     // We know that the same flag is specified more than once when the flags
882     // weren't modified.
883     return error("duplicate '" + Token.stringValue() + "' register flag");
884   lex();
885   return false;
886 }
887 
888 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
889   assert(Token.is(MIToken::dot));
890   lex();
891   if (Token.isNot(MIToken::Identifier))
892     return error("expected a subregister index after '.'");
893   auto Name = Token.stringValue();
894   SubReg = getSubRegIndex(Name);
895   if (!SubReg)
896     return error(Twine("use of unknown subregister index '") + Name + "'");
897   lex();
898   return false;
899 }
900 
901 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
902   if (!consumeIfPresent(MIToken::kw_tied_def))
903     return error("expected 'tied-def' after '('");
904   if (Token.isNot(MIToken::IntegerLiteral))
905     return error("expected an integer literal after 'tied-def'");
906   if (getUnsigned(TiedDefIdx))
907     return true;
908   lex();
909   if (expectAndConsume(MIToken::rparen))
910     return true;
911   return false;
912 }
913 
914 bool MIParser::parseSize(unsigned &Size) {
915   if (Token.isNot(MIToken::IntegerLiteral))
916     return error("expected an integer literal for the size");
917   if (getUnsigned(Size))
918     return true;
919   lex();
920   if (expectAndConsume(MIToken::rparen))
921     return true;
922   return false;
923 }
924 
925 bool MIParser::assignRegisterTies(MachineInstr &MI,
926                                   ArrayRef<ParsedMachineOperand> Operands) {
927   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
928   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
929     if (!Operands[I].TiedDefIdx)
930       continue;
931     // The parser ensures that this operand is a register use, so we just have
932     // to check the tied-def operand.
933     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
934     if (DefIdx >= E)
935       return error(Operands[I].Begin,
936                    Twine("use of invalid tied-def operand index '" +
937                          Twine(DefIdx) + "'; instruction has only ") +
938                        Twine(E) + " operands");
939     const auto &DefOperand = Operands[DefIdx].Operand;
940     if (!DefOperand.isReg() || !DefOperand.isDef())
941       // FIXME: add note with the def operand.
942       return error(Operands[I].Begin,
943                    Twine("use of invalid tied-def operand index '") +
944                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
945                        " isn't a defined register");
946     // Check that the tied-def operand wasn't tied elsewhere.
947     for (const auto &TiedPair : TiedRegisterPairs) {
948       if (TiedPair.first == DefIdx)
949         return error(Operands[I].Begin,
950                      Twine("the tied-def operand #") + Twine(DefIdx) +
951                          " is already tied with another register operand");
952     }
953     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
954   }
955   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
956   // indices must be less than tied max.
957   for (const auto &TiedPair : TiedRegisterPairs)
958     MI.tieOperands(TiedPair.first, TiedPair.second);
959   return false;
960 }
961 
962 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
963                                     Optional<unsigned> &TiedDefIdx,
964                                     bool IsDef) {
965   unsigned Reg;
966   unsigned Flags = IsDef ? RegState::Define : 0;
967   while (Token.isRegisterFlag()) {
968     if (parseRegisterFlag(Flags))
969       return true;
970   }
971   if (!Token.isRegister())
972     return error("expected a register after register flags");
973   if (parseRegister(Reg))
974     return true;
975   lex();
976   unsigned SubReg = 0;
977   if (Token.is(MIToken::dot)) {
978     if (parseSubRegisterIndex(SubReg))
979       return true;
980     if (!TargetRegisterInfo::isVirtualRegister(Reg))
981       return error("subregister index expects a virtual register");
982   }
983   if ((Flags & RegState::Define) == 0) {
984     if (consumeIfPresent(MIToken::lparen)) {
985       unsigned Idx;
986       if (parseRegisterTiedDefIndex(Idx))
987         return true;
988       TiedDefIdx = Idx;
989     }
990   } else if (consumeIfPresent(MIToken::lparen)) {
991     MachineRegisterInfo &MRI = MF.getRegInfo();
992 
993     // Virtual registers may have a size with GlobalISel.
994     if (!TargetRegisterInfo::isVirtualRegister(Reg))
995       return error("unexpected size on physical register");
996     if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>())
997       return error("unexpected size on non-generic virtual register");
998 
999     unsigned Size;
1000     if (parseSize(Size))
1001       return true;
1002 
1003     MRI.setSize(Reg, Size);
1004   } else if (PFS.GenericVRegs.count(Reg)) {
1005     // Generic virtual registers must have a size.
1006     // If we end up here this means the size hasn't been specified and
1007     // this is bad!
1008     return error("generic virtual registers must have a size");
1009   }
1010   Dest = MachineOperand::CreateReg(
1011       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1012       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1013       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1014       Flags & RegState::InternalRead);
1015   return false;
1016 }
1017 
1018 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1019   assert(Token.is(MIToken::IntegerLiteral));
1020   const APSInt &Int = Token.integerValue();
1021   if (Int.getMinSignedBits() > 64)
1022     return error("integer literal is too large to be an immediate operand");
1023   Dest = MachineOperand::CreateImm(Int.getExtValue());
1024   lex();
1025   return false;
1026 }
1027 
1028 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1029                                const Constant *&C) {
1030   auto Source = StringValue.str(); // The source has to be null terminated.
1031   SMDiagnostic Err;
1032   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1033                          &PFS.IRSlots);
1034   if (!C)
1035     return error(Loc + Err.getColumnNo(), Err.getMessage());
1036   return false;
1037 }
1038 
1039 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1040   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1041     return true;
1042   lex();
1043   return false;
1044 }
1045 
1046 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1047   if (Token.is(MIToken::Identifier) && Token.stringValue() == "unsized") {
1048     lex();
1049     Ty = LLT::unsized();
1050     return false;
1051   } else if (Token.is(MIToken::ScalarType)) {
1052     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1053     lex();
1054     return false;
1055   } else if (Token.is(MIToken::PointerType)) {
1056     Ty = LLT::pointer(APSInt(Token.range().drop_front()).getZExtValue());
1057     lex();
1058     return false;
1059   }
1060 
1061   // Now we're looking for a vector.
1062   if (Token.isNot(MIToken::less))
1063     return error(Loc,
1064                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1065 
1066   lex();
1067 
1068   if (Token.isNot(MIToken::IntegerLiteral))
1069     return error(Loc, "expected <N x sM> for vctor type");
1070   uint64_t NumElements = Token.integerValue().getZExtValue();
1071   lex();
1072 
1073   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1074     return error(Loc, "expected '<N x sM>' for vector type");
1075   lex();
1076 
1077   if (Token.isNot(MIToken::ScalarType))
1078     return error(Loc, "expected '<N x sM>' for vector type");
1079   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1080   lex();
1081 
1082   if (Token.isNot(MIToken::greater))
1083     return error(Loc, "expected '<N x sM>' for vector type");
1084   lex();
1085 
1086   Ty = LLT::vector(NumElements, ScalarSize);
1087   return false;
1088 }
1089 
1090 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1091   assert(Token.is(MIToken::IntegerType));
1092   auto Loc = Token.location();
1093   lex();
1094   if (Token.isNot(MIToken::IntegerLiteral))
1095     return error("expected an integer literal");
1096   const Constant *C = nullptr;
1097   if (parseIRConstant(Loc, C))
1098     return true;
1099   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1100   return false;
1101 }
1102 
1103 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1104   auto Loc = Token.location();
1105   lex();
1106   if (Token.isNot(MIToken::FloatingPointLiteral))
1107     return error("expected a floating point literal");
1108   const Constant *C = nullptr;
1109   if (parseIRConstant(Loc, C))
1110     return true;
1111   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1112   return false;
1113 }
1114 
1115 bool MIParser::getUnsigned(unsigned &Result) {
1116   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1117   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1118   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1119   if (Val64 == Limit)
1120     return error("expected 32-bit integer (too large)");
1121   Result = Val64;
1122   return false;
1123 }
1124 
1125 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1126   assert(Token.is(MIToken::MachineBasicBlock) ||
1127          Token.is(MIToken::MachineBasicBlockLabel));
1128   unsigned Number;
1129   if (getUnsigned(Number))
1130     return true;
1131   auto MBBInfo = PFS.MBBSlots.find(Number);
1132   if (MBBInfo == PFS.MBBSlots.end())
1133     return error(Twine("use of undefined machine basic block #") +
1134                  Twine(Number));
1135   MBB = MBBInfo->second;
1136   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1137     return error(Twine("the name of machine basic block #") + Twine(Number) +
1138                  " isn't '" + Token.stringValue() + "'");
1139   return false;
1140 }
1141 
1142 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1143   MachineBasicBlock *MBB;
1144   if (parseMBBReference(MBB))
1145     return true;
1146   Dest = MachineOperand::CreateMBB(MBB);
1147   lex();
1148   return false;
1149 }
1150 
1151 bool MIParser::parseStackFrameIndex(int &FI) {
1152   assert(Token.is(MIToken::StackObject));
1153   unsigned ID;
1154   if (getUnsigned(ID))
1155     return true;
1156   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1157   if (ObjectInfo == PFS.StackObjectSlots.end())
1158     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1159                  "'");
1160   StringRef Name;
1161   if (const auto *Alloca =
1162           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1163     Name = Alloca->getName();
1164   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1165     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1166                  "' isn't '" + Token.stringValue() + "'");
1167   lex();
1168   FI = ObjectInfo->second;
1169   return false;
1170 }
1171 
1172 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1173   int FI;
1174   if (parseStackFrameIndex(FI))
1175     return true;
1176   Dest = MachineOperand::CreateFI(FI);
1177   return false;
1178 }
1179 
1180 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1181   assert(Token.is(MIToken::FixedStackObject));
1182   unsigned ID;
1183   if (getUnsigned(ID))
1184     return true;
1185   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1186   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1187     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1188                  Twine(ID) + "'");
1189   lex();
1190   FI = ObjectInfo->second;
1191   return false;
1192 }
1193 
1194 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1195   int FI;
1196   if (parseFixedStackFrameIndex(FI))
1197     return true;
1198   Dest = MachineOperand::CreateFI(FI);
1199   return false;
1200 }
1201 
1202 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1203   switch (Token.kind()) {
1204   case MIToken::NamedGlobalValue: {
1205     const Module *M = MF.getFunction()->getParent();
1206     GV = M->getNamedValue(Token.stringValue());
1207     if (!GV)
1208       return error(Twine("use of undefined global value '") + Token.range() +
1209                    "'");
1210     break;
1211   }
1212   case MIToken::GlobalValue: {
1213     unsigned GVIdx;
1214     if (getUnsigned(GVIdx))
1215       return true;
1216     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1217       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1218                    "'");
1219     GV = PFS.IRSlots.GlobalValues[GVIdx];
1220     break;
1221   }
1222   default:
1223     llvm_unreachable("The current token should be a global value");
1224   }
1225   return false;
1226 }
1227 
1228 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1229   GlobalValue *GV = nullptr;
1230   if (parseGlobalValue(GV))
1231     return true;
1232   lex();
1233   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1234   if (parseOperandsOffset(Dest))
1235     return true;
1236   return false;
1237 }
1238 
1239 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1240   assert(Token.is(MIToken::ConstantPoolItem));
1241   unsigned ID;
1242   if (getUnsigned(ID))
1243     return true;
1244   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1245   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1246     return error("use of undefined constant '%const." + Twine(ID) + "'");
1247   lex();
1248   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1249   if (parseOperandsOffset(Dest))
1250     return true;
1251   return false;
1252 }
1253 
1254 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1255   assert(Token.is(MIToken::JumpTableIndex));
1256   unsigned ID;
1257   if (getUnsigned(ID))
1258     return true;
1259   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1260   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1261     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1262   lex();
1263   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1264   return false;
1265 }
1266 
1267 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1268   assert(Token.is(MIToken::ExternalSymbol));
1269   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1270   lex();
1271   Dest = MachineOperand::CreateES(Symbol);
1272   if (parseOperandsOffset(Dest))
1273     return true;
1274   return false;
1275 }
1276 
1277 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1278   assert(Token.is(MIToken::SubRegisterIndex));
1279   StringRef Name = Token.stringValue();
1280   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1281   if (SubRegIndex == 0)
1282     return error(Twine("unknown subregister index '") + Name + "'");
1283   lex();
1284   Dest = MachineOperand::CreateImm(SubRegIndex);
1285   return false;
1286 }
1287 
1288 bool MIParser::parseMDNode(MDNode *&Node) {
1289   assert(Token.is(MIToken::exclaim));
1290   auto Loc = Token.location();
1291   lex();
1292   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1293     return error("expected metadata id after '!'");
1294   unsigned ID;
1295   if (getUnsigned(ID))
1296     return true;
1297   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1298   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1299     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1300   lex();
1301   Node = NodeInfo->second.get();
1302   return false;
1303 }
1304 
1305 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1306   MDNode *Node = nullptr;
1307   if (parseMDNode(Node))
1308     return true;
1309   Dest = MachineOperand::CreateMetadata(Node);
1310   return false;
1311 }
1312 
1313 bool MIParser::parseCFIOffset(int &Offset) {
1314   if (Token.isNot(MIToken::IntegerLiteral))
1315     return error("expected a cfi offset");
1316   if (Token.integerValue().getMinSignedBits() > 32)
1317     return error("expected a 32 bit integer (the cfi offset is too large)");
1318   Offset = (int)Token.integerValue().getExtValue();
1319   lex();
1320   return false;
1321 }
1322 
1323 bool MIParser::parseCFIRegister(unsigned &Reg) {
1324   if (Token.isNot(MIToken::NamedRegister))
1325     return error("expected a cfi register");
1326   unsigned LLVMReg;
1327   if (parseRegister(LLVMReg))
1328     return true;
1329   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1330   assert(TRI && "Expected target register info");
1331   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1332   if (DwarfReg < 0)
1333     return error("invalid DWARF register");
1334   Reg = (unsigned)DwarfReg;
1335   lex();
1336   return false;
1337 }
1338 
1339 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1340   auto Kind = Token.kind();
1341   lex();
1342   auto &MMI = MF.getMMI();
1343   int Offset;
1344   unsigned Reg;
1345   unsigned CFIIndex;
1346   switch (Kind) {
1347   case MIToken::kw_cfi_same_value:
1348     if (parseCFIRegister(Reg))
1349       return true;
1350     CFIIndex =
1351         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1352     break;
1353   case MIToken::kw_cfi_offset:
1354     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1355         parseCFIOffset(Offset))
1356       return true;
1357     CFIIndex =
1358         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1359     break;
1360   case MIToken::kw_cfi_def_cfa_register:
1361     if (parseCFIRegister(Reg))
1362       return true;
1363     CFIIndex =
1364         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1365     break;
1366   case MIToken::kw_cfi_def_cfa_offset:
1367     if (parseCFIOffset(Offset))
1368       return true;
1369     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1370     CFIIndex = MMI.addFrameInst(
1371         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1372     break;
1373   case MIToken::kw_cfi_def_cfa:
1374     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1375         parseCFIOffset(Offset))
1376       return true;
1377     // NB: MCCFIInstruction::createDefCfa negates the offset.
1378     CFIIndex =
1379         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1380     break;
1381   default:
1382     // TODO: Parse the other CFI operands.
1383     llvm_unreachable("The current token should be a cfi operand");
1384   }
1385   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1386   return false;
1387 }
1388 
1389 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1390   switch (Token.kind()) {
1391   case MIToken::NamedIRBlock: {
1392     BB = dyn_cast_or_null<BasicBlock>(
1393         F.getValueSymbolTable().lookup(Token.stringValue()));
1394     if (!BB)
1395       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1396     break;
1397   }
1398   case MIToken::IRBlock: {
1399     unsigned SlotNumber = 0;
1400     if (getUnsigned(SlotNumber))
1401       return true;
1402     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1403     if (!BB)
1404       return error(Twine("use of undefined IR block '%ir-block.") +
1405                    Twine(SlotNumber) + "'");
1406     break;
1407   }
1408   default:
1409     llvm_unreachable("The current token should be an IR block reference");
1410   }
1411   return false;
1412 }
1413 
1414 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1415   assert(Token.is(MIToken::kw_blockaddress));
1416   lex();
1417   if (expectAndConsume(MIToken::lparen))
1418     return true;
1419   if (Token.isNot(MIToken::GlobalValue) &&
1420       Token.isNot(MIToken::NamedGlobalValue))
1421     return error("expected a global value");
1422   GlobalValue *GV = nullptr;
1423   if (parseGlobalValue(GV))
1424     return true;
1425   auto *F = dyn_cast<Function>(GV);
1426   if (!F)
1427     return error("expected an IR function reference");
1428   lex();
1429   if (expectAndConsume(MIToken::comma))
1430     return true;
1431   BasicBlock *BB = nullptr;
1432   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1433     return error("expected an IR block reference");
1434   if (parseIRBlock(BB, *F))
1435     return true;
1436   lex();
1437   if (expectAndConsume(MIToken::rparen))
1438     return true;
1439   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1440   if (parseOperandsOffset(Dest))
1441     return true;
1442   return false;
1443 }
1444 
1445 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1446   assert(Token.is(MIToken::kw_intrinsic));
1447   lex();
1448   if (expectAndConsume(MIToken::lparen))
1449     return error("expected syntax intrinsic(@llvm.whatever)");
1450 
1451   if (Token.isNot(MIToken::NamedGlobalValue))
1452     return error("expected syntax intrinsic(@llvm.whatever)");
1453 
1454   std::string Name = Token.stringValue();
1455   lex();
1456 
1457   if (expectAndConsume(MIToken::rparen))
1458     return error("expected ')' to terminate intrinsic name");
1459 
1460   // Find out what intrinsic we're dealing with, first try the global namespace
1461   // and then the target's private intrinsics if that fails.
1462   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1463   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1464   if (ID == Intrinsic::not_intrinsic && TII)
1465     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1466 
1467   if (ID == Intrinsic::not_intrinsic)
1468     return error("unknown intrinsic name");
1469   Dest = MachineOperand::CreateIntrinsicID(ID);
1470 
1471   return false;
1472 }
1473 
1474 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1475   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1476   bool IsFloat = Token.is(MIToken::kw_floatpred);
1477   lex();
1478 
1479   if (expectAndConsume(MIToken::lparen))
1480     return error("expected syntax intpred(whatever) or floatpred(whatever");
1481 
1482   if (Token.isNot(MIToken::Identifier))
1483     return error("whatever");
1484 
1485   CmpInst::Predicate Pred;
1486   if (IsFloat) {
1487     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1488                .Case("false", CmpInst::FCMP_FALSE)
1489                .Case("oeq", CmpInst::FCMP_OEQ)
1490                .Case("ogt", CmpInst::FCMP_OGT)
1491                .Case("oge", CmpInst::FCMP_OGE)
1492                .Case("olt", CmpInst::FCMP_OLT)
1493                .Case("ole", CmpInst::FCMP_OLE)
1494                .Case("one", CmpInst::FCMP_ONE)
1495                .Case("ord", CmpInst::FCMP_ORD)
1496                .Case("uno", CmpInst::FCMP_UNO)
1497                .Case("ueq", CmpInst::FCMP_UEQ)
1498                .Case("ugt", CmpInst::FCMP_UGT)
1499                .Case("uge", CmpInst::FCMP_UGE)
1500                .Case("ult", CmpInst::FCMP_ULT)
1501                .Case("ule", CmpInst::FCMP_ULE)
1502                .Case("une", CmpInst::FCMP_UNE)
1503                .Case("true", CmpInst::FCMP_TRUE)
1504                .Default(CmpInst::BAD_FCMP_PREDICATE);
1505     if (!CmpInst::isFPPredicate(Pred))
1506       return error("invalid floating-point predicate");
1507   } else {
1508     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1509                .Case("eq", CmpInst::ICMP_EQ)
1510                .Case("ne", CmpInst::ICMP_NE)
1511                .Case("sgt", CmpInst::ICMP_SGT)
1512                .Case("sge", CmpInst::ICMP_SGE)
1513                .Case("slt", CmpInst::ICMP_SLT)
1514                .Case("sle", CmpInst::ICMP_SLE)
1515                .Case("ugt", CmpInst::ICMP_UGT)
1516                .Case("uge", CmpInst::ICMP_UGE)
1517                .Case("ult", CmpInst::ICMP_ULT)
1518                .Case("ule", CmpInst::ICMP_ULE)
1519                .Default(CmpInst::BAD_ICMP_PREDICATE);
1520     if (!CmpInst::isIntPredicate(Pred))
1521       return error("invalid integer predicate");
1522   }
1523 
1524   lex();
1525   Dest = MachineOperand::CreatePredicate(Pred);
1526   if (expectAndConsume(MIToken::rparen))
1527     return error("predicate should be terminated by ')'.");
1528 
1529   return false;
1530 }
1531 
1532 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1533   assert(Token.is(MIToken::kw_target_index));
1534   lex();
1535   if (expectAndConsume(MIToken::lparen))
1536     return true;
1537   if (Token.isNot(MIToken::Identifier))
1538     return error("expected the name of the target index");
1539   int Index = 0;
1540   if (getTargetIndex(Token.stringValue(), Index))
1541     return error("use of undefined target index '" + Token.stringValue() + "'");
1542   lex();
1543   if (expectAndConsume(MIToken::rparen))
1544     return true;
1545   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1546   if (parseOperandsOffset(Dest))
1547     return true;
1548   return false;
1549 }
1550 
1551 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1552   assert(Token.is(MIToken::kw_liveout));
1553   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1554   assert(TRI && "Expected target register info");
1555   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1556   lex();
1557   if (expectAndConsume(MIToken::lparen))
1558     return true;
1559   while (true) {
1560     if (Token.isNot(MIToken::NamedRegister))
1561       return error("expected a named register");
1562     unsigned Reg = 0;
1563     if (parseRegister(Reg))
1564       return true;
1565     lex();
1566     Mask[Reg / 32] |= 1U << (Reg % 32);
1567     // TODO: Report an error if the same register is used more than once.
1568     if (Token.isNot(MIToken::comma))
1569       break;
1570     lex();
1571   }
1572   if (expectAndConsume(MIToken::rparen))
1573     return true;
1574   Dest = MachineOperand::CreateRegLiveOut(Mask);
1575   return false;
1576 }
1577 
1578 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1579                                    Optional<unsigned> &TiedDefIdx) {
1580   switch (Token.kind()) {
1581   case MIToken::kw_implicit:
1582   case MIToken::kw_implicit_define:
1583   case MIToken::kw_def:
1584   case MIToken::kw_dead:
1585   case MIToken::kw_killed:
1586   case MIToken::kw_undef:
1587   case MIToken::kw_internal:
1588   case MIToken::kw_early_clobber:
1589   case MIToken::kw_debug_use:
1590   case MIToken::underscore:
1591   case MIToken::NamedRegister:
1592   case MIToken::VirtualRegister:
1593     return parseRegisterOperand(Dest, TiedDefIdx);
1594   case MIToken::IntegerLiteral:
1595     return parseImmediateOperand(Dest);
1596   case MIToken::IntegerType:
1597     return parseTypedImmediateOperand(Dest);
1598   case MIToken::kw_half:
1599   case MIToken::kw_float:
1600   case MIToken::kw_double:
1601   case MIToken::kw_x86_fp80:
1602   case MIToken::kw_fp128:
1603   case MIToken::kw_ppc_fp128:
1604     return parseFPImmediateOperand(Dest);
1605   case MIToken::MachineBasicBlock:
1606     return parseMBBOperand(Dest);
1607   case MIToken::StackObject:
1608     return parseStackObjectOperand(Dest);
1609   case MIToken::FixedStackObject:
1610     return parseFixedStackObjectOperand(Dest);
1611   case MIToken::GlobalValue:
1612   case MIToken::NamedGlobalValue:
1613     return parseGlobalAddressOperand(Dest);
1614   case MIToken::ConstantPoolItem:
1615     return parseConstantPoolIndexOperand(Dest);
1616   case MIToken::JumpTableIndex:
1617     return parseJumpTableIndexOperand(Dest);
1618   case MIToken::ExternalSymbol:
1619     return parseExternalSymbolOperand(Dest);
1620   case MIToken::SubRegisterIndex:
1621     return parseSubRegisterIndexOperand(Dest);
1622   case MIToken::exclaim:
1623     return parseMetadataOperand(Dest);
1624   case MIToken::kw_cfi_same_value:
1625   case MIToken::kw_cfi_offset:
1626   case MIToken::kw_cfi_def_cfa_register:
1627   case MIToken::kw_cfi_def_cfa_offset:
1628   case MIToken::kw_cfi_def_cfa:
1629     return parseCFIOperand(Dest);
1630   case MIToken::kw_blockaddress:
1631     return parseBlockAddressOperand(Dest);
1632   case MIToken::kw_intrinsic:
1633     return parseIntrinsicOperand(Dest);
1634   case MIToken::kw_target_index:
1635     return parseTargetIndexOperand(Dest);
1636   case MIToken::kw_liveout:
1637     return parseLiveoutRegisterMaskOperand(Dest);
1638   case MIToken::kw_floatpred:
1639   case MIToken::kw_intpred:
1640     return parsePredicateOperand(Dest);
1641   case MIToken::Error:
1642     return true;
1643   case MIToken::Identifier:
1644     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1645       Dest = MachineOperand::CreateRegMask(RegMask);
1646       lex();
1647       break;
1648     }
1649     LLVM_FALLTHROUGH;
1650   default:
1651     // FIXME: Parse the MCSymbol machine operand.
1652     return error("expected a machine operand");
1653   }
1654   return false;
1655 }
1656 
1657 bool MIParser::parseMachineOperandAndTargetFlags(
1658     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1659   unsigned TF = 0;
1660   bool HasTargetFlags = false;
1661   if (Token.is(MIToken::kw_target_flags)) {
1662     HasTargetFlags = true;
1663     lex();
1664     if (expectAndConsume(MIToken::lparen))
1665       return true;
1666     if (Token.isNot(MIToken::Identifier))
1667       return error("expected the name of the target flag");
1668     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1669       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1670         return error("use of undefined target flag '" + Token.stringValue() +
1671                      "'");
1672     }
1673     lex();
1674     while (Token.is(MIToken::comma)) {
1675       lex();
1676       if (Token.isNot(MIToken::Identifier))
1677         return error("expected the name of the target flag");
1678       unsigned BitFlag = 0;
1679       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1680         return error("use of undefined target flag '" + Token.stringValue() +
1681                      "'");
1682       // TODO: Report an error when using a duplicate bit target flag.
1683       TF |= BitFlag;
1684       lex();
1685     }
1686     if (expectAndConsume(MIToken::rparen))
1687       return true;
1688   }
1689   auto Loc = Token.location();
1690   if (parseMachineOperand(Dest, TiedDefIdx))
1691     return true;
1692   if (!HasTargetFlags)
1693     return false;
1694   if (Dest.isReg())
1695     return error(Loc, "register operands can't have target flags");
1696   Dest.setTargetFlags(TF);
1697   return false;
1698 }
1699 
1700 bool MIParser::parseOffset(int64_t &Offset) {
1701   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1702     return false;
1703   StringRef Sign = Token.range();
1704   bool IsNegative = Token.is(MIToken::minus);
1705   lex();
1706   if (Token.isNot(MIToken::IntegerLiteral))
1707     return error("expected an integer literal after '" + Sign + "'");
1708   if (Token.integerValue().getMinSignedBits() > 64)
1709     return error("expected 64-bit integer (too large)");
1710   Offset = Token.integerValue().getExtValue();
1711   if (IsNegative)
1712     Offset = -Offset;
1713   lex();
1714   return false;
1715 }
1716 
1717 bool MIParser::parseAlignment(unsigned &Alignment) {
1718   assert(Token.is(MIToken::kw_align));
1719   lex();
1720   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1721     return error("expected an integer literal after 'align'");
1722   if (getUnsigned(Alignment))
1723     return true;
1724   lex();
1725   return false;
1726 }
1727 
1728 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1729   int64_t Offset = 0;
1730   if (parseOffset(Offset))
1731     return true;
1732   Op.setOffset(Offset);
1733   return false;
1734 }
1735 
1736 bool MIParser::parseIRValue(const Value *&V) {
1737   switch (Token.kind()) {
1738   case MIToken::NamedIRValue: {
1739     V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1740     break;
1741   }
1742   case MIToken::IRValue: {
1743     unsigned SlotNumber = 0;
1744     if (getUnsigned(SlotNumber))
1745       return true;
1746     V = getIRValue(SlotNumber);
1747     break;
1748   }
1749   case MIToken::NamedGlobalValue:
1750   case MIToken::GlobalValue: {
1751     GlobalValue *GV = nullptr;
1752     if (parseGlobalValue(GV))
1753       return true;
1754     V = GV;
1755     break;
1756   }
1757   case MIToken::QuotedIRValue: {
1758     const Constant *C = nullptr;
1759     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1760       return true;
1761     V = C;
1762     break;
1763   }
1764   default:
1765     llvm_unreachable("The current token should be an IR block reference");
1766   }
1767   if (!V)
1768     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1769   return false;
1770 }
1771 
1772 bool MIParser::getUint64(uint64_t &Result) {
1773   assert(Token.hasIntegerValue());
1774   if (Token.integerValue().getActiveBits() > 64)
1775     return error("expected 64-bit integer (too large)");
1776   Result = Token.integerValue().getZExtValue();
1777   return false;
1778 }
1779 
1780 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1781   const auto OldFlags = Flags;
1782   switch (Token.kind()) {
1783   case MIToken::kw_volatile:
1784     Flags |= MachineMemOperand::MOVolatile;
1785     break;
1786   case MIToken::kw_non_temporal:
1787     Flags |= MachineMemOperand::MONonTemporal;
1788     break;
1789   case MIToken::kw_invariant:
1790     Flags |= MachineMemOperand::MOInvariant;
1791     break;
1792   // TODO: parse the target specific memory operand flags.
1793   default:
1794     llvm_unreachable("The current token should be a memory operand flag");
1795   }
1796   if (OldFlags == Flags)
1797     // We know that the same flag is specified more than once when the flags
1798     // weren't modified.
1799     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1800   lex();
1801   return false;
1802 }
1803 
1804 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1805   switch (Token.kind()) {
1806   case MIToken::kw_stack:
1807     PSV = MF.getPSVManager().getStack();
1808     break;
1809   case MIToken::kw_got:
1810     PSV = MF.getPSVManager().getGOT();
1811     break;
1812   case MIToken::kw_jump_table:
1813     PSV = MF.getPSVManager().getJumpTable();
1814     break;
1815   case MIToken::kw_constant_pool:
1816     PSV = MF.getPSVManager().getConstantPool();
1817     break;
1818   case MIToken::FixedStackObject: {
1819     int FI;
1820     if (parseFixedStackFrameIndex(FI))
1821       return true;
1822     PSV = MF.getPSVManager().getFixedStack(FI);
1823     // The token was already consumed, so use return here instead of break.
1824     return false;
1825   }
1826   case MIToken::StackObject: {
1827     int FI;
1828     if (parseStackFrameIndex(FI))
1829       return true;
1830     PSV = MF.getPSVManager().getFixedStack(FI);
1831     // The token was already consumed, so use return here instead of break.
1832     return false;
1833   }
1834   case MIToken::kw_call_entry: {
1835     lex();
1836     switch (Token.kind()) {
1837     case MIToken::GlobalValue:
1838     case MIToken::NamedGlobalValue: {
1839       GlobalValue *GV = nullptr;
1840       if (parseGlobalValue(GV))
1841         return true;
1842       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1843       break;
1844     }
1845     case MIToken::ExternalSymbol:
1846       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1847           MF.createExternalSymbolName(Token.stringValue()));
1848       break;
1849     default:
1850       return error(
1851           "expected a global value or an external symbol after 'call-entry'");
1852     }
1853     break;
1854   }
1855   default:
1856     llvm_unreachable("The current token should be pseudo source value");
1857   }
1858   lex();
1859   return false;
1860 }
1861 
1862 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1863   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1864       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1865       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1866       Token.is(MIToken::kw_call_entry)) {
1867     const PseudoSourceValue *PSV = nullptr;
1868     if (parseMemoryPseudoSourceValue(PSV))
1869       return true;
1870     int64_t Offset = 0;
1871     if (parseOffset(Offset))
1872       return true;
1873     Dest = MachinePointerInfo(PSV, Offset);
1874     return false;
1875   }
1876   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1877       Token.isNot(MIToken::GlobalValue) &&
1878       Token.isNot(MIToken::NamedGlobalValue) &&
1879       Token.isNot(MIToken::QuotedIRValue))
1880     return error("expected an IR value reference");
1881   const Value *V = nullptr;
1882   if (parseIRValue(V))
1883     return true;
1884   if (!V->getType()->isPointerTy())
1885     return error("expected a pointer IR value");
1886   lex();
1887   int64_t Offset = 0;
1888   if (parseOffset(Offset))
1889     return true;
1890   Dest = MachinePointerInfo(V, Offset);
1891   return false;
1892 }
1893 
1894 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1895   if (expectAndConsume(MIToken::lparen))
1896     return true;
1897   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1898   while (Token.isMemoryOperandFlag()) {
1899     if (parseMemoryOperandFlag(Flags))
1900       return true;
1901   }
1902   if (Token.isNot(MIToken::Identifier) ||
1903       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1904     return error("expected 'load' or 'store' memory operation");
1905   if (Token.stringValue() == "load")
1906     Flags |= MachineMemOperand::MOLoad;
1907   else
1908     Flags |= MachineMemOperand::MOStore;
1909   lex();
1910 
1911   if (Token.isNot(MIToken::IntegerLiteral))
1912     return error("expected the size integer literal after memory operation");
1913   uint64_t Size;
1914   if (getUint64(Size))
1915     return true;
1916   lex();
1917 
1918   MachinePointerInfo Ptr = MachinePointerInfo();
1919   if (Token.is(MIToken::Identifier)) {
1920     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1921     if (Token.stringValue() != Word)
1922       return error(Twine("expected '") + Word + "'");
1923     lex();
1924 
1925     if (parseMachinePointerInfo(Ptr))
1926       return true;
1927   }
1928   unsigned BaseAlignment = Size;
1929   AAMDNodes AAInfo;
1930   MDNode *Range = nullptr;
1931   while (consumeIfPresent(MIToken::comma)) {
1932     switch (Token.kind()) {
1933     case MIToken::kw_align:
1934       if (parseAlignment(BaseAlignment))
1935         return true;
1936       break;
1937     case MIToken::md_tbaa:
1938       lex();
1939       if (parseMDNode(AAInfo.TBAA))
1940         return true;
1941       break;
1942     case MIToken::md_alias_scope:
1943       lex();
1944       if (parseMDNode(AAInfo.Scope))
1945         return true;
1946       break;
1947     case MIToken::md_noalias:
1948       lex();
1949       if (parseMDNode(AAInfo.NoAlias))
1950         return true;
1951       break;
1952     case MIToken::md_range:
1953       lex();
1954       if (parseMDNode(Range))
1955         return true;
1956       break;
1957     // TODO: Report an error on duplicate metadata nodes.
1958     default:
1959       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1960                    "'!noalias' or '!range'");
1961     }
1962   }
1963   if (expectAndConsume(MIToken::rparen))
1964     return true;
1965   Dest =
1966       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1967   return false;
1968 }
1969 
1970 void MIParser::initNames2InstrOpCodes() {
1971   if (!Names2InstrOpCodes.empty())
1972     return;
1973   const auto *TII = MF.getSubtarget().getInstrInfo();
1974   assert(TII && "Expected target instruction info");
1975   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1976     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1977 }
1978 
1979 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1980   initNames2InstrOpCodes();
1981   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1982   if (InstrInfo == Names2InstrOpCodes.end())
1983     return true;
1984   OpCode = InstrInfo->getValue();
1985   return false;
1986 }
1987 
1988 void MIParser::initNames2Regs() {
1989   if (!Names2Regs.empty())
1990     return;
1991   // The '%noreg' register is the register 0.
1992   Names2Regs.insert(std::make_pair("noreg", 0));
1993   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1994   assert(TRI && "Expected target register info");
1995   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1996     bool WasInserted =
1997         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1998             .second;
1999     (void)WasInserted;
2000     assert(WasInserted && "Expected registers to be unique case-insensitively");
2001   }
2002 }
2003 
2004 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2005   initNames2Regs();
2006   auto RegInfo = Names2Regs.find(RegName);
2007   if (RegInfo == Names2Regs.end())
2008     return true;
2009   Reg = RegInfo->getValue();
2010   return false;
2011 }
2012 
2013 void MIParser::initNames2RegMasks() {
2014   if (!Names2RegMasks.empty())
2015     return;
2016   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2017   assert(TRI && "Expected target register info");
2018   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2019   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2020   assert(RegMasks.size() == RegMaskNames.size());
2021   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2022     Names2RegMasks.insert(
2023         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2024 }
2025 
2026 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2027   initNames2RegMasks();
2028   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2029   if (RegMaskInfo == Names2RegMasks.end())
2030     return nullptr;
2031   return RegMaskInfo->getValue();
2032 }
2033 
2034 void MIParser::initNames2SubRegIndices() {
2035   if (!Names2SubRegIndices.empty())
2036     return;
2037   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2038   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2039     Names2SubRegIndices.insert(
2040         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2041 }
2042 
2043 unsigned MIParser::getSubRegIndex(StringRef Name) {
2044   initNames2SubRegIndices();
2045   auto SubRegInfo = Names2SubRegIndices.find(Name);
2046   if (SubRegInfo == Names2SubRegIndices.end())
2047     return 0;
2048   return SubRegInfo->getValue();
2049 }
2050 
2051 static void initSlots2BasicBlocks(
2052     const Function &F,
2053     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2054   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2055   MST.incorporateFunction(F);
2056   for (auto &BB : F) {
2057     if (BB.hasName())
2058       continue;
2059     int Slot = MST.getLocalSlot(&BB);
2060     if (Slot == -1)
2061       continue;
2062     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2063   }
2064 }
2065 
2066 static const BasicBlock *getIRBlockFromSlot(
2067     unsigned Slot,
2068     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2069   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2070   if (BlockInfo == Slots2BasicBlocks.end())
2071     return nullptr;
2072   return BlockInfo->second;
2073 }
2074 
2075 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2076   if (Slots2BasicBlocks.empty())
2077     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2078   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2079 }
2080 
2081 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2082   if (&F == MF.getFunction())
2083     return getIRBlock(Slot);
2084   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2085   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2086   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2087 }
2088 
2089 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2090                            DenseMap<unsigned, const Value *> &Slots2Values) {
2091   int Slot = MST.getLocalSlot(V);
2092   if (Slot == -1)
2093     return;
2094   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2095 }
2096 
2097 /// Creates the mapping from slot numbers to function's unnamed IR values.
2098 static void initSlots2Values(const Function &F,
2099                              DenseMap<unsigned, const Value *> &Slots2Values) {
2100   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2101   MST.incorporateFunction(F);
2102   for (const auto &Arg : F.args())
2103     mapValueToSlot(&Arg, MST, Slots2Values);
2104   for (const auto &BB : F) {
2105     mapValueToSlot(&BB, MST, Slots2Values);
2106     for (const auto &I : BB)
2107       mapValueToSlot(&I, MST, Slots2Values);
2108   }
2109 }
2110 
2111 const Value *MIParser::getIRValue(unsigned Slot) {
2112   if (Slots2Values.empty())
2113     initSlots2Values(*MF.getFunction(), Slots2Values);
2114   auto ValueInfo = Slots2Values.find(Slot);
2115   if (ValueInfo == Slots2Values.end())
2116     return nullptr;
2117   return ValueInfo->second;
2118 }
2119 
2120 void MIParser::initNames2TargetIndices() {
2121   if (!Names2TargetIndices.empty())
2122     return;
2123   const auto *TII = MF.getSubtarget().getInstrInfo();
2124   assert(TII && "Expected target instruction info");
2125   auto Indices = TII->getSerializableTargetIndices();
2126   for (const auto &I : Indices)
2127     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2128 }
2129 
2130 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2131   initNames2TargetIndices();
2132   auto IndexInfo = Names2TargetIndices.find(Name);
2133   if (IndexInfo == Names2TargetIndices.end())
2134     return true;
2135   Index = IndexInfo->second;
2136   return false;
2137 }
2138 
2139 void MIParser::initNames2DirectTargetFlags() {
2140   if (!Names2DirectTargetFlags.empty())
2141     return;
2142   const auto *TII = MF.getSubtarget().getInstrInfo();
2143   assert(TII && "Expected target instruction info");
2144   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2145   for (const auto &I : Flags)
2146     Names2DirectTargetFlags.insert(
2147         std::make_pair(StringRef(I.second), I.first));
2148 }
2149 
2150 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2151   initNames2DirectTargetFlags();
2152   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2153   if (FlagInfo == Names2DirectTargetFlags.end())
2154     return true;
2155   Flag = FlagInfo->second;
2156   return false;
2157 }
2158 
2159 void MIParser::initNames2BitmaskTargetFlags() {
2160   if (!Names2BitmaskTargetFlags.empty())
2161     return;
2162   const auto *TII = MF.getSubtarget().getInstrInfo();
2163   assert(TII && "Expected target instruction info");
2164   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2165   for (const auto &I : Flags)
2166     Names2BitmaskTargetFlags.insert(
2167         std::make_pair(StringRef(I.second), I.first));
2168 }
2169 
2170 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2171   initNames2BitmaskTargetFlags();
2172   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2173   if (FlagInfo == Names2BitmaskTargetFlags.end())
2174     return true;
2175   Flag = FlagInfo->second;
2176   return false;
2177 }
2178 
2179 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2180                                              StringRef Src,
2181                                              SMDiagnostic &Error) {
2182   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2183 }
2184 
2185 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS,
2186                                     StringRef Src, SMDiagnostic &Error) {
2187   return MIParser(PFS, Error, Src).parseBasicBlocks();
2188 }
2189 
2190 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS,
2191                              MachineBasicBlock *&MBB, StringRef Src,
2192                              SMDiagnostic &Error) {
2193   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2194 }
2195 
2196 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
2197                                        unsigned &Reg, StringRef Src,
2198                                        SMDiagnostic &Error) {
2199   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2200 }
2201 
2202 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
2203                                          unsigned &Reg, StringRef Src,
2204                                          SMDiagnostic &Error) {
2205   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg);
2206 }
2207 
2208 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS,
2209                                      int &FI, StringRef Src,
2210                                      SMDiagnostic &Error) {
2211   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2212 }
2213 
2214 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS,
2215                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2216   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2217 }
2218