1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 40 using namespace llvm; 41 42 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 43 SourceMgr &SM, const SlotMapping &IRSlots) 44 : MF(MF), SM(&SM), IRSlots(IRSlots) { 45 } 46 47 namespace { 48 49 /// A wrapper struct around the 'MachineOperand' struct that includes a source 50 /// range and other attributes. 51 struct ParsedMachineOperand { 52 MachineOperand Operand; 53 StringRef::iterator Begin; 54 StringRef::iterator End; 55 Optional<unsigned> TiedDefIdx; 56 57 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 58 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 59 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 60 if (TiedDefIdx) 61 assert(Operand.isReg() && Operand.isUse() && 62 "Only used register operands can be tied"); 63 } 64 }; 65 66 class MIParser { 67 MachineFunction &MF; 68 SMDiagnostic &Error; 69 StringRef Source, CurrentSource; 70 MIToken Token; 71 const PerFunctionMIParsingState &PFS; 72 /// Maps from instruction names to op codes. 73 StringMap<unsigned> Names2InstrOpCodes; 74 /// Maps from register names to registers. 75 StringMap<unsigned> Names2Regs; 76 /// Maps from register mask names to register masks. 77 StringMap<const uint32_t *> Names2RegMasks; 78 /// Maps from subregister names to subregister indices. 79 StringMap<unsigned> Names2SubRegIndices; 80 /// Maps from slot numbers to function's unnamed basic blocks. 81 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 82 /// Maps from slot numbers to function's unnamed values. 83 DenseMap<unsigned, const Value *> Slots2Values; 84 /// Maps from target index names to target indices. 85 StringMap<int> Names2TargetIndices; 86 /// Maps from direct target flag names to the direct target flag values. 87 StringMap<unsigned> Names2DirectTargetFlags; 88 /// Maps from direct target flag names to the bitmask target flag values. 89 StringMap<unsigned> Names2BitmaskTargetFlags; 90 91 public: 92 MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 93 StringRef Source); 94 95 /// \p SkipChar gives the number of characters to skip before looking 96 /// for the next token. 97 void lex(unsigned SkipChar = 0); 98 99 /// Report an error at the current location with the given message. 100 /// 101 /// This function always return true. 102 bool error(const Twine &Msg); 103 104 /// Report an error at the given location with the given message. 105 /// 106 /// This function always return true. 107 bool error(StringRef::iterator Loc, const Twine &Msg); 108 109 bool 110 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 111 bool parseBasicBlocks(); 112 bool parse(MachineInstr *&MI); 113 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 114 bool parseStandaloneNamedRegister(unsigned &Reg); 115 bool parseStandaloneVirtualRegister(unsigned &Reg); 116 bool parseStandaloneStackObject(int &FI); 117 bool parseStandaloneMDNode(MDNode *&Node); 118 119 bool 120 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 121 bool parseBasicBlock(MachineBasicBlock &MBB); 122 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 123 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 124 125 bool parseRegister(unsigned &Reg); 126 bool parseRegisterFlag(unsigned &Flags); 127 bool parseSubRegisterIndex(unsigned &SubReg); 128 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 129 bool parseSize(unsigned &Size); 130 bool parseRegisterOperand(MachineOperand &Dest, 131 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 132 bool parseImmediateOperand(MachineOperand &Dest); 133 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 134 const Constant *&C); 135 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 136 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 137 bool parseTypedImmediateOperand(MachineOperand &Dest); 138 bool parseFPImmediateOperand(MachineOperand &Dest); 139 bool parseMBBReference(MachineBasicBlock *&MBB); 140 bool parseMBBOperand(MachineOperand &Dest); 141 bool parseStackFrameIndex(int &FI); 142 bool parseStackObjectOperand(MachineOperand &Dest); 143 bool parseFixedStackFrameIndex(int &FI); 144 bool parseFixedStackObjectOperand(MachineOperand &Dest); 145 bool parseGlobalValue(GlobalValue *&GV); 146 bool parseGlobalAddressOperand(MachineOperand &Dest); 147 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 148 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 149 bool parseJumpTableIndexOperand(MachineOperand &Dest); 150 bool parseExternalSymbolOperand(MachineOperand &Dest); 151 bool parseMDNode(MDNode *&Node); 152 bool parseMetadataOperand(MachineOperand &Dest); 153 bool parseCFIOffset(int &Offset); 154 bool parseCFIRegister(unsigned &Reg); 155 bool parseCFIOperand(MachineOperand &Dest); 156 bool parseIRBlock(BasicBlock *&BB, const Function &F); 157 bool parseBlockAddressOperand(MachineOperand &Dest); 158 bool parseIntrinsicOperand(MachineOperand &Dest); 159 bool parsePredicateOperand(MachineOperand &Dest); 160 bool parseTargetIndexOperand(MachineOperand &Dest); 161 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 162 bool parseMachineOperand(MachineOperand &Dest, 163 Optional<unsigned> &TiedDefIdx); 164 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 165 Optional<unsigned> &TiedDefIdx); 166 bool parseOffset(int64_t &Offset); 167 bool parseAlignment(unsigned &Alignment); 168 bool parseOperandsOffset(MachineOperand &Op); 169 bool parseIRValue(const Value *&V); 170 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 171 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 172 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 173 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 174 175 private: 176 /// Convert the integer literal in the current token into an unsigned integer. 177 /// 178 /// Return true if an error occurred. 179 bool getUnsigned(unsigned &Result); 180 181 /// Convert the integer literal in the current token into an uint64. 182 /// 183 /// Return true if an error occurred. 184 bool getUint64(uint64_t &Result); 185 186 /// If the current token is of the given kind, consume it and return false. 187 /// Otherwise report an error and return true. 188 bool expectAndConsume(MIToken::TokenKind TokenKind); 189 190 /// If the current token is of the given kind, consume it and return true. 191 /// Otherwise return false. 192 bool consumeIfPresent(MIToken::TokenKind TokenKind); 193 194 void initNames2InstrOpCodes(); 195 196 /// Try to convert an instruction name to an opcode. Return true if the 197 /// instruction name is invalid. 198 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 199 200 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 201 202 bool assignRegisterTies(MachineInstr &MI, 203 ArrayRef<ParsedMachineOperand> Operands); 204 205 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 206 const MCInstrDesc &MCID); 207 208 void initNames2Regs(); 209 210 /// Try to convert a register name to a register number. Return true if the 211 /// register name is invalid. 212 bool getRegisterByName(StringRef RegName, unsigned &Reg); 213 214 void initNames2RegMasks(); 215 216 /// Check if the given identifier is a name of a register mask. 217 /// 218 /// Return null if the identifier isn't a register mask. 219 const uint32_t *getRegMask(StringRef Identifier); 220 221 void initNames2SubRegIndices(); 222 223 /// Check if the given identifier is a name of a subregister index. 224 /// 225 /// Return 0 if the name isn't a subregister index class. 226 unsigned getSubRegIndex(StringRef Name); 227 228 const BasicBlock *getIRBlock(unsigned Slot); 229 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 230 231 const Value *getIRValue(unsigned Slot); 232 233 void initNames2TargetIndices(); 234 235 /// Try to convert a name of target index to the corresponding target index. 236 /// 237 /// Return true if the name isn't a name of a target index. 238 bool getTargetIndex(StringRef Name, int &Index); 239 240 void initNames2DirectTargetFlags(); 241 242 /// Try to convert a name of a direct target flag to the corresponding 243 /// target flag. 244 /// 245 /// Return true if the name isn't a name of a direct flag. 246 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 247 248 void initNames2BitmaskTargetFlags(); 249 250 /// Try to convert a name of a bitmask target flag to the corresponding 251 /// target flag. 252 /// 253 /// Return true if the name isn't a name of a bitmask target flag. 254 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 255 }; 256 257 } // end anonymous namespace 258 259 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 260 StringRef Source) 261 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 262 {} 263 264 void MIParser::lex(unsigned SkipChar) { 265 CurrentSource = lexMIToken( 266 CurrentSource.data() + SkipChar, Token, 267 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 268 } 269 270 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 271 272 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 273 const SourceMgr &SM = *PFS.SM; 274 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 275 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 276 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 277 // Create an ordinary diagnostic when the source manager's buffer is the 278 // source string. 279 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 280 return true; 281 } 282 // Create a diagnostic for a YAML string literal. 283 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 284 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 285 Source, None, None); 286 return true; 287 } 288 289 static const char *toString(MIToken::TokenKind TokenKind) { 290 switch (TokenKind) { 291 case MIToken::comma: 292 return "','"; 293 case MIToken::equal: 294 return "'='"; 295 case MIToken::colon: 296 return "':'"; 297 case MIToken::lparen: 298 return "'('"; 299 case MIToken::rparen: 300 return "')'"; 301 default: 302 return "<unknown token>"; 303 } 304 } 305 306 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 307 if (Token.isNot(TokenKind)) 308 return error(Twine("expected ") + toString(TokenKind)); 309 lex(); 310 return false; 311 } 312 313 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 314 if (Token.isNot(TokenKind)) 315 return false; 316 lex(); 317 return true; 318 } 319 320 bool MIParser::parseBasicBlockDefinition( 321 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 322 assert(Token.is(MIToken::MachineBasicBlockLabel)); 323 unsigned ID = 0; 324 if (getUnsigned(ID)) 325 return true; 326 auto Loc = Token.location(); 327 auto Name = Token.stringValue(); 328 lex(); 329 bool HasAddressTaken = false; 330 bool IsLandingPad = false; 331 unsigned Alignment = 0; 332 BasicBlock *BB = nullptr; 333 if (consumeIfPresent(MIToken::lparen)) { 334 do { 335 // TODO: Report an error when multiple same attributes are specified. 336 switch (Token.kind()) { 337 case MIToken::kw_address_taken: 338 HasAddressTaken = true; 339 lex(); 340 break; 341 case MIToken::kw_landing_pad: 342 IsLandingPad = true; 343 lex(); 344 break; 345 case MIToken::kw_align: 346 if (parseAlignment(Alignment)) 347 return true; 348 break; 349 case MIToken::IRBlock: 350 // TODO: Report an error when both name and ir block are specified. 351 if (parseIRBlock(BB, *MF.getFunction())) 352 return true; 353 lex(); 354 break; 355 default: 356 break; 357 } 358 } while (consumeIfPresent(MIToken::comma)); 359 if (expectAndConsume(MIToken::rparen)) 360 return true; 361 } 362 if (expectAndConsume(MIToken::colon)) 363 return true; 364 365 if (!Name.empty()) { 366 BB = dyn_cast_or_null<BasicBlock>( 367 MF.getFunction()->getValueSymbolTable().lookup(Name)); 368 if (!BB) 369 return error(Loc, Twine("basic block '") + Name + 370 "' is not defined in the function '" + 371 MF.getName() + "'"); 372 } 373 auto *MBB = MF.CreateMachineBasicBlock(BB); 374 MF.insert(MF.end(), MBB); 375 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 376 if (!WasInserted) 377 return error(Loc, Twine("redefinition of machine basic block with id #") + 378 Twine(ID)); 379 if (Alignment) 380 MBB->setAlignment(Alignment); 381 if (HasAddressTaken) 382 MBB->setHasAddressTaken(); 383 MBB->setIsEHPad(IsLandingPad); 384 return false; 385 } 386 387 bool MIParser::parseBasicBlockDefinitions( 388 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 389 lex(); 390 // Skip until the first machine basic block. 391 while (Token.is(MIToken::Newline)) 392 lex(); 393 if (Token.isErrorOrEOF()) 394 return Token.isError(); 395 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 396 return error("expected a basic block definition before instructions"); 397 unsigned BraceDepth = 0; 398 do { 399 if (parseBasicBlockDefinition(MBBSlots)) 400 return true; 401 bool IsAfterNewline = false; 402 // Skip until the next machine basic block. 403 while (true) { 404 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 405 Token.isErrorOrEOF()) 406 break; 407 else if (Token.is(MIToken::MachineBasicBlockLabel)) 408 return error("basic block definition should be located at the start of " 409 "the line"); 410 else if (consumeIfPresent(MIToken::Newline)) { 411 IsAfterNewline = true; 412 continue; 413 } 414 IsAfterNewline = false; 415 if (Token.is(MIToken::lbrace)) 416 ++BraceDepth; 417 if (Token.is(MIToken::rbrace)) { 418 if (!BraceDepth) 419 return error("extraneous closing brace ('}')"); 420 --BraceDepth; 421 } 422 lex(); 423 } 424 // Verify that we closed all of the '{' at the end of a file or a block. 425 if (!Token.isError() && BraceDepth) 426 return error("expected '}'"); // FIXME: Report a note that shows '{'. 427 } while (!Token.isErrorOrEOF()); 428 return Token.isError(); 429 } 430 431 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 432 assert(Token.is(MIToken::kw_liveins)); 433 lex(); 434 if (expectAndConsume(MIToken::colon)) 435 return true; 436 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 437 return false; 438 do { 439 if (Token.isNot(MIToken::NamedRegister)) 440 return error("expected a named register"); 441 unsigned Reg = 0; 442 if (parseRegister(Reg)) 443 return true; 444 MBB.addLiveIn(Reg); 445 lex(); 446 } while (consumeIfPresent(MIToken::comma)); 447 return false; 448 } 449 450 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 451 assert(Token.is(MIToken::kw_successors)); 452 lex(); 453 if (expectAndConsume(MIToken::colon)) 454 return true; 455 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 456 return false; 457 do { 458 if (Token.isNot(MIToken::MachineBasicBlock)) 459 return error("expected a machine basic block reference"); 460 MachineBasicBlock *SuccMBB = nullptr; 461 if (parseMBBReference(SuccMBB)) 462 return true; 463 lex(); 464 unsigned Weight = 0; 465 if (consumeIfPresent(MIToken::lparen)) { 466 if (Token.isNot(MIToken::IntegerLiteral)) 467 return error("expected an integer literal after '('"); 468 if (getUnsigned(Weight)) 469 return true; 470 lex(); 471 if (expectAndConsume(MIToken::rparen)) 472 return true; 473 } 474 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 475 } while (consumeIfPresent(MIToken::comma)); 476 MBB.normalizeSuccProbs(); 477 return false; 478 } 479 480 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 481 // Skip the definition. 482 assert(Token.is(MIToken::MachineBasicBlockLabel)); 483 lex(); 484 if (consumeIfPresent(MIToken::lparen)) { 485 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 486 lex(); 487 consumeIfPresent(MIToken::rparen); 488 } 489 consumeIfPresent(MIToken::colon); 490 491 // Parse the liveins and successors. 492 // N.B: Multiple lists of successors and liveins are allowed and they're 493 // merged into one. 494 // Example: 495 // liveins: %edi 496 // liveins: %esi 497 // 498 // is equivalent to 499 // liveins: %edi, %esi 500 while (true) { 501 if (Token.is(MIToken::kw_successors)) { 502 if (parseBasicBlockSuccessors(MBB)) 503 return true; 504 } else if (Token.is(MIToken::kw_liveins)) { 505 if (parseBasicBlockLiveins(MBB)) 506 return true; 507 } else if (consumeIfPresent(MIToken::Newline)) { 508 continue; 509 } else 510 break; 511 if (!Token.isNewlineOrEOF()) 512 return error("expected line break at the end of a list"); 513 lex(); 514 } 515 516 // Parse the instructions. 517 bool IsInBundle = false; 518 MachineInstr *PrevMI = nullptr; 519 while (true) { 520 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 521 return false; 522 else if (consumeIfPresent(MIToken::Newline)) 523 continue; 524 if (consumeIfPresent(MIToken::rbrace)) { 525 // The first parsing pass should verify that all closing '}' have an 526 // opening '{'. 527 assert(IsInBundle); 528 IsInBundle = false; 529 continue; 530 } 531 MachineInstr *MI = nullptr; 532 if (parse(MI)) 533 return true; 534 MBB.insert(MBB.end(), MI); 535 if (IsInBundle) { 536 PrevMI->setFlag(MachineInstr::BundledSucc); 537 MI->setFlag(MachineInstr::BundledPred); 538 } 539 PrevMI = MI; 540 if (Token.is(MIToken::lbrace)) { 541 if (IsInBundle) 542 return error("nested instruction bundles are not allowed"); 543 lex(); 544 // This instruction is the start of the bundle. 545 MI->setFlag(MachineInstr::BundledSucc); 546 IsInBundle = true; 547 if (!Token.is(MIToken::Newline)) 548 // The next instruction can be on the same line. 549 continue; 550 } 551 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 552 lex(); 553 } 554 return false; 555 } 556 557 bool MIParser::parseBasicBlocks() { 558 lex(); 559 // Skip until the first machine basic block. 560 while (Token.is(MIToken::Newline)) 561 lex(); 562 if (Token.isErrorOrEOF()) 563 return Token.isError(); 564 // The first parsing pass should have verified that this token is a MBB label 565 // in the 'parseBasicBlockDefinitions' method. 566 assert(Token.is(MIToken::MachineBasicBlockLabel)); 567 do { 568 MachineBasicBlock *MBB = nullptr; 569 if (parseMBBReference(MBB)) 570 return true; 571 if (parseBasicBlock(*MBB)) 572 return true; 573 // The method 'parseBasicBlock' should parse the whole block until the next 574 // block or the end of file. 575 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 576 } while (Token.isNot(MIToken::Eof)); 577 return false; 578 } 579 580 bool MIParser::parse(MachineInstr *&MI) { 581 // Parse any register operands before '=' 582 MachineOperand MO = MachineOperand::CreateImm(0); 583 SmallVector<ParsedMachineOperand, 8> Operands; 584 while (Token.isRegister() || Token.isRegisterFlag()) { 585 auto Loc = Token.location(); 586 Optional<unsigned> TiedDefIdx; 587 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 588 return true; 589 Operands.push_back( 590 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 591 if (Token.isNot(MIToken::comma)) 592 break; 593 lex(); 594 } 595 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 596 return true; 597 598 unsigned OpCode, Flags = 0; 599 if (Token.isError() || parseInstruction(OpCode, Flags)) 600 return true; 601 602 SmallVector<LLT, 1> Tys; 603 if (isPreISelGenericOpcode(OpCode)) { 604 // For generic opcode, at least one type is mandatory. 605 auto Loc = Token.location(); 606 bool ManyTypes = Token.is(MIToken::lbrace); 607 if (ManyTypes) 608 lex(); 609 610 // Now actually parse the type(s). 611 do { 612 Tys.resize(Tys.size() + 1); 613 if (parseLowLevelType(Loc, Tys[Tys.size() - 1])) 614 return true; 615 } while (ManyTypes && consumeIfPresent(MIToken::comma)); 616 617 if (ManyTypes) 618 expectAndConsume(MIToken::rbrace); 619 } 620 621 // Parse the remaining machine operands. 622 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 623 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 624 auto Loc = Token.location(); 625 Optional<unsigned> TiedDefIdx; 626 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 627 return true; 628 Operands.push_back( 629 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 630 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 631 Token.is(MIToken::lbrace)) 632 break; 633 if (Token.isNot(MIToken::comma)) 634 return error("expected ',' before the next machine operand"); 635 lex(); 636 } 637 638 DebugLoc DebugLocation; 639 if (Token.is(MIToken::kw_debug_location)) { 640 lex(); 641 if (Token.isNot(MIToken::exclaim)) 642 return error("expected a metadata node after 'debug-location'"); 643 MDNode *Node = nullptr; 644 if (parseMDNode(Node)) 645 return true; 646 DebugLocation = DebugLoc(Node); 647 } 648 649 // Parse the machine memory operands. 650 SmallVector<MachineMemOperand *, 2> MemOperands; 651 if (Token.is(MIToken::coloncolon)) { 652 lex(); 653 while (!Token.isNewlineOrEOF()) { 654 MachineMemOperand *MemOp = nullptr; 655 if (parseMachineMemoryOperand(MemOp)) 656 return true; 657 MemOperands.push_back(MemOp); 658 if (Token.isNewlineOrEOF()) 659 break; 660 if (Token.isNot(MIToken::comma)) 661 return error("expected ',' before the next machine memory operand"); 662 lex(); 663 } 664 } 665 666 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 667 if (!MCID.isVariadic()) { 668 // FIXME: Move the implicit operand verification to the machine verifier. 669 if (verifyImplicitOperands(Operands, MCID)) 670 return true; 671 } 672 673 // TODO: Check for extraneous machine operands. 674 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 675 MI->setFlags(Flags); 676 if (Tys.size() > 0) { 677 for (unsigned i = 0; i < Tys.size(); ++i) 678 MI->setType(Tys[i], i); 679 } 680 for (const auto &Operand : Operands) 681 MI->addOperand(MF, Operand.Operand); 682 if (assignRegisterTies(*MI, Operands)) 683 return true; 684 if (MemOperands.empty()) 685 return false; 686 MachineInstr::mmo_iterator MemRefs = 687 MF.allocateMemRefsArray(MemOperands.size()); 688 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 689 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 690 return false; 691 } 692 693 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 694 lex(); 695 if (Token.isNot(MIToken::MachineBasicBlock)) 696 return error("expected a machine basic block reference"); 697 if (parseMBBReference(MBB)) 698 return true; 699 lex(); 700 if (Token.isNot(MIToken::Eof)) 701 return error( 702 "expected end of string after the machine basic block reference"); 703 return false; 704 } 705 706 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 707 lex(); 708 if (Token.isNot(MIToken::NamedRegister)) 709 return error("expected a named register"); 710 if (parseRegister(Reg)) 711 return true; 712 lex(); 713 if (Token.isNot(MIToken::Eof)) 714 return error("expected end of string after the register reference"); 715 return false; 716 } 717 718 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) { 719 lex(); 720 if (Token.isNot(MIToken::VirtualRegister)) 721 return error("expected a virtual register"); 722 if (parseRegister(Reg)) 723 return true; 724 lex(); 725 if (Token.isNot(MIToken::Eof)) 726 return error("expected end of string after the register reference"); 727 return false; 728 } 729 730 bool MIParser::parseStandaloneStackObject(int &FI) { 731 lex(); 732 if (Token.isNot(MIToken::StackObject)) 733 return error("expected a stack object"); 734 if (parseStackFrameIndex(FI)) 735 return true; 736 if (Token.isNot(MIToken::Eof)) 737 return error("expected end of string after the stack object reference"); 738 return false; 739 } 740 741 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 742 lex(); 743 if (Token.isNot(MIToken::exclaim)) 744 return error("expected a metadata node"); 745 if (parseMDNode(Node)) 746 return true; 747 if (Token.isNot(MIToken::Eof)) 748 return error("expected end of string after the metadata node"); 749 return false; 750 } 751 752 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 753 assert(MO.isImplicit()); 754 return MO.isDef() ? "implicit-def" : "implicit"; 755 } 756 757 static std::string getRegisterName(const TargetRegisterInfo *TRI, 758 unsigned Reg) { 759 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 760 return StringRef(TRI->getName(Reg)).lower(); 761 } 762 763 /// Return true if the parsed machine operands contain a given machine operand. 764 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 765 ArrayRef<ParsedMachineOperand> Operands) { 766 for (const auto &I : Operands) { 767 if (ImplicitOperand.isIdenticalTo(I.Operand)) 768 return true; 769 } 770 return false; 771 } 772 773 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 774 const MCInstrDesc &MCID) { 775 if (MCID.isCall()) 776 // We can't verify call instructions as they can contain arbitrary implicit 777 // register and register mask operands. 778 return false; 779 780 // Gather all the expected implicit operands. 781 SmallVector<MachineOperand, 4> ImplicitOperands; 782 if (MCID.ImplicitDefs) 783 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 784 ImplicitOperands.push_back( 785 MachineOperand::CreateReg(*ImpDefs, true, true)); 786 if (MCID.ImplicitUses) 787 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 788 ImplicitOperands.push_back( 789 MachineOperand::CreateReg(*ImpUses, false, true)); 790 791 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 792 assert(TRI && "Expected target register info"); 793 for (const auto &I : ImplicitOperands) { 794 if (isImplicitOperandIn(I, Operands)) 795 continue; 796 return error(Operands.empty() ? Token.location() : Operands.back().End, 797 Twine("missing implicit register operand '") + 798 printImplicitRegisterFlag(I) + " %" + 799 getRegisterName(TRI, I.getReg()) + "'"); 800 } 801 return false; 802 } 803 804 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 805 if (Token.is(MIToken::kw_frame_setup)) { 806 Flags |= MachineInstr::FrameSetup; 807 lex(); 808 } 809 if (Token.isNot(MIToken::Identifier)) 810 return error("expected a machine instruction"); 811 StringRef InstrName = Token.stringValue(); 812 if (parseInstrName(InstrName, OpCode)) 813 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 814 lex(); 815 return false; 816 } 817 818 bool MIParser::parseRegister(unsigned &Reg) { 819 switch (Token.kind()) { 820 case MIToken::underscore: 821 Reg = 0; 822 break; 823 case MIToken::NamedRegister: { 824 StringRef Name = Token.stringValue(); 825 if (getRegisterByName(Name, Reg)) 826 return error(Twine("unknown register name '") + Name + "'"); 827 break; 828 } 829 case MIToken::VirtualRegister: { 830 unsigned ID; 831 if (getUnsigned(ID)) 832 return true; 833 const auto RegInfo = PFS.VirtualRegisterSlots.find(ID); 834 if (RegInfo == PFS.VirtualRegisterSlots.end()) 835 return error(Twine("use of undefined virtual register '%") + Twine(ID) + 836 "'"); 837 Reg = RegInfo->second; 838 break; 839 } 840 // TODO: Parse other register kinds. 841 default: 842 llvm_unreachable("The current token should be a register"); 843 } 844 return false; 845 } 846 847 bool MIParser::parseRegisterFlag(unsigned &Flags) { 848 const unsigned OldFlags = Flags; 849 switch (Token.kind()) { 850 case MIToken::kw_implicit: 851 Flags |= RegState::Implicit; 852 break; 853 case MIToken::kw_implicit_define: 854 Flags |= RegState::ImplicitDefine; 855 break; 856 case MIToken::kw_def: 857 Flags |= RegState::Define; 858 break; 859 case MIToken::kw_dead: 860 Flags |= RegState::Dead; 861 break; 862 case MIToken::kw_killed: 863 Flags |= RegState::Kill; 864 break; 865 case MIToken::kw_undef: 866 Flags |= RegState::Undef; 867 break; 868 case MIToken::kw_internal: 869 Flags |= RegState::InternalRead; 870 break; 871 case MIToken::kw_early_clobber: 872 Flags |= RegState::EarlyClobber; 873 break; 874 case MIToken::kw_debug_use: 875 Flags |= RegState::Debug; 876 break; 877 default: 878 llvm_unreachable("The current token should be a register flag"); 879 } 880 if (OldFlags == Flags) 881 // We know that the same flag is specified more than once when the flags 882 // weren't modified. 883 return error("duplicate '" + Token.stringValue() + "' register flag"); 884 lex(); 885 return false; 886 } 887 888 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 889 assert(Token.is(MIToken::dot)); 890 lex(); 891 if (Token.isNot(MIToken::Identifier)) 892 return error("expected a subregister index after '.'"); 893 auto Name = Token.stringValue(); 894 SubReg = getSubRegIndex(Name); 895 if (!SubReg) 896 return error(Twine("use of unknown subregister index '") + Name + "'"); 897 lex(); 898 return false; 899 } 900 901 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 902 if (!consumeIfPresent(MIToken::kw_tied_def)) 903 return error("expected 'tied-def' after '('"); 904 if (Token.isNot(MIToken::IntegerLiteral)) 905 return error("expected an integer literal after 'tied-def'"); 906 if (getUnsigned(TiedDefIdx)) 907 return true; 908 lex(); 909 if (expectAndConsume(MIToken::rparen)) 910 return true; 911 return false; 912 } 913 914 bool MIParser::parseSize(unsigned &Size) { 915 if (Token.isNot(MIToken::IntegerLiteral)) 916 return error("expected an integer literal for the size"); 917 if (getUnsigned(Size)) 918 return true; 919 lex(); 920 if (expectAndConsume(MIToken::rparen)) 921 return true; 922 return false; 923 } 924 925 bool MIParser::assignRegisterTies(MachineInstr &MI, 926 ArrayRef<ParsedMachineOperand> Operands) { 927 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 928 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 929 if (!Operands[I].TiedDefIdx) 930 continue; 931 // The parser ensures that this operand is a register use, so we just have 932 // to check the tied-def operand. 933 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 934 if (DefIdx >= E) 935 return error(Operands[I].Begin, 936 Twine("use of invalid tied-def operand index '" + 937 Twine(DefIdx) + "'; instruction has only ") + 938 Twine(E) + " operands"); 939 const auto &DefOperand = Operands[DefIdx].Operand; 940 if (!DefOperand.isReg() || !DefOperand.isDef()) 941 // FIXME: add note with the def operand. 942 return error(Operands[I].Begin, 943 Twine("use of invalid tied-def operand index '") + 944 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 945 " isn't a defined register"); 946 // Check that the tied-def operand wasn't tied elsewhere. 947 for (const auto &TiedPair : TiedRegisterPairs) { 948 if (TiedPair.first == DefIdx) 949 return error(Operands[I].Begin, 950 Twine("the tied-def operand #") + Twine(DefIdx) + 951 " is already tied with another register operand"); 952 } 953 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 954 } 955 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 956 // indices must be less than tied max. 957 for (const auto &TiedPair : TiedRegisterPairs) 958 MI.tieOperands(TiedPair.first, TiedPair.second); 959 return false; 960 } 961 962 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 963 Optional<unsigned> &TiedDefIdx, 964 bool IsDef) { 965 unsigned Reg; 966 unsigned Flags = IsDef ? RegState::Define : 0; 967 while (Token.isRegisterFlag()) { 968 if (parseRegisterFlag(Flags)) 969 return true; 970 } 971 if (!Token.isRegister()) 972 return error("expected a register after register flags"); 973 if (parseRegister(Reg)) 974 return true; 975 lex(); 976 unsigned SubReg = 0; 977 if (Token.is(MIToken::dot)) { 978 if (parseSubRegisterIndex(SubReg)) 979 return true; 980 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 981 return error("subregister index expects a virtual register"); 982 } 983 if ((Flags & RegState::Define) == 0) { 984 if (consumeIfPresent(MIToken::lparen)) { 985 unsigned Idx; 986 if (parseRegisterTiedDefIndex(Idx)) 987 return true; 988 TiedDefIdx = Idx; 989 } 990 } else if (consumeIfPresent(MIToken::lparen)) { 991 MachineRegisterInfo &MRI = MF.getRegInfo(); 992 993 // Virtual registers may have a size with GlobalISel. 994 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 995 return error("unexpected size on physical register"); 996 if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>()) 997 return error("unexpected size on non-generic virtual register"); 998 999 unsigned Size; 1000 if (parseSize(Size)) 1001 return true; 1002 1003 MRI.setSize(Reg, Size); 1004 } else if (PFS.GenericVRegs.count(Reg)) { 1005 // Generic virtual registers must have a size. 1006 // If we end up here this means the size hasn't been specified and 1007 // this is bad! 1008 return error("generic virtual registers must have a size"); 1009 } 1010 Dest = MachineOperand::CreateReg( 1011 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1012 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1013 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1014 Flags & RegState::InternalRead); 1015 return false; 1016 } 1017 1018 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1019 assert(Token.is(MIToken::IntegerLiteral)); 1020 const APSInt &Int = Token.integerValue(); 1021 if (Int.getMinSignedBits() > 64) 1022 return error("integer literal is too large to be an immediate operand"); 1023 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1024 lex(); 1025 return false; 1026 } 1027 1028 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1029 const Constant *&C) { 1030 auto Source = StringValue.str(); // The source has to be null terminated. 1031 SMDiagnostic Err; 1032 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(), 1033 &PFS.IRSlots); 1034 if (!C) 1035 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1036 return false; 1037 } 1038 1039 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1040 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1041 return true; 1042 lex(); 1043 return false; 1044 } 1045 1046 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1047 if (Token.is(MIToken::Identifier) && Token.stringValue() == "unsized") { 1048 lex(); 1049 Ty = LLT::unsized(); 1050 return false; 1051 } else if (Token.is(MIToken::ScalarType)) { 1052 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1053 lex(); 1054 return false; 1055 } else if (Token.is(MIToken::PointerType)) { 1056 Ty = LLT::pointer(APSInt(Token.range().drop_front()).getZExtValue()); 1057 lex(); 1058 return false; 1059 } 1060 1061 // Now we're looking for a vector. 1062 if (Token.isNot(MIToken::less)) 1063 return error(Loc, 1064 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1065 1066 lex(); 1067 1068 if (Token.isNot(MIToken::IntegerLiteral)) 1069 return error(Loc, "expected <N x sM> for vctor type"); 1070 uint64_t NumElements = Token.integerValue().getZExtValue(); 1071 lex(); 1072 1073 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1074 return error(Loc, "expected '<N x sM>' for vector type"); 1075 lex(); 1076 1077 if (Token.isNot(MIToken::ScalarType)) 1078 return error(Loc, "expected '<N x sM>' for vector type"); 1079 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1080 lex(); 1081 1082 if (Token.isNot(MIToken::greater)) 1083 return error(Loc, "expected '<N x sM>' for vector type"); 1084 lex(); 1085 1086 Ty = LLT::vector(NumElements, ScalarSize); 1087 return false; 1088 } 1089 1090 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1091 assert(Token.is(MIToken::IntegerType)); 1092 auto Loc = Token.location(); 1093 lex(); 1094 if (Token.isNot(MIToken::IntegerLiteral)) 1095 return error("expected an integer literal"); 1096 const Constant *C = nullptr; 1097 if (parseIRConstant(Loc, C)) 1098 return true; 1099 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1100 return false; 1101 } 1102 1103 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1104 auto Loc = Token.location(); 1105 lex(); 1106 if (Token.isNot(MIToken::FloatingPointLiteral)) 1107 return error("expected a floating point literal"); 1108 const Constant *C = nullptr; 1109 if (parseIRConstant(Loc, C)) 1110 return true; 1111 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1112 return false; 1113 } 1114 1115 bool MIParser::getUnsigned(unsigned &Result) { 1116 assert(Token.hasIntegerValue() && "Expected a token with an integer value"); 1117 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1118 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1119 if (Val64 == Limit) 1120 return error("expected 32-bit integer (too large)"); 1121 Result = Val64; 1122 return false; 1123 } 1124 1125 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1126 assert(Token.is(MIToken::MachineBasicBlock) || 1127 Token.is(MIToken::MachineBasicBlockLabel)); 1128 unsigned Number; 1129 if (getUnsigned(Number)) 1130 return true; 1131 auto MBBInfo = PFS.MBBSlots.find(Number); 1132 if (MBBInfo == PFS.MBBSlots.end()) 1133 return error(Twine("use of undefined machine basic block #") + 1134 Twine(Number)); 1135 MBB = MBBInfo->second; 1136 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1137 return error(Twine("the name of machine basic block #") + Twine(Number) + 1138 " isn't '" + Token.stringValue() + "'"); 1139 return false; 1140 } 1141 1142 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1143 MachineBasicBlock *MBB; 1144 if (parseMBBReference(MBB)) 1145 return true; 1146 Dest = MachineOperand::CreateMBB(MBB); 1147 lex(); 1148 return false; 1149 } 1150 1151 bool MIParser::parseStackFrameIndex(int &FI) { 1152 assert(Token.is(MIToken::StackObject)); 1153 unsigned ID; 1154 if (getUnsigned(ID)) 1155 return true; 1156 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1157 if (ObjectInfo == PFS.StackObjectSlots.end()) 1158 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1159 "'"); 1160 StringRef Name; 1161 if (const auto *Alloca = 1162 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1163 Name = Alloca->getName(); 1164 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1165 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1166 "' isn't '" + Token.stringValue() + "'"); 1167 lex(); 1168 FI = ObjectInfo->second; 1169 return false; 1170 } 1171 1172 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1173 int FI; 1174 if (parseStackFrameIndex(FI)) 1175 return true; 1176 Dest = MachineOperand::CreateFI(FI); 1177 return false; 1178 } 1179 1180 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1181 assert(Token.is(MIToken::FixedStackObject)); 1182 unsigned ID; 1183 if (getUnsigned(ID)) 1184 return true; 1185 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1186 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1187 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1188 Twine(ID) + "'"); 1189 lex(); 1190 FI = ObjectInfo->second; 1191 return false; 1192 } 1193 1194 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1195 int FI; 1196 if (parseFixedStackFrameIndex(FI)) 1197 return true; 1198 Dest = MachineOperand::CreateFI(FI); 1199 return false; 1200 } 1201 1202 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1203 switch (Token.kind()) { 1204 case MIToken::NamedGlobalValue: { 1205 const Module *M = MF.getFunction()->getParent(); 1206 GV = M->getNamedValue(Token.stringValue()); 1207 if (!GV) 1208 return error(Twine("use of undefined global value '") + Token.range() + 1209 "'"); 1210 break; 1211 } 1212 case MIToken::GlobalValue: { 1213 unsigned GVIdx; 1214 if (getUnsigned(GVIdx)) 1215 return true; 1216 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1217 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1218 "'"); 1219 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1220 break; 1221 } 1222 default: 1223 llvm_unreachable("The current token should be a global value"); 1224 } 1225 return false; 1226 } 1227 1228 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1229 GlobalValue *GV = nullptr; 1230 if (parseGlobalValue(GV)) 1231 return true; 1232 lex(); 1233 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1234 if (parseOperandsOffset(Dest)) 1235 return true; 1236 return false; 1237 } 1238 1239 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1240 assert(Token.is(MIToken::ConstantPoolItem)); 1241 unsigned ID; 1242 if (getUnsigned(ID)) 1243 return true; 1244 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1245 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1246 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1247 lex(); 1248 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1249 if (parseOperandsOffset(Dest)) 1250 return true; 1251 return false; 1252 } 1253 1254 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1255 assert(Token.is(MIToken::JumpTableIndex)); 1256 unsigned ID; 1257 if (getUnsigned(ID)) 1258 return true; 1259 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1260 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1261 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1262 lex(); 1263 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1264 return false; 1265 } 1266 1267 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1268 assert(Token.is(MIToken::ExternalSymbol)); 1269 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1270 lex(); 1271 Dest = MachineOperand::CreateES(Symbol); 1272 if (parseOperandsOffset(Dest)) 1273 return true; 1274 return false; 1275 } 1276 1277 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1278 assert(Token.is(MIToken::SubRegisterIndex)); 1279 StringRef Name = Token.stringValue(); 1280 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1281 if (SubRegIndex == 0) 1282 return error(Twine("unknown subregister index '") + Name + "'"); 1283 lex(); 1284 Dest = MachineOperand::CreateImm(SubRegIndex); 1285 return false; 1286 } 1287 1288 bool MIParser::parseMDNode(MDNode *&Node) { 1289 assert(Token.is(MIToken::exclaim)); 1290 auto Loc = Token.location(); 1291 lex(); 1292 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1293 return error("expected metadata id after '!'"); 1294 unsigned ID; 1295 if (getUnsigned(ID)) 1296 return true; 1297 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1298 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1299 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1300 lex(); 1301 Node = NodeInfo->second.get(); 1302 return false; 1303 } 1304 1305 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1306 MDNode *Node = nullptr; 1307 if (parseMDNode(Node)) 1308 return true; 1309 Dest = MachineOperand::CreateMetadata(Node); 1310 return false; 1311 } 1312 1313 bool MIParser::parseCFIOffset(int &Offset) { 1314 if (Token.isNot(MIToken::IntegerLiteral)) 1315 return error("expected a cfi offset"); 1316 if (Token.integerValue().getMinSignedBits() > 32) 1317 return error("expected a 32 bit integer (the cfi offset is too large)"); 1318 Offset = (int)Token.integerValue().getExtValue(); 1319 lex(); 1320 return false; 1321 } 1322 1323 bool MIParser::parseCFIRegister(unsigned &Reg) { 1324 if (Token.isNot(MIToken::NamedRegister)) 1325 return error("expected a cfi register"); 1326 unsigned LLVMReg; 1327 if (parseRegister(LLVMReg)) 1328 return true; 1329 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1330 assert(TRI && "Expected target register info"); 1331 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1332 if (DwarfReg < 0) 1333 return error("invalid DWARF register"); 1334 Reg = (unsigned)DwarfReg; 1335 lex(); 1336 return false; 1337 } 1338 1339 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1340 auto Kind = Token.kind(); 1341 lex(); 1342 auto &MMI = MF.getMMI(); 1343 int Offset; 1344 unsigned Reg; 1345 unsigned CFIIndex; 1346 switch (Kind) { 1347 case MIToken::kw_cfi_same_value: 1348 if (parseCFIRegister(Reg)) 1349 return true; 1350 CFIIndex = 1351 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1352 break; 1353 case MIToken::kw_cfi_offset: 1354 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1355 parseCFIOffset(Offset)) 1356 return true; 1357 CFIIndex = 1358 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1359 break; 1360 case MIToken::kw_cfi_def_cfa_register: 1361 if (parseCFIRegister(Reg)) 1362 return true; 1363 CFIIndex = 1364 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1365 break; 1366 case MIToken::kw_cfi_def_cfa_offset: 1367 if (parseCFIOffset(Offset)) 1368 return true; 1369 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1370 CFIIndex = MMI.addFrameInst( 1371 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1372 break; 1373 case MIToken::kw_cfi_def_cfa: 1374 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1375 parseCFIOffset(Offset)) 1376 return true; 1377 // NB: MCCFIInstruction::createDefCfa negates the offset. 1378 CFIIndex = 1379 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1380 break; 1381 default: 1382 // TODO: Parse the other CFI operands. 1383 llvm_unreachable("The current token should be a cfi operand"); 1384 } 1385 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1386 return false; 1387 } 1388 1389 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1390 switch (Token.kind()) { 1391 case MIToken::NamedIRBlock: { 1392 BB = dyn_cast_or_null<BasicBlock>( 1393 F.getValueSymbolTable().lookup(Token.stringValue())); 1394 if (!BB) 1395 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1396 break; 1397 } 1398 case MIToken::IRBlock: { 1399 unsigned SlotNumber = 0; 1400 if (getUnsigned(SlotNumber)) 1401 return true; 1402 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1403 if (!BB) 1404 return error(Twine("use of undefined IR block '%ir-block.") + 1405 Twine(SlotNumber) + "'"); 1406 break; 1407 } 1408 default: 1409 llvm_unreachable("The current token should be an IR block reference"); 1410 } 1411 return false; 1412 } 1413 1414 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1415 assert(Token.is(MIToken::kw_blockaddress)); 1416 lex(); 1417 if (expectAndConsume(MIToken::lparen)) 1418 return true; 1419 if (Token.isNot(MIToken::GlobalValue) && 1420 Token.isNot(MIToken::NamedGlobalValue)) 1421 return error("expected a global value"); 1422 GlobalValue *GV = nullptr; 1423 if (parseGlobalValue(GV)) 1424 return true; 1425 auto *F = dyn_cast<Function>(GV); 1426 if (!F) 1427 return error("expected an IR function reference"); 1428 lex(); 1429 if (expectAndConsume(MIToken::comma)) 1430 return true; 1431 BasicBlock *BB = nullptr; 1432 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1433 return error("expected an IR block reference"); 1434 if (parseIRBlock(BB, *F)) 1435 return true; 1436 lex(); 1437 if (expectAndConsume(MIToken::rparen)) 1438 return true; 1439 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1440 if (parseOperandsOffset(Dest)) 1441 return true; 1442 return false; 1443 } 1444 1445 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1446 assert(Token.is(MIToken::kw_intrinsic)); 1447 lex(); 1448 if (expectAndConsume(MIToken::lparen)) 1449 return error("expected syntax intrinsic(@llvm.whatever)"); 1450 1451 if (Token.isNot(MIToken::NamedGlobalValue)) 1452 return error("expected syntax intrinsic(@llvm.whatever)"); 1453 1454 std::string Name = Token.stringValue(); 1455 lex(); 1456 1457 if (expectAndConsume(MIToken::rparen)) 1458 return error("expected ')' to terminate intrinsic name"); 1459 1460 // Find out what intrinsic we're dealing with, first try the global namespace 1461 // and then the target's private intrinsics if that fails. 1462 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1463 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1464 if (ID == Intrinsic::not_intrinsic && TII) 1465 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1466 1467 if (ID == Intrinsic::not_intrinsic) 1468 return error("unknown intrinsic name"); 1469 Dest = MachineOperand::CreateIntrinsicID(ID); 1470 1471 return false; 1472 } 1473 1474 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1475 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1476 bool IsFloat = Token.is(MIToken::kw_floatpred); 1477 lex(); 1478 1479 if (expectAndConsume(MIToken::lparen)) 1480 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1481 1482 if (Token.isNot(MIToken::Identifier)) 1483 return error("whatever"); 1484 1485 CmpInst::Predicate Pred; 1486 if (IsFloat) { 1487 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1488 .Case("false", CmpInst::FCMP_FALSE) 1489 .Case("oeq", CmpInst::FCMP_OEQ) 1490 .Case("ogt", CmpInst::FCMP_OGT) 1491 .Case("oge", CmpInst::FCMP_OGE) 1492 .Case("olt", CmpInst::FCMP_OLT) 1493 .Case("ole", CmpInst::FCMP_OLE) 1494 .Case("one", CmpInst::FCMP_ONE) 1495 .Case("ord", CmpInst::FCMP_ORD) 1496 .Case("uno", CmpInst::FCMP_UNO) 1497 .Case("ueq", CmpInst::FCMP_UEQ) 1498 .Case("ugt", CmpInst::FCMP_UGT) 1499 .Case("uge", CmpInst::FCMP_UGE) 1500 .Case("ult", CmpInst::FCMP_ULT) 1501 .Case("ule", CmpInst::FCMP_ULE) 1502 .Case("une", CmpInst::FCMP_UNE) 1503 .Case("true", CmpInst::FCMP_TRUE) 1504 .Default(CmpInst::BAD_FCMP_PREDICATE); 1505 if (!CmpInst::isFPPredicate(Pred)) 1506 return error("invalid floating-point predicate"); 1507 } else { 1508 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1509 .Case("eq", CmpInst::ICMP_EQ) 1510 .Case("ne", CmpInst::ICMP_NE) 1511 .Case("sgt", CmpInst::ICMP_SGT) 1512 .Case("sge", CmpInst::ICMP_SGE) 1513 .Case("slt", CmpInst::ICMP_SLT) 1514 .Case("sle", CmpInst::ICMP_SLE) 1515 .Case("ugt", CmpInst::ICMP_UGT) 1516 .Case("uge", CmpInst::ICMP_UGE) 1517 .Case("ult", CmpInst::ICMP_ULT) 1518 .Case("ule", CmpInst::ICMP_ULE) 1519 .Default(CmpInst::BAD_ICMP_PREDICATE); 1520 if (!CmpInst::isIntPredicate(Pred)) 1521 return error("invalid integer predicate"); 1522 } 1523 1524 lex(); 1525 Dest = MachineOperand::CreatePredicate(Pred); 1526 if (expectAndConsume(MIToken::rparen)) 1527 return error("predicate should be terminated by ')'."); 1528 1529 return false; 1530 } 1531 1532 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1533 assert(Token.is(MIToken::kw_target_index)); 1534 lex(); 1535 if (expectAndConsume(MIToken::lparen)) 1536 return true; 1537 if (Token.isNot(MIToken::Identifier)) 1538 return error("expected the name of the target index"); 1539 int Index = 0; 1540 if (getTargetIndex(Token.stringValue(), Index)) 1541 return error("use of undefined target index '" + Token.stringValue() + "'"); 1542 lex(); 1543 if (expectAndConsume(MIToken::rparen)) 1544 return true; 1545 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1546 if (parseOperandsOffset(Dest)) 1547 return true; 1548 return false; 1549 } 1550 1551 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1552 assert(Token.is(MIToken::kw_liveout)); 1553 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1554 assert(TRI && "Expected target register info"); 1555 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1556 lex(); 1557 if (expectAndConsume(MIToken::lparen)) 1558 return true; 1559 while (true) { 1560 if (Token.isNot(MIToken::NamedRegister)) 1561 return error("expected a named register"); 1562 unsigned Reg = 0; 1563 if (parseRegister(Reg)) 1564 return true; 1565 lex(); 1566 Mask[Reg / 32] |= 1U << (Reg % 32); 1567 // TODO: Report an error if the same register is used more than once. 1568 if (Token.isNot(MIToken::comma)) 1569 break; 1570 lex(); 1571 } 1572 if (expectAndConsume(MIToken::rparen)) 1573 return true; 1574 Dest = MachineOperand::CreateRegLiveOut(Mask); 1575 return false; 1576 } 1577 1578 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1579 Optional<unsigned> &TiedDefIdx) { 1580 switch (Token.kind()) { 1581 case MIToken::kw_implicit: 1582 case MIToken::kw_implicit_define: 1583 case MIToken::kw_def: 1584 case MIToken::kw_dead: 1585 case MIToken::kw_killed: 1586 case MIToken::kw_undef: 1587 case MIToken::kw_internal: 1588 case MIToken::kw_early_clobber: 1589 case MIToken::kw_debug_use: 1590 case MIToken::underscore: 1591 case MIToken::NamedRegister: 1592 case MIToken::VirtualRegister: 1593 return parseRegisterOperand(Dest, TiedDefIdx); 1594 case MIToken::IntegerLiteral: 1595 return parseImmediateOperand(Dest); 1596 case MIToken::IntegerType: 1597 return parseTypedImmediateOperand(Dest); 1598 case MIToken::kw_half: 1599 case MIToken::kw_float: 1600 case MIToken::kw_double: 1601 case MIToken::kw_x86_fp80: 1602 case MIToken::kw_fp128: 1603 case MIToken::kw_ppc_fp128: 1604 return parseFPImmediateOperand(Dest); 1605 case MIToken::MachineBasicBlock: 1606 return parseMBBOperand(Dest); 1607 case MIToken::StackObject: 1608 return parseStackObjectOperand(Dest); 1609 case MIToken::FixedStackObject: 1610 return parseFixedStackObjectOperand(Dest); 1611 case MIToken::GlobalValue: 1612 case MIToken::NamedGlobalValue: 1613 return parseGlobalAddressOperand(Dest); 1614 case MIToken::ConstantPoolItem: 1615 return parseConstantPoolIndexOperand(Dest); 1616 case MIToken::JumpTableIndex: 1617 return parseJumpTableIndexOperand(Dest); 1618 case MIToken::ExternalSymbol: 1619 return parseExternalSymbolOperand(Dest); 1620 case MIToken::SubRegisterIndex: 1621 return parseSubRegisterIndexOperand(Dest); 1622 case MIToken::exclaim: 1623 return parseMetadataOperand(Dest); 1624 case MIToken::kw_cfi_same_value: 1625 case MIToken::kw_cfi_offset: 1626 case MIToken::kw_cfi_def_cfa_register: 1627 case MIToken::kw_cfi_def_cfa_offset: 1628 case MIToken::kw_cfi_def_cfa: 1629 return parseCFIOperand(Dest); 1630 case MIToken::kw_blockaddress: 1631 return parseBlockAddressOperand(Dest); 1632 case MIToken::kw_intrinsic: 1633 return parseIntrinsicOperand(Dest); 1634 case MIToken::kw_target_index: 1635 return parseTargetIndexOperand(Dest); 1636 case MIToken::kw_liveout: 1637 return parseLiveoutRegisterMaskOperand(Dest); 1638 case MIToken::kw_floatpred: 1639 case MIToken::kw_intpred: 1640 return parsePredicateOperand(Dest); 1641 case MIToken::Error: 1642 return true; 1643 case MIToken::Identifier: 1644 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1645 Dest = MachineOperand::CreateRegMask(RegMask); 1646 lex(); 1647 break; 1648 } 1649 LLVM_FALLTHROUGH; 1650 default: 1651 // FIXME: Parse the MCSymbol machine operand. 1652 return error("expected a machine operand"); 1653 } 1654 return false; 1655 } 1656 1657 bool MIParser::parseMachineOperandAndTargetFlags( 1658 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1659 unsigned TF = 0; 1660 bool HasTargetFlags = false; 1661 if (Token.is(MIToken::kw_target_flags)) { 1662 HasTargetFlags = true; 1663 lex(); 1664 if (expectAndConsume(MIToken::lparen)) 1665 return true; 1666 if (Token.isNot(MIToken::Identifier)) 1667 return error("expected the name of the target flag"); 1668 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1669 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1670 return error("use of undefined target flag '" + Token.stringValue() + 1671 "'"); 1672 } 1673 lex(); 1674 while (Token.is(MIToken::comma)) { 1675 lex(); 1676 if (Token.isNot(MIToken::Identifier)) 1677 return error("expected the name of the target flag"); 1678 unsigned BitFlag = 0; 1679 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1680 return error("use of undefined target flag '" + Token.stringValue() + 1681 "'"); 1682 // TODO: Report an error when using a duplicate bit target flag. 1683 TF |= BitFlag; 1684 lex(); 1685 } 1686 if (expectAndConsume(MIToken::rparen)) 1687 return true; 1688 } 1689 auto Loc = Token.location(); 1690 if (parseMachineOperand(Dest, TiedDefIdx)) 1691 return true; 1692 if (!HasTargetFlags) 1693 return false; 1694 if (Dest.isReg()) 1695 return error(Loc, "register operands can't have target flags"); 1696 Dest.setTargetFlags(TF); 1697 return false; 1698 } 1699 1700 bool MIParser::parseOffset(int64_t &Offset) { 1701 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1702 return false; 1703 StringRef Sign = Token.range(); 1704 bool IsNegative = Token.is(MIToken::minus); 1705 lex(); 1706 if (Token.isNot(MIToken::IntegerLiteral)) 1707 return error("expected an integer literal after '" + Sign + "'"); 1708 if (Token.integerValue().getMinSignedBits() > 64) 1709 return error("expected 64-bit integer (too large)"); 1710 Offset = Token.integerValue().getExtValue(); 1711 if (IsNegative) 1712 Offset = -Offset; 1713 lex(); 1714 return false; 1715 } 1716 1717 bool MIParser::parseAlignment(unsigned &Alignment) { 1718 assert(Token.is(MIToken::kw_align)); 1719 lex(); 1720 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1721 return error("expected an integer literal after 'align'"); 1722 if (getUnsigned(Alignment)) 1723 return true; 1724 lex(); 1725 return false; 1726 } 1727 1728 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1729 int64_t Offset = 0; 1730 if (parseOffset(Offset)) 1731 return true; 1732 Op.setOffset(Offset); 1733 return false; 1734 } 1735 1736 bool MIParser::parseIRValue(const Value *&V) { 1737 switch (Token.kind()) { 1738 case MIToken::NamedIRValue: { 1739 V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue()); 1740 break; 1741 } 1742 case MIToken::IRValue: { 1743 unsigned SlotNumber = 0; 1744 if (getUnsigned(SlotNumber)) 1745 return true; 1746 V = getIRValue(SlotNumber); 1747 break; 1748 } 1749 case MIToken::NamedGlobalValue: 1750 case MIToken::GlobalValue: { 1751 GlobalValue *GV = nullptr; 1752 if (parseGlobalValue(GV)) 1753 return true; 1754 V = GV; 1755 break; 1756 } 1757 case MIToken::QuotedIRValue: { 1758 const Constant *C = nullptr; 1759 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1760 return true; 1761 V = C; 1762 break; 1763 } 1764 default: 1765 llvm_unreachable("The current token should be an IR block reference"); 1766 } 1767 if (!V) 1768 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1769 return false; 1770 } 1771 1772 bool MIParser::getUint64(uint64_t &Result) { 1773 assert(Token.hasIntegerValue()); 1774 if (Token.integerValue().getActiveBits() > 64) 1775 return error("expected 64-bit integer (too large)"); 1776 Result = Token.integerValue().getZExtValue(); 1777 return false; 1778 } 1779 1780 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1781 const auto OldFlags = Flags; 1782 switch (Token.kind()) { 1783 case MIToken::kw_volatile: 1784 Flags |= MachineMemOperand::MOVolatile; 1785 break; 1786 case MIToken::kw_non_temporal: 1787 Flags |= MachineMemOperand::MONonTemporal; 1788 break; 1789 case MIToken::kw_invariant: 1790 Flags |= MachineMemOperand::MOInvariant; 1791 break; 1792 // TODO: parse the target specific memory operand flags. 1793 default: 1794 llvm_unreachable("The current token should be a memory operand flag"); 1795 } 1796 if (OldFlags == Flags) 1797 // We know that the same flag is specified more than once when the flags 1798 // weren't modified. 1799 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1800 lex(); 1801 return false; 1802 } 1803 1804 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1805 switch (Token.kind()) { 1806 case MIToken::kw_stack: 1807 PSV = MF.getPSVManager().getStack(); 1808 break; 1809 case MIToken::kw_got: 1810 PSV = MF.getPSVManager().getGOT(); 1811 break; 1812 case MIToken::kw_jump_table: 1813 PSV = MF.getPSVManager().getJumpTable(); 1814 break; 1815 case MIToken::kw_constant_pool: 1816 PSV = MF.getPSVManager().getConstantPool(); 1817 break; 1818 case MIToken::FixedStackObject: { 1819 int FI; 1820 if (parseFixedStackFrameIndex(FI)) 1821 return true; 1822 PSV = MF.getPSVManager().getFixedStack(FI); 1823 // The token was already consumed, so use return here instead of break. 1824 return false; 1825 } 1826 case MIToken::StackObject: { 1827 int FI; 1828 if (parseStackFrameIndex(FI)) 1829 return true; 1830 PSV = MF.getPSVManager().getFixedStack(FI); 1831 // The token was already consumed, so use return here instead of break. 1832 return false; 1833 } 1834 case MIToken::kw_call_entry: { 1835 lex(); 1836 switch (Token.kind()) { 1837 case MIToken::GlobalValue: 1838 case MIToken::NamedGlobalValue: { 1839 GlobalValue *GV = nullptr; 1840 if (parseGlobalValue(GV)) 1841 return true; 1842 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1843 break; 1844 } 1845 case MIToken::ExternalSymbol: 1846 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1847 MF.createExternalSymbolName(Token.stringValue())); 1848 break; 1849 default: 1850 return error( 1851 "expected a global value or an external symbol after 'call-entry'"); 1852 } 1853 break; 1854 } 1855 default: 1856 llvm_unreachable("The current token should be pseudo source value"); 1857 } 1858 lex(); 1859 return false; 1860 } 1861 1862 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1863 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1864 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1865 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1866 Token.is(MIToken::kw_call_entry)) { 1867 const PseudoSourceValue *PSV = nullptr; 1868 if (parseMemoryPseudoSourceValue(PSV)) 1869 return true; 1870 int64_t Offset = 0; 1871 if (parseOffset(Offset)) 1872 return true; 1873 Dest = MachinePointerInfo(PSV, Offset); 1874 return false; 1875 } 1876 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1877 Token.isNot(MIToken::GlobalValue) && 1878 Token.isNot(MIToken::NamedGlobalValue) && 1879 Token.isNot(MIToken::QuotedIRValue)) 1880 return error("expected an IR value reference"); 1881 const Value *V = nullptr; 1882 if (parseIRValue(V)) 1883 return true; 1884 if (!V->getType()->isPointerTy()) 1885 return error("expected a pointer IR value"); 1886 lex(); 1887 int64_t Offset = 0; 1888 if (parseOffset(Offset)) 1889 return true; 1890 Dest = MachinePointerInfo(V, Offset); 1891 return false; 1892 } 1893 1894 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1895 if (expectAndConsume(MIToken::lparen)) 1896 return true; 1897 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 1898 while (Token.isMemoryOperandFlag()) { 1899 if (parseMemoryOperandFlag(Flags)) 1900 return true; 1901 } 1902 if (Token.isNot(MIToken::Identifier) || 1903 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1904 return error("expected 'load' or 'store' memory operation"); 1905 if (Token.stringValue() == "load") 1906 Flags |= MachineMemOperand::MOLoad; 1907 else 1908 Flags |= MachineMemOperand::MOStore; 1909 lex(); 1910 1911 if (Token.isNot(MIToken::IntegerLiteral)) 1912 return error("expected the size integer literal after memory operation"); 1913 uint64_t Size; 1914 if (getUint64(Size)) 1915 return true; 1916 lex(); 1917 1918 MachinePointerInfo Ptr = MachinePointerInfo(); 1919 if (Token.is(MIToken::Identifier)) { 1920 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1921 if (Token.stringValue() != Word) 1922 return error(Twine("expected '") + Word + "'"); 1923 lex(); 1924 1925 if (parseMachinePointerInfo(Ptr)) 1926 return true; 1927 } 1928 unsigned BaseAlignment = Size; 1929 AAMDNodes AAInfo; 1930 MDNode *Range = nullptr; 1931 while (consumeIfPresent(MIToken::comma)) { 1932 switch (Token.kind()) { 1933 case MIToken::kw_align: 1934 if (parseAlignment(BaseAlignment)) 1935 return true; 1936 break; 1937 case MIToken::md_tbaa: 1938 lex(); 1939 if (parseMDNode(AAInfo.TBAA)) 1940 return true; 1941 break; 1942 case MIToken::md_alias_scope: 1943 lex(); 1944 if (parseMDNode(AAInfo.Scope)) 1945 return true; 1946 break; 1947 case MIToken::md_noalias: 1948 lex(); 1949 if (parseMDNode(AAInfo.NoAlias)) 1950 return true; 1951 break; 1952 case MIToken::md_range: 1953 lex(); 1954 if (parseMDNode(Range)) 1955 return true; 1956 break; 1957 // TODO: Report an error on duplicate metadata nodes. 1958 default: 1959 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 1960 "'!noalias' or '!range'"); 1961 } 1962 } 1963 if (expectAndConsume(MIToken::rparen)) 1964 return true; 1965 Dest = 1966 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 1967 return false; 1968 } 1969 1970 void MIParser::initNames2InstrOpCodes() { 1971 if (!Names2InstrOpCodes.empty()) 1972 return; 1973 const auto *TII = MF.getSubtarget().getInstrInfo(); 1974 assert(TII && "Expected target instruction info"); 1975 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 1976 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 1977 } 1978 1979 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 1980 initNames2InstrOpCodes(); 1981 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 1982 if (InstrInfo == Names2InstrOpCodes.end()) 1983 return true; 1984 OpCode = InstrInfo->getValue(); 1985 return false; 1986 } 1987 1988 void MIParser::initNames2Regs() { 1989 if (!Names2Regs.empty()) 1990 return; 1991 // The '%noreg' register is the register 0. 1992 Names2Regs.insert(std::make_pair("noreg", 0)); 1993 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1994 assert(TRI && "Expected target register info"); 1995 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 1996 bool WasInserted = 1997 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 1998 .second; 1999 (void)WasInserted; 2000 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2001 } 2002 } 2003 2004 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2005 initNames2Regs(); 2006 auto RegInfo = Names2Regs.find(RegName); 2007 if (RegInfo == Names2Regs.end()) 2008 return true; 2009 Reg = RegInfo->getValue(); 2010 return false; 2011 } 2012 2013 void MIParser::initNames2RegMasks() { 2014 if (!Names2RegMasks.empty()) 2015 return; 2016 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2017 assert(TRI && "Expected target register info"); 2018 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2019 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2020 assert(RegMasks.size() == RegMaskNames.size()); 2021 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2022 Names2RegMasks.insert( 2023 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2024 } 2025 2026 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2027 initNames2RegMasks(); 2028 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2029 if (RegMaskInfo == Names2RegMasks.end()) 2030 return nullptr; 2031 return RegMaskInfo->getValue(); 2032 } 2033 2034 void MIParser::initNames2SubRegIndices() { 2035 if (!Names2SubRegIndices.empty()) 2036 return; 2037 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2038 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2039 Names2SubRegIndices.insert( 2040 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2041 } 2042 2043 unsigned MIParser::getSubRegIndex(StringRef Name) { 2044 initNames2SubRegIndices(); 2045 auto SubRegInfo = Names2SubRegIndices.find(Name); 2046 if (SubRegInfo == Names2SubRegIndices.end()) 2047 return 0; 2048 return SubRegInfo->getValue(); 2049 } 2050 2051 static void initSlots2BasicBlocks( 2052 const Function &F, 2053 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2054 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2055 MST.incorporateFunction(F); 2056 for (auto &BB : F) { 2057 if (BB.hasName()) 2058 continue; 2059 int Slot = MST.getLocalSlot(&BB); 2060 if (Slot == -1) 2061 continue; 2062 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2063 } 2064 } 2065 2066 static const BasicBlock *getIRBlockFromSlot( 2067 unsigned Slot, 2068 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2069 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2070 if (BlockInfo == Slots2BasicBlocks.end()) 2071 return nullptr; 2072 return BlockInfo->second; 2073 } 2074 2075 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2076 if (Slots2BasicBlocks.empty()) 2077 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2078 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2079 } 2080 2081 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2082 if (&F == MF.getFunction()) 2083 return getIRBlock(Slot); 2084 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2085 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2086 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2087 } 2088 2089 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2090 DenseMap<unsigned, const Value *> &Slots2Values) { 2091 int Slot = MST.getLocalSlot(V); 2092 if (Slot == -1) 2093 return; 2094 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2095 } 2096 2097 /// Creates the mapping from slot numbers to function's unnamed IR values. 2098 static void initSlots2Values(const Function &F, 2099 DenseMap<unsigned, const Value *> &Slots2Values) { 2100 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2101 MST.incorporateFunction(F); 2102 for (const auto &Arg : F.args()) 2103 mapValueToSlot(&Arg, MST, Slots2Values); 2104 for (const auto &BB : F) { 2105 mapValueToSlot(&BB, MST, Slots2Values); 2106 for (const auto &I : BB) 2107 mapValueToSlot(&I, MST, Slots2Values); 2108 } 2109 } 2110 2111 const Value *MIParser::getIRValue(unsigned Slot) { 2112 if (Slots2Values.empty()) 2113 initSlots2Values(*MF.getFunction(), Slots2Values); 2114 auto ValueInfo = Slots2Values.find(Slot); 2115 if (ValueInfo == Slots2Values.end()) 2116 return nullptr; 2117 return ValueInfo->second; 2118 } 2119 2120 void MIParser::initNames2TargetIndices() { 2121 if (!Names2TargetIndices.empty()) 2122 return; 2123 const auto *TII = MF.getSubtarget().getInstrInfo(); 2124 assert(TII && "Expected target instruction info"); 2125 auto Indices = TII->getSerializableTargetIndices(); 2126 for (const auto &I : Indices) 2127 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2128 } 2129 2130 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2131 initNames2TargetIndices(); 2132 auto IndexInfo = Names2TargetIndices.find(Name); 2133 if (IndexInfo == Names2TargetIndices.end()) 2134 return true; 2135 Index = IndexInfo->second; 2136 return false; 2137 } 2138 2139 void MIParser::initNames2DirectTargetFlags() { 2140 if (!Names2DirectTargetFlags.empty()) 2141 return; 2142 const auto *TII = MF.getSubtarget().getInstrInfo(); 2143 assert(TII && "Expected target instruction info"); 2144 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2145 for (const auto &I : Flags) 2146 Names2DirectTargetFlags.insert( 2147 std::make_pair(StringRef(I.second), I.first)); 2148 } 2149 2150 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2151 initNames2DirectTargetFlags(); 2152 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2153 if (FlagInfo == Names2DirectTargetFlags.end()) 2154 return true; 2155 Flag = FlagInfo->second; 2156 return false; 2157 } 2158 2159 void MIParser::initNames2BitmaskTargetFlags() { 2160 if (!Names2BitmaskTargetFlags.empty()) 2161 return; 2162 const auto *TII = MF.getSubtarget().getInstrInfo(); 2163 assert(TII && "Expected target instruction info"); 2164 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2165 for (const auto &I : Flags) 2166 Names2BitmaskTargetFlags.insert( 2167 std::make_pair(StringRef(I.second), I.first)); 2168 } 2169 2170 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2171 initNames2BitmaskTargetFlags(); 2172 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2173 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2174 return true; 2175 Flag = FlagInfo->second; 2176 return false; 2177 } 2178 2179 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2180 StringRef Src, 2181 SMDiagnostic &Error) { 2182 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2183 } 2184 2185 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS, 2186 StringRef Src, SMDiagnostic &Error) { 2187 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2188 } 2189 2190 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS, 2191 MachineBasicBlock *&MBB, StringRef Src, 2192 SMDiagnostic &Error) { 2193 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2194 } 2195 2196 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS, 2197 unsigned &Reg, StringRef Src, 2198 SMDiagnostic &Error) { 2199 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2200 } 2201 2202 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS, 2203 unsigned &Reg, StringRef Src, 2204 SMDiagnostic &Error) { 2205 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg); 2206 } 2207 2208 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS, 2209 int &FI, StringRef Src, 2210 SMDiagnostic &Error) { 2211 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2212 } 2213 2214 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS, 2215 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2216 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2217 } 2218