1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cctype>
40 
41 using namespace llvm;
42 
43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
44     SourceMgr &SM, const SlotMapping &IRSlots,
45     const Name2RegClassMap &Names2RegClasses,
46     const Name2RegBankMap &Names2RegBanks)
47   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
48     Names2RegBanks(Names2RegBanks) {
49 }
50 
51 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
52   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
53   if (I.second) {
54     MachineRegisterInfo &MRI = MF.getRegInfo();
55     VRegInfo *Info = new (Allocator) VRegInfo;
56     Info->VReg = MRI.createIncompleteVirtualRegister();
57     I.first->second = Info;
58   }
59   return *I.first->second;
60 }
61 
62 namespace {
63 
64 /// A wrapper struct around the 'MachineOperand' struct that includes a source
65 /// range and other attributes.
66 struct ParsedMachineOperand {
67   MachineOperand Operand;
68   StringRef::iterator Begin;
69   StringRef::iterator End;
70   Optional<unsigned> TiedDefIdx;
71 
72   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
73                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
74       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
75     if (TiedDefIdx)
76       assert(Operand.isReg() && Operand.isUse() &&
77              "Only used register operands can be tied");
78   }
79 };
80 
81 class MIParser {
82   MachineFunction &MF;
83   SMDiagnostic &Error;
84   StringRef Source, CurrentSource;
85   MIToken Token;
86   PerFunctionMIParsingState &PFS;
87   /// Maps from instruction names to op codes.
88   StringMap<unsigned> Names2InstrOpCodes;
89   /// Maps from register names to registers.
90   StringMap<unsigned> Names2Regs;
91   /// Maps from register mask names to register masks.
92   StringMap<const uint32_t *> Names2RegMasks;
93   /// Maps from subregister names to subregister indices.
94   StringMap<unsigned> Names2SubRegIndices;
95   /// Maps from slot numbers to function's unnamed basic blocks.
96   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
97   /// Maps from slot numbers to function's unnamed values.
98   DenseMap<unsigned, const Value *> Slots2Values;
99   /// Maps from target index names to target indices.
100   StringMap<int> Names2TargetIndices;
101   /// Maps from direct target flag names to the direct target flag values.
102   StringMap<unsigned> Names2DirectTargetFlags;
103   /// Maps from direct target flag names to the bitmask target flag values.
104   StringMap<unsigned> Names2BitmaskTargetFlags;
105 
106 public:
107   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
108            StringRef Source);
109 
110   /// \p SkipChar gives the number of characters to skip before looking
111   /// for the next token.
112   void lex(unsigned SkipChar = 0);
113 
114   /// Report an error at the current location with the given message.
115   ///
116   /// This function always return true.
117   bool error(const Twine &Msg);
118 
119   /// Report an error at the given location with the given message.
120   ///
121   /// This function always return true.
122   bool error(StringRef::iterator Loc, const Twine &Msg);
123 
124   bool
125   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
126   bool parseBasicBlocks();
127   bool parse(MachineInstr *&MI);
128   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
129   bool parseStandaloneNamedRegister(unsigned &Reg);
130   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
131   bool parseStandaloneRegister(unsigned &Reg);
132   bool parseStandaloneStackObject(int &FI);
133   bool parseStandaloneMDNode(MDNode *&Node);
134 
135   bool
136   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
137   bool parseBasicBlock(MachineBasicBlock &MBB);
138   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
139   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
140 
141   bool parseNamedRegister(unsigned &Reg);
142   bool parseVirtualRegister(VRegInfo *&Info);
143   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
144   bool parseRegisterFlag(unsigned &Flags);
145   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
146   bool parseSubRegisterIndex(unsigned &SubReg);
147   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
148   bool parseRegisterOperand(MachineOperand &Dest,
149                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
150   bool parseImmediateOperand(MachineOperand &Dest);
151   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
152                        const Constant *&C);
153   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
154   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
155   bool parseTypedImmediateOperand(MachineOperand &Dest);
156   bool parseFPImmediateOperand(MachineOperand &Dest);
157   bool parseMBBReference(MachineBasicBlock *&MBB);
158   bool parseMBBOperand(MachineOperand &Dest);
159   bool parseStackFrameIndex(int &FI);
160   bool parseStackObjectOperand(MachineOperand &Dest);
161   bool parseFixedStackFrameIndex(int &FI);
162   bool parseFixedStackObjectOperand(MachineOperand &Dest);
163   bool parseGlobalValue(GlobalValue *&GV);
164   bool parseGlobalAddressOperand(MachineOperand &Dest);
165   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
166   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
167   bool parseJumpTableIndexOperand(MachineOperand &Dest);
168   bool parseExternalSymbolOperand(MachineOperand &Dest);
169   bool parseMDNode(MDNode *&Node);
170   bool parseMetadataOperand(MachineOperand &Dest);
171   bool parseCFIOffset(int &Offset);
172   bool parseCFIRegister(unsigned &Reg);
173   bool parseCFIOperand(MachineOperand &Dest);
174   bool parseIRBlock(BasicBlock *&BB, const Function &F);
175   bool parseBlockAddressOperand(MachineOperand &Dest);
176   bool parseIntrinsicOperand(MachineOperand &Dest);
177   bool parsePredicateOperand(MachineOperand &Dest);
178   bool parseTargetIndexOperand(MachineOperand &Dest);
179   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
180   bool parseMachineOperand(MachineOperand &Dest,
181                            Optional<unsigned> &TiedDefIdx);
182   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
183                                          Optional<unsigned> &TiedDefIdx);
184   bool parseOffset(int64_t &Offset);
185   bool parseAlignment(unsigned &Alignment);
186   bool parseOperandsOffset(MachineOperand &Op);
187   bool parseIRValue(const Value *&V);
188   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
189   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
190   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
191   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
192 
193 private:
194   /// Convert the integer literal in the current token into an unsigned integer.
195   ///
196   /// Return true if an error occurred.
197   bool getUnsigned(unsigned &Result);
198 
199   /// Convert the integer literal in the current token into an uint64.
200   ///
201   /// Return true if an error occurred.
202   bool getUint64(uint64_t &Result);
203 
204   /// Convert the hexadecimal literal in the current token into an unsigned
205   ///  APInt with a minimum bitwidth required to represent the value.
206   ///
207   /// Return true if the literal does not represent an integer value.
208   bool getHexUint(APInt &Result);
209 
210   /// If the current token is of the given kind, consume it and return false.
211   /// Otherwise report an error and return true.
212   bool expectAndConsume(MIToken::TokenKind TokenKind);
213 
214   /// If the current token is of the given kind, consume it and return true.
215   /// Otherwise return false.
216   bool consumeIfPresent(MIToken::TokenKind TokenKind);
217 
218   void initNames2InstrOpCodes();
219 
220   /// Try to convert an instruction name to an opcode. Return true if the
221   /// instruction name is invalid.
222   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
223 
224   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
225 
226   bool assignRegisterTies(MachineInstr &MI,
227                           ArrayRef<ParsedMachineOperand> Operands);
228 
229   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
230                               const MCInstrDesc &MCID);
231 
232   void initNames2Regs();
233 
234   /// Try to convert a register name to a register number. Return true if the
235   /// register name is invalid.
236   bool getRegisterByName(StringRef RegName, unsigned &Reg);
237 
238   void initNames2RegMasks();
239 
240   /// Check if the given identifier is a name of a register mask.
241   ///
242   /// Return null if the identifier isn't a register mask.
243   const uint32_t *getRegMask(StringRef Identifier);
244 
245   void initNames2SubRegIndices();
246 
247   /// Check if the given identifier is a name of a subregister index.
248   ///
249   /// Return 0 if the name isn't a subregister index class.
250   unsigned getSubRegIndex(StringRef Name);
251 
252   const BasicBlock *getIRBlock(unsigned Slot);
253   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
254 
255   const Value *getIRValue(unsigned Slot);
256 
257   void initNames2TargetIndices();
258 
259   /// Try to convert a name of target index to the corresponding target index.
260   ///
261   /// Return true if the name isn't a name of a target index.
262   bool getTargetIndex(StringRef Name, int &Index);
263 
264   void initNames2DirectTargetFlags();
265 
266   /// Try to convert a name of a direct target flag to the corresponding
267   /// target flag.
268   ///
269   /// Return true if the name isn't a name of a direct flag.
270   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
271 
272   void initNames2BitmaskTargetFlags();
273 
274   /// Try to convert a name of a bitmask target flag to the corresponding
275   /// target flag.
276   ///
277   /// Return true if the name isn't a name of a bitmask target flag.
278   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
279 };
280 
281 } // end anonymous namespace
282 
283 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
284                    StringRef Source)
285     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
286 {}
287 
288 void MIParser::lex(unsigned SkipChar) {
289   CurrentSource = lexMIToken(
290       CurrentSource.data() + SkipChar, Token,
291       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
292 }
293 
294 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
295 
296 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
297   const SourceMgr &SM = *PFS.SM;
298   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
299   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
300   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
301     // Create an ordinary diagnostic when the source manager's buffer is the
302     // source string.
303     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
304     return true;
305   }
306   // Create a diagnostic for a YAML string literal.
307   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
308                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
309                        Source, None, None);
310   return true;
311 }
312 
313 static const char *toString(MIToken::TokenKind TokenKind) {
314   switch (TokenKind) {
315   case MIToken::comma:
316     return "','";
317   case MIToken::equal:
318     return "'='";
319   case MIToken::colon:
320     return "':'";
321   case MIToken::lparen:
322     return "'('";
323   case MIToken::rparen:
324     return "')'";
325   default:
326     return "<unknown token>";
327   }
328 }
329 
330 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
331   if (Token.isNot(TokenKind))
332     return error(Twine("expected ") + toString(TokenKind));
333   lex();
334   return false;
335 }
336 
337 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
338   if (Token.isNot(TokenKind))
339     return false;
340   lex();
341   return true;
342 }
343 
344 bool MIParser::parseBasicBlockDefinition(
345     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
346   assert(Token.is(MIToken::MachineBasicBlockLabel));
347   unsigned ID = 0;
348   if (getUnsigned(ID))
349     return true;
350   auto Loc = Token.location();
351   auto Name = Token.stringValue();
352   lex();
353   bool HasAddressTaken = false;
354   bool IsLandingPad = false;
355   unsigned Alignment = 0;
356   BasicBlock *BB = nullptr;
357   if (consumeIfPresent(MIToken::lparen)) {
358     do {
359       // TODO: Report an error when multiple same attributes are specified.
360       switch (Token.kind()) {
361       case MIToken::kw_address_taken:
362         HasAddressTaken = true;
363         lex();
364         break;
365       case MIToken::kw_landing_pad:
366         IsLandingPad = true;
367         lex();
368         break;
369       case MIToken::kw_align:
370         if (parseAlignment(Alignment))
371           return true;
372         break;
373       case MIToken::IRBlock:
374         // TODO: Report an error when both name and ir block are specified.
375         if (parseIRBlock(BB, *MF.getFunction()))
376           return true;
377         lex();
378         break;
379       default:
380         break;
381       }
382     } while (consumeIfPresent(MIToken::comma));
383     if (expectAndConsume(MIToken::rparen))
384       return true;
385   }
386   if (expectAndConsume(MIToken::colon))
387     return true;
388 
389   if (!Name.empty()) {
390     BB = dyn_cast_or_null<BasicBlock>(
391         MF.getFunction()->getValueSymbolTable()->lookup(Name));
392     if (!BB)
393       return error(Loc, Twine("basic block '") + Name +
394                             "' is not defined in the function '" +
395                             MF.getName() + "'");
396   }
397   auto *MBB = MF.CreateMachineBasicBlock(BB);
398   MF.insert(MF.end(), MBB);
399   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
400   if (!WasInserted)
401     return error(Loc, Twine("redefinition of machine basic block with id #") +
402                           Twine(ID));
403   if (Alignment)
404     MBB->setAlignment(Alignment);
405   if (HasAddressTaken)
406     MBB->setHasAddressTaken();
407   MBB->setIsEHPad(IsLandingPad);
408   return false;
409 }
410 
411 bool MIParser::parseBasicBlockDefinitions(
412     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
413   lex();
414   // Skip until the first machine basic block.
415   while (Token.is(MIToken::Newline))
416     lex();
417   if (Token.isErrorOrEOF())
418     return Token.isError();
419   if (Token.isNot(MIToken::MachineBasicBlockLabel))
420     return error("expected a basic block definition before instructions");
421   unsigned BraceDepth = 0;
422   do {
423     if (parseBasicBlockDefinition(MBBSlots))
424       return true;
425     bool IsAfterNewline = false;
426     // Skip until the next machine basic block.
427     while (true) {
428       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
429           Token.isErrorOrEOF())
430         break;
431       else if (Token.is(MIToken::MachineBasicBlockLabel))
432         return error("basic block definition should be located at the start of "
433                      "the line");
434       else if (consumeIfPresent(MIToken::Newline)) {
435         IsAfterNewline = true;
436         continue;
437       }
438       IsAfterNewline = false;
439       if (Token.is(MIToken::lbrace))
440         ++BraceDepth;
441       if (Token.is(MIToken::rbrace)) {
442         if (!BraceDepth)
443           return error("extraneous closing brace ('}')");
444         --BraceDepth;
445       }
446       lex();
447     }
448     // Verify that we closed all of the '{' at the end of a file or a block.
449     if (!Token.isError() && BraceDepth)
450       return error("expected '}'"); // FIXME: Report a note that shows '{'.
451   } while (!Token.isErrorOrEOF());
452   return Token.isError();
453 }
454 
455 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
456   assert(Token.is(MIToken::kw_liveins));
457   lex();
458   if (expectAndConsume(MIToken::colon))
459     return true;
460   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
461     return false;
462   do {
463     if (Token.isNot(MIToken::NamedRegister))
464       return error("expected a named register");
465     unsigned Reg = 0;
466     if (parseNamedRegister(Reg))
467       return true;
468     lex();
469     LaneBitmask Mask = LaneBitmask::getAll();
470     if (consumeIfPresent(MIToken::colon)) {
471       // Parse lane mask.
472       if (Token.isNot(MIToken::IntegerLiteral) &&
473           Token.isNot(MIToken::HexLiteral))
474         return error("expected a lane mask");
475       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
476                     "Use correct get-function for lane mask");
477       LaneBitmask::Type V;
478       if (getUnsigned(V))
479         return error("invalid lane mask value");
480       Mask = LaneBitmask(V);
481       lex();
482     }
483     MBB.addLiveIn(Reg, Mask);
484   } while (consumeIfPresent(MIToken::comma));
485   return false;
486 }
487 
488 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
489   assert(Token.is(MIToken::kw_successors));
490   lex();
491   if (expectAndConsume(MIToken::colon))
492     return true;
493   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
494     return false;
495   do {
496     if (Token.isNot(MIToken::MachineBasicBlock))
497       return error("expected a machine basic block reference");
498     MachineBasicBlock *SuccMBB = nullptr;
499     if (parseMBBReference(SuccMBB))
500       return true;
501     lex();
502     unsigned Weight = 0;
503     if (consumeIfPresent(MIToken::lparen)) {
504       if (Token.isNot(MIToken::IntegerLiteral) &&
505           Token.isNot(MIToken::HexLiteral))
506         return error("expected an integer literal after '('");
507       if (getUnsigned(Weight))
508         return true;
509       lex();
510       if (expectAndConsume(MIToken::rparen))
511         return true;
512     }
513     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
514   } while (consumeIfPresent(MIToken::comma));
515   MBB.normalizeSuccProbs();
516   return false;
517 }
518 
519 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
520   // Skip the definition.
521   assert(Token.is(MIToken::MachineBasicBlockLabel));
522   lex();
523   if (consumeIfPresent(MIToken::lparen)) {
524     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
525       lex();
526     consumeIfPresent(MIToken::rparen);
527   }
528   consumeIfPresent(MIToken::colon);
529 
530   // Parse the liveins and successors.
531   // N.B: Multiple lists of successors and liveins are allowed and they're
532   // merged into one.
533   // Example:
534   //   liveins: %edi
535   //   liveins: %esi
536   //
537   // is equivalent to
538   //   liveins: %edi, %esi
539   while (true) {
540     if (Token.is(MIToken::kw_successors)) {
541       if (parseBasicBlockSuccessors(MBB))
542         return true;
543     } else if (Token.is(MIToken::kw_liveins)) {
544       if (parseBasicBlockLiveins(MBB))
545         return true;
546     } else if (consumeIfPresent(MIToken::Newline)) {
547       continue;
548     } else
549       break;
550     if (!Token.isNewlineOrEOF())
551       return error("expected line break at the end of a list");
552     lex();
553   }
554 
555   // Parse the instructions.
556   bool IsInBundle = false;
557   MachineInstr *PrevMI = nullptr;
558   while (true) {
559     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
560       return false;
561     else if (consumeIfPresent(MIToken::Newline))
562       continue;
563     if (consumeIfPresent(MIToken::rbrace)) {
564       // The first parsing pass should verify that all closing '}' have an
565       // opening '{'.
566       assert(IsInBundle);
567       IsInBundle = false;
568       continue;
569     }
570     MachineInstr *MI = nullptr;
571     if (parse(MI))
572       return true;
573     MBB.insert(MBB.end(), MI);
574     if (IsInBundle) {
575       PrevMI->setFlag(MachineInstr::BundledSucc);
576       MI->setFlag(MachineInstr::BundledPred);
577     }
578     PrevMI = MI;
579     if (Token.is(MIToken::lbrace)) {
580       if (IsInBundle)
581         return error("nested instruction bundles are not allowed");
582       lex();
583       // This instruction is the start of the bundle.
584       MI->setFlag(MachineInstr::BundledSucc);
585       IsInBundle = true;
586       if (!Token.is(MIToken::Newline))
587         // The next instruction can be on the same line.
588         continue;
589     }
590     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
591     lex();
592   }
593   return false;
594 }
595 
596 bool MIParser::parseBasicBlocks() {
597   lex();
598   // Skip until the first machine basic block.
599   while (Token.is(MIToken::Newline))
600     lex();
601   if (Token.isErrorOrEOF())
602     return Token.isError();
603   // The first parsing pass should have verified that this token is a MBB label
604   // in the 'parseBasicBlockDefinitions' method.
605   assert(Token.is(MIToken::MachineBasicBlockLabel));
606   do {
607     MachineBasicBlock *MBB = nullptr;
608     if (parseMBBReference(MBB))
609       return true;
610     if (parseBasicBlock(*MBB))
611       return true;
612     // The method 'parseBasicBlock' should parse the whole block until the next
613     // block or the end of file.
614     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
615   } while (Token.isNot(MIToken::Eof));
616   return false;
617 }
618 
619 bool MIParser::parse(MachineInstr *&MI) {
620   // Parse any register operands before '='
621   MachineOperand MO = MachineOperand::CreateImm(0);
622   SmallVector<ParsedMachineOperand, 8> Operands;
623   while (Token.isRegister() || Token.isRegisterFlag()) {
624     auto Loc = Token.location();
625     Optional<unsigned> TiedDefIdx;
626     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
627       return true;
628     Operands.push_back(
629         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
630     if (Token.isNot(MIToken::comma))
631       break;
632     lex();
633   }
634   if (!Operands.empty() && expectAndConsume(MIToken::equal))
635     return true;
636 
637   unsigned OpCode, Flags = 0;
638   if (Token.isError() || parseInstruction(OpCode, Flags))
639     return true;
640 
641   // Parse the remaining machine operands.
642   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
643          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
644     auto Loc = Token.location();
645     Optional<unsigned> TiedDefIdx;
646     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
647       return true;
648     Operands.push_back(
649         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
650     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
651         Token.is(MIToken::lbrace))
652       break;
653     if (Token.isNot(MIToken::comma))
654       return error("expected ',' before the next machine operand");
655     lex();
656   }
657 
658   DebugLoc DebugLocation;
659   if (Token.is(MIToken::kw_debug_location)) {
660     lex();
661     if (Token.isNot(MIToken::exclaim))
662       return error("expected a metadata node after 'debug-location'");
663     MDNode *Node = nullptr;
664     if (parseMDNode(Node))
665       return true;
666     DebugLocation = DebugLoc(Node);
667   }
668 
669   // Parse the machine memory operands.
670   SmallVector<MachineMemOperand *, 2> MemOperands;
671   if (Token.is(MIToken::coloncolon)) {
672     lex();
673     while (!Token.isNewlineOrEOF()) {
674       MachineMemOperand *MemOp = nullptr;
675       if (parseMachineMemoryOperand(MemOp))
676         return true;
677       MemOperands.push_back(MemOp);
678       if (Token.isNewlineOrEOF())
679         break;
680       if (Token.isNot(MIToken::comma))
681         return error("expected ',' before the next machine memory operand");
682       lex();
683     }
684   }
685 
686   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
687   if (!MCID.isVariadic()) {
688     // FIXME: Move the implicit operand verification to the machine verifier.
689     if (verifyImplicitOperands(Operands, MCID))
690       return true;
691   }
692 
693   // TODO: Check for extraneous machine operands.
694   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
695   MI->setFlags(Flags);
696   for (const auto &Operand : Operands)
697     MI->addOperand(MF, Operand.Operand);
698   if (assignRegisterTies(*MI, Operands))
699     return true;
700   if (MemOperands.empty())
701     return false;
702   MachineInstr::mmo_iterator MemRefs =
703       MF.allocateMemRefsArray(MemOperands.size());
704   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
705   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
706   return false;
707 }
708 
709 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
710   lex();
711   if (Token.isNot(MIToken::MachineBasicBlock))
712     return error("expected a machine basic block reference");
713   if (parseMBBReference(MBB))
714     return true;
715   lex();
716   if (Token.isNot(MIToken::Eof))
717     return error(
718         "expected end of string after the machine basic block reference");
719   return false;
720 }
721 
722 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
723   lex();
724   if (Token.isNot(MIToken::NamedRegister))
725     return error("expected a named register");
726   if (parseNamedRegister(Reg))
727     return true;
728   lex();
729   if (Token.isNot(MIToken::Eof))
730     return error("expected end of string after the register reference");
731   return false;
732 }
733 
734 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
735   lex();
736   if (Token.isNot(MIToken::VirtualRegister))
737     return error("expected a virtual register");
738   if (parseVirtualRegister(Info))
739     return true;
740   lex();
741   if (Token.isNot(MIToken::Eof))
742     return error("expected end of string after the register reference");
743   return false;
744 }
745 
746 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
747   lex();
748   if (Token.isNot(MIToken::NamedRegister) &&
749       Token.isNot(MIToken::VirtualRegister))
750     return error("expected either a named or virtual register");
751 
752   VRegInfo *Info;
753   if (parseRegister(Reg, Info))
754     return true;
755 
756   lex();
757   if (Token.isNot(MIToken::Eof))
758     return error("expected end of string after the register reference");
759   return false;
760 }
761 
762 bool MIParser::parseStandaloneStackObject(int &FI) {
763   lex();
764   if (Token.isNot(MIToken::StackObject))
765     return error("expected a stack object");
766   if (parseStackFrameIndex(FI))
767     return true;
768   if (Token.isNot(MIToken::Eof))
769     return error("expected end of string after the stack object reference");
770   return false;
771 }
772 
773 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
774   lex();
775   if (Token.isNot(MIToken::exclaim))
776     return error("expected a metadata node");
777   if (parseMDNode(Node))
778     return true;
779   if (Token.isNot(MIToken::Eof))
780     return error("expected end of string after the metadata node");
781   return false;
782 }
783 
784 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
785   assert(MO.isImplicit());
786   return MO.isDef() ? "implicit-def" : "implicit";
787 }
788 
789 static std::string getRegisterName(const TargetRegisterInfo *TRI,
790                                    unsigned Reg) {
791   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
792   return StringRef(TRI->getName(Reg)).lower();
793 }
794 
795 /// Return true if the parsed machine operands contain a given machine operand.
796 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
797                                 ArrayRef<ParsedMachineOperand> Operands) {
798   for (const auto &I : Operands) {
799     if (ImplicitOperand.isIdenticalTo(I.Operand))
800       return true;
801   }
802   return false;
803 }
804 
805 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
806                                       const MCInstrDesc &MCID) {
807   if (MCID.isCall())
808     // We can't verify call instructions as they can contain arbitrary implicit
809     // register and register mask operands.
810     return false;
811 
812   // Gather all the expected implicit operands.
813   SmallVector<MachineOperand, 4> ImplicitOperands;
814   if (MCID.ImplicitDefs)
815     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
816       ImplicitOperands.push_back(
817           MachineOperand::CreateReg(*ImpDefs, true, true));
818   if (MCID.ImplicitUses)
819     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
820       ImplicitOperands.push_back(
821           MachineOperand::CreateReg(*ImpUses, false, true));
822 
823   const auto *TRI = MF.getSubtarget().getRegisterInfo();
824   assert(TRI && "Expected target register info");
825   for (const auto &I : ImplicitOperands) {
826     if (isImplicitOperandIn(I, Operands))
827       continue;
828     return error(Operands.empty() ? Token.location() : Operands.back().End,
829                  Twine("missing implicit register operand '") +
830                      printImplicitRegisterFlag(I) + " %" +
831                      getRegisterName(TRI, I.getReg()) + "'");
832   }
833   return false;
834 }
835 
836 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
837   if (Token.is(MIToken::kw_frame_setup)) {
838     Flags |= MachineInstr::FrameSetup;
839     lex();
840   }
841   if (Token.isNot(MIToken::Identifier))
842     return error("expected a machine instruction");
843   StringRef InstrName = Token.stringValue();
844   if (parseInstrName(InstrName, OpCode))
845     return error(Twine("unknown machine instruction name '") + InstrName + "'");
846   lex();
847   return false;
848 }
849 
850 bool MIParser::parseNamedRegister(unsigned &Reg) {
851   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
852   StringRef Name = Token.stringValue();
853   if (getRegisterByName(Name, Reg))
854     return error(Twine("unknown register name '") + Name + "'");
855   return false;
856 }
857 
858 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
859   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
860   unsigned ID;
861   if (getUnsigned(ID))
862     return true;
863   Info = &PFS.getVRegInfo(ID);
864   return false;
865 }
866 
867 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
868   switch (Token.kind()) {
869   case MIToken::underscore:
870     Reg = 0;
871     return false;
872   case MIToken::NamedRegister:
873     return parseNamedRegister(Reg);
874   case MIToken::VirtualRegister:
875     if (parseVirtualRegister(Info))
876       return true;
877     Reg = Info->VReg;
878     return false;
879   // TODO: Parse other register kinds.
880   default:
881     llvm_unreachable("The current token should be a register");
882   }
883 }
884 
885 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
886   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
887     return error("expected '_', register class, or register bank name");
888   StringRef::iterator Loc = Token.location();
889   StringRef Name = Token.stringValue();
890 
891   // Was it a register class?
892   auto RCNameI = PFS.Names2RegClasses.find(Name);
893   if (RCNameI != PFS.Names2RegClasses.end()) {
894     lex();
895     const TargetRegisterClass &RC = *RCNameI->getValue();
896 
897     switch (RegInfo.Kind) {
898     case VRegInfo::UNKNOWN:
899     case VRegInfo::NORMAL:
900       RegInfo.Kind = VRegInfo::NORMAL;
901       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
902         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
903         return error(Loc, Twine("conflicting register classes, previously: ") +
904                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
905       }
906       RegInfo.D.RC = &RC;
907       RegInfo.Explicit = true;
908       return false;
909 
910     case VRegInfo::GENERIC:
911     case VRegInfo::REGBANK:
912       return error(Loc, "register class specification on generic register");
913     }
914     llvm_unreachable("Unexpected register kind");
915   }
916 
917   // Should be a register bank or a generic register.
918   const RegisterBank *RegBank = nullptr;
919   if (Name != "_") {
920     auto RBNameI = PFS.Names2RegBanks.find(Name);
921     if (RBNameI == PFS.Names2RegBanks.end())
922       return error(Loc, "expected '_', register class, or register bank name");
923     RegBank = RBNameI->getValue();
924   }
925 
926   lex();
927 
928   switch (RegInfo.Kind) {
929   case VRegInfo::UNKNOWN:
930   case VRegInfo::GENERIC:
931   case VRegInfo::REGBANK:
932     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
933     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
934       return error(Loc, "conflicting generic register banks");
935     RegInfo.D.RegBank = RegBank;
936     RegInfo.Explicit = true;
937     return false;
938 
939   case VRegInfo::NORMAL:
940     return error(Loc, "register bank specification on normal register");
941   }
942   llvm_unreachable("Unexpected register kind");
943 }
944 
945 bool MIParser::parseRegisterFlag(unsigned &Flags) {
946   const unsigned OldFlags = Flags;
947   switch (Token.kind()) {
948   case MIToken::kw_implicit:
949     Flags |= RegState::Implicit;
950     break;
951   case MIToken::kw_implicit_define:
952     Flags |= RegState::ImplicitDefine;
953     break;
954   case MIToken::kw_def:
955     Flags |= RegState::Define;
956     break;
957   case MIToken::kw_dead:
958     Flags |= RegState::Dead;
959     break;
960   case MIToken::kw_killed:
961     Flags |= RegState::Kill;
962     break;
963   case MIToken::kw_undef:
964     Flags |= RegState::Undef;
965     break;
966   case MIToken::kw_internal:
967     Flags |= RegState::InternalRead;
968     break;
969   case MIToken::kw_early_clobber:
970     Flags |= RegState::EarlyClobber;
971     break;
972   case MIToken::kw_debug_use:
973     Flags |= RegState::Debug;
974     break;
975   default:
976     llvm_unreachable("The current token should be a register flag");
977   }
978   if (OldFlags == Flags)
979     // We know that the same flag is specified more than once when the flags
980     // weren't modified.
981     return error("duplicate '" + Token.stringValue() + "' register flag");
982   lex();
983   return false;
984 }
985 
986 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
987   assert(Token.is(MIToken::dot));
988   lex();
989   if (Token.isNot(MIToken::Identifier))
990     return error("expected a subregister index after '.'");
991   auto Name = Token.stringValue();
992   SubReg = getSubRegIndex(Name);
993   if (!SubReg)
994     return error(Twine("use of unknown subregister index '") + Name + "'");
995   lex();
996   return false;
997 }
998 
999 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1000   if (!consumeIfPresent(MIToken::kw_tied_def))
1001     return true;
1002   if (Token.isNot(MIToken::IntegerLiteral))
1003     return error("expected an integer literal after 'tied-def'");
1004   if (getUnsigned(TiedDefIdx))
1005     return true;
1006   lex();
1007   if (expectAndConsume(MIToken::rparen))
1008     return true;
1009   return false;
1010 }
1011 
1012 bool MIParser::assignRegisterTies(MachineInstr &MI,
1013                                   ArrayRef<ParsedMachineOperand> Operands) {
1014   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1015   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1016     if (!Operands[I].TiedDefIdx)
1017       continue;
1018     // The parser ensures that this operand is a register use, so we just have
1019     // to check the tied-def operand.
1020     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1021     if (DefIdx >= E)
1022       return error(Operands[I].Begin,
1023                    Twine("use of invalid tied-def operand index '" +
1024                          Twine(DefIdx) + "'; instruction has only ") +
1025                        Twine(E) + " operands");
1026     const auto &DefOperand = Operands[DefIdx].Operand;
1027     if (!DefOperand.isReg() || !DefOperand.isDef())
1028       // FIXME: add note with the def operand.
1029       return error(Operands[I].Begin,
1030                    Twine("use of invalid tied-def operand index '") +
1031                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1032                        " isn't a defined register");
1033     // Check that the tied-def operand wasn't tied elsewhere.
1034     for (const auto &TiedPair : TiedRegisterPairs) {
1035       if (TiedPair.first == DefIdx)
1036         return error(Operands[I].Begin,
1037                      Twine("the tied-def operand #") + Twine(DefIdx) +
1038                          " is already tied with another register operand");
1039     }
1040     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1041   }
1042   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1043   // indices must be less than tied max.
1044   for (const auto &TiedPair : TiedRegisterPairs)
1045     MI.tieOperands(TiedPair.first, TiedPair.second);
1046   return false;
1047 }
1048 
1049 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1050                                     Optional<unsigned> &TiedDefIdx,
1051                                     bool IsDef) {
1052   unsigned Flags = IsDef ? RegState::Define : 0;
1053   while (Token.isRegisterFlag()) {
1054     if (parseRegisterFlag(Flags))
1055       return true;
1056   }
1057   if (!Token.isRegister())
1058     return error("expected a register after register flags");
1059   unsigned Reg;
1060   VRegInfo *RegInfo;
1061   if (parseRegister(Reg, RegInfo))
1062     return true;
1063   lex();
1064   unsigned SubReg = 0;
1065   if (Token.is(MIToken::dot)) {
1066     if (parseSubRegisterIndex(SubReg))
1067       return true;
1068     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1069       return error("subregister index expects a virtual register");
1070   }
1071   if (Token.is(MIToken::colon)) {
1072     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1073       return error("register class specification expects a virtual register");
1074     lex();
1075     if (parseRegisterClassOrBank(*RegInfo))
1076         return true;
1077   }
1078   MachineRegisterInfo &MRI = MF.getRegInfo();
1079   if ((Flags & RegState::Define) == 0) {
1080     if (consumeIfPresent(MIToken::lparen)) {
1081       unsigned Idx;
1082       if (!parseRegisterTiedDefIndex(Idx))
1083         TiedDefIdx = Idx;
1084       else {
1085         // Try a redundant low-level type.
1086         LLT Ty;
1087         if (parseLowLevelType(Token.location(), Ty))
1088           return error("expected tied-def or low-level type after '('");
1089 
1090         if (expectAndConsume(MIToken::rparen))
1091           return true;
1092 
1093         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1094           return error("inconsistent type for generic virtual register");
1095 
1096         MRI.setType(Reg, Ty);
1097       }
1098     }
1099   } else if (consumeIfPresent(MIToken::lparen)) {
1100     // Virtual registers may have a tpe with GlobalISel.
1101     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1102       return error("unexpected type on physical register");
1103 
1104     LLT Ty;
1105     if (parseLowLevelType(Token.location(), Ty))
1106       return true;
1107 
1108     if (expectAndConsume(MIToken::rparen))
1109       return true;
1110 
1111     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1112       return error("inconsistent type for generic virtual register");
1113 
1114     MRI.setType(Reg, Ty);
1115   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1116     // Generic virtual registers must have a type.
1117     // If we end up here this means the type hasn't been specified and
1118     // this is bad!
1119     if (RegInfo->Kind == VRegInfo::GENERIC ||
1120         RegInfo->Kind == VRegInfo::REGBANK)
1121       return error("generic virtual registers must have a type");
1122   }
1123   Dest = MachineOperand::CreateReg(
1124       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1125       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1126       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1127       Flags & RegState::InternalRead);
1128   return false;
1129 }
1130 
1131 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1132   assert(Token.is(MIToken::IntegerLiteral));
1133   const APSInt &Int = Token.integerValue();
1134   if (Int.getMinSignedBits() > 64)
1135     return error("integer literal is too large to be an immediate operand");
1136   Dest = MachineOperand::CreateImm(Int.getExtValue());
1137   lex();
1138   return false;
1139 }
1140 
1141 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1142                                const Constant *&C) {
1143   auto Source = StringValue.str(); // The source has to be null terminated.
1144   SMDiagnostic Err;
1145   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1146                          &PFS.IRSlots);
1147   if (!C)
1148     return error(Loc + Err.getColumnNo(), Err.getMessage());
1149   return false;
1150 }
1151 
1152 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1153   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1154     return true;
1155   lex();
1156   return false;
1157 }
1158 
1159 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1160   if (Token.is(MIToken::ScalarType)) {
1161     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1162     lex();
1163     return false;
1164   } else if (Token.is(MIToken::PointerType)) {
1165     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1166     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1167     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1168     lex();
1169     return false;
1170   }
1171 
1172   // Now we're looking for a vector.
1173   if (Token.isNot(MIToken::less))
1174     return error(Loc,
1175                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1176 
1177   lex();
1178 
1179   if (Token.isNot(MIToken::IntegerLiteral))
1180     return error(Loc, "expected <N x sM> for vctor type");
1181   uint64_t NumElements = Token.integerValue().getZExtValue();
1182   lex();
1183 
1184   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1185     return error(Loc, "expected '<N x sM>' for vector type");
1186   lex();
1187 
1188   if (Token.isNot(MIToken::ScalarType))
1189     return error(Loc, "expected '<N x sM>' for vector type");
1190   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1191   lex();
1192 
1193   if (Token.isNot(MIToken::greater))
1194     return error(Loc, "expected '<N x sM>' for vector type");
1195   lex();
1196 
1197   Ty = LLT::vector(NumElements, ScalarSize);
1198   return false;
1199 }
1200 
1201 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1202   assert(Token.is(MIToken::IntegerType));
1203   auto Loc = Token.location();
1204   lex();
1205   if (Token.isNot(MIToken::IntegerLiteral))
1206     return error("expected an integer literal");
1207   const Constant *C = nullptr;
1208   if (parseIRConstant(Loc, C))
1209     return true;
1210   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1211   return false;
1212 }
1213 
1214 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1215   auto Loc = Token.location();
1216   lex();
1217   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1218       Token.isNot(MIToken::HexLiteral))
1219     return error("expected a floating point literal");
1220   const Constant *C = nullptr;
1221   if (parseIRConstant(Loc, C))
1222     return true;
1223   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1224   return false;
1225 }
1226 
1227 bool MIParser::getUnsigned(unsigned &Result) {
1228   if (Token.hasIntegerValue()) {
1229     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1230     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1231     if (Val64 == Limit)
1232       return error("expected 32-bit integer (too large)");
1233     Result = Val64;
1234     return false;
1235   }
1236   if (Token.is(MIToken::HexLiteral)) {
1237     APInt A;
1238     if (getHexUint(A))
1239       return true;
1240     if (A.getBitWidth() > 32)
1241       return error("expected 32-bit integer (too large)");
1242     Result = A.getZExtValue();
1243     return false;
1244   }
1245   return true;
1246 }
1247 
1248 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1249   assert(Token.is(MIToken::MachineBasicBlock) ||
1250          Token.is(MIToken::MachineBasicBlockLabel));
1251   unsigned Number;
1252   if (getUnsigned(Number))
1253     return true;
1254   auto MBBInfo = PFS.MBBSlots.find(Number);
1255   if (MBBInfo == PFS.MBBSlots.end())
1256     return error(Twine("use of undefined machine basic block #") +
1257                  Twine(Number));
1258   MBB = MBBInfo->second;
1259   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1260     return error(Twine("the name of machine basic block #") + Twine(Number) +
1261                  " isn't '" + Token.stringValue() + "'");
1262   return false;
1263 }
1264 
1265 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1266   MachineBasicBlock *MBB;
1267   if (parseMBBReference(MBB))
1268     return true;
1269   Dest = MachineOperand::CreateMBB(MBB);
1270   lex();
1271   return false;
1272 }
1273 
1274 bool MIParser::parseStackFrameIndex(int &FI) {
1275   assert(Token.is(MIToken::StackObject));
1276   unsigned ID;
1277   if (getUnsigned(ID))
1278     return true;
1279   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1280   if (ObjectInfo == PFS.StackObjectSlots.end())
1281     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1282                  "'");
1283   StringRef Name;
1284   if (const auto *Alloca =
1285           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1286     Name = Alloca->getName();
1287   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1288     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1289                  "' isn't '" + Token.stringValue() + "'");
1290   lex();
1291   FI = ObjectInfo->second;
1292   return false;
1293 }
1294 
1295 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1296   int FI;
1297   if (parseStackFrameIndex(FI))
1298     return true;
1299   Dest = MachineOperand::CreateFI(FI);
1300   return false;
1301 }
1302 
1303 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1304   assert(Token.is(MIToken::FixedStackObject));
1305   unsigned ID;
1306   if (getUnsigned(ID))
1307     return true;
1308   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1309   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1310     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1311                  Twine(ID) + "'");
1312   lex();
1313   FI = ObjectInfo->second;
1314   return false;
1315 }
1316 
1317 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1318   int FI;
1319   if (parseFixedStackFrameIndex(FI))
1320     return true;
1321   Dest = MachineOperand::CreateFI(FI);
1322   return false;
1323 }
1324 
1325 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1326   switch (Token.kind()) {
1327   case MIToken::NamedGlobalValue: {
1328     const Module *M = MF.getFunction()->getParent();
1329     GV = M->getNamedValue(Token.stringValue());
1330     if (!GV)
1331       return error(Twine("use of undefined global value '") + Token.range() +
1332                    "'");
1333     break;
1334   }
1335   case MIToken::GlobalValue: {
1336     unsigned GVIdx;
1337     if (getUnsigned(GVIdx))
1338       return true;
1339     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1340       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1341                    "'");
1342     GV = PFS.IRSlots.GlobalValues[GVIdx];
1343     break;
1344   }
1345   default:
1346     llvm_unreachable("The current token should be a global value");
1347   }
1348   return false;
1349 }
1350 
1351 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1352   GlobalValue *GV = nullptr;
1353   if (parseGlobalValue(GV))
1354     return true;
1355   lex();
1356   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1357   if (parseOperandsOffset(Dest))
1358     return true;
1359   return false;
1360 }
1361 
1362 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1363   assert(Token.is(MIToken::ConstantPoolItem));
1364   unsigned ID;
1365   if (getUnsigned(ID))
1366     return true;
1367   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1368   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1369     return error("use of undefined constant '%const." + Twine(ID) + "'");
1370   lex();
1371   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1372   if (parseOperandsOffset(Dest))
1373     return true;
1374   return false;
1375 }
1376 
1377 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1378   assert(Token.is(MIToken::JumpTableIndex));
1379   unsigned ID;
1380   if (getUnsigned(ID))
1381     return true;
1382   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1383   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1384     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1385   lex();
1386   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1387   return false;
1388 }
1389 
1390 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1391   assert(Token.is(MIToken::ExternalSymbol));
1392   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1393   lex();
1394   Dest = MachineOperand::CreateES(Symbol);
1395   if (parseOperandsOffset(Dest))
1396     return true;
1397   return false;
1398 }
1399 
1400 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1401   assert(Token.is(MIToken::SubRegisterIndex));
1402   StringRef Name = Token.stringValue();
1403   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1404   if (SubRegIndex == 0)
1405     return error(Twine("unknown subregister index '") + Name + "'");
1406   lex();
1407   Dest = MachineOperand::CreateImm(SubRegIndex);
1408   return false;
1409 }
1410 
1411 bool MIParser::parseMDNode(MDNode *&Node) {
1412   assert(Token.is(MIToken::exclaim));
1413   auto Loc = Token.location();
1414   lex();
1415   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1416     return error("expected metadata id after '!'");
1417   unsigned ID;
1418   if (getUnsigned(ID))
1419     return true;
1420   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1421   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1422     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1423   lex();
1424   Node = NodeInfo->second.get();
1425   return false;
1426 }
1427 
1428 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1429   MDNode *Node = nullptr;
1430   if (parseMDNode(Node))
1431     return true;
1432   Dest = MachineOperand::CreateMetadata(Node);
1433   return false;
1434 }
1435 
1436 bool MIParser::parseCFIOffset(int &Offset) {
1437   if (Token.isNot(MIToken::IntegerLiteral))
1438     return error("expected a cfi offset");
1439   if (Token.integerValue().getMinSignedBits() > 32)
1440     return error("expected a 32 bit integer (the cfi offset is too large)");
1441   Offset = (int)Token.integerValue().getExtValue();
1442   lex();
1443   return false;
1444 }
1445 
1446 bool MIParser::parseCFIRegister(unsigned &Reg) {
1447   if (Token.isNot(MIToken::NamedRegister))
1448     return error("expected a cfi register");
1449   unsigned LLVMReg;
1450   if (parseNamedRegister(LLVMReg))
1451     return true;
1452   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1453   assert(TRI && "Expected target register info");
1454   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1455   if (DwarfReg < 0)
1456     return error("invalid DWARF register");
1457   Reg = (unsigned)DwarfReg;
1458   lex();
1459   return false;
1460 }
1461 
1462 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1463   auto Kind = Token.kind();
1464   lex();
1465   int Offset;
1466   unsigned Reg;
1467   unsigned CFIIndex;
1468   switch (Kind) {
1469   case MIToken::kw_cfi_same_value:
1470     if (parseCFIRegister(Reg))
1471       return true;
1472     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1473     break;
1474   case MIToken::kw_cfi_offset:
1475     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1476         parseCFIOffset(Offset))
1477       return true;
1478     CFIIndex =
1479         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1480     break;
1481   case MIToken::kw_cfi_def_cfa_register:
1482     if (parseCFIRegister(Reg))
1483       return true;
1484     CFIIndex =
1485         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1486     break;
1487   case MIToken::kw_cfi_def_cfa_offset:
1488     if (parseCFIOffset(Offset))
1489       return true;
1490     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1491     CFIIndex = MF.addFrameInst(
1492         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1493     break;
1494   case MIToken::kw_cfi_def_cfa:
1495     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1496         parseCFIOffset(Offset))
1497       return true;
1498     // NB: MCCFIInstruction::createDefCfa negates the offset.
1499     CFIIndex =
1500         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1501     break;
1502   default:
1503     // TODO: Parse the other CFI operands.
1504     llvm_unreachable("The current token should be a cfi operand");
1505   }
1506   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1507   return false;
1508 }
1509 
1510 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1511   switch (Token.kind()) {
1512   case MIToken::NamedIRBlock: {
1513     BB = dyn_cast_or_null<BasicBlock>(
1514         F.getValueSymbolTable()->lookup(Token.stringValue()));
1515     if (!BB)
1516       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1517     break;
1518   }
1519   case MIToken::IRBlock: {
1520     unsigned SlotNumber = 0;
1521     if (getUnsigned(SlotNumber))
1522       return true;
1523     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1524     if (!BB)
1525       return error(Twine("use of undefined IR block '%ir-block.") +
1526                    Twine(SlotNumber) + "'");
1527     break;
1528   }
1529   default:
1530     llvm_unreachable("The current token should be an IR block reference");
1531   }
1532   return false;
1533 }
1534 
1535 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1536   assert(Token.is(MIToken::kw_blockaddress));
1537   lex();
1538   if (expectAndConsume(MIToken::lparen))
1539     return true;
1540   if (Token.isNot(MIToken::GlobalValue) &&
1541       Token.isNot(MIToken::NamedGlobalValue))
1542     return error("expected a global value");
1543   GlobalValue *GV = nullptr;
1544   if (parseGlobalValue(GV))
1545     return true;
1546   auto *F = dyn_cast<Function>(GV);
1547   if (!F)
1548     return error("expected an IR function reference");
1549   lex();
1550   if (expectAndConsume(MIToken::comma))
1551     return true;
1552   BasicBlock *BB = nullptr;
1553   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1554     return error("expected an IR block reference");
1555   if (parseIRBlock(BB, *F))
1556     return true;
1557   lex();
1558   if (expectAndConsume(MIToken::rparen))
1559     return true;
1560   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1561   if (parseOperandsOffset(Dest))
1562     return true;
1563   return false;
1564 }
1565 
1566 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1567   assert(Token.is(MIToken::kw_intrinsic));
1568   lex();
1569   if (expectAndConsume(MIToken::lparen))
1570     return error("expected syntax intrinsic(@llvm.whatever)");
1571 
1572   if (Token.isNot(MIToken::NamedGlobalValue))
1573     return error("expected syntax intrinsic(@llvm.whatever)");
1574 
1575   std::string Name = Token.stringValue();
1576   lex();
1577 
1578   if (expectAndConsume(MIToken::rparen))
1579     return error("expected ')' to terminate intrinsic name");
1580 
1581   // Find out what intrinsic we're dealing with, first try the global namespace
1582   // and then the target's private intrinsics if that fails.
1583   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1584   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1585   if (ID == Intrinsic::not_intrinsic && TII)
1586     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1587 
1588   if (ID == Intrinsic::not_intrinsic)
1589     return error("unknown intrinsic name");
1590   Dest = MachineOperand::CreateIntrinsicID(ID);
1591 
1592   return false;
1593 }
1594 
1595 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1596   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1597   bool IsFloat = Token.is(MIToken::kw_floatpred);
1598   lex();
1599 
1600   if (expectAndConsume(MIToken::lparen))
1601     return error("expected syntax intpred(whatever) or floatpred(whatever");
1602 
1603   if (Token.isNot(MIToken::Identifier))
1604     return error("whatever");
1605 
1606   CmpInst::Predicate Pred;
1607   if (IsFloat) {
1608     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1609                .Case("false", CmpInst::FCMP_FALSE)
1610                .Case("oeq", CmpInst::FCMP_OEQ)
1611                .Case("ogt", CmpInst::FCMP_OGT)
1612                .Case("oge", CmpInst::FCMP_OGE)
1613                .Case("olt", CmpInst::FCMP_OLT)
1614                .Case("ole", CmpInst::FCMP_OLE)
1615                .Case("one", CmpInst::FCMP_ONE)
1616                .Case("ord", CmpInst::FCMP_ORD)
1617                .Case("uno", CmpInst::FCMP_UNO)
1618                .Case("ueq", CmpInst::FCMP_UEQ)
1619                .Case("ugt", CmpInst::FCMP_UGT)
1620                .Case("uge", CmpInst::FCMP_UGE)
1621                .Case("ult", CmpInst::FCMP_ULT)
1622                .Case("ule", CmpInst::FCMP_ULE)
1623                .Case("une", CmpInst::FCMP_UNE)
1624                .Case("true", CmpInst::FCMP_TRUE)
1625                .Default(CmpInst::BAD_FCMP_PREDICATE);
1626     if (!CmpInst::isFPPredicate(Pred))
1627       return error("invalid floating-point predicate");
1628   } else {
1629     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1630                .Case("eq", CmpInst::ICMP_EQ)
1631                .Case("ne", CmpInst::ICMP_NE)
1632                .Case("sgt", CmpInst::ICMP_SGT)
1633                .Case("sge", CmpInst::ICMP_SGE)
1634                .Case("slt", CmpInst::ICMP_SLT)
1635                .Case("sle", CmpInst::ICMP_SLE)
1636                .Case("ugt", CmpInst::ICMP_UGT)
1637                .Case("uge", CmpInst::ICMP_UGE)
1638                .Case("ult", CmpInst::ICMP_ULT)
1639                .Case("ule", CmpInst::ICMP_ULE)
1640                .Default(CmpInst::BAD_ICMP_PREDICATE);
1641     if (!CmpInst::isIntPredicate(Pred))
1642       return error("invalid integer predicate");
1643   }
1644 
1645   lex();
1646   Dest = MachineOperand::CreatePredicate(Pred);
1647   if (expectAndConsume(MIToken::rparen))
1648     return error("predicate should be terminated by ')'.");
1649 
1650   return false;
1651 }
1652 
1653 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1654   assert(Token.is(MIToken::kw_target_index));
1655   lex();
1656   if (expectAndConsume(MIToken::lparen))
1657     return true;
1658   if (Token.isNot(MIToken::Identifier))
1659     return error("expected the name of the target index");
1660   int Index = 0;
1661   if (getTargetIndex(Token.stringValue(), Index))
1662     return error("use of undefined target index '" + Token.stringValue() + "'");
1663   lex();
1664   if (expectAndConsume(MIToken::rparen))
1665     return true;
1666   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1667   if (parseOperandsOffset(Dest))
1668     return true;
1669   return false;
1670 }
1671 
1672 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1673   assert(Token.is(MIToken::kw_liveout));
1674   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1675   assert(TRI && "Expected target register info");
1676   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1677   lex();
1678   if (expectAndConsume(MIToken::lparen))
1679     return true;
1680   while (true) {
1681     if (Token.isNot(MIToken::NamedRegister))
1682       return error("expected a named register");
1683     unsigned Reg;
1684     if (parseNamedRegister(Reg))
1685       return true;
1686     lex();
1687     Mask[Reg / 32] |= 1U << (Reg % 32);
1688     // TODO: Report an error if the same register is used more than once.
1689     if (Token.isNot(MIToken::comma))
1690       break;
1691     lex();
1692   }
1693   if (expectAndConsume(MIToken::rparen))
1694     return true;
1695   Dest = MachineOperand::CreateRegLiveOut(Mask);
1696   return false;
1697 }
1698 
1699 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1700                                    Optional<unsigned> &TiedDefIdx) {
1701   switch (Token.kind()) {
1702   case MIToken::kw_implicit:
1703   case MIToken::kw_implicit_define:
1704   case MIToken::kw_def:
1705   case MIToken::kw_dead:
1706   case MIToken::kw_killed:
1707   case MIToken::kw_undef:
1708   case MIToken::kw_internal:
1709   case MIToken::kw_early_clobber:
1710   case MIToken::kw_debug_use:
1711   case MIToken::underscore:
1712   case MIToken::NamedRegister:
1713   case MIToken::VirtualRegister:
1714     return parseRegisterOperand(Dest, TiedDefIdx);
1715   case MIToken::IntegerLiteral:
1716     return parseImmediateOperand(Dest);
1717   case MIToken::IntegerType:
1718     return parseTypedImmediateOperand(Dest);
1719   case MIToken::kw_half:
1720   case MIToken::kw_float:
1721   case MIToken::kw_double:
1722   case MIToken::kw_x86_fp80:
1723   case MIToken::kw_fp128:
1724   case MIToken::kw_ppc_fp128:
1725     return parseFPImmediateOperand(Dest);
1726   case MIToken::MachineBasicBlock:
1727     return parseMBBOperand(Dest);
1728   case MIToken::StackObject:
1729     return parseStackObjectOperand(Dest);
1730   case MIToken::FixedStackObject:
1731     return parseFixedStackObjectOperand(Dest);
1732   case MIToken::GlobalValue:
1733   case MIToken::NamedGlobalValue:
1734     return parseGlobalAddressOperand(Dest);
1735   case MIToken::ConstantPoolItem:
1736     return parseConstantPoolIndexOperand(Dest);
1737   case MIToken::JumpTableIndex:
1738     return parseJumpTableIndexOperand(Dest);
1739   case MIToken::ExternalSymbol:
1740     return parseExternalSymbolOperand(Dest);
1741   case MIToken::SubRegisterIndex:
1742     return parseSubRegisterIndexOperand(Dest);
1743   case MIToken::exclaim:
1744     return parseMetadataOperand(Dest);
1745   case MIToken::kw_cfi_same_value:
1746   case MIToken::kw_cfi_offset:
1747   case MIToken::kw_cfi_def_cfa_register:
1748   case MIToken::kw_cfi_def_cfa_offset:
1749   case MIToken::kw_cfi_def_cfa:
1750     return parseCFIOperand(Dest);
1751   case MIToken::kw_blockaddress:
1752     return parseBlockAddressOperand(Dest);
1753   case MIToken::kw_intrinsic:
1754     return parseIntrinsicOperand(Dest);
1755   case MIToken::kw_target_index:
1756     return parseTargetIndexOperand(Dest);
1757   case MIToken::kw_liveout:
1758     return parseLiveoutRegisterMaskOperand(Dest);
1759   case MIToken::kw_floatpred:
1760   case MIToken::kw_intpred:
1761     return parsePredicateOperand(Dest);
1762   case MIToken::Error:
1763     return true;
1764   case MIToken::Identifier:
1765     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1766       Dest = MachineOperand::CreateRegMask(RegMask);
1767       lex();
1768       break;
1769     }
1770     LLVM_FALLTHROUGH;
1771   default:
1772     // FIXME: Parse the MCSymbol machine operand.
1773     return error("expected a machine operand");
1774   }
1775   return false;
1776 }
1777 
1778 bool MIParser::parseMachineOperandAndTargetFlags(
1779     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1780   unsigned TF = 0;
1781   bool HasTargetFlags = false;
1782   if (Token.is(MIToken::kw_target_flags)) {
1783     HasTargetFlags = true;
1784     lex();
1785     if (expectAndConsume(MIToken::lparen))
1786       return true;
1787     if (Token.isNot(MIToken::Identifier))
1788       return error("expected the name of the target flag");
1789     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1790       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1791         return error("use of undefined target flag '" + Token.stringValue() +
1792                      "'");
1793     }
1794     lex();
1795     while (Token.is(MIToken::comma)) {
1796       lex();
1797       if (Token.isNot(MIToken::Identifier))
1798         return error("expected the name of the target flag");
1799       unsigned BitFlag = 0;
1800       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1801         return error("use of undefined target flag '" + Token.stringValue() +
1802                      "'");
1803       // TODO: Report an error when using a duplicate bit target flag.
1804       TF |= BitFlag;
1805       lex();
1806     }
1807     if (expectAndConsume(MIToken::rparen))
1808       return true;
1809   }
1810   auto Loc = Token.location();
1811   if (parseMachineOperand(Dest, TiedDefIdx))
1812     return true;
1813   if (!HasTargetFlags)
1814     return false;
1815   if (Dest.isReg())
1816     return error(Loc, "register operands can't have target flags");
1817   Dest.setTargetFlags(TF);
1818   return false;
1819 }
1820 
1821 bool MIParser::parseOffset(int64_t &Offset) {
1822   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1823     return false;
1824   StringRef Sign = Token.range();
1825   bool IsNegative = Token.is(MIToken::minus);
1826   lex();
1827   if (Token.isNot(MIToken::IntegerLiteral))
1828     return error("expected an integer literal after '" + Sign + "'");
1829   if (Token.integerValue().getMinSignedBits() > 64)
1830     return error("expected 64-bit integer (too large)");
1831   Offset = Token.integerValue().getExtValue();
1832   if (IsNegative)
1833     Offset = -Offset;
1834   lex();
1835   return false;
1836 }
1837 
1838 bool MIParser::parseAlignment(unsigned &Alignment) {
1839   assert(Token.is(MIToken::kw_align));
1840   lex();
1841   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1842     return error("expected an integer literal after 'align'");
1843   if (getUnsigned(Alignment))
1844     return true;
1845   lex();
1846   return false;
1847 }
1848 
1849 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1850   int64_t Offset = 0;
1851   if (parseOffset(Offset))
1852     return true;
1853   Op.setOffset(Offset);
1854   return false;
1855 }
1856 
1857 bool MIParser::parseIRValue(const Value *&V) {
1858   switch (Token.kind()) {
1859   case MIToken::NamedIRValue: {
1860     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1861     break;
1862   }
1863   case MIToken::IRValue: {
1864     unsigned SlotNumber = 0;
1865     if (getUnsigned(SlotNumber))
1866       return true;
1867     V = getIRValue(SlotNumber);
1868     break;
1869   }
1870   case MIToken::NamedGlobalValue:
1871   case MIToken::GlobalValue: {
1872     GlobalValue *GV = nullptr;
1873     if (parseGlobalValue(GV))
1874       return true;
1875     V = GV;
1876     break;
1877   }
1878   case MIToken::QuotedIRValue: {
1879     const Constant *C = nullptr;
1880     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1881       return true;
1882     V = C;
1883     break;
1884   }
1885   default:
1886     llvm_unreachable("The current token should be an IR block reference");
1887   }
1888   if (!V)
1889     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1890   return false;
1891 }
1892 
1893 bool MIParser::getUint64(uint64_t &Result) {
1894   if (Token.hasIntegerValue()) {
1895     if (Token.integerValue().getActiveBits() > 64)
1896       return error("expected 64-bit integer (too large)");
1897     Result = Token.integerValue().getZExtValue();
1898     return false;
1899   }
1900   if (Token.is(MIToken::HexLiteral)) {
1901     APInt A;
1902     if (getHexUint(A))
1903       return true;
1904     if (A.getBitWidth() > 64)
1905       return error("expected 64-bit integer (too large)");
1906     Result = A.getZExtValue();
1907     return false;
1908   }
1909   return true;
1910 }
1911 
1912 bool MIParser::getHexUint(APInt &Result) {
1913   assert(Token.is(MIToken::HexLiteral));
1914   StringRef S = Token.range();
1915   assert(S[0] == '0' && tolower(S[1]) == 'x');
1916   // This could be a floating point literal with a special prefix.
1917   if (!isxdigit(S[2]))
1918     return true;
1919   StringRef V = S.substr(2);
1920   APInt A(V.size()*4, V, 16);
1921   Result = APInt(A.getActiveBits(),
1922                  ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1923   return false;
1924 }
1925 
1926 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1927   const auto OldFlags = Flags;
1928   switch (Token.kind()) {
1929   case MIToken::kw_volatile:
1930     Flags |= MachineMemOperand::MOVolatile;
1931     break;
1932   case MIToken::kw_non_temporal:
1933     Flags |= MachineMemOperand::MONonTemporal;
1934     break;
1935   case MIToken::kw_dereferenceable:
1936     Flags |= MachineMemOperand::MODereferenceable;
1937     break;
1938   case MIToken::kw_invariant:
1939     Flags |= MachineMemOperand::MOInvariant;
1940     break;
1941   // TODO: parse the target specific memory operand flags.
1942   default:
1943     llvm_unreachable("The current token should be a memory operand flag");
1944   }
1945   if (OldFlags == Flags)
1946     // We know that the same flag is specified more than once when the flags
1947     // weren't modified.
1948     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1949   lex();
1950   return false;
1951 }
1952 
1953 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1954   switch (Token.kind()) {
1955   case MIToken::kw_stack:
1956     PSV = MF.getPSVManager().getStack();
1957     break;
1958   case MIToken::kw_got:
1959     PSV = MF.getPSVManager().getGOT();
1960     break;
1961   case MIToken::kw_jump_table:
1962     PSV = MF.getPSVManager().getJumpTable();
1963     break;
1964   case MIToken::kw_constant_pool:
1965     PSV = MF.getPSVManager().getConstantPool();
1966     break;
1967   case MIToken::FixedStackObject: {
1968     int FI;
1969     if (parseFixedStackFrameIndex(FI))
1970       return true;
1971     PSV = MF.getPSVManager().getFixedStack(FI);
1972     // The token was already consumed, so use return here instead of break.
1973     return false;
1974   }
1975   case MIToken::StackObject: {
1976     int FI;
1977     if (parseStackFrameIndex(FI))
1978       return true;
1979     PSV = MF.getPSVManager().getFixedStack(FI);
1980     // The token was already consumed, so use return here instead of break.
1981     return false;
1982   }
1983   case MIToken::kw_call_entry: {
1984     lex();
1985     switch (Token.kind()) {
1986     case MIToken::GlobalValue:
1987     case MIToken::NamedGlobalValue: {
1988       GlobalValue *GV = nullptr;
1989       if (parseGlobalValue(GV))
1990         return true;
1991       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1992       break;
1993     }
1994     case MIToken::ExternalSymbol:
1995       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1996           MF.createExternalSymbolName(Token.stringValue()));
1997       break;
1998     default:
1999       return error(
2000           "expected a global value or an external symbol after 'call-entry'");
2001     }
2002     break;
2003   }
2004   default:
2005     llvm_unreachable("The current token should be pseudo source value");
2006   }
2007   lex();
2008   return false;
2009 }
2010 
2011 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2012   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2013       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2014       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2015       Token.is(MIToken::kw_call_entry)) {
2016     const PseudoSourceValue *PSV = nullptr;
2017     if (parseMemoryPseudoSourceValue(PSV))
2018       return true;
2019     int64_t Offset = 0;
2020     if (parseOffset(Offset))
2021       return true;
2022     Dest = MachinePointerInfo(PSV, Offset);
2023     return false;
2024   }
2025   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2026       Token.isNot(MIToken::GlobalValue) &&
2027       Token.isNot(MIToken::NamedGlobalValue) &&
2028       Token.isNot(MIToken::QuotedIRValue))
2029     return error("expected an IR value reference");
2030   const Value *V = nullptr;
2031   if (parseIRValue(V))
2032     return true;
2033   if (!V->getType()->isPointerTy())
2034     return error("expected a pointer IR value");
2035   lex();
2036   int64_t Offset = 0;
2037   if (parseOffset(Offset))
2038     return true;
2039   Dest = MachinePointerInfo(V, Offset);
2040   return false;
2041 }
2042 
2043 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2044   if (expectAndConsume(MIToken::lparen))
2045     return true;
2046   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2047   while (Token.isMemoryOperandFlag()) {
2048     if (parseMemoryOperandFlag(Flags))
2049       return true;
2050   }
2051   if (Token.isNot(MIToken::Identifier) ||
2052       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2053     return error("expected 'load' or 'store' memory operation");
2054   if (Token.stringValue() == "load")
2055     Flags |= MachineMemOperand::MOLoad;
2056   else
2057     Flags |= MachineMemOperand::MOStore;
2058   lex();
2059 
2060   if (Token.isNot(MIToken::IntegerLiteral))
2061     return error("expected the size integer literal after memory operation");
2062   uint64_t Size;
2063   if (getUint64(Size))
2064     return true;
2065   lex();
2066 
2067   MachinePointerInfo Ptr = MachinePointerInfo();
2068   if (Token.is(MIToken::Identifier)) {
2069     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
2070     if (Token.stringValue() != Word)
2071       return error(Twine("expected '") + Word + "'");
2072     lex();
2073 
2074     if (parseMachinePointerInfo(Ptr))
2075       return true;
2076   }
2077   unsigned BaseAlignment = Size;
2078   AAMDNodes AAInfo;
2079   MDNode *Range = nullptr;
2080   while (consumeIfPresent(MIToken::comma)) {
2081     switch (Token.kind()) {
2082     case MIToken::kw_align:
2083       if (parseAlignment(BaseAlignment))
2084         return true;
2085       break;
2086     case MIToken::md_tbaa:
2087       lex();
2088       if (parseMDNode(AAInfo.TBAA))
2089         return true;
2090       break;
2091     case MIToken::md_alias_scope:
2092       lex();
2093       if (parseMDNode(AAInfo.Scope))
2094         return true;
2095       break;
2096     case MIToken::md_noalias:
2097       lex();
2098       if (parseMDNode(AAInfo.NoAlias))
2099         return true;
2100       break;
2101     case MIToken::md_range:
2102       lex();
2103       if (parseMDNode(Range))
2104         return true;
2105       break;
2106     // TODO: Report an error on duplicate metadata nodes.
2107     default:
2108       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2109                    "'!noalias' or '!range'");
2110     }
2111   }
2112   if (expectAndConsume(MIToken::rparen))
2113     return true;
2114   Dest =
2115       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
2116   return false;
2117 }
2118 
2119 void MIParser::initNames2InstrOpCodes() {
2120   if (!Names2InstrOpCodes.empty())
2121     return;
2122   const auto *TII = MF.getSubtarget().getInstrInfo();
2123   assert(TII && "Expected target instruction info");
2124   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2125     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2126 }
2127 
2128 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2129   initNames2InstrOpCodes();
2130   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2131   if (InstrInfo == Names2InstrOpCodes.end())
2132     return true;
2133   OpCode = InstrInfo->getValue();
2134   return false;
2135 }
2136 
2137 void MIParser::initNames2Regs() {
2138   if (!Names2Regs.empty())
2139     return;
2140   // The '%noreg' register is the register 0.
2141   Names2Regs.insert(std::make_pair("noreg", 0));
2142   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2143   assert(TRI && "Expected target register info");
2144   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2145     bool WasInserted =
2146         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2147             .second;
2148     (void)WasInserted;
2149     assert(WasInserted && "Expected registers to be unique case-insensitively");
2150   }
2151 }
2152 
2153 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2154   initNames2Regs();
2155   auto RegInfo = Names2Regs.find(RegName);
2156   if (RegInfo == Names2Regs.end())
2157     return true;
2158   Reg = RegInfo->getValue();
2159   return false;
2160 }
2161 
2162 void MIParser::initNames2RegMasks() {
2163   if (!Names2RegMasks.empty())
2164     return;
2165   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2166   assert(TRI && "Expected target register info");
2167   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2168   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2169   assert(RegMasks.size() == RegMaskNames.size());
2170   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2171     Names2RegMasks.insert(
2172         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2173 }
2174 
2175 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2176   initNames2RegMasks();
2177   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2178   if (RegMaskInfo == Names2RegMasks.end())
2179     return nullptr;
2180   return RegMaskInfo->getValue();
2181 }
2182 
2183 void MIParser::initNames2SubRegIndices() {
2184   if (!Names2SubRegIndices.empty())
2185     return;
2186   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2187   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2188     Names2SubRegIndices.insert(
2189         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2190 }
2191 
2192 unsigned MIParser::getSubRegIndex(StringRef Name) {
2193   initNames2SubRegIndices();
2194   auto SubRegInfo = Names2SubRegIndices.find(Name);
2195   if (SubRegInfo == Names2SubRegIndices.end())
2196     return 0;
2197   return SubRegInfo->getValue();
2198 }
2199 
2200 static void initSlots2BasicBlocks(
2201     const Function &F,
2202     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2203   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2204   MST.incorporateFunction(F);
2205   for (auto &BB : F) {
2206     if (BB.hasName())
2207       continue;
2208     int Slot = MST.getLocalSlot(&BB);
2209     if (Slot == -1)
2210       continue;
2211     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2212   }
2213 }
2214 
2215 static const BasicBlock *getIRBlockFromSlot(
2216     unsigned Slot,
2217     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2218   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2219   if (BlockInfo == Slots2BasicBlocks.end())
2220     return nullptr;
2221   return BlockInfo->second;
2222 }
2223 
2224 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2225   if (Slots2BasicBlocks.empty())
2226     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2227   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2228 }
2229 
2230 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2231   if (&F == MF.getFunction())
2232     return getIRBlock(Slot);
2233   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2234   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2235   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2236 }
2237 
2238 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2239                            DenseMap<unsigned, const Value *> &Slots2Values) {
2240   int Slot = MST.getLocalSlot(V);
2241   if (Slot == -1)
2242     return;
2243   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2244 }
2245 
2246 /// Creates the mapping from slot numbers to function's unnamed IR values.
2247 static void initSlots2Values(const Function &F,
2248                              DenseMap<unsigned, const Value *> &Slots2Values) {
2249   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2250   MST.incorporateFunction(F);
2251   for (const auto &Arg : F.args())
2252     mapValueToSlot(&Arg, MST, Slots2Values);
2253   for (const auto &BB : F) {
2254     mapValueToSlot(&BB, MST, Slots2Values);
2255     for (const auto &I : BB)
2256       mapValueToSlot(&I, MST, Slots2Values);
2257   }
2258 }
2259 
2260 const Value *MIParser::getIRValue(unsigned Slot) {
2261   if (Slots2Values.empty())
2262     initSlots2Values(*MF.getFunction(), Slots2Values);
2263   auto ValueInfo = Slots2Values.find(Slot);
2264   if (ValueInfo == Slots2Values.end())
2265     return nullptr;
2266   return ValueInfo->second;
2267 }
2268 
2269 void MIParser::initNames2TargetIndices() {
2270   if (!Names2TargetIndices.empty())
2271     return;
2272   const auto *TII = MF.getSubtarget().getInstrInfo();
2273   assert(TII && "Expected target instruction info");
2274   auto Indices = TII->getSerializableTargetIndices();
2275   for (const auto &I : Indices)
2276     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2277 }
2278 
2279 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2280   initNames2TargetIndices();
2281   auto IndexInfo = Names2TargetIndices.find(Name);
2282   if (IndexInfo == Names2TargetIndices.end())
2283     return true;
2284   Index = IndexInfo->second;
2285   return false;
2286 }
2287 
2288 void MIParser::initNames2DirectTargetFlags() {
2289   if (!Names2DirectTargetFlags.empty())
2290     return;
2291   const auto *TII = MF.getSubtarget().getInstrInfo();
2292   assert(TII && "Expected target instruction info");
2293   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2294   for (const auto &I : Flags)
2295     Names2DirectTargetFlags.insert(
2296         std::make_pair(StringRef(I.second), I.first));
2297 }
2298 
2299 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2300   initNames2DirectTargetFlags();
2301   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2302   if (FlagInfo == Names2DirectTargetFlags.end())
2303     return true;
2304   Flag = FlagInfo->second;
2305   return false;
2306 }
2307 
2308 void MIParser::initNames2BitmaskTargetFlags() {
2309   if (!Names2BitmaskTargetFlags.empty())
2310     return;
2311   const auto *TII = MF.getSubtarget().getInstrInfo();
2312   assert(TII && "Expected target instruction info");
2313   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2314   for (const auto &I : Flags)
2315     Names2BitmaskTargetFlags.insert(
2316         std::make_pair(StringRef(I.second), I.first));
2317 }
2318 
2319 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2320   initNames2BitmaskTargetFlags();
2321   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2322   if (FlagInfo == Names2BitmaskTargetFlags.end())
2323     return true;
2324   Flag = FlagInfo->second;
2325   return false;
2326 }
2327 
2328 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2329                                              StringRef Src,
2330                                              SMDiagnostic &Error) {
2331   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2332 }
2333 
2334 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2335                                     StringRef Src, SMDiagnostic &Error) {
2336   return MIParser(PFS, Error, Src).parseBasicBlocks();
2337 }
2338 
2339 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2340                              MachineBasicBlock *&MBB, StringRef Src,
2341                              SMDiagnostic &Error) {
2342   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2343 }
2344 
2345 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2346                                   unsigned &Reg, StringRef Src,
2347                                   SMDiagnostic &Error) {
2348   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2349 }
2350 
2351 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2352                                        unsigned &Reg, StringRef Src,
2353                                        SMDiagnostic &Error) {
2354   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2355 }
2356 
2357 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2358                                          VRegInfo *&Info, StringRef Src,
2359                                          SMDiagnostic &Error) {
2360   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2361 }
2362 
2363 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2364                                      int &FI, StringRef Src,
2365                                      SMDiagnostic &Error) {
2366   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2367 }
2368 
2369 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2370                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2371   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2372 }
2373