1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cctype> 40 41 using namespace llvm; 42 43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 44 SourceMgr &SM, const SlotMapping &IRSlots, 45 const Name2RegClassMap &Names2RegClasses, 46 const Name2RegBankMap &Names2RegBanks) 47 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 48 Names2RegBanks(Names2RegBanks) { 49 } 50 51 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 52 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 53 if (I.second) { 54 MachineRegisterInfo &MRI = MF.getRegInfo(); 55 VRegInfo *Info = new (Allocator) VRegInfo; 56 Info->VReg = MRI.createIncompleteVirtualRegister(); 57 I.first->second = Info; 58 } 59 return *I.first->second; 60 } 61 62 namespace { 63 64 /// A wrapper struct around the 'MachineOperand' struct that includes a source 65 /// range and other attributes. 66 struct ParsedMachineOperand { 67 MachineOperand Operand; 68 StringRef::iterator Begin; 69 StringRef::iterator End; 70 Optional<unsigned> TiedDefIdx; 71 72 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 73 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 74 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 75 if (TiedDefIdx) 76 assert(Operand.isReg() && Operand.isUse() && 77 "Only used register operands can be tied"); 78 } 79 }; 80 81 class MIParser { 82 MachineFunction &MF; 83 SMDiagnostic &Error; 84 StringRef Source, CurrentSource; 85 MIToken Token; 86 PerFunctionMIParsingState &PFS; 87 /// Maps from instruction names to op codes. 88 StringMap<unsigned> Names2InstrOpCodes; 89 /// Maps from register names to registers. 90 StringMap<unsigned> Names2Regs; 91 /// Maps from register mask names to register masks. 92 StringMap<const uint32_t *> Names2RegMasks; 93 /// Maps from subregister names to subregister indices. 94 StringMap<unsigned> Names2SubRegIndices; 95 /// Maps from slot numbers to function's unnamed basic blocks. 96 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 97 /// Maps from slot numbers to function's unnamed values. 98 DenseMap<unsigned, const Value *> Slots2Values; 99 /// Maps from target index names to target indices. 100 StringMap<int> Names2TargetIndices; 101 /// Maps from direct target flag names to the direct target flag values. 102 StringMap<unsigned> Names2DirectTargetFlags; 103 /// Maps from direct target flag names to the bitmask target flag values. 104 StringMap<unsigned> Names2BitmaskTargetFlags; 105 106 public: 107 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 108 StringRef Source); 109 110 /// \p SkipChar gives the number of characters to skip before looking 111 /// for the next token. 112 void lex(unsigned SkipChar = 0); 113 114 /// Report an error at the current location with the given message. 115 /// 116 /// This function always return true. 117 bool error(const Twine &Msg); 118 119 /// Report an error at the given location with the given message. 120 /// 121 /// This function always return true. 122 bool error(StringRef::iterator Loc, const Twine &Msg); 123 124 bool 125 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 126 bool parseBasicBlocks(); 127 bool parse(MachineInstr *&MI); 128 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 129 bool parseStandaloneNamedRegister(unsigned &Reg); 130 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 131 bool parseStandaloneRegister(unsigned &Reg); 132 bool parseStandaloneStackObject(int &FI); 133 bool parseStandaloneMDNode(MDNode *&Node); 134 135 bool 136 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 137 bool parseBasicBlock(MachineBasicBlock &MBB); 138 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 139 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 140 141 bool parseNamedRegister(unsigned &Reg); 142 bool parseVirtualRegister(VRegInfo *&Info); 143 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 144 bool parseRegisterFlag(unsigned &Flags); 145 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 146 bool parseSubRegisterIndex(unsigned &SubReg); 147 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 148 bool parseRegisterOperand(MachineOperand &Dest, 149 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 150 bool parseImmediateOperand(MachineOperand &Dest); 151 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 152 const Constant *&C); 153 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 154 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 155 bool parseTypedImmediateOperand(MachineOperand &Dest); 156 bool parseFPImmediateOperand(MachineOperand &Dest); 157 bool parseMBBReference(MachineBasicBlock *&MBB); 158 bool parseMBBOperand(MachineOperand &Dest); 159 bool parseStackFrameIndex(int &FI); 160 bool parseStackObjectOperand(MachineOperand &Dest); 161 bool parseFixedStackFrameIndex(int &FI); 162 bool parseFixedStackObjectOperand(MachineOperand &Dest); 163 bool parseGlobalValue(GlobalValue *&GV); 164 bool parseGlobalAddressOperand(MachineOperand &Dest); 165 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 166 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 167 bool parseJumpTableIndexOperand(MachineOperand &Dest); 168 bool parseExternalSymbolOperand(MachineOperand &Dest); 169 bool parseMDNode(MDNode *&Node); 170 bool parseMetadataOperand(MachineOperand &Dest); 171 bool parseCFIOffset(int &Offset); 172 bool parseCFIRegister(unsigned &Reg); 173 bool parseCFIOperand(MachineOperand &Dest); 174 bool parseIRBlock(BasicBlock *&BB, const Function &F); 175 bool parseBlockAddressOperand(MachineOperand &Dest); 176 bool parseIntrinsicOperand(MachineOperand &Dest); 177 bool parsePredicateOperand(MachineOperand &Dest); 178 bool parseTargetIndexOperand(MachineOperand &Dest); 179 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 180 bool parseMachineOperand(MachineOperand &Dest, 181 Optional<unsigned> &TiedDefIdx); 182 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 183 Optional<unsigned> &TiedDefIdx); 184 bool parseOffset(int64_t &Offset); 185 bool parseAlignment(unsigned &Alignment); 186 bool parseOperandsOffset(MachineOperand &Op); 187 bool parseIRValue(const Value *&V); 188 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 189 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 190 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 191 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 192 193 private: 194 /// Convert the integer literal in the current token into an unsigned integer. 195 /// 196 /// Return true if an error occurred. 197 bool getUnsigned(unsigned &Result); 198 199 /// Convert the integer literal in the current token into an uint64. 200 /// 201 /// Return true if an error occurred. 202 bool getUint64(uint64_t &Result); 203 204 /// Convert the hexadecimal literal in the current token into an unsigned 205 /// APInt with a minimum bitwidth required to represent the value. 206 /// 207 /// Return true if the literal does not represent an integer value. 208 bool getHexUint(APInt &Result); 209 210 /// If the current token is of the given kind, consume it and return false. 211 /// Otherwise report an error and return true. 212 bool expectAndConsume(MIToken::TokenKind TokenKind); 213 214 /// If the current token is of the given kind, consume it and return true. 215 /// Otherwise return false. 216 bool consumeIfPresent(MIToken::TokenKind TokenKind); 217 218 void initNames2InstrOpCodes(); 219 220 /// Try to convert an instruction name to an opcode. Return true if the 221 /// instruction name is invalid. 222 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 223 224 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 225 226 bool assignRegisterTies(MachineInstr &MI, 227 ArrayRef<ParsedMachineOperand> Operands); 228 229 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 230 const MCInstrDesc &MCID); 231 232 void initNames2Regs(); 233 234 /// Try to convert a register name to a register number. Return true if the 235 /// register name is invalid. 236 bool getRegisterByName(StringRef RegName, unsigned &Reg); 237 238 void initNames2RegMasks(); 239 240 /// Check if the given identifier is a name of a register mask. 241 /// 242 /// Return null if the identifier isn't a register mask. 243 const uint32_t *getRegMask(StringRef Identifier); 244 245 void initNames2SubRegIndices(); 246 247 /// Check if the given identifier is a name of a subregister index. 248 /// 249 /// Return 0 if the name isn't a subregister index class. 250 unsigned getSubRegIndex(StringRef Name); 251 252 const BasicBlock *getIRBlock(unsigned Slot); 253 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 254 255 const Value *getIRValue(unsigned Slot); 256 257 void initNames2TargetIndices(); 258 259 /// Try to convert a name of target index to the corresponding target index. 260 /// 261 /// Return true if the name isn't a name of a target index. 262 bool getTargetIndex(StringRef Name, int &Index); 263 264 void initNames2DirectTargetFlags(); 265 266 /// Try to convert a name of a direct target flag to the corresponding 267 /// target flag. 268 /// 269 /// Return true if the name isn't a name of a direct flag. 270 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 271 272 void initNames2BitmaskTargetFlags(); 273 274 /// Try to convert a name of a bitmask target flag to the corresponding 275 /// target flag. 276 /// 277 /// Return true if the name isn't a name of a bitmask target flag. 278 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 279 }; 280 281 } // end anonymous namespace 282 283 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 284 StringRef Source) 285 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 286 {} 287 288 void MIParser::lex(unsigned SkipChar) { 289 CurrentSource = lexMIToken( 290 CurrentSource.data() + SkipChar, Token, 291 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 292 } 293 294 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 295 296 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 297 const SourceMgr &SM = *PFS.SM; 298 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 299 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 300 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 301 // Create an ordinary diagnostic when the source manager's buffer is the 302 // source string. 303 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 304 return true; 305 } 306 // Create a diagnostic for a YAML string literal. 307 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 308 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 309 Source, None, None); 310 return true; 311 } 312 313 static const char *toString(MIToken::TokenKind TokenKind) { 314 switch (TokenKind) { 315 case MIToken::comma: 316 return "','"; 317 case MIToken::equal: 318 return "'='"; 319 case MIToken::colon: 320 return "':'"; 321 case MIToken::lparen: 322 return "'('"; 323 case MIToken::rparen: 324 return "')'"; 325 default: 326 return "<unknown token>"; 327 } 328 } 329 330 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 331 if (Token.isNot(TokenKind)) 332 return error(Twine("expected ") + toString(TokenKind)); 333 lex(); 334 return false; 335 } 336 337 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 338 if (Token.isNot(TokenKind)) 339 return false; 340 lex(); 341 return true; 342 } 343 344 bool MIParser::parseBasicBlockDefinition( 345 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 346 assert(Token.is(MIToken::MachineBasicBlockLabel)); 347 unsigned ID = 0; 348 if (getUnsigned(ID)) 349 return true; 350 auto Loc = Token.location(); 351 auto Name = Token.stringValue(); 352 lex(); 353 bool HasAddressTaken = false; 354 bool IsLandingPad = false; 355 unsigned Alignment = 0; 356 BasicBlock *BB = nullptr; 357 if (consumeIfPresent(MIToken::lparen)) { 358 do { 359 // TODO: Report an error when multiple same attributes are specified. 360 switch (Token.kind()) { 361 case MIToken::kw_address_taken: 362 HasAddressTaken = true; 363 lex(); 364 break; 365 case MIToken::kw_landing_pad: 366 IsLandingPad = true; 367 lex(); 368 break; 369 case MIToken::kw_align: 370 if (parseAlignment(Alignment)) 371 return true; 372 break; 373 case MIToken::IRBlock: 374 // TODO: Report an error when both name and ir block are specified. 375 if (parseIRBlock(BB, *MF.getFunction())) 376 return true; 377 lex(); 378 break; 379 default: 380 break; 381 } 382 } while (consumeIfPresent(MIToken::comma)); 383 if (expectAndConsume(MIToken::rparen)) 384 return true; 385 } 386 if (expectAndConsume(MIToken::colon)) 387 return true; 388 389 if (!Name.empty()) { 390 BB = dyn_cast_or_null<BasicBlock>( 391 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 392 if (!BB) 393 return error(Loc, Twine("basic block '") + Name + 394 "' is not defined in the function '" + 395 MF.getName() + "'"); 396 } 397 auto *MBB = MF.CreateMachineBasicBlock(BB); 398 MF.insert(MF.end(), MBB); 399 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 400 if (!WasInserted) 401 return error(Loc, Twine("redefinition of machine basic block with id #") + 402 Twine(ID)); 403 if (Alignment) 404 MBB->setAlignment(Alignment); 405 if (HasAddressTaken) 406 MBB->setHasAddressTaken(); 407 MBB->setIsEHPad(IsLandingPad); 408 return false; 409 } 410 411 bool MIParser::parseBasicBlockDefinitions( 412 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 413 lex(); 414 // Skip until the first machine basic block. 415 while (Token.is(MIToken::Newline)) 416 lex(); 417 if (Token.isErrorOrEOF()) 418 return Token.isError(); 419 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 420 return error("expected a basic block definition before instructions"); 421 unsigned BraceDepth = 0; 422 do { 423 if (parseBasicBlockDefinition(MBBSlots)) 424 return true; 425 bool IsAfterNewline = false; 426 // Skip until the next machine basic block. 427 while (true) { 428 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 429 Token.isErrorOrEOF()) 430 break; 431 else if (Token.is(MIToken::MachineBasicBlockLabel)) 432 return error("basic block definition should be located at the start of " 433 "the line"); 434 else if (consumeIfPresent(MIToken::Newline)) { 435 IsAfterNewline = true; 436 continue; 437 } 438 IsAfterNewline = false; 439 if (Token.is(MIToken::lbrace)) 440 ++BraceDepth; 441 if (Token.is(MIToken::rbrace)) { 442 if (!BraceDepth) 443 return error("extraneous closing brace ('}')"); 444 --BraceDepth; 445 } 446 lex(); 447 } 448 // Verify that we closed all of the '{' at the end of a file or a block. 449 if (!Token.isError() && BraceDepth) 450 return error("expected '}'"); // FIXME: Report a note that shows '{'. 451 } while (!Token.isErrorOrEOF()); 452 return Token.isError(); 453 } 454 455 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 456 assert(Token.is(MIToken::kw_liveins)); 457 lex(); 458 if (expectAndConsume(MIToken::colon)) 459 return true; 460 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 461 return false; 462 do { 463 if (Token.isNot(MIToken::NamedRegister)) 464 return error("expected a named register"); 465 unsigned Reg = 0; 466 if (parseNamedRegister(Reg)) 467 return true; 468 lex(); 469 LaneBitmask Mask = LaneBitmask::getAll(); 470 if (consumeIfPresent(MIToken::colon)) { 471 // Parse lane mask. 472 if (Token.isNot(MIToken::IntegerLiteral) && 473 Token.isNot(MIToken::HexLiteral)) 474 return error("expected a lane mask"); 475 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 476 "Use correct get-function for lane mask"); 477 LaneBitmask::Type V; 478 if (getUnsigned(V)) 479 return error("invalid lane mask value"); 480 Mask = LaneBitmask(V); 481 lex(); 482 } 483 MBB.addLiveIn(Reg, Mask); 484 } while (consumeIfPresent(MIToken::comma)); 485 return false; 486 } 487 488 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 489 assert(Token.is(MIToken::kw_successors)); 490 lex(); 491 if (expectAndConsume(MIToken::colon)) 492 return true; 493 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 494 return false; 495 do { 496 if (Token.isNot(MIToken::MachineBasicBlock)) 497 return error("expected a machine basic block reference"); 498 MachineBasicBlock *SuccMBB = nullptr; 499 if (parseMBBReference(SuccMBB)) 500 return true; 501 lex(); 502 unsigned Weight = 0; 503 if (consumeIfPresent(MIToken::lparen)) { 504 if (Token.isNot(MIToken::IntegerLiteral) && 505 Token.isNot(MIToken::HexLiteral)) 506 return error("expected an integer literal after '('"); 507 if (getUnsigned(Weight)) 508 return true; 509 lex(); 510 if (expectAndConsume(MIToken::rparen)) 511 return true; 512 } 513 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 514 } while (consumeIfPresent(MIToken::comma)); 515 MBB.normalizeSuccProbs(); 516 return false; 517 } 518 519 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 520 // Skip the definition. 521 assert(Token.is(MIToken::MachineBasicBlockLabel)); 522 lex(); 523 if (consumeIfPresent(MIToken::lparen)) { 524 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 525 lex(); 526 consumeIfPresent(MIToken::rparen); 527 } 528 consumeIfPresent(MIToken::colon); 529 530 // Parse the liveins and successors. 531 // N.B: Multiple lists of successors and liveins are allowed and they're 532 // merged into one. 533 // Example: 534 // liveins: %edi 535 // liveins: %esi 536 // 537 // is equivalent to 538 // liveins: %edi, %esi 539 while (true) { 540 if (Token.is(MIToken::kw_successors)) { 541 if (parseBasicBlockSuccessors(MBB)) 542 return true; 543 } else if (Token.is(MIToken::kw_liveins)) { 544 if (parseBasicBlockLiveins(MBB)) 545 return true; 546 } else if (consumeIfPresent(MIToken::Newline)) { 547 continue; 548 } else 549 break; 550 if (!Token.isNewlineOrEOF()) 551 return error("expected line break at the end of a list"); 552 lex(); 553 } 554 555 // Parse the instructions. 556 bool IsInBundle = false; 557 MachineInstr *PrevMI = nullptr; 558 while (true) { 559 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 560 return false; 561 else if (consumeIfPresent(MIToken::Newline)) 562 continue; 563 if (consumeIfPresent(MIToken::rbrace)) { 564 // The first parsing pass should verify that all closing '}' have an 565 // opening '{'. 566 assert(IsInBundle); 567 IsInBundle = false; 568 continue; 569 } 570 MachineInstr *MI = nullptr; 571 if (parse(MI)) 572 return true; 573 MBB.insert(MBB.end(), MI); 574 if (IsInBundle) { 575 PrevMI->setFlag(MachineInstr::BundledSucc); 576 MI->setFlag(MachineInstr::BundledPred); 577 } 578 PrevMI = MI; 579 if (Token.is(MIToken::lbrace)) { 580 if (IsInBundle) 581 return error("nested instruction bundles are not allowed"); 582 lex(); 583 // This instruction is the start of the bundle. 584 MI->setFlag(MachineInstr::BundledSucc); 585 IsInBundle = true; 586 if (!Token.is(MIToken::Newline)) 587 // The next instruction can be on the same line. 588 continue; 589 } 590 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 591 lex(); 592 } 593 return false; 594 } 595 596 bool MIParser::parseBasicBlocks() { 597 lex(); 598 // Skip until the first machine basic block. 599 while (Token.is(MIToken::Newline)) 600 lex(); 601 if (Token.isErrorOrEOF()) 602 return Token.isError(); 603 // The first parsing pass should have verified that this token is a MBB label 604 // in the 'parseBasicBlockDefinitions' method. 605 assert(Token.is(MIToken::MachineBasicBlockLabel)); 606 do { 607 MachineBasicBlock *MBB = nullptr; 608 if (parseMBBReference(MBB)) 609 return true; 610 if (parseBasicBlock(*MBB)) 611 return true; 612 // The method 'parseBasicBlock' should parse the whole block until the next 613 // block or the end of file. 614 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 615 } while (Token.isNot(MIToken::Eof)); 616 return false; 617 } 618 619 bool MIParser::parse(MachineInstr *&MI) { 620 // Parse any register operands before '=' 621 MachineOperand MO = MachineOperand::CreateImm(0); 622 SmallVector<ParsedMachineOperand, 8> Operands; 623 while (Token.isRegister() || Token.isRegisterFlag()) { 624 auto Loc = Token.location(); 625 Optional<unsigned> TiedDefIdx; 626 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 627 return true; 628 Operands.push_back( 629 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 630 if (Token.isNot(MIToken::comma)) 631 break; 632 lex(); 633 } 634 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 635 return true; 636 637 unsigned OpCode, Flags = 0; 638 if (Token.isError() || parseInstruction(OpCode, Flags)) 639 return true; 640 641 // Parse the remaining machine operands. 642 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 643 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 644 auto Loc = Token.location(); 645 Optional<unsigned> TiedDefIdx; 646 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 647 return true; 648 Operands.push_back( 649 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 650 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 651 Token.is(MIToken::lbrace)) 652 break; 653 if (Token.isNot(MIToken::comma)) 654 return error("expected ',' before the next machine operand"); 655 lex(); 656 } 657 658 DebugLoc DebugLocation; 659 if (Token.is(MIToken::kw_debug_location)) { 660 lex(); 661 if (Token.isNot(MIToken::exclaim)) 662 return error("expected a metadata node after 'debug-location'"); 663 MDNode *Node = nullptr; 664 if (parseMDNode(Node)) 665 return true; 666 DebugLocation = DebugLoc(Node); 667 } 668 669 // Parse the machine memory operands. 670 SmallVector<MachineMemOperand *, 2> MemOperands; 671 if (Token.is(MIToken::coloncolon)) { 672 lex(); 673 while (!Token.isNewlineOrEOF()) { 674 MachineMemOperand *MemOp = nullptr; 675 if (parseMachineMemoryOperand(MemOp)) 676 return true; 677 MemOperands.push_back(MemOp); 678 if (Token.isNewlineOrEOF()) 679 break; 680 if (Token.isNot(MIToken::comma)) 681 return error("expected ',' before the next machine memory operand"); 682 lex(); 683 } 684 } 685 686 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 687 if (!MCID.isVariadic()) { 688 // FIXME: Move the implicit operand verification to the machine verifier. 689 if (verifyImplicitOperands(Operands, MCID)) 690 return true; 691 } 692 693 // TODO: Check for extraneous machine operands. 694 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 695 MI->setFlags(Flags); 696 for (const auto &Operand : Operands) 697 MI->addOperand(MF, Operand.Operand); 698 if (assignRegisterTies(*MI, Operands)) 699 return true; 700 if (MemOperands.empty()) 701 return false; 702 MachineInstr::mmo_iterator MemRefs = 703 MF.allocateMemRefsArray(MemOperands.size()); 704 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 705 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 706 return false; 707 } 708 709 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 710 lex(); 711 if (Token.isNot(MIToken::MachineBasicBlock)) 712 return error("expected a machine basic block reference"); 713 if (parseMBBReference(MBB)) 714 return true; 715 lex(); 716 if (Token.isNot(MIToken::Eof)) 717 return error( 718 "expected end of string after the machine basic block reference"); 719 return false; 720 } 721 722 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 723 lex(); 724 if (Token.isNot(MIToken::NamedRegister)) 725 return error("expected a named register"); 726 if (parseNamedRegister(Reg)) 727 return true; 728 lex(); 729 if (Token.isNot(MIToken::Eof)) 730 return error("expected end of string after the register reference"); 731 return false; 732 } 733 734 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 735 lex(); 736 if (Token.isNot(MIToken::VirtualRegister)) 737 return error("expected a virtual register"); 738 if (parseVirtualRegister(Info)) 739 return true; 740 lex(); 741 if (Token.isNot(MIToken::Eof)) 742 return error("expected end of string after the register reference"); 743 return false; 744 } 745 746 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 747 lex(); 748 if (Token.isNot(MIToken::NamedRegister) && 749 Token.isNot(MIToken::VirtualRegister)) 750 return error("expected either a named or virtual register"); 751 752 VRegInfo *Info; 753 if (parseRegister(Reg, Info)) 754 return true; 755 756 lex(); 757 if (Token.isNot(MIToken::Eof)) 758 return error("expected end of string after the register reference"); 759 return false; 760 } 761 762 bool MIParser::parseStandaloneStackObject(int &FI) { 763 lex(); 764 if (Token.isNot(MIToken::StackObject)) 765 return error("expected a stack object"); 766 if (parseStackFrameIndex(FI)) 767 return true; 768 if (Token.isNot(MIToken::Eof)) 769 return error("expected end of string after the stack object reference"); 770 return false; 771 } 772 773 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 774 lex(); 775 if (Token.isNot(MIToken::exclaim)) 776 return error("expected a metadata node"); 777 if (parseMDNode(Node)) 778 return true; 779 if (Token.isNot(MIToken::Eof)) 780 return error("expected end of string after the metadata node"); 781 return false; 782 } 783 784 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 785 assert(MO.isImplicit()); 786 return MO.isDef() ? "implicit-def" : "implicit"; 787 } 788 789 static std::string getRegisterName(const TargetRegisterInfo *TRI, 790 unsigned Reg) { 791 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 792 return StringRef(TRI->getName(Reg)).lower(); 793 } 794 795 /// Return true if the parsed machine operands contain a given machine operand. 796 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 797 ArrayRef<ParsedMachineOperand> Operands) { 798 for (const auto &I : Operands) { 799 if (ImplicitOperand.isIdenticalTo(I.Operand)) 800 return true; 801 } 802 return false; 803 } 804 805 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 806 const MCInstrDesc &MCID) { 807 if (MCID.isCall()) 808 // We can't verify call instructions as they can contain arbitrary implicit 809 // register and register mask operands. 810 return false; 811 812 // Gather all the expected implicit operands. 813 SmallVector<MachineOperand, 4> ImplicitOperands; 814 if (MCID.ImplicitDefs) 815 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 816 ImplicitOperands.push_back( 817 MachineOperand::CreateReg(*ImpDefs, true, true)); 818 if (MCID.ImplicitUses) 819 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 820 ImplicitOperands.push_back( 821 MachineOperand::CreateReg(*ImpUses, false, true)); 822 823 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 824 assert(TRI && "Expected target register info"); 825 for (const auto &I : ImplicitOperands) { 826 if (isImplicitOperandIn(I, Operands)) 827 continue; 828 return error(Operands.empty() ? Token.location() : Operands.back().End, 829 Twine("missing implicit register operand '") + 830 printImplicitRegisterFlag(I) + " %" + 831 getRegisterName(TRI, I.getReg()) + "'"); 832 } 833 return false; 834 } 835 836 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 837 if (Token.is(MIToken::kw_frame_setup)) { 838 Flags |= MachineInstr::FrameSetup; 839 lex(); 840 } 841 if (Token.isNot(MIToken::Identifier)) 842 return error("expected a machine instruction"); 843 StringRef InstrName = Token.stringValue(); 844 if (parseInstrName(InstrName, OpCode)) 845 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 846 lex(); 847 return false; 848 } 849 850 bool MIParser::parseNamedRegister(unsigned &Reg) { 851 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 852 StringRef Name = Token.stringValue(); 853 if (getRegisterByName(Name, Reg)) 854 return error(Twine("unknown register name '") + Name + "'"); 855 return false; 856 } 857 858 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 859 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 860 unsigned ID; 861 if (getUnsigned(ID)) 862 return true; 863 Info = &PFS.getVRegInfo(ID); 864 return false; 865 } 866 867 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 868 switch (Token.kind()) { 869 case MIToken::underscore: 870 Reg = 0; 871 return false; 872 case MIToken::NamedRegister: 873 return parseNamedRegister(Reg); 874 case MIToken::VirtualRegister: 875 if (parseVirtualRegister(Info)) 876 return true; 877 Reg = Info->VReg; 878 return false; 879 // TODO: Parse other register kinds. 880 default: 881 llvm_unreachable("The current token should be a register"); 882 } 883 } 884 885 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 886 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 887 return error("expected '_', register class, or register bank name"); 888 StringRef::iterator Loc = Token.location(); 889 StringRef Name = Token.stringValue(); 890 891 // Was it a register class? 892 auto RCNameI = PFS.Names2RegClasses.find(Name); 893 if (RCNameI != PFS.Names2RegClasses.end()) { 894 lex(); 895 const TargetRegisterClass &RC = *RCNameI->getValue(); 896 897 switch (RegInfo.Kind) { 898 case VRegInfo::UNKNOWN: 899 case VRegInfo::NORMAL: 900 RegInfo.Kind = VRegInfo::NORMAL; 901 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 902 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 903 return error(Loc, Twine("conflicting register classes, previously: ") + 904 Twine(TRI.getRegClassName(RegInfo.D.RC))); 905 } 906 RegInfo.D.RC = &RC; 907 RegInfo.Explicit = true; 908 return false; 909 910 case VRegInfo::GENERIC: 911 case VRegInfo::REGBANK: 912 return error(Loc, "register class specification on generic register"); 913 } 914 llvm_unreachable("Unexpected register kind"); 915 } 916 917 // Should be a register bank or a generic register. 918 const RegisterBank *RegBank = nullptr; 919 if (Name != "_") { 920 auto RBNameI = PFS.Names2RegBanks.find(Name); 921 if (RBNameI == PFS.Names2RegBanks.end()) 922 return error(Loc, "expected '_', register class, or register bank name"); 923 RegBank = RBNameI->getValue(); 924 } 925 926 lex(); 927 928 switch (RegInfo.Kind) { 929 case VRegInfo::UNKNOWN: 930 case VRegInfo::GENERIC: 931 case VRegInfo::REGBANK: 932 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 933 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 934 return error(Loc, "conflicting generic register banks"); 935 RegInfo.D.RegBank = RegBank; 936 RegInfo.Explicit = true; 937 return false; 938 939 case VRegInfo::NORMAL: 940 return error(Loc, "register bank specification on normal register"); 941 } 942 llvm_unreachable("Unexpected register kind"); 943 } 944 945 bool MIParser::parseRegisterFlag(unsigned &Flags) { 946 const unsigned OldFlags = Flags; 947 switch (Token.kind()) { 948 case MIToken::kw_implicit: 949 Flags |= RegState::Implicit; 950 break; 951 case MIToken::kw_implicit_define: 952 Flags |= RegState::ImplicitDefine; 953 break; 954 case MIToken::kw_def: 955 Flags |= RegState::Define; 956 break; 957 case MIToken::kw_dead: 958 Flags |= RegState::Dead; 959 break; 960 case MIToken::kw_killed: 961 Flags |= RegState::Kill; 962 break; 963 case MIToken::kw_undef: 964 Flags |= RegState::Undef; 965 break; 966 case MIToken::kw_internal: 967 Flags |= RegState::InternalRead; 968 break; 969 case MIToken::kw_early_clobber: 970 Flags |= RegState::EarlyClobber; 971 break; 972 case MIToken::kw_debug_use: 973 Flags |= RegState::Debug; 974 break; 975 default: 976 llvm_unreachable("The current token should be a register flag"); 977 } 978 if (OldFlags == Flags) 979 // We know that the same flag is specified more than once when the flags 980 // weren't modified. 981 return error("duplicate '" + Token.stringValue() + "' register flag"); 982 lex(); 983 return false; 984 } 985 986 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 987 assert(Token.is(MIToken::dot)); 988 lex(); 989 if (Token.isNot(MIToken::Identifier)) 990 return error("expected a subregister index after '.'"); 991 auto Name = Token.stringValue(); 992 SubReg = getSubRegIndex(Name); 993 if (!SubReg) 994 return error(Twine("use of unknown subregister index '") + Name + "'"); 995 lex(); 996 return false; 997 } 998 999 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1000 if (!consumeIfPresent(MIToken::kw_tied_def)) 1001 return true; 1002 if (Token.isNot(MIToken::IntegerLiteral)) 1003 return error("expected an integer literal after 'tied-def'"); 1004 if (getUnsigned(TiedDefIdx)) 1005 return true; 1006 lex(); 1007 if (expectAndConsume(MIToken::rparen)) 1008 return true; 1009 return false; 1010 } 1011 1012 bool MIParser::assignRegisterTies(MachineInstr &MI, 1013 ArrayRef<ParsedMachineOperand> Operands) { 1014 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1015 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1016 if (!Operands[I].TiedDefIdx) 1017 continue; 1018 // The parser ensures that this operand is a register use, so we just have 1019 // to check the tied-def operand. 1020 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1021 if (DefIdx >= E) 1022 return error(Operands[I].Begin, 1023 Twine("use of invalid tied-def operand index '" + 1024 Twine(DefIdx) + "'; instruction has only ") + 1025 Twine(E) + " operands"); 1026 const auto &DefOperand = Operands[DefIdx].Operand; 1027 if (!DefOperand.isReg() || !DefOperand.isDef()) 1028 // FIXME: add note with the def operand. 1029 return error(Operands[I].Begin, 1030 Twine("use of invalid tied-def operand index '") + 1031 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1032 " isn't a defined register"); 1033 // Check that the tied-def operand wasn't tied elsewhere. 1034 for (const auto &TiedPair : TiedRegisterPairs) { 1035 if (TiedPair.first == DefIdx) 1036 return error(Operands[I].Begin, 1037 Twine("the tied-def operand #") + Twine(DefIdx) + 1038 " is already tied with another register operand"); 1039 } 1040 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1041 } 1042 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1043 // indices must be less than tied max. 1044 for (const auto &TiedPair : TiedRegisterPairs) 1045 MI.tieOperands(TiedPair.first, TiedPair.second); 1046 return false; 1047 } 1048 1049 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1050 Optional<unsigned> &TiedDefIdx, 1051 bool IsDef) { 1052 unsigned Flags = IsDef ? RegState::Define : 0; 1053 while (Token.isRegisterFlag()) { 1054 if (parseRegisterFlag(Flags)) 1055 return true; 1056 } 1057 if (!Token.isRegister()) 1058 return error("expected a register after register flags"); 1059 unsigned Reg; 1060 VRegInfo *RegInfo; 1061 if (parseRegister(Reg, RegInfo)) 1062 return true; 1063 lex(); 1064 unsigned SubReg = 0; 1065 if (Token.is(MIToken::dot)) { 1066 if (parseSubRegisterIndex(SubReg)) 1067 return true; 1068 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1069 return error("subregister index expects a virtual register"); 1070 } 1071 if (Token.is(MIToken::colon)) { 1072 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1073 return error("register class specification expects a virtual register"); 1074 lex(); 1075 if (parseRegisterClassOrBank(*RegInfo)) 1076 return true; 1077 } 1078 MachineRegisterInfo &MRI = MF.getRegInfo(); 1079 if ((Flags & RegState::Define) == 0) { 1080 if (consumeIfPresent(MIToken::lparen)) { 1081 unsigned Idx; 1082 if (!parseRegisterTiedDefIndex(Idx)) 1083 TiedDefIdx = Idx; 1084 else { 1085 // Try a redundant low-level type. 1086 LLT Ty; 1087 if (parseLowLevelType(Token.location(), Ty)) 1088 return error("expected tied-def or low-level type after '('"); 1089 1090 if (expectAndConsume(MIToken::rparen)) 1091 return true; 1092 1093 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1094 return error("inconsistent type for generic virtual register"); 1095 1096 MRI.setType(Reg, Ty); 1097 } 1098 } 1099 } else if (consumeIfPresent(MIToken::lparen)) { 1100 // Virtual registers may have a tpe with GlobalISel. 1101 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1102 return error("unexpected type on physical register"); 1103 1104 LLT Ty; 1105 if (parseLowLevelType(Token.location(), Ty)) 1106 return true; 1107 1108 if (expectAndConsume(MIToken::rparen)) 1109 return true; 1110 1111 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1112 return error("inconsistent type for generic virtual register"); 1113 1114 MRI.setType(Reg, Ty); 1115 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1116 // Generic virtual registers must have a type. 1117 // If we end up here this means the type hasn't been specified and 1118 // this is bad! 1119 if (RegInfo->Kind == VRegInfo::GENERIC || 1120 RegInfo->Kind == VRegInfo::REGBANK) 1121 return error("generic virtual registers must have a type"); 1122 } 1123 Dest = MachineOperand::CreateReg( 1124 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1125 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1126 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1127 Flags & RegState::InternalRead); 1128 return false; 1129 } 1130 1131 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1132 assert(Token.is(MIToken::IntegerLiteral)); 1133 const APSInt &Int = Token.integerValue(); 1134 if (Int.getMinSignedBits() > 64) 1135 return error("integer literal is too large to be an immediate operand"); 1136 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1137 lex(); 1138 return false; 1139 } 1140 1141 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1142 const Constant *&C) { 1143 auto Source = StringValue.str(); // The source has to be null terminated. 1144 SMDiagnostic Err; 1145 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1146 &PFS.IRSlots); 1147 if (!C) 1148 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1149 return false; 1150 } 1151 1152 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1153 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1154 return true; 1155 lex(); 1156 return false; 1157 } 1158 1159 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1160 if (Token.is(MIToken::ScalarType)) { 1161 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1162 lex(); 1163 return false; 1164 } else if (Token.is(MIToken::PointerType)) { 1165 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1166 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1167 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1168 lex(); 1169 return false; 1170 } 1171 1172 // Now we're looking for a vector. 1173 if (Token.isNot(MIToken::less)) 1174 return error(Loc, 1175 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1176 1177 lex(); 1178 1179 if (Token.isNot(MIToken::IntegerLiteral)) 1180 return error(Loc, "expected <N x sM> for vctor type"); 1181 uint64_t NumElements = Token.integerValue().getZExtValue(); 1182 lex(); 1183 1184 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1185 return error(Loc, "expected '<N x sM>' for vector type"); 1186 lex(); 1187 1188 if (Token.isNot(MIToken::ScalarType)) 1189 return error(Loc, "expected '<N x sM>' for vector type"); 1190 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1191 lex(); 1192 1193 if (Token.isNot(MIToken::greater)) 1194 return error(Loc, "expected '<N x sM>' for vector type"); 1195 lex(); 1196 1197 Ty = LLT::vector(NumElements, ScalarSize); 1198 return false; 1199 } 1200 1201 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1202 assert(Token.is(MIToken::IntegerType)); 1203 auto Loc = Token.location(); 1204 lex(); 1205 if (Token.isNot(MIToken::IntegerLiteral)) 1206 return error("expected an integer literal"); 1207 const Constant *C = nullptr; 1208 if (parseIRConstant(Loc, C)) 1209 return true; 1210 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1211 return false; 1212 } 1213 1214 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1215 auto Loc = Token.location(); 1216 lex(); 1217 if (Token.isNot(MIToken::FloatingPointLiteral) && 1218 Token.isNot(MIToken::HexLiteral)) 1219 return error("expected a floating point literal"); 1220 const Constant *C = nullptr; 1221 if (parseIRConstant(Loc, C)) 1222 return true; 1223 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1224 return false; 1225 } 1226 1227 bool MIParser::getUnsigned(unsigned &Result) { 1228 if (Token.hasIntegerValue()) { 1229 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1230 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1231 if (Val64 == Limit) 1232 return error("expected 32-bit integer (too large)"); 1233 Result = Val64; 1234 return false; 1235 } 1236 if (Token.is(MIToken::HexLiteral)) { 1237 APInt A; 1238 if (getHexUint(A)) 1239 return true; 1240 if (A.getBitWidth() > 32) 1241 return error("expected 32-bit integer (too large)"); 1242 Result = A.getZExtValue(); 1243 return false; 1244 } 1245 return true; 1246 } 1247 1248 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1249 assert(Token.is(MIToken::MachineBasicBlock) || 1250 Token.is(MIToken::MachineBasicBlockLabel)); 1251 unsigned Number; 1252 if (getUnsigned(Number)) 1253 return true; 1254 auto MBBInfo = PFS.MBBSlots.find(Number); 1255 if (MBBInfo == PFS.MBBSlots.end()) 1256 return error(Twine("use of undefined machine basic block #") + 1257 Twine(Number)); 1258 MBB = MBBInfo->second; 1259 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1260 return error(Twine("the name of machine basic block #") + Twine(Number) + 1261 " isn't '" + Token.stringValue() + "'"); 1262 return false; 1263 } 1264 1265 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1266 MachineBasicBlock *MBB; 1267 if (parseMBBReference(MBB)) 1268 return true; 1269 Dest = MachineOperand::CreateMBB(MBB); 1270 lex(); 1271 return false; 1272 } 1273 1274 bool MIParser::parseStackFrameIndex(int &FI) { 1275 assert(Token.is(MIToken::StackObject)); 1276 unsigned ID; 1277 if (getUnsigned(ID)) 1278 return true; 1279 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1280 if (ObjectInfo == PFS.StackObjectSlots.end()) 1281 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1282 "'"); 1283 StringRef Name; 1284 if (const auto *Alloca = 1285 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1286 Name = Alloca->getName(); 1287 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1288 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1289 "' isn't '" + Token.stringValue() + "'"); 1290 lex(); 1291 FI = ObjectInfo->second; 1292 return false; 1293 } 1294 1295 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1296 int FI; 1297 if (parseStackFrameIndex(FI)) 1298 return true; 1299 Dest = MachineOperand::CreateFI(FI); 1300 return false; 1301 } 1302 1303 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1304 assert(Token.is(MIToken::FixedStackObject)); 1305 unsigned ID; 1306 if (getUnsigned(ID)) 1307 return true; 1308 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1309 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1310 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1311 Twine(ID) + "'"); 1312 lex(); 1313 FI = ObjectInfo->second; 1314 return false; 1315 } 1316 1317 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1318 int FI; 1319 if (parseFixedStackFrameIndex(FI)) 1320 return true; 1321 Dest = MachineOperand::CreateFI(FI); 1322 return false; 1323 } 1324 1325 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1326 switch (Token.kind()) { 1327 case MIToken::NamedGlobalValue: { 1328 const Module *M = MF.getFunction()->getParent(); 1329 GV = M->getNamedValue(Token.stringValue()); 1330 if (!GV) 1331 return error(Twine("use of undefined global value '") + Token.range() + 1332 "'"); 1333 break; 1334 } 1335 case MIToken::GlobalValue: { 1336 unsigned GVIdx; 1337 if (getUnsigned(GVIdx)) 1338 return true; 1339 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1340 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1341 "'"); 1342 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1343 break; 1344 } 1345 default: 1346 llvm_unreachable("The current token should be a global value"); 1347 } 1348 return false; 1349 } 1350 1351 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1352 GlobalValue *GV = nullptr; 1353 if (parseGlobalValue(GV)) 1354 return true; 1355 lex(); 1356 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1357 if (parseOperandsOffset(Dest)) 1358 return true; 1359 return false; 1360 } 1361 1362 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1363 assert(Token.is(MIToken::ConstantPoolItem)); 1364 unsigned ID; 1365 if (getUnsigned(ID)) 1366 return true; 1367 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1368 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1369 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1370 lex(); 1371 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1372 if (parseOperandsOffset(Dest)) 1373 return true; 1374 return false; 1375 } 1376 1377 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1378 assert(Token.is(MIToken::JumpTableIndex)); 1379 unsigned ID; 1380 if (getUnsigned(ID)) 1381 return true; 1382 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1383 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1384 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1385 lex(); 1386 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1387 return false; 1388 } 1389 1390 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1391 assert(Token.is(MIToken::ExternalSymbol)); 1392 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1393 lex(); 1394 Dest = MachineOperand::CreateES(Symbol); 1395 if (parseOperandsOffset(Dest)) 1396 return true; 1397 return false; 1398 } 1399 1400 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1401 assert(Token.is(MIToken::SubRegisterIndex)); 1402 StringRef Name = Token.stringValue(); 1403 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1404 if (SubRegIndex == 0) 1405 return error(Twine("unknown subregister index '") + Name + "'"); 1406 lex(); 1407 Dest = MachineOperand::CreateImm(SubRegIndex); 1408 return false; 1409 } 1410 1411 bool MIParser::parseMDNode(MDNode *&Node) { 1412 assert(Token.is(MIToken::exclaim)); 1413 auto Loc = Token.location(); 1414 lex(); 1415 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1416 return error("expected metadata id after '!'"); 1417 unsigned ID; 1418 if (getUnsigned(ID)) 1419 return true; 1420 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1421 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1422 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1423 lex(); 1424 Node = NodeInfo->second.get(); 1425 return false; 1426 } 1427 1428 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1429 MDNode *Node = nullptr; 1430 if (parseMDNode(Node)) 1431 return true; 1432 Dest = MachineOperand::CreateMetadata(Node); 1433 return false; 1434 } 1435 1436 bool MIParser::parseCFIOffset(int &Offset) { 1437 if (Token.isNot(MIToken::IntegerLiteral)) 1438 return error("expected a cfi offset"); 1439 if (Token.integerValue().getMinSignedBits() > 32) 1440 return error("expected a 32 bit integer (the cfi offset is too large)"); 1441 Offset = (int)Token.integerValue().getExtValue(); 1442 lex(); 1443 return false; 1444 } 1445 1446 bool MIParser::parseCFIRegister(unsigned &Reg) { 1447 if (Token.isNot(MIToken::NamedRegister)) 1448 return error("expected a cfi register"); 1449 unsigned LLVMReg; 1450 if (parseNamedRegister(LLVMReg)) 1451 return true; 1452 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1453 assert(TRI && "Expected target register info"); 1454 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1455 if (DwarfReg < 0) 1456 return error("invalid DWARF register"); 1457 Reg = (unsigned)DwarfReg; 1458 lex(); 1459 return false; 1460 } 1461 1462 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1463 auto Kind = Token.kind(); 1464 lex(); 1465 int Offset; 1466 unsigned Reg; 1467 unsigned CFIIndex; 1468 switch (Kind) { 1469 case MIToken::kw_cfi_same_value: 1470 if (parseCFIRegister(Reg)) 1471 return true; 1472 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1473 break; 1474 case MIToken::kw_cfi_offset: 1475 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1476 parseCFIOffset(Offset)) 1477 return true; 1478 CFIIndex = 1479 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1480 break; 1481 case MIToken::kw_cfi_def_cfa_register: 1482 if (parseCFIRegister(Reg)) 1483 return true; 1484 CFIIndex = 1485 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1486 break; 1487 case MIToken::kw_cfi_def_cfa_offset: 1488 if (parseCFIOffset(Offset)) 1489 return true; 1490 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1491 CFIIndex = MF.addFrameInst( 1492 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1493 break; 1494 case MIToken::kw_cfi_def_cfa: 1495 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1496 parseCFIOffset(Offset)) 1497 return true; 1498 // NB: MCCFIInstruction::createDefCfa negates the offset. 1499 CFIIndex = 1500 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1501 break; 1502 default: 1503 // TODO: Parse the other CFI operands. 1504 llvm_unreachable("The current token should be a cfi operand"); 1505 } 1506 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1507 return false; 1508 } 1509 1510 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1511 switch (Token.kind()) { 1512 case MIToken::NamedIRBlock: { 1513 BB = dyn_cast_or_null<BasicBlock>( 1514 F.getValueSymbolTable()->lookup(Token.stringValue())); 1515 if (!BB) 1516 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1517 break; 1518 } 1519 case MIToken::IRBlock: { 1520 unsigned SlotNumber = 0; 1521 if (getUnsigned(SlotNumber)) 1522 return true; 1523 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1524 if (!BB) 1525 return error(Twine("use of undefined IR block '%ir-block.") + 1526 Twine(SlotNumber) + "'"); 1527 break; 1528 } 1529 default: 1530 llvm_unreachable("The current token should be an IR block reference"); 1531 } 1532 return false; 1533 } 1534 1535 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1536 assert(Token.is(MIToken::kw_blockaddress)); 1537 lex(); 1538 if (expectAndConsume(MIToken::lparen)) 1539 return true; 1540 if (Token.isNot(MIToken::GlobalValue) && 1541 Token.isNot(MIToken::NamedGlobalValue)) 1542 return error("expected a global value"); 1543 GlobalValue *GV = nullptr; 1544 if (parseGlobalValue(GV)) 1545 return true; 1546 auto *F = dyn_cast<Function>(GV); 1547 if (!F) 1548 return error("expected an IR function reference"); 1549 lex(); 1550 if (expectAndConsume(MIToken::comma)) 1551 return true; 1552 BasicBlock *BB = nullptr; 1553 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1554 return error("expected an IR block reference"); 1555 if (parseIRBlock(BB, *F)) 1556 return true; 1557 lex(); 1558 if (expectAndConsume(MIToken::rparen)) 1559 return true; 1560 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1561 if (parseOperandsOffset(Dest)) 1562 return true; 1563 return false; 1564 } 1565 1566 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1567 assert(Token.is(MIToken::kw_intrinsic)); 1568 lex(); 1569 if (expectAndConsume(MIToken::lparen)) 1570 return error("expected syntax intrinsic(@llvm.whatever)"); 1571 1572 if (Token.isNot(MIToken::NamedGlobalValue)) 1573 return error("expected syntax intrinsic(@llvm.whatever)"); 1574 1575 std::string Name = Token.stringValue(); 1576 lex(); 1577 1578 if (expectAndConsume(MIToken::rparen)) 1579 return error("expected ')' to terminate intrinsic name"); 1580 1581 // Find out what intrinsic we're dealing with, first try the global namespace 1582 // and then the target's private intrinsics if that fails. 1583 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1584 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1585 if (ID == Intrinsic::not_intrinsic && TII) 1586 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1587 1588 if (ID == Intrinsic::not_intrinsic) 1589 return error("unknown intrinsic name"); 1590 Dest = MachineOperand::CreateIntrinsicID(ID); 1591 1592 return false; 1593 } 1594 1595 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1596 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1597 bool IsFloat = Token.is(MIToken::kw_floatpred); 1598 lex(); 1599 1600 if (expectAndConsume(MIToken::lparen)) 1601 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1602 1603 if (Token.isNot(MIToken::Identifier)) 1604 return error("whatever"); 1605 1606 CmpInst::Predicate Pred; 1607 if (IsFloat) { 1608 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1609 .Case("false", CmpInst::FCMP_FALSE) 1610 .Case("oeq", CmpInst::FCMP_OEQ) 1611 .Case("ogt", CmpInst::FCMP_OGT) 1612 .Case("oge", CmpInst::FCMP_OGE) 1613 .Case("olt", CmpInst::FCMP_OLT) 1614 .Case("ole", CmpInst::FCMP_OLE) 1615 .Case("one", CmpInst::FCMP_ONE) 1616 .Case("ord", CmpInst::FCMP_ORD) 1617 .Case("uno", CmpInst::FCMP_UNO) 1618 .Case("ueq", CmpInst::FCMP_UEQ) 1619 .Case("ugt", CmpInst::FCMP_UGT) 1620 .Case("uge", CmpInst::FCMP_UGE) 1621 .Case("ult", CmpInst::FCMP_ULT) 1622 .Case("ule", CmpInst::FCMP_ULE) 1623 .Case("une", CmpInst::FCMP_UNE) 1624 .Case("true", CmpInst::FCMP_TRUE) 1625 .Default(CmpInst::BAD_FCMP_PREDICATE); 1626 if (!CmpInst::isFPPredicate(Pred)) 1627 return error("invalid floating-point predicate"); 1628 } else { 1629 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1630 .Case("eq", CmpInst::ICMP_EQ) 1631 .Case("ne", CmpInst::ICMP_NE) 1632 .Case("sgt", CmpInst::ICMP_SGT) 1633 .Case("sge", CmpInst::ICMP_SGE) 1634 .Case("slt", CmpInst::ICMP_SLT) 1635 .Case("sle", CmpInst::ICMP_SLE) 1636 .Case("ugt", CmpInst::ICMP_UGT) 1637 .Case("uge", CmpInst::ICMP_UGE) 1638 .Case("ult", CmpInst::ICMP_ULT) 1639 .Case("ule", CmpInst::ICMP_ULE) 1640 .Default(CmpInst::BAD_ICMP_PREDICATE); 1641 if (!CmpInst::isIntPredicate(Pred)) 1642 return error("invalid integer predicate"); 1643 } 1644 1645 lex(); 1646 Dest = MachineOperand::CreatePredicate(Pred); 1647 if (expectAndConsume(MIToken::rparen)) 1648 return error("predicate should be terminated by ')'."); 1649 1650 return false; 1651 } 1652 1653 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1654 assert(Token.is(MIToken::kw_target_index)); 1655 lex(); 1656 if (expectAndConsume(MIToken::lparen)) 1657 return true; 1658 if (Token.isNot(MIToken::Identifier)) 1659 return error("expected the name of the target index"); 1660 int Index = 0; 1661 if (getTargetIndex(Token.stringValue(), Index)) 1662 return error("use of undefined target index '" + Token.stringValue() + "'"); 1663 lex(); 1664 if (expectAndConsume(MIToken::rparen)) 1665 return true; 1666 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1667 if (parseOperandsOffset(Dest)) 1668 return true; 1669 return false; 1670 } 1671 1672 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1673 assert(Token.is(MIToken::kw_liveout)); 1674 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1675 assert(TRI && "Expected target register info"); 1676 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1677 lex(); 1678 if (expectAndConsume(MIToken::lparen)) 1679 return true; 1680 while (true) { 1681 if (Token.isNot(MIToken::NamedRegister)) 1682 return error("expected a named register"); 1683 unsigned Reg; 1684 if (parseNamedRegister(Reg)) 1685 return true; 1686 lex(); 1687 Mask[Reg / 32] |= 1U << (Reg % 32); 1688 // TODO: Report an error if the same register is used more than once. 1689 if (Token.isNot(MIToken::comma)) 1690 break; 1691 lex(); 1692 } 1693 if (expectAndConsume(MIToken::rparen)) 1694 return true; 1695 Dest = MachineOperand::CreateRegLiveOut(Mask); 1696 return false; 1697 } 1698 1699 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1700 Optional<unsigned> &TiedDefIdx) { 1701 switch (Token.kind()) { 1702 case MIToken::kw_implicit: 1703 case MIToken::kw_implicit_define: 1704 case MIToken::kw_def: 1705 case MIToken::kw_dead: 1706 case MIToken::kw_killed: 1707 case MIToken::kw_undef: 1708 case MIToken::kw_internal: 1709 case MIToken::kw_early_clobber: 1710 case MIToken::kw_debug_use: 1711 case MIToken::underscore: 1712 case MIToken::NamedRegister: 1713 case MIToken::VirtualRegister: 1714 return parseRegisterOperand(Dest, TiedDefIdx); 1715 case MIToken::IntegerLiteral: 1716 return parseImmediateOperand(Dest); 1717 case MIToken::IntegerType: 1718 return parseTypedImmediateOperand(Dest); 1719 case MIToken::kw_half: 1720 case MIToken::kw_float: 1721 case MIToken::kw_double: 1722 case MIToken::kw_x86_fp80: 1723 case MIToken::kw_fp128: 1724 case MIToken::kw_ppc_fp128: 1725 return parseFPImmediateOperand(Dest); 1726 case MIToken::MachineBasicBlock: 1727 return parseMBBOperand(Dest); 1728 case MIToken::StackObject: 1729 return parseStackObjectOperand(Dest); 1730 case MIToken::FixedStackObject: 1731 return parseFixedStackObjectOperand(Dest); 1732 case MIToken::GlobalValue: 1733 case MIToken::NamedGlobalValue: 1734 return parseGlobalAddressOperand(Dest); 1735 case MIToken::ConstantPoolItem: 1736 return parseConstantPoolIndexOperand(Dest); 1737 case MIToken::JumpTableIndex: 1738 return parseJumpTableIndexOperand(Dest); 1739 case MIToken::ExternalSymbol: 1740 return parseExternalSymbolOperand(Dest); 1741 case MIToken::SubRegisterIndex: 1742 return parseSubRegisterIndexOperand(Dest); 1743 case MIToken::exclaim: 1744 return parseMetadataOperand(Dest); 1745 case MIToken::kw_cfi_same_value: 1746 case MIToken::kw_cfi_offset: 1747 case MIToken::kw_cfi_def_cfa_register: 1748 case MIToken::kw_cfi_def_cfa_offset: 1749 case MIToken::kw_cfi_def_cfa: 1750 return parseCFIOperand(Dest); 1751 case MIToken::kw_blockaddress: 1752 return parseBlockAddressOperand(Dest); 1753 case MIToken::kw_intrinsic: 1754 return parseIntrinsicOperand(Dest); 1755 case MIToken::kw_target_index: 1756 return parseTargetIndexOperand(Dest); 1757 case MIToken::kw_liveout: 1758 return parseLiveoutRegisterMaskOperand(Dest); 1759 case MIToken::kw_floatpred: 1760 case MIToken::kw_intpred: 1761 return parsePredicateOperand(Dest); 1762 case MIToken::Error: 1763 return true; 1764 case MIToken::Identifier: 1765 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1766 Dest = MachineOperand::CreateRegMask(RegMask); 1767 lex(); 1768 break; 1769 } 1770 LLVM_FALLTHROUGH; 1771 default: 1772 // FIXME: Parse the MCSymbol machine operand. 1773 return error("expected a machine operand"); 1774 } 1775 return false; 1776 } 1777 1778 bool MIParser::parseMachineOperandAndTargetFlags( 1779 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1780 unsigned TF = 0; 1781 bool HasTargetFlags = false; 1782 if (Token.is(MIToken::kw_target_flags)) { 1783 HasTargetFlags = true; 1784 lex(); 1785 if (expectAndConsume(MIToken::lparen)) 1786 return true; 1787 if (Token.isNot(MIToken::Identifier)) 1788 return error("expected the name of the target flag"); 1789 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1790 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1791 return error("use of undefined target flag '" + Token.stringValue() + 1792 "'"); 1793 } 1794 lex(); 1795 while (Token.is(MIToken::comma)) { 1796 lex(); 1797 if (Token.isNot(MIToken::Identifier)) 1798 return error("expected the name of the target flag"); 1799 unsigned BitFlag = 0; 1800 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1801 return error("use of undefined target flag '" + Token.stringValue() + 1802 "'"); 1803 // TODO: Report an error when using a duplicate bit target flag. 1804 TF |= BitFlag; 1805 lex(); 1806 } 1807 if (expectAndConsume(MIToken::rparen)) 1808 return true; 1809 } 1810 auto Loc = Token.location(); 1811 if (parseMachineOperand(Dest, TiedDefIdx)) 1812 return true; 1813 if (!HasTargetFlags) 1814 return false; 1815 if (Dest.isReg()) 1816 return error(Loc, "register operands can't have target flags"); 1817 Dest.setTargetFlags(TF); 1818 return false; 1819 } 1820 1821 bool MIParser::parseOffset(int64_t &Offset) { 1822 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1823 return false; 1824 StringRef Sign = Token.range(); 1825 bool IsNegative = Token.is(MIToken::minus); 1826 lex(); 1827 if (Token.isNot(MIToken::IntegerLiteral)) 1828 return error("expected an integer literal after '" + Sign + "'"); 1829 if (Token.integerValue().getMinSignedBits() > 64) 1830 return error("expected 64-bit integer (too large)"); 1831 Offset = Token.integerValue().getExtValue(); 1832 if (IsNegative) 1833 Offset = -Offset; 1834 lex(); 1835 return false; 1836 } 1837 1838 bool MIParser::parseAlignment(unsigned &Alignment) { 1839 assert(Token.is(MIToken::kw_align)); 1840 lex(); 1841 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1842 return error("expected an integer literal after 'align'"); 1843 if (getUnsigned(Alignment)) 1844 return true; 1845 lex(); 1846 return false; 1847 } 1848 1849 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1850 int64_t Offset = 0; 1851 if (parseOffset(Offset)) 1852 return true; 1853 Op.setOffset(Offset); 1854 return false; 1855 } 1856 1857 bool MIParser::parseIRValue(const Value *&V) { 1858 switch (Token.kind()) { 1859 case MIToken::NamedIRValue: { 1860 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1861 break; 1862 } 1863 case MIToken::IRValue: { 1864 unsigned SlotNumber = 0; 1865 if (getUnsigned(SlotNumber)) 1866 return true; 1867 V = getIRValue(SlotNumber); 1868 break; 1869 } 1870 case MIToken::NamedGlobalValue: 1871 case MIToken::GlobalValue: { 1872 GlobalValue *GV = nullptr; 1873 if (parseGlobalValue(GV)) 1874 return true; 1875 V = GV; 1876 break; 1877 } 1878 case MIToken::QuotedIRValue: { 1879 const Constant *C = nullptr; 1880 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1881 return true; 1882 V = C; 1883 break; 1884 } 1885 default: 1886 llvm_unreachable("The current token should be an IR block reference"); 1887 } 1888 if (!V) 1889 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1890 return false; 1891 } 1892 1893 bool MIParser::getUint64(uint64_t &Result) { 1894 if (Token.hasIntegerValue()) { 1895 if (Token.integerValue().getActiveBits() > 64) 1896 return error("expected 64-bit integer (too large)"); 1897 Result = Token.integerValue().getZExtValue(); 1898 return false; 1899 } 1900 if (Token.is(MIToken::HexLiteral)) { 1901 APInt A; 1902 if (getHexUint(A)) 1903 return true; 1904 if (A.getBitWidth() > 64) 1905 return error("expected 64-bit integer (too large)"); 1906 Result = A.getZExtValue(); 1907 return false; 1908 } 1909 return true; 1910 } 1911 1912 bool MIParser::getHexUint(APInt &Result) { 1913 assert(Token.is(MIToken::HexLiteral)); 1914 StringRef S = Token.range(); 1915 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1916 // This could be a floating point literal with a special prefix. 1917 if (!isxdigit(S[2])) 1918 return true; 1919 StringRef V = S.substr(2); 1920 APInt A(V.size()*4, V, 16); 1921 Result = APInt(A.getActiveBits(), 1922 ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1923 return false; 1924 } 1925 1926 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1927 const auto OldFlags = Flags; 1928 switch (Token.kind()) { 1929 case MIToken::kw_volatile: 1930 Flags |= MachineMemOperand::MOVolatile; 1931 break; 1932 case MIToken::kw_non_temporal: 1933 Flags |= MachineMemOperand::MONonTemporal; 1934 break; 1935 case MIToken::kw_dereferenceable: 1936 Flags |= MachineMemOperand::MODereferenceable; 1937 break; 1938 case MIToken::kw_invariant: 1939 Flags |= MachineMemOperand::MOInvariant; 1940 break; 1941 // TODO: parse the target specific memory operand flags. 1942 default: 1943 llvm_unreachable("The current token should be a memory operand flag"); 1944 } 1945 if (OldFlags == Flags) 1946 // We know that the same flag is specified more than once when the flags 1947 // weren't modified. 1948 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1949 lex(); 1950 return false; 1951 } 1952 1953 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1954 switch (Token.kind()) { 1955 case MIToken::kw_stack: 1956 PSV = MF.getPSVManager().getStack(); 1957 break; 1958 case MIToken::kw_got: 1959 PSV = MF.getPSVManager().getGOT(); 1960 break; 1961 case MIToken::kw_jump_table: 1962 PSV = MF.getPSVManager().getJumpTable(); 1963 break; 1964 case MIToken::kw_constant_pool: 1965 PSV = MF.getPSVManager().getConstantPool(); 1966 break; 1967 case MIToken::FixedStackObject: { 1968 int FI; 1969 if (parseFixedStackFrameIndex(FI)) 1970 return true; 1971 PSV = MF.getPSVManager().getFixedStack(FI); 1972 // The token was already consumed, so use return here instead of break. 1973 return false; 1974 } 1975 case MIToken::StackObject: { 1976 int FI; 1977 if (parseStackFrameIndex(FI)) 1978 return true; 1979 PSV = MF.getPSVManager().getFixedStack(FI); 1980 // The token was already consumed, so use return here instead of break. 1981 return false; 1982 } 1983 case MIToken::kw_call_entry: { 1984 lex(); 1985 switch (Token.kind()) { 1986 case MIToken::GlobalValue: 1987 case MIToken::NamedGlobalValue: { 1988 GlobalValue *GV = nullptr; 1989 if (parseGlobalValue(GV)) 1990 return true; 1991 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1992 break; 1993 } 1994 case MIToken::ExternalSymbol: 1995 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1996 MF.createExternalSymbolName(Token.stringValue())); 1997 break; 1998 default: 1999 return error( 2000 "expected a global value or an external symbol after 'call-entry'"); 2001 } 2002 break; 2003 } 2004 default: 2005 llvm_unreachable("The current token should be pseudo source value"); 2006 } 2007 lex(); 2008 return false; 2009 } 2010 2011 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2012 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2013 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2014 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2015 Token.is(MIToken::kw_call_entry)) { 2016 const PseudoSourceValue *PSV = nullptr; 2017 if (parseMemoryPseudoSourceValue(PSV)) 2018 return true; 2019 int64_t Offset = 0; 2020 if (parseOffset(Offset)) 2021 return true; 2022 Dest = MachinePointerInfo(PSV, Offset); 2023 return false; 2024 } 2025 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2026 Token.isNot(MIToken::GlobalValue) && 2027 Token.isNot(MIToken::NamedGlobalValue) && 2028 Token.isNot(MIToken::QuotedIRValue)) 2029 return error("expected an IR value reference"); 2030 const Value *V = nullptr; 2031 if (parseIRValue(V)) 2032 return true; 2033 if (!V->getType()->isPointerTy()) 2034 return error("expected a pointer IR value"); 2035 lex(); 2036 int64_t Offset = 0; 2037 if (parseOffset(Offset)) 2038 return true; 2039 Dest = MachinePointerInfo(V, Offset); 2040 return false; 2041 } 2042 2043 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2044 if (expectAndConsume(MIToken::lparen)) 2045 return true; 2046 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2047 while (Token.isMemoryOperandFlag()) { 2048 if (parseMemoryOperandFlag(Flags)) 2049 return true; 2050 } 2051 if (Token.isNot(MIToken::Identifier) || 2052 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2053 return error("expected 'load' or 'store' memory operation"); 2054 if (Token.stringValue() == "load") 2055 Flags |= MachineMemOperand::MOLoad; 2056 else 2057 Flags |= MachineMemOperand::MOStore; 2058 lex(); 2059 2060 if (Token.isNot(MIToken::IntegerLiteral)) 2061 return error("expected the size integer literal after memory operation"); 2062 uint64_t Size; 2063 if (getUint64(Size)) 2064 return true; 2065 lex(); 2066 2067 MachinePointerInfo Ptr = MachinePointerInfo(); 2068 if (Token.is(MIToken::Identifier)) { 2069 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2070 if (Token.stringValue() != Word) 2071 return error(Twine("expected '") + Word + "'"); 2072 lex(); 2073 2074 if (parseMachinePointerInfo(Ptr)) 2075 return true; 2076 } 2077 unsigned BaseAlignment = Size; 2078 AAMDNodes AAInfo; 2079 MDNode *Range = nullptr; 2080 while (consumeIfPresent(MIToken::comma)) { 2081 switch (Token.kind()) { 2082 case MIToken::kw_align: 2083 if (parseAlignment(BaseAlignment)) 2084 return true; 2085 break; 2086 case MIToken::md_tbaa: 2087 lex(); 2088 if (parseMDNode(AAInfo.TBAA)) 2089 return true; 2090 break; 2091 case MIToken::md_alias_scope: 2092 lex(); 2093 if (parseMDNode(AAInfo.Scope)) 2094 return true; 2095 break; 2096 case MIToken::md_noalias: 2097 lex(); 2098 if (parseMDNode(AAInfo.NoAlias)) 2099 return true; 2100 break; 2101 case MIToken::md_range: 2102 lex(); 2103 if (parseMDNode(Range)) 2104 return true; 2105 break; 2106 // TODO: Report an error on duplicate metadata nodes. 2107 default: 2108 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2109 "'!noalias' or '!range'"); 2110 } 2111 } 2112 if (expectAndConsume(MIToken::rparen)) 2113 return true; 2114 Dest = 2115 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 2116 return false; 2117 } 2118 2119 void MIParser::initNames2InstrOpCodes() { 2120 if (!Names2InstrOpCodes.empty()) 2121 return; 2122 const auto *TII = MF.getSubtarget().getInstrInfo(); 2123 assert(TII && "Expected target instruction info"); 2124 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2125 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2126 } 2127 2128 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2129 initNames2InstrOpCodes(); 2130 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2131 if (InstrInfo == Names2InstrOpCodes.end()) 2132 return true; 2133 OpCode = InstrInfo->getValue(); 2134 return false; 2135 } 2136 2137 void MIParser::initNames2Regs() { 2138 if (!Names2Regs.empty()) 2139 return; 2140 // The '%noreg' register is the register 0. 2141 Names2Regs.insert(std::make_pair("noreg", 0)); 2142 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2143 assert(TRI && "Expected target register info"); 2144 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2145 bool WasInserted = 2146 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2147 .second; 2148 (void)WasInserted; 2149 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2150 } 2151 } 2152 2153 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2154 initNames2Regs(); 2155 auto RegInfo = Names2Regs.find(RegName); 2156 if (RegInfo == Names2Regs.end()) 2157 return true; 2158 Reg = RegInfo->getValue(); 2159 return false; 2160 } 2161 2162 void MIParser::initNames2RegMasks() { 2163 if (!Names2RegMasks.empty()) 2164 return; 2165 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2166 assert(TRI && "Expected target register info"); 2167 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2168 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2169 assert(RegMasks.size() == RegMaskNames.size()); 2170 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2171 Names2RegMasks.insert( 2172 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2173 } 2174 2175 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2176 initNames2RegMasks(); 2177 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2178 if (RegMaskInfo == Names2RegMasks.end()) 2179 return nullptr; 2180 return RegMaskInfo->getValue(); 2181 } 2182 2183 void MIParser::initNames2SubRegIndices() { 2184 if (!Names2SubRegIndices.empty()) 2185 return; 2186 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2187 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2188 Names2SubRegIndices.insert( 2189 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2190 } 2191 2192 unsigned MIParser::getSubRegIndex(StringRef Name) { 2193 initNames2SubRegIndices(); 2194 auto SubRegInfo = Names2SubRegIndices.find(Name); 2195 if (SubRegInfo == Names2SubRegIndices.end()) 2196 return 0; 2197 return SubRegInfo->getValue(); 2198 } 2199 2200 static void initSlots2BasicBlocks( 2201 const Function &F, 2202 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2203 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2204 MST.incorporateFunction(F); 2205 for (auto &BB : F) { 2206 if (BB.hasName()) 2207 continue; 2208 int Slot = MST.getLocalSlot(&BB); 2209 if (Slot == -1) 2210 continue; 2211 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2212 } 2213 } 2214 2215 static const BasicBlock *getIRBlockFromSlot( 2216 unsigned Slot, 2217 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2218 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2219 if (BlockInfo == Slots2BasicBlocks.end()) 2220 return nullptr; 2221 return BlockInfo->second; 2222 } 2223 2224 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2225 if (Slots2BasicBlocks.empty()) 2226 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2227 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2228 } 2229 2230 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2231 if (&F == MF.getFunction()) 2232 return getIRBlock(Slot); 2233 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2234 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2235 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2236 } 2237 2238 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2239 DenseMap<unsigned, const Value *> &Slots2Values) { 2240 int Slot = MST.getLocalSlot(V); 2241 if (Slot == -1) 2242 return; 2243 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2244 } 2245 2246 /// Creates the mapping from slot numbers to function's unnamed IR values. 2247 static void initSlots2Values(const Function &F, 2248 DenseMap<unsigned, const Value *> &Slots2Values) { 2249 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2250 MST.incorporateFunction(F); 2251 for (const auto &Arg : F.args()) 2252 mapValueToSlot(&Arg, MST, Slots2Values); 2253 for (const auto &BB : F) { 2254 mapValueToSlot(&BB, MST, Slots2Values); 2255 for (const auto &I : BB) 2256 mapValueToSlot(&I, MST, Slots2Values); 2257 } 2258 } 2259 2260 const Value *MIParser::getIRValue(unsigned Slot) { 2261 if (Slots2Values.empty()) 2262 initSlots2Values(*MF.getFunction(), Slots2Values); 2263 auto ValueInfo = Slots2Values.find(Slot); 2264 if (ValueInfo == Slots2Values.end()) 2265 return nullptr; 2266 return ValueInfo->second; 2267 } 2268 2269 void MIParser::initNames2TargetIndices() { 2270 if (!Names2TargetIndices.empty()) 2271 return; 2272 const auto *TII = MF.getSubtarget().getInstrInfo(); 2273 assert(TII && "Expected target instruction info"); 2274 auto Indices = TII->getSerializableTargetIndices(); 2275 for (const auto &I : Indices) 2276 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2277 } 2278 2279 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2280 initNames2TargetIndices(); 2281 auto IndexInfo = Names2TargetIndices.find(Name); 2282 if (IndexInfo == Names2TargetIndices.end()) 2283 return true; 2284 Index = IndexInfo->second; 2285 return false; 2286 } 2287 2288 void MIParser::initNames2DirectTargetFlags() { 2289 if (!Names2DirectTargetFlags.empty()) 2290 return; 2291 const auto *TII = MF.getSubtarget().getInstrInfo(); 2292 assert(TII && "Expected target instruction info"); 2293 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2294 for (const auto &I : Flags) 2295 Names2DirectTargetFlags.insert( 2296 std::make_pair(StringRef(I.second), I.first)); 2297 } 2298 2299 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2300 initNames2DirectTargetFlags(); 2301 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2302 if (FlagInfo == Names2DirectTargetFlags.end()) 2303 return true; 2304 Flag = FlagInfo->second; 2305 return false; 2306 } 2307 2308 void MIParser::initNames2BitmaskTargetFlags() { 2309 if (!Names2BitmaskTargetFlags.empty()) 2310 return; 2311 const auto *TII = MF.getSubtarget().getInstrInfo(); 2312 assert(TII && "Expected target instruction info"); 2313 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2314 for (const auto &I : Flags) 2315 Names2BitmaskTargetFlags.insert( 2316 std::make_pair(StringRef(I.second), I.first)); 2317 } 2318 2319 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2320 initNames2BitmaskTargetFlags(); 2321 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2322 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2323 return true; 2324 Flag = FlagInfo->second; 2325 return false; 2326 } 2327 2328 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2329 StringRef Src, 2330 SMDiagnostic &Error) { 2331 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2332 } 2333 2334 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2335 StringRef Src, SMDiagnostic &Error) { 2336 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2337 } 2338 2339 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2340 MachineBasicBlock *&MBB, StringRef Src, 2341 SMDiagnostic &Error) { 2342 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2343 } 2344 2345 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2346 unsigned &Reg, StringRef Src, 2347 SMDiagnostic &Error) { 2348 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2349 } 2350 2351 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2352 unsigned &Reg, StringRef Src, 2353 SMDiagnostic &Error) { 2354 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2355 } 2356 2357 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2358 VRegInfo *&Info, StringRef Src, 2359 SMDiagnostic &Error) { 2360 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2361 } 2362 2363 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2364 int &FI, StringRef Src, 2365 SMDiagnostic &Error) { 2366 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2367 } 2368 2369 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2370 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2371 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2372 } 2373