1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cctype> 40 41 using namespace llvm; 42 43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 44 SourceMgr &SM, const SlotMapping &IRSlots) 45 : MF(MF), SM(&SM), IRSlots(IRSlots) { 46 } 47 48 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 49 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 50 if (I.second) { 51 MachineRegisterInfo &MRI = MF.getRegInfo(); 52 VRegInfo *Info = new (Allocator) VRegInfo; 53 Info->VReg = MRI.createIncompleteVirtualRegister(); 54 I.first->second = Info; 55 } 56 return *I.first->second; 57 } 58 59 namespace { 60 61 /// A wrapper struct around the 'MachineOperand' struct that includes a source 62 /// range and other attributes. 63 struct ParsedMachineOperand { 64 MachineOperand Operand; 65 StringRef::iterator Begin; 66 StringRef::iterator End; 67 Optional<unsigned> TiedDefIdx; 68 69 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 70 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 71 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 72 if (TiedDefIdx) 73 assert(Operand.isReg() && Operand.isUse() && 74 "Only used register operands can be tied"); 75 } 76 }; 77 78 class MIParser { 79 MachineFunction &MF; 80 SMDiagnostic &Error; 81 StringRef Source, CurrentSource; 82 MIToken Token; 83 PerFunctionMIParsingState &PFS; 84 /// Maps from instruction names to op codes. 85 StringMap<unsigned> Names2InstrOpCodes; 86 /// Maps from register names to registers. 87 StringMap<unsigned> Names2Regs; 88 /// Maps from register mask names to register masks. 89 StringMap<const uint32_t *> Names2RegMasks; 90 /// Maps from subregister names to subregister indices. 91 StringMap<unsigned> Names2SubRegIndices; 92 /// Maps from slot numbers to function's unnamed basic blocks. 93 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 94 /// Maps from slot numbers to function's unnamed values. 95 DenseMap<unsigned, const Value *> Slots2Values; 96 /// Maps from target index names to target indices. 97 StringMap<int> Names2TargetIndices; 98 /// Maps from direct target flag names to the direct target flag values. 99 StringMap<unsigned> Names2DirectTargetFlags; 100 /// Maps from direct target flag names to the bitmask target flag values. 101 StringMap<unsigned> Names2BitmaskTargetFlags; 102 103 public: 104 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 105 StringRef Source); 106 107 /// \p SkipChar gives the number of characters to skip before looking 108 /// for the next token. 109 void lex(unsigned SkipChar = 0); 110 111 /// Report an error at the current location with the given message. 112 /// 113 /// This function always return true. 114 bool error(const Twine &Msg); 115 116 /// Report an error at the given location with the given message. 117 /// 118 /// This function always return true. 119 bool error(StringRef::iterator Loc, const Twine &Msg); 120 121 bool 122 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 123 bool parseBasicBlocks(); 124 bool parse(MachineInstr *&MI); 125 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 126 bool parseStandaloneNamedRegister(unsigned &Reg); 127 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 128 bool parseStandaloneRegister(unsigned &Reg); 129 bool parseStandaloneStackObject(int &FI); 130 bool parseStandaloneMDNode(MDNode *&Node); 131 132 bool 133 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 134 bool parseBasicBlock(MachineBasicBlock &MBB); 135 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 136 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 137 138 bool parseNamedRegister(unsigned &Reg); 139 bool parseVirtualRegister(VRegInfo *&Info); 140 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 141 bool parseRegisterFlag(unsigned &Flags); 142 bool parseSubRegisterIndex(unsigned &SubReg); 143 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 144 bool parseRegisterOperand(MachineOperand &Dest, 145 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 146 bool parseImmediateOperand(MachineOperand &Dest); 147 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 148 const Constant *&C); 149 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 150 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 151 bool parseTypedImmediateOperand(MachineOperand &Dest); 152 bool parseFPImmediateOperand(MachineOperand &Dest); 153 bool parseMBBReference(MachineBasicBlock *&MBB); 154 bool parseMBBOperand(MachineOperand &Dest); 155 bool parseStackFrameIndex(int &FI); 156 bool parseStackObjectOperand(MachineOperand &Dest); 157 bool parseFixedStackFrameIndex(int &FI); 158 bool parseFixedStackObjectOperand(MachineOperand &Dest); 159 bool parseGlobalValue(GlobalValue *&GV); 160 bool parseGlobalAddressOperand(MachineOperand &Dest); 161 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 162 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 163 bool parseJumpTableIndexOperand(MachineOperand &Dest); 164 bool parseExternalSymbolOperand(MachineOperand &Dest); 165 bool parseMDNode(MDNode *&Node); 166 bool parseMetadataOperand(MachineOperand &Dest); 167 bool parseCFIOffset(int &Offset); 168 bool parseCFIRegister(unsigned &Reg); 169 bool parseCFIOperand(MachineOperand &Dest); 170 bool parseIRBlock(BasicBlock *&BB, const Function &F); 171 bool parseBlockAddressOperand(MachineOperand &Dest); 172 bool parseIntrinsicOperand(MachineOperand &Dest); 173 bool parsePredicateOperand(MachineOperand &Dest); 174 bool parseTargetIndexOperand(MachineOperand &Dest); 175 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 176 bool parseMachineOperand(MachineOperand &Dest, 177 Optional<unsigned> &TiedDefIdx); 178 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 179 Optional<unsigned> &TiedDefIdx); 180 bool parseOffset(int64_t &Offset); 181 bool parseAlignment(unsigned &Alignment); 182 bool parseOperandsOffset(MachineOperand &Op); 183 bool parseIRValue(const Value *&V); 184 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 185 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 186 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 187 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 188 189 private: 190 /// Convert the integer literal in the current token into an unsigned integer. 191 /// 192 /// Return true if an error occurred. 193 bool getUnsigned(unsigned &Result); 194 195 /// Convert the integer literal in the current token into an uint64. 196 /// 197 /// Return true if an error occurred. 198 bool getUint64(uint64_t &Result); 199 200 /// Convert the hexadecimal literal in the current token into an unsigned 201 /// APInt with a minimum bitwidth required to represent the value. 202 /// 203 /// Return true if the literal does not represent an integer value. 204 bool getHexUint(APInt &Result); 205 206 /// If the current token is of the given kind, consume it and return false. 207 /// Otherwise report an error and return true. 208 bool expectAndConsume(MIToken::TokenKind TokenKind); 209 210 /// If the current token is of the given kind, consume it and return true. 211 /// Otherwise return false. 212 bool consumeIfPresent(MIToken::TokenKind TokenKind); 213 214 void initNames2InstrOpCodes(); 215 216 /// Try to convert an instruction name to an opcode. Return true if the 217 /// instruction name is invalid. 218 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 219 220 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 221 222 bool assignRegisterTies(MachineInstr &MI, 223 ArrayRef<ParsedMachineOperand> Operands); 224 225 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 226 const MCInstrDesc &MCID); 227 228 void initNames2Regs(); 229 230 /// Try to convert a register name to a register number. Return true if the 231 /// register name is invalid. 232 bool getRegisterByName(StringRef RegName, unsigned &Reg); 233 234 void initNames2RegMasks(); 235 236 /// Check if the given identifier is a name of a register mask. 237 /// 238 /// Return null if the identifier isn't a register mask. 239 const uint32_t *getRegMask(StringRef Identifier); 240 241 void initNames2SubRegIndices(); 242 243 /// Check if the given identifier is a name of a subregister index. 244 /// 245 /// Return 0 if the name isn't a subregister index class. 246 unsigned getSubRegIndex(StringRef Name); 247 248 const BasicBlock *getIRBlock(unsigned Slot); 249 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 250 251 const Value *getIRValue(unsigned Slot); 252 253 void initNames2TargetIndices(); 254 255 /// Try to convert a name of target index to the corresponding target index. 256 /// 257 /// Return true if the name isn't a name of a target index. 258 bool getTargetIndex(StringRef Name, int &Index); 259 260 void initNames2DirectTargetFlags(); 261 262 /// Try to convert a name of a direct target flag to the corresponding 263 /// target flag. 264 /// 265 /// Return true if the name isn't a name of a direct flag. 266 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 267 268 void initNames2BitmaskTargetFlags(); 269 270 /// Try to convert a name of a bitmask target flag to the corresponding 271 /// target flag. 272 /// 273 /// Return true if the name isn't a name of a bitmask target flag. 274 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 275 }; 276 277 } // end anonymous namespace 278 279 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 280 StringRef Source) 281 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 282 {} 283 284 void MIParser::lex(unsigned SkipChar) { 285 CurrentSource = lexMIToken( 286 CurrentSource.data() + SkipChar, Token, 287 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 288 } 289 290 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 291 292 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 293 const SourceMgr &SM = *PFS.SM; 294 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 295 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 296 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 297 // Create an ordinary diagnostic when the source manager's buffer is the 298 // source string. 299 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 300 return true; 301 } 302 // Create a diagnostic for a YAML string literal. 303 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 304 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 305 Source, None, None); 306 return true; 307 } 308 309 static const char *toString(MIToken::TokenKind TokenKind) { 310 switch (TokenKind) { 311 case MIToken::comma: 312 return "','"; 313 case MIToken::equal: 314 return "'='"; 315 case MIToken::colon: 316 return "':'"; 317 case MIToken::lparen: 318 return "'('"; 319 case MIToken::rparen: 320 return "')'"; 321 default: 322 return "<unknown token>"; 323 } 324 } 325 326 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 327 if (Token.isNot(TokenKind)) 328 return error(Twine("expected ") + toString(TokenKind)); 329 lex(); 330 return false; 331 } 332 333 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 334 if (Token.isNot(TokenKind)) 335 return false; 336 lex(); 337 return true; 338 } 339 340 bool MIParser::parseBasicBlockDefinition( 341 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 342 assert(Token.is(MIToken::MachineBasicBlockLabel)); 343 unsigned ID = 0; 344 if (getUnsigned(ID)) 345 return true; 346 auto Loc = Token.location(); 347 auto Name = Token.stringValue(); 348 lex(); 349 bool HasAddressTaken = false; 350 bool IsLandingPad = false; 351 unsigned Alignment = 0; 352 BasicBlock *BB = nullptr; 353 if (consumeIfPresent(MIToken::lparen)) { 354 do { 355 // TODO: Report an error when multiple same attributes are specified. 356 switch (Token.kind()) { 357 case MIToken::kw_address_taken: 358 HasAddressTaken = true; 359 lex(); 360 break; 361 case MIToken::kw_landing_pad: 362 IsLandingPad = true; 363 lex(); 364 break; 365 case MIToken::kw_align: 366 if (parseAlignment(Alignment)) 367 return true; 368 break; 369 case MIToken::IRBlock: 370 // TODO: Report an error when both name and ir block are specified. 371 if (parseIRBlock(BB, *MF.getFunction())) 372 return true; 373 lex(); 374 break; 375 default: 376 break; 377 } 378 } while (consumeIfPresent(MIToken::comma)); 379 if (expectAndConsume(MIToken::rparen)) 380 return true; 381 } 382 if (expectAndConsume(MIToken::colon)) 383 return true; 384 385 if (!Name.empty()) { 386 BB = dyn_cast_or_null<BasicBlock>( 387 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 388 if (!BB) 389 return error(Loc, Twine("basic block '") + Name + 390 "' is not defined in the function '" + 391 MF.getName() + "'"); 392 } 393 auto *MBB = MF.CreateMachineBasicBlock(BB); 394 MF.insert(MF.end(), MBB); 395 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 396 if (!WasInserted) 397 return error(Loc, Twine("redefinition of machine basic block with id #") + 398 Twine(ID)); 399 if (Alignment) 400 MBB->setAlignment(Alignment); 401 if (HasAddressTaken) 402 MBB->setHasAddressTaken(); 403 MBB->setIsEHPad(IsLandingPad); 404 return false; 405 } 406 407 bool MIParser::parseBasicBlockDefinitions( 408 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 409 lex(); 410 // Skip until the first machine basic block. 411 while (Token.is(MIToken::Newline)) 412 lex(); 413 if (Token.isErrorOrEOF()) 414 return Token.isError(); 415 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 416 return error("expected a basic block definition before instructions"); 417 unsigned BraceDepth = 0; 418 do { 419 if (parseBasicBlockDefinition(MBBSlots)) 420 return true; 421 bool IsAfterNewline = false; 422 // Skip until the next machine basic block. 423 while (true) { 424 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 425 Token.isErrorOrEOF()) 426 break; 427 else if (Token.is(MIToken::MachineBasicBlockLabel)) 428 return error("basic block definition should be located at the start of " 429 "the line"); 430 else if (consumeIfPresent(MIToken::Newline)) { 431 IsAfterNewline = true; 432 continue; 433 } 434 IsAfterNewline = false; 435 if (Token.is(MIToken::lbrace)) 436 ++BraceDepth; 437 if (Token.is(MIToken::rbrace)) { 438 if (!BraceDepth) 439 return error("extraneous closing brace ('}')"); 440 --BraceDepth; 441 } 442 lex(); 443 } 444 // Verify that we closed all of the '{' at the end of a file or a block. 445 if (!Token.isError() && BraceDepth) 446 return error("expected '}'"); // FIXME: Report a note that shows '{'. 447 } while (!Token.isErrorOrEOF()); 448 return Token.isError(); 449 } 450 451 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 452 assert(Token.is(MIToken::kw_liveins)); 453 lex(); 454 if (expectAndConsume(MIToken::colon)) 455 return true; 456 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 457 return false; 458 do { 459 if (Token.isNot(MIToken::NamedRegister)) 460 return error("expected a named register"); 461 unsigned Reg = 0; 462 if (parseNamedRegister(Reg)) 463 return true; 464 lex(); 465 LaneBitmask Mask = LaneBitmask::getAll(); 466 if (consumeIfPresent(MIToken::colon)) { 467 // Parse lane mask. 468 if (Token.isNot(MIToken::IntegerLiteral) && 469 Token.isNot(MIToken::HexLiteral)) 470 return error("expected a lane mask"); 471 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 472 "Use correct get-function for lane mask"); 473 LaneBitmask::Type V; 474 if (getUnsigned(V)) 475 return error("invalid lane mask value"); 476 Mask = LaneBitmask(V); 477 lex(); 478 } 479 MBB.addLiveIn(Reg, Mask); 480 } while (consumeIfPresent(MIToken::comma)); 481 return false; 482 } 483 484 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 485 assert(Token.is(MIToken::kw_successors)); 486 lex(); 487 if (expectAndConsume(MIToken::colon)) 488 return true; 489 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 490 return false; 491 do { 492 if (Token.isNot(MIToken::MachineBasicBlock)) 493 return error("expected a machine basic block reference"); 494 MachineBasicBlock *SuccMBB = nullptr; 495 if (parseMBBReference(SuccMBB)) 496 return true; 497 lex(); 498 unsigned Weight = 0; 499 if (consumeIfPresent(MIToken::lparen)) { 500 if (Token.isNot(MIToken::IntegerLiteral) && 501 Token.isNot(MIToken::HexLiteral)) 502 return error("expected an integer literal after '('"); 503 if (getUnsigned(Weight)) 504 return true; 505 lex(); 506 if (expectAndConsume(MIToken::rparen)) 507 return true; 508 } 509 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 510 } while (consumeIfPresent(MIToken::comma)); 511 MBB.normalizeSuccProbs(); 512 return false; 513 } 514 515 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 516 // Skip the definition. 517 assert(Token.is(MIToken::MachineBasicBlockLabel)); 518 lex(); 519 if (consumeIfPresent(MIToken::lparen)) { 520 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 521 lex(); 522 consumeIfPresent(MIToken::rparen); 523 } 524 consumeIfPresent(MIToken::colon); 525 526 // Parse the liveins and successors. 527 // N.B: Multiple lists of successors and liveins are allowed and they're 528 // merged into one. 529 // Example: 530 // liveins: %edi 531 // liveins: %esi 532 // 533 // is equivalent to 534 // liveins: %edi, %esi 535 while (true) { 536 if (Token.is(MIToken::kw_successors)) { 537 if (parseBasicBlockSuccessors(MBB)) 538 return true; 539 } else if (Token.is(MIToken::kw_liveins)) { 540 if (parseBasicBlockLiveins(MBB)) 541 return true; 542 } else if (consumeIfPresent(MIToken::Newline)) { 543 continue; 544 } else 545 break; 546 if (!Token.isNewlineOrEOF()) 547 return error("expected line break at the end of a list"); 548 lex(); 549 } 550 551 // Parse the instructions. 552 bool IsInBundle = false; 553 MachineInstr *PrevMI = nullptr; 554 while (true) { 555 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 556 return false; 557 else if (consumeIfPresent(MIToken::Newline)) 558 continue; 559 if (consumeIfPresent(MIToken::rbrace)) { 560 // The first parsing pass should verify that all closing '}' have an 561 // opening '{'. 562 assert(IsInBundle); 563 IsInBundle = false; 564 continue; 565 } 566 MachineInstr *MI = nullptr; 567 if (parse(MI)) 568 return true; 569 MBB.insert(MBB.end(), MI); 570 if (IsInBundle) { 571 PrevMI->setFlag(MachineInstr::BundledSucc); 572 MI->setFlag(MachineInstr::BundledPred); 573 } 574 PrevMI = MI; 575 if (Token.is(MIToken::lbrace)) { 576 if (IsInBundle) 577 return error("nested instruction bundles are not allowed"); 578 lex(); 579 // This instruction is the start of the bundle. 580 MI->setFlag(MachineInstr::BundledSucc); 581 IsInBundle = true; 582 if (!Token.is(MIToken::Newline)) 583 // The next instruction can be on the same line. 584 continue; 585 } 586 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 587 lex(); 588 } 589 return false; 590 } 591 592 bool MIParser::parseBasicBlocks() { 593 lex(); 594 // Skip until the first machine basic block. 595 while (Token.is(MIToken::Newline)) 596 lex(); 597 if (Token.isErrorOrEOF()) 598 return Token.isError(); 599 // The first parsing pass should have verified that this token is a MBB label 600 // in the 'parseBasicBlockDefinitions' method. 601 assert(Token.is(MIToken::MachineBasicBlockLabel)); 602 do { 603 MachineBasicBlock *MBB = nullptr; 604 if (parseMBBReference(MBB)) 605 return true; 606 if (parseBasicBlock(*MBB)) 607 return true; 608 // The method 'parseBasicBlock' should parse the whole block until the next 609 // block or the end of file. 610 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 611 } while (Token.isNot(MIToken::Eof)); 612 return false; 613 } 614 615 bool MIParser::parse(MachineInstr *&MI) { 616 // Parse any register operands before '=' 617 MachineOperand MO = MachineOperand::CreateImm(0); 618 SmallVector<ParsedMachineOperand, 8> Operands; 619 while (Token.isRegister() || Token.isRegisterFlag()) { 620 auto Loc = Token.location(); 621 Optional<unsigned> TiedDefIdx; 622 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 623 return true; 624 Operands.push_back( 625 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 626 if (Token.isNot(MIToken::comma)) 627 break; 628 lex(); 629 } 630 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 631 return true; 632 633 unsigned OpCode, Flags = 0; 634 if (Token.isError() || parseInstruction(OpCode, Flags)) 635 return true; 636 637 // Parse the remaining machine operands. 638 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 639 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 640 auto Loc = Token.location(); 641 Optional<unsigned> TiedDefIdx; 642 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 643 return true; 644 Operands.push_back( 645 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 646 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 647 Token.is(MIToken::lbrace)) 648 break; 649 if (Token.isNot(MIToken::comma)) 650 return error("expected ',' before the next machine operand"); 651 lex(); 652 } 653 654 DebugLoc DebugLocation; 655 if (Token.is(MIToken::kw_debug_location)) { 656 lex(); 657 if (Token.isNot(MIToken::exclaim)) 658 return error("expected a metadata node after 'debug-location'"); 659 MDNode *Node = nullptr; 660 if (parseMDNode(Node)) 661 return true; 662 DebugLocation = DebugLoc(Node); 663 } 664 665 // Parse the machine memory operands. 666 SmallVector<MachineMemOperand *, 2> MemOperands; 667 if (Token.is(MIToken::coloncolon)) { 668 lex(); 669 while (!Token.isNewlineOrEOF()) { 670 MachineMemOperand *MemOp = nullptr; 671 if (parseMachineMemoryOperand(MemOp)) 672 return true; 673 MemOperands.push_back(MemOp); 674 if (Token.isNewlineOrEOF()) 675 break; 676 if (Token.isNot(MIToken::comma)) 677 return error("expected ',' before the next machine memory operand"); 678 lex(); 679 } 680 } 681 682 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 683 if (!MCID.isVariadic()) { 684 // FIXME: Move the implicit operand verification to the machine verifier. 685 if (verifyImplicitOperands(Operands, MCID)) 686 return true; 687 } 688 689 // TODO: Check for extraneous machine operands. 690 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 691 MI->setFlags(Flags); 692 for (const auto &Operand : Operands) 693 MI->addOperand(MF, Operand.Operand); 694 if (assignRegisterTies(*MI, Operands)) 695 return true; 696 if (MemOperands.empty()) 697 return false; 698 MachineInstr::mmo_iterator MemRefs = 699 MF.allocateMemRefsArray(MemOperands.size()); 700 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 701 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 702 return false; 703 } 704 705 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 706 lex(); 707 if (Token.isNot(MIToken::MachineBasicBlock)) 708 return error("expected a machine basic block reference"); 709 if (parseMBBReference(MBB)) 710 return true; 711 lex(); 712 if (Token.isNot(MIToken::Eof)) 713 return error( 714 "expected end of string after the machine basic block reference"); 715 return false; 716 } 717 718 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 719 lex(); 720 if (Token.isNot(MIToken::NamedRegister)) 721 return error("expected a named register"); 722 if (parseNamedRegister(Reg)) 723 return true; 724 lex(); 725 if (Token.isNot(MIToken::Eof)) 726 return error("expected end of string after the register reference"); 727 return false; 728 } 729 730 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 731 lex(); 732 if (Token.isNot(MIToken::VirtualRegister)) 733 return error("expected a virtual register"); 734 if (parseVirtualRegister(Info)) 735 return true; 736 lex(); 737 if (Token.isNot(MIToken::Eof)) 738 return error("expected end of string after the register reference"); 739 return false; 740 } 741 742 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 743 lex(); 744 if (Token.isNot(MIToken::NamedRegister) && 745 Token.isNot(MIToken::VirtualRegister)) 746 return error("expected either a named or virtual register"); 747 748 VRegInfo *Info; 749 if (parseRegister(Reg, Info)) 750 return true; 751 752 lex(); 753 if (Token.isNot(MIToken::Eof)) 754 return error("expected end of string after the register reference"); 755 return false; 756 } 757 758 bool MIParser::parseStandaloneStackObject(int &FI) { 759 lex(); 760 if (Token.isNot(MIToken::StackObject)) 761 return error("expected a stack object"); 762 if (parseStackFrameIndex(FI)) 763 return true; 764 if (Token.isNot(MIToken::Eof)) 765 return error("expected end of string after the stack object reference"); 766 return false; 767 } 768 769 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 770 lex(); 771 if (Token.isNot(MIToken::exclaim)) 772 return error("expected a metadata node"); 773 if (parseMDNode(Node)) 774 return true; 775 if (Token.isNot(MIToken::Eof)) 776 return error("expected end of string after the metadata node"); 777 return false; 778 } 779 780 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 781 assert(MO.isImplicit()); 782 return MO.isDef() ? "implicit-def" : "implicit"; 783 } 784 785 static std::string getRegisterName(const TargetRegisterInfo *TRI, 786 unsigned Reg) { 787 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 788 return StringRef(TRI->getName(Reg)).lower(); 789 } 790 791 /// Return true if the parsed machine operands contain a given machine operand. 792 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 793 ArrayRef<ParsedMachineOperand> Operands) { 794 for (const auto &I : Operands) { 795 if (ImplicitOperand.isIdenticalTo(I.Operand)) 796 return true; 797 } 798 return false; 799 } 800 801 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 802 const MCInstrDesc &MCID) { 803 if (MCID.isCall()) 804 // We can't verify call instructions as they can contain arbitrary implicit 805 // register and register mask operands. 806 return false; 807 808 // Gather all the expected implicit operands. 809 SmallVector<MachineOperand, 4> ImplicitOperands; 810 if (MCID.ImplicitDefs) 811 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 812 ImplicitOperands.push_back( 813 MachineOperand::CreateReg(*ImpDefs, true, true)); 814 if (MCID.ImplicitUses) 815 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 816 ImplicitOperands.push_back( 817 MachineOperand::CreateReg(*ImpUses, false, true)); 818 819 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 820 assert(TRI && "Expected target register info"); 821 for (const auto &I : ImplicitOperands) { 822 if (isImplicitOperandIn(I, Operands)) 823 continue; 824 return error(Operands.empty() ? Token.location() : Operands.back().End, 825 Twine("missing implicit register operand '") + 826 printImplicitRegisterFlag(I) + " %" + 827 getRegisterName(TRI, I.getReg()) + "'"); 828 } 829 return false; 830 } 831 832 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 833 if (Token.is(MIToken::kw_frame_setup)) { 834 Flags |= MachineInstr::FrameSetup; 835 lex(); 836 } 837 if (Token.isNot(MIToken::Identifier)) 838 return error("expected a machine instruction"); 839 StringRef InstrName = Token.stringValue(); 840 if (parseInstrName(InstrName, OpCode)) 841 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 842 lex(); 843 return false; 844 } 845 846 bool MIParser::parseNamedRegister(unsigned &Reg) { 847 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 848 StringRef Name = Token.stringValue(); 849 if (getRegisterByName(Name, Reg)) 850 return error(Twine("unknown register name '") + Name + "'"); 851 return false; 852 } 853 854 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 855 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 856 unsigned ID; 857 if (getUnsigned(ID)) 858 return true; 859 Info = &PFS.getVRegInfo(ID); 860 return false; 861 } 862 863 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 864 switch (Token.kind()) { 865 case MIToken::underscore: 866 Reg = 0; 867 return false; 868 case MIToken::NamedRegister: 869 return parseNamedRegister(Reg); 870 case MIToken::VirtualRegister: 871 if (parseVirtualRegister(Info)) 872 return true; 873 Reg = Info->VReg; 874 return false; 875 // TODO: Parse other register kinds. 876 default: 877 llvm_unreachable("The current token should be a register"); 878 } 879 } 880 881 bool MIParser::parseRegisterFlag(unsigned &Flags) { 882 const unsigned OldFlags = Flags; 883 switch (Token.kind()) { 884 case MIToken::kw_implicit: 885 Flags |= RegState::Implicit; 886 break; 887 case MIToken::kw_implicit_define: 888 Flags |= RegState::ImplicitDefine; 889 break; 890 case MIToken::kw_def: 891 Flags |= RegState::Define; 892 break; 893 case MIToken::kw_dead: 894 Flags |= RegState::Dead; 895 break; 896 case MIToken::kw_killed: 897 Flags |= RegState::Kill; 898 break; 899 case MIToken::kw_undef: 900 Flags |= RegState::Undef; 901 break; 902 case MIToken::kw_internal: 903 Flags |= RegState::InternalRead; 904 break; 905 case MIToken::kw_early_clobber: 906 Flags |= RegState::EarlyClobber; 907 break; 908 case MIToken::kw_debug_use: 909 Flags |= RegState::Debug; 910 break; 911 default: 912 llvm_unreachable("The current token should be a register flag"); 913 } 914 if (OldFlags == Flags) 915 // We know that the same flag is specified more than once when the flags 916 // weren't modified. 917 return error("duplicate '" + Token.stringValue() + "' register flag"); 918 lex(); 919 return false; 920 } 921 922 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 923 assert(Token.is(MIToken::dot)); 924 lex(); 925 if (Token.isNot(MIToken::Identifier)) 926 return error("expected a subregister index after '.'"); 927 auto Name = Token.stringValue(); 928 SubReg = getSubRegIndex(Name); 929 if (!SubReg) 930 return error(Twine("use of unknown subregister index '") + Name + "'"); 931 lex(); 932 return false; 933 } 934 935 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 936 if (!consumeIfPresent(MIToken::kw_tied_def)) 937 return true; 938 if (Token.isNot(MIToken::IntegerLiteral)) 939 return error("expected an integer literal after 'tied-def'"); 940 if (getUnsigned(TiedDefIdx)) 941 return true; 942 lex(); 943 if (expectAndConsume(MIToken::rparen)) 944 return true; 945 return false; 946 } 947 948 bool MIParser::assignRegisterTies(MachineInstr &MI, 949 ArrayRef<ParsedMachineOperand> Operands) { 950 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 951 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 952 if (!Operands[I].TiedDefIdx) 953 continue; 954 // The parser ensures that this operand is a register use, so we just have 955 // to check the tied-def operand. 956 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 957 if (DefIdx >= E) 958 return error(Operands[I].Begin, 959 Twine("use of invalid tied-def operand index '" + 960 Twine(DefIdx) + "'; instruction has only ") + 961 Twine(E) + " operands"); 962 const auto &DefOperand = Operands[DefIdx].Operand; 963 if (!DefOperand.isReg() || !DefOperand.isDef()) 964 // FIXME: add note with the def operand. 965 return error(Operands[I].Begin, 966 Twine("use of invalid tied-def operand index '") + 967 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 968 " isn't a defined register"); 969 // Check that the tied-def operand wasn't tied elsewhere. 970 for (const auto &TiedPair : TiedRegisterPairs) { 971 if (TiedPair.first == DefIdx) 972 return error(Operands[I].Begin, 973 Twine("the tied-def operand #") + Twine(DefIdx) + 974 " is already tied with another register operand"); 975 } 976 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 977 } 978 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 979 // indices must be less than tied max. 980 for (const auto &TiedPair : TiedRegisterPairs) 981 MI.tieOperands(TiedPair.first, TiedPair.second); 982 return false; 983 } 984 985 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 986 Optional<unsigned> &TiedDefIdx, 987 bool IsDef) { 988 unsigned Flags = IsDef ? RegState::Define : 0; 989 while (Token.isRegisterFlag()) { 990 if (parseRegisterFlag(Flags)) 991 return true; 992 } 993 if (!Token.isRegister()) 994 return error("expected a register after register flags"); 995 unsigned Reg; 996 VRegInfo *RegInfo; 997 if (parseRegister(Reg, RegInfo)) 998 return true; 999 lex(); 1000 unsigned SubReg = 0; 1001 if (Token.is(MIToken::dot)) { 1002 if (parseSubRegisterIndex(SubReg)) 1003 return true; 1004 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1005 return error("subregister index expects a virtual register"); 1006 } 1007 MachineRegisterInfo &MRI = MF.getRegInfo(); 1008 if ((Flags & RegState::Define) == 0) { 1009 if (consumeIfPresent(MIToken::lparen)) { 1010 unsigned Idx; 1011 if (!parseRegisterTiedDefIndex(Idx)) 1012 TiedDefIdx = Idx; 1013 else { 1014 // Try a redundant low-level type. 1015 LLT Ty; 1016 if (parseLowLevelType(Token.location(), Ty)) 1017 return error("expected tied-def or low-level type after '('"); 1018 1019 if (expectAndConsume(MIToken::rparen)) 1020 return true; 1021 1022 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1023 return error("inconsistent type for generic virtual register"); 1024 1025 MRI.setType(Reg, Ty); 1026 } 1027 } 1028 } else if (consumeIfPresent(MIToken::lparen)) { 1029 // Virtual registers may have a tpe with GlobalISel. 1030 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1031 return error("unexpected type on physical register"); 1032 1033 LLT Ty; 1034 if (parseLowLevelType(Token.location(), Ty)) 1035 return true; 1036 1037 if (expectAndConsume(MIToken::rparen)) 1038 return true; 1039 1040 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1041 return error("inconsistent type for generic virtual register"); 1042 1043 MRI.setType(Reg, Ty); 1044 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1045 // Generic virtual registers must have a type. 1046 // If we end up here this means the type hasn't been specified and 1047 // this is bad! 1048 if (RegInfo->Kind == VRegInfo::GENERIC || 1049 RegInfo->Kind == VRegInfo::REGBANK) 1050 return error("generic virtual registers must have a type"); 1051 } 1052 Dest = MachineOperand::CreateReg( 1053 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1054 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1055 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1056 Flags & RegState::InternalRead); 1057 return false; 1058 } 1059 1060 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1061 assert(Token.is(MIToken::IntegerLiteral)); 1062 const APSInt &Int = Token.integerValue(); 1063 if (Int.getMinSignedBits() > 64) 1064 return error("integer literal is too large to be an immediate operand"); 1065 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1066 lex(); 1067 return false; 1068 } 1069 1070 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1071 const Constant *&C) { 1072 auto Source = StringValue.str(); // The source has to be null terminated. 1073 SMDiagnostic Err; 1074 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1075 &PFS.IRSlots); 1076 if (!C) 1077 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1078 return false; 1079 } 1080 1081 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1082 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1083 return true; 1084 lex(); 1085 return false; 1086 } 1087 1088 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1089 if (Token.is(MIToken::ScalarType)) { 1090 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1091 lex(); 1092 return false; 1093 } else if (Token.is(MIToken::PointerType)) { 1094 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1095 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1096 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1097 lex(); 1098 return false; 1099 } 1100 1101 // Now we're looking for a vector. 1102 if (Token.isNot(MIToken::less)) 1103 return error(Loc, 1104 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1105 1106 lex(); 1107 1108 if (Token.isNot(MIToken::IntegerLiteral)) 1109 return error(Loc, "expected <N x sM> for vctor type"); 1110 uint64_t NumElements = Token.integerValue().getZExtValue(); 1111 lex(); 1112 1113 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1114 return error(Loc, "expected '<N x sM>' for vector type"); 1115 lex(); 1116 1117 if (Token.isNot(MIToken::ScalarType)) 1118 return error(Loc, "expected '<N x sM>' for vector type"); 1119 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1120 lex(); 1121 1122 if (Token.isNot(MIToken::greater)) 1123 return error(Loc, "expected '<N x sM>' for vector type"); 1124 lex(); 1125 1126 Ty = LLT::vector(NumElements, ScalarSize); 1127 return false; 1128 } 1129 1130 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1131 assert(Token.is(MIToken::IntegerType)); 1132 auto Loc = Token.location(); 1133 lex(); 1134 if (Token.isNot(MIToken::IntegerLiteral)) 1135 return error("expected an integer literal"); 1136 const Constant *C = nullptr; 1137 if (parseIRConstant(Loc, C)) 1138 return true; 1139 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1140 return false; 1141 } 1142 1143 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1144 auto Loc = Token.location(); 1145 lex(); 1146 if (Token.isNot(MIToken::FloatingPointLiteral) && 1147 Token.isNot(MIToken::HexLiteral)) 1148 return error("expected a floating point literal"); 1149 const Constant *C = nullptr; 1150 if (parseIRConstant(Loc, C)) 1151 return true; 1152 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1153 return false; 1154 } 1155 1156 bool MIParser::getUnsigned(unsigned &Result) { 1157 if (Token.hasIntegerValue()) { 1158 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1159 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1160 if (Val64 == Limit) 1161 return error("expected 32-bit integer (too large)"); 1162 Result = Val64; 1163 return false; 1164 } 1165 if (Token.is(MIToken::HexLiteral)) { 1166 APInt A; 1167 if (getHexUint(A)) 1168 return true; 1169 if (A.getBitWidth() > 32) 1170 return error("expected 32-bit integer (too large)"); 1171 Result = A.getZExtValue(); 1172 return false; 1173 } 1174 return true; 1175 } 1176 1177 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1178 assert(Token.is(MIToken::MachineBasicBlock) || 1179 Token.is(MIToken::MachineBasicBlockLabel)); 1180 unsigned Number; 1181 if (getUnsigned(Number)) 1182 return true; 1183 auto MBBInfo = PFS.MBBSlots.find(Number); 1184 if (MBBInfo == PFS.MBBSlots.end()) 1185 return error(Twine("use of undefined machine basic block #") + 1186 Twine(Number)); 1187 MBB = MBBInfo->second; 1188 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1189 return error(Twine("the name of machine basic block #") + Twine(Number) + 1190 " isn't '" + Token.stringValue() + "'"); 1191 return false; 1192 } 1193 1194 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1195 MachineBasicBlock *MBB; 1196 if (parseMBBReference(MBB)) 1197 return true; 1198 Dest = MachineOperand::CreateMBB(MBB); 1199 lex(); 1200 return false; 1201 } 1202 1203 bool MIParser::parseStackFrameIndex(int &FI) { 1204 assert(Token.is(MIToken::StackObject)); 1205 unsigned ID; 1206 if (getUnsigned(ID)) 1207 return true; 1208 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1209 if (ObjectInfo == PFS.StackObjectSlots.end()) 1210 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1211 "'"); 1212 StringRef Name; 1213 if (const auto *Alloca = 1214 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1215 Name = Alloca->getName(); 1216 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1217 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1218 "' isn't '" + Token.stringValue() + "'"); 1219 lex(); 1220 FI = ObjectInfo->second; 1221 return false; 1222 } 1223 1224 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1225 int FI; 1226 if (parseStackFrameIndex(FI)) 1227 return true; 1228 Dest = MachineOperand::CreateFI(FI); 1229 return false; 1230 } 1231 1232 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1233 assert(Token.is(MIToken::FixedStackObject)); 1234 unsigned ID; 1235 if (getUnsigned(ID)) 1236 return true; 1237 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1238 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1239 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1240 Twine(ID) + "'"); 1241 lex(); 1242 FI = ObjectInfo->second; 1243 return false; 1244 } 1245 1246 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1247 int FI; 1248 if (parseFixedStackFrameIndex(FI)) 1249 return true; 1250 Dest = MachineOperand::CreateFI(FI); 1251 return false; 1252 } 1253 1254 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1255 switch (Token.kind()) { 1256 case MIToken::NamedGlobalValue: { 1257 const Module *M = MF.getFunction()->getParent(); 1258 GV = M->getNamedValue(Token.stringValue()); 1259 if (!GV) 1260 return error(Twine("use of undefined global value '") + Token.range() + 1261 "'"); 1262 break; 1263 } 1264 case MIToken::GlobalValue: { 1265 unsigned GVIdx; 1266 if (getUnsigned(GVIdx)) 1267 return true; 1268 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1269 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1270 "'"); 1271 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1272 break; 1273 } 1274 default: 1275 llvm_unreachable("The current token should be a global value"); 1276 } 1277 return false; 1278 } 1279 1280 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1281 GlobalValue *GV = nullptr; 1282 if (parseGlobalValue(GV)) 1283 return true; 1284 lex(); 1285 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1286 if (parseOperandsOffset(Dest)) 1287 return true; 1288 return false; 1289 } 1290 1291 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1292 assert(Token.is(MIToken::ConstantPoolItem)); 1293 unsigned ID; 1294 if (getUnsigned(ID)) 1295 return true; 1296 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1297 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1298 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1299 lex(); 1300 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1301 if (parseOperandsOffset(Dest)) 1302 return true; 1303 return false; 1304 } 1305 1306 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1307 assert(Token.is(MIToken::JumpTableIndex)); 1308 unsigned ID; 1309 if (getUnsigned(ID)) 1310 return true; 1311 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1312 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1313 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1314 lex(); 1315 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1316 return false; 1317 } 1318 1319 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1320 assert(Token.is(MIToken::ExternalSymbol)); 1321 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1322 lex(); 1323 Dest = MachineOperand::CreateES(Symbol); 1324 if (parseOperandsOffset(Dest)) 1325 return true; 1326 return false; 1327 } 1328 1329 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1330 assert(Token.is(MIToken::SubRegisterIndex)); 1331 StringRef Name = Token.stringValue(); 1332 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1333 if (SubRegIndex == 0) 1334 return error(Twine("unknown subregister index '") + Name + "'"); 1335 lex(); 1336 Dest = MachineOperand::CreateImm(SubRegIndex); 1337 return false; 1338 } 1339 1340 bool MIParser::parseMDNode(MDNode *&Node) { 1341 assert(Token.is(MIToken::exclaim)); 1342 auto Loc = Token.location(); 1343 lex(); 1344 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1345 return error("expected metadata id after '!'"); 1346 unsigned ID; 1347 if (getUnsigned(ID)) 1348 return true; 1349 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1350 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1351 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1352 lex(); 1353 Node = NodeInfo->second.get(); 1354 return false; 1355 } 1356 1357 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1358 MDNode *Node = nullptr; 1359 if (parseMDNode(Node)) 1360 return true; 1361 Dest = MachineOperand::CreateMetadata(Node); 1362 return false; 1363 } 1364 1365 bool MIParser::parseCFIOffset(int &Offset) { 1366 if (Token.isNot(MIToken::IntegerLiteral)) 1367 return error("expected a cfi offset"); 1368 if (Token.integerValue().getMinSignedBits() > 32) 1369 return error("expected a 32 bit integer (the cfi offset is too large)"); 1370 Offset = (int)Token.integerValue().getExtValue(); 1371 lex(); 1372 return false; 1373 } 1374 1375 bool MIParser::parseCFIRegister(unsigned &Reg) { 1376 if (Token.isNot(MIToken::NamedRegister)) 1377 return error("expected a cfi register"); 1378 unsigned LLVMReg; 1379 if (parseNamedRegister(LLVMReg)) 1380 return true; 1381 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1382 assert(TRI && "Expected target register info"); 1383 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1384 if (DwarfReg < 0) 1385 return error("invalid DWARF register"); 1386 Reg = (unsigned)DwarfReg; 1387 lex(); 1388 return false; 1389 } 1390 1391 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1392 auto Kind = Token.kind(); 1393 lex(); 1394 int Offset; 1395 unsigned Reg; 1396 unsigned CFIIndex; 1397 switch (Kind) { 1398 case MIToken::kw_cfi_same_value: 1399 if (parseCFIRegister(Reg)) 1400 return true; 1401 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1402 break; 1403 case MIToken::kw_cfi_offset: 1404 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1405 parseCFIOffset(Offset)) 1406 return true; 1407 CFIIndex = 1408 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1409 break; 1410 case MIToken::kw_cfi_def_cfa_register: 1411 if (parseCFIRegister(Reg)) 1412 return true; 1413 CFIIndex = 1414 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1415 break; 1416 case MIToken::kw_cfi_def_cfa_offset: 1417 if (parseCFIOffset(Offset)) 1418 return true; 1419 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1420 CFIIndex = MF.addFrameInst( 1421 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1422 break; 1423 case MIToken::kw_cfi_def_cfa: 1424 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1425 parseCFIOffset(Offset)) 1426 return true; 1427 // NB: MCCFIInstruction::createDefCfa negates the offset. 1428 CFIIndex = 1429 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1430 break; 1431 default: 1432 // TODO: Parse the other CFI operands. 1433 llvm_unreachable("The current token should be a cfi operand"); 1434 } 1435 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1436 return false; 1437 } 1438 1439 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1440 switch (Token.kind()) { 1441 case MIToken::NamedIRBlock: { 1442 BB = dyn_cast_or_null<BasicBlock>( 1443 F.getValueSymbolTable()->lookup(Token.stringValue())); 1444 if (!BB) 1445 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1446 break; 1447 } 1448 case MIToken::IRBlock: { 1449 unsigned SlotNumber = 0; 1450 if (getUnsigned(SlotNumber)) 1451 return true; 1452 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1453 if (!BB) 1454 return error(Twine("use of undefined IR block '%ir-block.") + 1455 Twine(SlotNumber) + "'"); 1456 break; 1457 } 1458 default: 1459 llvm_unreachable("The current token should be an IR block reference"); 1460 } 1461 return false; 1462 } 1463 1464 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1465 assert(Token.is(MIToken::kw_blockaddress)); 1466 lex(); 1467 if (expectAndConsume(MIToken::lparen)) 1468 return true; 1469 if (Token.isNot(MIToken::GlobalValue) && 1470 Token.isNot(MIToken::NamedGlobalValue)) 1471 return error("expected a global value"); 1472 GlobalValue *GV = nullptr; 1473 if (parseGlobalValue(GV)) 1474 return true; 1475 auto *F = dyn_cast<Function>(GV); 1476 if (!F) 1477 return error("expected an IR function reference"); 1478 lex(); 1479 if (expectAndConsume(MIToken::comma)) 1480 return true; 1481 BasicBlock *BB = nullptr; 1482 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1483 return error("expected an IR block reference"); 1484 if (parseIRBlock(BB, *F)) 1485 return true; 1486 lex(); 1487 if (expectAndConsume(MIToken::rparen)) 1488 return true; 1489 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1490 if (parseOperandsOffset(Dest)) 1491 return true; 1492 return false; 1493 } 1494 1495 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1496 assert(Token.is(MIToken::kw_intrinsic)); 1497 lex(); 1498 if (expectAndConsume(MIToken::lparen)) 1499 return error("expected syntax intrinsic(@llvm.whatever)"); 1500 1501 if (Token.isNot(MIToken::NamedGlobalValue)) 1502 return error("expected syntax intrinsic(@llvm.whatever)"); 1503 1504 std::string Name = Token.stringValue(); 1505 lex(); 1506 1507 if (expectAndConsume(MIToken::rparen)) 1508 return error("expected ')' to terminate intrinsic name"); 1509 1510 // Find out what intrinsic we're dealing with, first try the global namespace 1511 // and then the target's private intrinsics if that fails. 1512 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1513 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1514 if (ID == Intrinsic::not_intrinsic && TII) 1515 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1516 1517 if (ID == Intrinsic::not_intrinsic) 1518 return error("unknown intrinsic name"); 1519 Dest = MachineOperand::CreateIntrinsicID(ID); 1520 1521 return false; 1522 } 1523 1524 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1525 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1526 bool IsFloat = Token.is(MIToken::kw_floatpred); 1527 lex(); 1528 1529 if (expectAndConsume(MIToken::lparen)) 1530 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1531 1532 if (Token.isNot(MIToken::Identifier)) 1533 return error("whatever"); 1534 1535 CmpInst::Predicate Pred; 1536 if (IsFloat) { 1537 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1538 .Case("false", CmpInst::FCMP_FALSE) 1539 .Case("oeq", CmpInst::FCMP_OEQ) 1540 .Case("ogt", CmpInst::FCMP_OGT) 1541 .Case("oge", CmpInst::FCMP_OGE) 1542 .Case("olt", CmpInst::FCMP_OLT) 1543 .Case("ole", CmpInst::FCMP_OLE) 1544 .Case("one", CmpInst::FCMP_ONE) 1545 .Case("ord", CmpInst::FCMP_ORD) 1546 .Case("uno", CmpInst::FCMP_UNO) 1547 .Case("ueq", CmpInst::FCMP_UEQ) 1548 .Case("ugt", CmpInst::FCMP_UGT) 1549 .Case("uge", CmpInst::FCMP_UGE) 1550 .Case("ult", CmpInst::FCMP_ULT) 1551 .Case("ule", CmpInst::FCMP_ULE) 1552 .Case("une", CmpInst::FCMP_UNE) 1553 .Case("true", CmpInst::FCMP_TRUE) 1554 .Default(CmpInst::BAD_FCMP_PREDICATE); 1555 if (!CmpInst::isFPPredicate(Pred)) 1556 return error("invalid floating-point predicate"); 1557 } else { 1558 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1559 .Case("eq", CmpInst::ICMP_EQ) 1560 .Case("ne", CmpInst::ICMP_NE) 1561 .Case("sgt", CmpInst::ICMP_SGT) 1562 .Case("sge", CmpInst::ICMP_SGE) 1563 .Case("slt", CmpInst::ICMP_SLT) 1564 .Case("sle", CmpInst::ICMP_SLE) 1565 .Case("ugt", CmpInst::ICMP_UGT) 1566 .Case("uge", CmpInst::ICMP_UGE) 1567 .Case("ult", CmpInst::ICMP_ULT) 1568 .Case("ule", CmpInst::ICMP_ULE) 1569 .Default(CmpInst::BAD_ICMP_PREDICATE); 1570 if (!CmpInst::isIntPredicate(Pred)) 1571 return error("invalid integer predicate"); 1572 } 1573 1574 lex(); 1575 Dest = MachineOperand::CreatePredicate(Pred); 1576 if (expectAndConsume(MIToken::rparen)) 1577 return error("predicate should be terminated by ')'."); 1578 1579 return false; 1580 } 1581 1582 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1583 assert(Token.is(MIToken::kw_target_index)); 1584 lex(); 1585 if (expectAndConsume(MIToken::lparen)) 1586 return true; 1587 if (Token.isNot(MIToken::Identifier)) 1588 return error("expected the name of the target index"); 1589 int Index = 0; 1590 if (getTargetIndex(Token.stringValue(), Index)) 1591 return error("use of undefined target index '" + Token.stringValue() + "'"); 1592 lex(); 1593 if (expectAndConsume(MIToken::rparen)) 1594 return true; 1595 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1596 if (parseOperandsOffset(Dest)) 1597 return true; 1598 return false; 1599 } 1600 1601 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1602 assert(Token.is(MIToken::kw_liveout)); 1603 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1604 assert(TRI && "Expected target register info"); 1605 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1606 lex(); 1607 if (expectAndConsume(MIToken::lparen)) 1608 return true; 1609 while (true) { 1610 if (Token.isNot(MIToken::NamedRegister)) 1611 return error("expected a named register"); 1612 unsigned Reg; 1613 if (parseNamedRegister(Reg)) 1614 return true; 1615 lex(); 1616 Mask[Reg / 32] |= 1U << (Reg % 32); 1617 // TODO: Report an error if the same register is used more than once. 1618 if (Token.isNot(MIToken::comma)) 1619 break; 1620 lex(); 1621 } 1622 if (expectAndConsume(MIToken::rparen)) 1623 return true; 1624 Dest = MachineOperand::CreateRegLiveOut(Mask); 1625 return false; 1626 } 1627 1628 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1629 Optional<unsigned> &TiedDefIdx) { 1630 switch (Token.kind()) { 1631 case MIToken::kw_implicit: 1632 case MIToken::kw_implicit_define: 1633 case MIToken::kw_def: 1634 case MIToken::kw_dead: 1635 case MIToken::kw_killed: 1636 case MIToken::kw_undef: 1637 case MIToken::kw_internal: 1638 case MIToken::kw_early_clobber: 1639 case MIToken::kw_debug_use: 1640 case MIToken::underscore: 1641 case MIToken::NamedRegister: 1642 case MIToken::VirtualRegister: 1643 return parseRegisterOperand(Dest, TiedDefIdx); 1644 case MIToken::IntegerLiteral: 1645 return parseImmediateOperand(Dest); 1646 case MIToken::IntegerType: 1647 return parseTypedImmediateOperand(Dest); 1648 case MIToken::kw_half: 1649 case MIToken::kw_float: 1650 case MIToken::kw_double: 1651 case MIToken::kw_x86_fp80: 1652 case MIToken::kw_fp128: 1653 case MIToken::kw_ppc_fp128: 1654 return parseFPImmediateOperand(Dest); 1655 case MIToken::MachineBasicBlock: 1656 return parseMBBOperand(Dest); 1657 case MIToken::StackObject: 1658 return parseStackObjectOperand(Dest); 1659 case MIToken::FixedStackObject: 1660 return parseFixedStackObjectOperand(Dest); 1661 case MIToken::GlobalValue: 1662 case MIToken::NamedGlobalValue: 1663 return parseGlobalAddressOperand(Dest); 1664 case MIToken::ConstantPoolItem: 1665 return parseConstantPoolIndexOperand(Dest); 1666 case MIToken::JumpTableIndex: 1667 return parseJumpTableIndexOperand(Dest); 1668 case MIToken::ExternalSymbol: 1669 return parseExternalSymbolOperand(Dest); 1670 case MIToken::SubRegisterIndex: 1671 return parseSubRegisterIndexOperand(Dest); 1672 case MIToken::exclaim: 1673 return parseMetadataOperand(Dest); 1674 case MIToken::kw_cfi_same_value: 1675 case MIToken::kw_cfi_offset: 1676 case MIToken::kw_cfi_def_cfa_register: 1677 case MIToken::kw_cfi_def_cfa_offset: 1678 case MIToken::kw_cfi_def_cfa: 1679 return parseCFIOperand(Dest); 1680 case MIToken::kw_blockaddress: 1681 return parseBlockAddressOperand(Dest); 1682 case MIToken::kw_intrinsic: 1683 return parseIntrinsicOperand(Dest); 1684 case MIToken::kw_target_index: 1685 return parseTargetIndexOperand(Dest); 1686 case MIToken::kw_liveout: 1687 return parseLiveoutRegisterMaskOperand(Dest); 1688 case MIToken::kw_floatpred: 1689 case MIToken::kw_intpred: 1690 return parsePredicateOperand(Dest); 1691 case MIToken::Error: 1692 return true; 1693 case MIToken::Identifier: 1694 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1695 Dest = MachineOperand::CreateRegMask(RegMask); 1696 lex(); 1697 break; 1698 } 1699 LLVM_FALLTHROUGH; 1700 default: 1701 // FIXME: Parse the MCSymbol machine operand. 1702 return error("expected a machine operand"); 1703 } 1704 return false; 1705 } 1706 1707 bool MIParser::parseMachineOperandAndTargetFlags( 1708 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1709 unsigned TF = 0; 1710 bool HasTargetFlags = false; 1711 if (Token.is(MIToken::kw_target_flags)) { 1712 HasTargetFlags = true; 1713 lex(); 1714 if (expectAndConsume(MIToken::lparen)) 1715 return true; 1716 if (Token.isNot(MIToken::Identifier)) 1717 return error("expected the name of the target flag"); 1718 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1719 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1720 return error("use of undefined target flag '" + Token.stringValue() + 1721 "'"); 1722 } 1723 lex(); 1724 while (Token.is(MIToken::comma)) { 1725 lex(); 1726 if (Token.isNot(MIToken::Identifier)) 1727 return error("expected the name of the target flag"); 1728 unsigned BitFlag = 0; 1729 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1730 return error("use of undefined target flag '" + Token.stringValue() + 1731 "'"); 1732 // TODO: Report an error when using a duplicate bit target flag. 1733 TF |= BitFlag; 1734 lex(); 1735 } 1736 if (expectAndConsume(MIToken::rparen)) 1737 return true; 1738 } 1739 auto Loc = Token.location(); 1740 if (parseMachineOperand(Dest, TiedDefIdx)) 1741 return true; 1742 if (!HasTargetFlags) 1743 return false; 1744 if (Dest.isReg()) 1745 return error(Loc, "register operands can't have target flags"); 1746 Dest.setTargetFlags(TF); 1747 return false; 1748 } 1749 1750 bool MIParser::parseOffset(int64_t &Offset) { 1751 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1752 return false; 1753 StringRef Sign = Token.range(); 1754 bool IsNegative = Token.is(MIToken::minus); 1755 lex(); 1756 if (Token.isNot(MIToken::IntegerLiteral)) 1757 return error("expected an integer literal after '" + Sign + "'"); 1758 if (Token.integerValue().getMinSignedBits() > 64) 1759 return error("expected 64-bit integer (too large)"); 1760 Offset = Token.integerValue().getExtValue(); 1761 if (IsNegative) 1762 Offset = -Offset; 1763 lex(); 1764 return false; 1765 } 1766 1767 bool MIParser::parseAlignment(unsigned &Alignment) { 1768 assert(Token.is(MIToken::kw_align)); 1769 lex(); 1770 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1771 return error("expected an integer literal after 'align'"); 1772 if (getUnsigned(Alignment)) 1773 return true; 1774 lex(); 1775 return false; 1776 } 1777 1778 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1779 int64_t Offset = 0; 1780 if (parseOffset(Offset)) 1781 return true; 1782 Op.setOffset(Offset); 1783 return false; 1784 } 1785 1786 bool MIParser::parseIRValue(const Value *&V) { 1787 switch (Token.kind()) { 1788 case MIToken::NamedIRValue: { 1789 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1790 break; 1791 } 1792 case MIToken::IRValue: { 1793 unsigned SlotNumber = 0; 1794 if (getUnsigned(SlotNumber)) 1795 return true; 1796 V = getIRValue(SlotNumber); 1797 break; 1798 } 1799 case MIToken::NamedGlobalValue: 1800 case MIToken::GlobalValue: { 1801 GlobalValue *GV = nullptr; 1802 if (parseGlobalValue(GV)) 1803 return true; 1804 V = GV; 1805 break; 1806 } 1807 case MIToken::QuotedIRValue: { 1808 const Constant *C = nullptr; 1809 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1810 return true; 1811 V = C; 1812 break; 1813 } 1814 default: 1815 llvm_unreachable("The current token should be an IR block reference"); 1816 } 1817 if (!V) 1818 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1819 return false; 1820 } 1821 1822 bool MIParser::getUint64(uint64_t &Result) { 1823 if (Token.hasIntegerValue()) { 1824 if (Token.integerValue().getActiveBits() > 64) 1825 return error("expected 64-bit integer (too large)"); 1826 Result = Token.integerValue().getZExtValue(); 1827 return false; 1828 } 1829 if (Token.is(MIToken::HexLiteral)) { 1830 APInt A; 1831 if (getHexUint(A)) 1832 return true; 1833 if (A.getBitWidth() > 64) 1834 return error("expected 64-bit integer (too large)"); 1835 Result = A.getZExtValue(); 1836 return false; 1837 } 1838 return true; 1839 } 1840 1841 bool MIParser::getHexUint(APInt &Result) { 1842 assert(Token.is(MIToken::HexLiteral)); 1843 StringRef S = Token.range(); 1844 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1845 // This could be a floating point literal with a special prefix. 1846 if (!isxdigit(S[2])) 1847 return true; 1848 StringRef V = S.substr(2); 1849 APInt A(V.size()*4, V, 16); 1850 Result = APInt(A.getActiveBits(), 1851 ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1852 return false; 1853 } 1854 1855 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1856 const auto OldFlags = Flags; 1857 switch (Token.kind()) { 1858 case MIToken::kw_volatile: 1859 Flags |= MachineMemOperand::MOVolatile; 1860 break; 1861 case MIToken::kw_non_temporal: 1862 Flags |= MachineMemOperand::MONonTemporal; 1863 break; 1864 case MIToken::kw_dereferenceable: 1865 Flags |= MachineMemOperand::MODereferenceable; 1866 break; 1867 case MIToken::kw_invariant: 1868 Flags |= MachineMemOperand::MOInvariant; 1869 break; 1870 // TODO: parse the target specific memory operand flags. 1871 default: 1872 llvm_unreachable("The current token should be a memory operand flag"); 1873 } 1874 if (OldFlags == Flags) 1875 // We know that the same flag is specified more than once when the flags 1876 // weren't modified. 1877 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1878 lex(); 1879 return false; 1880 } 1881 1882 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1883 switch (Token.kind()) { 1884 case MIToken::kw_stack: 1885 PSV = MF.getPSVManager().getStack(); 1886 break; 1887 case MIToken::kw_got: 1888 PSV = MF.getPSVManager().getGOT(); 1889 break; 1890 case MIToken::kw_jump_table: 1891 PSV = MF.getPSVManager().getJumpTable(); 1892 break; 1893 case MIToken::kw_constant_pool: 1894 PSV = MF.getPSVManager().getConstantPool(); 1895 break; 1896 case MIToken::FixedStackObject: { 1897 int FI; 1898 if (parseFixedStackFrameIndex(FI)) 1899 return true; 1900 PSV = MF.getPSVManager().getFixedStack(FI); 1901 // The token was already consumed, so use return here instead of break. 1902 return false; 1903 } 1904 case MIToken::StackObject: { 1905 int FI; 1906 if (parseStackFrameIndex(FI)) 1907 return true; 1908 PSV = MF.getPSVManager().getFixedStack(FI); 1909 // The token was already consumed, so use return here instead of break. 1910 return false; 1911 } 1912 case MIToken::kw_call_entry: { 1913 lex(); 1914 switch (Token.kind()) { 1915 case MIToken::GlobalValue: 1916 case MIToken::NamedGlobalValue: { 1917 GlobalValue *GV = nullptr; 1918 if (parseGlobalValue(GV)) 1919 return true; 1920 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1921 break; 1922 } 1923 case MIToken::ExternalSymbol: 1924 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1925 MF.createExternalSymbolName(Token.stringValue())); 1926 break; 1927 default: 1928 return error( 1929 "expected a global value or an external symbol after 'call-entry'"); 1930 } 1931 break; 1932 } 1933 default: 1934 llvm_unreachable("The current token should be pseudo source value"); 1935 } 1936 lex(); 1937 return false; 1938 } 1939 1940 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1941 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1942 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1943 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1944 Token.is(MIToken::kw_call_entry)) { 1945 const PseudoSourceValue *PSV = nullptr; 1946 if (parseMemoryPseudoSourceValue(PSV)) 1947 return true; 1948 int64_t Offset = 0; 1949 if (parseOffset(Offset)) 1950 return true; 1951 Dest = MachinePointerInfo(PSV, Offset); 1952 return false; 1953 } 1954 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1955 Token.isNot(MIToken::GlobalValue) && 1956 Token.isNot(MIToken::NamedGlobalValue) && 1957 Token.isNot(MIToken::QuotedIRValue)) 1958 return error("expected an IR value reference"); 1959 const Value *V = nullptr; 1960 if (parseIRValue(V)) 1961 return true; 1962 if (!V->getType()->isPointerTy()) 1963 return error("expected a pointer IR value"); 1964 lex(); 1965 int64_t Offset = 0; 1966 if (parseOffset(Offset)) 1967 return true; 1968 Dest = MachinePointerInfo(V, Offset); 1969 return false; 1970 } 1971 1972 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1973 if (expectAndConsume(MIToken::lparen)) 1974 return true; 1975 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 1976 while (Token.isMemoryOperandFlag()) { 1977 if (parseMemoryOperandFlag(Flags)) 1978 return true; 1979 } 1980 if (Token.isNot(MIToken::Identifier) || 1981 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1982 return error("expected 'load' or 'store' memory operation"); 1983 if (Token.stringValue() == "load") 1984 Flags |= MachineMemOperand::MOLoad; 1985 else 1986 Flags |= MachineMemOperand::MOStore; 1987 lex(); 1988 1989 if (Token.isNot(MIToken::IntegerLiteral)) 1990 return error("expected the size integer literal after memory operation"); 1991 uint64_t Size; 1992 if (getUint64(Size)) 1993 return true; 1994 lex(); 1995 1996 MachinePointerInfo Ptr = MachinePointerInfo(); 1997 if (Token.is(MIToken::Identifier)) { 1998 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1999 if (Token.stringValue() != Word) 2000 return error(Twine("expected '") + Word + "'"); 2001 lex(); 2002 2003 if (parseMachinePointerInfo(Ptr)) 2004 return true; 2005 } 2006 unsigned BaseAlignment = Size; 2007 AAMDNodes AAInfo; 2008 MDNode *Range = nullptr; 2009 while (consumeIfPresent(MIToken::comma)) { 2010 switch (Token.kind()) { 2011 case MIToken::kw_align: 2012 if (parseAlignment(BaseAlignment)) 2013 return true; 2014 break; 2015 case MIToken::md_tbaa: 2016 lex(); 2017 if (parseMDNode(AAInfo.TBAA)) 2018 return true; 2019 break; 2020 case MIToken::md_alias_scope: 2021 lex(); 2022 if (parseMDNode(AAInfo.Scope)) 2023 return true; 2024 break; 2025 case MIToken::md_noalias: 2026 lex(); 2027 if (parseMDNode(AAInfo.NoAlias)) 2028 return true; 2029 break; 2030 case MIToken::md_range: 2031 lex(); 2032 if (parseMDNode(Range)) 2033 return true; 2034 break; 2035 // TODO: Report an error on duplicate metadata nodes. 2036 default: 2037 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2038 "'!noalias' or '!range'"); 2039 } 2040 } 2041 if (expectAndConsume(MIToken::rparen)) 2042 return true; 2043 Dest = 2044 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 2045 return false; 2046 } 2047 2048 void MIParser::initNames2InstrOpCodes() { 2049 if (!Names2InstrOpCodes.empty()) 2050 return; 2051 const auto *TII = MF.getSubtarget().getInstrInfo(); 2052 assert(TII && "Expected target instruction info"); 2053 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2054 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2055 } 2056 2057 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2058 initNames2InstrOpCodes(); 2059 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2060 if (InstrInfo == Names2InstrOpCodes.end()) 2061 return true; 2062 OpCode = InstrInfo->getValue(); 2063 return false; 2064 } 2065 2066 void MIParser::initNames2Regs() { 2067 if (!Names2Regs.empty()) 2068 return; 2069 // The '%noreg' register is the register 0. 2070 Names2Regs.insert(std::make_pair("noreg", 0)); 2071 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2072 assert(TRI && "Expected target register info"); 2073 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2074 bool WasInserted = 2075 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2076 .second; 2077 (void)WasInserted; 2078 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2079 } 2080 } 2081 2082 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2083 initNames2Regs(); 2084 auto RegInfo = Names2Regs.find(RegName); 2085 if (RegInfo == Names2Regs.end()) 2086 return true; 2087 Reg = RegInfo->getValue(); 2088 return false; 2089 } 2090 2091 void MIParser::initNames2RegMasks() { 2092 if (!Names2RegMasks.empty()) 2093 return; 2094 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2095 assert(TRI && "Expected target register info"); 2096 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2097 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2098 assert(RegMasks.size() == RegMaskNames.size()); 2099 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2100 Names2RegMasks.insert( 2101 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2102 } 2103 2104 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2105 initNames2RegMasks(); 2106 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2107 if (RegMaskInfo == Names2RegMasks.end()) 2108 return nullptr; 2109 return RegMaskInfo->getValue(); 2110 } 2111 2112 void MIParser::initNames2SubRegIndices() { 2113 if (!Names2SubRegIndices.empty()) 2114 return; 2115 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2116 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2117 Names2SubRegIndices.insert( 2118 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2119 } 2120 2121 unsigned MIParser::getSubRegIndex(StringRef Name) { 2122 initNames2SubRegIndices(); 2123 auto SubRegInfo = Names2SubRegIndices.find(Name); 2124 if (SubRegInfo == Names2SubRegIndices.end()) 2125 return 0; 2126 return SubRegInfo->getValue(); 2127 } 2128 2129 static void initSlots2BasicBlocks( 2130 const Function &F, 2131 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2132 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2133 MST.incorporateFunction(F); 2134 for (auto &BB : F) { 2135 if (BB.hasName()) 2136 continue; 2137 int Slot = MST.getLocalSlot(&BB); 2138 if (Slot == -1) 2139 continue; 2140 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2141 } 2142 } 2143 2144 static const BasicBlock *getIRBlockFromSlot( 2145 unsigned Slot, 2146 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2147 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2148 if (BlockInfo == Slots2BasicBlocks.end()) 2149 return nullptr; 2150 return BlockInfo->second; 2151 } 2152 2153 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2154 if (Slots2BasicBlocks.empty()) 2155 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2156 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2157 } 2158 2159 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2160 if (&F == MF.getFunction()) 2161 return getIRBlock(Slot); 2162 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2163 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2164 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2165 } 2166 2167 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2168 DenseMap<unsigned, const Value *> &Slots2Values) { 2169 int Slot = MST.getLocalSlot(V); 2170 if (Slot == -1) 2171 return; 2172 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2173 } 2174 2175 /// Creates the mapping from slot numbers to function's unnamed IR values. 2176 static void initSlots2Values(const Function &F, 2177 DenseMap<unsigned, const Value *> &Slots2Values) { 2178 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2179 MST.incorporateFunction(F); 2180 for (const auto &Arg : F.args()) 2181 mapValueToSlot(&Arg, MST, Slots2Values); 2182 for (const auto &BB : F) { 2183 mapValueToSlot(&BB, MST, Slots2Values); 2184 for (const auto &I : BB) 2185 mapValueToSlot(&I, MST, Slots2Values); 2186 } 2187 } 2188 2189 const Value *MIParser::getIRValue(unsigned Slot) { 2190 if (Slots2Values.empty()) 2191 initSlots2Values(*MF.getFunction(), Slots2Values); 2192 auto ValueInfo = Slots2Values.find(Slot); 2193 if (ValueInfo == Slots2Values.end()) 2194 return nullptr; 2195 return ValueInfo->second; 2196 } 2197 2198 void MIParser::initNames2TargetIndices() { 2199 if (!Names2TargetIndices.empty()) 2200 return; 2201 const auto *TII = MF.getSubtarget().getInstrInfo(); 2202 assert(TII && "Expected target instruction info"); 2203 auto Indices = TII->getSerializableTargetIndices(); 2204 for (const auto &I : Indices) 2205 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2206 } 2207 2208 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2209 initNames2TargetIndices(); 2210 auto IndexInfo = Names2TargetIndices.find(Name); 2211 if (IndexInfo == Names2TargetIndices.end()) 2212 return true; 2213 Index = IndexInfo->second; 2214 return false; 2215 } 2216 2217 void MIParser::initNames2DirectTargetFlags() { 2218 if (!Names2DirectTargetFlags.empty()) 2219 return; 2220 const auto *TII = MF.getSubtarget().getInstrInfo(); 2221 assert(TII && "Expected target instruction info"); 2222 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2223 for (const auto &I : Flags) 2224 Names2DirectTargetFlags.insert( 2225 std::make_pair(StringRef(I.second), I.first)); 2226 } 2227 2228 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2229 initNames2DirectTargetFlags(); 2230 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2231 if (FlagInfo == Names2DirectTargetFlags.end()) 2232 return true; 2233 Flag = FlagInfo->second; 2234 return false; 2235 } 2236 2237 void MIParser::initNames2BitmaskTargetFlags() { 2238 if (!Names2BitmaskTargetFlags.empty()) 2239 return; 2240 const auto *TII = MF.getSubtarget().getInstrInfo(); 2241 assert(TII && "Expected target instruction info"); 2242 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2243 for (const auto &I : Flags) 2244 Names2BitmaskTargetFlags.insert( 2245 std::make_pair(StringRef(I.second), I.first)); 2246 } 2247 2248 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2249 initNames2BitmaskTargetFlags(); 2250 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2251 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2252 return true; 2253 Flag = FlagInfo->second; 2254 return false; 2255 } 2256 2257 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2258 StringRef Src, 2259 SMDiagnostic &Error) { 2260 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2261 } 2262 2263 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2264 StringRef Src, SMDiagnostic &Error) { 2265 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2266 } 2267 2268 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2269 MachineBasicBlock *&MBB, StringRef Src, 2270 SMDiagnostic &Error) { 2271 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2272 } 2273 2274 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2275 unsigned &Reg, StringRef Src, 2276 SMDiagnostic &Error) { 2277 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2278 } 2279 2280 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2281 unsigned &Reg, StringRef Src, 2282 SMDiagnostic &Error) { 2283 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2284 } 2285 2286 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2287 VRegInfo *&Info, StringRef Src, 2288 SMDiagnostic &Error) { 2289 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2290 } 2291 2292 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2293 int &FI, StringRef Src, 2294 SMDiagnostic &Error) { 2295 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2296 } 2297 2298 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2299 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2300 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2301 } 2302