1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cctype>
40 
41 using namespace llvm;
42 
43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
44     SourceMgr &SM, const SlotMapping &IRSlots)
45   : MF(MF), SM(&SM), IRSlots(IRSlots) {
46 }
47 
48 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
49   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
50   if (I.second) {
51     MachineRegisterInfo &MRI = MF.getRegInfo();
52     VRegInfo *Info = new (Allocator) VRegInfo;
53     Info->VReg = MRI.createIncompleteVirtualRegister();
54     I.first->second = Info;
55   }
56   return *I.first->second;
57 }
58 
59 namespace {
60 
61 /// A wrapper struct around the 'MachineOperand' struct that includes a source
62 /// range and other attributes.
63 struct ParsedMachineOperand {
64   MachineOperand Operand;
65   StringRef::iterator Begin;
66   StringRef::iterator End;
67   Optional<unsigned> TiedDefIdx;
68 
69   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
70                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
71       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
72     if (TiedDefIdx)
73       assert(Operand.isReg() && Operand.isUse() &&
74              "Only used register operands can be tied");
75   }
76 };
77 
78 class MIParser {
79   MachineFunction &MF;
80   SMDiagnostic &Error;
81   StringRef Source, CurrentSource;
82   MIToken Token;
83   PerFunctionMIParsingState &PFS;
84   /// Maps from instruction names to op codes.
85   StringMap<unsigned> Names2InstrOpCodes;
86   /// Maps from register names to registers.
87   StringMap<unsigned> Names2Regs;
88   /// Maps from register mask names to register masks.
89   StringMap<const uint32_t *> Names2RegMasks;
90   /// Maps from subregister names to subregister indices.
91   StringMap<unsigned> Names2SubRegIndices;
92   /// Maps from slot numbers to function's unnamed basic blocks.
93   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
94   /// Maps from slot numbers to function's unnamed values.
95   DenseMap<unsigned, const Value *> Slots2Values;
96   /// Maps from target index names to target indices.
97   StringMap<int> Names2TargetIndices;
98   /// Maps from direct target flag names to the direct target flag values.
99   StringMap<unsigned> Names2DirectTargetFlags;
100   /// Maps from direct target flag names to the bitmask target flag values.
101   StringMap<unsigned> Names2BitmaskTargetFlags;
102 
103 public:
104   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
105            StringRef Source);
106 
107   /// \p SkipChar gives the number of characters to skip before looking
108   /// for the next token.
109   void lex(unsigned SkipChar = 0);
110 
111   /// Report an error at the current location with the given message.
112   ///
113   /// This function always return true.
114   bool error(const Twine &Msg);
115 
116   /// Report an error at the given location with the given message.
117   ///
118   /// This function always return true.
119   bool error(StringRef::iterator Loc, const Twine &Msg);
120 
121   bool
122   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
123   bool parseBasicBlocks();
124   bool parse(MachineInstr *&MI);
125   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
126   bool parseStandaloneNamedRegister(unsigned &Reg);
127   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
128   bool parseStandaloneRegister(unsigned &Reg);
129   bool parseStandaloneStackObject(int &FI);
130   bool parseStandaloneMDNode(MDNode *&Node);
131 
132   bool
133   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
134   bool parseBasicBlock(MachineBasicBlock &MBB);
135   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
136   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
137 
138   bool parseNamedRegister(unsigned &Reg);
139   bool parseVirtualRegister(VRegInfo *&Info);
140   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
141   bool parseRegisterFlag(unsigned &Flags);
142   bool parseSubRegisterIndex(unsigned &SubReg);
143   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
144   bool parseRegisterOperand(MachineOperand &Dest,
145                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
146   bool parseImmediateOperand(MachineOperand &Dest);
147   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
148                        const Constant *&C);
149   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
150   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
151   bool parseTypedImmediateOperand(MachineOperand &Dest);
152   bool parseFPImmediateOperand(MachineOperand &Dest);
153   bool parseMBBReference(MachineBasicBlock *&MBB);
154   bool parseMBBOperand(MachineOperand &Dest);
155   bool parseStackFrameIndex(int &FI);
156   bool parseStackObjectOperand(MachineOperand &Dest);
157   bool parseFixedStackFrameIndex(int &FI);
158   bool parseFixedStackObjectOperand(MachineOperand &Dest);
159   bool parseGlobalValue(GlobalValue *&GV);
160   bool parseGlobalAddressOperand(MachineOperand &Dest);
161   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
162   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
163   bool parseJumpTableIndexOperand(MachineOperand &Dest);
164   bool parseExternalSymbolOperand(MachineOperand &Dest);
165   bool parseMDNode(MDNode *&Node);
166   bool parseMetadataOperand(MachineOperand &Dest);
167   bool parseCFIOffset(int &Offset);
168   bool parseCFIRegister(unsigned &Reg);
169   bool parseCFIOperand(MachineOperand &Dest);
170   bool parseIRBlock(BasicBlock *&BB, const Function &F);
171   bool parseBlockAddressOperand(MachineOperand &Dest);
172   bool parseIntrinsicOperand(MachineOperand &Dest);
173   bool parsePredicateOperand(MachineOperand &Dest);
174   bool parseTargetIndexOperand(MachineOperand &Dest);
175   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
176   bool parseMachineOperand(MachineOperand &Dest,
177                            Optional<unsigned> &TiedDefIdx);
178   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
179                                          Optional<unsigned> &TiedDefIdx);
180   bool parseOffset(int64_t &Offset);
181   bool parseAlignment(unsigned &Alignment);
182   bool parseOperandsOffset(MachineOperand &Op);
183   bool parseIRValue(const Value *&V);
184   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
185   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
186   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
187   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
188 
189 private:
190   /// Convert the integer literal in the current token into an unsigned integer.
191   ///
192   /// Return true if an error occurred.
193   bool getUnsigned(unsigned &Result);
194 
195   /// Convert the integer literal in the current token into an uint64.
196   ///
197   /// Return true if an error occurred.
198   bool getUint64(uint64_t &Result);
199 
200   /// Convert the hexadecimal literal in the current token into an unsigned
201   ///  APInt with a minimum bitwidth required to represent the value.
202   ///
203   /// Return true if the literal does not represent an integer value.
204   bool getHexUint(APInt &Result);
205 
206   /// If the current token is of the given kind, consume it and return false.
207   /// Otherwise report an error and return true.
208   bool expectAndConsume(MIToken::TokenKind TokenKind);
209 
210   /// If the current token is of the given kind, consume it and return true.
211   /// Otherwise return false.
212   bool consumeIfPresent(MIToken::TokenKind TokenKind);
213 
214   void initNames2InstrOpCodes();
215 
216   /// Try to convert an instruction name to an opcode. Return true if the
217   /// instruction name is invalid.
218   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
219 
220   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
221 
222   bool assignRegisterTies(MachineInstr &MI,
223                           ArrayRef<ParsedMachineOperand> Operands);
224 
225   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
226                               const MCInstrDesc &MCID);
227 
228   void initNames2Regs();
229 
230   /// Try to convert a register name to a register number. Return true if the
231   /// register name is invalid.
232   bool getRegisterByName(StringRef RegName, unsigned &Reg);
233 
234   void initNames2RegMasks();
235 
236   /// Check if the given identifier is a name of a register mask.
237   ///
238   /// Return null if the identifier isn't a register mask.
239   const uint32_t *getRegMask(StringRef Identifier);
240 
241   void initNames2SubRegIndices();
242 
243   /// Check if the given identifier is a name of a subregister index.
244   ///
245   /// Return 0 if the name isn't a subregister index class.
246   unsigned getSubRegIndex(StringRef Name);
247 
248   const BasicBlock *getIRBlock(unsigned Slot);
249   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
250 
251   const Value *getIRValue(unsigned Slot);
252 
253   void initNames2TargetIndices();
254 
255   /// Try to convert a name of target index to the corresponding target index.
256   ///
257   /// Return true if the name isn't a name of a target index.
258   bool getTargetIndex(StringRef Name, int &Index);
259 
260   void initNames2DirectTargetFlags();
261 
262   /// Try to convert a name of a direct target flag to the corresponding
263   /// target flag.
264   ///
265   /// Return true if the name isn't a name of a direct flag.
266   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
267 
268   void initNames2BitmaskTargetFlags();
269 
270   /// Try to convert a name of a bitmask target flag to the corresponding
271   /// target flag.
272   ///
273   /// Return true if the name isn't a name of a bitmask target flag.
274   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
275 };
276 
277 } // end anonymous namespace
278 
279 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
280                    StringRef Source)
281     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
282 {}
283 
284 void MIParser::lex(unsigned SkipChar) {
285   CurrentSource = lexMIToken(
286       CurrentSource.data() + SkipChar, Token,
287       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
288 }
289 
290 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
291 
292 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
293   const SourceMgr &SM = *PFS.SM;
294   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
295   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
296   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
297     // Create an ordinary diagnostic when the source manager's buffer is the
298     // source string.
299     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
300     return true;
301   }
302   // Create a diagnostic for a YAML string literal.
303   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
304                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
305                        Source, None, None);
306   return true;
307 }
308 
309 static const char *toString(MIToken::TokenKind TokenKind) {
310   switch (TokenKind) {
311   case MIToken::comma:
312     return "','";
313   case MIToken::equal:
314     return "'='";
315   case MIToken::colon:
316     return "':'";
317   case MIToken::lparen:
318     return "'('";
319   case MIToken::rparen:
320     return "')'";
321   default:
322     return "<unknown token>";
323   }
324 }
325 
326 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
327   if (Token.isNot(TokenKind))
328     return error(Twine("expected ") + toString(TokenKind));
329   lex();
330   return false;
331 }
332 
333 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
334   if (Token.isNot(TokenKind))
335     return false;
336   lex();
337   return true;
338 }
339 
340 bool MIParser::parseBasicBlockDefinition(
341     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
342   assert(Token.is(MIToken::MachineBasicBlockLabel));
343   unsigned ID = 0;
344   if (getUnsigned(ID))
345     return true;
346   auto Loc = Token.location();
347   auto Name = Token.stringValue();
348   lex();
349   bool HasAddressTaken = false;
350   bool IsLandingPad = false;
351   unsigned Alignment = 0;
352   BasicBlock *BB = nullptr;
353   if (consumeIfPresent(MIToken::lparen)) {
354     do {
355       // TODO: Report an error when multiple same attributes are specified.
356       switch (Token.kind()) {
357       case MIToken::kw_address_taken:
358         HasAddressTaken = true;
359         lex();
360         break;
361       case MIToken::kw_landing_pad:
362         IsLandingPad = true;
363         lex();
364         break;
365       case MIToken::kw_align:
366         if (parseAlignment(Alignment))
367           return true;
368         break;
369       case MIToken::IRBlock:
370         // TODO: Report an error when both name and ir block are specified.
371         if (parseIRBlock(BB, *MF.getFunction()))
372           return true;
373         lex();
374         break;
375       default:
376         break;
377       }
378     } while (consumeIfPresent(MIToken::comma));
379     if (expectAndConsume(MIToken::rparen))
380       return true;
381   }
382   if (expectAndConsume(MIToken::colon))
383     return true;
384 
385   if (!Name.empty()) {
386     BB = dyn_cast_or_null<BasicBlock>(
387         MF.getFunction()->getValueSymbolTable()->lookup(Name));
388     if (!BB)
389       return error(Loc, Twine("basic block '") + Name +
390                             "' is not defined in the function '" +
391                             MF.getName() + "'");
392   }
393   auto *MBB = MF.CreateMachineBasicBlock(BB);
394   MF.insert(MF.end(), MBB);
395   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
396   if (!WasInserted)
397     return error(Loc, Twine("redefinition of machine basic block with id #") +
398                           Twine(ID));
399   if (Alignment)
400     MBB->setAlignment(Alignment);
401   if (HasAddressTaken)
402     MBB->setHasAddressTaken();
403   MBB->setIsEHPad(IsLandingPad);
404   return false;
405 }
406 
407 bool MIParser::parseBasicBlockDefinitions(
408     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
409   lex();
410   // Skip until the first machine basic block.
411   while (Token.is(MIToken::Newline))
412     lex();
413   if (Token.isErrorOrEOF())
414     return Token.isError();
415   if (Token.isNot(MIToken::MachineBasicBlockLabel))
416     return error("expected a basic block definition before instructions");
417   unsigned BraceDepth = 0;
418   do {
419     if (parseBasicBlockDefinition(MBBSlots))
420       return true;
421     bool IsAfterNewline = false;
422     // Skip until the next machine basic block.
423     while (true) {
424       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
425           Token.isErrorOrEOF())
426         break;
427       else if (Token.is(MIToken::MachineBasicBlockLabel))
428         return error("basic block definition should be located at the start of "
429                      "the line");
430       else if (consumeIfPresent(MIToken::Newline)) {
431         IsAfterNewline = true;
432         continue;
433       }
434       IsAfterNewline = false;
435       if (Token.is(MIToken::lbrace))
436         ++BraceDepth;
437       if (Token.is(MIToken::rbrace)) {
438         if (!BraceDepth)
439           return error("extraneous closing brace ('}')");
440         --BraceDepth;
441       }
442       lex();
443     }
444     // Verify that we closed all of the '{' at the end of a file or a block.
445     if (!Token.isError() && BraceDepth)
446       return error("expected '}'"); // FIXME: Report a note that shows '{'.
447   } while (!Token.isErrorOrEOF());
448   return Token.isError();
449 }
450 
451 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
452   assert(Token.is(MIToken::kw_liveins));
453   lex();
454   if (expectAndConsume(MIToken::colon))
455     return true;
456   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
457     return false;
458   do {
459     if (Token.isNot(MIToken::NamedRegister))
460       return error("expected a named register");
461     unsigned Reg = 0;
462     if (parseNamedRegister(Reg))
463       return true;
464     lex();
465     LaneBitmask Mask = LaneBitmask::getAll();
466     if (consumeIfPresent(MIToken::colon)) {
467       // Parse lane mask.
468       if (Token.isNot(MIToken::IntegerLiteral) &&
469           Token.isNot(MIToken::HexLiteral))
470         return error("expected a lane mask");
471       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
472                     "Use correct get-function for lane mask");
473       LaneBitmask::Type V;
474       if (getUnsigned(V))
475         return error("invalid lane mask value");
476       Mask = LaneBitmask(V);
477       lex();
478     }
479     MBB.addLiveIn(Reg, Mask);
480   } while (consumeIfPresent(MIToken::comma));
481   return false;
482 }
483 
484 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
485   assert(Token.is(MIToken::kw_successors));
486   lex();
487   if (expectAndConsume(MIToken::colon))
488     return true;
489   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
490     return false;
491   do {
492     if (Token.isNot(MIToken::MachineBasicBlock))
493       return error("expected a machine basic block reference");
494     MachineBasicBlock *SuccMBB = nullptr;
495     if (parseMBBReference(SuccMBB))
496       return true;
497     lex();
498     unsigned Weight = 0;
499     if (consumeIfPresent(MIToken::lparen)) {
500       if (Token.isNot(MIToken::IntegerLiteral) &&
501           Token.isNot(MIToken::HexLiteral))
502         return error("expected an integer literal after '('");
503       if (getUnsigned(Weight))
504         return true;
505       lex();
506       if (expectAndConsume(MIToken::rparen))
507         return true;
508     }
509     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
510   } while (consumeIfPresent(MIToken::comma));
511   MBB.normalizeSuccProbs();
512   return false;
513 }
514 
515 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
516   // Skip the definition.
517   assert(Token.is(MIToken::MachineBasicBlockLabel));
518   lex();
519   if (consumeIfPresent(MIToken::lparen)) {
520     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
521       lex();
522     consumeIfPresent(MIToken::rparen);
523   }
524   consumeIfPresent(MIToken::colon);
525 
526   // Parse the liveins and successors.
527   // N.B: Multiple lists of successors and liveins are allowed and they're
528   // merged into one.
529   // Example:
530   //   liveins: %edi
531   //   liveins: %esi
532   //
533   // is equivalent to
534   //   liveins: %edi, %esi
535   while (true) {
536     if (Token.is(MIToken::kw_successors)) {
537       if (parseBasicBlockSuccessors(MBB))
538         return true;
539     } else if (Token.is(MIToken::kw_liveins)) {
540       if (parseBasicBlockLiveins(MBB))
541         return true;
542     } else if (consumeIfPresent(MIToken::Newline)) {
543       continue;
544     } else
545       break;
546     if (!Token.isNewlineOrEOF())
547       return error("expected line break at the end of a list");
548     lex();
549   }
550 
551   // Parse the instructions.
552   bool IsInBundle = false;
553   MachineInstr *PrevMI = nullptr;
554   while (true) {
555     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
556       return false;
557     else if (consumeIfPresent(MIToken::Newline))
558       continue;
559     if (consumeIfPresent(MIToken::rbrace)) {
560       // The first parsing pass should verify that all closing '}' have an
561       // opening '{'.
562       assert(IsInBundle);
563       IsInBundle = false;
564       continue;
565     }
566     MachineInstr *MI = nullptr;
567     if (parse(MI))
568       return true;
569     MBB.insert(MBB.end(), MI);
570     if (IsInBundle) {
571       PrevMI->setFlag(MachineInstr::BundledSucc);
572       MI->setFlag(MachineInstr::BundledPred);
573     }
574     PrevMI = MI;
575     if (Token.is(MIToken::lbrace)) {
576       if (IsInBundle)
577         return error("nested instruction bundles are not allowed");
578       lex();
579       // This instruction is the start of the bundle.
580       MI->setFlag(MachineInstr::BundledSucc);
581       IsInBundle = true;
582       if (!Token.is(MIToken::Newline))
583         // The next instruction can be on the same line.
584         continue;
585     }
586     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
587     lex();
588   }
589   return false;
590 }
591 
592 bool MIParser::parseBasicBlocks() {
593   lex();
594   // Skip until the first machine basic block.
595   while (Token.is(MIToken::Newline))
596     lex();
597   if (Token.isErrorOrEOF())
598     return Token.isError();
599   // The first parsing pass should have verified that this token is a MBB label
600   // in the 'parseBasicBlockDefinitions' method.
601   assert(Token.is(MIToken::MachineBasicBlockLabel));
602   do {
603     MachineBasicBlock *MBB = nullptr;
604     if (parseMBBReference(MBB))
605       return true;
606     if (parseBasicBlock(*MBB))
607       return true;
608     // The method 'parseBasicBlock' should parse the whole block until the next
609     // block or the end of file.
610     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
611   } while (Token.isNot(MIToken::Eof));
612   return false;
613 }
614 
615 bool MIParser::parse(MachineInstr *&MI) {
616   // Parse any register operands before '='
617   MachineOperand MO = MachineOperand::CreateImm(0);
618   SmallVector<ParsedMachineOperand, 8> Operands;
619   while (Token.isRegister() || Token.isRegisterFlag()) {
620     auto Loc = Token.location();
621     Optional<unsigned> TiedDefIdx;
622     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
623       return true;
624     Operands.push_back(
625         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
626     if (Token.isNot(MIToken::comma))
627       break;
628     lex();
629   }
630   if (!Operands.empty() && expectAndConsume(MIToken::equal))
631     return true;
632 
633   unsigned OpCode, Flags = 0;
634   if (Token.isError() || parseInstruction(OpCode, Flags))
635     return true;
636 
637   // Parse the remaining machine operands.
638   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
639          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
640     auto Loc = Token.location();
641     Optional<unsigned> TiedDefIdx;
642     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
643       return true;
644     Operands.push_back(
645         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
646     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
647         Token.is(MIToken::lbrace))
648       break;
649     if (Token.isNot(MIToken::comma))
650       return error("expected ',' before the next machine operand");
651     lex();
652   }
653 
654   DebugLoc DebugLocation;
655   if (Token.is(MIToken::kw_debug_location)) {
656     lex();
657     if (Token.isNot(MIToken::exclaim))
658       return error("expected a metadata node after 'debug-location'");
659     MDNode *Node = nullptr;
660     if (parseMDNode(Node))
661       return true;
662     DebugLocation = DebugLoc(Node);
663   }
664 
665   // Parse the machine memory operands.
666   SmallVector<MachineMemOperand *, 2> MemOperands;
667   if (Token.is(MIToken::coloncolon)) {
668     lex();
669     while (!Token.isNewlineOrEOF()) {
670       MachineMemOperand *MemOp = nullptr;
671       if (parseMachineMemoryOperand(MemOp))
672         return true;
673       MemOperands.push_back(MemOp);
674       if (Token.isNewlineOrEOF())
675         break;
676       if (Token.isNot(MIToken::comma))
677         return error("expected ',' before the next machine memory operand");
678       lex();
679     }
680   }
681 
682   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
683   if (!MCID.isVariadic()) {
684     // FIXME: Move the implicit operand verification to the machine verifier.
685     if (verifyImplicitOperands(Operands, MCID))
686       return true;
687   }
688 
689   // TODO: Check for extraneous machine operands.
690   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
691   MI->setFlags(Flags);
692   for (const auto &Operand : Operands)
693     MI->addOperand(MF, Operand.Operand);
694   if (assignRegisterTies(*MI, Operands))
695     return true;
696   if (MemOperands.empty())
697     return false;
698   MachineInstr::mmo_iterator MemRefs =
699       MF.allocateMemRefsArray(MemOperands.size());
700   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
701   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
702   return false;
703 }
704 
705 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
706   lex();
707   if (Token.isNot(MIToken::MachineBasicBlock))
708     return error("expected a machine basic block reference");
709   if (parseMBBReference(MBB))
710     return true;
711   lex();
712   if (Token.isNot(MIToken::Eof))
713     return error(
714         "expected end of string after the machine basic block reference");
715   return false;
716 }
717 
718 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
719   lex();
720   if (Token.isNot(MIToken::NamedRegister))
721     return error("expected a named register");
722   if (parseNamedRegister(Reg))
723     return true;
724   lex();
725   if (Token.isNot(MIToken::Eof))
726     return error("expected end of string after the register reference");
727   return false;
728 }
729 
730 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
731   lex();
732   if (Token.isNot(MIToken::VirtualRegister))
733     return error("expected a virtual register");
734   if (parseVirtualRegister(Info))
735     return true;
736   lex();
737   if (Token.isNot(MIToken::Eof))
738     return error("expected end of string after the register reference");
739   return false;
740 }
741 
742 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
743   lex();
744   if (Token.isNot(MIToken::NamedRegister) &&
745       Token.isNot(MIToken::VirtualRegister))
746     return error("expected either a named or virtual register");
747 
748   VRegInfo *Info;
749   if (parseRegister(Reg, Info))
750     return true;
751 
752   lex();
753   if (Token.isNot(MIToken::Eof))
754     return error("expected end of string after the register reference");
755   return false;
756 }
757 
758 bool MIParser::parseStandaloneStackObject(int &FI) {
759   lex();
760   if (Token.isNot(MIToken::StackObject))
761     return error("expected a stack object");
762   if (parseStackFrameIndex(FI))
763     return true;
764   if (Token.isNot(MIToken::Eof))
765     return error("expected end of string after the stack object reference");
766   return false;
767 }
768 
769 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
770   lex();
771   if (Token.isNot(MIToken::exclaim))
772     return error("expected a metadata node");
773   if (parseMDNode(Node))
774     return true;
775   if (Token.isNot(MIToken::Eof))
776     return error("expected end of string after the metadata node");
777   return false;
778 }
779 
780 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
781   assert(MO.isImplicit());
782   return MO.isDef() ? "implicit-def" : "implicit";
783 }
784 
785 static std::string getRegisterName(const TargetRegisterInfo *TRI,
786                                    unsigned Reg) {
787   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
788   return StringRef(TRI->getName(Reg)).lower();
789 }
790 
791 /// Return true if the parsed machine operands contain a given machine operand.
792 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
793                                 ArrayRef<ParsedMachineOperand> Operands) {
794   for (const auto &I : Operands) {
795     if (ImplicitOperand.isIdenticalTo(I.Operand))
796       return true;
797   }
798   return false;
799 }
800 
801 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
802                                       const MCInstrDesc &MCID) {
803   if (MCID.isCall())
804     // We can't verify call instructions as they can contain arbitrary implicit
805     // register and register mask operands.
806     return false;
807 
808   // Gather all the expected implicit operands.
809   SmallVector<MachineOperand, 4> ImplicitOperands;
810   if (MCID.ImplicitDefs)
811     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
812       ImplicitOperands.push_back(
813           MachineOperand::CreateReg(*ImpDefs, true, true));
814   if (MCID.ImplicitUses)
815     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
816       ImplicitOperands.push_back(
817           MachineOperand::CreateReg(*ImpUses, false, true));
818 
819   const auto *TRI = MF.getSubtarget().getRegisterInfo();
820   assert(TRI && "Expected target register info");
821   for (const auto &I : ImplicitOperands) {
822     if (isImplicitOperandIn(I, Operands))
823       continue;
824     return error(Operands.empty() ? Token.location() : Operands.back().End,
825                  Twine("missing implicit register operand '") +
826                      printImplicitRegisterFlag(I) + " %" +
827                      getRegisterName(TRI, I.getReg()) + "'");
828   }
829   return false;
830 }
831 
832 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
833   if (Token.is(MIToken::kw_frame_setup)) {
834     Flags |= MachineInstr::FrameSetup;
835     lex();
836   }
837   if (Token.isNot(MIToken::Identifier))
838     return error("expected a machine instruction");
839   StringRef InstrName = Token.stringValue();
840   if (parseInstrName(InstrName, OpCode))
841     return error(Twine("unknown machine instruction name '") + InstrName + "'");
842   lex();
843   return false;
844 }
845 
846 bool MIParser::parseNamedRegister(unsigned &Reg) {
847   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
848   StringRef Name = Token.stringValue();
849   if (getRegisterByName(Name, Reg))
850     return error(Twine("unknown register name '") + Name + "'");
851   return false;
852 }
853 
854 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
855   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
856   unsigned ID;
857   if (getUnsigned(ID))
858     return true;
859   Info = &PFS.getVRegInfo(ID);
860   return false;
861 }
862 
863 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
864   switch (Token.kind()) {
865   case MIToken::underscore:
866     Reg = 0;
867     return false;
868   case MIToken::NamedRegister:
869     return parseNamedRegister(Reg);
870   case MIToken::VirtualRegister:
871     if (parseVirtualRegister(Info))
872       return true;
873     Reg = Info->VReg;
874     return false;
875   // TODO: Parse other register kinds.
876   default:
877     llvm_unreachable("The current token should be a register");
878   }
879 }
880 
881 bool MIParser::parseRegisterFlag(unsigned &Flags) {
882   const unsigned OldFlags = Flags;
883   switch (Token.kind()) {
884   case MIToken::kw_implicit:
885     Flags |= RegState::Implicit;
886     break;
887   case MIToken::kw_implicit_define:
888     Flags |= RegState::ImplicitDefine;
889     break;
890   case MIToken::kw_def:
891     Flags |= RegState::Define;
892     break;
893   case MIToken::kw_dead:
894     Flags |= RegState::Dead;
895     break;
896   case MIToken::kw_killed:
897     Flags |= RegState::Kill;
898     break;
899   case MIToken::kw_undef:
900     Flags |= RegState::Undef;
901     break;
902   case MIToken::kw_internal:
903     Flags |= RegState::InternalRead;
904     break;
905   case MIToken::kw_early_clobber:
906     Flags |= RegState::EarlyClobber;
907     break;
908   case MIToken::kw_debug_use:
909     Flags |= RegState::Debug;
910     break;
911   default:
912     llvm_unreachable("The current token should be a register flag");
913   }
914   if (OldFlags == Flags)
915     // We know that the same flag is specified more than once when the flags
916     // weren't modified.
917     return error("duplicate '" + Token.stringValue() + "' register flag");
918   lex();
919   return false;
920 }
921 
922 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
923   assert(Token.is(MIToken::dot));
924   lex();
925   if (Token.isNot(MIToken::Identifier))
926     return error("expected a subregister index after '.'");
927   auto Name = Token.stringValue();
928   SubReg = getSubRegIndex(Name);
929   if (!SubReg)
930     return error(Twine("use of unknown subregister index '") + Name + "'");
931   lex();
932   return false;
933 }
934 
935 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
936   if (!consumeIfPresent(MIToken::kw_tied_def))
937     return true;
938   if (Token.isNot(MIToken::IntegerLiteral))
939     return error("expected an integer literal after 'tied-def'");
940   if (getUnsigned(TiedDefIdx))
941     return true;
942   lex();
943   if (expectAndConsume(MIToken::rparen))
944     return true;
945   return false;
946 }
947 
948 bool MIParser::assignRegisterTies(MachineInstr &MI,
949                                   ArrayRef<ParsedMachineOperand> Operands) {
950   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
951   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
952     if (!Operands[I].TiedDefIdx)
953       continue;
954     // The parser ensures that this operand is a register use, so we just have
955     // to check the tied-def operand.
956     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
957     if (DefIdx >= E)
958       return error(Operands[I].Begin,
959                    Twine("use of invalid tied-def operand index '" +
960                          Twine(DefIdx) + "'; instruction has only ") +
961                        Twine(E) + " operands");
962     const auto &DefOperand = Operands[DefIdx].Operand;
963     if (!DefOperand.isReg() || !DefOperand.isDef())
964       // FIXME: add note with the def operand.
965       return error(Operands[I].Begin,
966                    Twine("use of invalid tied-def operand index '") +
967                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
968                        " isn't a defined register");
969     // Check that the tied-def operand wasn't tied elsewhere.
970     for (const auto &TiedPair : TiedRegisterPairs) {
971       if (TiedPair.first == DefIdx)
972         return error(Operands[I].Begin,
973                      Twine("the tied-def operand #") + Twine(DefIdx) +
974                          " is already tied with another register operand");
975     }
976     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
977   }
978   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
979   // indices must be less than tied max.
980   for (const auto &TiedPair : TiedRegisterPairs)
981     MI.tieOperands(TiedPair.first, TiedPair.second);
982   return false;
983 }
984 
985 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
986                                     Optional<unsigned> &TiedDefIdx,
987                                     bool IsDef) {
988   unsigned Flags = IsDef ? RegState::Define : 0;
989   while (Token.isRegisterFlag()) {
990     if (parseRegisterFlag(Flags))
991       return true;
992   }
993   if (!Token.isRegister())
994     return error("expected a register after register flags");
995   unsigned Reg;
996   VRegInfo *RegInfo;
997   if (parseRegister(Reg, RegInfo))
998     return true;
999   lex();
1000   unsigned SubReg = 0;
1001   if (Token.is(MIToken::dot)) {
1002     if (parseSubRegisterIndex(SubReg))
1003       return true;
1004     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1005       return error("subregister index expects a virtual register");
1006   }
1007   MachineRegisterInfo &MRI = MF.getRegInfo();
1008   if ((Flags & RegState::Define) == 0) {
1009     if (consumeIfPresent(MIToken::lparen)) {
1010       unsigned Idx;
1011       if (!parseRegisterTiedDefIndex(Idx))
1012         TiedDefIdx = Idx;
1013       else {
1014         // Try a redundant low-level type.
1015         LLT Ty;
1016         if (parseLowLevelType(Token.location(), Ty))
1017           return error("expected tied-def or low-level type after '('");
1018 
1019         if (expectAndConsume(MIToken::rparen))
1020           return true;
1021 
1022         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1023           return error("inconsistent type for generic virtual register");
1024 
1025         MRI.setType(Reg, Ty);
1026       }
1027     }
1028   } else if (consumeIfPresent(MIToken::lparen)) {
1029     // Virtual registers may have a tpe with GlobalISel.
1030     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1031       return error("unexpected type on physical register");
1032 
1033     LLT Ty;
1034     if (parseLowLevelType(Token.location(), Ty))
1035       return true;
1036 
1037     if (expectAndConsume(MIToken::rparen))
1038       return true;
1039 
1040     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1041       return error("inconsistent type for generic virtual register");
1042 
1043     MRI.setType(Reg, Ty);
1044   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1045     // Generic virtual registers must have a type.
1046     // If we end up here this means the type hasn't been specified and
1047     // this is bad!
1048     if (RegInfo->Kind == VRegInfo::GENERIC ||
1049         RegInfo->Kind == VRegInfo::REGBANK)
1050       return error("generic virtual registers must have a type");
1051   }
1052   Dest = MachineOperand::CreateReg(
1053       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1054       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1055       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1056       Flags & RegState::InternalRead);
1057   return false;
1058 }
1059 
1060 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1061   assert(Token.is(MIToken::IntegerLiteral));
1062   const APSInt &Int = Token.integerValue();
1063   if (Int.getMinSignedBits() > 64)
1064     return error("integer literal is too large to be an immediate operand");
1065   Dest = MachineOperand::CreateImm(Int.getExtValue());
1066   lex();
1067   return false;
1068 }
1069 
1070 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1071                                const Constant *&C) {
1072   auto Source = StringValue.str(); // The source has to be null terminated.
1073   SMDiagnostic Err;
1074   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1075                          &PFS.IRSlots);
1076   if (!C)
1077     return error(Loc + Err.getColumnNo(), Err.getMessage());
1078   return false;
1079 }
1080 
1081 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1082   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1083     return true;
1084   lex();
1085   return false;
1086 }
1087 
1088 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1089   if (Token.is(MIToken::ScalarType)) {
1090     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1091     lex();
1092     return false;
1093   } else if (Token.is(MIToken::PointerType)) {
1094     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1095     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1096     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1097     lex();
1098     return false;
1099   }
1100 
1101   // Now we're looking for a vector.
1102   if (Token.isNot(MIToken::less))
1103     return error(Loc,
1104                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1105 
1106   lex();
1107 
1108   if (Token.isNot(MIToken::IntegerLiteral))
1109     return error(Loc, "expected <N x sM> for vctor type");
1110   uint64_t NumElements = Token.integerValue().getZExtValue();
1111   lex();
1112 
1113   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1114     return error(Loc, "expected '<N x sM>' for vector type");
1115   lex();
1116 
1117   if (Token.isNot(MIToken::ScalarType))
1118     return error(Loc, "expected '<N x sM>' for vector type");
1119   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1120   lex();
1121 
1122   if (Token.isNot(MIToken::greater))
1123     return error(Loc, "expected '<N x sM>' for vector type");
1124   lex();
1125 
1126   Ty = LLT::vector(NumElements, ScalarSize);
1127   return false;
1128 }
1129 
1130 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1131   assert(Token.is(MIToken::IntegerType));
1132   auto Loc = Token.location();
1133   lex();
1134   if (Token.isNot(MIToken::IntegerLiteral))
1135     return error("expected an integer literal");
1136   const Constant *C = nullptr;
1137   if (parseIRConstant(Loc, C))
1138     return true;
1139   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1140   return false;
1141 }
1142 
1143 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1144   auto Loc = Token.location();
1145   lex();
1146   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1147       Token.isNot(MIToken::HexLiteral))
1148     return error("expected a floating point literal");
1149   const Constant *C = nullptr;
1150   if (parseIRConstant(Loc, C))
1151     return true;
1152   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1153   return false;
1154 }
1155 
1156 bool MIParser::getUnsigned(unsigned &Result) {
1157   if (Token.hasIntegerValue()) {
1158     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1159     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1160     if (Val64 == Limit)
1161       return error("expected 32-bit integer (too large)");
1162     Result = Val64;
1163     return false;
1164   }
1165   if (Token.is(MIToken::HexLiteral)) {
1166     APInt A;
1167     if (getHexUint(A))
1168       return true;
1169     if (A.getBitWidth() > 32)
1170       return error("expected 32-bit integer (too large)");
1171     Result = A.getZExtValue();
1172     return false;
1173   }
1174   return true;
1175 }
1176 
1177 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1178   assert(Token.is(MIToken::MachineBasicBlock) ||
1179          Token.is(MIToken::MachineBasicBlockLabel));
1180   unsigned Number;
1181   if (getUnsigned(Number))
1182     return true;
1183   auto MBBInfo = PFS.MBBSlots.find(Number);
1184   if (MBBInfo == PFS.MBBSlots.end())
1185     return error(Twine("use of undefined machine basic block #") +
1186                  Twine(Number));
1187   MBB = MBBInfo->second;
1188   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1189     return error(Twine("the name of machine basic block #") + Twine(Number) +
1190                  " isn't '" + Token.stringValue() + "'");
1191   return false;
1192 }
1193 
1194 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1195   MachineBasicBlock *MBB;
1196   if (parseMBBReference(MBB))
1197     return true;
1198   Dest = MachineOperand::CreateMBB(MBB);
1199   lex();
1200   return false;
1201 }
1202 
1203 bool MIParser::parseStackFrameIndex(int &FI) {
1204   assert(Token.is(MIToken::StackObject));
1205   unsigned ID;
1206   if (getUnsigned(ID))
1207     return true;
1208   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1209   if (ObjectInfo == PFS.StackObjectSlots.end())
1210     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1211                  "'");
1212   StringRef Name;
1213   if (const auto *Alloca =
1214           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1215     Name = Alloca->getName();
1216   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1217     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1218                  "' isn't '" + Token.stringValue() + "'");
1219   lex();
1220   FI = ObjectInfo->second;
1221   return false;
1222 }
1223 
1224 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1225   int FI;
1226   if (parseStackFrameIndex(FI))
1227     return true;
1228   Dest = MachineOperand::CreateFI(FI);
1229   return false;
1230 }
1231 
1232 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1233   assert(Token.is(MIToken::FixedStackObject));
1234   unsigned ID;
1235   if (getUnsigned(ID))
1236     return true;
1237   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1238   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1239     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1240                  Twine(ID) + "'");
1241   lex();
1242   FI = ObjectInfo->second;
1243   return false;
1244 }
1245 
1246 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1247   int FI;
1248   if (parseFixedStackFrameIndex(FI))
1249     return true;
1250   Dest = MachineOperand::CreateFI(FI);
1251   return false;
1252 }
1253 
1254 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1255   switch (Token.kind()) {
1256   case MIToken::NamedGlobalValue: {
1257     const Module *M = MF.getFunction()->getParent();
1258     GV = M->getNamedValue(Token.stringValue());
1259     if (!GV)
1260       return error(Twine("use of undefined global value '") + Token.range() +
1261                    "'");
1262     break;
1263   }
1264   case MIToken::GlobalValue: {
1265     unsigned GVIdx;
1266     if (getUnsigned(GVIdx))
1267       return true;
1268     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1269       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1270                    "'");
1271     GV = PFS.IRSlots.GlobalValues[GVIdx];
1272     break;
1273   }
1274   default:
1275     llvm_unreachable("The current token should be a global value");
1276   }
1277   return false;
1278 }
1279 
1280 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1281   GlobalValue *GV = nullptr;
1282   if (parseGlobalValue(GV))
1283     return true;
1284   lex();
1285   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1286   if (parseOperandsOffset(Dest))
1287     return true;
1288   return false;
1289 }
1290 
1291 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1292   assert(Token.is(MIToken::ConstantPoolItem));
1293   unsigned ID;
1294   if (getUnsigned(ID))
1295     return true;
1296   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1297   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1298     return error("use of undefined constant '%const." + Twine(ID) + "'");
1299   lex();
1300   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1301   if (parseOperandsOffset(Dest))
1302     return true;
1303   return false;
1304 }
1305 
1306 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1307   assert(Token.is(MIToken::JumpTableIndex));
1308   unsigned ID;
1309   if (getUnsigned(ID))
1310     return true;
1311   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1312   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1313     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1314   lex();
1315   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1316   return false;
1317 }
1318 
1319 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1320   assert(Token.is(MIToken::ExternalSymbol));
1321   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1322   lex();
1323   Dest = MachineOperand::CreateES(Symbol);
1324   if (parseOperandsOffset(Dest))
1325     return true;
1326   return false;
1327 }
1328 
1329 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1330   assert(Token.is(MIToken::SubRegisterIndex));
1331   StringRef Name = Token.stringValue();
1332   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1333   if (SubRegIndex == 0)
1334     return error(Twine("unknown subregister index '") + Name + "'");
1335   lex();
1336   Dest = MachineOperand::CreateImm(SubRegIndex);
1337   return false;
1338 }
1339 
1340 bool MIParser::parseMDNode(MDNode *&Node) {
1341   assert(Token.is(MIToken::exclaim));
1342   auto Loc = Token.location();
1343   lex();
1344   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1345     return error("expected metadata id after '!'");
1346   unsigned ID;
1347   if (getUnsigned(ID))
1348     return true;
1349   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1350   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1351     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1352   lex();
1353   Node = NodeInfo->second.get();
1354   return false;
1355 }
1356 
1357 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1358   MDNode *Node = nullptr;
1359   if (parseMDNode(Node))
1360     return true;
1361   Dest = MachineOperand::CreateMetadata(Node);
1362   return false;
1363 }
1364 
1365 bool MIParser::parseCFIOffset(int &Offset) {
1366   if (Token.isNot(MIToken::IntegerLiteral))
1367     return error("expected a cfi offset");
1368   if (Token.integerValue().getMinSignedBits() > 32)
1369     return error("expected a 32 bit integer (the cfi offset is too large)");
1370   Offset = (int)Token.integerValue().getExtValue();
1371   lex();
1372   return false;
1373 }
1374 
1375 bool MIParser::parseCFIRegister(unsigned &Reg) {
1376   if (Token.isNot(MIToken::NamedRegister))
1377     return error("expected a cfi register");
1378   unsigned LLVMReg;
1379   if (parseNamedRegister(LLVMReg))
1380     return true;
1381   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1382   assert(TRI && "Expected target register info");
1383   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1384   if (DwarfReg < 0)
1385     return error("invalid DWARF register");
1386   Reg = (unsigned)DwarfReg;
1387   lex();
1388   return false;
1389 }
1390 
1391 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1392   auto Kind = Token.kind();
1393   lex();
1394   int Offset;
1395   unsigned Reg;
1396   unsigned CFIIndex;
1397   switch (Kind) {
1398   case MIToken::kw_cfi_same_value:
1399     if (parseCFIRegister(Reg))
1400       return true;
1401     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1402     break;
1403   case MIToken::kw_cfi_offset:
1404     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1405         parseCFIOffset(Offset))
1406       return true;
1407     CFIIndex =
1408         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1409     break;
1410   case MIToken::kw_cfi_def_cfa_register:
1411     if (parseCFIRegister(Reg))
1412       return true;
1413     CFIIndex =
1414         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1415     break;
1416   case MIToken::kw_cfi_def_cfa_offset:
1417     if (parseCFIOffset(Offset))
1418       return true;
1419     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1420     CFIIndex = MF.addFrameInst(
1421         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1422     break;
1423   case MIToken::kw_cfi_def_cfa:
1424     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1425         parseCFIOffset(Offset))
1426       return true;
1427     // NB: MCCFIInstruction::createDefCfa negates the offset.
1428     CFIIndex =
1429         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1430     break;
1431   default:
1432     // TODO: Parse the other CFI operands.
1433     llvm_unreachable("The current token should be a cfi operand");
1434   }
1435   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1436   return false;
1437 }
1438 
1439 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1440   switch (Token.kind()) {
1441   case MIToken::NamedIRBlock: {
1442     BB = dyn_cast_or_null<BasicBlock>(
1443         F.getValueSymbolTable()->lookup(Token.stringValue()));
1444     if (!BB)
1445       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1446     break;
1447   }
1448   case MIToken::IRBlock: {
1449     unsigned SlotNumber = 0;
1450     if (getUnsigned(SlotNumber))
1451       return true;
1452     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1453     if (!BB)
1454       return error(Twine("use of undefined IR block '%ir-block.") +
1455                    Twine(SlotNumber) + "'");
1456     break;
1457   }
1458   default:
1459     llvm_unreachable("The current token should be an IR block reference");
1460   }
1461   return false;
1462 }
1463 
1464 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1465   assert(Token.is(MIToken::kw_blockaddress));
1466   lex();
1467   if (expectAndConsume(MIToken::lparen))
1468     return true;
1469   if (Token.isNot(MIToken::GlobalValue) &&
1470       Token.isNot(MIToken::NamedGlobalValue))
1471     return error("expected a global value");
1472   GlobalValue *GV = nullptr;
1473   if (parseGlobalValue(GV))
1474     return true;
1475   auto *F = dyn_cast<Function>(GV);
1476   if (!F)
1477     return error("expected an IR function reference");
1478   lex();
1479   if (expectAndConsume(MIToken::comma))
1480     return true;
1481   BasicBlock *BB = nullptr;
1482   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1483     return error("expected an IR block reference");
1484   if (parseIRBlock(BB, *F))
1485     return true;
1486   lex();
1487   if (expectAndConsume(MIToken::rparen))
1488     return true;
1489   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1490   if (parseOperandsOffset(Dest))
1491     return true;
1492   return false;
1493 }
1494 
1495 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1496   assert(Token.is(MIToken::kw_intrinsic));
1497   lex();
1498   if (expectAndConsume(MIToken::lparen))
1499     return error("expected syntax intrinsic(@llvm.whatever)");
1500 
1501   if (Token.isNot(MIToken::NamedGlobalValue))
1502     return error("expected syntax intrinsic(@llvm.whatever)");
1503 
1504   std::string Name = Token.stringValue();
1505   lex();
1506 
1507   if (expectAndConsume(MIToken::rparen))
1508     return error("expected ')' to terminate intrinsic name");
1509 
1510   // Find out what intrinsic we're dealing with, first try the global namespace
1511   // and then the target's private intrinsics if that fails.
1512   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1513   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1514   if (ID == Intrinsic::not_intrinsic && TII)
1515     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1516 
1517   if (ID == Intrinsic::not_intrinsic)
1518     return error("unknown intrinsic name");
1519   Dest = MachineOperand::CreateIntrinsicID(ID);
1520 
1521   return false;
1522 }
1523 
1524 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1525   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1526   bool IsFloat = Token.is(MIToken::kw_floatpred);
1527   lex();
1528 
1529   if (expectAndConsume(MIToken::lparen))
1530     return error("expected syntax intpred(whatever) or floatpred(whatever");
1531 
1532   if (Token.isNot(MIToken::Identifier))
1533     return error("whatever");
1534 
1535   CmpInst::Predicate Pred;
1536   if (IsFloat) {
1537     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1538                .Case("false", CmpInst::FCMP_FALSE)
1539                .Case("oeq", CmpInst::FCMP_OEQ)
1540                .Case("ogt", CmpInst::FCMP_OGT)
1541                .Case("oge", CmpInst::FCMP_OGE)
1542                .Case("olt", CmpInst::FCMP_OLT)
1543                .Case("ole", CmpInst::FCMP_OLE)
1544                .Case("one", CmpInst::FCMP_ONE)
1545                .Case("ord", CmpInst::FCMP_ORD)
1546                .Case("uno", CmpInst::FCMP_UNO)
1547                .Case("ueq", CmpInst::FCMP_UEQ)
1548                .Case("ugt", CmpInst::FCMP_UGT)
1549                .Case("uge", CmpInst::FCMP_UGE)
1550                .Case("ult", CmpInst::FCMP_ULT)
1551                .Case("ule", CmpInst::FCMP_ULE)
1552                .Case("une", CmpInst::FCMP_UNE)
1553                .Case("true", CmpInst::FCMP_TRUE)
1554                .Default(CmpInst::BAD_FCMP_PREDICATE);
1555     if (!CmpInst::isFPPredicate(Pred))
1556       return error("invalid floating-point predicate");
1557   } else {
1558     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1559                .Case("eq", CmpInst::ICMP_EQ)
1560                .Case("ne", CmpInst::ICMP_NE)
1561                .Case("sgt", CmpInst::ICMP_SGT)
1562                .Case("sge", CmpInst::ICMP_SGE)
1563                .Case("slt", CmpInst::ICMP_SLT)
1564                .Case("sle", CmpInst::ICMP_SLE)
1565                .Case("ugt", CmpInst::ICMP_UGT)
1566                .Case("uge", CmpInst::ICMP_UGE)
1567                .Case("ult", CmpInst::ICMP_ULT)
1568                .Case("ule", CmpInst::ICMP_ULE)
1569                .Default(CmpInst::BAD_ICMP_PREDICATE);
1570     if (!CmpInst::isIntPredicate(Pred))
1571       return error("invalid integer predicate");
1572   }
1573 
1574   lex();
1575   Dest = MachineOperand::CreatePredicate(Pred);
1576   if (expectAndConsume(MIToken::rparen))
1577     return error("predicate should be terminated by ')'.");
1578 
1579   return false;
1580 }
1581 
1582 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1583   assert(Token.is(MIToken::kw_target_index));
1584   lex();
1585   if (expectAndConsume(MIToken::lparen))
1586     return true;
1587   if (Token.isNot(MIToken::Identifier))
1588     return error("expected the name of the target index");
1589   int Index = 0;
1590   if (getTargetIndex(Token.stringValue(), Index))
1591     return error("use of undefined target index '" + Token.stringValue() + "'");
1592   lex();
1593   if (expectAndConsume(MIToken::rparen))
1594     return true;
1595   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1596   if (parseOperandsOffset(Dest))
1597     return true;
1598   return false;
1599 }
1600 
1601 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1602   assert(Token.is(MIToken::kw_liveout));
1603   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1604   assert(TRI && "Expected target register info");
1605   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1606   lex();
1607   if (expectAndConsume(MIToken::lparen))
1608     return true;
1609   while (true) {
1610     if (Token.isNot(MIToken::NamedRegister))
1611       return error("expected a named register");
1612     unsigned Reg;
1613     if (parseNamedRegister(Reg))
1614       return true;
1615     lex();
1616     Mask[Reg / 32] |= 1U << (Reg % 32);
1617     // TODO: Report an error if the same register is used more than once.
1618     if (Token.isNot(MIToken::comma))
1619       break;
1620     lex();
1621   }
1622   if (expectAndConsume(MIToken::rparen))
1623     return true;
1624   Dest = MachineOperand::CreateRegLiveOut(Mask);
1625   return false;
1626 }
1627 
1628 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1629                                    Optional<unsigned> &TiedDefIdx) {
1630   switch (Token.kind()) {
1631   case MIToken::kw_implicit:
1632   case MIToken::kw_implicit_define:
1633   case MIToken::kw_def:
1634   case MIToken::kw_dead:
1635   case MIToken::kw_killed:
1636   case MIToken::kw_undef:
1637   case MIToken::kw_internal:
1638   case MIToken::kw_early_clobber:
1639   case MIToken::kw_debug_use:
1640   case MIToken::underscore:
1641   case MIToken::NamedRegister:
1642   case MIToken::VirtualRegister:
1643     return parseRegisterOperand(Dest, TiedDefIdx);
1644   case MIToken::IntegerLiteral:
1645     return parseImmediateOperand(Dest);
1646   case MIToken::IntegerType:
1647     return parseTypedImmediateOperand(Dest);
1648   case MIToken::kw_half:
1649   case MIToken::kw_float:
1650   case MIToken::kw_double:
1651   case MIToken::kw_x86_fp80:
1652   case MIToken::kw_fp128:
1653   case MIToken::kw_ppc_fp128:
1654     return parseFPImmediateOperand(Dest);
1655   case MIToken::MachineBasicBlock:
1656     return parseMBBOperand(Dest);
1657   case MIToken::StackObject:
1658     return parseStackObjectOperand(Dest);
1659   case MIToken::FixedStackObject:
1660     return parseFixedStackObjectOperand(Dest);
1661   case MIToken::GlobalValue:
1662   case MIToken::NamedGlobalValue:
1663     return parseGlobalAddressOperand(Dest);
1664   case MIToken::ConstantPoolItem:
1665     return parseConstantPoolIndexOperand(Dest);
1666   case MIToken::JumpTableIndex:
1667     return parseJumpTableIndexOperand(Dest);
1668   case MIToken::ExternalSymbol:
1669     return parseExternalSymbolOperand(Dest);
1670   case MIToken::SubRegisterIndex:
1671     return parseSubRegisterIndexOperand(Dest);
1672   case MIToken::exclaim:
1673     return parseMetadataOperand(Dest);
1674   case MIToken::kw_cfi_same_value:
1675   case MIToken::kw_cfi_offset:
1676   case MIToken::kw_cfi_def_cfa_register:
1677   case MIToken::kw_cfi_def_cfa_offset:
1678   case MIToken::kw_cfi_def_cfa:
1679     return parseCFIOperand(Dest);
1680   case MIToken::kw_blockaddress:
1681     return parseBlockAddressOperand(Dest);
1682   case MIToken::kw_intrinsic:
1683     return parseIntrinsicOperand(Dest);
1684   case MIToken::kw_target_index:
1685     return parseTargetIndexOperand(Dest);
1686   case MIToken::kw_liveout:
1687     return parseLiveoutRegisterMaskOperand(Dest);
1688   case MIToken::kw_floatpred:
1689   case MIToken::kw_intpred:
1690     return parsePredicateOperand(Dest);
1691   case MIToken::Error:
1692     return true;
1693   case MIToken::Identifier:
1694     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1695       Dest = MachineOperand::CreateRegMask(RegMask);
1696       lex();
1697       break;
1698     }
1699     LLVM_FALLTHROUGH;
1700   default:
1701     // FIXME: Parse the MCSymbol machine operand.
1702     return error("expected a machine operand");
1703   }
1704   return false;
1705 }
1706 
1707 bool MIParser::parseMachineOperandAndTargetFlags(
1708     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1709   unsigned TF = 0;
1710   bool HasTargetFlags = false;
1711   if (Token.is(MIToken::kw_target_flags)) {
1712     HasTargetFlags = true;
1713     lex();
1714     if (expectAndConsume(MIToken::lparen))
1715       return true;
1716     if (Token.isNot(MIToken::Identifier))
1717       return error("expected the name of the target flag");
1718     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1719       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1720         return error("use of undefined target flag '" + Token.stringValue() +
1721                      "'");
1722     }
1723     lex();
1724     while (Token.is(MIToken::comma)) {
1725       lex();
1726       if (Token.isNot(MIToken::Identifier))
1727         return error("expected the name of the target flag");
1728       unsigned BitFlag = 0;
1729       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1730         return error("use of undefined target flag '" + Token.stringValue() +
1731                      "'");
1732       // TODO: Report an error when using a duplicate bit target flag.
1733       TF |= BitFlag;
1734       lex();
1735     }
1736     if (expectAndConsume(MIToken::rparen))
1737       return true;
1738   }
1739   auto Loc = Token.location();
1740   if (parseMachineOperand(Dest, TiedDefIdx))
1741     return true;
1742   if (!HasTargetFlags)
1743     return false;
1744   if (Dest.isReg())
1745     return error(Loc, "register operands can't have target flags");
1746   Dest.setTargetFlags(TF);
1747   return false;
1748 }
1749 
1750 bool MIParser::parseOffset(int64_t &Offset) {
1751   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1752     return false;
1753   StringRef Sign = Token.range();
1754   bool IsNegative = Token.is(MIToken::minus);
1755   lex();
1756   if (Token.isNot(MIToken::IntegerLiteral))
1757     return error("expected an integer literal after '" + Sign + "'");
1758   if (Token.integerValue().getMinSignedBits() > 64)
1759     return error("expected 64-bit integer (too large)");
1760   Offset = Token.integerValue().getExtValue();
1761   if (IsNegative)
1762     Offset = -Offset;
1763   lex();
1764   return false;
1765 }
1766 
1767 bool MIParser::parseAlignment(unsigned &Alignment) {
1768   assert(Token.is(MIToken::kw_align));
1769   lex();
1770   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1771     return error("expected an integer literal after 'align'");
1772   if (getUnsigned(Alignment))
1773     return true;
1774   lex();
1775   return false;
1776 }
1777 
1778 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1779   int64_t Offset = 0;
1780   if (parseOffset(Offset))
1781     return true;
1782   Op.setOffset(Offset);
1783   return false;
1784 }
1785 
1786 bool MIParser::parseIRValue(const Value *&V) {
1787   switch (Token.kind()) {
1788   case MIToken::NamedIRValue: {
1789     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1790     break;
1791   }
1792   case MIToken::IRValue: {
1793     unsigned SlotNumber = 0;
1794     if (getUnsigned(SlotNumber))
1795       return true;
1796     V = getIRValue(SlotNumber);
1797     break;
1798   }
1799   case MIToken::NamedGlobalValue:
1800   case MIToken::GlobalValue: {
1801     GlobalValue *GV = nullptr;
1802     if (parseGlobalValue(GV))
1803       return true;
1804     V = GV;
1805     break;
1806   }
1807   case MIToken::QuotedIRValue: {
1808     const Constant *C = nullptr;
1809     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1810       return true;
1811     V = C;
1812     break;
1813   }
1814   default:
1815     llvm_unreachable("The current token should be an IR block reference");
1816   }
1817   if (!V)
1818     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1819   return false;
1820 }
1821 
1822 bool MIParser::getUint64(uint64_t &Result) {
1823   if (Token.hasIntegerValue()) {
1824     if (Token.integerValue().getActiveBits() > 64)
1825       return error("expected 64-bit integer (too large)");
1826     Result = Token.integerValue().getZExtValue();
1827     return false;
1828   }
1829   if (Token.is(MIToken::HexLiteral)) {
1830     APInt A;
1831     if (getHexUint(A))
1832       return true;
1833     if (A.getBitWidth() > 64)
1834       return error("expected 64-bit integer (too large)");
1835     Result = A.getZExtValue();
1836     return false;
1837   }
1838   return true;
1839 }
1840 
1841 bool MIParser::getHexUint(APInt &Result) {
1842   assert(Token.is(MIToken::HexLiteral));
1843   StringRef S = Token.range();
1844   assert(S[0] == '0' && tolower(S[1]) == 'x');
1845   // This could be a floating point literal with a special prefix.
1846   if (!isxdigit(S[2]))
1847     return true;
1848   StringRef V = S.substr(2);
1849   APInt A(V.size()*4, V, 16);
1850   Result = APInt(A.getActiveBits(),
1851                  ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1852   return false;
1853 }
1854 
1855 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1856   const auto OldFlags = Flags;
1857   switch (Token.kind()) {
1858   case MIToken::kw_volatile:
1859     Flags |= MachineMemOperand::MOVolatile;
1860     break;
1861   case MIToken::kw_non_temporal:
1862     Flags |= MachineMemOperand::MONonTemporal;
1863     break;
1864   case MIToken::kw_dereferenceable:
1865     Flags |= MachineMemOperand::MODereferenceable;
1866     break;
1867   case MIToken::kw_invariant:
1868     Flags |= MachineMemOperand::MOInvariant;
1869     break;
1870   // TODO: parse the target specific memory operand flags.
1871   default:
1872     llvm_unreachable("The current token should be a memory operand flag");
1873   }
1874   if (OldFlags == Flags)
1875     // We know that the same flag is specified more than once when the flags
1876     // weren't modified.
1877     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1878   lex();
1879   return false;
1880 }
1881 
1882 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1883   switch (Token.kind()) {
1884   case MIToken::kw_stack:
1885     PSV = MF.getPSVManager().getStack();
1886     break;
1887   case MIToken::kw_got:
1888     PSV = MF.getPSVManager().getGOT();
1889     break;
1890   case MIToken::kw_jump_table:
1891     PSV = MF.getPSVManager().getJumpTable();
1892     break;
1893   case MIToken::kw_constant_pool:
1894     PSV = MF.getPSVManager().getConstantPool();
1895     break;
1896   case MIToken::FixedStackObject: {
1897     int FI;
1898     if (parseFixedStackFrameIndex(FI))
1899       return true;
1900     PSV = MF.getPSVManager().getFixedStack(FI);
1901     // The token was already consumed, so use return here instead of break.
1902     return false;
1903   }
1904   case MIToken::StackObject: {
1905     int FI;
1906     if (parseStackFrameIndex(FI))
1907       return true;
1908     PSV = MF.getPSVManager().getFixedStack(FI);
1909     // The token was already consumed, so use return here instead of break.
1910     return false;
1911   }
1912   case MIToken::kw_call_entry: {
1913     lex();
1914     switch (Token.kind()) {
1915     case MIToken::GlobalValue:
1916     case MIToken::NamedGlobalValue: {
1917       GlobalValue *GV = nullptr;
1918       if (parseGlobalValue(GV))
1919         return true;
1920       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1921       break;
1922     }
1923     case MIToken::ExternalSymbol:
1924       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1925           MF.createExternalSymbolName(Token.stringValue()));
1926       break;
1927     default:
1928       return error(
1929           "expected a global value or an external symbol after 'call-entry'");
1930     }
1931     break;
1932   }
1933   default:
1934     llvm_unreachable("The current token should be pseudo source value");
1935   }
1936   lex();
1937   return false;
1938 }
1939 
1940 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1941   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1942       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1943       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1944       Token.is(MIToken::kw_call_entry)) {
1945     const PseudoSourceValue *PSV = nullptr;
1946     if (parseMemoryPseudoSourceValue(PSV))
1947       return true;
1948     int64_t Offset = 0;
1949     if (parseOffset(Offset))
1950       return true;
1951     Dest = MachinePointerInfo(PSV, Offset);
1952     return false;
1953   }
1954   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1955       Token.isNot(MIToken::GlobalValue) &&
1956       Token.isNot(MIToken::NamedGlobalValue) &&
1957       Token.isNot(MIToken::QuotedIRValue))
1958     return error("expected an IR value reference");
1959   const Value *V = nullptr;
1960   if (parseIRValue(V))
1961     return true;
1962   if (!V->getType()->isPointerTy())
1963     return error("expected a pointer IR value");
1964   lex();
1965   int64_t Offset = 0;
1966   if (parseOffset(Offset))
1967     return true;
1968   Dest = MachinePointerInfo(V, Offset);
1969   return false;
1970 }
1971 
1972 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1973   if (expectAndConsume(MIToken::lparen))
1974     return true;
1975   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1976   while (Token.isMemoryOperandFlag()) {
1977     if (parseMemoryOperandFlag(Flags))
1978       return true;
1979   }
1980   if (Token.isNot(MIToken::Identifier) ||
1981       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1982     return error("expected 'load' or 'store' memory operation");
1983   if (Token.stringValue() == "load")
1984     Flags |= MachineMemOperand::MOLoad;
1985   else
1986     Flags |= MachineMemOperand::MOStore;
1987   lex();
1988 
1989   if (Token.isNot(MIToken::IntegerLiteral))
1990     return error("expected the size integer literal after memory operation");
1991   uint64_t Size;
1992   if (getUint64(Size))
1993     return true;
1994   lex();
1995 
1996   MachinePointerInfo Ptr = MachinePointerInfo();
1997   if (Token.is(MIToken::Identifier)) {
1998     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1999     if (Token.stringValue() != Word)
2000       return error(Twine("expected '") + Word + "'");
2001     lex();
2002 
2003     if (parseMachinePointerInfo(Ptr))
2004       return true;
2005   }
2006   unsigned BaseAlignment = Size;
2007   AAMDNodes AAInfo;
2008   MDNode *Range = nullptr;
2009   while (consumeIfPresent(MIToken::comma)) {
2010     switch (Token.kind()) {
2011     case MIToken::kw_align:
2012       if (parseAlignment(BaseAlignment))
2013         return true;
2014       break;
2015     case MIToken::md_tbaa:
2016       lex();
2017       if (parseMDNode(AAInfo.TBAA))
2018         return true;
2019       break;
2020     case MIToken::md_alias_scope:
2021       lex();
2022       if (parseMDNode(AAInfo.Scope))
2023         return true;
2024       break;
2025     case MIToken::md_noalias:
2026       lex();
2027       if (parseMDNode(AAInfo.NoAlias))
2028         return true;
2029       break;
2030     case MIToken::md_range:
2031       lex();
2032       if (parseMDNode(Range))
2033         return true;
2034       break;
2035     // TODO: Report an error on duplicate metadata nodes.
2036     default:
2037       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2038                    "'!noalias' or '!range'");
2039     }
2040   }
2041   if (expectAndConsume(MIToken::rparen))
2042     return true;
2043   Dest =
2044       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
2045   return false;
2046 }
2047 
2048 void MIParser::initNames2InstrOpCodes() {
2049   if (!Names2InstrOpCodes.empty())
2050     return;
2051   const auto *TII = MF.getSubtarget().getInstrInfo();
2052   assert(TII && "Expected target instruction info");
2053   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2054     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2055 }
2056 
2057 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2058   initNames2InstrOpCodes();
2059   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2060   if (InstrInfo == Names2InstrOpCodes.end())
2061     return true;
2062   OpCode = InstrInfo->getValue();
2063   return false;
2064 }
2065 
2066 void MIParser::initNames2Regs() {
2067   if (!Names2Regs.empty())
2068     return;
2069   // The '%noreg' register is the register 0.
2070   Names2Regs.insert(std::make_pair("noreg", 0));
2071   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2072   assert(TRI && "Expected target register info");
2073   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2074     bool WasInserted =
2075         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2076             .second;
2077     (void)WasInserted;
2078     assert(WasInserted && "Expected registers to be unique case-insensitively");
2079   }
2080 }
2081 
2082 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2083   initNames2Regs();
2084   auto RegInfo = Names2Regs.find(RegName);
2085   if (RegInfo == Names2Regs.end())
2086     return true;
2087   Reg = RegInfo->getValue();
2088   return false;
2089 }
2090 
2091 void MIParser::initNames2RegMasks() {
2092   if (!Names2RegMasks.empty())
2093     return;
2094   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2095   assert(TRI && "Expected target register info");
2096   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2097   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2098   assert(RegMasks.size() == RegMaskNames.size());
2099   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2100     Names2RegMasks.insert(
2101         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2102 }
2103 
2104 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2105   initNames2RegMasks();
2106   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2107   if (RegMaskInfo == Names2RegMasks.end())
2108     return nullptr;
2109   return RegMaskInfo->getValue();
2110 }
2111 
2112 void MIParser::initNames2SubRegIndices() {
2113   if (!Names2SubRegIndices.empty())
2114     return;
2115   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2116   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2117     Names2SubRegIndices.insert(
2118         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2119 }
2120 
2121 unsigned MIParser::getSubRegIndex(StringRef Name) {
2122   initNames2SubRegIndices();
2123   auto SubRegInfo = Names2SubRegIndices.find(Name);
2124   if (SubRegInfo == Names2SubRegIndices.end())
2125     return 0;
2126   return SubRegInfo->getValue();
2127 }
2128 
2129 static void initSlots2BasicBlocks(
2130     const Function &F,
2131     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2132   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2133   MST.incorporateFunction(F);
2134   for (auto &BB : F) {
2135     if (BB.hasName())
2136       continue;
2137     int Slot = MST.getLocalSlot(&BB);
2138     if (Slot == -1)
2139       continue;
2140     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2141   }
2142 }
2143 
2144 static const BasicBlock *getIRBlockFromSlot(
2145     unsigned Slot,
2146     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2147   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2148   if (BlockInfo == Slots2BasicBlocks.end())
2149     return nullptr;
2150   return BlockInfo->second;
2151 }
2152 
2153 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2154   if (Slots2BasicBlocks.empty())
2155     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2156   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2157 }
2158 
2159 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2160   if (&F == MF.getFunction())
2161     return getIRBlock(Slot);
2162   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2163   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2164   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2165 }
2166 
2167 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2168                            DenseMap<unsigned, const Value *> &Slots2Values) {
2169   int Slot = MST.getLocalSlot(V);
2170   if (Slot == -1)
2171     return;
2172   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2173 }
2174 
2175 /// Creates the mapping from slot numbers to function's unnamed IR values.
2176 static void initSlots2Values(const Function &F,
2177                              DenseMap<unsigned, const Value *> &Slots2Values) {
2178   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2179   MST.incorporateFunction(F);
2180   for (const auto &Arg : F.args())
2181     mapValueToSlot(&Arg, MST, Slots2Values);
2182   for (const auto &BB : F) {
2183     mapValueToSlot(&BB, MST, Slots2Values);
2184     for (const auto &I : BB)
2185       mapValueToSlot(&I, MST, Slots2Values);
2186   }
2187 }
2188 
2189 const Value *MIParser::getIRValue(unsigned Slot) {
2190   if (Slots2Values.empty())
2191     initSlots2Values(*MF.getFunction(), Slots2Values);
2192   auto ValueInfo = Slots2Values.find(Slot);
2193   if (ValueInfo == Slots2Values.end())
2194     return nullptr;
2195   return ValueInfo->second;
2196 }
2197 
2198 void MIParser::initNames2TargetIndices() {
2199   if (!Names2TargetIndices.empty())
2200     return;
2201   const auto *TII = MF.getSubtarget().getInstrInfo();
2202   assert(TII && "Expected target instruction info");
2203   auto Indices = TII->getSerializableTargetIndices();
2204   for (const auto &I : Indices)
2205     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2206 }
2207 
2208 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2209   initNames2TargetIndices();
2210   auto IndexInfo = Names2TargetIndices.find(Name);
2211   if (IndexInfo == Names2TargetIndices.end())
2212     return true;
2213   Index = IndexInfo->second;
2214   return false;
2215 }
2216 
2217 void MIParser::initNames2DirectTargetFlags() {
2218   if (!Names2DirectTargetFlags.empty())
2219     return;
2220   const auto *TII = MF.getSubtarget().getInstrInfo();
2221   assert(TII && "Expected target instruction info");
2222   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2223   for (const auto &I : Flags)
2224     Names2DirectTargetFlags.insert(
2225         std::make_pair(StringRef(I.second), I.first));
2226 }
2227 
2228 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2229   initNames2DirectTargetFlags();
2230   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2231   if (FlagInfo == Names2DirectTargetFlags.end())
2232     return true;
2233   Flag = FlagInfo->second;
2234   return false;
2235 }
2236 
2237 void MIParser::initNames2BitmaskTargetFlags() {
2238   if (!Names2BitmaskTargetFlags.empty())
2239     return;
2240   const auto *TII = MF.getSubtarget().getInstrInfo();
2241   assert(TII && "Expected target instruction info");
2242   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2243   for (const auto &I : Flags)
2244     Names2BitmaskTargetFlags.insert(
2245         std::make_pair(StringRef(I.second), I.first));
2246 }
2247 
2248 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2249   initNames2BitmaskTargetFlags();
2250   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2251   if (FlagInfo == Names2BitmaskTargetFlags.end())
2252     return true;
2253   Flag = FlagInfo->second;
2254   return false;
2255 }
2256 
2257 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2258                                              StringRef Src,
2259                                              SMDiagnostic &Error) {
2260   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2261 }
2262 
2263 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2264                                     StringRef Src, SMDiagnostic &Error) {
2265   return MIParser(PFS, Error, Src).parseBasicBlocks();
2266 }
2267 
2268 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2269                              MachineBasicBlock *&MBB, StringRef Src,
2270                              SMDiagnostic &Error) {
2271   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2272 }
2273 
2274 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2275                                   unsigned &Reg, StringRef Src,
2276                                   SMDiagnostic &Error) {
2277   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2278 }
2279 
2280 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2281                                        unsigned &Reg, StringRef Src,
2282                                        SMDiagnostic &Error) {
2283   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2284 }
2285 
2286 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2287                                          VRegInfo *&Info, StringRef Src,
2288                                          SMDiagnostic &Error) {
2289   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2290 }
2291 
2292 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2293                                      int &FI, StringRef Src,
2294                                      SMDiagnostic &Error) {
2295   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2296 }
2297 
2298 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2299                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2300   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2301 }
2302