1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRFormatter.h"
32 #include "llvm/CodeGen/MIRPrinter.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/LaneBitmask.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/MC/MCDwarf.h"
62 #include "llvm/MC/MCInstrDesc.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Support/SourceMgr.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <limits>
81 #include <string>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 void PerTargetMIParsingState::setTarget(
87   const TargetSubtargetInfo &NewSubtarget) {
88 
89   // If the subtarget changed, over conservatively assume everything is invalid.
90   if (&Subtarget == &NewSubtarget)
91     return;
92 
93   Names2InstrOpCodes.clear();
94   Names2Regs.clear();
95   Names2RegMasks.clear();
96   Names2SubRegIndices.clear();
97   Names2TargetIndices.clear();
98   Names2DirectTargetFlags.clear();
99   Names2BitmaskTargetFlags.clear();
100   Names2MMOTargetFlags.clear();
101 
102   initNames2RegClasses();
103   initNames2RegBanks();
104 }
105 
106 void PerTargetMIParsingState::initNames2Regs() {
107   if (!Names2Regs.empty())
108     return;
109 
110   // The '%noreg' register is the register 0.
111   Names2Regs.insert(std::make_pair("noreg", 0));
112   const auto *TRI = Subtarget.getRegisterInfo();
113   assert(TRI && "Expected target register info");
114 
115   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
116     bool WasInserted =
117         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
118             .second;
119     (void)WasInserted;
120     assert(WasInserted && "Expected registers to be unique case-insensitively");
121   }
122 }
123 
124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
125                                                 Register &Reg) {
126   initNames2Regs();
127   auto RegInfo = Names2Regs.find(RegName);
128   if (RegInfo == Names2Regs.end())
129     return true;
130   Reg = RegInfo->getValue();
131   return false;
132 }
133 
134 void PerTargetMIParsingState::initNames2InstrOpCodes() {
135   if (!Names2InstrOpCodes.empty())
136     return;
137   const auto *TII = Subtarget.getInstrInfo();
138   assert(TII && "Expected target instruction info");
139   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
140     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
141 }
142 
143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
144                                              unsigned &OpCode) {
145   initNames2InstrOpCodes();
146   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
147   if (InstrInfo == Names2InstrOpCodes.end())
148     return true;
149   OpCode = InstrInfo->getValue();
150   return false;
151 }
152 
153 void PerTargetMIParsingState::initNames2RegMasks() {
154   if (!Names2RegMasks.empty())
155     return;
156   const auto *TRI = Subtarget.getRegisterInfo();
157   assert(TRI && "Expected target register info");
158   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
159   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
160   assert(RegMasks.size() == RegMaskNames.size());
161   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
162     Names2RegMasks.insert(
163         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
164 }
165 
166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
167   initNames2RegMasks();
168   auto RegMaskInfo = Names2RegMasks.find(Identifier);
169   if (RegMaskInfo == Names2RegMasks.end())
170     return nullptr;
171   return RegMaskInfo->getValue();
172 }
173 
174 void PerTargetMIParsingState::initNames2SubRegIndices() {
175   if (!Names2SubRegIndices.empty())
176     return;
177   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
178   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
179     Names2SubRegIndices.insert(
180         std::make_pair(TRI->getSubRegIndexName(I), I));
181 }
182 
183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
184   initNames2SubRegIndices();
185   auto SubRegInfo = Names2SubRegIndices.find(Name);
186   if (SubRegInfo == Names2SubRegIndices.end())
187     return 0;
188   return SubRegInfo->getValue();
189 }
190 
191 void PerTargetMIParsingState::initNames2TargetIndices() {
192   if (!Names2TargetIndices.empty())
193     return;
194   const auto *TII = Subtarget.getInstrInfo();
195   assert(TII && "Expected target instruction info");
196   auto Indices = TII->getSerializableTargetIndices();
197   for (const auto &I : Indices)
198     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
199 }
200 
201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
202   initNames2TargetIndices();
203   auto IndexInfo = Names2TargetIndices.find(Name);
204   if (IndexInfo == Names2TargetIndices.end())
205     return true;
206   Index = IndexInfo->second;
207   return false;
208 }
209 
210 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
211   if (!Names2DirectTargetFlags.empty())
212     return;
213 
214   const auto *TII = Subtarget.getInstrInfo();
215   assert(TII && "Expected target instruction info");
216   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
217   for (const auto &I : Flags)
218     Names2DirectTargetFlags.insert(
219         std::make_pair(StringRef(I.second), I.first));
220 }
221 
222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
223                                                   unsigned &Flag) {
224   initNames2DirectTargetFlags();
225   auto FlagInfo = Names2DirectTargetFlags.find(Name);
226   if (FlagInfo == Names2DirectTargetFlags.end())
227     return true;
228   Flag = FlagInfo->second;
229   return false;
230 }
231 
232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
233   if (!Names2BitmaskTargetFlags.empty())
234     return;
235 
236   const auto *TII = Subtarget.getInstrInfo();
237   assert(TII && "Expected target instruction info");
238   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
239   for (const auto &I : Flags)
240     Names2BitmaskTargetFlags.insert(
241         std::make_pair(StringRef(I.second), I.first));
242 }
243 
244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
245                                                    unsigned &Flag) {
246   initNames2BitmaskTargetFlags();
247   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
248   if (FlagInfo == Names2BitmaskTargetFlags.end())
249     return true;
250   Flag = FlagInfo->second;
251   return false;
252 }
253 
254 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
255   if (!Names2MMOTargetFlags.empty())
256     return;
257 
258   const auto *TII = Subtarget.getInstrInfo();
259   assert(TII && "Expected target instruction info");
260   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
261   for (const auto &I : Flags)
262     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
263 }
264 
265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
266                                                MachineMemOperand::Flags &Flag) {
267   initNames2MMOTargetFlags();
268   auto FlagInfo = Names2MMOTargetFlags.find(Name);
269   if (FlagInfo == Names2MMOTargetFlags.end())
270     return true;
271   Flag = FlagInfo->second;
272   return false;
273 }
274 
275 void PerTargetMIParsingState::initNames2RegClasses() {
276   if (!Names2RegClasses.empty())
277     return;
278 
279   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
280   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
281     const auto *RC = TRI->getRegClass(I);
282     Names2RegClasses.insert(
283         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
284   }
285 }
286 
287 void PerTargetMIParsingState::initNames2RegBanks() {
288   if (!Names2RegBanks.empty())
289     return;
290 
291   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
292   // If the target does not support GlobalISel, we may not have a
293   // register bank info.
294   if (!RBI)
295     return;
296 
297   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
298     const auto &RegBank = RBI->getRegBank(I);
299     Names2RegBanks.insert(
300         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
301   }
302 }
303 
304 const TargetRegisterClass *
305 PerTargetMIParsingState::getRegClass(StringRef Name) {
306   auto RegClassInfo = Names2RegClasses.find(Name);
307   if (RegClassInfo == Names2RegClasses.end())
308     return nullptr;
309   return RegClassInfo->getValue();
310 }
311 
312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
313   auto RegBankInfo = Names2RegBanks.find(Name);
314   if (RegBankInfo == Names2RegBanks.end())
315     return nullptr;
316   return RegBankInfo->getValue();
317 }
318 
319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
320     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
321   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
322 }
323 
324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
325   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
326   if (I.second) {
327     MachineRegisterInfo &MRI = MF.getRegInfo();
328     VRegInfo *Info = new (Allocator) VRegInfo;
329     Info->VReg = MRI.createIncompleteVirtualRegister();
330     I.first->second = Info;
331   }
332   return *I.first->second;
333 }
334 
335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
336   assert(RegName != "" && "Expected named reg.");
337 
338   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
339   if (I.second) {
340     VRegInfo *Info = new (Allocator) VRegInfo;
341     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
342     I.first->second = Info;
343   }
344   return *I.first->second;
345 }
346 
347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
348                            DenseMap<unsigned, const Value *> &Slots2Values) {
349   int Slot = MST.getLocalSlot(V);
350   if (Slot == -1)
351     return;
352   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
353 }
354 
355 /// Creates the mapping from slot numbers to function's unnamed IR values.
356 static void initSlots2Values(const Function &F,
357                              DenseMap<unsigned, const Value *> &Slots2Values) {
358   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
359   MST.incorporateFunction(F);
360   for (const auto &Arg : F.args())
361     mapValueToSlot(&Arg, MST, Slots2Values);
362   for (const auto &BB : F) {
363     mapValueToSlot(&BB, MST, Slots2Values);
364     for (const auto &I : BB)
365       mapValueToSlot(&I, MST, Slots2Values);
366   }
367 }
368 
369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
370   if (Slots2Values.empty())
371     initSlots2Values(MF.getFunction(), Slots2Values);
372   return Slots2Values.lookup(Slot);
373 }
374 
375 namespace {
376 
377 /// A wrapper struct around the 'MachineOperand' struct that includes a source
378 /// range and other attributes.
379 struct ParsedMachineOperand {
380   MachineOperand Operand;
381   StringRef::iterator Begin;
382   StringRef::iterator End;
383   Optional<unsigned> TiedDefIdx;
384 
385   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
386                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
387       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
388     if (TiedDefIdx)
389       assert(Operand.isReg() && Operand.isUse() &&
390              "Only used register operands can be tied");
391   }
392 };
393 
394 class MIParser {
395   MachineFunction &MF;
396   SMDiagnostic &Error;
397   StringRef Source, CurrentSource;
398   SMRange SourceRange;
399   MIToken Token;
400   PerFunctionMIParsingState &PFS;
401   /// Maps from slot numbers to function's unnamed basic blocks.
402   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
403 
404 public:
405   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
406            StringRef Source);
407   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
408            StringRef Source, SMRange SourceRange);
409 
410   /// \p SkipChar gives the number of characters to skip before looking
411   /// for the next token.
412   void lex(unsigned SkipChar = 0);
413 
414   /// Report an error at the current location with the given message.
415   ///
416   /// This function always return true.
417   bool error(const Twine &Msg);
418 
419   /// Report an error at the given location with the given message.
420   ///
421   /// This function always return true.
422   bool error(StringRef::iterator Loc, const Twine &Msg);
423 
424   bool
425   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
426   bool parseBasicBlocks();
427   bool parse(MachineInstr *&MI);
428   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
429   bool parseStandaloneNamedRegister(Register &Reg);
430   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
431   bool parseStandaloneRegister(Register &Reg);
432   bool parseStandaloneStackObject(int &FI);
433   bool parseStandaloneMDNode(MDNode *&Node);
434   bool parseMachineMetadata();
435   bool parseMDTuple(MDNode *&MD, bool IsDistinct);
436   bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
437   bool parseMetadata(Metadata *&MD);
438 
439   bool
440   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
441   bool parseBasicBlock(MachineBasicBlock &MBB,
442                        MachineBasicBlock *&AddFalthroughFrom);
443   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
444   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
445 
446   bool parseNamedRegister(Register &Reg);
447   bool parseVirtualRegister(VRegInfo *&Info);
448   bool parseNamedVirtualRegister(VRegInfo *&Info);
449   bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
450   bool parseRegisterFlag(unsigned &Flags);
451   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
452   bool parseSubRegisterIndex(unsigned &SubReg);
453   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
454   bool parseRegisterOperand(MachineOperand &Dest,
455                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
456   bool parseImmediateOperand(MachineOperand &Dest);
457   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
458                        const Constant *&C);
459   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
460   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
461   bool parseTypedImmediateOperand(MachineOperand &Dest);
462   bool parseFPImmediateOperand(MachineOperand &Dest);
463   bool parseMBBReference(MachineBasicBlock *&MBB);
464   bool parseMBBOperand(MachineOperand &Dest);
465   bool parseStackFrameIndex(int &FI);
466   bool parseStackObjectOperand(MachineOperand &Dest);
467   bool parseFixedStackFrameIndex(int &FI);
468   bool parseFixedStackObjectOperand(MachineOperand &Dest);
469   bool parseGlobalValue(GlobalValue *&GV);
470   bool parseGlobalAddressOperand(MachineOperand &Dest);
471   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
472   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
473   bool parseJumpTableIndexOperand(MachineOperand &Dest);
474   bool parseExternalSymbolOperand(MachineOperand &Dest);
475   bool parseMCSymbolOperand(MachineOperand &Dest);
476   bool parseMDNode(MDNode *&Node);
477   bool parseDIExpression(MDNode *&Expr);
478   bool parseDILocation(MDNode *&Expr);
479   bool parseMetadataOperand(MachineOperand &Dest);
480   bool parseCFIOffset(int &Offset);
481   bool parseCFIRegister(Register &Reg);
482   bool parseCFIAddressSpace(unsigned &AddressSpace);
483   bool parseCFIEscapeValues(std::string& Values);
484   bool parseCFIOperand(MachineOperand &Dest);
485   bool parseIRBlock(BasicBlock *&BB, const Function &F);
486   bool parseBlockAddressOperand(MachineOperand &Dest);
487   bool parseIntrinsicOperand(MachineOperand &Dest);
488   bool parsePredicateOperand(MachineOperand &Dest);
489   bool parseShuffleMaskOperand(MachineOperand &Dest);
490   bool parseTargetIndexOperand(MachineOperand &Dest);
491   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
492   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
493   bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
494                            MachineOperand &Dest,
495                            Optional<unsigned> &TiedDefIdx);
496   bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
497                                          const unsigned OpIdx,
498                                          MachineOperand &Dest,
499                                          Optional<unsigned> &TiedDefIdx);
500   bool parseOffset(int64_t &Offset);
501   bool parseAlignment(uint64_t &Alignment);
502   bool parseAddrspace(unsigned &Addrspace);
503   bool parseSectionID(Optional<MBBSectionID> &SID);
504   bool parseOperandsOffset(MachineOperand &Op);
505   bool parseIRValue(const Value *&V);
506   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
507   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
508   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
509   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
510   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
511   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
512   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
513   bool parseHeapAllocMarker(MDNode *&Node);
514 
515   bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
516                               MachineOperand &Dest, const MIRFormatter &MF);
517 
518 private:
519   /// Convert the integer literal in the current token into an unsigned integer.
520   ///
521   /// Return true if an error occurred.
522   bool getUnsigned(unsigned &Result);
523 
524   /// Convert the integer literal in the current token into an uint64.
525   ///
526   /// Return true if an error occurred.
527   bool getUint64(uint64_t &Result);
528 
529   /// Convert the hexadecimal literal in the current token into an unsigned
530   ///  APInt with a minimum bitwidth required to represent the value.
531   ///
532   /// Return true if the literal does not represent an integer value.
533   bool getHexUint(APInt &Result);
534 
535   /// If the current token is of the given kind, consume it and return false.
536   /// Otherwise report an error and return true.
537   bool expectAndConsume(MIToken::TokenKind TokenKind);
538 
539   /// If the current token is of the given kind, consume it and return true.
540   /// Otherwise return false.
541   bool consumeIfPresent(MIToken::TokenKind TokenKind);
542 
543   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
544 
545   bool assignRegisterTies(MachineInstr &MI,
546                           ArrayRef<ParsedMachineOperand> Operands);
547 
548   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
549                               const MCInstrDesc &MCID);
550 
551   const BasicBlock *getIRBlock(unsigned Slot);
552   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
553 
554   /// Get or create an MCSymbol for a given name.
555   MCSymbol *getOrCreateMCSymbol(StringRef Name);
556 
557   /// parseStringConstant
558   ///   ::= StringConstant
559   bool parseStringConstant(std::string &Result);
560 
561   /// Map the location in the MI string to the corresponding location specified
562   /// in `SourceRange`.
563   SMLoc mapSMLoc(StringRef::iterator Loc);
564 };
565 
566 } // end anonymous namespace
567 
568 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
569                    StringRef Source)
570     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
571 {}
572 
573 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
574                    StringRef Source, SMRange SourceRange)
575     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source),
576       SourceRange(SourceRange), PFS(PFS) {}
577 
578 void MIParser::lex(unsigned SkipChar) {
579   CurrentSource = lexMIToken(
580       CurrentSource.slice(SkipChar, StringRef::npos), Token,
581       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
582 }
583 
584 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
585 
586 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
587   const SourceMgr &SM = *PFS.SM;
588   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
589   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
590   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
591     // Create an ordinary diagnostic when the source manager's buffer is the
592     // source string.
593     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
594     return true;
595   }
596   // Create a diagnostic for a YAML string literal.
597   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
598                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
599                        Source, None, None);
600   return true;
601 }
602 
603 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) {
604   assert(SourceRange.isValid() && "Invalid source range");
605   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
606   return SMLoc::getFromPointer(SourceRange.Start.getPointer() +
607                                (Loc - Source.data()));
608 }
609 
610 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
611     ErrorCallbackType;
612 
613 static const char *toString(MIToken::TokenKind TokenKind) {
614   switch (TokenKind) {
615   case MIToken::comma:
616     return "','";
617   case MIToken::equal:
618     return "'='";
619   case MIToken::colon:
620     return "':'";
621   case MIToken::lparen:
622     return "'('";
623   case MIToken::rparen:
624     return "')'";
625   default:
626     return "<unknown token>";
627   }
628 }
629 
630 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
631   if (Token.isNot(TokenKind))
632     return error(Twine("expected ") + toString(TokenKind));
633   lex();
634   return false;
635 }
636 
637 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
638   if (Token.isNot(TokenKind))
639     return false;
640   lex();
641   return true;
642 }
643 
644 // Parse Machine Basic Block Section ID.
645 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) {
646   assert(Token.is(MIToken::kw_bbsections));
647   lex();
648   if (Token.is(MIToken::IntegerLiteral)) {
649     unsigned Value = 0;
650     if (getUnsigned(Value))
651       return error("Unknown Section ID");
652     SID = MBBSectionID{Value};
653   } else {
654     const StringRef &S = Token.stringValue();
655     if (S == "Exception")
656       SID = MBBSectionID::ExceptionSectionID;
657     else if (S == "Cold")
658       SID = MBBSectionID::ColdSectionID;
659     else
660       return error("Unknown Section ID");
661   }
662   lex();
663   return false;
664 }
665 
666 bool MIParser::parseBasicBlockDefinition(
667     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
668   assert(Token.is(MIToken::MachineBasicBlockLabel));
669   unsigned ID = 0;
670   if (getUnsigned(ID))
671     return true;
672   auto Loc = Token.location();
673   auto Name = Token.stringValue();
674   lex();
675   bool HasAddressTaken = false;
676   bool IsLandingPad = false;
677   bool IsInlineAsmBrIndirectTarget = false;
678   bool IsEHFuncletEntry = false;
679   Optional<MBBSectionID> SectionID;
680   uint64_t Alignment = 0;
681   BasicBlock *BB = nullptr;
682   if (consumeIfPresent(MIToken::lparen)) {
683     do {
684       // TODO: Report an error when multiple same attributes are specified.
685       switch (Token.kind()) {
686       case MIToken::kw_address_taken:
687         HasAddressTaken = true;
688         lex();
689         break;
690       case MIToken::kw_landing_pad:
691         IsLandingPad = true;
692         lex();
693         break;
694       case MIToken::kw_inlineasm_br_indirect_target:
695         IsInlineAsmBrIndirectTarget = true;
696         lex();
697         break;
698       case MIToken::kw_ehfunclet_entry:
699         IsEHFuncletEntry = true;
700         lex();
701         break;
702       case MIToken::kw_align:
703         if (parseAlignment(Alignment))
704           return true;
705         break;
706       case MIToken::IRBlock:
707         // TODO: Report an error when both name and ir block are specified.
708         if (parseIRBlock(BB, MF.getFunction()))
709           return true;
710         lex();
711         break;
712       case MIToken::kw_bbsections:
713         if (parseSectionID(SectionID))
714           return true;
715         break;
716       default:
717         break;
718       }
719     } while (consumeIfPresent(MIToken::comma));
720     if (expectAndConsume(MIToken::rparen))
721       return true;
722   }
723   if (expectAndConsume(MIToken::colon))
724     return true;
725 
726   if (!Name.empty()) {
727     BB = dyn_cast_or_null<BasicBlock>(
728         MF.getFunction().getValueSymbolTable()->lookup(Name));
729     if (!BB)
730       return error(Loc, Twine("basic block '") + Name +
731                             "' is not defined in the function '" +
732                             MF.getName() + "'");
733   }
734   auto *MBB = MF.CreateMachineBasicBlock(BB);
735   MF.insert(MF.end(), MBB);
736   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
737   if (!WasInserted)
738     return error(Loc, Twine("redefinition of machine basic block with id #") +
739                           Twine(ID));
740   if (Alignment)
741     MBB->setAlignment(Align(Alignment));
742   if (HasAddressTaken)
743     MBB->setHasAddressTaken();
744   MBB->setIsEHPad(IsLandingPad);
745   MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget);
746   MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
747   if (SectionID.hasValue()) {
748     MBB->setSectionID(SectionID.getValue());
749     MF.setBBSectionsType(BasicBlockSection::List);
750   }
751   return false;
752 }
753 
754 bool MIParser::parseBasicBlockDefinitions(
755     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
756   lex();
757   // Skip until the first machine basic block.
758   while (Token.is(MIToken::Newline))
759     lex();
760   if (Token.isErrorOrEOF())
761     return Token.isError();
762   if (Token.isNot(MIToken::MachineBasicBlockLabel))
763     return error("expected a basic block definition before instructions");
764   unsigned BraceDepth = 0;
765   do {
766     if (parseBasicBlockDefinition(MBBSlots))
767       return true;
768     bool IsAfterNewline = false;
769     // Skip until the next machine basic block.
770     while (true) {
771       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
772           Token.isErrorOrEOF())
773         break;
774       else if (Token.is(MIToken::MachineBasicBlockLabel))
775         return error("basic block definition should be located at the start of "
776                      "the line");
777       else if (consumeIfPresent(MIToken::Newline)) {
778         IsAfterNewline = true;
779         continue;
780       }
781       IsAfterNewline = false;
782       if (Token.is(MIToken::lbrace))
783         ++BraceDepth;
784       if (Token.is(MIToken::rbrace)) {
785         if (!BraceDepth)
786           return error("extraneous closing brace ('}')");
787         --BraceDepth;
788       }
789       lex();
790     }
791     // Verify that we closed all of the '{' at the end of a file or a block.
792     if (!Token.isError() && BraceDepth)
793       return error("expected '}'"); // FIXME: Report a note that shows '{'.
794   } while (!Token.isErrorOrEOF());
795   return Token.isError();
796 }
797 
798 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
799   assert(Token.is(MIToken::kw_liveins));
800   lex();
801   if (expectAndConsume(MIToken::colon))
802     return true;
803   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
804     return false;
805   do {
806     if (Token.isNot(MIToken::NamedRegister))
807       return error("expected a named register");
808     Register Reg;
809     if (parseNamedRegister(Reg))
810       return true;
811     lex();
812     LaneBitmask Mask = LaneBitmask::getAll();
813     if (consumeIfPresent(MIToken::colon)) {
814       // Parse lane mask.
815       if (Token.isNot(MIToken::IntegerLiteral) &&
816           Token.isNot(MIToken::HexLiteral))
817         return error("expected a lane mask");
818       static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
819                     "Use correct get-function for lane mask");
820       LaneBitmask::Type V;
821       if (getUint64(V))
822         return error("invalid lane mask value");
823       Mask = LaneBitmask(V);
824       lex();
825     }
826     MBB.addLiveIn(Reg, Mask);
827   } while (consumeIfPresent(MIToken::comma));
828   return false;
829 }
830 
831 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
832   assert(Token.is(MIToken::kw_successors));
833   lex();
834   if (expectAndConsume(MIToken::colon))
835     return true;
836   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
837     return false;
838   do {
839     if (Token.isNot(MIToken::MachineBasicBlock))
840       return error("expected a machine basic block reference");
841     MachineBasicBlock *SuccMBB = nullptr;
842     if (parseMBBReference(SuccMBB))
843       return true;
844     lex();
845     unsigned Weight = 0;
846     if (consumeIfPresent(MIToken::lparen)) {
847       if (Token.isNot(MIToken::IntegerLiteral) &&
848           Token.isNot(MIToken::HexLiteral))
849         return error("expected an integer literal after '('");
850       if (getUnsigned(Weight))
851         return true;
852       lex();
853       if (expectAndConsume(MIToken::rparen))
854         return true;
855     }
856     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
857   } while (consumeIfPresent(MIToken::comma));
858   MBB.normalizeSuccProbs();
859   return false;
860 }
861 
862 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
863                                MachineBasicBlock *&AddFalthroughFrom) {
864   // Skip the definition.
865   assert(Token.is(MIToken::MachineBasicBlockLabel));
866   lex();
867   if (consumeIfPresent(MIToken::lparen)) {
868     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
869       lex();
870     consumeIfPresent(MIToken::rparen);
871   }
872   consumeIfPresent(MIToken::colon);
873 
874   // Parse the liveins and successors.
875   // N.B: Multiple lists of successors and liveins are allowed and they're
876   // merged into one.
877   // Example:
878   //   liveins: %edi
879   //   liveins: %esi
880   //
881   // is equivalent to
882   //   liveins: %edi, %esi
883   bool ExplicitSuccessors = false;
884   while (true) {
885     if (Token.is(MIToken::kw_successors)) {
886       if (parseBasicBlockSuccessors(MBB))
887         return true;
888       ExplicitSuccessors = true;
889     } else if (Token.is(MIToken::kw_liveins)) {
890       if (parseBasicBlockLiveins(MBB))
891         return true;
892     } else if (consumeIfPresent(MIToken::Newline)) {
893       continue;
894     } else
895       break;
896     if (!Token.isNewlineOrEOF())
897       return error("expected line break at the end of a list");
898     lex();
899   }
900 
901   // Parse the instructions.
902   bool IsInBundle = false;
903   MachineInstr *PrevMI = nullptr;
904   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
905          !Token.is(MIToken::Eof)) {
906     if (consumeIfPresent(MIToken::Newline))
907       continue;
908     if (consumeIfPresent(MIToken::rbrace)) {
909       // The first parsing pass should verify that all closing '}' have an
910       // opening '{'.
911       assert(IsInBundle);
912       IsInBundle = false;
913       continue;
914     }
915     MachineInstr *MI = nullptr;
916     if (parse(MI))
917       return true;
918     MBB.insert(MBB.end(), MI);
919     if (IsInBundle) {
920       PrevMI->setFlag(MachineInstr::BundledSucc);
921       MI->setFlag(MachineInstr::BundledPred);
922     }
923     PrevMI = MI;
924     if (Token.is(MIToken::lbrace)) {
925       if (IsInBundle)
926         return error("nested instruction bundles are not allowed");
927       lex();
928       // This instruction is the start of the bundle.
929       MI->setFlag(MachineInstr::BundledSucc);
930       IsInBundle = true;
931       if (!Token.is(MIToken::Newline))
932         // The next instruction can be on the same line.
933         continue;
934     }
935     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
936     lex();
937   }
938 
939   // Construct successor list by searching for basic block machine operands.
940   if (!ExplicitSuccessors) {
941     SmallVector<MachineBasicBlock*,4> Successors;
942     bool IsFallthrough;
943     guessSuccessors(MBB, Successors, IsFallthrough);
944     for (MachineBasicBlock *Succ : Successors)
945       MBB.addSuccessor(Succ);
946 
947     if (IsFallthrough) {
948       AddFalthroughFrom = &MBB;
949     } else {
950       MBB.normalizeSuccProbs();
951     }
952   }
953 
954   return false;
955 }
956 
957 bool MIParser::parseBasicBlocks() {
958   lex();
959   // Skip until the first machine basic block.
960   while (Token.is(MIToken::Newline))
961     lex();
962   if (Token.isErrorOrEOF())
963     return Token.isError();
964   // The first parsing pass should have verified that this token is a MBB label
965   // in the 'parseBasicBlockDefinitions' method.
966   assert(Token.is(MIToken::MachineBasicBlockLabel));
967   MachineBasicBlock *AddFalthroughFrom = nullptr;
968   do {
969     MachineBasicBlock *MBB = nullptr;
970     if (parseMBBReference(MBB))
971       return true;
972     if (AddFalthroughFrom) {
973       if (!AddFalthroughFrom->isSuccessor(MBB))
974         AddFalthroughFrom->addSuccessor(MBB);
975       AddFalthroughFrom->normalizeSuccProbs();
976       AddFalthroughFrom = nullptr;
977     }
978     if (parseBasicBlock(*MBB, AddFalthroughFrom))
979       return true;
980     // The method 'parseBasicBlock' should parse the whole block until the next
981     // block or the end of file.
982     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
983   } while (Token.isNot(MIToken::Eof));
984   return false;
985 }
986 
987 bool MIParser::parse(MachineInstr *&MI) {
988   // Parse any register operands before '='
989   MachineOperand MO = MachineOperand::CreateImm(0);
990   SmallVector<ParsedMachineOperand, 8> Operands;
991   while (Token.isRegister() || Token.isRegisterFlag()) {
992     auto Loc = Token.location();
993     Optional<unsigned> TiedDefIdx;
994     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
995       return true;
996     Operands.push_back(
997         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
998     if (Token.isNot(MIToken::comma))
999       break;
1000     lex();
1001   }
1002   if (!Operands.empty() && expectAndConsume(MIToken::equal))
1003     return true;
1004 
1005   unsigned OpCode, Flags = 0;
1006   if (Token.isError() || parseInstruction(OpCode, Flags))
1007     return true;
1008 
1009   // Parse the remaining machine operands.
1010   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
1011          Token.isNot(MIToken::kw_post_instr_symbol) &&
1012          Token.isNot(MIToken::kw_heap_alloc_marker) &&
1013          Token.isNot(MIToken::kw_debug_location) &&
1014          Token.isNot(MIToken::kw_debug_instr_number) &&
1015          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
1016     auto Loc = Token.location();
1017     Optional<unsigned> TiedDefIdx;
1018     if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
1019       return true;
1020     Operands.push_back(
1021         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1022     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
1023         Token.is(MIToken::lbrace))
1024       break;
1025     if (Token.isNot(MIToken::comma))
1026       return error("expected ',' before the next machine operand");
1027     lex();
1028   }
1029 
1030   MCSymbol *PreInstrSymbol = nullptr;
1031   if (Token.is(MIToken::kw_pre_instr_symbol))
1032     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1033       return true;
1034   MCSymbol *PostInstrSymbol = nullptr;
1035   if (Token.is(MIToken::kw_post_instr_symbol))
1036     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1037       return true;
1038   MDNode *HeapAllocMarker = nullptr;
1039   if (Token.is(MIToken::kw_heap_alloc_marker))
1040     if (parseHeapAllocMarker(HeapAllocMarker))
1041       return true;
1042 
1043   unsigned InstrNum = 0;
1044   if (Token.is(MIToken::kw_debug_instr_number)) {
1045     lex();
1046     if (Token.isNot(MIToken::IntegerLiteral))
1047       return error("expected an integer literal after 'debug-instr-number'");
1048     if (getUnsigned(InstrNum))
1049       return true;
1050     lex();
1051     // Lex past trailing comma if present.
1052     if (Token.is(MIToken::comma))
1053       lex();
1054   }
1055 
1056   DebugLoc DebugLocation;
1057   if (Token.is(MIToken::kw_debug_location)) {
1058     lex();
1059     MDNode *Node = nullptr;
1060     if (Token.is(MIToken::exclaim)) {
1061       if (parseMDNode(Node))
1062         return true;
1063     } else if (Token.is(MIToken::md_dilocation)) {
1064       if (parseDILocation(Node))
1065         return true;
1066     } else
1067       return error("expected a metadata node after 'debug-location'");
1068     if (!isa<DILocation>(Node))
1069       return error("referenced metadata is not a DILocation");
1070     DebugLocation = DebugLoc(Node);
1071   }
1072 
1073   // Parse the machine memory operands.
1074   SmallVector<MachineMemOperand *, 2> MemOperands;
1075   if (Token.is(MIToken::coloncolon)) {
1076     lex();
1077     while (!Token.isNewlineOrEOF()) {
1078       MachineMemOperand *MemOp = nullptr;
1079       if (parseMachineMemoryOperand(MemOp))
1080         return true;
1081       MemOperands.push_back(MemOp);
1082       if (Token.isNewlineOrEOF())
1083         break;
1084       if (Token.isNot(MIToken::comma))
1085         return error("expected ',' before the next machine memory operand");
1086       lex();
1087     }
1088   }
1089 
1090   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1091   if (!MCID.isVariadic()) {
1092     // FIXME: Move the implicit operand verification to the machine verifier.
1093     if (verifyImplicitOperands(Operands, MCID))
1094       return true;
1095   }
1096 
1097   // TODO: Check for extraneous machine operands.
1098   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1099   MI->setFlags(Flags);
1100   for (const auto &Operand : Operands)
1101     MI->addOperand(MF, Operand.Operand);
1102   if (assignRegisterTies(*MI, Operands))
1103     return true;
1104   if (PreInstrSymbol)
1105     MI->setPreInstrSymbol(MF, PreInstrSymbol);
1106   if (PostInstrSymbol)
1107     MI->setPostInstrSymbol(MF, PostInstrSymbol);
1108   if (HeapAllocMarker)
1109     MI->setHeapAllocMarker(MF, HeapAllocMarker);
1110   if (!MemOperands.empty())
1111     MI->setMemRefs(MF, MemOperands);
1112   if (InstrNum)
1113     MI->setDebugInstrNum(InstrNum);
1114   return false;
1115 }
1116 
1117 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1118   lex();
1119   if (Token.isNot(MIToken::MachineBasicBlock))
1120     return error("expected a machine basic block reference");
1121   if (parseMBBReference(MBB))
1122     return true;
1123   lex();
1124   if (Token.isNot(MIToken::Eof))
1125     return error(
1126         "expected end of string after the machine basic block reference");
1127   return false;
1128 }
1129 
1130 bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1131   lex();
1132   if (Token.isNot(MIToken::NamedRegister))
1133     return error("expected a named register");
1134   if (parseNamedRegister(Reg))
1135     return true;
1136   lex();
1137   if (Token.isNot(MIToken::Eof))
1138     return error("expected end of string after the register reference");
1139   return false;
1140 }
1141 
1142 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1143   lex();
1144   if (Token.isNot(MIToken::VirtualRegister))
1145     return error("expected a virtual register");
1146   if (parseVirtualRegister(Info))
1147     return true;
1148   lex();
1149   if (Token.isNot(MIToken::Eof))
1150     return error("expected end of string after the register reference");
1151   return false;
1152 }
1153 
1154 bool MIParser::parseStandaloneRegister(Register &Reg) {
1155   lex();
1156   if (Token.isNot(MIToken::NamedRegister) &&
1157       Token.isNot(MIToken::VirtualRegister))
1158     return error("expected either a named or virtual register");
1159 
1160   VRegInfo *Info;
1161   if (parseRegister(Reg, Info))
1162     return true;
1163 
1164   lex();
1165   if (Token.isNot(MIToken::Eof))
1166     return error("expected end of string after the register reference");
1167   return false;
1168 }
1169 
1170 bool MIParser::parseStandaloneStackObject(int &FI) {
1171   lex();
1172   if (Token.isNot(MIToken::StackObject))
1173     return error("expected a stack object");
1174   if (parseStackFrameIndex(FI))
1175     return true;
1176   if (Token.isNot(MIToken::Eof))
1177     return error("expected end of string after the stack object reference");
1178   return false;
1179 }
1180 
1181 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1182   lex();
1183   if (Token.is(MIToken::exclaim)) {
1184     if (parseMDNode(Node))
1185       return true;
1186   } else if (Token.is(MIToken::md_diexpr)) {
1187     // FIXME: This should be driven off of the UNIQUED property in Metadata.def
1188     if (parseDIExpression(Node))
1189       return true;
1190   } else if (Token.is(MIToken::md_dilocation)) {
1191     if (parseDILocation(Node))
1192       return true;
1193   } else
1194     return error("expected a metadata node");
1195   if (Token.isNot(MIToken::Eof))
1196     return error("expected end of string after the metadata node");
1197   return false;
1198 }
1199 
1200 bool MIParser::parseMachineMetadata() {
1201   lex();
1202   if (Token.isNot(MIToken::exclaim))
1203     return error("expected a metadata node");
1204 
1205   lex();
1206   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1207     return error("expected metadata id after '!'");
1208   unsigned ID = 0;
1209   if (getUnsigned(ID))
1210     return true;
1211   lex();
1212   if (expectAndConsume(MIToken::equal))
1213     return true;
1214   bool IsDistinct = Token.is(MIToken::kw_distinct);
1215   if (IsDistinct)
1216     lex();
1217   if (Token.isNot(MIToken::exclaim))
1218     return error("expected a metadata node");
1219   lex();
1220 
1221   MDNode *MD;
1222   if (parseMDTuple(MD, IsDistinct))
1223     return true;
1224 
1225   auto FI = PFS.MachineForwardRefMDNodes.find(ID);
1226   if (FI != PFS.MachineForwardRefMDNodes.end()) {
1227     FI->second.first->replaceAllUsesWith(MD);
1228     PFS.MachineForwardRefMDNodes.erase(FI);
1229 
1230     assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work");
1231   } else {
1232     if (PFS.MachineMetadataNodes.count(ID))
1233       return error("Metadata id is already used");
1234     PFS.MachineMetadataNodes[ID].reset(MD);
1235   }
1236 
1237   return false;
1238 }
1239 
1240 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
1241   SmallVector<Metadata *, 16> Elts;
1242   if (parseMDNodeVector(Elts))
1243     return true;
1244   MD = (IsDistinct ? MDTuple::getDistinct
1245                    : MDTuple::get)(MF.getFunction().getContext(), Elts);
1246   return false;
1247 }
1248 
1249 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
1250   if (Token.isNot(MIToken::lbrace))
1251     return error("expected '{' here");
1252   lex();
1253 
1254   if (Token.is(MIToken::rbrace)) {
1255     lex();
1256     return false;
1257   }
1258 
1259   do {
1260     Metadata *MD;
1261     if (parseMetadata(MD))
1262       return true;
1263 
1264     Elts.push_back(MD);
1265 
1266     if (Token.isNot(MIToken::comma))
1267       break;
1268     lex();
1269   } while (true);
1270 
1271   if (Token.isNot(MIToken::rbrace))
1272     return error("expected end of metadata node");
1273   lex();
1274 
1275   return false;
1276 }
1277 
1278 // ::= !42
1279 // ::= !"string"
1280 bool MIParser::parseMetadata(Metadata *&MD) {
1281   if (Token.isNot(MIToken::exclaim))
1282     return error("expected '!' here");
1283   lex();
1284 
1285   if (Token.is(MIToken::StringConstant)) {
1286     std::string Str;
1287     if (parseStringConstant(Str))
1288       return true;
1289     MD = MDString::get(MF.getFunction().getContext(), Str);
1290     return false;
1291   }
1292 
1293   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1294     return error("expected metadata id after '!'");
1295 
1296   SMLoc Loc = mapSMLoc(Token.location());
1297 
1298   unsigned ID = 0;
1299   if (getUnsigned(ID))
1300     return true;
1301   lex();
1302 
1303   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1304   if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) {
1305     MD = NodeInfo->second.get();
1306     return false;
1307   }
1308   // Check machine metadata.
1309   NodeInfo = PFS.MachineMetadataNodes.find(ID);
1310   if (NodeInfo != PFS.MachineMetadataNodes.end()) {
1311     MD = NodeInfo->second.get();
1312     return false;
1313   }
1314   // Forward reference.
1315   auto &FwdRef = PFS.MachineForwardRefMDNodes[ID];
1316   FwdRef = std::make_pair(
1317       MDTuple::getTemporary(MF.getFunction().getContext(), None), Loc);
1318   PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get());
1319   MD = FwdRef.first.get();
1320 
1321   return false;
1322 }
1323 
1324 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1325   assert(MO.isImplicit());
1326   return MO.isDef() ? "implicit-def" : "implicit";
1327 }
1328 
1329 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1330                                    Register Reg) {
1331   assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1332   return StringRef(TRI->getName(Reg)).lower();
1333 }
1334 
1335 /// Return true if the parsed machine operands contain a given machine operand.
1336 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1337                                 ArrayRef<ParsedMachineOperand> Operands) {
1338   for (const auto &I : Operands) {
1339     if (ImplicitOperand.isIdenticalTo(I.Operand))
1340       return true;
1341   }
1342   return false;
1343 }
1344 
1345 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1346                                       const MCInstrDesc &MCID) {
1347   if (MCID.isCall())
1348     // We can't verify call instructions as they can contain arbitrary implicit
1349     // register and register mask operands.
1350     return false;
1351 
1352   // Gather all the expected implicit operands.
1353   SmallVector<MachineOperand, 4> ImplicitOperands;
1354   if (MCID.ImplicitDefs)
1355     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1356       ImplicitOperands.push_back(
1357           MachineOperand::CreateReg(*ImpDefs, true, true));
1358   if (MCID.ImplicitUses)
1359     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1360       ImplicitOperands.push_back(
1361           MachineOperand::CreateReg(*ImpUses, false, true));
1362 
1363   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1364   assert(TRI && "Expected target register info");
1365   for (const auto &I : ImplicitOperands) {
1366     if (isImplicitOperandIn(I, Operands))
1367       continue;
1368     return error(Operands.empty() ? Token.location() : Operands.back().End,
1369                  Twine("missing implicit register operand '") +
1370                      printImplicitRegisterFlag(I) + " $" +
1371                      getRegisterName(TRI, I.getReg()) + "'");
1372   }
1373   return false;
1374 }
1375 
1376 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1377   // Allow frame and fast math flags for OPCODE
1378   while (Token.is(MIToken::kw_frame_setup) ||
1379          Token.is(MIToken::kw_frame_destroy) ||
1380          Token.is(MIToken::kw_nnan) ||
1381          Token.is(MIToken::kw_ninf) ||
1382          Token.is(MIToken::kw_nsz) ||
1383          Token.is(MIToken::kw_arcp) ||
1384          Token.is(MIToken::kw_contract) ||
1385          Token.is(MIToken::kw_afn) ||
1386          Token.is(MIToken::kw_reassoc) ||
1387          Token.is(MIToken::kw_nuw) ||
1388          Token.is(MIToken::kw_nsw) ||
1389          Token.is(MIToken::kw_exact) ||
1390          Token.is(MIToken::kw_nofpexcept)) {
1391     // Mine frame and fast math flags
1392     if (Token.is(MIToken::kw_frame_setup))
1393       Flags |= MachineInstr::FrameSetup;
1394     if (Token.is(MIToken::kw_frame_destroy))
1395       Flags |= MachineInstr::FrameDestroy;
1396     if (Token.is(MIToken::kw_nnan))
1397       Flags |= MachineInstr::FmNoNans;
1398     if (Token.is(MIToken::kw_ninf))
1399       Flags |= MachineInstr::FmNoInfs;
1400     if (Token.is(MIToken::kw_nsz))
1401       Flags |= MachineInstr::FmNsz;
1402     if (Token.is(MIToken::kw_arcp))
1403       Flags |= MachineInstr::FmArcp;
1404     if (Token.is(MIToken::kw_contract))
1405       Flags |= MachineInstr::FmContract;
1406     if (Token.is(MIToken::kw_afn))
1407       Flags |= MachineInstr::FmAfn;
1408     if (Token.is(MIToken::kw_reassoc))
1409       Flags |= MachineInstr::FmReassoc;
1410     if (Token.is(MIToken::kw_nuw))
1411       Flags |= MachineInstr::NoUWrap;
1412     if (Token.is(MIToken::kw_nsw))
1413       Flags |= MachineInstr::NoSWrap;
1414     if (Token.is(MIToken::kw_exact))
1415       Flags |= MachineInstr::IsExact;
1416     if (Token.is(MIToken::kw_nofpexcept))
1417       Flags |= MachineInstr::NoFPExcept;
1418 
1419     lex();
1420   }
1421   if (Token.isNot(MIToken::Identifier))
1422     return error("expected a machine instruction");
1423   StringRef InstrName = Token.stringValue();
1424   if (PFS.Target.parseInstrName(InstrName, OpCode))
1425     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1426   lex();
1427   return false;
1428 }
1429 
1430 bool MIParser::parseNamedRegister(Register &Reg) {
1431   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1432   StringRef Name = Token.stringValue();
1433   if (PFS.Target.getRegisterByName(Name, Reg))
1434     return error(Twine("unknown register name '") + Name + "'");
1435   return false;
1436 }
1437 
1438 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1439   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1440   StringRef Name = Token.stringValue();
1441   // TODO: Check that the VReg name is not the same as a physical register name.
1442   //       If it is, then print a warning (when warnings are implemented).
1443   Info = &PFS.getVRegInfoNamed(Name);
1444   return false;
1445 }
1446 
1447 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1448   if (Token.is(MIToken::NamedVirtualRegister))
1449     return parseNamedVirtualRegister(Info);
1450   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1451   unsigned ID;
1452   if (getUnsigned(ID))
1453     return true;
1454   Info = &PFS.getVRegInfo(ID);
1455   return false;
1456 }
1457 
1458 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1459   switch (Token.kind()) {
1460   case MIToken::underscore:
1461     Reg = 0;
1462     return false;
1463   case MIToken::NamedRegister:
1464     return parseNamedRegister(Reg);
1465   case MIToken::NamedVirtualRegister:
1466   case MIToken::VirtualRegister:
1467     if (parseVirtualRegister(Info))
1468       return true;
1469     Reg = Info->VReg;
1470     return false;
1471   // TODO: Parse other register kinds.
1472   default:
1473     llvm_unreachable("The current token should be a register");
1474   }
1475 }
1476 
1477 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1478   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1479     return error("expected '_', register class, or register bank name");
1480   StringRef::iterator Loc = Token.location();
1481   StringRef Name = Token.stringValue();
1482 
1483   // Was it a register class?
1484   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1485   if (RC) {
1486     lex();
1487 
1488     switch (RegInfo.Kind) {
1489     case VRegInfo::UNKNOWN:
1490     case VRegInfo::NORMAL:
1491       RegInfo.Kind = VRegInfo::NORMAL;
1492       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1493         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1494         return error(Loc, Twine("conflicting register classes, previously: ") +
1495                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1496       }
1497       RegInfo.D.RC = RC;
1498       RegInfo.Explicit = true;
1499       return false;
1500 
1501     case VRegInfo::GENERIC:
1502     case VRegInfo::REGBANK:
1503       return error(Loc, "register class specification on generic register");
1504     }
1505     llvm_unreachable("Unexpected register kind");
1506   }
1507 
1508   // Should be a register bank or a generic register.
1509   const RegisterBank *RegBank = nullptr;
1510   if (Name != "_") {
1511     RegBank = PFS.Target.getRegBank(Name);
1512     if (!RegBank)
1513       return error(Loc, "expected '_', register class, or register bank name");
1514   }
1515 
1516   lex();
1517 
1518   switch (RegInfo.Kind) {
1519   case VRegInfo::UNKNOWN:
1520   case VRegInfo::GENERIC:
1521   case VRegInfo::REGBANK:
1522     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1523     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1524       return error(Loc, "conflicting generic register banks");
1525     RegInfo.D.RegBank = RegBank;
1526     RegInfo.Explicit = true;
1527     return false;
1528 
1529   case VRegInfo::NORMAL:
1530     return error(Loc, "register bank specification on normal register");
1531   }
1532   llvm_unreachable("Unexpected register kind");
1533 }
1534 
1535 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1536   const unsigned OldFlags = Flags;
1537   switch (Token.kind()) {
1538   case MIToken::kw_implicit:
1539     Flags |= RegState::Implicit;
1540     break;
1541   case MIToken::kw_implicit_define:
1542     Flags |= RegState::ImplicitDefine;
1543     break;
1544   case MIToken::kw_def:
1545     Flags |= RegState::Define;
1546     break;
1547   case MIToken::kw_dead:
1548     Flags |= RegState::Dead;
1549     break;
1550   case MIToken::kw_killed:
1551     Flags |= RegState::Kill;
1552     break;
1553   case MIToken::kw_undef:
1554     Flags |= RegState::Undef;
1555     break;
1556   case MIToken::kw_internal:
1557     Flags |= RegState::InternalRead;
1558     break;
1559   case MIToken::kw_early_clobber:
1560     Flags |= RegState::EarlyClobber;
1561     break;
1562   case MIToken::kw_debug_use:
1563     Flags |= RegState::Debug;
1564     break;
1565   case MIToken::kw_renamable:
1566     Flags |= RegState::Renamable;
1567     break;
1568   default:
1569     llvm_unreachable("The current token should be a register flag");
1570   }
1571   if (OldFlags == Flags)
1572     // We know that the same flag is specified more than once when the flags
1573     // weren't modified.
1574     return error("duplicate '" + Token.stringValue() + "' register flag");
1575   lex();
1576   return false;
1577 }
1578 
1579 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1580   assert(Token.is(MIToken::dot));
1581   lex();
1582   if (Token.isNot(MIToken::Identifier))
1583     return error("expected a subregister index after '.'");
1584   auto Name = Token.stringValue();
1585   SubReg = PFS.Target.getSubRegIndex(Name);
1586   if (!SubReg)
1587     return error(Twine("use of unknown subregister index '") + Name + "'");
1588   lex();
1589   return false;
1590 }
1591 
1592 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1593   if (!consumeIfPresent(MIToken::kw_tied_def))
1594     return true;
1595   if (Token.isNot(MIToken::IntegerLiteral))
1596     return error("expected an integer literal after 'tied-def'");
1597   if (getUnsigned(TiedDefIdx))
1598     return true;
1599   lex();
1600   if (expectAndConsume(MIToken::rparen))
1601     return true;
1602   return false;
1603 }
1604 
1605 bool MIParser::assignRegisterTies(MachineInstr &MI,
1606                                   ArrayRef<ParsedMachineOperand> Operands) {
1607   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1608   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1609     if (!Operands[I].TiedDefIdx)
1610       continue;
1611     // The parser ensures that this operand is a register use, so we just have
1612     // to check the tied-def operand.
1613     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1614     if (DefIdx >= E)
1615       return error(Operands[I].Begin,
1616                    Twine("use of invalid tied-def operand index '" +
1617                          Twine(DefIdx) + "'; instruction has only ") +
1618                        Twine(E) + " operands");
1619     const auto &DefOperand = Operands[DefIdx].Operand;
1620     if (!DefOperand.isReg() || !DefOperand.isDef())
1621       // FIXME: add note with the def operand.
1622       return error(Operands[I].Begin,
1623                    Twine("use of invalid tied-def operand index '") +
1624                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1625                        " isn't a defined register");
1626     // Check that the tied-def operand wasn't tied elsewhere.
1627     for (const auto &TiedPair : TiedRegisterPairs) {
1628       if (TiedPair.first == DefIdx)
1629         return error(Operands[I].Begin,
1630                      Twine("the tied-def operand #") + Twine(DefIdx) +
1631                          " is already tied with another register operand");
1632     }
1633     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1634   }
1635   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1636   // indices must be less than tied max.
1637   for (const auto &TiedPair : TiedRegisterPairs)
1638     MI.tieOperands(TiedPair.first, TiedPair.second);
1639   return false;
1640 }
1641 
1642 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1643                                     Optional<unsigned> &TiedDefIdx,
1644                                     bool IsDef) {
1645   unsigned Flags = IsDef ? RegState::Define : 0;
1646   while (Token.isRegisterFlag()) {
1647     if (parseRegisterFlag(Flags))
1648       return true;
1649   }
1650   if (!Token.isRegister())
1651     return error("expected a register after register flags");
1652   Register Reg;
1653   VRegInfo *RegInfo;
1654   if (parseRegister(Reg, RegInfo))
1655     return true;
1656   lex();
1657   unsigned SubReg = 0;
1658   if (Token.is(MIToken::dot)) {
1659     if (parseSubRegisterIndex(SubReg))
1660       return true;
1661     if (!Register::isVirtualRegister(Reg))
1662       return error("subregister index expects a virtual register");
1663   }
1664   if (Token.is(MIToken::colon)) {
1665     if (!Register::isVirtualRegister(Reg))
1666       return error("register class specification expects a virtual register");
1667     lex();
1668     if (parseRegisterClassOrBank(*RegInfo))
1669         return true;
1670   }
1671   MachineRegisterInfo &MRI = MF.getRegInfo();
1672   if ((Flags & RegState::Define) == 0) {
1673     if (consumeIfPresent(MIToken::lparen)) {
1674       unsigned Idx;
1675       if (!parseRegisterTiedDefIndex(Idx))
1676         TiedDefIdx = Idx;
1677       else {
1678         // Try a redundant low-level type.
1679         LLT Ty;
1680         if (parseLowLevelType(Token.location(), Ty))
1681           return error("expected tied-def or low-level type after '('");
1682 
1683         if (expectAndConsume(MIToken::rparen))
1684           return true;
1685 
1686         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1687           return error("inconsistent type for generic virtual register");
1688 
1689         MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1690         MRI.setType(Reg, Ty);
1691       }
1692     }
1693   } else if (consumeIfPresent(MIToken::lparen)) {
1694     // Virtual registers may have a tpe with GlobalISel.
1695     if (!Register::isVirtualRegister(Reg))
1696       return error("unexpected type on physical register");
1697 
1698     LLT Ty;
1699     if (parseLowLevelType(Token.location(), Ty))
1700       return true;
1701 
1702     if (expectAndConsume(MIToken::rparen))
1703       return true;
1704 
1705     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1706       return error("inconsistent type for generic virtual register");
1707 
1708     MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1709     MRI.setType(Reg, Ty);
1710   } else if (Register::isVirtualRegister(Reg)) {
1711     // Generic virtual registers must have a type.
1712     // If we end up here this means the type hasn't been specified and
1713     // this is bad!
1714     if (RegInfo->Kind == VRegInfo::GENERIC ||
1715         RegInfo->Kind == VRegInfo::REGBANK)
1716       return error("generic virtual registers must have a type");
1717   }
1718   Dest = MachineOperand::CreateReg(
1719       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1720       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1721       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1722       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1723 
1724   return false;
1725 }
1726 
1727 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1728   assert(Token.is(MIToken::IntegerLiteral));
1729   const APSInt &Int = Token.integerValue();
1730   if (Int.getMinSignedBits() > 64)
1731     return error("integer literal is too large to be an immediate operand");
1732   Dest = MachineOperand::CreateImm(Int.getExtValue());
1733   lex();
1734   return false;
1735 }
1736 
1737 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1738                                       const unsigned OpIdx,
1739                                       MachineOperand &Dest,
1740                                       const MIRFormatter &MF) {
1741   assert(Token.is(MIToken::dot));
1742   auto Loc = Token.location(); // record start position
1743   size_t Len = 1;              // for "."
1744   lex();
1745 
1746   // Handle the case that mnemonic starts with number.
1747   if (Token.is(MIToken::IntegerLiteral)) {
1748     Len += Token.range().size();
1749     lex();
1750   }
1751 
1752   StringRef Src;
1753   if (Token.is(MIToken::comma))
1754     Src = StringRef(Loc, Len);
1755   else {
1756     assert(Token.is(MIToken::Identifier));
1757     Src = StringRef(Loc, Len + Token.stringValue().size());
1758   }
1759   int64_t Val;
1760   if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1761                           [this](StringRef::iterator Loc, const Twine &Msg)
1762                               -> bool { return error(Loc, Msg); }))
1763     return true;
1764 
1765   Dest = MachineOperand::CreateImm(Val);
1766   if (!Token.is(MIToken::comma))
1767     lex();
1768   return false;
1769 }
1770 
1771 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1772                             PerFunctionMIParsingState &PFS, const Constant *&C,
1773                             ErrorCallbackType ErrCB) {
1774   auto Source = StringValue.str(); // The source has to be null terminated.
1775   SMDiagnostic Err;
1776   C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1777                          &PFS.IRSlots);
1778   if (!C)
1779     return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1780   return false;
1781 }
1782 
1783 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1784                                const Constant *&C) {
1785   return ::parseIRConstant(
1786       Loc, StringValue, PFS, C,
1787       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1788         return error(Loc, Msg);
1789       });
1790 }
1791 
1792 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1793   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1794     return true;
1795   lex();
1796   return false;
1797 }
1798 
1799 // See LLT implemntation for bit size limits.
1800 static bool verifyScalarSize(uint64_t Size) {
1801   return Size != 0 && isUInt<16>(Size);
1802 }
1803 
1804 static bool verifyVectorElementCount(uint64_t NumElts) {
1805   return NumElts != 0 && isUInt<16>(NumElts);
1806 }
1807 
1808 static bool verifyAddrSpace(uint64_t AddrSpace) {
1809   return isUInt<24>(AddrSpace);
1810 }
1811 
1812 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1813   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1814     StringRef SizeStr = Token.range().drop_front();
1815     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1816       return error("expected integers after 's'/'p' type character");
1817   }
1818 
1819   if (Token.range().front() == 's') {
1820     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1821     if (!verifyScalarSize(ScalarSize))
1822       return error("invalid size for scalar type");
1823 
1824     Ty = LLT::scalar(ScalarSize);
1825     lex();
1826     return false;
1827   } else if (Token.range().front() == 'p') {
1828     const DataLayout &DL = MF.getDataLayout();
1829     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1830     if (!verifyAddrSpace(AS))
1831       return error("invalid address space number");
1832 
1833     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1834     lex();
1835     return false;
1836   }
1837 
1838   // Now we're looking for a vector.
1839   if (Token.isNot(MIToken::less))
1840     return error(Loc,
1841                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1842   lex();
1843 
1844   if (Token.isNot(MIToken::IntegerLiteral))
1845     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1846   uint64_t NumElements = Token.integerValue().getZExtValue();
1847   if (!verifyVectorElementCount(NumElements))
1848     return error("invalid number of vector elements");
1849 
1850   lex();
1851 
1852   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1853     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1854   lex();
1855 
1856   if (Token.range().front() != 's' && Token.range().front() != 'p')
1857     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1858   StringRef SizeStr = Token.range().drop_front();
1859   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1860     return error("expected integers after 's'/'p' type character");
1861 
1862   if (Token.range().front() == 's') {
1863     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1864     if (!verifyScalarSize(ScalarSize))
1865       return error("invalid size for scalar type");
1866     Ty = LLT::scalar(ScalarSize);
1867   } else if (Token.range().front() == 'p') {
1868     const DataLayout &DL = MF.getDataLayout();
1869     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1870     if (!verifyAddrSpace(AS))
1871       return error("invalid address space number");
1872 
1873     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1874   } else
1875     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1876   lex();
1877 
1878   if (Token.isNot(MIToken::greater))
1879     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1880   lex();
1881 
1882   Ty = LLT::fixed_vector(NumElements, Ty);
1883   return false;
1884 }
1885 
1886 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1887   assert(Token.is(MIToken::Identifier));
1888   StringRef TypeStr = Token.range();
1889   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1890       TypeStr.front() != 'p')
1891     return error(
1892         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1893   StringRef SizeStr = Token.range().drop_front();
1894   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1895     return error("expected integers after 'i'/'s'/'p' type character");
1896 
1897   auto Loc = Token.location();
1898   lex();
1899   if (Token.isNot(MIToken::IntegerLiteral)) {
1900     if (Token.isNot(MIToken::Identifier) ||
1901         !(Token.range() == "true" || Token.range() == "false"))
1902       return error("expected an integer literal");
1903   }
1904   const Constant *C = nullptr;
1905   if (parseIRConstant(Loc, C))
1906     return true;
1907   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1908   return false;
1909 }
1910 
1911 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1912   auto Loc = Token.location();
1913   lex();
1914   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1915       Token.isNot(MIToken::HexLiteral))
1916     return error("expected a floating point literal");
1917   const Constant *C = nullptr;
1918   if (parseIRConstant(Loc, C))
1919     return true;
1920   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1921   return false;
1922 }
1923 
1924 static bool getHexUint(const MIToken &Token, APInt &Result) {
1925   assert(Token.is(MIToken::HexLiteral));
1926   StringRef S = Token.range();
1927   assert(S[0] == '0' && tolower(S[1]) == 'x');
1928   // This could be a floating point literal with a special prefix.
1929   if (!isxdigit(S[2]))
1930     return true;
1931   StringRef V = S.substr(2);
1932   APInt A(V.size()*4, V, 16);
1933 
1934   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
1935   // sure it isn't the case before constructing result.
1936   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
1937   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1938   return false;
1939 }
1940 
1941 static bool getUnsigned(const MIToken &Token, unsigned &Result,
1942                         ErrorCallbackType ErrCB) {
1943   if (Token.hasIntegerValue()) {
1944     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1945     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1946     if (Val64 == Limit)
1947       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1948     Result = Val64;
1949     return false;
1950   }
1951   if (Token.is(MIToken::HexLiteral)) {
1952     APInt A;
1953     if (getHexUint(Token, A))
1954       return true;
1955     if (A.getBitWidth() > 32)
1956       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1957     Result = A.getZExtValue();
1958     return false;
1959   }
1960   return true;
1961 }
1962 
1963 bool MIParser::getUnsigned(unsigned &Result) {
1964   return ::getUnsigned(
1965       Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1966         return error(Loc, Msg);
1967       });
1968 }
1969 
1970 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1971   assert(Token.is(MIToken::MachineBasicBlock) ||
1972          Token.is(MIToken::MachineBasicBlockLabel));
1973   unsigned Number;
1974   if (getUnsigned(Number))
1975     return true;
1976   auto MBBInfo = PFS.MBBSlots.find(Number);
1977   if (MBBInfo == PFS.MBBSlots.end())
1978     return error(Twine("use of undefined machine basic block #") +
1979                  Twine(Number));
1980   MBB = MBBInfo->second;
1981   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1982   // we drop the <irname> from the bb.<id>.<irname> format.
1983   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1984     return error(Twine("the name of machine basic block #") + Twine(Number) +
1985                  " isn't '" + Token.stringValue() + "'");
1986   return false;
1987 }
1988 
1989 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1990   MachineBasicBlock *MBB;
1991   if (parseMBBReference(MBB))
1992     return true;
1993   Dest = MachineOperand::CreateMBB(MBB);
1994   lex();
1995   return false;
1996 }
1997 
1998 bool MIParser::parseStackFrameIndex(int &FI) {
1999   assert(Token.is(MIToken::StackObject));
2000   unsigned ID;
2001   if (getUnsigned(ID))
2002     return true;
2003   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
2004   if (ObjectInfo == PFS.StackObjectSlots.end())
2005     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
2006                  "'");
2007   StringRef Name;
2008   if (const auto *Alloca =
2009           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
2010     Name = Alloca->getName();
2011   if (!Token.stringValue().empty() && Token.stringValue() != Name)
2012     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
2013                  "' isn't '" + Token.stringValue() + "'");
2014   lex();
2015   FI = ObjectInfo->second;
2016   return false;
2017 }
2018 
2019 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
2020   int FI;
2021   if (parseStackFrameIndex(FI))
2022     return true;
2023   Dest = MachineOperand::CreateFI(FI);
2024   return false;
2025 }
2026 
2027 bool MIParser::parseFixedStackFrameIndex(int &FI) {
2028   assert(Token.is(MIToken::FixedStackObject));
2029   unsigned ID;
2030   if (getUnsigned(ID))
2031     return true;
2032   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
2033   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
2034     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
2035                  Twine(ID) + "'");
2036   lex();
2037   FI = ObjectInfo->second;
2038   return false;
2039 }
2040 
2041 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
2042   int FI;
2043   if (parseFixedStackFrameIndex(FI))
2044     return true;
2045   Dest = MachineOperand::CreateFI(FI);
2046   return false;
2047 }
2048 
2049 static bool parseGlobalValue(const MIToken &Token,
2050                              PerFunctionMIParsingState &PFS, GlobalValue *&GV,
2051                              ErrorCallbackType ErrCB) {
2052   switch (Token.kind()) {
2053   case MIToken::NamedGlobalValue: {
2054     const Module *M = PFS.MF.getFunction().getParent();
2055     GV = M->getNamedValue(Token.stringValue());
2056     if (!GV)
2057       return ErrCB(Token.location(), Twine("use of undefined global value '") +
2058                                          Token.range() + "'");
2059     break;
2060   }
2061   case MIToken::GlobalValue: {
2062     unsigned GVIdx;
2063     if (getUnsigned(Token, GVIdx, ErrCB))
2064       return true;
2065     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
2066       return ErrCB(Token.location(), Twine("use of undefined global value '@") +
2067                                          Twine(GVIdx) + "'");
2068     GV = PFS.IRSlots.GlobalValues[GVIdx];
2069     break;
2070   }
2071   default:
2072     llvm_unreachable("The current token should be a global value");
2073   }
2074   return false;
2075 }
2076 
2077 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
2078   return ::parseGlobalValue(
2079       Token, PFS, GV,
2080       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2081         return error(Loc, Msg);
2082       });
2083 }
2084 
2085 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
2086   GlobalValue *GV = nullptr;
2087   if (parseGlobalValue(GV))
2088     return true;
2089   lex();
2090   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
2091   if (parseOperandsOffset(Dest))
2092     return true;
2093   return false;
2094 }
2095 
2096 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
2097   assert(Token.is(MIToken::ConstantPoolItem));
2098   unsigned ID;
2099   if (getUnsigned(ID))
2100     return true;
2101   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
2102   if (ConstantInfo == PFS.ConstantPoolSlots.end())
2103     return error("use of undefined constant '%const." + Twine(ID) + "'");
2104   lex();
2105   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
2106   if (parseOperandsOffset(Dest))
2107     return true;
2108   return false;
2109 }
2110 
2111 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
2112   assert(Token.is(MIToken::JumpTableIndex));
2113   unsigned ID;
2114   if (getUnsigned(ID))
2115     return true;
2116   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
2117   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
2118     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
2119   lex();
2120   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
2121   return false;
2122 }
2123 
2124 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
2125   assert(Token.is(MIToken::ExternalSymbol));
2126   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
2127   lex();
2128   Dest = MachineOperand::CreateES(Symbol);
2129   if (parseOperandsOffset(Dest))
2130     return true;
2131   return false;
2132 }
2133 
2134 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
2135   assert(Token.is(MIToken::MCSymbol));
2136   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
2137   lex();
2138   Dest = MachineOperand::CreateMCSymbol(Symbol);
2139   if (parseOperandsOffset(Dest))
2140     return true;
2141   return false;
2142 }
2143 
2144 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
2145   assert(Token.is(MIToken::SubRegisterIndex));
2146   StringRef Name = Token.stringValue();
2147   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
2148   if (SubRegIndex == 0)
2149     return error(Twine("unknown subregister index '") + Name + "'");
2150   lex();
2151   Dest = MachineOperand::CreateImm(SubRegIndex);
2152   return false;
2153 }
2154 
2155 bool MIParser::parseMDNode(MDNode *&Node) {
2156   assert(Token.is(MIToken::exclaim));
2157 
2158   auto Loc = Token.location();
2159   lex();
2160   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2161     return error("expected metadata id after '!'");
2162   unsigned ID;
2163   if (getUnsigned(ID))
2164     return true;
2165   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2166   if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) {
2167     NodeInfo = PFS.MachineMetadataNodes.find(ID);
2168     if (NodeInfo == PFS.MachineMetadataNodes.end())
2169       return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2170   }
2171   lex();
2172   Node = NodeInfo->second.get();
2173   return false;
2174 }
2175 
2176 bool MIParser::parseDIExpression(MDNode *&Expr) {
2177   assert(Token.is(MIToken::md_diexpr));
2178   lex();
2179 
2180   // FIXME: Share this parsing with the IL parser.
2181   SmallVector<uint64_t, 8> Elements;
2182 
2183   if (expectAndConsume(MIToken::lparen))
2184     return true;
2185 
2186   if (Token.isNot(MIToken::rparen)) {
2187     do {
2188       if (Token.is(MIToken::Identifier)) {
2189         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2190           lex();
2191           Elements.push_back(Op);
2192           continue;
2193         }
2194         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2195           lex();
2196           Elements.push_back(Enc);
2197           continue;
2198         }
2199         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2200       }
2201 
2202       if (Token.isNot(MIToken::IntegerLiteral) ||
2203           Token.integerValue().isSigned())
2204         return error("expected unsigned integer");
2205 
2206       auto &U = Token.integerValue();
2207       if (U.ugt(UINT64_MAX))
2208         return error("element too large, limit is " + Twine(UINT64_MAX));
2209       Elements.push_back(U.getZExtValue());
2210       lex();
2211 
2212     } while (consumeIfPresent(MIToken::comma));
2213   }
2214 
2215   if (expectAndConsume(MIToken::rparen))
2216     return true;
2217 
2218   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2219   return false;
2220 }
2221 
2222 bool MIParser::parseDILocation(MDNode *&Loc) {
2223   assert(Token.is(MIToken::md_dilocation));
2224   lex();
2225 
2226   bool HaveLine = false;
2227   unsigned Line = 0;
2228   unsigned Column = 0;
2229   MDNode *Scope = nullptr;
2230   MDNode *InlinedAt = nullptr;
2231   bool ImplicitCode = false;
2232 
2233   if (expectAndConsume(MIToken::lparen))
2234     return true;
2235 
2236   if (Token.isNot(MIToken::rparen)) {
2237     do {
2238       if (Token.is(MIToken::Identifier)) {
2239         if (Token.stringValue() == "line") {
2240           lex();
2241           if (expectAndConsume(MIToken::colon))
2242             return true;
2243           if (Token.isNot(MIToken::IntegerLiteral) ||
2244               Token.integerValue().isSigned())
2245             return error("expected unsigned integer");
2246           Line = Token.integerValue().getZExtValue();
2247           HaveLine = true;
2248           lex();
2249           continue;
2250         }
2251         if (Token.stringValue() == "column") {
2252           lex();
2253           if (expectAndConsume(MIToken::colon))
2254             return true;
2255           if (Token.isNot(MIToken::IntegerLiteral) ||
2256               Token.integerValue().isSigned())
2257             return error("expected unsigned integer");
2258           Column = Token.integerValue().getZExtValue();
2259           lex();
2260           continue;
2261         }
2262         if (Token.stringValue() == "scope") {
2263           lex();
2264           if (expectAndConsume(MIToken::colon))
2265             return true;
2266           if (parseMDNode(Scope))
2267             return error("expected metadata node");
2268           if (!isa<DIScope>(Scope))
2269             return error("expected DIScope node");
2270           continue;
2271         }
2272         if (Token.stringValue() == "inlinedAt") {
2273           lex();
2274           if (expectAndConsume(MIToken::colon))
2275             return true;
2276           if (Token.is(MIToken::exclaim)) {
2277             if (parseMDNode(InlinedAt))
2278               return true;
2279           } else if (Token.is(MIToken::md_dilocation)) {
2280             if (parseDILocation(InlinedAt))
2281               return true;
2282           } else
2283             return error("expected metadata node");
2284           if (!isa<DILocation>(InlinedAt))
2285             return error("expected DILocation node");
2286           continue;
2287         }
2288         if (Token.stringValue() == "isImplicitCode") {
2289           lex();
2290           if (expectAndConsume(MIToken::colon))
2291             return true;
2292           if (!Token.is(MIToken::Identifier))
2293             return error("expected true/false");
2294           // As far as I can see, we don't have any existing need for parsing
2295           // true/false in MIR yet. Do it ad-hoc until there's something else
2296           // that needs it.
2297           if (Token.stringValue() == "true")
2298             ImplicitCode = true;
2299           else if (Token.stringValue() == "false")
2300             ImplicitCode = false;
2301           else
2302             return error("expected true/false");
2303           lex();
2304           continue;
2305         }
2306       }
2307       return error(Twine("invalid DILocation argument '") +
2308                    Token.stringValue() + "'");
2309     } while (consumeIfPresent(MIToken::comma));
2310   }
2311 
2312   if (expectAndConsume(MIToken::rparen))
2313     return true;
2314 
2315   if (!HaveLine)
2316     return error("DILocation requires line number");
2317   if (!Scope)
2318     return error("DILocation requires a scope");
2319 
2320   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2321                         InlinedAt, ImplicitCode);
2322   return false;
2323 }
2324 
2325 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2326   MDNode *Node = nullptr;
2327   if (Token.is(MIToken::exclaim)) {
2328     if (parseMDNode(Node))
2329       return true;
2330   } else if (Token.is(MIToken::md_diexpr)) {
2331     // FIXME: This should be driven off of the UNIQUED property in Metadata.def
2332     if (parseDIExpression(Node))
2333       return true;
2334   }
2335   Dest = MachineOperand::CreateMetadata(Node);
2336   return false;
2337 }
2338 
2339 bool MIParser::parseCFIOffset(int &Offset) {
2340   if (Token.isNot(MIToken::IntegerLiteral))
2341     return error("expected a cfi offset");
2342   if (Token.integerValue().getMinSignedBits() > 32)
2343     return error("expected a 32 bit integer (the cfi offset is too large)");
2344   Offset = (int)Token.integerValue().getExtValue();
2345   lex();
2346   return false;
2347 }
2348 
2349 bool MIParser::parseCFIRegister(Register &Reg) {
2350   if (Token.isNot(MIToken::NamedRegister))
2351     return error("expected a cfi register");
2352   Register LLVMReg;
2353   if (parseNamedRegister(LLVMReg))
2354     return true;
2355   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2356   assert(TRI && "Expected target register info");
2357   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2358   if (DwarfReg < 0)
2359     return error("invalid DWARF register");
2360   Reg = (unsigned)DwarfReg;
2361   lex();
2362   return false;
2363 }
2364 
2365 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) {
2366   if (Token.isNot(MIToken::IntegerLiteral))
2367     return error("expected a cfi address space literal");
2368   if (Token.integerValue().isSigned())
2369     return error("expected an unsigned integer (cfi address space)");
2370   AddressSpace = Token.integerValue().getZExtValue();
2371   lex();
2372   return false;
2373 }
2374 
2375 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2376   do {
2377     if (Token.isNot(MIToken::HexLiteral))
2378       return error("expected a hexadecimal literal");
2379     unsigned Value;
2380     if (getUnsigned(Value))
2381       return true;
2382     if (Value > UINT8_MAX)
2383       return error("expected a 8-bit integer (too large)");
2384     Values.push_back(static_cast<uint8_t>(Value));
2385     lex();
2386   } while (consumeIfPresent(MIToken::comma));
2387   return false;
2388 }
2389 
2390 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2391   auto Kind = Token.kind();
2392   lex();
2393   int Offset;
2394   Register Reg;
2395   unsigned AddressSpace;
2396   unsigned CFIIndex;
2397   switch (Kind) {
2398   case MIToken::kw_cfi_same_value:
2399     if (parseCFIRegister(Reg))
2400       return true;
2401     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2402     break;
2403   case MIToken::kw_cfi_offset:
2404     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2405         parseCFIOffset(Offset))
2406       return true;
2407     CFIIndex =
2408         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2409     break;
2410   case MIToken::kw_cfi_rel_offset:
2411     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2412         parseCFIOffset(Offset))
2413       return true;
2414     CFIIndex = MF.addFrameInst(
2415         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2416     break;
2417   case MIToken::kw_cfi_def_cfa_register:
2418     if (parseCFIRegister(Reg))
2419       return true;
2420     CFIIndex =
2421         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2422     break;
2423   case MIToken::kw_cfi_def_cfa_offset:
2424     if (parseCFIOffset(Offset))
2425       return true;
2426     CFIIndex =
2427         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2428     break;
2429   case MIToken::kw_cfi_adjust_cfa_offset:
2430     if (parseCFIOffset(Offset))
2431       return true;
2432     CFIIndex = MF.addFrameInst(
2433         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2434     break;
2435   case MIToken::kw_cfi_def_cfa:
2436     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2437         parseCFIOffset(Offset))
2438       return true;
2439     CFIIndex =
2440         MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2441     break;
2442   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2443     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2444         parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) ||
2445         parseCFIAddressSpace(AddressSpace))
2446       return true;
2447     CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa(
2448         nullptr, Reg, Offset, AddressSpace));
2449     break;
2450   case MIToken::kw_cfi_remember_state:
2451     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2452     break;
2453   case MIToken::kw_cfi_restore:
2454     if (parseCFIRegister(Reg))
2455       return true;
2456     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2457     break;
2458   case MIToken::kw_cfi_restore_state:
2459     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2460     break;
2461   case MIToken::kw_cfi_undefined:
2462     if (parseCFIRegister(Reg))
2463       return true;
2464     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2465     break;
2466   case MIToken::kw_cfi_register: {
2467     Register Reg2;
2468     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2469         parseCFIRegister(Reg2))
2470       return true;
2471 
2472     CFIIndex =
2473         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2474     break;
2475   }
2476   case MIToken::kw_cfi_window_save:
2477     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2478     break;
2479   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2480     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2481     break;
2482   case MIToken::kw_cfi_escape: {
2483     std::string Values;
2484     if (parseCFIEscapeValues(Values))
2485       return true;
2486     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2487     break;
2488   }
2489   default:
2490     // TODO: Parse the other CFI operands.
2491     llvm_unreachable("The current token should be a cfi operand");
2492   }
2493   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2494   return false;
2495 }
2496 
2497 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2498   switch (Token.kind()) {
2499   case MIToken::NamedIRBlock: {
2500     BB = dyn_cast_or_null<BasicBlock>(
2501         F.getValueSymbolTable()->lookup(Token.stringValue()));
2502     if (!BB)
2503       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2504     break;
2505   }
2506   case MIToken::IRBlock: {
2507     unsigned SlotNumber = 0;
2508     if (getUnsigned(SlotNumber))
2509       return true;
2510     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2511     if (!BB)
2512       return error(Twine("use of undefined IR block '%ir-block.") +
2513                    Twine(SlotNumber) + "'");
2514     break;
2515   }
2516   default:
2517     llvm_unreachable("The current token should be an IR block reference");
2518   }
2519   return false;
2520 }
2521 
2522 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2523   assert(Token.is(MIToken::kw_blockaddress));
2524   lex();
2525   if (expectAndConsume(MIToken::lparen))
2526     return true;
2527   if (Token.isNot(MIToken::GlobalValue) &&
2528       Token.isNot(MIToken::NamedGlobalValue))
2529     return error("expected a global value");
2530   GlobalValue *GV = nullptr;
2531   if (parseGlobalValue(GV))
2532     return true;
2533   auto *F = dyn_cast<Function>(GV);
2534   if (!F)
2535     return error("expected an IR function reference");
2536   lex();
2537   if (expectAndConsume(MIToken::comma))
2538     return true;
2539   BasicBlock *BB = nullptr;
2540   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2541     return error("expected an IR block reference");
2542   if (parseIRBlock(BB, *F))
2543     return true;
2544   lex();
2545   if (expectAndConsume(MIToken::rparen))
2546     return true;
2547   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2548   if (parseOperandsOffset(Dest))
2549     return true;
2550   return false;
2551 }
2552 
2553 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2554   assert(Token.is(MIToken::kw_intrinsic));
2555   lex();
2556   if (expectAndConsume(MIToken::lparen))
2557     return error("expected syntax intrinsic(@llvm.whatever)");
2558 
2559   if (Token.isNot(MIToken::NamedGlobalValue))
2560     return error("expected syntax intrinsic(@llvm.whatever)");
2561 
2562   std::string Name = std::string(Token.stringValue());
2563   lex();
2564 
2565   if (expectAndConsume(MIToken::rparen))
2566     return error("expected ')' to terminate intrinsic name");
2567 
2568   // Find out what intrinsic we're dealing with, first try the global namespace
2569   // and then the target's private intrinsics if that fails.
2570   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2571   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2572   if (ID == Intrinsic::not_intrinsic && TII)
2573     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2574 
2575   if (ID == Intrinsic::not_intrinsic)
2576     return error("unknown intrinsic name");
2577   Dest = MachineOperand::CreateIntrinsicID(ID);
2578 
2579   return false;
2580 }
2581 
2582 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2583   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2584   bool IsFloat = Token.is(MIToken::kw_floatpred);
2585   lex();
2586 
2587   if (expectAndConsume(MIToken::lparen))
2588     return error("expected syntax intpred(whatever) or floatpred(whatever");
2589 
2590   if (Token.isNot(MIToken::Identifier))
2591     return error("whatever");
2592 
2593   CmpInst::Predicate Pred;
2594   if (IsFloat) {
2595     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2596                .Case("false", CmpInst::FCMP_FALSE)
2597                .Case("oeq", CmpInst::FCMP_OEQ)
2598                .Case("ogt", CmpInst::FCMP_OGT)
2599                .Case("oge", CmpInst::FCMP_OGE)
2600                .Case("olt", CmpInst::FCMP_OLT)
2601                .Case("ole", CmpInst::FCMP_OLE)
2602                .Case("one", CmpInst::FCMP_ONE)
2603                .Case("ord", CmpInst::FCMP_ORD)
2604                .Case("uno", CmpInst::FCMP_UNO)
2605                .Case("ueq", CmpInst::FCMP_UEQ)
2606                .Case("ugt", CmpInst::FCMP_UGT)
2607                .Case("uge", CmpInst::FCMP_UGE)
2608                .Case("ult", CmpInst::FCMP_ULT)
2609                .Case("ule", CmpInst::FCMP_ULE)
2610                .Case("une", CmpInst::FCMP_UNE)
2611                .Case("true", CmpInst::FCMP_TRUE)
2612                .Default(CmpInst::BAD_FCMP_PREDICATE);
2613     if (!CmpInst::isFPPredicate(Pred))
2614       return error("invalid floating-point predicate");
2615   } else {
2616     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2617                .Case("eq", CmpInst::ICMP_EQ)
2618                .Case("ne", CmpInst::ICMP_NE)
2619                .Case("sgt", CmpInst::ICMP_SGT)
2620                .Case("sge", CmpInst::ICMP_SGE)
2621                .Case("slt", CmpInst::ICMP_SLT)
2622                .Case("sle", CmpInst::ICMP_SLE)
2623                .Case("ugt", CmpInst::ICMP_UGT)
2624                .Case("uge", CmpInst::ICMP_UGE)
2625                .Case("ult", CmpInst::ICMP_ULT)
2626                .Case("ule", CmpInst::ICMP_ULE)
2627                .Default(CmpInst::BAD_ICMP_PREDICATE);
2628     if (!CmpInst::isIntPredicate(Pred))
2629       return error("invalid integer predicate");
2630   }
2631 
2632   lex();
2633   Dest = MachineOperand::CreatePredicate(Pred);
2634   if (expectAndConsume(MIToken::rparen))
2635     return error("predicate should be terminated by ')'.");
2636 
2637   return false;
2638 }
2639 
2640 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2641   assert(Token.is(MIToken::kw_shufflemask));
2642 
2643   lex();
2644   if (expectAndConsume(MIToken::lparen))
2645     return error("expected syntax shufflemask(<integer or undef>, ...)");
2646 
2647   SmallVector<int, 32> ShufMask;
2648   do {
2649     if (Token.is(MIToken::kw_undef)) {
2650       ShufMask.push_back(-1);
2651     } else if (Token.is(MIToken::IntegerLiteral)) {
2652       const APSInt &Int = Token.integerValue();
2653       ShufMask.push_back(Int.getExtValue());
2654     } else
2655       return error("expected integer constant");
2656 
2657     lex();
2658   } while (consumeIfPresent(MIToken::comma));
2659 
2660   if (expectAndConsume(MIToken::rparen))
2661     return error("shufflemask should be terminated by ')'.");
2662 
2663   ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2664   Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2665   return false;
2666 }
2667 
2668 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2669   assert(Token.is(MIToken::kw_target_index));
2670   lex();
2671   if (expectAndConsume(MIToken::lparen))
2672     return true;
2673   if (Token.isNot(MIToken::Identifier))
2674     return error("expected the name of the target index");
2675   int Index = 0;
2676   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2677     return error("use of undefined target index '" + Token.stringValue() + "'");
2678   lex();
2679   if (expectAndConsume(MIToken::rparen))
2680     return true;
2681   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2682   if (parseOperandsOffset(Dest))
2683     return true;
2684   return false;
2685 }
2686 
2687 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2688   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2689   lex();
2690   if (expectAndConsume(MIToken::lparen))
2691     return true;
2692 
2693   uint32_t *Mask = MF.allocateRegMask();
2694   while (true) {
2695     if (Token.isNot(MIToken::NamedRegister))
2696       return error("expected a named register");
2697     Register Reg;
2698     if (parseNamedRegister(Reg))
2699       return true;
2700     lex();
2701     Mask[Reg / 32] |= 1U << (Reg % 32);
2702     // TODO: Report an error if the same register is used more than once.
2703     if (Token.isNot(MIToken::comma))
2704       break;
2705     lex();
2706   }
2707 
2708   if (expectAndConsume(MIToken::rparen))
2709     return true;
2710   Dest = MachineOperand::CreateRegMask(Mask);
2711   return false;
2712 }
2713 
2714 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2715   assert(Token.is(MIToken::kw_liveout));
2716   uint32_t *Mask = MF.allocateRegMask();
2717   lex();
2718   if (expectAndConsume(MIToken::lparen))
2719     return true;
2720   while (true) {
2721     if (Token.isNot(MIToken::NamedRegister))
2722       return error("expected a named register");
2723     Register Reg;
2724     if (parseNamedRegister(Reg))
2725       return true;
2726     lex();
2727     Mask[Reg / 32] |= 1U << (Reg % 32);
2728     // TODO: Report an error if the same register is used more than once.
2729     if (Token.isNot(MIToken::comma))
2730       break;
2731     lex();
2732   }
2733   if (expectAndConsume(MIToken::rparen))
2734     return true;
2735   Dest = MachineOperand::CreateRegLiveOut(Mask);
2736   return false;
2737 }
2738 
2739 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2740                                    MachineOperand &Dest,
2741                                    Optional<unsigned> &TiedDefIdx) {
2742   switch (Token.kind()) {
2743   case MIToken::kw_implicit:
2744   case MIToken::kw_implicit_define:
2745   case MIToken::kw_def:
2746   case MIToken::kw_dead:
2747   case MIToken::kw_killed:
2748   case MIToken::kw_undef:
2749   case MIToken::kw_internal:
2750   case MIToken::kw_early_clobber:
2751   case MIToken::kw_debug_use:
2752   case MIToken::kw_renamable:
2753   case MIToken::underscore:
2754   case MIToken::NamedRegister:
2755   case MIToken::VirtualRegister:
2756   case MIToken::NamedVirtualRegister:
2757     return parseRegisterOperand(Dest, TiedDefIdx);
2758   case MIToken::IntegerLiteral:
2759     return parseImmediateOperand(Dest);
2760   case MIToken::kw_half:
2761   case MIToken::kw_float:
2762   case MIToken::kw_double:
2763   case MIToken::kw_x86_fp80:
2764   case MIToken::kw_fp128:
2765   case MIToken::kw_ppc_fp128:
2766     return parseFPImmediateOperand(Dest);
2767   case MIToken::MachineBasicBlock:
2768     return parseMBBOperand(Dest);
2769   case MIToken::StackObject:
2770     return parseStackObjectOperand(Dest);
2771   case MIToken::FixedStackObject:
2772     return parseFixedStackObjectOperand(Dest);
2773   case MIToken::GlobalValue:
2774   case MIToken::NamedGlobalValue:
2775     return parseGlobalAddressOperand(Dest);
2776   case MIToken::ConstantPoolItem:
2777     return parseConstantPoolIndexOperand(Dest);
2778   case MIToken::JumpTableIndex:
2779     return parseJumpTableIndexOperand(Dest);
2780   case MIToken::ExternalSymbol:
2781     return parseExternalSymbolOperand(Dest);
2782   case MIToken::MCSymbol:
2783     return parseMCSymbolOperand(Dest);
2784   case MIToken::SubRegisterIndex:
2785     return parseSubRegisterIndexOperand(Dest);
2786   case MIToken::md_diexpr:
2787   case MIToken::exclaim:
2788     return parseMetadataOperand(Dest);
2789   case MIToken::kw_cfi_same_value:
2790   case MIToken::kw_cfi_offset:
2791   case MIToken::kw_cfi_rel_offset:
2792   case MIToken::kw_cfi_def_cfa_register:
2793   case MIToken::kw_cfi_def_cfa_offset:
2794   case MIToken::kw_cfi_adjust_cfa_offset:
2795   case MIToken::kw_cfi_escape:
2796   case MIToken::kw_cfi_def_cfa:
2797   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2798   case MIToken::kw_cfi_register:
2799   case MIToken::kw_cfi_remember_state:
2800   case MIToken::kw_cfi_restore:
2801   case MIToken::kw_cfi_restore_state:
2802   case MIToken::kw_cfi_undefined:
2803   case MIToken::kw_cfi_window_save:
2804   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2805     return parseCFIOperand(Dest);
2806   case MIToken::kw_blockaddress:
2807     return parseBlockAddressOperand(Dest);
2808   case MIToken::kw_intrinsic:
2809     return parseIntrinsicOperand(Dest);
2810   case MIToken::kw_target_index:
2811     return parseTargetIndexOperand(Dest);
2812   case MIToken::kw_liveout:
2813     return parseLiveoutRegisterMaskOperand(Dest);
2814   case MIToken::kw_floatpred:
2815   case MIToken::kw_intpred:
2816     return parsePredicateOperand(Dest);
2817   case MIToken::kw_shufflemask:
2818     return parseShuffleMaskOperand(Dest);
2819   case MIToken::Error:
2820     return true;
2821   case MIToken::Identifier:
2822     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2823       Dest = MachineOperand::CreateRegMask(RegMask);
2824       lex();
2825       break;
2826     } else if (Token.stringValue() == "CustomRegMask") {
2827       return parseCustomRegisterMaskOperand(Dest);
2828     } else
2829       return parseTypedImmediateOperand(Dest);
2830   case MIToken::dot: {
2831     const auto *TII = MF.getSubtarget().getInstrInfo();
2832     if (const auto *Formatter = TII->getMIRFormatter()) {
2833       return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2834     }
2835     LLVM_FALLTHROUGH;
2836   }
2837   default:
2838     // FIXME: Parse the MCSymbol machine operand.
2839     return error("expected a machine operand");
2840   }
2841   return false;
2842 }
2843 
2844 bool MIParser::parseMachineOperandAndTargetFlags(
2845     const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2846     Optional<unsigned> &TiedDefIdx) {
2847   unsigned TF = 0;
2848   bool HasTargetFlags = false;
2849   if (Token.is(MIToken::kw_target_flags)) {
2850     HasTargetFlags = true;
2851     lex();
2852     if (expectAndConsume(MIToken::lparen))
2853       return true;
2854     if (Token.isNot(MIToken::Identifier))
2855       return error("expected the name of the target flag");
2856     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2857       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2858         return error("use of undefined target flag '" + Token.stringValue() +
2859                      "'");
2860     }
2861     lex();
2862     while (Token.is(MIToken::comma)) {
2863       lex();
2864       if (Token.isNot(MIToken::Identifier))
2865         return error("expected the name of the target flag");
2866       unsigned BitFlag = 0;
2867       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2868         return error("use of undefined target flag '" + Token.stringValue() +
2869                      "'");
2870       // TODO: Report an error when using a duplicate bit target flag.
2871       TF |= BitFlag;
2872       lex();
2873     }
2874     if (expectAndConsume(MIToken::rparen))
2875       return true;
2876   }
2877   auto Loc = Token.location();
2878   if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2879     return true;
2880   if (!HasTargetFlags)
2881     return false;
2882   if (Dest.isReg())
2883     return error(Loc, "register operands can't have target flags");
2884   Dest.setTargetFlags(TF);
2885   return false;
2886 }
2887 
2888 bool MIParser::parseOffset(int64_t &Offset) {
2889   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2890     return false;
2891   StringRef Sign = Token.range();
2892   bool IsNegative = Token.is(MIToken::minus);
2893   lex();
2894   if (Token.isNot(MIToken::IntegerLiteral))
2895     return error("expected an integer literal after '" + Sign + "'");
2896   if (Token.integerValue().getMinSignedBits() > 64)
2897     return error("expected 64-bit integer (too large)");
2898   Offset = Token.integerValue().getExtValue();
2899   if (IsNegative)
2900     Offset = -Offset;
2901   lex();
2902   return false;
2903 }
2904 
2905 bool MIParser::parseAlignment(uint64_t &Alignment) {
2906   assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
2907   lex();
2908   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2909     return error("expected an integer literal after 'align'");
2910   if (getUint64(Alignment))
2911     return true;
2912   lex();
2913 
2914   if (!isPowerOf2_64(Alignment))
2915     return error("expected a power-of-2 literal after 'align'");
2916 
2917   return false;
2918 }
2919 
2920 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2921   assert(Token.is(MIToken::kw_addrspace));
2922   lex();
2923   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2924     return error("expected an integer literal after 'addrspace'");
2925   if (getUnsigned(Addrspace))
2926     return true;
2927   lex();
2928   return false;
2929 }
2930 
2931 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2932   int64_t Offset = 0;
2933   if (parseOffset(Offset))
2934     return true;
2935   Op.setOffset(Offset);
2936   return false;
2937 }
2938 
2939 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
2940                          const Value *&V, ErrorCallbackType ErrCB) {
2941   switch (Token.kind()) {
2942   case MIToken::NamedIRValue: {
2943     V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2944     break;
2945   }
2946   case MIToken::IRValue: {
2947     unsigned SlotNumber = 0;
2948     if (getUnsigned(Token, SlotNumber, ErrCB))
2949       return true;
2950     V = PFS.getIRValue(SlotNumber);
2951     break;
2952   }
2953   case MIToken::NamedGlobalValue:
2954   case MIToken::GlobalValue: {
2955     GlobalValue *GV = nullptr;
2956     if (parseGlobalValue(Token, PFS, GV, ErrCB))
2957       return true;
2958     V = GV;
2959     break;
2960   }
2961   case MIToken::QuotedIRValue: {
2962     const Constant *C = nullptr;
2963     if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
2964       return true;
2965     V = C;
2966     break;
2967   }
2968   case MIToken::kw_unknown_address:
2969     V = nullptr;
2970     return false;
2971   default:
2972     llvm_unreachable("The current token should be an IR block reference");
2973   }
2974   if (!V)
2975     return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
2976   return false;
2977 }
2978 
2979 bool MIParser::parseIRValue(const Value *&V) {
2980   return ::parseIRValue(
2981       Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2982         return error(Loc, Msg);
2983       });
2984 }
2985 
2986 bool MIParser::getUint64(uint64_t &Result) {
2987   if (Token.hasIntegerValue()) {
2988     if (Token.integerValue().getActiveBits() > 64)
2989       return error("expected 64-bit integer (too large)");
2990     Result = Token.integerValue().getZExtValue();
2991     return false;
2992   }
2993   if (Token.is(MIToken::HexLiteral)) {
2994     APInt A;
2995     if (getHexUint(A))
2996       return true;
2997     if (A.getBitWidth() > 64)
2998       return error("expected 64-bit integer (too large)");
2999     Result = A.getZExtValue();
3000     return false;
3001   }
3002   return true;
3003 }
3004 
3005 bool MIParser::getHexUint(APInt &Result) {
3006   return ::getHexUint(Token, Result);
3007 }
3008 
3009 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
3010   const auto OldFlags = Flags;
3011   switch (Token.kind()) {
3012   case MIToken::kw_volatile:
3013     Flags |= MachineMemOperand::MOVolatile;
3014     break;
3015   case MIToken::kw_non_temporal:
3016     Flags |= MachineMemOperand::MONonTemporal;
3017     break;
3018   case MIToken::kw_dereferenceable:
3019     Flags |= MachineMemOperand::MODereferenceable;
3020     break;
3021   case MIToken::kw_invariant:
3022     Flags |= MachineMemOperand::MOInvariant;
3023     break;
3024   case MIToken::StringConstant: {
3025     MachineMemOperand::Flags TF;
3026     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
3027       return error("use of undefined target MMO flag '" + Token.stringValue() +
3028                    "'");
3029     Flags |= TF;
3030     break;
3031   }
3032   default:
3033     llvm_unreachable("The current token should be a memory operand flag");
3034   }
3035   if (OldFlags == Flags)
3036     // We know that the same flag is specified more than once when the flags
3037     // weren't modified.
3038     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
3039   lex();
3040   return false;
3041 }
3042 
3043 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
3044   switch (Token.kind()) {
3045   case MIToken::kw_stack:
3046     PSV = MF.getPSVManager().getStack();
3047     break;
3048   case MIToken::kw_got:
3049     PSV = MF.getPSVManager().getGOT();
3050     break;
3051   case MIToken::kw_jump_table:
3052     PSV = MF.getPSVManager().getJumpTable();
3053     break;
3054   case MIToken::kw_constant_pool:
3055     PSV = MF.getPSVManager().getConstantPool();
3056     break;
3057   case MIToken::FixedStackObject: {
3058     int FI;
3059     if (parseFixedStackFrameIndex(FI))
3060       return true;
3061     PSV = MF.getPSVManager().getFixedStack(FI);
3062     // The token was already consumed, so use return here instead of break.
3063     return false;
3064   }
3065   case MIToken::StackObject: {
3066     int FI;
3067     if (parseStackFrameIndex(FI))
3068       return true;
3069     PSV = MF.getPSVManager().getFixedStack(FI);
3070     // The token was already consumed, so use return here instead of break.
3071     return false;
3072   }
3073   case MIToken::kw_call_entry:
3074     lex();
3075     switch (Token.kind()) {
3076     case MIToken::GlobalValue:
3077     case MIToken::NamedGlobalValue: {
3078       GlobalValue *GV = nullptr;
3079       if (parseGlobalValue(GV))
3080         return true;
3081       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
3082       break;
3083     }
3084     case MIToken::ExternalSymbol:
3085       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
3086           MF.createExternalSymbolName(Token.stringValue()));
3087       break;
3088     default:
3089       return error(
3090           "expected a global value or an external symbol after 'call-entry'");
3091     }
3092     break;
3093   case MIToken::kw_custom: {
3094     lex();
3095     const auto *TII = MF.getSubtarget().getInstrInfo();
3096     if (const auto *Formatter = TII->getMIRFormatter()) {
3097       if (Formatter->parseCustomPseudoSourceValue(
3098               Token.stringValue(), MF, PFS, PSV,
3099               [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3100                 return error(Loc, Msg);
3101               }))
3102         return true;
3103     } else
3104       return error("unable to parse target custom pseudo source value");
3105     break;
3106   }
3107   default:
3108     llvm_unreachable("The current token should be pseudo source value");
3109   }
3110   lex();
3111   return false;
3112 }
3113 
3114 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
3115   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
3116       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
3117       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
3118       Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
3119     const PseudoSourceValue *PSV = nullptr;
3120     if (parseMemoryPseudoSourceValue(PSV))
3121       return true;
3122     int64_t Offset = 0;
3123     if (parseOffset(Offset))
3124       return true;
3125     Dest = MachinePointerInfo(PSV, Offset);
3126     return false;
3127   }
3128   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
3129       Token.isNot(MIToken::GlobalValue) &&
3130       Token.isNot(MIToken::NamedGlobalValue) &&
3131       Token.isNot(MIToken::QuotedIRValue) &&
3132       Token.isNot(MIToken::kw_unknown_address))
3133     return error("expected an IR value reference");
3134   const Value *V = nullptr;
3135   if (parseIRValue(V))
3136     return true;
3137   if (V && !V->getType()->isPointerTy())
3138     return error("expected a pointer IR value");
3139   lex();
3140   int64_t Offset = 0;
3141   if (parseOffset(Offset))
3142     return true;
3143   Dest = MachinePointerInfo(V, Offset);
3144   return false;
3145 }
3146 
3147 bool MIParser::parseOptionalScope(LLVMContext &Context,
3148                                   SyncScope::ID &SSID) {
3149   SSID = SyncScope::System;
3150   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
3151     lex();
3152     if (expectAndConsume(MIToken::lparen))
3153       return error("expected '(' in syncscope");
3154 
3155     std::string SSN;
3156     if (parseStringConstant(SSN))
3157       return true;
3158 
3159     SSID = Context.getOrInsertSyncScopeID(SSN);
3160     if (expectAndConsume(MIToken::rparen))
3161       return error("expected ')' in syncscope");
3162   }
3163 
3164   return false;
3165 }
3166 
3167 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
3168   Order = AtomicOrdering::NotAtomic;
3169   if (Token.isNot(MIToken::Identifier))
3170     return false;
3171 
3172   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
3173               .Case("unordered", AtomicOrdering::Unordered)
3174               .Case("monotonic", AtomicOrdering::Monotonic)
3175               .Case("acquire", AtomicOrdering::Acquire)
3176               .Case("release", AtomicOrdering::Release)
3177               .Case("acq_rel", AtomicOrdering::AcquireRelease)
3178               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
3179               .Default(AtomicOrdering::NotAtomic);
3180 
3181   if (Order != AtomicOrdering::NotAtomic) {
3182     lex();
3183     return false;
3184   }
3185 
3186   return error("expected an atomic scope, ordering or a size specification");
3187 }
3188 
3189 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3190   if (expectAndConsume(MIToken::lparen))
3191     return true;
3192   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
3193   while (Token.isMemoryOperandFlag()) {
3194     if (parseMemoryOperandFlag(Flags))
3195       return true;
3196   }
3197   if (Token.isNot(MIToken::Identifier) ||
3198       (Token.stringValue() != "load" && Token.stringValue() != "store"))
3199     return error("expected 'load' or 'store' memory operation");
3200   if (Token.stringValue() == "load")
3201     Flags |= MachineMemOperand::MOLoad;
3202   else
3203     Flags |= MachineMemOperand::MOStore;
3204   lex();
3205 
3206   // Optional 'store' for operands that both load and store.
3207   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3208     Flags |= MachineMemOperand::MOStore;
3209     lex();
3210   }
3211 
3212   // Optional synchronization scope.
3213   SyncScope::ID SSID;
3214   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3215     return true;
3216 
3217   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3218   AtomicOrdering Order, FailureOrder;
3219   if (parseOptionalAtomicOrdering(Order))
3220     return true;
3221 
3222   if (parseOptionalAtomicOrdering(FailureOrder))
3223     return true;
3224 
3225   LLT MemoryType;
3226   if (Token.isNot(MIToken::IntegerLiteral) &&
3227       Token.isNot(MIToken::kw_unknown_size) &&
3228       Token.isNot(MIToken::lparen))
3229     return error("expected memory LLT, the size integer literal or 'unknown-size' after "
3230                  "memory operation");
3231 
3232   uint64_t Size = MemoryLocation::UnknownSize;
3233   if (Token.is(MIToken::IntegerLiteral)) {
3234     if (getUint64(Size))
3235       return true;
3236 
3237     // Convert from bytes to bits for storage.
3238     MemoryType = LLT::scalar(8 * Size);
3239     lex();
3240   } else if (Token.is(MIToken::kw_unknown_size)) {
3241     Size = MemoryLocation::UnknownSize;
3242     lex();
3243   } else {
3244     if (expectAndConsume(MIToken::lparen))
3245       return true;
3246     if (parseLowLevelType(Token.location(), MemoryType))
3247       return true;
3248     if (expectAndConsume(MIToken::rparen))
3249       return true;
3250 
3251     Size = MemoryType.getSizeInBytes();
3252   }
3253 
3254   MachinePointerInfo Ptr = MachinePointerInfo();
3255   if (Token.is(MIToken::Identifier)) {
3256     const char *Word =
3257         ((Flags & MachineMemOperand::MOLoad) &&
3258          (Flags & MachineMemOperand::MOStore))
3259             ? "on"
3260             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3261     if (Token.stringValue() != Word)
3262       return error(Twine("expected '") + Word + "'");
3263     lex();
3264 
3265     if (parseMachinePointerInfo(Ptr))
3266       return true;
3267   }
3268   uint64_t BaseAlignment =
3269       (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1);
3270   AAMDNodes AAInfo;
3271   MDNode *Range = nullptr;
3272   while (consumeIfPresent(MIToken::comma)) {
3273     switch (Token.kind()) {
3274     case MIToken::kw_align:
3275       // align is printed if it is different than size.
3276       if (parseAlignment(BaseAlignment))
3277         return true;
3278       break;
3279     case MIToken::kw_basealign:
3280       // basealign is printed if it is different than align.
3281       if (parseAlignment(BaseAlignment))
3282         return true;
3283       break;
3284     case MIToken::kw_addrspace:
3285       if (parseAddrspace(Ptr.AddrSpace))
3286         return true;
3287       break;
3288     case MIToken::md_tbaa:
3289       lex();
3290       if (parseMDNode(AAInfo.TBAA))
3291         return true;
3292       break;
3293     case MIToken::md_alias_scope:
3294       lex();
3295       if (parseMDNode(AAInfo.Scope))
3296         return true;
3297       break;
3298     case MIToken::md_noalias:
3299       lex();
3300       if (parseMDNode(AAInfo.NoAlias))
3301         return true;
3302       break;
3303     case MIToken::md_range:
3304       lex();
3305       if (parseMDNode(Range))
3306         return true;
3307       break;
3308     // TODO: Report an error on duplicate metadata nodes.
3309     default:
3310       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3311                    "'!noalias' or '!range'");
3312     }
3313   }
3314   if (expectAndConsume(MIToken::rparen))
3315     return true;
3316   Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment),
3317                                  AAInfo, Range, SSID, Order, FailureOrder);
3318   return false;
3319 }
3320 
3321 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3322   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3323           Token.is(MIToken::kw_post_instr_symbol)) &&
3324          "Invalid token for a pre- post-instruction symbol!");
3325   lex();
3326   if (Token.isNot(MIToken::MCSymbol))
3327     return error("expected a symbol after 'pre-instr-symbol'");
3328   Symbol = getOrCreateMCSymbol(Token.stringValue());
3329   lex();
3330   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3331       Token.is(MIToken::lbrace))
3332     return false;
3333   if (Token.isNot(MIToken::comma))
3334     return error("expected ',' before the next machine operand");
3335   lex();
3336   return false;
3337 }
3338 
3339 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3340   assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3341          "Invalid token for a heap alloc marker!");
3342   lex();
3343   parseMDNode(Node);
3344   if (!Node)
3345     return error("expected a MDNode after 'heap-alloc-marker'");
3346   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3347       Token.is(MIToken::lbrace))
3348     return false;
3349   if (Token.isNot(MIToken::comma))
3350     return error("expected ',' before the next machine operand");
3351   lex();
3352   return false;
3353 }
3354 
3355 static void initSlots2BasicBlocks(
3356     const Function &F,
3357     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3358   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3359   MST.incorporateFunction(F);
3360   for (auto &BB : F) {
3361     if (BB.hasName())
3362       continue;
3363     int Slot = MST.getLocalSlot(&BB);
3364     if (Slot == -1)
3365       continue;
3366     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3367   }
3368 }
3369 
3370 static const BasicBlock *getIRBlockFromSlot(
3371     unsigned Slot,
3372     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3373   return Slots2BasicBlocks.lookup(Slot);
3374 }
3375 
3376 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3377   if (Slots2BasicBlocks.empty())
3378     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3379   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3380 }
3381 
3382 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3383   if (&F == &MF.getFunction())
3384     return getIRBlock(Slot);
3385   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3386   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3387   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3388 }
3389 
3390 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3391   // FIXME: Currently we can't recognize temporary or local symbols and call all
3392   // of the appropriate forms to create them. However, this handles basic cases
3393   // well as most of the special aspects are recognized by a prefix on their
3394   // name, and the input names should already be unique. For test cases, keeping
3395   // the symbol name out of the symbol table isn't terribly important.
3396   return MF.getContext().getOrCreateSymbol(Name);
3397 }
3398 
3399 bool MIParser::parseStringConstant(std::string &Result) {
3400   if (Token.isNot(MIToken::StringConstant))
3401     return error("expected string constant");
3402   Result = std::string(Token.stringValue());
3403   lex();
3404   return false;
3405 }
3406 
3407 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3408                                              StringRef Src,
3409                                              SMDiagnostic &Error) {
3410   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3411 }
3412 
3413 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3414                                     StringRef Src, SMDiagnostic &Error) {
3415   return MIParser(PFS, Error, Src).parseBasicBlocks();
3416 }
3417 
3418 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3419                              MachineBasicBlock *&MBB, StringRef Src,
3420                              SMDiagnostic &Error) {
3421   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3422 }
3423 
3424 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3425                                   Register &Reg, StringRef Src,
3426                                   SMDiagnostic &Error) {
3427   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3428 }
3429 
3430 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3431                                        Register &Reg, StringRef Src,
3432                                        SMDiagnostic &Error) {
3433   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3434 }
3435 
3436 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3437                                          VRegInfo *&Info, StringRef Src,
3438                                          SMDiagnostic &Error) {
3439   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3440 }
3441 
3442 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3443                                      int &FI, StringRef Src,
3444                                      SMDiagnostic &Error) {
3445   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3446 }
3447 
3448 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3449                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3450   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3451 }
3452 
3453 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src,
3454                                 SMRange SrcRange, SMDiagnostic &Error) {
3455   return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata();
3456 }
3457 
3458 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3459                                 PerFunctionMIParsingState &PFS, const Value *&V,
3460                                 ErrorCallbackType ErrorCallback) {
3461   MIToken Token;
3462   Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3463     ErrorCallback(Loc, Msg);
3464   });
3465   V = nullptr;
3466 
3467   return ::parseIRValue(Token, PFS, V, ErrorCallback);
3468 }
3469