1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRFormatter.h" 32 #include "llvm/CodeGen/MIRPrinter.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 Register &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 return Slots2Values.lookup(Slot); 373 } 374 375 namespace { 376 377 /// A wrapper struct around the 'MachineOperand' struct that includes a source 378 /// range and other attributes. 379 struct ParsedMachineOperand { 380 MachineOperand Operand; 381 StringRef::iterator Begin; 382 StringRef::iterator End; 383 Optional<unsigned> TiedDefIdx; 384 385 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 386 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 387 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 388 if (TiedDefIdx) 389 assert(Operand.isReg() && Operand.isUse() && 390 "Only used register operands can be tied"); 391 } 392 }; 393 394 class MIParser { 395 MachineFunction &MF; 396 SMDiagnostic &Error; 397 StringRef Source, CurrentSource; 398 SMRange SourceRange; 399 MIToken Token; 400 PerFunctionMIParsingState &PFS; 401 /// Maps from slot numbers to function's unnamed basic blocks. 402 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 403 404 public: 405 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 406 StringRef Source); 407 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 408 StringRef Source, SMRange SourceRange); 409 410 /// \p SkipChar gives the number of characters to skip before looking 411 /// for the next token. 412 void lex(unsigned SkipChar = 0); 413 414 /// Report an error at the current location with the given message. 415 /// 416 /// This function always return true. 417 bool error(const Twine &Msg); 418 419 /// Report an error at the given location with the given message. 420 /// 421 /// This function always return true. 422 bool error(StringRef::iterator Loc, const Twine &Msg); 423 424 bool 425 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 426 bool parseBasicBlocks(); 427 bool parse(MachineInstr *&MI); 428 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 429 bool parseStandaloneNamedRegister(Register &Reg); 430 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 431 bool parseStandaloneRegister(Register &Reg); 432 bool parseStandaloneStackObject(int &FI); 433 bool parseStandaloneMDNode(MDNode *&Node); 434 bool parseMachineMetadata(); 435 bool parseMDTuple(MDNode *&MD, bool IsDistinct); 436 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts); 437 bool parseMetadata(Metadata *&MD); 438 439 bool 440 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 441 bool parseBasicBlock(MachineBasicBlock &MBB, 442 MachineBasicBlock *&AddFalthroughFrom); 443 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 444 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 445 446 bool parseNamedRegister(Register &Reg); 447 bool parseVirtualRegister(VRegInfo *&Info); 448 bool parseNamedVirtualRegister(VRegInfo *&Info); 449 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 450 bool parseRegisterFlag(unsigned &Flags); 451 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 452 bool parseSubRegisterIndex(unsigned &SubReg); 453 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 454 bool parseRegisterOperand(MachineOperand &Dest, 455 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 456 bool parseImmediateOperand(MachineOperand &Dest); 457 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 458 const Constant *&C); 459 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 460 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 461 bool parseTypedImmediateOperand(MachineOperand &Dest); 462 bool parseFPImmediateOperand(MachineOperand &Dest); 463 bool parseMBBReference(MachineBasicBlock *&MBB); 464 bool parseMBBOperand(MachineOperand &Dest); 465 bool parseStackFrameIndex(int &FI); 466 bool parseStackObjectOperand(MachineOperand &Dest); 467 bool parseFixedStackFrameIndex(int &FI); 468 bool parseFixedStackObjectOperand(MachineOperand &Dest); 469 bool parseGlobalValue(GlobalValue *&GV); 470 bool parseGlobalAddressOperand(MachineOperand &Dest); 471 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 472 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 473 bool parseJumpTableIndexOperand(MachineOperand &Dest); 474 bool parseExternalSymbolOperand(MachineOperand &Dest); 475 bool parseMCSymbolOperand(MachineOperand &Dest); 476 bool parseMDNode(MDNode *&Node); 477 bool parseDIExpression(MDNode *&Expr); 478 bool parseDILocation(MDNode *&Expr); 479 bool parseMetadataOperand(MachineOperand &Dest); 480 bool parseCFIOffset(int &Offset); 481 bool parseCFIRegister(Register &Reg); 482 bool parseCFIAddressSpace(unsigned &AddressSpace); 483 bool parseCFIEscapeValues(std::string& Values); 484 bool parseCFIOperand(MachineOperand &Dest); 485 bool parseIRBlock(BasicBlock *&BB, const Function &F); 486 bool parseBlockAddressOperand(MachineOperand &Dest); 487 bool parseIntrinsicOperand(MachineOperand &Dest); 488 bool parsePredicateOperand(MachineOperand &Dest); 489 bool parseShuffleMaskOperand(MachineOperand &Dest); 490 bool parseTargetIndexOperand(MachineOperand &Dest); 491 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 492 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 493 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 494 MachineOperand &Dest, 495 Optional<unsigned> &TiedDefIdx); 496 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 497 const unsigned OpIdx, 498 MachineOperand &Dest, 499 Optional<unsigned> &TiedDefIdx); 500 bool parseOffset(int64_t &Offset); 501 bool parseAlignment(uint64_t &Alignment); 502 bool parseAddrspace(unsigned &Addrspace); 503 bool parseSectionID(Optional<MBBSectionID> &SID); 504 bool parseOperandsOffset(MachineOperand &Op); 505 bool parseIRValue(const Value *&V); 506 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 507 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 508 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 509 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 510 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 511 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 512 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 513 bool parseHeapAllocMarker(MDNode *&Node); 514 515 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 516 MachineOperand &Dest, const MIRFormatter &MF); 517 518 private: 519 /// Convert the integer literal in the current token into an unsigned integer. 520 /// 521 /// Return true if an error occurred. 522 bool getUnsigned(unsigned &Result); 523 524 /// Convert the integer literal in the current token into an uint64. 525 /// 526 /// Return true if an error occurred. 527 bool getUint64(uint64_t &Result); 528 529 /// Convert the hexadecimal literal in the current token into an unsigned 530 /// APInt with a minimum bitwidth required to represent the value. 531 /// 532 /// Return true if the literal does not represent an integer value. 533 bool getHexUint(APInt &Result); 534 535 /// If the current token is of the given kind, consume it and return false. 536 /// Otherwise report an error and return true. 537 bool expectAndConsume(MIToken::TokenKind TokenKind); 538 539 /// If the current token is of the given kind, consume it and return true. 540 /// Otherwise return false. 541 bool consumeIfPresent(MIToken::TokenKind TokenKind); 542 543 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 544 545 bool assignRegisterTies(MachineInstr &MI, 546 ArrayRef<ParsedMachineOperand> Operands); 547 548 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 549 const MCInstrDesc &MCID); 550 551 const BasicBlock *getIRBlock(unsigned Slot); 552 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 553 554 /// Get or create an MCSymbol for a given name. 555 MCSymbol *getOrCreateMCSymbol(StringRef Name); 556 557 /// parseStringConstant 558 /// ::= StringConstant 559 bool parseStringConstant(std::string &Result); 560 561 /// Map the location in the MI string to the corresponding location specified 562 /// in `SourceRange`. 563 SMLoc mapSMLoc(StringRef::iterator Loc); 564 }; 565 566 } // end anonymous namespace 567 568 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 569 StringRef Source) 570 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 571 {} 572 573 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 574 StringRef Source, SMRange SourceRange) 575 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), 576 SourceRange(SourceRange), PFS(PFS) {} 577 578 void MIParser::lex(unsigned SkipChar) { 579 CurrentSource = lexMIToken( 580 CurrentSource.slice(SkipChar, StringRef::npos), Token, 581 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 582 } 583 584 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 585 586 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 587 const SourceMgr &SM = *PFS.SM; 588 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 589 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 590 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 591 // Create an ordinary diagnostic when the source manager's buffer is the 592 // source string. 593 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 594 return true; 595 } 596 // Create a diagnostic for a YAML string literal. 597 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 598 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 599 Source, None, None); 600 return true; 601 } 602 603 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) { 604 assert(SourceRange.isValid() && "Invalid source range"); 605 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 606 return SMLoc::getFromPointer(SourceRange.Start.getPointer() + 607 (Loc - Source.data())); 608 } 609 610 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 611 ErrorCallbackType; 612 613 static const char *toString(MIToken::TokenKind TokenKind) { 614 switch (TokenKind) { 615 case MIToken::comma: 616 return "','"; 617 case MIToken::equal: 618 return "'='"; 619 case MIToken::colon: 620 return "':'"; 621 case MIToken::lparen: 622 return "'('"; 623 case MIToken::rparen: 624 return "')'"; 625 default: 626 return "<unknown token>"; 627 } 628 } 629 630 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 631 if (Token.isNot(TokenKind)) 632 return error(Twine("expected ") + toString(TokenKind)); 633 lex(); 634 return false; 635 } 636 637 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 638 if (Token.isNot(TokenKind)) 639 return false; 640 lex(); 641 return true; 642 } 643 644 // Parse Machine Basic Block Section ID. 645 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) { 646 assert(Token.is(MIToken::kw_bbsections)); 647 lex(); 648 if (Token.is(MIToken::IntegerLiteral)) { 649 unsigned Value = 0; 650 if (getUnsigned(Value)) 651 return error("Unknown Section ID"); 652 SID = MBBSectionID{Value}; 653 } else { 654 const StringRef &S = Token.stringValue(); 655 if (S == "Exception") 656 SID = MBBSectionID::ExceptionSectionID; 657 else if (S == "Cold") 658 SID = MBBSectionID::ColdSectionID; 659 else 660 return error("Unknown Section ID"); 661 } 662 lex(); 663 return false; 664 } 665 666 bool MIParser::parseBasicBlockDefinition( 667 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 668 assert(Token.is(MIToken::MachineBasicBlockLabel)); 669 unsigned ID = 0; 670 if (getUnsigned(ID)) 671 return true; 672 auto Loc = Token.location(); 673 auto Name = Token.stringValue(); 674 lex(); 675 bool HasAddressTaken = false; 676 bool IsLandingPad = false; 677 bool IsInlineAsmBrIndirectTarget = false; 678 bool IsEHFuncletEntry = false; 679 Optional<MBBSectionID> SectionID; 680 uint64_t Alignment = 0; 681 BasicBlock *BB = nullptr; 682 if (consumeIfPresent(MIToken::lparen)) { 683 do { 684 // TODO: Report an error when multiple same attributes are specified. 685 switch (Token.kind()) { 686 case MIToken::kw_address_taken: 687 HasAddressTaken = true; 688 lex(); 689 break; 690 case MIToken::kw_landing_pad: 691 IsLandingPad = true; 692 lex(); 693 break; 694 case MIToken::kw_inlineasm_br_indirect_target: 695 IsInlineAsmBrIndirectTarget = true; 696 lex(); 697 break; 698 case MIToken::kw_ehfunclet_entry: 699 IsEHFuncletEntry = true; 700 lex(); 701 break; 702 case MIToken::kw_align: 703 if (parseAlignment(Alignment)) 704 return true; 705 break; 706 case MIToken::IRBlock: 707 // TODO: Report an error when both name and ir block are specified. 708 if (parseIRBlock(BB, MF.getFunction())) 709 return true; 710 lex(); 711 break; 712 case MIToken::kw_bbsections: 713 if (parseSectionID(SectionID)) 714 return true; 715 break; 716 default: 717 break; 718 } 719 } while (consumeIfPresent(MIToken::comma)); 720 if (expectAndConsume(MIToken::rparen)) 721 return true; 722 } 723 if (expectAndConsume(MIToken::colon)) 724 return true; 725 726 if (!Name.empty()) { 727 BB = dyn_cast_or_null<BasicBlock>( 728 MF.getFunction().getValueSymbolTable()->lookup(Name)); 729 if (!BB) 730 return error(Loc, Twine("basic block '") + Name + 731 "' is not defined in the function '" + 732 MF.getName() + "'"); 733 } 734 auto *MBB = MF.CreateMachineBasicBlock(BB); 735 MF.insert(MF.end(), MBB); 736 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 737 if (!WasInserted) 738 return error(Loc, Twine("redefinition of machine basic block with id #") + 739 Twine(ID)); 740 if (Alignment) 741 MBB->setAlignment(Align(Alignment)); 742 if (HasAddressTaken) 743 MBB->setHasAddressTaken(); 744 MBB->setIsEHPad(IsLandingPad); 745 MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget); 746 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 747 if (SectionID.hasValue()) { 748 MBB->setSectionID(SectionID.getValue()); 749 MF.setBBSectionsType(BasicBlockSection::List); 750 } 751 return false; 752 } 753 754 bool MIParser::parseBasicBlockDefinitions( 755 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 756 lex(); 757 // Skip until the first machine basic block. 758 while (Token.is(MIToken::Newline)) 759 lex(); 760 if (Token.isErrorOrEOF()) 761 return Token.isError(); 762 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 763 return error("expected a basic block definition before instructions"); 764 unsigned BraceDepth = 0; 765 do { 766 if (parseBasicBlockDefinition(MBBSlots)) 767 return true; 768 bool IsAfterNewline = false; 769 // Skip until the next machine basic block. 770 while (true) { 771 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 772 Token.isErrorOrEOF()) 773 break; 774 else if (Token.is(MIToken::MachineBasicBlockLabel)) 775 return error("basic block definition should be located at the start of " 776 "the line"); 777 else if (consumeIfPresent(MIToken::Newline)) { 778 IsAfterNewline = true; 779 continue; 780 } 781 IsAfterNewline = false; 782 if (Token.is(MIToken::lbrace)) 783 ++BraceDepth; 784 if (Token.is(MIToken::rbrace)) { 785 if (!BraceDepth) 786 return error("extraneous closing brace ('}')"); 787 --BraceDepth; 788 } 789 lex(); 790 } 791 // Verify that we closed all of the '{' at the end of a file or a block. 792 if (!Token.isError() && BraceDepth) 793 return error("expected '}'"); // FIXME: Report a note that shows '{'. 794 } while (!Token.isErrorOrEOF()); 795 return Token.isError(); 796 } 797 798 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 799 assert(Token.is(MIToken::kw_liveins)); 800 lex(); 801 if (expectAndConsume(MIToken::colon)) 802 return true; 803 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 804 return false; 805 do { 806 if (Token.isNot(MIToken::NamedRegister)) 807 return error("expected a named register"); 808 Register Reg; 809 if (parseNamedRegister(Reg)) 810 return true; 811 lex(); 812 LaneBitmask Mask = LaneBitmask::getAll(); 813 if (consumeIfPresent(MIToken::colon)) { 814 // Parse lane mask. 815 if (Token.isNot(MIToken::IntegerLiteral) && 816 Token.isNot(MIToken::HexLiteral)) 817 return error("expected a lane mask"); 818 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 819 "Use correct get-function for lane mask"); 820 LaneBitmask::Type V; 821 if (getUint64(V)) 822 return error("invalid lane mask value"); 823 Mask = LaneBitmask(V); 824 lex(); 825 } 826 MBB.addLiveIn(Reg, Mask); 827 } while (consumeIfPresent(MIToken::comma)); 828 return false; 829 } 830 831 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 832 assert(Token.is(MIToken::kw_successors)); 833 lex(); 834 if (expectAndConsume(MIToken::colon)) 835 return true; 836 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 837 return false; 838 do { 839 if (Token.isNot(MIToken::MachineBasicBlock)) 840 return error("expected a machine basic block reference"); 841 MachineBasicBlock *SuccMBB = nullptr; 842 if (parseMBBReference(SuccMBB)) 843 return true; 844 lex(); 845 unsigned Weight = 0; 846 if (consumeIfPresent(MIToken::lparen)) { 847 if (Token.isNot(MIToken::IntegerLiteral) && 848 Token.isNot(MIToken::HexLiteral)) 849 return error("expected an integer literal after '('"); 850 if (getUnsigned(Weight)) 851 return true; 852 lex(); 853 if (expectAndConsume(MIToken::rparen)) 854 return true; 855 } 856 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 857 } while (consumeIfPresent(MIToken::comma)); 858 MBB.normalizeSuccProbs(); 859 return false; 860 } 861 862 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 863 MachineBasicBlock *&AddFalthroughFrom) { 864 // Skip the definition. 865 assert(Token.is(MIToken::MachineBasicBlockLabel)); 866 lex(); 867 if (consumeIfPresent(MIToken::lparen)) { 868 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 869 lex(); 870 consumeIfPresent(MIToken::rparen); 871 } 872 consumeIfPresent(MIToken::colon); 873 874 // Parse the liveins and successors. 875 // N.B: Multiple lists of successors and liveins are allowed and they're 876 // merged into one. 877 // Example: 878 // liveins: %edi 879 // liveins: %esi 880 // 881 // is equivalent to 882 // liveins: %edi, %esi 883 bool ExplicitSuccessors = false; 884 while (true) { 885 if (Token.is(MIToken::kw_successors)) { 886 if (parseBasicBlockSuccessors(MBB)) 887 return true; 888 ExplicitSuccessors = true; 889 } else if (Token.is(MIToken::kw_liveins)) { 890 if (parseBasicBlockLiveins(MBB)) 891 return true; 892 } else if (consumeIfPresent(MIToken::Newline)) { 893 continue; 894 } else 895 break; 896 if (!Token.isNewlineOrEOF()) 897 return error("expected line break at the end of a list"); 898 lex(); 899 } 900 901 // Parse the instructions. 902 bool IsInBundle = false; 903 MachineInstr *PrevMI = nullptr; 904 while (!Token.is(MIToken::MachineBasicBlockLabel) && 905 !Token.is(MIToken::Eof)) { 906 if (consumeIfPresent(MIToken::Newline)) 907 continue; 908 if (consumeIfPresent(MIToken::rbrace)) { 909 // The first parsing pass should verify that all closing '}' have an 910 // opening '{'. 911 assert(IsInBundle); 912 IsInBundle = false; 913 continue; 914 } 915 MachineInstr *MI = nullptr; 916 if (parse(MI)) 917 return true; 918 MBB.insert(MBB.end(), MI); 919 if (IsInBundle) { 920 PrevMI->setFlag(MachineInstr::BundledSucc); 921 MI->setFlag(MachineInstr::BundledPred); 922 } 923 PrevMI = MI; 924 if (Token.is(MIToken::lbrace)) { 925 if (IsInBundle) 926 return error("nested instruction bundles are not allowed"); 927 lex(); 928 // This instruction is the start of the bundle. 929 MI->setFlag(MachineInstr::BundledSucc); 930 IsInBundle = true; 931 if (!Token.is(MIToken::Newline)) 932 // The next instruction can be on the same line. 933 continue; 934 } 935 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 936 lex(); 937 } 938 939 // Construct successor list by searching for basic block machine operands. 940 if (!ExplicitSuccessors) { 941 SmallVector<MachineBasicBlock*,4> Successors; 942 bool IsFallthrough; 943 guessSuccessors(MBB, Successors, IsFallthrough); 944 for (MachineBasicBlock *Succ : Successors) 945 MBB.addSuccessor(Succ); 946 947 if (IsFallthrough) { 948 AddFalthroughFrom = &MBB; 949 } else { 950 MBB.normalizeSuccProbs(); 951 } 952 } 953 954 return false; 955 } 956 957 bool MIParser::parseBasicBlocks() { 958 lex(); 959 // Skip until the first machine basic block. 960 while (Token.is(MIToken::Newline)) 961 lex(); 962 if (Token.isErrorOrEOF()) 963 return Token.isError(); 964 // The first parsing pass should have verified that this token is a MBB label 965 // in the 'parseBasicBlockDefinitions' method. 966 assert(Token.is(MIToken::MachineBasicBlockLabel)); 967 MachineBasicBlock *AddFalthroughFrom = nullptr; 968 do { 969 MachineBasicBlock *MBB = nullptr; 970 if (parseMBBReference(MBB)) 971 return true; 972 if (AddFalthroughFrom) { 973 if (!AddFalthroughFrom->isSuccessor(MBB)) 974 AddFalthroughFrom->addSuccessor(MBB); 975 AddFalthroughFrom->normalizeSuccProbs(); 976 AddFalthroughFrom = nullptr; 977 } 978 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 979 return true; 980 // The method 'parseBasicBlock' should parse the whole block until the next 981 // block or the end of file. 982 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 983 } while (Token.isNot(MIToken::Eof)); 984 return false; 985 } 986 987 bool MIParser::parse(MachineInstr *&MI) { 988 // Parse any register operands before '=' 989 MachineOperand MO = MachineOperand::CreateImm(0); 990 SmallVector<ParsedMachineOperand, 8> Operands; 991 while (Token.isRegister() || Token.isRegisterFlag()) { 992 auto Loc = Token.location(); 993 Optional<unsigned> TiedDefIdx; 994 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 995 return true; 996 Operands.push_back( 997 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 998 if (Token.isNot(MIToken::comma)) 999 break; 1000 lex(); 1001 } 1002 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 1003 return true; 1004 1005 unsigned OpCode, Flags = 0; 1006 if (Token.isError() || parseInstruction(OpCode, Flags)) 1007 return true; 1008 1009 // Parse the remaining machine operands. 1010 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 1011 Token.isNot(MIToken::kw_post_instr_symbol) && 1012 Token.isNot(MIToken::kw_heap_alloc_marker) && 1013 Token.isNot(MIToken::kw_debug_location) && 1014 Token.isNot(MIToken::kw_debug_instr_number) && 1015 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 1016 auto Loc = Token.location(); 1017 Optional<unsigned> TiedDefIdx; 1018 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 1019 return true; 1020 Operands.push_back( 1021 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 1022 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 1023 Token.is(MIToken::lbrace)) 1024 break; 1025 if (Token.isNot(MIToken::comma)) 1026 return error("expected ',' before the next machine operand"); 1027 lex(); 1028 } 1029 1030 MCSymbol *PreInstrSymbol = nullptr; 1031 if (Token.is(MIToken::kw_pre_instr_symbol)) 1032 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1033 return true; 1034 MCSymbol *PostInstrSymbol = nullptr; 1035 if (Token.is(MIToken::kw_post_instr_symbol)) 1036 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1037 return true; 1038 MDNode *HeapAllocMarker = nullptr; 1039 if (Token.is(MIToken::kw_heap_alloc_marker)) 1040 if (parseHeapAllocMarker(HeapAllocMarker)) 1041 return true; 1042 1043 unsigned InstrNum = 0; 1044 if (Token.is(MIToken::kw_debug_instr_number)) { 1045 lex(); 1046 if (Token.isNot(MIToken::IntegerLiteral)) 1047 return error("expected an integer literal after 'debug-instr-number'"); 1048 if (getUnsigned(InstrNum)) 1049 return true; 1050 lex(); 1051 // Lex past trailing comma if present. 1052 if (Token.is(MIToken::comma)) 1053 lex(); 1054 } 1055 1056 DebugLoc DebugLocation; 1057 if (Token.is(MIToken::kw_debug_location)) { 1058 lex(); 1059 MDNode *Node = nullptr; 1060 if (Token.is(MIToken::exclaim)) { 1061 if (parseMDNode(Node)) 1062 return true; 1063 } else if (Token.is(MIToken::md_dilocation)) { 1064 if (parseDILocation(Node)) 1065 return true; 1066 } else 1067 return error("expected a metadata node after 'debug-location'"); 1068 if (!isa<DILocation>(Node)) 1069 return error("referenced metadata is not a DILocation"); 1070 DebugLocation = DebugLoc(Node); 1071 } 1072 1073 // Parse the machine memory operands. 1074 SmallVector<MachineMemOperand *, 2> MemOperands; 1075 if (Token.is(MIToken::coloncolon)) { 1076 lex(); 1077 while (!Token.isNewlineOrEOF()) { 1078 MachineMemOperand *MemOp = nullptr; 1079 if (parseMachineMemoryOperand(MemOp)) 1080 return true; 1081 MemOperands.push_back(MemOp); 1082 if (Token.isNewlineOrEOF()) 1083 break; 1084 if (Token.isNot(MIToken::comma)) 1085 return error("expected ',' before the next machine memory operand"); 1086 lex(); 1087 } 1088 } 1089 1090 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1091 if (!MCID.isVariadic()) { 1092 // FIXME: Move the implicit operand verification to the machine verifier. 1093 if (verifyImplicitOperands(Operands, MCID)) 1094 return true; 1095 } 1096 1097 // TODO: Check for extraneous machine operands. 1098 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1099 MI->setFlags(Flags); 1100 for (const auto &Operand : Operands) 1101 MI->addOperand(MF, Operand.Operand); 1102 if (assignRegisterTies(*MI, Operands)) 1103 return true; 1104 if (PreInstrSymbol) 1105 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1106 if (PostInstrSymbol) 1107 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1108 if (HeapAllocMarker) 1109 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1110 if (!MemOperands.empty()) 1111 MI->setMemRefs(MF, MemOperands); 1112 if (InstrNum) 1113 MI->setDebugInstrNum(InstrNum); 1114 return false; 1115 } 1116 1117 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1118 lex(); 1119 if (Token.isNot(MIToken::MachineBasicBlock)) 1120 return error("expected a machine basic block reference"); 1121 if (parseMBBReference(MBB)) 1122 return true; 1123 lex(); 1124 if (Token.isNot(MIToken::Eof)) 1125 return error( 1126 "expected end of string after the machine basic block reference"); 1127 return false; 1128 } 1129 1130 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1131 lex(); 1132 if (Token.isNot(MIToken::NamedRegister)) 1133 return error("expected a named register"); 1134 if (parseNamedRegister(Reg)) 1135 return true; 1136 lex(); 1137 if (Token.isNot(MIToken::Eof)) 1138 return error("expected end of string after the register reference"); 1139 return false; 1140 } 1141 1142 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1143 lex(); 1144 if (Token.isNot(MIToken::VirtualRegister)) 1145 return error("expected a virtual register"); 1146 if (parseVirtualRegister(Info)) 1147 return true; 1148 lex(); 1149 if (Token.isNot(MIToken::Eof)) 1150 return error("expected end of string after the register reference"); 1151 return false; 1152 } 1153 1154 bool MIParser::parseStandaloneRegister(Register &Reg) { 1155 lex(); 1156 if (Token.isNot(MIToken::NamedRegister) && 1157 Token.isNot(MIToken::VirtualRegister)) 1158 return error("expected either a named or virtual register"); 1159 1160 VRegInfo *Info; 1161 if (parseRegister(Reg, Info)) 1162 return true; 1163 1164 lex(); 1165 if (Token.isNot(MIToken::Eof)) 1166 return error("expected end of string after the register reference"); 1167 return false; 1168 } 1169 1170 bool MIParser::parseStandaloneStackObject(int &FI) { 1171 lex(); 1172 if (Token.isNot(MIToken::StackObject)) 1173 return error("expected a stack object"); 1174 if (parseStackFrameIndex(FI)) 1175 return true; 1176 if (Token.isNot(MIToken::Eof)) 1177 return error("expected end of string after the stack object reference"); 1178 return false; 1179 } 1180 1181 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1182 lex(); 1183 if (Token.is(MIToken::exclaim)) { 1184 if (parseMDNode(Node)) 1185 return true; 1186 } else if (Token.is(MIToken::md_diexpr)) { 1187 // FIXME: This should be driven off of the UNIQUED property in Metadata.def 1188 if (parseDIExpression(Node)) 1189 return true; 1190 } else if (Token.is(MIToken::md_dilocation)) { 1191 if (parseDILocation(Node)) 1192 return true; 1193 } else 1194 return error("expected a metadata node"); 1195 if (Token.isNot(MIToken::Eof)) 1196 return error("expected end of string after the metadata node"); 1197 return false; 1198 } 1199 1200 bool MIParser::parseMachineMetadata() { 1201 lex(); 1202 if (Token.isNot(MIToken::exclaim)) 1203 return error("expected a metadata node"); 1204 1205 lex(); 1206 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1207 return error("expected metadata id after '!'"); 1208 unsigned ID = 0; 1209 if (getUnsigned(ID)) 1210 return true; 1211 lex(); 1212 if (expectAndConsume(MIToken::equal)) 1213 return true; 1214 bool IsDistinct = Token.is(MIToken::kw_distinct); 1215 if (IsDistinct) 1216 lex(); 1217 if (Token.isNot(MIToken::exclaim)) 1218 return error("expected a metadata node"); 1219 lex(); 1220 1221 MDNode *MD; 1222 if (parseMDTuple(MD, IsDistinct)) 1223 return true; 1224 1225 auto FI = PFS.MachineForwardRefMDNodes.find(ID); 1226 if (FI != PFS.MachineForwardRefMDNodes.end()) { 1227 FI->second.first->replaceAllUsesWith(MD); 1228 PFS.MachineForwardRefMDNodes.erase(FI); 1229 1230 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work"); 1231 } else { 1232 if (PFS.MachineMetadataNodes.count(ID)) 1233 return error("Metadata id is already used"); 1234 PFS.MachineMetadataNodes[ID].reset(MD); 1235 } 1236 1237 return false; 1238 } 1239 1240 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 1241 SmallVector<Metadata *, 16> Elts; 1242 if (parseMDNodeVector(Elts)) 1243 return true; 1244 MD = (IsDistinct ? MDTuple::getDistinct 1245 : MDTuple::get)(MF.getFunction().getContext(), Elts); 1246 return false; 1247 } 1248 1249 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 1250 if (Token.isNot(MIToken::lbrace)) 1251 return error("expected '{' here"); 1252 lex(); 1253 1254 if (Token.is(MIToken::rbrace)) { 1255 lex(); 1256 return false; 1257 } 1258 1259 do { 1260 Metadata *MD; 1261 if (parseMetadata(MD)) 1262 return true; 1263 1264 Elts.push_back(MD); 1265 1266 if (Token.isNot(MIToken::comma)) 1267 break; 1268 lex(); 1269 } while (true); 1270 1271 if (Token.isNot(MIToken::rbrace)) 1272 return error("expected end of metadata node"); 1273 lex(); 1274 1275 return false; 1276 } 1277 1278 // ::= !42 1279 // ::= !"string" 1280 bool MIParser::parseMetadata(Metadata *&MD) { 1281 if (Token.isNot(MIToken::exclaim)) 1282 return error("expected '!' here"); 1283 lex(); 1284 1285 if (Token.is(MIToken::StringConstant)) { 1286 std::string Str; 1287 if (parseStringConstant(Str)) 1288 return true; 1289 MD = MDString::get(MF.getFunction().getContext(), Str); 1290 return false; 1291 } 1292 1293 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1294 return error("expected metadata id after '!'"); 1295 1296 SMLoc Loc = mapSMLoc(Token.location()); 1297 1298 unsigned ID = 0; 1299 if (getUnsigned(ID)) 1300 return true; 1301 lex(); 1302 1303 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1304 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) { 1305 MD = NodeInfo->second.get(); 1306 return false; 1307 } 1308 // Check machine metadata. 1309 NodeInfo = PFS.MachineMetadataNodes.find(ID); 1310 if (NodeInfo != PFS.MachineMetadataNodes.end()) { 1311 MD = NodeInfo->second.get(); 1312 return false; 1313 } 1314 // Forward reference. 1315 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID]; 1316 FwdRef = std::make_pair( 1317 MDTuple::getTemporary(MF.getFunction().getContext(), None), Loc); 1318 PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get()); 1319 MD = FwdRef.first.get(); 1320 1321 return false; 1322 } 1323 1324 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1325 assert(MO.isImplicit()); 1326 return MO.isDef() ? "implicit-def" : "implicit"; 1327 } 1328 1329 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1330 Register Reg) { 1331 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1332 return StringRef(TRI->getName(Reg)).lower(); 1333 } 1334 1335 /// Return true if the parsed machine operands contain a given machine operand. 1336 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1337 ArrayRef<ParsedMachineOperand> Operands) { 1338 for (const auto &I : Operands) { 1339 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1340 return true; 1341 } 1342 return false; 1343 } 1344 1345 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1346 const MCInstrDesc &MCID) { 1347 if (MCID.isCall()) 1348 // We can't verify call instructions as they can contain arbitrary implicit 1349 // register and register mask operands. 1350 return false; 1351 1352 // Gather all the expected implicit operands. 1353 SmallVector<MachineOperand, 4> ImplicitOperands; 1354 if (MCID.ImplicitDefs) 1355 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1356 ImplicitOperands.push_back( 1357 MachineOperand::CreateReg(*ImpDefs, true, true)); 1358 if (MCID.ImplicitUses) 1359 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1360 ImplicitOperands.push_back( 1361 MachineOperand::CreateReg(*ImpUses, false, true)); 1362 1363 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1364 assert(TRI && "Expected target register info"); 1365 for (const auto &I : ImplicitOperands) { 1366 if (isImplicitOperandIn(I, Operands)) 1367 continue; 1368 return error(Operands.empty() ? Token.location() : Operands.back().End, 1369 Twine("missing implicit register operand '") + 1370 printImplicitRegisterFlag(I) + " $" + 1371 getRegisterName(TRI, I.getReg()) + "'"); 1372 } 1373 return false; 1374 } 1375 1376 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1377 // Allow frame and fast math flags for OPCODE 1378 while (Token.is(MIToken::kw_frame_setup) || 1379 Token.is(MIToken::kw_frame_destroy) || 1380 Token.is(MIToken::kw_nnan) || 1381 Token.is(MIToken::kw_ninf) || 1382 Token.is(MIToken::kw_nsz) || 1383 Token.is(MIToken::kw_arcp) || 1384 Token.is(MIToken::kw_contract) || 1385 Token.is(MIToken::kw_afn) || 1386 Token.is(MIToken::kw_reassoc) || 1387 Token.is(MIToken::kw_nuw) || 1388 Token.is(MIToken::kw_nsw) || 1389 Token.is(MIToken::kw_exact) || 1390 Token.is(MIToken::kw_nofpexcept)) { 1391 // Mine frame and fast math flags 1392 if (Token.is(MIToken::kw_frame_setup)) 1393 Flags |= MachineInstr::FrameSetup; 1394 if (Token.is(MIToken::kw_frame_destroy)) 1395 Flags |= MachineInstr::FrameDestroy; 1396 if (Token.is(MIToken::kw_nnan)) 1397 Flags |= MachineInstr::FmNoNans; 1398 if (Token.is(MIToken::kw_ninf)) 1399 Flags |= MachineInstr::FmNoInfs; 1400 if (Token.is(MIToken::kw_nsz)) 1401 Flags |= MachineInstr::FmNsz; 1402 if (Token.is(MIToken::kw_arcp)) 1403 Flags |= MachineInstr::FmArcp; 1404 if (Token.is(MIToken::kw_contract)) 1405 Flags |= MachineInstr::FmContract; 1406 if (Token.is(MIToken::kw_afn)) 1407 Flags |= MachineInstr::FmAfn; 1408 if (Token.is(MIToken::kw_reassoc)) 1409 Flags |= MachineInstr::FmReassoc; 1410 if (Token.is(MIToken::kw_nuw)) 1411 Flags |= MachineInstr::NoUWrap; 1412 if (Token.is(MIToken::kw_nsw)) 1413 Flags |= MachineInstr::NoSWrap; 1414 if (Token.is(MIToken::kw_exact)) 1415 Flags |= MachineInstr::IsExact; 1416 if (Token.is(MIToken::kw_nofpexcept)) 1417 Flags |= MachineInstr::NoFPExcept; 1418 1419 lex(); 1420 } 1421 if (Token.isNot(MIToken::Identifier)) 1422 return error("expected a machine instruction"); 1423 StringRef InstrName = Token.stringValue(); 1424 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1425 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1426 lex(); 1427 return false; 1428 } 1429 1430 bool MIParser::parseNamedRegister(Register &Reg) { 1431 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1432 StringRef Name = Token.stringValue(); 1433 if (PFS.Target.getRegisterByName(Name, Reg)) 1434 return error(Twine("unknown register name '") + Name + "'"); 1435 return false; 1436 } 1437 1438 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1439 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1440 StringRef Name = Token.stringValue(); 1441 // TODO: Check that the VReg name is not the same as a physical register name. 1442 // If it is, then print a warning (when warnings are implemented). 1443 Info = &PFS.getVRegInfoNamed(Name); 1444 return false; 1445 } 1446 1447 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1448 if (Token.is(MIToken::NamedVirtualRegister)) 1449 return parseNamedVirtualRegister(Info); 1450 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1451 unsigned ID; 1452 if (getUnsigned(ID)) 1453 return true; 1454 Info = &PFS.getVRegInfo(ID); 1455 return false; 1456 } 1457 1458 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1459 switch (Token.kind()) { 1460 case MIToken::underscore: 1461 Reg = 0; 1462 return false; 1463 case MIToken::NamedRegister: 1464 return parseNamedRegister(Reg); 1465 case MIToken::NamedVirtualRegister: 1466 case MIToken::VirtualRegister: 1467 if (parseVirtualRegister(Info)) 1468 return true; 1469 Reg = Info->VReg; 1470 return false; 1471 // TODO: Parse other register kinds. 1472 default: 1473 llvm_unreachable("The current token should be a register"); 1474 } 1475 } 1476 1477 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1478 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1479 return error("expected '_', register class, or register bank name"); 1480 StringRef::iterator Loc = Token.location(); 1481 StringRef Name = Token.stringValue(); 1482 1483 // Was it a register class? 1484 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1485 if (RC) { 1486 lex(); 1487 1488 switch (RegInfo.Kind) { 1489 case VRegInfo::UNKNOWN: 1490 case VRegInfo::NORMAL: 1491 RegInfo.Kind = VRegInfo::NORMAL; 1492 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1493 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1494 return error(Loc, Twine("conflicting register classes, previously: ") + 1495 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1496 } 1497 RegInfo.D.RC = RC; 1498 RegInfo.Explicit = true; 1499 return false; 1500 1501 case VRegInfo::GENERIC: 1502 case VRegInfo::REGBANK: 1503 return error(Loc, "register class specification on generic register"); 1504 } 1505 llvm_unreachable("Unexpected register kind"); 1506 } 1507 1508 // Should be a register bank or a generic register. 1509 const RegisterBank *RegBank = nullptr; 1510 if (Name != "_") { 1511 RegBank = PFS.Target.getRegBank(Name); 1512 if (!RegBank) 1513 return error(Loc, "expected '_', register class, or register bank name"); 1514 } 1515 1516 lex(); 1517 1518 switch (RegInfo.Kind) { 1519 case VRegInfo::UNKNOWN: 1520 case VRegInfo::GENERIC: 1521 case VRegInfo::REGBANK: 1522 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1523 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1524 return error(Loc, "conflicting generic register banks"); 1525 RegInfo.D.RegBank = RegBank; 1526 RegInfo.Explicit = true; 1527 return false; 1528 1529 case VRegInfo::NORMAL: 1530 return error(Loc, "register bank specification on normal register"); 1531 } 1532 llvm_unreachable("Unexpected register kind"); 1533 } 1534 1535 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1536 const unsigned OldFlags = Flags; 1537 switch (Token.kind()) { 1538 case MIToken::kw_implicit: 1539 Flags |= RegState::Implicit; 1540 break; 1541 case MIToken::kw_implicit_define: 1542 Flags |= RegState::ImplicitDefine; 1543 break; 1544 case MIToken::kw_def: 1545 Flags |= RegState::Define; 1546 break; 1547 case MIToken::kw_dead: 1548 Flags |= RegState::Dead; 1549 break; 1550 case MIToken::kw_killed: 1551 Flags |= RegState::Kill; 1552 break; 1553 case MIToken::kw_undef: 1554 Flags |= RegState::Undef; 1555 break; 1556 case MIToken::kw_internal: 1557 Flags |= RegState::InternalRead; 1558 break; 1559 case MIToken::kw_early_clobber: 1560 Flags |= RegState::EarlyClobber; 1561 break; 1562 case MIToken::kw_debug_use: 1563 Flags |= RegState::Debug; 1564 break; 1565 case MIToken::kw_renamable: 1566 Flags |= RegState::Renamable; 1567 break; 1568 default: 1569 llvm_unreachable("The current token should be a register flag"); 1570 } 1571 if (OldFlags == Flags) 1572 // We know that the same flag is specified more than once when the flags 1573 // weren't modified. 1574 return error("duplicate '" + Token.stringValue() + "' register flag"); 1575 lex(); 1576 return false; 1577 } 1578 1579 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1580 assert(Token.is(MIToken::dot)); 1581 lex(); 1582 if (Token.isNot(MIToken::Identifier)) 1583 return error("expected a subregister index after '.'"); 1584 auto Name = Token.stringValue(); 1585 SubReg = PFS.Target.getSubRegIndex(Name); 1586 if (!SubReg) 1587 return error(Twine("use of unknown subregister index '") + Name + "'"); 1588 lex(); 1589 return false; 1590 } 1591 1592 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1593 if (!consumeIfPresent(MIToken::kw_tied_def)) 1594 return true; 1595 if (Token.isNot(MIToken::IntegerLiteral)) 1596 return error("expected an integer literal after 'tied-def'"); 1597 if (getUnsigned(TiedDefIdx)) 1598 return true; 1599 lex(); 1600 if (expectAndConsume(MIToken::rparen)) 1601 return true; 1602 return false; 1603 } 1604 1605 bool MIParser::assignRegisterTies(MachineInstr &MI, 1606 ArrayRef<ParsedMachineOperand> Operands) { 1607 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1608 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1609 if (!Operands[I].TiedDefIdx) 1610 continue; 1611 // The parser ensures that this operand is a register use, so we just have 1612 // to check the tied-def operand. 1613 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1614 if (DefIdx >= E) 1615 return error(Operands[I].Begin, 1616 Twine("use of invalid tied-def operand index '" + 1617 Twine(DefIdx) + "'; instruction has only ") + 1618 Twine(E) + " operands"); 1619 const auto &DefOperand = Operands[DefIdx].Operand; 1620 if (!DefOperand.isReg() || !DefOperand.isDef()) 1621 // FIXME: add note with the def operand. 1622 return error(Operands[I].Begin, 1623 Twine("use of invalid tied-def operand index '") + 1624 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1625 " isn't a defined register"); 1626 // Check that the tied-def operand wasn't tied elsewhere. 1627 for (const auto &TiedPair : TiedRegisterPairs) { 1628 if (TiedPair.first == DefIdx) 1629 return error(Operands[I].Begin, 1630 Twine("the tied-def operand #") + Twine(DefIdx) + 1631 " is already tied with another register operand"); 1632 } 1633 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1634 } 1635 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1636 // indices must be less than tied max. 1637 for (const auto &TiedPair : TiedRegisterPairs) 1638 MI.tieOperands(TiedPair.first, TiedPair.second); 1639 return false; 1640 } 1641 1642 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1643 Optional<unsigned> &TiedDefIdx, 1644 bool IsDef) { 1645 unsigned Flags = IsDef ? RegState::Define : 0; 1646 while (Token.isRegisterFlag()) { 1647 if (parseRegisterFlag(Flags)) 1648 return true; 1649 } 1650 if (!Token.isRegister()) 1651 return error("expected a register after register flags"); 1652 Register Reg; 1653 VRegInfo *RegInfo; 1654 if (parseRegister(Reg, RegInfo)) 1655 return true; 1656 lex(); 1657 unsigned SubReg = 0; 1658 if (Token.is(MIToken::dot)) { 1659 if (parseSubRegisterIndex(SubReg)) 1660 return true; 1661 if (!Register::isVirtualRegister(Reg)) 1662 return error("subregister index expects a virtual register"); 1663 } 1664 if (Token.is(MIToken::colon)) { 1665 if (!Register::isVirtualRegister(Reg)) 1666 return error("register class specification expects a virtual register"); 1667 lex(); 1668 if (parseRegisterClassOrBank(*RegInfo)) 1669 return true; 1670 } 1671 MachineRegisterInfo &MRI = MF.getRegInfo(); 1672 if ((Flags & RegState::Define) == 0) { 1673 if (consumeIfPresent(MIToken::lparen)) { 1674 unsigned Idx; 1675 if (!parseRegisterTiedDefIndex(Idx)) 1676 TiedDefIdx = Idx; 1677 else { 1678 // Try a redundant low-level type. 1679 LLT Ty; 1680 if (parseLowLevelType(Token.location(), Ty)) 1681 return error("expected tied-def or low-level type after '('"); 1682 1683 if (expectAndConsume(MIToken::rparen)) 1684 return true; 1685 1686 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1687 return error("inconsistent type for generic virtual register"); 1688 1689 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1690 MRI.setType(Reg, Ty); 1691 } 1692 } 1693 } else if (consumeIfPresent(MIToken::lparen)) { 1694 // Virtual registers may have a tpe with GlobalISel. 1695 if (!Register::isVirtualRegister(Reg)) 1696 return error("unexpected type on physical register"); 1697 1698 LLT Ty; 1699 if (parseLowLevelType(Token.location(), Ty)) 1700 return true; 1701 1702 if (expectAndConsume(MIToken::rparen)) 1703 return true; 1704 1705 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1706 return error("inconsistent type for generic virtual register"); 1707 1708 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1709 MRI.setType(Reg, Ty); 1710 } else if (Register::isVirtualRegister(Reg)) { 1711 // Generic virtual registers must have a type. 1712 // If we end up here this means the type hasn't been specified and 1713 // this is bad! 1714 if (RegInfo->Kind == VRegInfo::GENERIC || 1715 RegInfo->Kind == VRegInfo::REGBANK) 1716 return error("generic virtual registers must have a type"); 1717 } 1718 Dest = MachineOperand::CreateReg( 1719 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1720 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1721 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1722 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1723 1724 return false; 1725 } 1726 1727 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1728 assert(Token.is(MIToken::IntegerLiteral)); 1729 const APSInt &Int = Token.integerValue(); 1730 if (Int.getMinSignedBits() > 64) 1731 return error("integer literal is too large to be an immediate operand"); 1732 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1733 lex(); 1734 return false; 1735 } 1736 1737 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1738 const unsigned OpIdx, 1739 MachineOperand &Dest, 1740 const MIRFormatter &MF) { 1741 assert(Token.is(MIToken::dot)); 1742 auto Loc = Token.location(); // record start position 1743 size_t Len = 1; // for "." 1744 lex(); 1745 1746 // Handle the case that mnemonic starts with number. 1747 if (Token.is(MIToken::IntegerLiteral)) { 1748 Len += Token.range().size(); 1749 lex(); 1750 } 1751 1752 StringRef Src; 1753 if (Token.is(MIToken::comma)) 1754 Src = StringRef(Loc, Len); 1755 else { 1756 assert(Token.is(MIToken::Identifier)); 1757 Src = StringRef(Loc, Len + Token.stringValue().size()); 1758 } 1759 int64_t Val; 1760 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1761 [this](StringRef::iterator Loc, const Twine &Msg) 1762 -> bool { return error(Loc, Msg); })) 1763 return true; 1764 1765 Dest = MachineOperand::CreateImm(Val); 1766 if (!Token.is(MIToken::comma)) 1767 lex(); 1768 return false; 1769 } 1770 1771 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1772 PerFunctionMIParsingState &PFS, const Constant *&C, 1773 ErrorCallbackType ErrCB) { 1774 auto Source = StringValue.str(); // The source has to be null terminated. 1775 SMDiagnostic Err; 1776 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1777 &PFS.IRSlots); 1778 if (!C) 1779 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1780 return false; 1781 } 1782 1783 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1784 const Constant *&C) { 1785 return ::parseIRConstant( 1786 Loc, StringValue, PFS, C, 1787 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1788 return error(Loc, Msg); 1789 }); 1790 } 1791 1792 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1793 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1794 return true; 1795 lex(); 1796 return false; 1797 } 1798 1799 // See LLT implemntation for bit size limits. 1800 static bool verifyScalarSize(uint64_t Size) { 1801 return Size != 0 && isUInt<16>(Size); 1802 } 1803 1804 static bool verifyVectorElementCount(uint64_t NumElts) { 1805 return NumElts != 0 && isUInt<16>(NumElts); 1806 } 1807 1808 static bool verifyAddrSpace(uint64_t AddrSpace) { 1809 return isUInt<24>(AddrSpace); 1810 } 1811 1812 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1813 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1814 StringRef SizeStr = Token.range().drop_front(); 1815 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1816 return error("expected integers after 's'/'p' type character"); 1817 } 1818 1819 if (Token.range().front() == 's') { 1820 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1821 if (!verifyScalarSize(ScalarSize)) 1822 return error("invalid size for scalar type"); 1823 1824 Ty = LLT::scalar(ScalarSize); 1825 lex(); 1826 return false; 1827 } else if (Token.range().front() == 'p') { 1828 const DataLayout &DL = MF.getDataLayout(); 1829 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1830 if (!verifyAddrSpace(AS)) 1831 return error("invalid address space number"); 1832 1833 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1834 lex(); 1835 return false; 1836 } 1837 1838 // Now we're looking for a vector. 1839 if (Token.isNot(MIToken::less)) 1840 return error(Loc, 1841 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1842 lex(); 1843 1844 if (Token.isNot(MIToken::IntegerLiteral)) 1845 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1846 uint64_t NumElements = Token.integerValue().getZExtValue(); 1847 if (!verifyVectorElementCount(NumElements)) 1848 return error("invalid number of vector elements"); 1849 1850 lex(); 1851 1852 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1853 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1854 lex(); 1855 1856 if (Token.range().front() != 's' && Token.range().front() != 'p') 1857 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1858 StringRef SizeStr = Token.range().drop_front(); 1859 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1860 return error("expected integers after 's'/'p' type character"); 1861 1862 if (Token.range().front() == 's') { 1863 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1864 if (!verifyScalarSize(ScalarSize)) 1865 return error("invalid size for scalar type"); 1866 Ty = LLT::scalar(ScalarSize); 1867 } else if (Token.range().front() == 'p') { 1868 const DataLayout &DL = MF.getDataLayout(); 1869 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1870 if (!verifyAddrSpace(AS)) 1871 return error("invalid address space number"); 1872 1873 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1874 } else 1875 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1876 lex(); 1877 1878 if (Token.isNot(MIToken::greater)) 1879 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1880 lex(); 1881 1882 Ty = LLT::fixed_vector(NumElements, Ty); 1883 return false; 1884 } 1885 1886 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1887 assert(Token.is(MIToken::Identifier)); 1888 StringRef TypeStr = Token.range(); 1889 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1890 TypeStr.front() != 'p') 1891 return error( 1892 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1893 StringRef SizeStr = Token.range().drop_front(); 1894 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1895 return error("expected integers after 'i'/'s'/'p' type character"); 1896 1897 auto Loc = Token.location(); 1898 lex(); 1899 if (Token.isNot(MIToken::IntegerLiteral)) { 1900 if (Token.isNot(MIToken::Identifier) || 1901 !(Token.range() == "true" || Token.range() == "false")) 1902 return error("expected an integer literal"); 1903 } 1904 const Constant *C = nullptr; 1905 if (parseIRConstant(Loc, C)) 1906 return true; 1907 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1908 return false; 1909 } 1910 1911 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1912 auto Loc = Token.location(); 1913 lex(); 1914 if (Token.isNot(MIToken::FloatingPointLiteral) && 1915 Token.isNot(MIToken::HexLiteral)) 1916 return error("expected a floating point literal"); 1917 const Constant *C = nullptr; 1918 if (parseIRConstant(Loc, C)) 1919 return true; 1920 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1921 return false; 1922 } 1923 1924 static bool getHexUint(const MIToken &Token, APInt &Result) { 1925 assert(Token.is(MIToken::HexLiteral)); 1926 StringRef S = Token.range(); 1927 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1928 // This could be a floating point literal with a special prefix. 1929 if (!isxdigit(S[2])) 1930 return true; 1931 StringRef V = S.substr(2); 1932 APInt A(V.size()*4, V, 16); 1933 1934 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1935 // sure it isn't the case before constructing result. 1936 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1937 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1938 return false; 1939 } 1940 1941 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1942 ErrorCallbackType ErrCB) { 1943 if (Token.hasIntegerValue()) { 1944 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1945 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1946 if (Val64 == Limit) 1947 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1948 Result = Val64; 1949 return false; 1950 } 1951 if (Token.is(MIToken::HexLiteral)) { 1952 APInt A; 1953 if (getHexUint(Token, A)) 1954 return true; 1955 if (A.getBitWidth() > 32) 1956 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1957 Result = A.getZExtValue(); 1958 return false; 1959 } 1960 return true; 1961 } 1962 1963 bool MIParser::getUnsigned(unsigned &Result) { 1964 return ::getUnsigned( 1965 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1966 return error(Loc, Msg); 1967 }); 1968 } 1969 1970 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1971 assert(Token.is(MIToken::MachineBasicBlock) || 1972 Token.is(MIToken::MachineBasicBlockLabel)); 1973 unsigned Number; 1974 if (getUnsigned(Number)) 1975 return true; 1976 auto MBBInfo = PFS.MBBSlots.find(Number); 1977 if (MBBInfo == PFS.MBBSlots.end()) 1978 return error(Twine("use of undefined machine basic block #") + 1979 Twine(Number)); 1980 MBB = MBBInfo->second; 1981 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1982 // we drop the <irname> from the bb.<id>.<irname> format. 1983 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1984 return error(Twine("the name of machine basic block #") + Twine(Number) + 1985 " isn't '" + Token.stringValue() + "'"); 1986 return false; 1987 } 1988 1989 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1990 MachineBasicBlock *MBB; 1991 if (parseMBBReference(MBB)) 1992 return true; 1993 Dest = MachineOperand::CreateMBB(MBB); 1994 lex(); 1995 return false; 1996 } 1997 1998 bool MIParser::parseStackFrameIndex(int &FI) { 1999 assert(Token.is(MIToken::StackObject)); 2000 unsigned ID; 2001 if (getUnsigned(ID)) 2002 return true; 2003 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 2004 if (ObjectInfo == PFS.StackObjectSlots.end()) 2005 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 2006 "'"); 2007 StringRef Name; 2008 if (const auto *Alloca = 2009 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 2010 Name = Alloca->getName(); 2011 if (!Token.stringValue().empty() && Token.stringValue() != Name) 2012 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 2013 "' isn't '" + Token.stringValue() + "'"); 2014 lex(); 2015 FI = ObjectInfo->second; 2016 return false; 2017 } 2018 2019 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 2020 int FI; 2021 if (parseStackFrameIndex(FI)) 2022 return true; 2023 Dest = MachineOperand::CreateFI(FI); 2024 return false; 2025 } 2026 2027 bool MIParser::parseFixedStackFrameIndex(int &FI) { 2028 assert(Token.is(MIToken::FixedStackObject)); 2029 unsigned ID; 2030 if (getUnsigned(ID)) 2031 return true; 2032 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 2033 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 2034 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 2035 Twine(ID) + "'"); 2036 lex(); 2037 FI = ObjectInfo->second; 2038 return false; 2039 } 2040 2041 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 2042 int FI; 2043 if (parseFixedStackFrameIndex(FI)) 2044 return true; 2045 Dest = MachineOperand::CreateFI(FI); 2046 return false; 2047 } 2048 2049 static bool parseGlobalValue(const MIToken &Token, 2050 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 2051 ErrorCallbackType ErrCB) { 2052 switch (Token.kind()) { 2053 case MIToken::NamedGlobalValue: { 2054 const Module *M = PFS.MF.getFunction().getParent(); 2055 GV = M->getNamedValue(Token.stringValue()); 2056 if (!GV) 2057 return ErrCB(Token.location(), Twine("use of undefined global value '") + 2058 Token.range() + "'"); 2059 break; 2060 } 2061 case MIToken::GlobalValue: { 2062 unsigned GVIdx; 2063 if (getUnsigned(Token, GVIdx, ErrCB)) 2064 return true; 2065 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 2066 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 2067 Twine(GVIdx) + "'"); 2068 GV = PFS.IRSlots.GlobalValues[GVIdx]; 2069 break; 2070 } 2071 default: 2072 llvm_unreachable("The current token should be a global value"); 2073 } 2074 return false; 2075 } 2076 2077 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 2078 return ::parseGlobalValue( 2079 Token, PFS, GV, 2080 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2081 return error(Loc, Msg); 2082 }); 2083 } 2084 2085 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 2086 GlobalValue *GV = nullptr; 2087 if (parseGlobalValue(GV)) 2088 return true; 2089 lex(); 2090 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 2091 if (parseOperandsOffset(Dest)) 2092 return true; 2093 return false; 2094 } 2095 2096 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 2097 assert(Token.is(MIToken::ConstantPoolItem)); 2098 unsigned ID; 2099 if (getUnsigned(ID)) 2100 return true; 2101 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 2102 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 2103 return error("use of undefined constant '%const." + Twine(ID) + "'"); 2104 lex(); 2105 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 2106 if (parseOperandsOffset(Dest)) 2107 return true; 2108 return false; 2109 } 2110 2111 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 2112 assert(Token.is(MIToken::JumpTableIndex)); 2113 unsigned ID; 2114 if (getUnsigned(ID)) 2115 return true; 2116 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 2117 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 2118 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 2119 lex(); 2120 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 2121 return false; 2122 } 2123 2124 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 2125 assert(Token.is(MIToken::ExternalSymbol)); 2126 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 2127 lex(); 2128 Dest = MachineOperand::CreateES(Symbol); 2129 if (parseOperandsOffset(Dest)) 2130 return true; 2131 return false; 2132 } 2133 2134 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 2135 assert(Token.is(MIToken::MCSymbol)); 2136 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 2137 lex(); 2138 Dest = MachineOperand::CreateMCSymbol(Symbol); 2139 if (parseOperandsOffset(Dest)) 2140 return true; 2141 return false; 2142 } 2143 2144 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 2145 assert(Token.is(MIToken::SubRegisterIndex)); 2146 StringRef Name = Token.stringValue(); 2147 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 2148 if (SubRegIndex == 0) 2149 return error(Twine("unknown subregister index '") + Name + "'"); 2150 lex(); 2151 Dest = MachineOperand::CreateImm(SubRegIndex); 2152 return false; 2153 } 2154 2155 bool MIParser::parseMDNode(MDNode *&Node) { 2156 assert(Token.is(MIToken::exclaim)); 2157 2158 auto Loc = Token.location(); 2159 lex(); 2160 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2161 return error("expected metadata id after '!'"); 2162 unsigned ID; 2163 if (getUnsigned(ID)) 2164 return true; 2165 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 2166 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) { 2167 NodeInfo = PFS.MachineMetadataNodes.find(ID); 2168 if (NodeInfo == PFS.MachineMetadataNodes.end()) 2169 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 2170 } 2171 lex(); 2172 Node = NodeInfo->second.get(); 2173 return false; 2174 } 2175 2176 bool MIParser::parseDIExpression(MDNode *&Expr) { 2177 assert(Token.is(MIToken::md_diexpr)); 2178 lex(); 2179 2180 // FIXME: Share this parsing with the IL parser. 2181 SmallVector<uint64_t, 8> Elements; 2182 2183 if (expectAndConsume(MIToken::lparen)) 2184 return true; 2185 2186 if (Token.isNot(MIToken::rparen)) { 2187 do { 2188 if (Token.is(MIToken::Identifier)) { 2189 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2190 lex(); 2191 Elements.push_back(Op); 2192 continue; 2193 } 2194 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2195 lex(); 2196 Elements.push_back(Enc); 2197 continue; 2198 } 2199 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2200 } 2201 2202 if (Token.isNot(MIToken::IntegerLiteral) || 2203 Token.integerValue().isSigned()) 2204 return error("expected unsigned integer"); 2205 2206 auto &U = Token.integerValue(); 2207 if (U.ugt(UINT64_MAX)) 2208 return error("element too large, limit is " + Twine(UINT64_MAX)); 2209 Elements.push_back(U.getZExtValue()); 2210 lex(); 2211 2212 } while (consumeIfPresent(MIToken::comma)); 2213 } 2214 2215 if (expectAndConsume(MIToken::rparen)) 2216 return true; 2217 2218 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2219 return false; 2220 } 2221 2222 bool MIParser::parseDILocation(MDNode *&Loc) { 2223 assert(Token.is(MIToken::md_dilocation)); 2224 lex(); 2225 2226 bool HaveLine = false; 2227 unsigned Line = 0; 2228 unsigned Column = 0; 2229 MDNode *Scope = nullptr; 2230 MDNode *InlinedAt = nullptr; 2231 bool ImplicitCode = false; 2232 2233 if (expectAndConsume(MIToken::lparen)) 2234 return true; 2235 2236 if (Token.isNot(MIToken::rparen)) { 2237 do { 2238 if (Token.is(MIToken::Identifier)) { 2239 if (Token.stringValue() == "line") { 2240 lex(); 2241 if (expectAndConsume(MIToken::colon)) 2242 return true; 2243 if (Token.isNot(MIToken::IntegerLiteral) || 2244 Token.integerValue().isSigned()) 2245 return error("expected unsigned integer"); 2246 Line = Token.integerValue().getZExtValue(); 2247 HaveLine = true; 2248 lex(); 2249 continue; 2250 } 2251 if (Token.stringValue() == "column") { 2252 lex(); 2253 if (expectAndConsume(MIToken::colon)) 2254 return true; 2255 if (Token.isNot(MIToken::IntegerLiteral) || 2256 Token.integerValue().isSigned()) 2257 return error("expected unsigned integer"); 2258 Column = Token.integerValue().getZExtValue(); 2259 lex(); 2260 continue; 2261 } 2262 if (Token.stringValue() == "scope") { 2263 lex(); 2264 if (expectAndConsume(MIToken::colon)) 2265 return true; 2266 if (parseMDNode(Scope)) 2267 return error("expected metadata node"); 2268 if (!isa<DIScope>(Scope)) 2269 return error("expected DIScope node"); 2270 continue; 2271 } 2272 if (Token.stringValue() == "inlinedAt") { 2273 lex(); 2274 if (expectAndConsume(MIToken::colon)) 2275 return true; 2276 if (Token.is(MIToken::exclaim)) { 2277 if (parseMDNode(InlinedAt)) 2278 return true; 2279 } else if (Token.is(MIToken::md_dilocation)) { 2280 if (parseDILocation(InlinedAt)) 2281 return true; 2282 } else 2283 return error("expected metadata node"); 2284 if (!isa<DILocation>(InlinedAt)) 2285 return error("expected DILocation node"); 2286 continue; 2287 } 2288 if (Token.stringValue() == "isImplicitCode") { 2289 lex(); 2290 if (expectAndConsume(MIToken::colon)) 2291 return true; 2292 if (!Token.is(MIToken::Identifier)) 2293 return error("expected true/false"); 2294 // As far as I can see, we don't have any existing need for parsing 2295 // true/false in MIR yet. Do it ad-hoc until there's something else 2296 // that needs it. 2297 if (Token.stringValue() == "true") 2298 ImplicitCode = true; 2299 else if (Token.stringValue() == "false") 2300 ImplicitCode = false; 2301 else 2302 return error("expected true/false"); 2303 lex(); 2304 continue; 2305 } 2306 } 2307 return error(Twine("invalid DILocation argument '") + 2308 Token.stringValue() + "'"); 2309 } while (consumeIfPresent(MIToken::comma)); 2310 } 2311 2312 if (expectAndConsume(MIToken::rparen)) 2313 return true; 2314 2315 if (!HaveLine) 2316 return error("DILocation requires line number"); 2317 if (!Scope) 2318 return error("DILocation requires a scope"); 2319 2320 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2321 InlinedAt, ImplicitCode); 2322 return false; 2323 } 2324 2325 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2326 MDNode *Node = nullptr; 2327 if (Token.is(MIToken::exclaim)) { 2328 if (parseMDNode(Node)) 2329 return true; 2330 } else if (Token.is(MIToken::md_diexpr)) { 2331 // FIXME: This should be driven off of the UNIQUED property in Metadata.def 2332 if (parseDIExpression(Node)) 2333 return true; 2334 } 2335 Dest = MachineOperand::CreateMetadata(Node); 2336 return false; 2337 } 2338 2339 bool MIParser::parseCFIOffset(int &Offset) { 2340 if (Token.isNot(MIToken::IntegerLiteral)) 2341 return error("expected a cfi offset"); 2342 if (Token.integerValue().getMinSignedBits() > 32) 2343 return error("expected a 32 bit integer (the cfi offset is too large)"); 2344 Offset = (int)Token.integerValue().getExtValue(); 2345 lex(); 2346 return false; 2347 } 2348 2349 bool MIParser::parseCFIRegister(Register &Reg) { 2350 if (Token.isNot(MIToken::NamedRegister)) 2351 return error("expected a cfi register"); 2352 Register LLVMReg; 2353 if (parseNamedRegister(LLVMReg)) 2354 return true; 2355 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2356 assert(TRI && "Expected target register info"); 2357 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2358 if (DwarfReg < 0) 2359 return error("invalid DWARF register"); 2360 Reg = (unsigned)DwarfReg; 2361 lex(); 2362 return false; 2363 } 2364 2365 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) { 2366 if (Token.isNot(MIToken::IntegerLiteral)) 2367 return error("expected a cfi address space literal"); 2368 if (Token.integerValue().isSigned()) 2369 return error("expected an unsigned integer (cfi address space)"); 2370 AddressSpace = Token.integerValue().getZExtValue(); 2371 lex(); 2372 return false; 2373 } 2374 2375 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2376 do { 2377 if (Token.isNot(MIToken::HexLiteral)) 2378 return error("expected a hexadecimal literal"); 2379 unsigned Value; 2380 if (getUnsigned(Value)) 2381 return true; 2382 if (Value > UINT8_MAX) 2383 return error("expected a 8-bit integer (too large)"); 2384 Values.push_back(static_cast<uint8_t>(Value)); 2385 lex(); 2386 } while (consumeIfPresent(MIToken::comma)); 2387 return false; 2388 } 2389 2390 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2391 auto Kind = Token.kind(); 2392 lex(); 2393 int Offset; 2394 Register Reg; 2395 unsigned AddressSpace; 2396 unsigned CFIIndex; 2397 switch (Kind) { 2398 case MIToken::kw_cfi_same_value: 2399 if (parseCFIRegister(Reg)) 2400 return true; 2401 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2402 break; 2403 case MIToken::kw_cfi_offset: 2404 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2405 parseCFIOffset(Offset)) 2406 return true; 2407 CFIIndex = 2408 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2409 break; 2410 case MIToken::kw_cfi_rel_offset: 2411 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2412 parseCFIOffset(Offset)) 2413 return true; 2414 CFIIndex = MF.addFrameInst( 2415 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2416 break; 2417 case MIToken::kw_cfi_def_cfa_register: 2418 if (parseCFIRegister(Reg)) 2419 return true; 2420 CFIIndex = 2421 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2422 break; 2423 case MIToken::kw_cfi_def_cfa_offset: 2424 if (parseCFIOffset(Offset)) 2425 return true; 2426 CFIIndex = 2427 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); 2428 break; 2429 case MIToken::kw_cfi_adjust_cfa_offset: 2430 if (parseCFIOffset(Offset)) 2431 return true; 2432 CFIIndex = MF.addFrameInst( 2433 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2434 break; 2435 case MIToken::kw_cfi_def_cfa: 2436 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2437 parseCFIOffset(Offset)) 2438 return true; 2439 CFIIndex = 2440 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); 2441 break; 2442 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2443 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2444 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) || 2445 parseCFIAddressSpace(AddressSpace)) 2446 return true; 2447 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa( 2448 nullptr, Reg, Offset, AddressSpace)); 2449 break; 2450 case MIToken::kw_cfi_remember_state: 2451 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2452 break; 2453 case MIToken::kw_cfi_restore: 2454 if (parseCFIRegister(Reg)) 2455 return true; 2456 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2457 break; 2458 case MIToken::kw_cfi_restore_state: 2459 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2460 break; 2461 case MIToken::kw_cfi_undefined: 2462 if (parseCFIRegister(Reg)) 2463 return true; 2464 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2465 break; 2466 case MIToken::kw_cfi_register: { 2467 Register Reg2; 2468 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2469 parseCFIRegister(Reg2)) 2470 return true; 2471 2472 CFIIndex = 2473 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2474 break; 2475 } 2476 case MIToken::kw_cfi_window_save: 2477 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2478 break; 2479 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2480 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2481 break; 2482 case MIToken::kw_cfi_escape: { 2483 std::string Values; 2484 if (parseCFIEscapeValues(Values)) 2485 return true; 2486 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2487 break; 2488 } 2489 default: 2490 // TODO: Parse the other CFI operands. 2491 llvm_unreachable("The current token should be a cfi operand"); 2492 } 2493 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2494 return false; 2495 } 2496 2497 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2498 switch (Token.kind()) { 2499 case MIToken::NamedIRBlock: { 2500 BB = dyn_cast_or_null<BasicBlock>( 2501 F.getValueSymbolTable()->lookup(Token.stringValue())); 2502 if (!BB) 2503 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2504 break; 2505 } 2506 case MIToken::IRBlock: { 2507 unsigned SlotNumber = 0; 2508 if (getUnsigned(SlotNumber)) 2509 return true; 2510 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2511 if (!BB) 2512 return error(Twine("use of undefined IR block '%ir-block.") + 2513 Twine(SlotNumber) + "'"); 2514 break; 2515 } 2516 default: 2517 llvm_unreachable("The current token should be an IR block reference"); 2518 } 2519 return false; 2520 } 2521 2522 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2523 assert(Token.is(MIToken::kw_blockaddress)); 2524 lex(); 2525 if (expectAndConsume(MIToken::lparen)) 2526 return true; 2527 if (Token.isNot(MIToken::GlobalValue) && 2528 Token.isNot(MIToken::NamedGlobalValue)) 2529 return error("expected a global value"); 2530 GlobalValue *GV = nullptr; 2531 if (parseGlobalValue(GV)) 2532 return true; 2533 auto *F = dyn_cast<Function>(GV); 2534 if (!F) 2535 return error("expected an IR function reference"); 2536 lex(); 2537 if (expectAndConsume(MIToken::comma)) 2538 return true; 2539 BasicBlock *BB = nullptr; 2540 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2541 return error("expected an IR block reference"); 2542 if (parseIRBlock(BB, *F)) 2543 return true; 2544 lex(); 2545 if (expectAndConsume(MIToken::rparen)) 2546 return true; 2547 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2548 if (parseOperandsOffset(Dest)) 2549 return true; 2550 return false; 2551 } 2552 2553 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2554 assert(Token.is(MIToken::kw_intrinsic)); 2555 lex(); 2556 if (expectAndConsume(MIToken::lparen)) 2557 return error("expected syntax intrinsic(@llvm.whatever)"); 2558 2559 if (Token.isNot(MIToken::NamedGlobalValue)) 2560 return error("expected syntax intrinsic(@llvm.whatever)"); 2561 2562 std::string Name = std::string(Token.stringValue()); 2563 lex(); 2564 2565 if (expectAndConsume(MIToken::rparen)) 2566 return error("expected ')' to terminate intrinsic name"); 2567 2568 // Find out what intrinsic we're dealing with, first try the global namespace 2569 // and then the target's private intrinsics if that fails. 2570 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2571 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2572 if (ID == Intrinsic::not_intrinsic && TII) 2573 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2574 2575 if (ID == Intrinsic::not_intrinsic) 2576 return error("unknown intrinsic name"); 2577 Dest = MachineOperand::CreateIntrinsicID(ID); 2578 2579 return false; 2580 } 2581 2582 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2583 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2584 bool IsFloat = Token.is(MIToken::kw_floatpred); 2585 lex(); 2586 2587 if (expectAndConsume(MIToken::lparen)) 2588 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2589 2590 if (Token.isNot(MIToken::Identifier)) 2591 return error("whatever"); 2592 2593 CmpInst::Predicate Pred; 2594 if (IsFloat) { 2595 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2596 .Case("false", CmpInst::FCMP_FALSE) 2597 .Case("oeq", CmpInst::FCMP_OEQ) 2598 .Case("ogt", CmpInst::FCMP_OGT) 2599 .Case("oge", CmpInst::FCMP_OGE) 2600 .Case("olt", CmpInst::FCMP_OLT) 2601 .Case("ole", CmpInst::FCMP_OLE) 2602 .Case("one", CmpInst::FCMP_ONE) 2603 .Case("ord", CmpInst::FCMP_ORD) 2604 .Case("uno", CmpInst::FCMP_UNO) 2605 .Case("ueq", CmpInst::FCMP_UEQ) 2606 .Case("ugt", CmpInst::FCMP_UGT) 2607 .Case("uge", CmpInst::FCMP_UGE) 2608 .Case("ult", CmpInst::FCMP_ULT) 2609 .Case("ule", CmpInst::FCMP_ULE) 2610 .Case("une", CmpInst::FCMP_UNE) 2611 .Case("true", CmpInst::FCMP_TRUE) 2612 .Default(CmpInst::BAD_FCMP_PREDICATE); 2613 if (!CmpInst::isFPPredicate(Pred)) 2614 return error("invalid floating-point predicate"); 2615 } else { 2616 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2617 .Case("eq", CmpInst::ICMP_EQ) 2618 .Case("ne", CmpInst::ICMP_NE) 2619 .Case("sgt", CmpInst::ICMP_SGT) 2620 .Case("sge", CmpInst::ICMP_SGE) 2621 .Case("slt", CmpInst::ICMP_SLT) 2622 .Case("sle", CmpInst::ICMP_SLE) 2623 .Case("ugt", CmpInst::ICMP_UGT) 2624 .Case("uge", CmpInst::ICMP_UGE) 2625 .Case("ult", CmpInst::ICMP_ULT) 2626 .Case("ule", CmpInst::ICMP_ULE) 2627 .Default(CmpInst::BAD_ICMP_PREDICATE); 2628 if (!CmpInst::isIntPredicate(Pred)) 2629 return error("invalid integer predicate"); 2630 } 2631 2632 lex(); 2633 Dest = MachineOperand::CreatePredicate(Pred); 2634 if (expectAndConsume(MIToken::rparen)) 2635 return error("predicate should be terminated by ')'."); 2636 2637 return false; 2638 } 2639 2640 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2641 assert(Token.is(MIToken::kw_shufflemask)); 2642 2643 lex(); 2644 if (expectAndConsume(MIToken::lparen)) 2645 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2646 2647 SmallVector<int, 32> ShufMask; 2648 do { 2649 if (Token.is(MIToken::kw_undef)) { 2650 ShufMask.push_back(-1); 2651 } else if (Token.is(MIToken::IntegerLiteral)) { 2652 const APSInt &Int = Token.integerValue(); 2653 ShufMask.push_back(Int.getExtValue()); 2654 } else 2655 return error("expected integer constant"); 2656 2657 lex(); 2658 } while (consumeIfPresent(MIToken::comma)); 2659 2660 if (expectAndConsume(MIToken::rparen)) 2661 return error("shufflemask should be terminated by ')'."); 2662 2663 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2664 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2665 return false; 2666 } 2667 2668 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2669 assert(Token.is(MIToken::kw_target_index)); 2670 lex(); 2671 if (expectAndConsume(MIToken::lparen)) 2672 return true; 2673 if (Token.isNot(MIToken::Identifier)) 2674 return error("expected the name of the target index"); 2675 int Index = 0; 2676 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2677 return error("use of undefined target index '" + Token.stringValue() + "'"); 2678 lex(); 2679 if (expectAndConsume(MIToken::rparen)) 2680 return true; 2681 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2682 if (parseOperandsOffset(Dest)) 2683 return true; 2684 return false; 2685 } 2686 2687 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2688 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2689 lex(); 2690 if (expectAndConsume(MIToken::lparen)) 2691 return true; 2692 2693 uint32_t *Mask = MF.allocateRegMask(); 2694 while (true) { 2695 if (Token.isNot(MIToken::NamedRegister)) 2696 return error("expected a named register"); 2697 Register Reg; 2698 if (parseNamedRegister(Reg)) 2699 return true; 2700 lex(); 2701 Mask[Reg / 32] |= 1U << (Reg % 32); 2702 // TODO: Report an error if the same register is used more than once. 2703 if (Token.isNot(MIToken::comma)) 2704 break; 2705 lex(); 2706 } 2707 2708 if (expectAndConsume(MIToken::rparen)) 2709 return true; 2710 Dest = MachineOperand::CreateRegMask(Mask); 2711 return false; 2712 } 2713 2714 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2715 assert(Token.is(MIToken::kw_liveout)); 2716 uint32_t *Mask = MF.allocateRegMask(); 2717 lex(); 2718 if (expectAndConsume(MIToken::lparen)) 2719 return true; 2720 while (true) { 2721 if (Token.isNot(MIToken::NamedRegister)) 2722 return error("expected a named register"); 2723 Register Reg; 2724 if (parseNamedRegister(Reg)) 2725 return true; 2726 lex(); 2727 Mask[Reg / 32] |= 1U << (Reg % 32); 2728 // TODO: Report an error if the same register is used more than once. 2729 if (Token.isNot(MIToken::comma)) 2730 break; 2731 lex(); 2732 } 2733 if (expectAndConsume(MIToken::rparen)) 2734 return true; 2735 Dest = MachineOperand::CreateRegLiveOut(Mask); 2736 return false; 2737 } 2738 2739 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2740 MachineOperand &Dest, 2741 Optional<unsigned> &TiedDefIdx) { 2742 switch (Token.kind()) { 2743 case MIToken::kw_implicit: 2744 case MIToken::kw_implicit_define: 2745 case MIToken::kw_def: 2746 case MIToken::kw_dead: 2747 case MIToken::kw_killed: 2748 case MIToken::kw_undef: 2749 case MIToken::kw_internal: 2750 case MIToken::kw_early_clobber: 2751 case MIToken::kw_debug_use: 2752 case MIToken::kw_renamable: 2753 case MIToken::underscore: 2754 case MIToken::NamedRegister: 2755 case MIToken::VirtualRegister: 2756 case MIToken::NamedVirtualRegister: 2757 return parseRegisterOperand(Dest, TiedDefIdx); 2758 case MIToken::IntegerLiteral: 2759 return parseImmediateOperand(Dest); 2760 case MIToken::kw_half: 2761 case MIToken::kw_float: 2762 case MIToken::kw_double: 2763 case MIToken::kw_x86_fp80: 2764 case MIToken::kw_fp128: 2765 case MIToken::kw_ppc_fp128: 2766 return parseFPImmediateOperand(Dest); 2767 case MIToken::MachineBasicBlock: 2768 return parseMBBOperand(Dest); 2769 case MIToken::StackObject: 2770 return parseStackObjectOperand(Dest); 2771 case MIToken::FixedStackObject: 2772 return parseFixedStackObjectOperand(Dest); 2773 case MIToken::GlobalValue: 2774 case MIToken::NamedGlobalValue: 2775 return parseGlobalAddressOperand(Dest); 2776 case MIToken::ConstantPoolItem: 2777 return parseConstantPoolIndexOperand(Dest); 2778 case MIToken::JumpTableIndex: 2779 return parseJumpTableIndexOperand(Dest); 2780 case MIToken::ExternalSymbol: 2781 return parseExternalSymbolOperand(Dest); 2782 case MIToken::MCSymbol: 2783 return parseMCSymbolOperand(Dest); 2784 case MIToken::SubRegisterIndex: 2785 return parseSubRegisterIndexOperand(Dest); 2786 case MIToken::md_diexpr: 2787 case MIToken::exclaim: 2788 return parseMetadataOperand(Dest); 2789 case MIToken::kw_cfi_same_value: 2790 case MIToken::kw_cfi_offset: 2791 case MIToken::kw_cfi_rel_offset: 2792 case MIToken::kw_cfi_def_cfa_register: 2793 case MIToken::kw_cfi_def_cfa_offset: 2794 case MIToken::kw_cfi_adjust_cfa_offset: 2795 case MIToken::kw_cfi_escape: 2796 case MIToken::kw_cfi_def_cfa: 2797 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2798 case MIToken::kw_cfi_register: 2799 case MIToken::kw_cfi_remember_state: 2800 case MIToken::kw_cfi_restore: 2801 case MIToken::kw_cfi_restore_state: 2802 case MIToken::kw_cfi_undefined: 2803 case MIToken::kw_cfi_window_save: 2804 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2805 return parseCFIOperand(Dest); 2806 case MIToken::kw_blockaddress: 2807 return parseBlockAddressOperand(Dest); 2808 case MIToken::kw_intrinsic: 2809 return parseIntrinsicOperand(Dest); 2810 case MIToken::kw_target_index: 2811 return parseTargetIndexOperand(Dest); 2812 case MIToken::kw_liveout: 2813 return parseLiveoutRegisterMaskOperand(Dest); 2814 case MIToken::kw_floatpred: 2815 case MIToken::kw_intpred: 2816 return parsePredicateOperand(Dest); 2817 case MIToken::kw_shufflemask: 2818 return parseShuffleMaskOperand(Dest); 2819 case MIToken::Error: 2820 return true; 2821 case MIToken::Identifier: 2822 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2823 Dest = MachineOperand::CreateRegMask(RegMask); 2824 lex(); 2825 break; 2826 } else if (Token.stringValue() == "CustomRegMask") { 2827 return parseCustomRegisterMaskOperand(Dest); 2828 } else 2829 return parseTypedImmediateOperand(Dest); 2830 case MIToken::dot: { 2831 const auto *TII = MF.getSubtarget().getInstrInfo(); 2832 if (const auto *Formatter = TII->getMIRFormatter()) { 2833 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2834 } 2835 LLVM_FALLTHROUGH; 2836 } 2837 default: 2838 // FIXME: Parse the MCSymbol machine operand. 2839 return error("expected a machine operand"); 2840 } 2841 return false; 2842 } 2843 2844 bool MIParser::parseMachineOperandAndTargetFlags( 2845 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2846 Optional<unsigned> &TiedDefIdx) { 2847 unsigned TF = 0; 2848 bool HasTargetFlags = false; 2849 if (Token.is(MIToken::kw_target_flags)) { 2850 HasTargetFlags = true; 2851 lex(); 2852 if (expectAndConsume(MIToken::lparen)) 2853 return true; 2854 if (Token.isNot(MIToken::Identifier)) 2855 return error("expected the name of the target flag"); 2856 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2857 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2858 return error("use of undefined target flag '" + Token.stringValue() + 2859 "'"); 2860 } 2861 lex(); 2862 while (Token.is(MIToken::comma)) { 2863 lex(); 2864 if (Token.isNot(MIToken::Identifier)) 2865 return error("expected the name of the target flag"); 2866 unsigned BitFlag = 0; 2867 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2868 return error("use of undefined target flag '" + Token.stringValue() + 2869 "'"); 2870 // TODO: Report an error when using a duplicate bit target flag. 2871 TF |= BitFlag; 2872 lex(); 2873 } 2874 if (expectAndConsume(MIToken::rparen)) 2875 return true; 2876 } 2877 auto Loc = Token.location(); 2878 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2879 return true; 2880 if (!HasTargetFlags) 2881 return false; 2882 if (Dest.isReg()) 2883 return error(Loc, "register operands can't have target flags"); 2884 Dest.setTargetFlags(TF); 2885 return false; 2886 } 2887 2888 bool MIParser::parseOffset(int64_t &Offset) { 2889 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2890 return false; 2891 StringRef Sign = Token.range(); 2892 bool IsNegative = Token.is(MIToken::minus); 2893 lex(); 2894 if (Token.isNot(MIToken::IntegerLiteral)) 2895 return error("expected an integer literal after '" + Sign + "'"); 2896 if (Token.integerValue().getMinSignedBits() > 64) 2897 return error("expected 64-bit integer (too large)"); 2898 Offset = Token.integerValue().getExtValue(); 2899 if (IsNegative) 2900 Offset = -Offset; 2901 lex(); 2902 return false; 2903 } 2904 2905 bool MIParser::parseAlignment(uint64_t &Alignment) { 2906 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign)); 2907 lex(); 2908 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2909 return error("expected an integer literal after 'align'"); 2910 if (getUint64(Alignment)) 2911 return true; 2912 lex(); 2913 2914 if (!isPowerOf2_64(Alignment)) 2915 return error("expected a power-of-2 literal after 'align'"); 2916 2917 return false; 2918 } 2919 2920 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2921 assert(Token.is(MIToken::kw_addrspace)); 2922 lex(); 2923 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2924 return error("expected an integer literal after 'addrspace'"); 2925 if (getUnsigned(Addrspace)) 2926 return true; 2927 lex(); 2928 return false; 2929 } 2930 2931 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2932 int64_t Offset = 0; 2933 if (parseOffset(Offset)) 2934 return true; 2935 Op.setOffset(Offset); 2936 return false; 2937 } 2938 2939 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2940 const Value *&V, ErrorCallbackType ErrCB) { 2941 switch (Token.kind()) { 2942 case MIToken::NamedIRValue: { 2943 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2944 break; 2945 } 2946 case MIToken::IRValue: { 2947 unsigned SlotNumber = 0; 2948 if (getUnsigned(Token, SlotNumber, ErrCB)) 2949 return true; 2950 V = PFS.getIRValue(SlotNumber); 2951 break; 2952 } 2953 case MIToken::NamedGlobalValue: 2954 case MIToken::GlobalValue: { 2955 GlobalValue *GV = nullptr; 2956 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2957 return true; 2958 V = GV; 2959 break; 2960 } 2961 case MIToken::QuotedIRValue: { 2962 const Constant *C = nullptr; 2963 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2964 return true; 2965 V = C; 2966 break; 2967 } 2968 case MIToken::kw_unknown_address: 2969 V = nullptr; 2970 return false; 2971 default: 2972 llvm_unreachable("The current token should be an IR block reference"); 2973 } 2974 if (!V) 2975 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2976 return false; 2977 } 2978 2979 bool MIParser::parseIRValue(const Value *&V) { 2980 return ::parseIRValue( 2981 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2982 return error(Loc, Msg); 2983 }); 2984 } 2985 2986 bool MIParser::getUint64(uint64_t &Result) { 2987 if (Token.hasIntegerValue()) { 2988 if (Token.integerValue().getActiveBits() > 64) 2989 return error("expected 64-bit integer (too large)"); 2990 Result = Token.integerValue().getZExtValue(); 2991 return false; 2992 } 2993 if (Token.is(MIToken::HexLiteral)) { 2994 APInt A; 2995 if (getHexUint(A)) 2996 return true; 2997 if (A.getBitWidth() > 64) 2998 return error("expected 64-bit integer (too large)"); 2999 Result = A.getZExtValue(); 3000 return false; 3001 } 3002 return true; 3003 } 3004 3005 bool MIParser::getHexUint(APInt &Result) { 3006 return ::getHexUint(Token, Result); 3007 } 3008 3009 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 3010 const auto OldFlags = Flags; 3011 switch (Token.kind()) { 3012 case MIToken::kw_volatile: 3013 Flags |= MachineMemOperand::MOVolatile; 3014 break; 3015 case MIToken::kw_non_temporal: 3016 Flags |= MachineMemOperand::MONonTemporal; 3017 break; 3018 case MIToken::kw_dereferenceable: 3019 Flags |= MachineMemOperand::MODereferenceable; 3020 break; 3021 case MIToken::kw_invariant: 3022 Flags |= MachineMemOperand::MOInvariant; 3023 break; 3024 case MIToken::StringConstant: { 3025 MachineMemOperand::Flags TF; 3026 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 3027 return error("use of undefined target MMO flag '" + Token.stringValue() + 3028 "'"); 3029 Flags |= TF; 3030 break; 3031 } 3032 default: 3033 llvm_unreachable("The current token should be a memory operand flag"); 3034 } 3035 if (OldFlags == Flags) 3036 // We know that the same flag is specified more than once when the flags 3037 // weren't modified. 3038 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 3039 lex(); 3040 return false; 3041 } 3042 3043 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 3044 switch (Token.kind()) { 3045 case MIToken::kw_stack: 3046 PSV = MF.getPSVManager().getStack(); 3047 break; 3048 case MIToken::kw_got: 3049 PSV = MF.getPSVManager().getGOT(); 3050 break; 3051 case MIToken::kw_jump_table: 3052 PSV = MF.getPSVManager().getJumpTable(); 3053 break; 3054 case MIToken::kw_constant_pool: 3055 PSV = MF.getPSVManager().getConstantPool(); 3056 break; 3057 case MIToken::FixedStackObject: { 3058 int FI; 3059 if (parseFixedStackFrameIndex(FI)) 3060 return true; 3061 PSV = MF.getPSVManager().getFixedStack(FI); 3062 // The token was already consumed, so use return here instead of break. 3063 return false; 3064 } 3065 case MIToken::StackObject: { 3066 int FI; 3067 if (parseStackFrameIndex(FI)) 3068 return true; 3069 PSV = MF.getPSVManager().getFixedStack(FI); 3070 // The token was already consumed, so use return here instead of break. 3071 return false; 3072 } 3073 case MIToken::kw_call_entry: 3074 lex(); 3075 switch (Token.kind()) { 3076 case MIToken::GlobalValue: 3077 case MIToken::NamedGlobalValue: { 3078 GlobalValue *GV = nullptr; 3079 if (parseGlobalValue(GV)) 3080 return true; 3081 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 3082 break; 3083 } 3084 case MIToken::ExternalSymbol: 3085 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 3086 MF.createExternalSymbolName(Token.stringValue())); 3087 break; 3088 default: 3089 return error( 3090 "expected a global value or an external symbol after 'call-entry'"); 3091 } 3092 break; 3093 case MIToken::kw_custom: { 3094 lex(); 3095 const auto *TII = MF.getSubtarget().getInstrInfo(); 3096 if (const auto *Formatter = TII->getMIRFormatter()) { 3097 if (Formatter->parseCustomPseudoSourceValue( 3098 Token.stringValue(), MF, PFS, PSV, 3099 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 3100 return error(Loc, Msg); 3101 })) 3102 return true; 3103 } else 3104 return error("unable to parse target custom pseudo source value"); 3105 break; 3106 } 3107 default: 3108 llvm_unreachable("The current token should be pseudo source value"); 3109 } 3110 lex(); 3111 return false; 3112 } 3113 3114 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 3115 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 3116 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 3117 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 3118 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 3119 const PseudoSourceValue *PSV = nullptr; 3120 if (parseMemoryPseudoSourceValue(PSV)) 3121 return true; 3122 int64_t Offset = 0; 3123 if (parseOffset(Offset)) 3124 return true; 3125 Dest = MachinePointerInfo(PSV, Offset); 3126 return false; 3127 } 3128 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 3129 Token.isNot(MIToken::GlobalValue) && 3130 Token.isNot(MIToken::NamedGlobalValue) && 3131 Token.isNot(MIToken::QuotedIRValue) && 3132 Token.isNot(MIToken::kw_unknown_address)) 3133 return error("expected an IR value reference"); 3134 const Value *V = nullptr; 3135 if (parseIRValue(V)) 3136 return true; 3137 if (V && !V->getType()->isPointerTy()) 3138 return error("expected a pointer IR value"); 3139 lex(); 3140 int64_t Offset = 0; 3141 if (parseOffset(Offset)) 3142 return true; 3143 Dest = MachinePointerInfo(V, Offset); 3144 return false; 3145 } 3146 3147 bool MIParser::parseOptionalScope(LLVMContext &Context, 3148 SyncScope::ID &SSID) { 3149 SSID = SyncScope::System; 3150 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 3151 lex(); 3152 if (expectAndConsume(MIToken::lparen)) 3153 return error("expected '(' in syncscope"); 3154 3155 std::string SSN; 3156 if (parseStringConstant(SSN)) 3157 return true; 3158 3159 SSID = Context.getOrInsertSyncScopeID(SSN); 3160 if (expectAndConsume(MIToken::rparen)) 3161 return error("expected ')' in syncscope"); 3162 } 3163 3164 return false; 3165 } 3166 3167 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 3168 Order = AtomicOrdering::NotAtomic; 3169 if (Token.isNot(MIToken::Identifier)) 3170 return false; 3171 3172 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 3173 .Case("unordered", AtomicOrdering::Unordered) 3174 .Case("monotonic", AtomicOrdering::Monotonic) 3175 .Case("acquire", AtomicOrdering::Acquire) 3176 .Case("release", AtomicOrdering::Release) 3177 .Case("acq_rel", AtomicOrdering::AcquireRelease) 3178 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 3179 .Default(AtomicOrdering::NotAtomic); 3180 3181 if (Order != AtomicOrdering::NotAtomic) { 3182 lex(); 3183 return false; 3184 } 3185 3186 return error("expected an atomic scope, ordering or a size specification"); 3187 } 3188 3189 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 3190 if (expectAndConsume(MIToken::lparen)) 3191 return true; 3192 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 3193 while (Token.isMemoryOperandFlag()) { 3194 if (parseMemoryOperandFlag(Flags)) 3195 return true; 3196 } 3197 if (Token.isNot(MIToken::Identifier) || 3198 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3199 return error("expected 'load' or 'store' memory operation"); 3200 if (Token.stringValue() == "load") 3201 Flags |= MachineMemOperand::MOLoad; 3202 else 3203 Flags |= MachineMemOperand::MOStore; 3204 lex(); 3205 3206 // Optional 'store' for operands that both load and store. 3207 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3208 Flags |= MachineMemOperand::MOStore; 3209 lex(); 3210 } 3211 3212 // Optional synchronization scope. 3213 SyncScope::ID SSID; 3214 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3215 return true; 3216 3217 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3218 AtomicOrdering Order, FailureOrder; 3219 if (parseOptionalAtomicOrdering(Order)) 3220 return true; 3221 3222 if (parseOptionalAtomicOrdering(FailureOrder)) 3223 return true; 3224 3225 LLT MemoryType; 3226 if (Token.isNot(MIToken::IntegerLiteral) && 3227 Token.isNot(MIToken::kw_unknown_size) && 3228 Token.isNot(MIToken::lparen)) 3229 return error("expected memory LLT, the size integer literal or 'unknown-size' after " 3230 "memory operation"); 3231 3232 uint64_t Size = MemoryLocation::UnknownSize; 3233 if (Token.is(MIToken::IntegerLiteral)) { 3234 if (getUint64(Size)) 3235 return true; 3236 3237 // Convert from bytes to bits for storage. 3238 MemoryType = LLT::scalar(8 * Size); 3239 lex(); 3240 } else if (Token.is(MIToken::kw_unknown_size)) { 3241 Size = MemoryLocation::UnknownSize; 3242 lex(); 3243 } else { 3244 if (expectAndConsume(MIToken::lparen)) 3245 return true; 3246 if (parseLowLevelType(Token.location(), MemoryType)) 3247 return true; 3248 if (expectAndConsume(MIToken::rparen)) 3249 return true; 3250 3251 Size = MemoryType.getSizeInBytes(); 3252 } 3253 3254 MachinePointerInfo Ptr = MachinePointerInfo(); 3255 if (Token.is(MIToken::Identifier)) { 3256 const char *Word = 3257 ((Flags & MachineMemOperand::MOLoad) && 3258 (Flags & MachineMemOperand::MOStore)) 3259 ? "on" 3260 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3261 if (Token.stringValue() != Word) 3262 return error(Twine("expected '") + Word + "'"); 3263 lex(); 3264 3265 if (parseMachinePointerInfo(Ptr)) 3266 return true; 3267 } 3268 uint64_t BaseAlignment = 3269 (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1); 3270 AAMDNodes AAInfo; 3271 MDNode *Range = nullptr; 3272 while (consumeIfPresent(MIToken::comma)) { 3273 switch (Token.kind()) { 3274 case MIToken::kw_align: 3275 // align is printed if it is different than size. 3276 if (parseAlignment(BaseAlignment)) 3277 return true; 3278 break; 3279 case MIToken::kw_basealign: 3280 // basealign is printed if it is different than align. 3281 if (parseAlignment(BaseAlignment)) 3282 return true; 3283 break; 3284 case MIToken::kw_addrspace: 3285 if (parseAddrspace(Ptr.AddrSpace)) 3286 return true; 3287 break; 3288 case MIToken::md_tbaa: 3289 lex(); 3290 if (parseMDNode(AAInfo.TBAA)) 3291 return true; 3292 break; 3293 case MIToken::md_alias_scope: 3294 lex(); 3295 if (parseMDNode(AAInfo.Scope)) 3296 return true; 3297 break; 3298 case MIToken::md_noalias: 3299 lex(); 3300 if (parseMDNode(AAInfo.NoAlias)) 3301 return true; 3302 break; 3303 case MIToken::md_range: 3304 lex(); 3305 if (parseMDNode(Range)) 3306 return true; 3307 break; 3308 // TODO: Report an error on duplicate metadata nodes. 3309 default: 3310 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3311 "'!noalias' or '!range'"); 3312 } 3313 } 3314 if (expectAndConsume(MIToken::rparen)) 3315 return true; 3316 Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment), 3317 AAInfo, Range, SSID, Order, FailureOrder); 3318 return false; 3319 } 3320 3321 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3322 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3323 Token.is(MIToken::kw_post_instr_symbol)) && 3324 "Invalid token for a pre- post-instruction symbol!"); 3325 lex(); 3326 if (Token.isNot(MIToken::MCSymbol)) 3327 return error("expected a symbol after 'pre-instr-symbol'"); 3328 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3329 lex(); 3330 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3331 Token.is(MIToken::lbrace)) 3332 return false; 3333 if (Token.isNot(MIToken::comma)) 3334 return error("expected ',' before the next machine operand"); 3335 lex(); 3336 return false; 3337 } 3338 3339 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3340 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3341 "Invalid token for a heap alloc marker!"); 3342 lex(); 3343 parseMDNode(Node); 3344 if (!Node) 3345 return error("expected a MDNode after 'heap-alloc-marker'"); 3346 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3347 Token.is(MIToken::lbrace)) 3348 return false; 3349 if (Token.isNot(MIToken::comma)) 3350 return error("expected ',' before the next machine operand"); 3351 lex(); 3352 return false; 3353 } 3354 3355 static void initSlots2BasicBlocks( 3356 const Function &F, 3357 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3359 MST.incorporateFunction(F); 3360 for (auto &BB : F) { 3361 if (BB.hasName()) 3362 continue; 3363 int Slot = MST.getLocalSlot(&BB); 3364 if (Slot == -1) 3365 continue; 3366 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3367 } 3368 } 3369 3370 static const BasicBlock *getIRBlockFromSlot( 3371 unsigned Slot, 3372 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3373 return Slots2BasicBlocks.lookup(Slot); 3374 } 3375 3376 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3377 if (Slots2BasicBlocks.empty()) 3378 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3379 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3380 } 3381 3382 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3383 if (&F == &MF.getFunction()) 3384 return getIRBlock(Slot); 3385 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3386 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3387 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3388 } 3389 3390 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3391 // FIXME: Currently we can't recognize temporary or local symbols and call all 3392 // of the appropriate forms to create them. However, this handles basic cases 3393 // well as most of the special aspects are recognized by a prefix on their 3394 // name, and the input names should already be unique. For test cases, keeping 3395 // the symbol name out of the symbol table isn't terribly important. 3396 return MF.getContext().getOrCreateSymbol(Name); 3397 } 3398 3399 bool MIParser::parseStringConstant(std::string &Result) { 3400 if (Token.isNot(MIToken::StringConstant)) 3401 return error("expected string constant"); 3402 Result = std::string(Token.stringValue()); 3403 lex(); 3404 return false; 3405 } 3406 3407 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3408 StringRef Src, 3409 SMDiagnostic &Error) { 3410 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3411 } 3412 3413 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3414 StringRef Src, SMDiagnostic &Error) { 3415 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3416 } 3417 3418 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3419 MachineBasicBlock *&MBB, StringRef Src, 3420 SMDiagnostic &Error) { 3421 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3422 } 3423 3424 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3425 Register &Reg, StringRef Src, 3426 SMDiagnostic &Error) { 3427 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3428 } 3429 3430 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3431 Register &Reg, StringRef Src, 3432 SMDiagnostic &Error) { 3433 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3434 } 3435 3436 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3437 VRegInfo *&Info, StringRef Src, 3438 SMDiagnostic &Error) { 3439 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3440 } 3441 3442 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3443 int &FI, StringRef Src, 3444 SMDiagnostic &Error) { 3445 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3446 } 3447 3448 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3449 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3450 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3451 } 3452 3453 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src, 3454 SMRange SrcRange, SMDiagnostic &Error) { 3455 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata(); 3456 } 3457 3458 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3459 PerFunctionMIParsingState &PFS, const Value *&V, 3460 ErrorCallbackType ErrorCallback) { 3461 MIToken Token; 3462 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3463 ErrorCallback(Loc, Msg); 3464 }); 3465 V = nullptr; 3466 3467 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3468 } 3469