1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cctype> 40 41 using namespace llvm; 42 43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 44 SourceMgr &SM, const SlotMapping &IRSlots) 45 : MF(MF), SM(&SM), IRSlots(IRSlots) { 46 } 47 48 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 49 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 50 if (I.second) { 51 MachineRegisterInfo &MRI = MF.getRegInfo(); 52 VRegInfo *Info = new (Allocator) VRegInfo; 53 Info->VReg = MRI.createIncompleteVirtualRegister(); 54 I.first->second = Info; 55 } 56 return *I.first->second; 57 } 58 59 namespace { 60 61 /// A wrapper struct around the 'MachineOperand' struct that includes a source 62 /// range and other attributes. 63 struct ParsedMachineOperand { 64 MachineOperand Operand; 65 StringRef::iterator Begin; 66 StringRef::iterator End; 67 Optional<unsigned> TiedDefIdx; 68 69 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 70 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 71 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 72 if (TiedDefIdx) 73 assert(Operand.isReg() && Operand.isUse() && 74 "Only used register operands can be tied"); 75 } 76 }; 77 78 class MIParser { 79 MachineFunction &MF; 80 SMDiagnostic &Error; 81 StringRef Source, CurrentSource; 82 MIToken Token; 83 PerFunctionMIParsingState &PFS; 84 /// Maps from instruction names to op codes. 85 StringMap<unsigned> Names2InstrOpCodes; 86 /// Maps from register names to registers. 87 StringMap<unsigned> Names2Regs; 88 /// Maps from register mask names to register masks. 89 StringMap<const uint32_t *> Names2RegMasks; 90 /// Maps from subregister names to subregister indices. 91 StringMap<unsigned> Names2SubRegIndices; 92 /// Maps from slot numbers to function's unnamed basic blocks. 93 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 94 /// Maps from slot numbers to function's unnamed values. 95 DenseMap<unsigned, const Value *> Slots2Values; 96 /// Maps from target index names to target indices. 97 StringMap<int> Names2TargetIndices; 98 /// Maps from direct target flag names to the direct target flag values. 99 StringMap<unsigned> Names2DirectTargetFlags; 100 /// Maps from direct target flag names to the bitmask target flag values. 101 StringMap<unsigned> Names2BitmaskTargetFlags; 102 103 public: 104 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 105 StringRef Source); 106 107 /// \p SkipChar gives the number of characters to skip before looking 108 /// for the next token. 109 void lex(unsigned SkipChar = 0); 110 111 /// Report an error at the current location with the given message. 112 /// 113 /// This function always return true. 114 bool error(const Twine &Msg); 115 116 /// Report an error at the given location with the given message. 117 /// 118 /// This function always return true. 119 bool error(StringRef::iterator Loc, const Twine &Msg); 120 121 bool 122 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 123 bool parseBasicBlocks(); 124 bool parse(MachineInstr *&MI); 125 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 126 bool parseStandaloneNamedRegister(unsigned &Reg); 127 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 128 bool parseStandaloneRegister(unsigned &Reg); 129 bool parseStandaloneStackObject(int &FI); 130 bool parseStandaloneMDNode(MDNode *&Node); 131 132 bool 133 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 134 bool parseBasicBlock(MachineBasicBlock &MBB); 135 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 136 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 137 138 bool parseNamedRegister(unsigned &Reg); 139 bool parseVirtualRegister(VRegInfo *&Info); 140 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 141 bool parseRegisterFlag(unsigned &Flags); 142 bool parseSubRegisterIndex(unsigned &SubReg); 143 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 144 bool parseRegisterOperand(MachineOperand &Dest, 145 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 146 bool parseImmediateOperand(MachineOperand &Dest); 147 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 148 const Constant *&C); 149 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 150 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 151 bool parseTypedImmediateOperand(MachineOperand &Dest); 152 bool parseFPImmediateOperand(MachineOperand &Dest); 153 bool parseMBBReference(MachineBasicBlock *&MBB); 154 bool parseMBBOperand(MachineOperand &Dest); 155 bool parseStackFrameIndex(int &FI); 156 bool parseStackObjectOperand(MachineOperand &Dest); 157 bool parseFixedStackFrameIndex(int &FI); 158 bool parseFixedStackObjectOperand(MachineOperand &Dest); 159 bool parseGlobalValue(GlobalValue *&GV); 160 bool parseGlobalAddressOperand(MachineOperand &Dest); 161 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 162 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 163 bool parseJumpTableIndexOperand(MachineOperand &Dest); 164 bool parseExternalSymbolOperand(MachineOperand &Dest); 165 bool parseMDNode(MDNode *&Node); 166 bool parseMetadataOperand(MachineOperand &Dest); 167 bool parseCFIOffset(int &Offset); 168 bool parseCFIRegister(unsigned &Reg); 169 bool parseCFIOperand(MachineOperand &Dest); 170 bool parseIRBlock(BasicBlock *&BB, const Function &F); 171 bool parseBlockAddressOperand(MachineOperand &Dest); 172 bool parseIntrinsicOperand(MachineOperand &Dest); 173 bool parsePredicateOperand(MachineOperand &Dest); 174 bool parseTargetIndexOperand(MachineOperand &Dest); 175 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 176 bool parseMachineOperand(MachineOperand &Dest, 177 Optional<unsigned> &TiedDefIdx); 178 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 179 Optional<unsigned> &TiedDefIdx); 180 bool parseOffset(int64_t &Offset); 181 bool parseAlignment(unsigned &Alignment); 182 bool parseOperandsOffset(MachineOperand &Op); 183 bool parseIRValue(const Value *&V); 184 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 185 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 186 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 187 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 188 189 private: 190 /// Convert the integer literal in the current token into an unsigned integer. 191 /// 192 /// Return true if an error occurred. 193 bool getUnsigned(unsigned &Result); 194 195 /// Convert the integer literal in the current token into an uint64. 196 /// 197 /// Return true if an error occurred. 198 bool getUint64(uint64_t &Result); 199 200 /// If the current token is of the given kind, consume it and return false. 201 /// Otherwise report an error and return true. 202 bool expectAndConsume(MIToken::TokenKind TokenKind); 203 204 /// If the current token is of the given kind, consume it and return true. 205 /// Otherwise return false. 206 bool consumeIfPresent(MIToken::TokenKind TokenKind); 207 208 void initNames2InstrOpCodes(); 209 210 /// Try to convert an instruction name to an opcode. Return true if the 211 /// instruction name is invalid. 212 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 213 214 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 215 216 bool assignRegisterTies(MachineInstr &MI, 217 ArrayRef<ParsedMachineOperand> Operands); 218 219 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 220 const MCInstrDesc &MCID); 221 222 void initNames2Regs(); 223 224 /// Try to convert a register name to a register number. Return true if the 225 /// register name is invalid. 226 bool getRegisterByName(StringRef RegName, unsigned &Reg); 227 228 void initNames2RegMasks(); 229 230 /// Check if the given identifier is a name of a register mask. 231 /// 232 /// Return null if the identifier isn't a register mask. 233 const uint32_t *getRegMask(StringRef Identifier); 234 235 void initNames2SubRegIndices(); 236 237 /// Check if the given identifier is a name of a subregister index. 238 /// 239 /// Return 0 if the name isn't a subregister index class. 240 unsigned getSubRegIndex(StringRef Name); 241 242 const BasicBlock *getIRBlock(unsigned Slot); 243 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 244 245 const Value *getIRValue(unsigned Slot); 246 247 void initNames2TargetIndices(); 248 249 /// Try to convert a name of target index to the corresponding target index. 250 /// 251 /// Return true if the name isn't a name of a target index. 252 bool getTargetIndex(StringRef Name, int &Index); 253 254 void initNames2DirectTargetFlags(); 255 256 /// Try to convert a name of a direct target flag to the corresponding 257 /// target flag. 258 /// 259 /// Return true if the name isn't a name of a direct flag. 260 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 261 262 void initNames2BitmaskTargetFlags(); 263 264 /// Try to convert a name of a bitmask target flag to the corresponding 265 /// target flag. 266 /// 267 /// Return true if the name isn't a name of a bitmask target flag. 268 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 269 }; 270 271 } // end anonymous namespace 272 273 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 274 StringRef Source) 275 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 276 {} 277 278 void MIParser::lex(unsigned SkipChar) { 279 CurrentSource = lexMIToken( 280 CurrentSource.data() + SkipChar, Token, 281 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 282 } 283 284 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 285 286 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 287 const SourceMgr &SM = *PFS.SM; 288 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 289 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 290 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 291 // Create an ordinary diagnostic when the source manager's buffer is the 292 // source string. 293 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 294 return true; 295 } 296 // Create a diagnostic for a YAML string literal. 297 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 298 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 299 Source, None, None); 300 return true; 301 } 302 303 static const char *toString(MIToken::TokenKind TokenKind) { 304 switch (TokenKind) { 305 case MIToken::comma: 306 return "','"; 307 case MIToken::equal: 308 return "'='"; 309 case MIToken::colon: 310 return "':'"; 311 case MIToken::lparen: 312 return "'('"; 313 case MIToken::rparen: 314 return "')'"; 315 default: 316 return "<unknown token>"; 317 } 318 } 319 320 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 321 if (Token.isNot(TokenKind)) 322 return error(Twine("expected ") + toString(TokenKind)); 323 lex(); 324 return false; 325 } 326 327 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 328 if (Token.isNot(TokenKind)) 329 return false; 330 lex(); 331 return true; 332 } 333 334 bool MIParser::parseBasicBlockDefinition( 335 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 336 assert(Token.is(MIToken::MachineBasicBlockLabel)); 337 unsigned ID = 0; 338 if (getUnsigned(ID)) 339 return true; 340 auto Loc = Token.location(); 341 auto Name = Token.stringValue(); 342 lex(); 343 bool HasAddressTaken = false; 344 bool IsLandingPad = false; 345 unsigned Alignment = 0; 346 BasicBlock *BB = nullptr; 347 if (consumeIfPresent(MIToken::lparen)) { 348 do { 349 // TODO: Report an error when multiple same attributes are specified. 350 switch (Token.kind()) { 351 case MIToken::kw_address_taken: 352 HasAddressTaken = true; 353 lex(); 354 break; 355 case MIToken::kw_landing_pad: 356 IsLandingPad = true; 357 lex(); 358 break; 359 case MIToken::kw_align: 360 if (parseAlignment(Alignment)) 361 return true; 362 break; 363 case MIToken::IRBlock: 364 // TODO: Report an error when both name and ir block are specified. 365 if (parseIRBlock(BB, *MF.getFunction())) 366 return true; 367 lex(); 368 break; 369 default: 370 break; 371 } 372 } while (consumeIfPresent(MIToken::comma)); 373 if (expectAndConsume(MIToken::rparen)) 374 return true; 375 } 376 if (expectAndConsume(MIToken::colon)) 377 return true; 378 379 if (!Name.empty()) { 380 BB = dyn_cast_or_null<BasicBlock>( 381 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 382 if (!BB) 383 return error(Loc, Twine("basic block '") + Name + 384 "' is not defined in the function '" + 385 MF.getName() + "'"); 386 } 387 auto *MBB = MF.CreateMachineBasicBlock(BB); 388 MF.insert(MF.end(), MBB); 389 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 390 if (!WasInserted) 391 return error(Loc, Twine("redefinition of machine basic block with id #") + 392 Twine(ID)); 393 if (Alignment) 394 MBB->setAlignment(Alignment); 395 if (HasAddressTaken) 396 MBB->setHasAddressTaken(); 397 MBB->setIsEHPad(IsLandingPad); 398 return false; 399 } 400 401 bool MIParser::parseBasicBlockDefinitions( 402 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 403 lex(); 404 // Skip until the first machine basic block. 405 while (Token.is(MIToken::Newline)) 406 lex(); 407 if (Token.isErrorOrEOF()) 408 return Token.isError(); 409 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 410 return error("expected a basic block definition before instructions"); 411 unsigned BraceDepth = 0; 412 do { 413 if (parseBasicBlockDefinition(MBBSlots)) 414 return true; 415 bool IsAfterNewline = false; 416 // Skip until the next machine basic block. 417 while (true) { 418 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 419 Token.isErrorOrEOF()) 420 break; 421 else if (Token.is(MIToken::MachineBasicBlockLabel)) 422 return error("basic block definition should be located at the start of " 423 "the line"); 424 else if (consumeIfPresent(MIToken::Newline)) { 425 IsAfterNewline = true; 426 continue; 427 } 428 IsAfterNewline = false; 429 if (Token.is(MIToken::lbrace)) 430 ++BraceDepth; 431 if (Token.is(MIToken::rbrace)) { 432 if (!BraceDepth) 433 return error("extraneous closing brace ('}')"); 434 --BraceDepth; 435 } 436 lex(); 437 } 438 // Verify that we closed all of the '{' at the end of a file or a block. 439 if (!Token.isError() && BraceDepth) 440 return error("expected '}'"); // FIXME: Report a note that shows '{'. 441 } while (!Token.isErrorOrEOF()); 442 return Token.isError(); 443 } 444 445 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 446 assert(Token.is(MIToken::kw_liveins)); 447 lex(); 448 if (expectAndConsume(MIToken::colon)) 449 return true; 450 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 451 return false; 452 do { 453 if (Token.isNot(MIToken::NamedRegister)) 454 return error("expected a named register"); 455 unsigned Reg = 0; 456 if (parseNamedRegister(Reg)) 457 return true; 458 lex(); 459 LaneBitmask Mask = ~LaneBitmask(0); 460 if (consumeIfPresent(MIToken::colon)) { 461 // Parse lane mask. 462 if (Token.isNot(MIToken::IntegerLiteral) && 463 Token.isNot(MIToken::HexLiteral)) 464 return error("expected a lane mask"); 465 static_assert(sizeof(LaneBitmask) == sizeof(unsigned), ""); 466 if (getUnsigned(Mask)) 467 return error("invalid lane mask value"); 468 lex(); 469 } 470 MBB.addLiveIn(Reg, Mask); 471 } while (consumeIfPresent(MIToken::comma)); 472 return false; 473 } 474 475 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 476 assert(Token.is(MIToken::kw_successors)); 477 lex(); 478 if (expectAndConsume(MIToken::colon)) 479 return true; 480 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 481 return false; 482 do { 483 if (Token.isNot(MIToken::MachineBasicBlock)) 484 return error("expected a machine basic block reference"); 485 MachineBasicBlock *SuccMBB = nullptr; 486 if (parseMBBReference(SuccMBB)) 487 return true; 488 lex(); 489 unsigned Weight = 0; 490 if (consumeIfPresent(MIToken::lparen)) { 491 if (Token.isNot(MIToken::IntegerLiteral)) 492 return error("expected an integer literal after '('"); 493 if (getUnsigned(Weight)) 494 return true; 495 lex(); 496 if (expectAndConsume(MIToken::rparen)) 497 return true; 498 } 499 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 500 } while (consumeIfPresent(MIToken::comma)); 501 MBB.normalizeSuccProbs(); 502 return false; 503 } 504 505 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 506 // Skip the definition. 507 assert(Token.is(MIToken::MachineBasicBlockLabel)); 508 lex(); 509 if (consumeIfPresent(MIToken::lparen)) { 510 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 511 lex(); 512 consumeIfPresent(MIToken::rparen); 513 } 514 consumeIfPresent(MIToken::colon); 515 516 // Parse the liveins and successors. 517 // N.B: Multiple lists of successors and liveins are allowed and they're 518 // merged into one. 519 // Example: 520 // liveins: %edi 521 // liveins: %esi 522 // 523 // is equivalent to 524 // liveins: %edi, %esi 525 while (true) { 526 if (Token.is(MIToken::kw_successors)) { 527 if (parseBasicBlockSuccessors(MBB)) 528 return true; 529 } else if (Token.is(MIToken::kw_liveins)) { 530 if (parseBasicBlockLiveins(MBB)) 531 return true; 532 } else if (consumeIfPresent(MIToken::Newline)) { 533 continue; 534 } else 535 break; 536 if (!Token.isNewlineOrEOF()) 537 return error("expected line break at the end of a list"); 538 lex(); 539 } 540 541 // Parse the instructions. 542 bool IsInBundle = false; 543 MachineInstr *PrevMI = nullptr; 544 while (true) { 545 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 546 return false; 547 else if (consumeIfPresent(MIToken::Newline)) 548 continue; 549 if (consumeIfPresent(MIToken::rbrace)) { 550 // The first parsing pass should verify that all closing '}' have an 551 // opening '{'. 552 assert(IsInBundle); 553 IsInBundle = false; 554 continue; 555 } 556 MachineInstr *MI = nullptr; 557 if (parse(MI)) 558 return true; 559 MBB.insert(MBB.end(), MI); 560 if (IsInBundle) { 561 PrevMI->setFlag(MachineInstr::BundledSucc); 562 MI->setFlag(MachineInstr::BundledPred); 563 } 564 PrevMI = MI; 565 if (Token.is(MIToken::lbrace)) { 566 if (IsInBundle) 567 return error("nested instruction bundles are not allowed"); 568 lex(); 569 // This instruction is the start of the bundle. 570 MI->setFlag(MachineInstr::BundledSucc); 571 IsInBundle = true; 572 if (!Token.is(MIToken::Newline)) 573 // The next instruction can be on the same line. 574 continue; 575 } 576 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 577 lex(); 578 } 579 return false; 580 } 581 582 bool MIParser::parseBasicBlocks() { 583 lex(); 584 // Skip until the first machine basic block. 585 while (Token.is(MIToken::Newline)) 586 lex(); 587 if (Token.isErrorOrEOF()) 588 return Token.isError(); 589 // The first parsing pass should have verified that this token is a MBB label 590 // in the 'parseBasicBlockDefinitions' method. 591 assert(Token.is(MIToken::MachineBasicBlockLabel)); 592 do { 593 MachineBasicBlock *MBB = nullptr; 594 if (parseMBBReference(MBB)) 595 return true; 596 if (parseBasicBlock(*MBB)) 597 return true; 598 // The method 'parseBasicBlock' should parse the whole block until the next 599 // block or the end of file. 600 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 601 } while (Token.isNot(MIToken::Eof)); 602 return false; 603 } 604 605 bool MIParser::parse(MachineInstr *&MI) { 606 // Parse any register operands before '=' 607 MachineOperand MO = MachineOperand::CreateImm(0); 608 SmallVector<ParsedMachineOperand, 8> Operands; 609 while (Token.isRegister() || Token.isRegisterFlag()) { 610 auto Loc = Token.location(); 611 Optional<unsigned> TiedDefIdx; 612 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 613 return true; 614 Operands.push_back( 615 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 616 if (Token.isNot(MIToken::comma)) 617 break; 618 lex(); 619 } 620 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 621 return true; 622 623 unsigned OpCode, Flags = 0; 624 if (Token.isError() || parseInstruction(OpCode, Flags)) 625 return true; 626 627 // Parse the remaining machine operands. 628 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 629 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 630 auto Loc = Token.location(); 631 Optional<unsigned> TiedDefIdx; 632 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 633 return true; 634 Operands.push_back( 635 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 636 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 637 Token.is(MIToken::lbrace)) 638 break; 639 if (Token.isNot(MIToken::comma)) 640 return error("expected ',' before the next machine operand"); 641 lex(); 642 } 643 644 DebugLoc DebugLocation; 645 if (Token.is(MIToken::kw_debug_location)) { 646 lex(); 647 if (Token.isNot(MIToken::exclaim)) 648 return error("expected a metadata node after 'debug-location'"); 649 MDNode *Node = nullptr; 650 if (parseMDNode(Node)) 651 return true; 652 DebugLocation = DebugLoc(Node); 653 } 654 655 // Parse the machine memory operands. 656 SmallVector<MachineMemOperand *, 2> MemOperands; 657 if (Token.is(MIToken::coloncolon)) { 658 lex(); 659 while (!Token.isNewlineOrEOF()) { 660 MachineMemOperand *MemOp = nullptr; 661 if (parseMachineMemoryOperand(MemOp)) 662 return true; 663 MemOperands.push_back(MemOp); 664 if (Token.isNewlineOrEOF()) 665 break; 666 if (Token.isNot(MIToken::comma)) 667 return error("expected ',' before the next machine memory operand"); 668 lex(); 669 } 670 } 671 672 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 673 if (!MCID.isVariadic()) { 674 // FIXME: Move the implicit operand verification to the machine verifier. 675 if (verifyImplicitOperands(Operands, MCID)) 676 return true; 677 } 678 679 // TODO: Check for extraneous machine operands. 680 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 681 MI->setFlags(Flags); 682 for (const auto &Operand : Operands) 683 MI->addOperand(MF, Operand.Operand); 684 if (assignRegisterTies(*MI, Operands)) 685 return true; 686 if (MemOperands.empty()) 687 return false; 688 MachineInstr::mmo_iterator MemRefs = 689 MF.allocateMemRefsArray(MemOperands.size()); 690 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 691 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 692 return false; 693 } 694 695 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 696 lex(); 697 if (Token.isNot(MIToken::MachineBasicBlock)) 698 return error("expected a machine basic block reference"); 699 if (parseMBBReference(MBB)) 700 return true; 701 lex(); 702 if (Token.isNot(MIToken::Eof)) 703 return error( 704 "expected end of string after the machine basic block reference"); 705 return false; 706 } 707 708 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 709 lex(); 710 if (Token.isNot(MIToken::NamedRegister)) 711 return error("expected a named register"); 712 if (parseNamedRegister(Reg)) 713 return true; 714 lex(); 715 if (Token.isNot(MIToken::Eof)) 716 return error("expected end of string after the register reference"); 717 return false; 718 } 719 720 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 721 lex(); 722 if (Token.isNot(MIToken::VirtualRegister)) 723 return error("expected a virtual register"); 724 if (parseVirtualRegister(Info)) 725 return true; 726 lex(); 727 if (Token.isNot(MIToken::Eof)) 728 return error("expected end of string after the register reference"); 729 return false; 730 } 731 732 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 733 lex(); 734 if (Token.isNot(MIToken::NamedRegister) && 735 Token.isNot(MIToken::VirtualRegister)) 736 return error("expected either a named or virtual register"); 737 738 VRegInfo *Info; 739 if (parseRegister(Reg, Info)) 740 return true; 741 742 lex(); 743 if (Token.isNot(MIToken::Eof)) 744 return error("expected end of string after the register reference"); 745 return false; 746 } 747 748 bool MIParser::parseStandaloneStackObject(int &FI) { 749 lex(); 750 if (Token.isNot(MIToken::StackObject)) 751 return error("expected a stack object"); 752 if (parseStackFrameIndex(FI)) 753 return true; 754 if (Token.isNot(MIToken::Eof)) 755 return error("expected end of string after the stack object reference"); 756 return false; 757 } 758 759 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 760 lex(); 761 if (Token.isNot(MIToken::exclaim)) 762 return error("expected a metadata node"); 763 if (parseMDNode(Node)) 764 return true; 765 if (Token.isNot(MIToken::Eof)) 766 return error("expected end of string after the metadata node"); 767 return false; 768 } 769 770 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 771 assert(MO.isImplicit()); 772 return MO.isDef() ? "implicit-def" : "implicit"; 773 } 774 775 static std::string getRegisterName(const TargetRegisterInfo *TRI, 776 unsigned Reg) { 777 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 778 return StringRef(TRI->getName(Reg)).lower(); 779 } 780 781 /// Return true if the parsed machine operands contain a given machine operand. 782 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 783 ArrayRef<ParsedMachineOperand> Operands) { 784 for (const auto &I : Operands) { 785 if (ImplicitOperand.isIdenticalTo(I.Operand)) 786 return true; 787 } 788 return false; 789 } 790 791 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 792 const MCInstrDesc &MCID) { 793 if (MCID.isCall()) 794 // We can't verify call instructions as they can contain arbitrary implicit 795 // register and register mask operands. 796 return false; 797 798 // Gather all the expected implicit operands. 799 SmallVector<MachineOperand, 4> ImplicitOperands; 800 if (MCID.ImplicitDefs) 801 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 802 ImplicitOperands.push_back( 803 MachineOperand::CreateReg(*ImpDefs, true, true)); 804 if (MCID.ImplicitUses) 805 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 806 ImplicitOperands.push_back( 807 MachineOperand::CreateReg(*ImpUses, false, true)); 808 809 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 810 assert(TRI && "Expected target register info"); 811 for (const auto &I : ImplicitOperands) { 812 if (isImplicitOperandIn(I, Operands)) 813 continue; 814 return error(Operands.empty() ? Token.location() : Operands.back().End, 815 Twine("missing implicit register operand '") + 816 printImplicitRegisterFlag(I) + " %" + 817 getRegisterName(TRI, I.getReg()) + "'"); 818 } 819 return false; 820 } 821 822 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 823 if (Token.is(MIToken::kw_frame_setup)) { 824 Flags |= MachineInstr::FrameSetup; 825 lex(); 826 } 827 if (Token.isNot(MIToken::Identifier)) 828 return error("expected a machine instruction"); 829 StringRef InstrName = Token.stringValue(); 830 if (parseInstrName(InstrName, OpCode)) 831 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 832 lex(); 833 return false; 834 } 835 836 bool MIParser::parseNamedRegister(unsigned &Reg) { 837 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 838 StringRef Name = Token.stringValue(); 839 if (getRegisterByName(Name, Reg)) 840 return error(Twine("unknown register name '") + Name + "'"); 841 return false; 842 } 843 844 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 845 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 846 unsigned ID; 847 if (getUnsigned(ID)) 848 return true; 849 Info = &PFS.getVRegInfo(ID); 850 return false; 851 } 852 853 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 854 switch (Token.kind()) { 855 case MIToken::underscore: 856 Reg = 0; 857 return false; 858 case MIToken::NamedRegister: 859 return parseNamedRegister(Reg); 860 case MIToken::VirtualRegister: 861 if (parseVirtualRegister(Info)) 862 return true; 863 Reg = Info->VReg; 864 return false; 865 // TODO: Parse other register kinds. 866 default: 867 llvm_unreachable("The current token should be a register"); 868 } 869 } 870 871 bool MIParser::parseRegisterFlag(unsigned &Flags) { 872 const unsigned OldFlags = Flags; 873 switch (Token.kind()) { 874 case MIToken::kw_implicit: 875 Flags |= RegState::Implicit; 876 break; 877 case MIToken::kw_implicit_define: 878 Flags |= RegState::ImplicitDefine; 879 break; 880 case MIToken::kw_def: 881 Flags |= RegState::Define; 882 break; 883 case MIToken::kw_dead: 884 Flags |= RegState::Dead; 885 break; 886 case MIToken::kw_killed: 887 Flags |= RegState::Kill; 888 break; 889 case MIToken::kw_undef: 890 Flags |= RegState::Undef; 891 break; 892 case MIToken::kw_internal: 893 Flags |= RegState::InternalRead; 894 break; 895 case MIToken::kw_early_clobber: 896 Flags |= RegState::EarlyClobber; 897 break; 898 case MIToken::kw_debug_use: 899 Flags |= RegState::Debug; 900 break; 901 default: 902 llvm_unreachable("The current token should be a register flag"); 903 } 904 if (OldFlags == Flags) 905 // We know that the same flag is specified more than once when the flags 906 // weren't modified. 907 return error("duplicate '" + Token.stringValue() + "' register flag"); 908 lex(); 909 return false; 910 } 911 912 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 913 assert(Token.is(MIToken::dot)); 914 lex(); 915 if (Token.isNot(MIToken::Identifier)) 916 return error("expected a subregister index after '.'"); 917 auto Name = Token.stringValue(); 918 SubReg = getSubRegIndex(Name); 919 if (!SubReg) 920 return error(Twine("use of unknown subregister index '") + Name + "'"); 921 lex(); 922 return false; 923 } 924 925 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 926 if (!consumeIfPresent(MIToken::kw_tied_def)) 927 return true; 928 if (Token.isNot(MIToken::IntegerLiteral)) 929 return error("expected an integer literal after 'tied-def'"); 930 if (getUnsigned(TiedDefIdx)) 931 return true; 932 lex(); 933 if (expectAndConsume(MIToken::rparen)) 934 return true; 935 return false; 936 } 937 938 bool MIParser::assignRegisterTies(MachineInstr &MI, 939 ArrayRef<ParsedMachineOperand> Operands) { 940 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 941 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 942 if (!Operands[I].TiedDefIdx) 943 continue; 944 // The parser ensures that this operand is a register use, so we just have 945 // to check the tied-def operand. 946 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 947 if (DefIdx >= E) 948 return error(Operands[I].Begin, 949 Twine("use of invalid tied-def operand index '" + 950 Twine(DefIdx) + "'; instruction has only ") + 951 Twine(E) + " operands"); 952 const auto &DefOperand = Operands[DefIdx].Operand; 953 if (!DefOperand.isReg() || !DefOperand.isDef()) 954 // FIXME: add note with the def operand. 955 return error(Operands[I].Begin, 956 Twine("use of invalid tied-def operand index '") + 957 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 958 " isn't a defined register"); 959 // Check that the tied-def operand wasn't tied elsewhere. 960 for (const auto &TiedPair : TiedRegisterPairs) { 961 if (TiedPair.first == DefIdx) 962 return error(Operands[I].Begin, 963 Twine("the tied-def operand #") + Twine(DefIdx) + 964 " is already tied with another register operand"); 965 } 966 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 967 } 968 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 969 // indices must be less than tied max. 970 for (const auto &TiedPair : TiedRegisterPairs) 971 MI.tieOperands(TiedPair.first, TiedPair.second); 972 return false; 973 } 974 975 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 976 Optional<unsigned> &TiedDefIdx, 977 bool IsDef) { 978 unsigned Flags = IsDef ? RegState::Define : 0; 979 while (Token.isRegisterFlag()) { 980 if (parseRegisterFlag(Flags)) 981 return true; 982 } 983 if (!Token.isRegister()) 984 return error("expected a register after register flags"); 985 unsigned Reg; 986 VRegInfo *RegInfo; 987 if (parseRegister(Reg, RegInfo)) 988 return true; 989 lex(); 990 unsigned SubReg = 0; 991 if (Token.is(MIToken::dot)) { 992 if (parseSubRegisterIndex(SubReg)) 993 return true; 994 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 995 return error("subregister index expects a virtual register"); 996 } 997 MachineRegisterInfo &MRI = MF.getRegInfo(); 998 if ((Flags & RegState::Define) == 0) { 999 if (consumeIfPresent(MIToken::lparen)) { 1000 unsigned Idx; 1001 if (!parseRegisterTiedDefIndex(Idx)) 1002 TiedDefIdx = Idx; 1003 else { 1004 // Try a redundant low-level type. 1005 LLT Ty; 1006 if (parseLowLevelType(Token.location(), Ty)) 1007 return error("expected tied-def or low-level type after '('"); 1008 1009 if (expectAndConsume(MIToken::rparen)) 1010 return true; 1011 1012 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1013 return error("inconsistent type for generic virtual register"); 1014 1015 MRI.setType(Reg, Ty); 1016 } 1017 } 1018 } else if (consumeIfPresent(MIToken::lparen)) { 1019 // Virtual registers may have a size with GlobalISel. 1020 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1021 return error("unexpected size on physical register"); 1022 if (RegInfo->Kind != VRegInfo::GENERIC && 1023 RegInfo->Kind != VRegInfo::REGBANK) 1024 return error("unexpected size on non-generic virtual register"); 1025 1026 LLT Ty; 1027 if (parseLowLevelType(Token.location(), Ty)) 1028 return true; 1029 1030 if (expectAndConsume(MIToken::rparen)) 1031 return true; 1032 1033 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1034 return error("inconsistent type for generic virtual register"); 1035 1036 MRI.setType(Reg, Ty); 1037 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1038 // Generic virtual registers must have a size. 1039 // If we end up here this means the size hasn't been specified and 1040 // this is bad! 1041 if (RegInfo->Kind == VRegInfo::GENERIC || 1042 RegInfo->Kind == VRegInfo::REGBANK) 1043 return error("generic virtual registers must have a size"); 1044 } 1045 Dest = MachineOperand::CreateReg( 1046 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1047 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1048 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1049 Flags & RegState::InternalRead); 1050 return false; 1051 } 1052 1053 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1054 assert(Token.is(MIToken::IntegerLiteral)); 1055 const APSInt &Int = Token.integerValue(); 1056 if (Int.getMinSignedBits() > 64) 1057 return error("integer literal is too large to be an immediate operand"); 1058 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1059 lex(); 1060 return false; 1061 } 1062 1063 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1064 const Constant *&C) { 1065 auto Source = StringValue.str(); // The source has to be null terminated. 1066 SMDiagnostic Err; 1067 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1068 &PFS.IRSlots); 1069 if (!C) 1070 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1071 return false; 1072 } 1073 1074 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1075 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1076 return true; 1077 lex(); 1078 return false; 1079 } 1080 1081 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1082 if (Token.is(MIToken::ScalarType)) { 1083 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1084 lex(); 1085 return false; 1086 } else if (Token.is(MIToken::PointerType)) { 1087 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1088 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1089 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1090 lex(); 1091 return false; 1092 } 1093 1094 // Now we're looking for a vector. 1095 if (Token.isNot(MIToken::less)) 1096 return error(Loc, 1097 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1098 1099 lex(); 1100 1101 if (Token.isNot(MIToken::IntegerLiteral)) 1102 return error(Loc, "expected <N x sM> for vctor type"); 1103 uint64_t NumElements = Token.integerValue().getZExtValue(); 1104 lex(); 1105 1106 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1107 return error(Loc, "expected '<N x sM>' for vector type"); 1108 lex(); 1109 1110 if (Token.isNot(MIToken::ScalarType)) 1111 return error(Loc, "expected '<N x sM>' for vector type"); 1112 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1113 lex(); 1114 1115 if (Token.isNot(MIToken::greater)) 1116 return error(Loc, "expected '<N x sM>' for vector type"); 1117 lex(); 1118 1119 Ty = LLT::vector(NumElements, ScalarSize); 1120 return false; 1121 } 1122 1123 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1124 assert(Token.is(MIToken::IntegerType)); 1125 auto Loc = Token.location(); 1126 lex(); 1127 if (Token.isNot(MIToken::IntegerLiteral)) 1128 return error("expected an integer literal"); 1129 const Constant *C = nullptr; 1130 if (parseIRConstant(Loc, C)) 1131 return true; 1132 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1133 return false; 1134 } 1135 1136 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1137 auto Loc = Token.location(); 1138 lex(); 1139 if (Token.isNot(MIToken::FloatingPointLiteral) && 1140 Token.isNot(MIToken::HexLiteral)) 1141 return error("expected a floating point literal"); 1142 const Constant *C = nullptr; 1143 if (parseIRConstant(Loc, C)) 1144 return true; 1145 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1146 return false; 1147 } 1148 1149 bool MIParser::getUnsigned(unsigned &Result) { 1150 if (Token.hasIntegerValue()) { 1151 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1152 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1153 if (Val64 == Limit) 1154 return error("expected 32-bit integer (too large)"); 1155 Result = Val64; 1156 return false; 1157 } 1158 if (Token.is(MIToken::HexLiteral)) { 1159 StringRef S = Token.range(); 1160 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1161 // This could be a floating point literal with a special prefix. 1162 if (!isxdigit(S[2])) 1163 return true; 1164 StringRef V = S.substr(2); 1165 unsigned BW = std::min<unsigned>(V.size()*4, 32); 1166 APInt A(BW, V, 16); 1167 APInt Limit = APInt(BW, std::numeric_limits<unsigned>::max()); 1168 if (A.ugt(Limit)) 1169 return error("expected 32-bit integer (too large)"); 1170 Result = A.getZExtValue(); 1171 return false; 1172 } 1173 return true; 1174 } 1175 1176 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1177 assert(Token.is(MIToken::MachineBasicBlock) || 1178 Token.is(MIToken::MachineBasicBlockLabel)); 1179 unsigned Number; 1180 if (getUnsigned(Number)) 1181 return true; 1182 auto MBBInfo = PFS.MBBSlots.find(Number); 1183 if (MBBInfo == PFS.MBBSlots.end()) 1184 return error(Twine("use of undefined machine basic block #") + 1185 Twine(Number)); 1186 MBB = MBBInfo->second; 1187 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1188 return error(Twine("the name of machine basic block #") + Twine(Number) + 1189 " isn't '" + Token.stringValue() + "'"); 1190 return false; 1191 } 1192 1193 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1194 MachineBasicBlock *MBB; 1195 if (parseMBBReference(MBB)) 1196 return true; 1197 Dest = MachineOperand::CreateMBB(MBB); 1198 lex(); 1199 return false; 1200 } 1201 1202 bool MIParser::parseStackFrameIndex(int &FI) { 1203 assert(Token.is(MIToken::StackObject)); 1204 unsigned ID; 1205 if (getUnsigned(ID)) 1206 return true; 1207 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1208 if (ObjectInfo == PFS.StackObjectSlots.end()) 1209 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1210 "'"); 1211 StringRef Name; 1212 if (const auto *Alloca = 1213 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1214 Name = Alloca->getName(); 1215 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1216 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1217 "' isn't '" + Token.stringValue() + "'"); 1218 lex(); 1219 FI = ObjectInfo->second; 1220 return false; 1221 } 1222 1223 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1224 int FI; 1225 if (parseStackFrameIndex(FI)) 1226 return true; 1227 Dest = MachineOperand::CreateFI(FI); 1228 return false; 1229 } 1230 1231 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1232 assert(Token.is(MIToken::FixedStackObject)); 1233 unsigned ID; 1234 if (getUnsigned(ID)) 1235 return true; 1236 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1237 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1238 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1239 Twine(ID) + "'"); 1240 lex(); 1241 FI = ObjectInfo->second; 1242 return false; 1243 } 1244 1245 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1246 int FI; 1247 if (parseFixedStackFrameIndex(FI)) 1248 return true; 1249 Dest = MachineOperand::CreateFI(FI); 1250 return false; 1251 } 1252 1253 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1254 switch (Token.kind()) { 1255 case MIToken::NamedGlobalValue: { 1256 const Module *M = MF.getFunction()->getParent(); 1257 GV = M->getNamedValue(Token.stringValue()); 1258 if (!GV) 1259 return error(Twine("use of undefined global value '") + Token.range() + 1260 "'"); 1261 break; 1262 } 1263 case MIToken::GlobalValue: { 1264 unsigned GVIdx; 1265 if (getUnsigned(GVIdx)) 1266 return true; 1267 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1268 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1269 "'"); 1270 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1271 break; 1272 } 1273 default: 1274 llvm_unreachable("The current token should be a global value"); 1275 } 1276 return false; 1277 } 1278 1279 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1280 GlobalValue *GV = nullptr; 1281 if (parseGlobalValue(GV)) 1282 return true; 1283 lex(); 1284 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1285 if (parseOperandsOffset(Dest)) 1286 return true; 1287 return false; 1288 } 1289 1290 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1291 assert(Token.is(MIToken::ConstantPoolItem)); 1292 unsigned ID; 1293 if (getUnsigned(ID)) 1294 return true; 1295 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1296 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1297 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1298 lex(); 1299 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1300 if (parseOperandsOffset(Dest)) 1301 return true; 1302 return false; 1303 } 1304 1305 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1306 assert(Token.is(MIToken::JumpTableIndex)); 1307 unsigned ID; 1308 if (getUnsigned(ID)) 1309 return true; 1310 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1311 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1312 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1313 lex(); 1314 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1315 return false; 1316 } 1317 1318 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1319 assert(Token.is(MIToken::ExternalSymbol)); 1320 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1321 lex(); 1322 Dest = MachineOperand::CreateES(Symbol); 1323 if (parseOperandsOffset(Dest)) 1324 return true; 1325 return false; 1326 } 1327 1328 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1329 assert(Token.is(MIToken::SubRegisterIndex)); 1330 StringRef Name = Token.stringValue(); 1331 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1332 if (SubRegIndex == 0) 1333 return error(Twine("unknown subregister index '") + Name + "'"); 1334 lex(); 1335 Dest = MachineOperand::CreateImm(SubRegIndex); 1336 return false; 1337 } 1338 1339 bool MIParser::parseMDNode(MDNode *&Node) { 1340 assert(Token.is(MIToken::exclaim)); 1341 auto Loc = Token.location(); 1342 lex(); 1343 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1344 return error("expected metadata id after '!'"); 1345 unsigned ID; 1346 if (getUnsigned(ID)) 1347 return true; 1348 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1349 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1350 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1351 lex(); 1352 Node = NodeInfo->second.get(); 1353 return false; 1354 } 1355 1356 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1357 MDNode *Node = nullptr; 1358 if (parseMDNode(Node)) 1359 return true; 1360 Dest = MachineOperand::CreateMetadata(Node); 1361 return false; 1362 } 1363 1364 bool MIParser::parseCFIOffset(int &Offset) { 1365 if (Token.isNot(MIToken::IntegerLiteral)) 1366 return error("expected a cfi offset"); 1367 if (Token.integerValue().getMinSignedBits() > 32) 1368 return error("expected a 32 bit integer (the cfi offset is too large)"); 1369 Offset = (int)Token.integerValue().getExtValue(); 1370 lex(); 1371 return false; 1372 } 1373 1374 bool MIParser::parseCFIRegister(unsigned &Reg) { 1375 if (Token.isNot(MIToken::NamedRegister)) 1376 return error("expected a cfi register"); 1377 unsigned LLVMReg; 1378 if (parseNamedRegister(LLVMReg)) 1379 return true; 1380 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1381 assert(TRI && "Expected target register info"); 1382 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1383 if (DwarfReg < 0) 1384 return error("invalid DWARF register"); 1385 Reg = (unsigned)DwarfReg; 1386 lex(); 1387 return false; 1388 } 1389 1390 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1391 auto Kind = Token.kind(); 1392 lex(); 1393 auto &MMI = MF.getMMI(); 1394 int Offset; 1395 unsigned Reg; 1396 unsigned CFIIndex; 1397 switch (Kind) { 1398 case MIToken::kw_cfi_same_value: 1399 if (parseCFIRegister(Reg)) 1400 return true; 1401 CFIIndex = 1402 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1403 break; 1404 case MIToken::kw_cfi_offset: 1405 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1406 parseCFIOffset(Offset)) 1407 return true; 1408 CFIIndex = 1409 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1410 break; 1411 case MIToken::kw_cfi_def_cfa_register: 1412 if (parseCFIRegister(Reg)) 1413 return true; 1414 CFIIndex = 1415 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1416 break; 1417 case MIToken::kw_cfi_def_cfa_offset: 1418 if (parseCFIOffset(Offset)) 1419 return true; 1420 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1421 CFIIndex = MMI.addFrameInst( 1422 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1423 break; 1424 case MIToken::kw_cfi_def_cfa: 1425 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1426 parseCFIOffset(Offset)) 1427 return true; 1428 // NB: MCCFIInstruction::createDefCfa negates the offset. 1429 CFIIndex = 1430 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1431 break; 1432 default: 1433 // TODO: Parse the other CFI operands. 1434 llvm_unreachable("The current token should be a cfi operand"); 1435 } 1436 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1437 return false; 1438 } 1439 1440 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1441 switch (Token.kind()) { 1442 case MIToken::NamedIRBlock: { 1443 BB = dyn_cast_or_null<BasicBlock>( 1444 F.getValueSymbolTable()->lookup(Token.stringValue())); 1445 if (!BB) 1446 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1447 break; 1448 } 1449 case MIToken::IRBlock: { 1450 unsigned SlotNumber = 0; 1451 if (getUnsigned(SlotNumber)) 1452 return true; 1453 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1454 if (!BB) 1455 return error(Twine("use of undefined IR block '%ir-block.") + 1456 Twine(SlotNumber) + "'"); 1457 break; 1458 } 1459 default: 1460 llvm_unreachable("The current token should be an IR block reference"); 1461 } 1462 return false; 1463 } 1464 1465 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1466 assert(Token.is(MIToken::kw_blockaddress)); 1467 lex(); 1468 if (expectAndConsume(MIToken::lparen)) 1469 return true; 1470 if (Token.isNot(MIToken::GlobalValue) && 1471 Token.isNot(MIToken::NamedGlobalValue)) 1472 return error("expected a global value"); 1473 GlobalValue *GV = nullptr; 1474 if (parseGlobalValue(GV)) 1475 return true; 1476 auto *F = dyn_cast<Function>(GV); 1477 if (!F) 1478 return error("expected an IR function reference"); 1479 lex(); 1480 if (expectAndConsume(MIToken::comma)) 1481 return true; 1482 BasicBlock *BB = nullptr; 1483 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1484 return error("expected an IR block reference"); 1485 if (parseIRBlock(BB, *F)) 1486 return true; 1487 lex(); 1488 if (expectAndConsume(MIToken::rparen)) 1489 return true; 1490 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1491 if (parseOperandsOffset(Dest)) 1492 return true; 1493 return false; 1494 } 1495 1496 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1497 assert(Token.is(MIToken::kw_intrinsic)); 1498 lex(); 1499 if (expectAndConsume(MIToken::lparen)) 1500 return error("expected syntax intrinsic(@llvm.whatever)"); 1501 1502 if (Token.isNot(MIToken::NamedGlobalValue)) 1503 return error("expected syntax intrinsic(@llvm.whatever)"); 1504 1505 std::string Name = Token.stringValue(); 1506 lex(); 1507 1508 if (expectAndConsume(MIToken::rparen)) 1509 return error("expected ')' to terminate intrinsic name"); 1510 1511 // Find out what intrinsic we're dealing with, first try the global namespace 1512 // and then the target's private intrinsics if that fails. 1513 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1514 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1515 if (ID == Intrinsic::not_intrinsic && TII) 1516 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1517 1518 if (ID == Intrinsic::not_intrinsic) 1519 return error("unknown intrinsic name"); 1520 Dest = MachineOperand::CreateIntrinsicID(ID); 1521 1522 return false; 1523 } 1524 1525 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1526 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1527 bool IsFloat = Token.is(MIToken::kw_floatpred); 1528 lex(); 1529 1530 if (expectAndConsume(MIToken::lparen)) 1531 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1532 1533 if (Token.isNot(MIToken::Identifier)) 1534 return error("whatever"); 1535 1536 CmpInst::Predicate Pred; 1537 if (IsFloat) { 1538 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1539 .Case("false", CmpInst::FCMP_FALSE) 1540 .Case("oeq", CmpInst::FCMP_OEQ) 1541 .Case("ogt", CmpInst::FCMP_OGT) 1542 .Case("oge", CmpInst::FCMP_OGE) 1543 .Case("olt", CmpInst::FCMP_OLT) 1544 .Case("ole", CmpInst::FCMP_OLE) 1545 .Case("one", CmpInst::FCMP_ONE) 1546 .Case("ord", CmpInst::FCMP_ORD) 1547 .Case("uno", CmpInst::FCMP_UNO) 1548 .Case("ueq", CmpInst::FCMP_UEQ) 1549 .Case("ugt", CmpInst::FCMP_UGT) 1550 .Case("uge", CmpInst::FCMP_UGE) 1551 .Case("ult", CmpInst::FCMP_ULT) 1552 .Case("ule", CmpInst::FCMP_ULE) 1553 .Case("une", CmpInst::FCMP_UNE) 1554 .Case("true", CmpInst::FCMP_TRUE) 1555 .Default(CmpInst::BAD_FCMP_PREDICATE); 1556 if (!CmpInst::isFPPredicate(Pred)) 1557 return error("invalid floating-point predicate"); 1558 } else { 1559 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1560 .Case("eq", CmpInst::ICMP_EQ) 1561 .Case("ne", CmpInst::ICMP_NE) 1562 .Case("sgt", CmpInst::ICMP_SGT) 1563 .Case("sge", CmpInst::ICMP_SGE) 1564 .Case("slt", CmpInst::ICMP_SLT) 1565 .Case("sle", CmpInst::ICMP_SLE) 1566 .Case("ugt", CmpInst::ICMP_UGT) 1567 .Case("uge", CmpInst::ICMP_UGE) 1568 .Case("ult", CmpInst::ICMP_ULT) 1569 .Case("ule", CmpInst::ICMP_ULE) 1570 .Default(CmpInst::BAD_ICMP_PREDICATE); 1571 if (!CmpInst::isIntPredicate(Pred)) 1572 return error("invalid integer predicate"); 1573 } 1574 1575 lex(); 1576 Dest = MachineOperand::CreatePredicate(Pred); 1577 if (expectAndConsume(MIToken::rparen)) 1578 return error("predicate should be terminated by ')'."); 1579 1580 return false; 1581 } 1582 1583 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1584 assert(Token.is(MIToken::kw_target_index)); 1585 lex(); 1586 if (expectAndConsume(MIToken::lparen)) 1587 return true; 1588 if (Token.isNot(MIToken::Identifier)) 1589 return error("expected the name of the target index"); 1590 int Index = 0; 1591 if (getTargetIndex(Token.stringValue(), Index)) 1592 return error("use of undefined target index '" + Token.stringValue() + "'"); 1593 lex(); 1594 if (expectAndConsume(MIToken::rparen)) 1595 return true; 1596 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1597 if (parseOperandsOffset(Dest)) 1598 return true; 1599 return false; 1600 } 1601 1602 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1603 assert(Token.is(MIToken::kw_liveout)); 1604 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1605 assert(TRI && "Expected target register info"); 1606 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1607 lex(); 1608 if (expectAndConsume(MIToken::lparen)) 1609 return true; 1610 while (true) { 1611 if (Token.isNot(MIToken::NamedRegister)) 1612 return error("expected a named register"); 1613 unsigned Reg; 1614 if (parseNamedRegister(Reg)) 1615 return true; 1616 lex(); 1617 Mask[Reg / 32] |= 1U << (Reg % 32); 1618 // TODO: Report an error if the same register is used more than once. 1619 if (Token.isNot(MIToken::comma)) 1620 break; 1621 lex(); 1622 } 1623 if (expectAndConsume(MIToken::rparen)) 1624 return true; 1625 Dest = MachineOperand::CreateRegLiveOut(Mask); 1626 return false; 1627 } 1628 1629 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1630 Optional<unsigned> &TiedDefIdx) { 1631 switch (Token.kind()) { 1632 case MIToken::kw_implicit: 1633 case MIToken::kw_implicit_define: 1634 case MIToken::kw_def: 1635 case MIToken::kw_dead: 1636 case MIToken::kw_killed: 1637 case MIToken::kw_undef: 1638 case MIToken::kw_internal: 1639 case MIToken::kw_early_clobber: 1640 case MIToken::kw_debug_use: 1641 case MIToken::underscore: 1642 case MIToken::NamedRegister: 1643 case MIToken::VirtualRegister: 1644 return parseRegisterOperand(Dest, TiedDefIdx); 1645 case MIToken::IntegerLiteral: 1646 return parseImmediateOperand(Dest); 1647 case MIToken::IntegerType: 1648 return parseTypedImmediateOperand(Dest); 1649 case MIToken::kw_half: 1650 case MIToken::kw_float: 1651 case MIToken::kw_double: 1652 case MIToken::kw_x86_fp80: 1653 case MIToken::kw_fp128: 1654 case MIToken::kw_ppc_fp128: 1655 return parseFPImmediateOperand(Dest); 1656 case MIToken::MachineBasicBlock: 1657 return parseMBBOperand(Dest); 1658 case MIToken::StackObject: 1659 return parseStackObjectOperand(Dest); 1660 case MIToken::FixedStackObject: 1661 return parseFixedStackObjectOperand(Dest); 1662 case MIToken::GlobalValue: 1663 case MIToken::NamedGlobalValue: 1664 return parseGlobalAddressOperand(Dest); 1665 case MIToken::ConstantPoolItem: 1666 return parseConstantPoolIndexOperand(Dest); 1667 case MIToken::JumpTableIndex: 1668 return parseJumpTableIndexOperand(Dest); 1669 case MIToken::ExternalSymbol: 1670 return parseExternalSymbolOperand(Dest); 1671 case MIToken::SubRegisterIndex: 1672 return parseSubRegisterIndexOperand(Dest); 1673 case MIToken::exclaim: 1674 return parseMetadataOperand(Dest); 1675 case MIToken::kw_cfi_same_value: 1676 case MIToken::kw_cfi_offset: 1677 case MIToken::kw_cfi_def_cfa_register: 1678 case MIToken::kw_cfi_def_cfa_offset: 1679 case MIToken::kw_cfi_def_cfa: 1680 return parseCFIOperand(Dest); 1681 case MIToken::kw_blockaddress: 1682 return parseBlockAddressOperand(Dest); 1683 case MIToken::kw_intrinsic: 1684 return parseIntrinsicOperand(Dest); 1685 case MIToken::kw_target_index: 1686 return parseTargetIndexOperand(Dest); 1687 case MIToken::kw_liveout: 1688 return parseLiveoutRegisterMaskOperand(Dest); 1689 case MIToken::kw_floatpred: 1690 case MIToken::kw_intpred: 1691 return parsePredicateOperand(Dest); 1692 case MIToken::Error: 1693 return true; 1694 case MIToken::Identifier: 1695 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1696 Dest = MachineOperand::CreateRegMask(RegMask); 1697 lex(); 1698 break; 1699 } 1700 LLVM_FALLTHROUGH; 1701 default: 1702 // FIXME: Parse the MCSymbol machine operand. 1703 return error("expected a machine operand"); 1704 } 1705 return false; 1706 } 1707 1708 bool MIParser::parseMachineOperandAndTargetFlags( 1709 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1710 unsigned TF = 0; 1711 bool HasTargetFlags = false; 1712 if (Token.is(MIToken::kw_target_flags)) { 1713 HasTargetFlags = true; 1714 lex(); 1715 if (expectAndConsume(MIToken::lparen)) 1716 return true; 1717 if (Token.isNot(MIToken::Identifier)) 1718 return error("expected the name of the target flag"); 1719 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1720 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1721 return error("use of undefined target flag '" + Token.stringValue() + 1722 "'"); 1723 } 1724 lex(); 1725 while (Token.is(MIToken::comma)) { 1726 lex(); 1727 if (Token.isNot(MIToken::Identifier)) 1728 return error("expected the name of the target flag"); 1729 unsigned BitFlag = 0; 1730 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1731 return error("use of undefined target flag '" + Token.stringValue() + 1732 "'"); 1733 // TODO: Report an error when using a duplicate bit target flag. 1734 TF |= BitFlag; 1735 lex(); 1736 } 1737 if (expectAndConsume(MIToken::rparen)) 1738 return true; 1739 } 1740 auto Loc = Token.location(); 1741 if (parseMachineOperand(Dest, TiedDefIdx)) 1742 return true; 1743 if (!HasTargetFlags) 1744 return false; 1745 if (Dest.isReg()) 1746 return error(Loc, "register operands can't have target flags"); 1747 Dest.setTargetFlags(TF); 1748 return false; 1749 } 1750 1751 bool MIParser::parseOffset(int64_t &Offset) { 1752 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1753 return false; 1754 StringRef Sign = Token.range(); 1755 bool IsNegative = Token.is(MIToken::minus); 1756 lex(); 1757 if (Token.isNot(MIToken::IntegerLiteral)) 1758 return error("expected an integer literal after '" + Sign + "'"); 1759 if (Token.integerValue().getMinSignedBits() > 64) 1760 return error("expected 64-bit integer (too large)"); 1761 Offset = Token.integerValue().getExtValue(); 1762 if (IsNegative) 1763 Offset = -Offset; 1764 lex(); 1765 return false; 1766 } 1767 1768 bool MIParser::parseAlignment(unsigned &Alignment) { 1769 assert(Token.is(MIToken::kw_align)); 1770 lex(); 1771 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1772 return error("expected an integer literal after 'align'"); 1773 if (getUnsigned(Alignment)) 1774 return true; 1775 lex(); 1776 return false; 1777 } 1778 1779 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1780 int64_t Offset = 0; 1781 if (parseOffset(Offset)) 1782 return true; 1783 Op.setOffset(Offset); 1784 return false; 1785 } 1786 1787 bool MIParser::parseIRValue(const Value *&V) { 1788 switch (Token.kind()) { 1789 case MIToken::NamedIRValue: { 1790 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1791 break; 1792 } 1793 case MIToken::IRValue: { 1794 unsigned SlotNumber = 0; 1795 if (getUnsigned(SlotNumber)) 1796 return true; 1797 V = getIRValue(SlotNumber); 1798 break; 1799 } 1800 case MIToken::NamedGlobalValue: 1801 case MIToken::GlobalValue: { 1802 GlobalValue *GV = nullptr; 1803 if (parseGlobalValue(GV)) 1804 return true; 1805 V = GV; 1806 break; 1807 } 1808 case MIToken::QuotedIRValue: { 1809 const Constant *C = nullptr; 1810 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1811 return true; 1812 V = C; 1813 break; 1814 } 1815 default: 1816 llvm_unreachable("The current token should be an IR block reference"); 1817 } 1818 if (!V) 1819 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1820 return false; 1821 } 1822 1823 bool MIParser::getUint64(uint64_t &Result) { 1824 assert(Token.hasIntegerValue()); 1825 if (Token.integerValue().getActiveBits() > 64) 1826 return error("expected 64-bit integer (too large)"); 1827 Result = Token.integerValue().getZExtValue(); 1828 return false; 1829 } 1830 1831 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1832 const auto OldFlags = Flags; 1833 switch (Token.kind()) { 1834 case MIToken::kw_volatile: 1835 Flags |= MachineMemOperand::MOVolatile; 1836 break; 1837 case MIToken::kw_non_temporal: 1838 Flags |= MachineMemOperand::MONonTemporal; 1839 break; 1840 case MIToken::kw_dereferenceable: 1841 Flags |= MachineMemOperand::MODereferenceable; 1842 break; 1843 case MIToken::kw_invariant: 1844 Flags |= MachineMemOperand::MOInvariant; 1845 break; 1846 // TODO: parse the target specific memory operand flags. 1847 default: 1848 llvm_unreachable("The current token should be a memory operand flag"); 1849 } 1850 if (OldFlags == Flags) 1851 // We know that the same flag is specified more than once when the flags 1852 // weren't modified. 1853 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1854 lex(); 1855 return false; 1856 } 1857 1858 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1859 switch (Token.kind()) { 1860 case MIToken::kw_stack: 1861 PSV = MF.getPSVManager().getStack(); 1862 break; 1863 case MIToken::kw_got: 1864 PSV = MF.getPSVManager().getGOT(); 1865 break; 1866 case MIToken::kw_jump_table: 1867 PSV = MF.getPSVManager().getJumpTable(); 1868 break; 1869 case MIToken::kw_constant_pool: 1870 PSV = MF.getPSVManager().getConstantPool(); 1871 break; 1872 case MIToken::FixedStackObject: { 1873 int FI; 1874 if (parseFixedStackFrameIndex(FI)) 1875 return true; 1876 PSV = MF.getPSVManager().getFixedStack(FI); 1877 // The token was already consumed, so use return here instead of break. 1878 return false; 1879 } 1880 case MIToken::StackObject: { 1881 int FI; 1882 if (parseStackFrameIndex(FI)) 1883 return true; 1884 PSV = MF.getPSVManager().getFixedStack(FI); 1885 // The token was already consumed, so use return here instead of break. 1886 return false; 1887 } 1888 case MIToken::kw_call_entry: { 1889 lex(); 1890 switch (Token.kind()) { 1891 case MIToken::GlobalValue: 1892 case MIToken::NamedGlobalValue: { 1893 GlobalValue *GV = nullptr; 1894 if (parseGlobalValue(GV)) 1895 return true; 1896 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1897 break; 1898 } 1899 case MIToken::ExternalSymbol: 1900 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1901 MF.createExternalSymbolName(Token.stringValue())); 1902 break; 1903 default: 1904 return error( 1905 "expected a global value or an external symbol after 'call-entry'"); 1906 } 1907 break; 1908 } 1909 default: 1910 llvm_unreachable("The current token should be pseudo source value"); 1911 } 1912 lex(); 1913 return false; 1914 } 1915 1916 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1917 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1918 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1919 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1920 Token.is(MIToken::kw_call_entry)) { 1921 const PseudoSourceValue *PSV = nullptr; 1922 if (parseMemoryPseudoSourceValue(PSV)) 1923 return true; 1924 int64_t Offset = 0; 1925 if (parseOffset(Offset)) 1926 return true; 1927 Dest = MachinePointerInfo(PSV, Offset); 1928 return false; 1929 } 1930 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1931 Token.isNot(MIToken::GlobalValue) && 1932 Token.isNot(MIToken::NamedGlobalValue) && 1933 Token.isNot(MIToken::QuotedIRValue)) 1934 return error("expected an IR value reference"); 1935 const Value *V = nullptr; 1936 if (parseIRValue(V)) 1937 return true; 1938 if (!V->getType()->isPointerTy()) 1939 return error("expected a pointer IR value"); 1940 lex(); 1941 int64_t Offset = 0; 1942 if (parseOffset(Offset)) 1943 return true; 1944 Dest = MachinePointerInfo(V, Offset); 1945 return false; 1946 } 1947 1948 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1949 if (expectAndConsume(MIToken::lparen)) 1950 return true; 1951 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 1952 while (Token.isMemoryOperandFlag()) { 1953 if (parseMemoryOperandFlag(Flags)) 1954 return true; 1955 } 1956 if (Token.isNot(MIToken::Identifier) || 1957 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1958 return error("expected 'load' or 'store' memory operation"); 1959 if (Token.stringValue() == "load") 1960 Flags |= MachineMemOperand::MOLoad; 1961 else 1962 Flags |= MachineMemOperand::MOStore; 1963 lex(); 1964 1965 if (Token.isNot(MIToken::IntegerLiteral)) 1966 return error("expected the size integer literal after memory operation"); 1967 uint64_t Size; 1968 if (getUint64(Size)) 1969 return true; 1970 lex(); 1971 1972 MachinePointerInfo Ptr = MachinePointerInfo(); 1973 if (Token.is(MIToken::Identifier)) { 1974 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1975 if (Token.stringValue() != Word) 1976 return error(Twine("expected '") + Word + "'"); 1977 lex(); 1978 1979 if (parseMachinePointerInfo(Ptr)) 1980 return true; 1981 } 1982 unsigned BaseAlignment = Size; 1983 AAMDNodes AAInfo; 1984 MDNode *Range = nullptr; 1985 while (consumeIfPresent(MIToken::comma)) { 1986 switch (Token.kind()) { 1987 case MIToken::kw_align: 1988 if (parseAlignment(BaseAlignment)) 1989 return true; 1990 break; 1991 case MIToken::md_tbaa: 1992 lex(); 1993 if (parseMDNode(AAInfo.TBAA)) 1994 return true; 1995 break; 1996 case MIToken::md_alias_scope: 1997 lex(); 1998 if (parseMDNode(AAInfo.Scope)) 1999 return true; 2000 break; 2001 case MIToken::md_noalias: 2002 lex(); 2003 if (parseMDNode(AAInfo.NoAlias)) 2004 return true; 2005 break; 2006 case MIToken::md_range: 2007 lex(); 2008 if (parseMDNode(Range)) 2009 return true; 2010 break; 2011 // TODO: Report an error on duplicate metadata nodes. 2012 default: 2013 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2014 "'!noalias' or '!range'"); 2015 } 2016 } 2017 if (expectAndConsume(MIToken::rparen)) 2018 return true; 2019 Dest = 2020 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 2021 return false; 2022 } 2023 2024 void MIParser::initNames2InstrOpCodes() { 2025 if (!Names2InstrOpCodes.empty()) 2026 return; 2027 const auto *TII = MF.getSubtarget().getInstrInfo(); 2028 assert(TII && "Expected target instruction info"); 2029 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2030 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2031 } 2032 2033 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2034 initNames2InstrOpCodes(); 2035 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2036 if (InstrInfo == Names2InstrOpCodes.end()) 2037 return true; 2038 OpCode = InstrInfo->getValue(); 2039 return false; 2040 } 2041 2042 void MIParser::initNames2Regs() { 2043 if (!Names2Regs.empty()) 2044 return; 2045 // The '%noreg' register is the register 0. 2046 Names2Regs.insert(std::make_pair("noreg", 0)); 2047 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2048 assert(TRI && "Expected target register info"); 2049 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2050 bool WasInserted = 2051 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2052 .second; 2053 (void)WasInserted; 2054 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2055 } 2056 } 2057 2058 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2059 initNames2Regs(); 2060 auto RegInfo = Names2Regs.find(RegName); 2061 if (RegInfo == Names2Regs.end()) 2062 return true; 2063 Reg = RegInfo->getValue(); 2064 return false; 2065 } 2066 2067 void MIParser::initNames2RegMasks() { 2068 if (!Names2RegMasks.empty()) 2069 return; 2070 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2071 assert(TRI && "Expected target register info"); 2072 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2073 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2074 assert(RegMasks.size() == RegMaskNames.size()); 2075 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2076 Names2RegMasks.insert( 2077 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2078 } 2079 2080 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2081 initNames2RegMasks(); 2082 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2083 if (RegMaskInfo == Names2RegMasks.end()) 2084 return nullptr; 2085 return RegMaskInfo->getValue(); 2086 } 2087 2088 void MIParser::initNames2SubRegIndices() { 2089 if (!Names2SubRegIndices.empty()) 2090 return; 2091 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2092 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2093 Names2SubRegIndices.insert( 2094 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2095 } 2096 2097 unsigned MIParser::getSubRegIndex(StringRef Name) { 2098 initNames2SubRegIndices(); 2099 auto SubRegInfo = Names2SubRegIndices.find(Name); 2100 if (SubRegInfo == Names2SubRegIndices.end()) 2101 return 0; 2102 return SubRegInfo->getValue(); 2103 } 2104 2105 static void initSlots2BasicBlocks( 2106 const Function &F, 2107 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2108 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2109 MST.incorporateFunction(F); 2110 for (auto &BB : F) { 2111 if (BB.hasName()) 2112 continue; 2113 int Slot = MST.getLocalSlot(&BB); 2114 if (Slot == -1) 2115 continue; 2116 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2117 } 2118 } 2119 2120 static const BasicBlock *getIRBlockFromSlot( 2121 unsigned Slot, 2122 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2123 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2124 if (BlockInfo == Slots2BasicBlocks.end()) 2125 return nullptr; 2126 return BlockInfo->second; 2127 } 2128 2129 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2130 if (Slots2BasicBlocks.empty()) 2131 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2132 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2133 } 2134 2135 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2136 if (&F == MF.getFunction()) 2137 return getIRBlock(Slot); 2138 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2139 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2140 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2141 } 2142 2143 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2144 DenseMap<unsigned, const Value *> &Slots2Values) { 2145 int Slot = MST.getLocalSlot(V); 2146 if (Slot == -1) 2147 return; 2148 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2149 } 2150 2151 /// Creates the mapping from slot numbers to function's unnamed IR values. 2152 static void initSlots2Values(const Function &F, 2153 DenseMap<unsigned, const Value *> &Slots2Values) { 2154 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2155 MST.incorporateFunction(F); 2156 for (const auto &Arg : F.args()) 2157 mapValueToSlot(&Arg, MST, Slots2Values); 2158 for (const auto &BB : F) { 2159 mapValueToSlot(&BB, MST, Slots2Values); 2160 for (const auto &I : BB) 2161 mapValueToSlot(&I, MST, Slots2Values); 2162 } 2163 } 2164 2165 const Value *MIParser::getIRValue(unsigned Slot) { 2166 if (Slots2Values.empty()) 2167 initSlots2Values(*MF.getFunction(), Slots2Values); 2168 auto ValueInfo = Slots2Values.find(Slot); 2169 if (ValueInfo == Slots2Values.end()) 2170 return nullptr; 2171 return ValueInfo->second; 2172 } 2173 2174 void MIParser::initNames2TargetIndices() { 2175 if (!Names2TargetIndices.empty()) 2176 return; 2177 const auto *TII = MF.getSubtarget().getInstrInfo(); 2178 assert(TII && "Expected target instruction info"); 2179 auto Indices = TII->getSerializableTargetIndices(); 2180 for (const auto &I : Indices) 2181 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2182 } 2183 2184 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2185 initNames2TargetIndices(); 2186 auto IndexInfo = Names2TargetIndices.find(Name); 2187 if (IndexInfo == Names2TargetIndices.end()) 2188 return true; 2189 Index = IndexInfo->second; 2190 return false; 2191 } 2192 2193 void MIParser::initNames2DirectTargetFlags() { 2194 if (!Names2DirectTargetFlags.empty()) 2195 return; 2196 const auto *TII = MF.getSubtarget().getInstrInfo(); 2197 assert(TII && "Expected target instruction info"); 2198 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2199 for (const auto &I : Flags) 2200 Names2DirectTargetFlags.insert( 2201 std::make_pair(StringRef(I.second), I.first)); 2202 } 2203 2204 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2205 initNames2DirectTargetFlags(); 2206 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2207 if (FlagInfo == Names2DirectTargetFlags.end()) 2208 return true; 2209 Flag = FlagInfo->second; 2210 return false; 2211 } 2212 2213 void MIParser::initNames2BitmaskTargetFlags() { 2214 if (!Names2BitmaskTargetFlags.empty()) 2215 return; 2216 const auto *TII = MF.getSubtarget().getInstrInfo(); 2217 assert(TII && "Expected target instruction info"); 2218 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2219 for (const auto &I : Flags) 2220 Names2BitmaskTargetFlags.insert( 2221 std::make_pair(StringRef(I.second), I.first)); 2222 } 2223 2224 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2225 initNames2BitmaskTargetFlags(); 2226 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2227 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2228 return true; 2229 Flag = FlagInfo->second; 2230 return false; 2231 } 2232 2233 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2234 StringRef Src, 2235 SMDiagnostic &Error) { 2236 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2237 } 2238 2239 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2240 StringRef Src, SMDiagnostic &Error) { 2241 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2242 } 2243 2244 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2245 MachineBasicBlock *&MBB, StringRef Src, 2246 SMDiagnostic &Error) { 2247 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2248 } 2249 2250 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2251 unsigned &Reg, StringRef Src, 2252 SMDiagnostic &Error) { 2253 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2254 } 2255 2256 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2257 unsigned &Reg, StringRef Src, 2258 SMDiagnostic &Error) { 2259 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2260 } 2261 2262 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2263 VRegInfo *&Info, StringRef Src, 2264 SMDiagnostic &Error) { 2265 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2266 } 2267 2268 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2269 int &FI, StringRef Src, 2270 SMDiagnostic &Error) { 2271 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2272 } 2273 2274 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2275 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2276 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2277 } 2278