1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/AsmParser/Parser.h" 29 #include "llvm/AsmParser/SlotMapping.h" 30 #include "llvm/CodeGen/MIRPrinter.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueSymbolTable.h" 57 #include "llvm/MC/LaneBitmask.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCDwarf.h" 60 #include "llvm/MC/MCInstrDesc.h" 61 #include "llvm/MC/MCRegisterInfo.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/SMLoc.h" 69 #include "llvm/Support/SourceMgr.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetIntrinsicInfo.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cctype> 76 #include <cstddef> 77 #include <cstdint> 78 #include <limits> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 85 SourceMgr &SM, const SlotMapping &IRSlots, 86 const Name2RegClassMap &Names2RegClasses, 87 const Name2RegBankMap &Names2RegBanks) 88 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 89 Names2RegBanks(Names2RegBanks) { 90 } 91 92 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 93 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 94 if (I.second) { 95 MachineRegisterInfo &MRI = MF.getRegInfo(); 96 VRegInfo *Info = new (Allocator) VRegInfo; 97 Info->VReg = MRI.createIncompleteVirtualRegister(); 98 I.first->second = Info; 99 } 100 return *I.first->second; 101 } 102 103 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 104 assert(RegName != "" && "Expected named reg."); 105 106 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 107 if (I.second) { 108 VRegInfo *Info = new (Allocator) VRegInfo; 109 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 110 I.first->second = Info; 111 } 112 return *I.first->second; 113 } 114 115 namespace { 116 117 /// A wrapper struct around the 'MachineOperand' struct that includes a source 118 /// range and other attributes. 119 struct ParsedMachineOperand { 120 MachineOperand Operand; 121 StringRef::iterator Begin; 122 StringRef::iterator End; 123 Optional<unsigned> TiedDefIdx; 124 125 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 126 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 127 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 128 if (TiedDefIdx) 129 assert(Operand.isReg() && Operand.isUse() && 130 "Only used register operands can be tied"); 131 } 132 }; 133 134 class MIParser { 135 MachineFunction &MF; 136 SMDiagnostic &Error; 137 StringRef Source, CurrentSource; 138 MIToken Token; 139 PerFunctionMIParsingState &PFS; 140 /// Maps from instruction names to op codes. 141 StringMap<unsigned> Names2InstrOpCodes; 142 /// Maps from register names to registers. 143 StringMap<unsigned> Names2Regs; 144 /// Maps from register mask names to register masks. 145 StringMap<const uint32_t *> Names2RegMasks; 146 /// Maps from subregister names to subregister indices. 147 StringMap<unsigned> Names2SubRegIndices; 148 /// Maps from slot numbers to function's unnamed basic blocks. 149 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 150 /// Maps from slot numbers to function's unnamed values. 151 DenseMap<unsigned, const Value *> Slots2Values; 152 /// Maps from target index names to target indices. 153 StringMap<int> Names2TargetIndices; 154 /// Maps from direct target flag names to the direct target flag values. 155 StringMap<unsigned> Names2DirectTargetFlags; 156 /// Maps from direct target flag names to the bitmask target flag values. 157 StringMap<unsigned> Names2BitmaskTargetFlags; 158 /// Maps from MMO target flag names to MMO target flag values. 159 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 160 161 public: 162 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 163 StringRef Source); 164 165 /// \p SkipChar gives the number of characters to skip before looking 166 /// for the next token. 167 void lex(unsigned SkipChar = 0); 168 169 /// Report an error at the current location with the given message. 170 /// 171 /// This function always return true. 172 bool error(const Twine &Msg); 173 174 /// Report an error at the given location with the given message. 175 /// 176 /// This function always return true. 177 bool error(StringRef::iterator Loc, const Twine &Msg); 178 179 bool 180 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 181 bool parseBasicBlocks(); 182 bool parse(MachineInstr *&MI); 183 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 184 bool parseStandaloneNamedRegister(unsigned &Reg); 185 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 186 bool parseStandaloneRegister(unsigned &Reg); 187 bool parseStandaloneStackObject(int &FI); 188 bool parseStandaloneMDNode(MDNode *&Node); 189 190 bool 191 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 192 bool parseBasicBlock(MachineBasicBlock &MBB, 193 MachineBasicBlock *&AddFalthroughFrom); 194 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 195 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 196 197 bool parseNamedRegister(unsigned &Reg); 198 bool parseVirtualRegister(VRegInfo *&Info); 199 bool parseNamedVirtualRegister(VRegInfo *&Info); 200 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 201 bool parseRegisterFlag(unsigned &Flags); 202 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 203 bool parseSubRegisterIndex(unsigned &SubReg); 204 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 205 bool parseRegisterOperand(MachineOperand &Dest, 206 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 207 bool parseImmediateOperand(MachineOperand &Dest); 208 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 209 const Constant *&C); 210 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 211 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 212 bool parseTypedImmediateOperand(MachineOperand &Dest); 213 bool parseFPImmediateOperand(MachineOperand &Dest); 214 bool parseMBBReference(MachineBasicBlock *&MBB); 215 bool parseMBBOperand(MachineOperand &Dest); 216 bool parseStackFrameIndex(int &FI); 217 bool parseStackObjectOperand(MachineOperand &Dest); 218 bool parseFixedStackFrameIndex(int &FI); 219 bool parseFixedStackObjectOperand(MachineOperand &Dest); 220 bool parseGlobalValue(GlobalValue *&GV); 221 bool parseGlobalAddressOperand(MachineOperand &Dest); 222 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 223 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 224 bool parseJumpTableIndexOperand(MachineOperand &Dest); 225 bool parseExternalSymbolOperand(MachineOperand &Dest); 226 bool parseMCSymbolOperand(MachineOperand &Dest); 227 bool parseMDNode(MDNode *&Node); 228 bool parseDIExpression(MDNode *&Expr); 229 bool parseMetadataOperand(MachineOperand &Dest); 230 bool parseCFIOffset(int &Offset); 231 bool parseCFIRegister(unsigned &Reg); 232 bool parseCFIEscapeValues(std::string& Values); 233 bool parseCFIOperand(MachineOperand &Dest); 234 bool parseIRBlock(BasicBlock *&BB, const Function &F); 235 bool parseBlockAddressOperand(MachineOperand &Dest); 236 bool parseIntrinsicOperand(MachineOperand &Dest); 237 bool parsePredicateOperand(MachineOperand &Dest); 238 bool parseTargetIndexOperand(MachineOperand &Dest); 239 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 240 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 241 bool parseMachineOperand(MachineOperand &Dest, 242 Optional<unsigned> &TiedDefIdx); 243 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 244 Optional<unsigned> &TiedDefIdx); 245 bool parseOffset(int64_t &Offset); 246 bool parseAlignment(unsigned &Alignment); 247 bool parseAddrspace(unsigned &Addrspace); 248 bool parseOperandsOffset(MachineOperand &Op); 249 bool parseIRValue(const Value *&V); 250 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 251 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 252 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 253 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 254 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 255 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 256 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 257 258 private: 259 /// Convert the integer literal in the current token into an unsigned integer. 260 /// 261 /// Return true if an error occurred. 262 bool getUnsigned(unsigned &Result); 263 264 /// Convert the integer literal in the current token into an uint64. 265 /// 266 /// Return true if an error occurred. 267 bool getUint64(uint64_t &Result); 268 269 /// Convert the hexadecimal literal in the current token into an unsigned 270 /// APInt with a minimum bitwidth required to represent the value. 271 /// 272 /// Return true if the literal does not represent an integer value. 273 bool getHexUint(APInt &Result); 274 275 /// If the current token is of the given kind, consume it and return false. 276 /// Otherwise report an error and return true. 277 bool expectAndConsume(MIToken::TokenKind TokenKind); 278 279 /// If the current token is of the given kind, consume it and return true. 280 /// Otherwise return false. 281 bool consumeIfPresent(MIToken::TokenKind TokenKind); 282 283 void initNames2InstrOpCodes(); 284 285 /// Try to convert an instruction name to an opcode. Return true if the 286 /// instruction name is invalid. 287 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 288 289 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 290 291 bool assignRegisterTies(MachineInstr &MI, 292 ArrayRef<ParsedMachineOperand> Operands); 293 294 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 295 const MCInstrDesc &MCID); 296 297 void initNames2Regs(); 298 299 /// Try to convert a register name to a register number. Return true if the 300 /// register name is invalid. 301 bool getRegisterByName(StringRef RegName, unsigned &Reg); 302 303 void initNames2RegMasks(); 304 305 /// Check if the given identifier is a name of a register mask. 306 /// 307 /// Return null if the identifier isn't a register mask. 308 const uint32_t *getRegMask(StringRef Identifier); 309 310 void initNames2SubRegIndices(); 311 312 /// Check if the given identifier is a name of a subregister index. 313 /// 314 /// Return 0 if the name isn't a subregister index class. 315 unsigned getSubRegIndex(StringRef Name); 316 317 const BasicBlock *getIRBlock(unsigned Slot); 318 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 319 320 const Value *getIRValue(unsigned Slot); 321 322 void initNames2TargetIndices(); 323 324 /// Try to convert a name of target index to the corresponding target index. 325 /// 326 /// Return true if the name isn't a name of a target index. 327 bool getTargetIndex(StringRef Name, int &Index); 328 329 void initNames2DirectTargetFlags(); 330 331 /// Try to convert a name of a direct target flag to the corresponding 332 /// target flag. 333 /// 334 /// Return true if the name isn't a name of a direct flag. 335 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 336 337 void initNames2BitmaskTargetFlags(); 338 339 /// Try to convert a name of a bitmask target flag to the corresponding 340 /// target flag. 341 /// 342 /// Return true if the name isn't a name of a bitmask target flag. 343 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 344 345 void initNames2MMOTargetFlags(); 346 347 /// Try to convert a name of a MachineMemOperand target flag to the 348 /// corresponding target flag. 349 /// 350 /// Return true if the name isn't a name of a target MMO flag. 351 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 352 353 /// Get or create an MCSymbol for a given name. 354 MCSymbol *getOrCreateMCSymbol(StringRef Name); 355 356 /// parseStringConstant 357 /// ::= StringConstant 358 bool parseStringConstant(std::string &Result); 359 }; 360 361 } // end anonymous namespace 362 363 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 364 StringRef Source) 365 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 366 {} 367 368 void MIParser::lex(unsigned SkipChar) { 369 CurrentSource = lexMIToken( 370 CurrentSource.data() + SkipChar, Token, 371 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 372 } 373 374 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 375 376 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 377 const SourceMgr &SM = *PFS.SM; 378 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 379 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 380 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 381 // Create an ordinary diagnostic when the source manager's buffer is the 382 // source string. 383 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 384 return true; 385 } 386 // Create a diagnostic for a YAML string literal. 387 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 388 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 389 Source, None, None); 390 return true; 391 } 392 393 static const char *toString(MIToken::TokenKind TokenKind) { 394 switch (TokenKind) { 395 case MIToken::comma: 396 return "','"; 397 case MIToken::equal: 398 return "'='"; 399 case MIToken::colon: 400 return "':'"; 401 case MIToken::lparen: 402 return "'('"; 403 case MIToken::rparen: 404 return "')'"; 405 default: 406 return "<unknown token>"; 407 } 408 } 409 410 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 411 if (Token.isNot(TokenKind)) 412 return error(Twine("expected ") + toString(TokenKind)); 413 lex(); 414 return false; 415 } 416 417 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 418 if (Token.isNot(TokenKind)) 419 return false; 420 lex(); 421 return true; 422 } 423 424 bool MIParser::parseBasicBlockDefinition( 425 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 426 assert(Token.is(MIToken::MachineBasicBlockLabel)); 427 unsigned ID = 0; 428 if (getUnsigned(ID)) 429 return true; 430 auto Loc = Token.location(); 431 auto Name = Token.stringValue(); 432 lex(); 433 bool HasAddressTaken = false; 434 bool IsLandingPad = false; 435 unsigned Alignment = 0; 436 BasicBlock *BB = nullptr; 437 if (consumeIfPresent(MIToken::lparen)) { 438 do { 439 // TODO: Report an error when multiple same attributes are specified. 440 switch (Token.kind()) { 441 case MIToken::kw_address_taken: 442 HasAddressTaken = true; 443 lex(); 444 break; 445 case MIToken::kw_landing_pad: 446 IsLandingPad = true; 447 lex(); 448 break; 449 case MIToken::kw_align: 450 if (parseAlignment(Alignment)) 451 return true; 452 break; 453 case MIToken::IRBlock: 454 // TODO: Report an error when both name and ir block are specified. 455 if (parseIRBlock(BB, MF.getFunction())) 456 return true; 457 lex(); 458 break; 459 default: 460 break; 461 } 462 } while (consumeIfPresent(MIToken::comma)); 463 if (expectAndConsume(MIToken::rparen)) 464 return true; 465 } 466 if (expectAndConsume(MIToken::colon)) 467 return true; 468 469 if (!Name.empty()) { 470 BB = dyn_cast_or_null<BasicBlock>( 471 MF.getFunction().getValueSymbolTable()->lookup(Name)); 472 if (!BB) 473 return error(Loc, Twine("basic block '") + Name + 474 "' is not defined in the function '" + 475 MF.getName() + "'"); 476 } 477 auto *MBB = MF.CreateMachineBasicBlock(BB); 478 MF.insert(MF.end(), MBB); 479 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 480 if (!WasInserted) 481 return error(Loc, Twine("redefinition of machine basic block with id #") + 482 Twine(ID)); 483 if (Alignment) 484 MBB->setAlignment(Alignment); 485 if (HasAddressTaken) 486 MBB->setHasAddressTaken(); 487 MBB->setIsEHPad(IsLandingPad); 488 return false; 489 } 490 491 bool MIParser::parseBasicBlockDefinitions( 492 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 493 lex(); 494 // Skip until the first machine basic block. 495 while (Token.is(MIToken::Newline)) 496 lex(); 497 if (Token.isErrorOrEOF()) 498 return Token.isError(); 499 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 500 return error("expected a basic block definition before instructions"); 501 unsigned BraceDepth = 0; 502 do { 503 if (parseBasicBlockDefinition(MBBSlots)) 504 return true; 505 bool IsAfterNewline = false; 506 // Skip until the next machine basic block. 507 while (true) { 508 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 509 Token.isErrorOrEOF()) 510 break; 511 else if (Token.is(MIToken::MachineBasicBlockLabel)) 512 return error("basic block definition should be located at the start of " 513 "the line"); 514 else if (consumeIfPresent(MIToken::Newline)) { 515 IsAfterNewline = true; 516 continue; 517 } 518 IsAfterNewline = false; 519 if (Token.is(MIToken::lbrace)) 520 ++BraceDepth; 521 if (Token.is(MIToken::rbrace)) { 522 if (!BraceDepth) 523 return error("extraneous closing brace ('}')"); 524 --BraceDepth; 525 } 526 lex(); 527 } 528 // Verify that we closed all of the '{' at the end of a file or a block. 529 if (!Token.isError() && BraceDepth) 530 return error("expected '}'"); // FIXME: Report a note that shows '{'. 531 } while (!Token.isErrorOrEOF()); 532 return Token.isError(); 533 } 534 535 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 536 assert(Token.is(MIToken::kw_liveins)); 537 lex(); 538 if (expectAndConsume(MIToken::colon)) 539 return true; 540 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 541 return false; 542 do { 543 if (Token.isNot(MIToken::NamedRegister)) 544 return error("expected a named register"); 545 unsigned Reg = 0; 546 if (parseNamedRegister(Reg)) 547 return true; 548 lex(); 549 LaneBitmask Mask = LaneBitmask::getAll(); 550 if (consumeIfPresent(MIToken::colon)) { 551 // Parse lane mask. 552 if (Token.isNot(MIToken::IntegerLiteral) && 553 Token.isNot(MIToken::HexLiteral)) 554 return error("expected a lane mask"); 555 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 556 "Use correct get-function for lane mask"); 557 LaneBitmask::Type V; 558 if (getUnsigned(V)) 559 return error("invalid lane mask value"); 560 Mask = LaneBitmask(V); 561 lex(); 562 } 563 MBB.addLiveIn(Reg, Mask); 564 } while (consumeIfPresent(MIToken::comma)); 565 return false; 566 } 567 568 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 569 assert(Token.is(MIToken::kw_successors)); 570 lex(); 571 if (expectAndConsume(MIToken::colon)) 572 return true; 573 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 574 return false; 575 do { 576 if (Token.isNot(MIToken::MachineBasicBlock)) 577 return error("expected a machine basic block reference"); 578 MachineBasicBlock *SuccMBB = nullptr; 579 if (parseMBBReference(SuccMBB)) 580 return true; 581 lex(); 582 unsigned Weight = 0; 583 if (consumeIfPresent(MIToken::lparen)) { 584 if (Token.isNot(MIToken::IntegerLiteral) && 585 Token.isNot(MIToken::HexLiteral)) 586 return error("expected an integer literal after '('"); 587 if (getUnsigned(Weight)) 588 return true; 589 lex(); 590 if (expectAndConsume(MIToken::rparen)) 591 return true; 592 } 593 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 594 } while (consumeIfPresent(MIToken::comma)); 595 MBB.normalizeSuccProbs(); 596 return false; 597 } 598 599 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 600 MachineBasicBlock *&AddFalthroughFrom) { 601 // Skip the definition. 602 assert(Token.is(MIToken::MachineBasicBlockLabel)); 603 lex(); 604 if (consumeIfPresent(MIToken::lparen)) { 605 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 606 lex(); 607 consumeIfPresent(MIToken::rparen); 608 } 609 consumeIfPresent(MIToken::colon); 610 611 // Parse the liveins and successors. 612 // N.B: Multiple lists of successors and liveins are allowed and they're 613 // merged into one. 614 // Example: 615 // liveins: %edi 616 // liveins: %esi 617 // 618 // is equivalent to 619 // liveins: %edi, %esi 620 bool ExplicitSuccessors = false; 621 while (true) { 622 if (Token.is(MIToken::kw_successors)) { 623 if (parseBasicBlockSuccessors(MBB)) 624 return true; 625 ExplicitSuccessors = true; 626 } else if (Token.is(MIToken::kw_liveins)) { 627 if (parseBasicBlockLiveins(MBB)) 628 return true; 629 } else if (consumeIfPresent(MIToken::Newline)) { 630 continue; 631 } else 632 break; 633 if (!Token.isNewlineOrEOF()) 634 return error("expected line break at the end of a list"); 635 lex(); 636 } 637 638 // Parse the instructions. 639 bool IsInBundle = false; 640 MachineInstr *PrevMI = nullptr; 641 while (!Token.is(MIToken::MachineBasicBlockLabel) && 642 !Token.is(MIToken::Eof)) { 643 if (consumeIfPresent(MIToken::Newline)) 644 continue; 645 if (consumeIfPresent(MIToken::rbrace)) { 646 // The first parsing pass should verify that all closing '}' have an 647 // opening '{'. 648 assert(IsInBundle); 649 IsInBundle = false; 650 continue; 651 } 652 MachineInstr *MI = nullptr; 653 if (parse(MI)) 654 return true; 655 MBB.insert(MBB.end(), MI); 656 if (IsInBundle) { 657 PrevMI->setFlag(MachineInstr::BundledSucc); 658 MI->setFlag(MachineInstr::BundledPred); 659 } 660 PrevMI = MI; 661 if (Token.is(MIToken::lbrace)) { 662 if (IsInBundle) 663 return error("nested instruction bundles are not allowed"); 664 lex(); 665 // This instruction is the start of the bundle. 666 MI->setFlag(MachineInstr::BundledSucc); 667 IsInBundle = true; 668 if (!Token.is(MIToken::Newline)) 669 // The next instruction can be on the same line. 670 continue; 671 } 672 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 673 lex(); 674 } 675 676 // Construct successor list by searching for basic block machine operands. 677 if (!ExplicitSuccessors) { 678 SmallVector<MachineBasicBlock*,4> Successors; 679 bool IsFallthrough; 680 guessSuccessors(MBB, Successors, IsFallthrough); 681 for (MachineBasicBlock *Succ : Successors) 682 MBB.addSuccessor(Succ); 683 684 if (IsFallthrough) { 685 AddFalthroughFrom = &MBB; 686 } else { 687 MBB.normalizeSuccProbs(); 688 } 689 } 690 691 return false; 692 } 693 694 bool MIParser::parseBasicBlocks() { 695 lex(); 696 // Skip until the first machine basic block. 697 while (Token.is(MIToken::Newline)) 698 lex(); 699 if (Token.isErrorOrEOF()) 700 return Token.isError(); 701 // The first parsing pass should have verified that this token is a MBB label 702 // in the 'parseBasicBlockDefinitions' method. 703 assert(Token.is(MIToken::MachineBasicBlockLabel)); 704 MachineBasicBlock *AddFalthroughFrom = nullptr; 705 do { 706 MachineBasicBlock *MBB = nullptr; 707 if (parseMBBReference(MBB)) 708 return true; 709 if (AddFalthroughFrom) { 710 if (!AddFalthroughFrom->isSuccessor(MBB)) 711 AddFalthroughFrom->addSuccessor(MBB); 712 AddFalthroughFrom->normalizeSuccProbs(); 713 AddFalthroughFrom = nullptr; 714 } 715 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 716 return true; 717 // The method 'parseBasicBlock' should parse the whole block until the next 718 // block or the end of file. 719 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 720 } while (Token.isNot(MIToken::Eof)); 721 return false; 722 } 723 724 bool MIParser::parse(MachineInstr *&MI) { 725 // Parse any register operands before '=' 726 MachineOperand MO = MachineOperand::CreateImm(0); 727 SmallVector<ParsedMachineOperand, 8> Operands; 728 while (Token.isRegister() || Token.isRegisterFlag()) { 729 auto Loc = Token.location(); 730 Optional<unsigned> TiedDefIdx; 731 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 732 return true; 733 Operands.push_back( 734 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 735 if (Token.isNot(MIToken::comma)) 736 break; 737 lex(); 738 } 739 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 740 return true; 741 742 unsigned OpCode, Flags = 0; 743 if (Token.isError() || parseInstruction(OpCode, Flags)) 744 return true; 745 746 // Parse the remaining machine operands. 747 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 748 Token.isNot(MIToken::kw_post_instr_symbol) && 749 Token.isNot(MIToken::kw_debug_location) && 750 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 751 auto Loc = Token.location(); 752 Optional<unsigned> TiedDefIdx; 753 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 754 return true; 755 Operands.push_back( 756 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 757 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 758 Token.is(MIToken::lbrace)) 759 break; 760 if (Token.isNot(MIToken::comma)) 761 return error("expected ',' before the next machine operand"); 762 lex(); 763 } 764 765 MCSymbol *PreInstrSymbol = nullptr; 766 if (Token.is(MIToken::kw_pre_instr_symbol)) 767 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 768 return true; 769 MCSymbol *PostInstrSymbol = nullptr; 770 if (Token.is(MIToken::kw_post_instr_symbol)) 771 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 772 return true; 773 774 DebugLoc DebugLocation; 775 if (Token.is(MIToken::kw_debug_location)) { 776 lex(); 777 if (Token.isNot(MIToken::exclaim)) 778 return error("expected a metadata node after 'debug-location'"); 779 MDNode *Node = nullptr; 780 if (parseMDNode(Node)) 781 return true; 782 DebugLocation = DebugLoc(Node); 783 } 784 785 // Parse the machine memory operands. 786 SmallVector<MachineMemOperand *, 2> MemOperands; 787 if (Token.is(MIToken::coloncolon)) { 788 lex(); 789 while (!Token.isNewlineOrEOF()) { 790 MachineMemOperand *MemOp = nullptr; 791 if (parseMachineMemoryOperand(MemOp)) 792 return true; 793 MemOperands.push_back(MemOp); 794 if (Token.isNewlineOrEOF()) 795 break; 796 if (Token.isNot(MIToken::comma)) 797 return error("expected ',' before the next machine memory operand"); 798 lex(); 799 } 800 } 801 802 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 803 if (!MCID.isVariadic()) { 804 // FIXME: Move the implicit operand verification to the machine verifier. 805 if (verifyImplicitOperands(Operands, MCID)) 806 return true; 807 } 808 809 // TODO: Check for extraneous machine operands. 810 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 811 MI->setFlags(Flags); 812 for (const auto &Operand : Operands) 813 MI->addOperand(MF, Operand.Operand); 814 if (assignRegisterTies(*MI, Operands)) 815 return true; 816 if (PreInstrSymbol) 817 MI->setPreInstrSymbol(MF, PreInstrSymbol); 818 if (PostInstrSymbol) 819 MI->setPostInstrSymbol(MF, PostInstrSymbol); 820 if (!MemOperands.empty()) 821 MI->setMemRefs(MF, MemOperands); 822 return false; 823 } 824 825 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 826 lex(); 827 if (Token.isNot(MIToken::MachineBasicBlock)) 828 return error("expected a machine basic block reference"); 829 if (parseMBBReference(MBB)) 830 return true; 831 lex(); 832 if (Token.isNot(MIToken::Eof)) 833 return error( 834 "expected end of string after the machine basic block reference"); 835 return false; 836 } 837 838 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 839 lex(); 840 if (Token.isNot(MIToken::NamedRegister)) 841 return error("expected a named register"); 842 if (parseNamedRegister(Reg)) 843 return true; 844 lex(); 845 if (Token.isNot(MIToken::Eof)) 846 return error("expected end of string after the register reference"); 847 return false; 848 } 849 850 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 851 lex(); 852 if (Token.isNot(MIToken::VirtualRegister)) 853 return error("expected a virtual register"); 854 if (parseVirtualRegister(Info)) 855 return true; 856 lex(); 857 if (Token.isNot(MIToken::Eof)) 858 return error("expected end of string after the register reference"); 859 return false; 860 } 861 862 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 863 lex(); 864 if (Token.isNot(MIToken::NamedRegister) && 865 Token.isNot(MIToken::VirtualRegister)) 866 return error("expected either a named or virtual register"); 867 868 VRegInfo *Info; 869 if (parseRegister(Reg, Info)) 870 return true; 871 872 lex(); 873 if (Token.isNot(MIToken::Eof)) 874 return error("expected end of string after the register reference"); 875 return false; 876 } 877 878 bool MIParser::parseStandaloneStackObject(int &FI) { 879 lex(); 880 if (Token.isNot(MIToken::StackObject)) 881 return error("expected a stack object"); 882 if (parseStackFrameIndex(FI)) 883 return true; 884 if (Token.isNot(MIToken::Eof)) 885 return error("expected end of string after the stack object reference"); 886 return false; 887 } 888 889 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 890 lex(); 891 if (Token.is(MIToken::exclaim)) { 892 if (parseMDNode(Node)) 893 return true; 894 } else if (Token.is(MIToken::md_diexpr)) { 895 if (parseDIExpression(Node)) 896 return true; 897 } else 898 return error("expected a metadata node"); 899 if (Token.isNot(MIToken::Eof)) 900 return error("expected end of string after the metadata node"); 901 return false; 902 } 903 904 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 905 assert(MO.isImplicit()); 906 return MO.isDef() ? "implicit-def" : "implicit"; 907 } 908 909 static std::string getRegisterName(const TargetRegisterInfo *TRI, 910 unsigned Reg) { 911 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 912 return StringRef(TRI->getName(Reg)).lower(); 913 } 914 915 /// Return true if the parsed machine operands contain a given machine operand. 916 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 917 ArrayRef<ParsedMachineOperand> Operands) { 918 for (const auto &I : Operands) { 919 if (ImplicitOperand.isIdenticalTo(I.Operand)) 920 return true; 921 } 922 return false; 923 } 924 925 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 926 const MCInstrDesc &MCID) { 927 if (MCID.isCall()) 928 // We can't verify call instructions as they can contain arbitrary implicit 929 // register and register mask operands. 930 return false; 931 932 // Gather all the expected implicit operands. 933 SmallVector<MachineOperand, 4> ImplicitOperands; 934 if (MCID.ImplicitDefs) 935 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 936 ImplicitOperands.push_back( 937 MachineOperand::CreateReg(*ImpDefs, true, true)); 938 if (MCID.ImplicitUses) 939 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 940 ImplicitOperands.push_back( 941 MachineOperand::CreateReg(*ImpUses, false, true)); 942 943 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 944 assert(TRI && "Expected target register info"); 945 for (const auto &I : ImplicitOperands) { 946 if (isImplicitOperandIn(I, Operands)) 947 continue; 948 return error(Operands.empty() ? Token.location() : Operands.back().End, 949 Twine("missing implicit register operand '") + 950 printImplicitRegisterFlag(I) + " $" + 951 getRegisterName(TRI, I.getReg()) + "'"); 952 } 953 return false; 954 } 955 956 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 957 // Allow frame and fast math flags for OPCODE 958 while (Token.is(MIToken::kw_frame_setup) || 959 Token.is(MIToken::kw_frame_destroy) || 960 Token.is(MIToken::kw_nnan) || 961 Token.is(MIToken::kw_ninf) || 962 Token.is(MIToken::kw_nsz) || 963 Token.is(MIToken::kw_arcp) || 964 Token.is(MIToken::kw_contract) || 965 Token.is(MIToken::kw_afn) || 966 Token.is(MIToken::kw_reassoc) || 967 Token.is(MIToken::kw_nuw) || 968 Token.is(MIToken::kw_nsw) || 969 Token.is(MIToken::kw_exact)) { 970 // Mine frame and fast math flags 971 if (Token.is(MIToken::kw_frame_setup)) 972 Flags |= MachineInstr::FrameSetup; 973 if (Token.is(MIToken::kw_frame_destroy)) 974 Flags |= MachineInstr::FrameDestroy; 975 if (Token.is(MIToken::kw_nnan)) 976 Flags |= MachineInstr::FmNoNans; 977 if (Token.is(MIToken::kw_ninf)) 978 Flags |= MachineInstr::FmNoInfs; 979 if (Token.is(MIToken::kw_nsz)) 980 Flags |= MachineInstr::FmNsz; 981 if (Token.is(MIToken::kw_arcp)) 982 Flags |= MachineInstr::FmArcp; 983 if (Token.is(MIToken::kw_contract)) 984 Flags |= MachineInstr::FmContract; 985 if (Token.is(MIToken::kw_afn)) 986 Flags |= MachineInstr::FmAfn; 987 if (Token.is(MIToken::kw_reassoc)) 988 Flags |= MachineInstr::FmReassoc; 989 if (Token.is(MIToken::kw_nuw)) 990 Flags |= MachineInstr::NoUWrap; 991 if (Token.is(MIToken::kw_nsw)) 992 Flags |= MachineInstr::NoSWrap; 993 if (Token.is(MIToken::kw_exact)) 994 Flags |= MachineInstr::IsExact; 995 996 lex(); 997 } 998 if (Token.isNot(MIToken::Identifier)) 999 return error("expected a machine instruction"); 1000 StringRef InstrName = Token.stringValue(); 1001 if (parseInstrName(InstrName, OpCode)) 1002 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1003 lex(); 1004 return false; 1005 } 1006 1007 bool MIParser::parseNamedRegister(unsigned &Reg) { 1008 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1009 StringRef Name = Token.stringValue(); 1010 if (getRegisterByName(Name, Reg)) 1011 return error(Twine("unknown register name '") + Name + "'"); 1012 return false; 1013 } 1014 1015 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1016 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1017 StringRef Name = Token.stringValue(); 1018 // TODO: Check that the VReg name is not the same as a physical register name. 1019 // If it is, then print a warning (when warnings are implemented). 1020 Info = &PFS.getVRegInfoNamed(Name); 1021 return false; 1022 } 1023 1024 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1025 if (Token.is(MIToken::NamedVirtualRegister)) 1026 return parseNamedVirtualRegister(Info); 1027 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1028 unsigned ID; 1029 if (getUnsigned(ID)) 1030 return true; 1031 Info = &PFS.getVRegInfo(ID); 1032 return false; 1033 } 1034 1035 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1036 switch (Token.kind()) { 1037 case MIToken::underscore: 1038 Reg = 0; 1039 return false; 1040 case MIToken::NamedRegister: 1041 return parseNamedRegister(Reg); 1042 case MIToken::NamedVirtualRegister: 1043 case MIToken::VirtualRegister: 1044 if (parseVirtualRegister(Info)) 1045 return true; 1046 Reg = Info->VReg; 1047 return false; 1048 // TODO: Parse other register kinds. 1049 default: 1050 llvm_unreachable("The current token should be a register"); 1051 } 1052 } 1053 1054 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1055 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1056 return error("expected '_', register class, or register bank name"); 1057 StringRef::iterator Loc = Token.location(); 1058 StringRef Name = Token.stringValue(); 1059 1060 // Was it a register class? 1061 auto RCNameI = PFS.Names2RegClasses.find(Name); 1062 if (RCNameI != PFS.Names2RegClasses.end()) { 1063 lex(); 1064 const TargetRegisterClass &RC = *RCNameI->getValue(); 1065 1066 switch (RegInfo.Kind) { 1067 case VRegInfo::UNKNOWN: 1068 case VRegInfo::NORMAL: 1069 RegInfo.Kind = VRegInfo::NORMAL; 1070 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 1071 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1072 return error(Loc, Twine("conflicting register classes, previously: ") + 1073 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1074 } 1075 RegInfo.D.RC = &RC; 1076 RegInfo.Explicit = true; 1077 return false; 1078 1079 case VRegInfo::GENERIC: 1080 case VRegInfo::REGBANK: 1081 return error(Loc, "register class specification on generic register"); 1082 } 1083 llvm_unreachable("Unexpected register kind"); 1084 } 1085 1086 // Should be a register bank or a generic register. 1087 const RegisterBank *RegBank = nullptr; 1088 if (Name != "_") { 1089 auto RBNameI = PFS.Names2RegBanks.find(Name); 1090 if (RBNameI == PFS.Names2RegBanks.end()) 1091 return error(Loc, "expected '_', register class, or register bank name"); 1092 RegBank = RBNameI->getValue(); 1093 } 1094 1095 lex(); 1096 1097 switch (RegInfo.Kind) { 1098 case VRegInfo::UNKNOWN: 1099 case VRegInfo::GENERIC: 1100 case VRegInfo::REGBANK: 1101 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1102 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1103 return error(Loc, "conflicting generic register banks"); 1104 RegInfo.D.RegBank = RegBank; 1105 RegInfo.Explicit = true; 1106 return false; 1107 1108 case VRegInfo::NORMAL: 1109 return error(Loc, "register bank specification on normal register"); 1110 } 1111 llvm_unreachable("Unexpected register kind"); 1112 } 1113 1114 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1115 const unsigned OldFlags = Flags; 1116 switch (Token.kind()) { 1117 case MIToken::kw_implicit: 1118 Flags |= RegState::Implicit; 1119 break; 1120 case MIToken::kw_implicit_define: 1121 Flags |= RegState::ImplicitDefine; 1122 break; 1123 case MIToken::kw_def: 1124 Flags |= RegState::Define; 1125 break; 1126 case MIToken::kw_dead: 1127 Flags |= RegState::Dead; 1128 break; 1129 case MIToken::kw_killed: 1130 Flags |= RegState::Kill; 1131 break; 1132 case MIToken::kw_undef: 1133 Flags |= RegState::Undef; 1134 break; 1135 case MIToken::kw_internal: 1136 Flags |= RegState::InternalRead; 1137 break; 1138 case MIToken::kw_early_clobber: 1139 Flags |= RegState::EarlyClobber; 1140 break; 1141 case MIToken::kw_debug_use: 1142 Flags |= RegState::Debug; 1143 break; 1144 case MIToken::kw_renamable: 1145 Flags |= RegState::Renamable; 1146 break; 1147 default: 1148 llvm_unreachable("The current token should be a register flag"); 1149 } 1150 if (OldFlags == Flags) 1151 // We know that the same flag is specified more than once when the flags 1152 // weren't modified. 1153 return error("duplicate '" + Token.stringValue() + "' register flag"); 1154 lex(); 1155 return false; 1156 } 1157 1158 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1159 assert(Token.is(MIToken::dot)); 1160 lex(); 1161 if (Token.isNot(MIToken::Identifier)) 1162 return error("expected a subregister index after '.'"); 1163 auto Name = Token.stringValue(); 1164 SubReg = getSubRegIndex(Name); 1165 if (!SubReg) 1166 return error(Twine("use of unknown subregister index '") + Name + "'"); 1167 lex(); 1168 return false; 1169 } 1170 1171 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1172 if (!consumeIfPresent(MIToken::kw_tied_def)) 1173 return true; 1174 if (Token.isNot(MIToken::IntegerLiteral)) 1175 return error("expected an integer literal after 'tied-def'"); 1176 if (getUnsigned(TiedDefIdx)) 1177 return true; 1178 lex(); 1179 if (expectAndConsume(MIToken::rparen)) 1180 return true; 1181 return false; 1182 } 1183 1184 bool MIParser::assignRegisterTies(MachineInstr &MI, 1185 ArrayRef<ParsedMachineOperand> Operands) { 1186 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1187 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1188 if (!Operands[I].TiedDefIdx) 1189 continue; 1190 // The parser ensures that this operand is a register use, so we just have 1191 // to check the tied-def operand. 1192 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1193 if (DefIdx >= E) 1194 return error(Operands[I].Begin, 1195 Twine("use of invalid tied-def operand index '" + 1196 Twine(DefIdx) + "'; instruction has only ") + 1197 Twine(E) + " operands"); 1198 const auto &DefOperand = Operands[DefIdx].Operand; 1199 if (!DefOperand.isReg() || !DefOperand.isDef()) 1200 // FIXME: add note with the def operand. 1201 return error(Operands[I].Begin, 1202 Twine("use of invalid tied-def operand index '") + 1203 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1204 " isn't a defined register"); 1205 // Check that the tied-def operand wasn't tied elsewhere. 1206 for (const auto &TiedPair : TiedRegisterPairs) { 1207 if (TiedPair.first == DefIdx) 1208 return error(Operands[I].Begin, 1209 Twine("the tied-def operand #") + Twine(DefIdx) + 1210 " is already tied with another register operand"); 1211 } 1212 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1213 } 1214 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1215 // indices must be less than tied max. 1216 for (const auto &TiedPair : TiedRegisterPairs) 1217 MI.tieOperands(TiedPair.first, TiedPair.second); 1218 return false; 1219 } 1220 1221 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1222 Optional<unsigned> &TiedDefIdx, 1223 bool IsDef) { 1224 unsigned Flags = IsDef ? RegState::Define : 0; 1225 while (Token.isRegisterFlag()) { 1226 if (parseRegisterFlag(Flags)) 1227 return true; 1228 } 1229 if (!Token.isRegister()) 1230 return error("expected a register after register flags"); 1231 unsigned Reg; 1232 VRegInfo *RegInfo; 1233 if (parseRegister(Reg, RegInfo)) 1234 return true; 1235 lex(); 1236 unsigned SubReg = 0; 1237 if (Token.is(MIToken::dot)) { 1238 if (parseSubRegisterIndex(SubReg)) 1239 return true; 1240 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1241 return error("subregister index expects a virtual register"); 1242 } 1243 if (Token.is(MIToken::colon)) { 1244 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1245 return error("register class specification expects a virtual register"); 1246 lex(); 1247 if (parseRegisterClassOrBank(*RegInfo)) 1248 return true; 1249 } 1250 MachineRegisterInfo &MRI = MF.getRegInfo(); 1251 if ((Flags & RegState::Define) == 0) { 1252 if (consumeIfPresent(MIToken::lparen)) { 1253 unsigned Idx; 1254 if (!parseRegisterTiedDefIndex(Idx)) 1255 TiedDefIdx = Idx; 1256 else { 1257 // Try a redundant low-level type. 1258 LLT Ty; 1259 if (parseLowLevelType(Token.location(), Ty)) 1260 return error("expected tied-def or low-level type after '('"); 1261 1262 if (expectAndConsume(MIToken::rparen)) 1263 return true; 1264 1265 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1266 return error("inconsistent type for generic virtual register"); 1267 1268 MRI.setType(Reg, Ty); 1269 } 1270 } 1271 } else if (consumeIfPresent(MIToken::lparen)) { 1272 // Virtual registers may have a tpe with GlobalISel. 1273 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1274 return error("unexpected type on physical register"); 1275 1276 LLT Ty; 1277 if (parseLowLevelType(Token.location(), Ty)) 1278 return true; 1279 1280 if (expectAndConsume(MIToken::rparen)) 1281 return true; 1282 1283 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1284 return error("inconsistent type for generic virtual register"); 1285 1286 MRI.setType(Reg, Ty); 1287 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1288 // Generic virtual registers must have a type. 1289 // If we end up here this means the type hasn't been specified and 1290 // this is bad! 1291 if (RegInfo->Kind == VRegInfo::GENERIC || 1292 RegInfo->Kind == VRegInfo::REGBANK) 1293 return error("generic virtual registers must have a type"); 1294 } 1295 Dest = MachineOperand::CreateReg( 1296 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1297 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1298 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1299 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1300 1301 return false; 1302 } 1303 1304 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1305 assert(Token.is(MIToken::IntegerLiteral)); 1306 const APSInt &Int = Token.integerValue(); 1307 if (Int.getMinSignedBits() > 64) 1308 return error("integer literal is too large to be an immediate operand"); 1309 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1310 lex(); 1311 return false; 1312 } 1313 1314 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1315 const Constant *&C) { 1316 auto Source = StringValue.str(); // The source has to be null terminated. 1317 SMDiagnostic Err; 1318 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1319 &PFS.IRSlots); 1320 if (!C) 1321 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1322 return false; 1323 } 1324 1325 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1326 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1327 return true; 1328 lex(); 1329 return false; 1330 } 1331 1332 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1333 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1334 StringRef SizeStr = Token.range().drop_front(); 1335 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1336 return error("expected integers after 's'/'p' type character"); 1337 } 1338 1339 if (Token.range().front() == 's') { 1340 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1341 lex(); 1342 return false; 1343 } else if (Token.range().front() == 'p') { 1344 const DataLayout &DL = MF.getDataLayout(); 1345 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1346 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1347 lex(); 1348 return false; 1349 } 1350 1351 // Now we're looking for a vector. 1352 if (Token.isNot(MIToken::less)) 1353 return error(Loc, 1354 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1355 lex(); 1356 1357 if (Token.isNot(MIToken::IntegerLiteral)) 1358 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1359 uint64_t NumElements = Token.integerValue().getZExtValue(); 1360 lex(); 1361 1362 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1363 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1364 lex(); 1365 1366 if (Token.range().front() != 's' && Token.range().front() != 'p') 1367 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1368 StringRef SizeStr = Token.range().drop_front(); 1369 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1370 return error("expected integers after 's'/'p' type character"); 1371 1372 if (Token.range().front() == 's') 1373 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1374 else if (Token.range().front() == 'p') { 1375 const DataLayout &DL = MF.getDataLayout(); 1376 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1377 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1378 } else 1379 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1380 lex(); 1381 1382 if (Token.isNot(MIToken::greater)) 1383 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1384 lex(); 1385 1386 Ty = LLT::vector(NumElements, Ty); 1387 return false; 1388 } 1389 1390 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1391 assert(Token.is(MIToken::Identifier)); 1392 StringRef TypeStr = Token.range(); 1393 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1394 TypeStr.front() != 'p') 1395 return error( 1396 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1397 StringRef SizeStr = Token.range().drop_front(); 1398 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1399 return error("expected integers after 'i'/'s'/'p' type character"); 1400 1401 auto Loc = Token.location(); 1402 lex(); 1403 if (Token.isNot(MIToken::IntegerLiteral)) { 1404 if (Token.isNot(MIToken::Identifier) || 1405 !(Token.range() == "true" || Token.range() == "false")) 1406 return error("expected an integer literal"); 1407 } 1408 const Constant *C = nullptr; 1409 if (parseIRConstant(Loc, C)) 1410 return true; 1411 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1412 return false; 1413 } 1414 1415 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1416 auto Loc = Token.location(); 1417 lex(); 1418 if (Token.isNot(MIToken::FloatingPointLiteral) && 1419 Token.isNot(MIToken::HexLiteral)) 1420 return error("expected a floating point literal"); 1421 const Constant *C = nullptr; 1422 if (parseIRConstant(Loc, C)) 1423 return true; 1424 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1425 return false; 1426 } 1427 1428 bool MIParser::getUnsigned(unsigned &Result) { 1429 if (Token.hasIntegerValue()) { 1430 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1431 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1432 if (Val64 == Limit) 1433 return error("expected 32-bit integer (too large)"); 1434 Result = Val64; 1435 return false; 1436 } 1437 if (Token.is(MIToken::HexLiteral)) { 1438 APInt A; 1439 if (getHexUint(A)) 1440 return true; 1441 if (A.getBitWidth() > 32) 1442 return error("expected 32-bit integer (too large)"); 1443 Result = A.getZExtValue(); 1444 return false; 1445 } 1446 return true; 1447 } 1448 1449 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1450 assert(Token.is(MIToken::MachineBasicBlock) || 1451 Token.is(MIToken::MachineBasicBlockLabel)); 1452 unsigned Number; 1453 if (getUnsigned(Number)) 1454 return true; 1455 auto MBBInfo = PFS.MBBSlots.find(Number); 1456 if (MBBInfo == PFS.MBBSlots.end()) 1457 return error(Twine("use of undefined machine basic block #") + 1458 Twine(Number)); 1459 MBB = MBBInfo->second; 1460 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1461 // we drop the <irname> from the bb.<id>.<irname> format. 1462 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1463 return error(Twine("the name of machine basic block #") + Twine(Number) + 1464 " isn't '" + Token.stringValue() + "'"); 1465 return false; 1466 } 1467 1468 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1469 MachineBasicBlock *MBB; 1470 if (parseMBBReference(MBB)) 1471 return true; 1472 Dest = MachineOperand::CreateMBB(MBB); 1473 lex(); 1474 return false; 1475 } 1476 1477 bool MIParser::parseStackFrameIndex(int &FI) { 1478 assert(Token.is(MIToken::StackObject)); 1479 unsigned ID; 1480 if (getUnsigned(ID)) 1481 return true; 1482 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1483 if (ObjectInfo == PFS.StackObjectSlots.end()) 1484 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1485 "'"); 1486 StringRef Name; 1487 if (const auto *Alloca = 1488 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1489 Name = Alloca->getName(); 1490 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1491 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1492 "' isn't '" + Token.stringValue() + "'"); 1493 lex(); 1494 FI = ObjectInfo->second; 1495 return false; 1496 } 1497 1498 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1499 int FI; 1500 if (parseStackFrameIndex(FI)) 1501 return true; 1502 Dest = MachineOperand::CreateFI(FI); 1503 return false; 1504 } 1505 1506 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1507 assert(Token.is(MIToken::FixedStackObject)); 1508 unsigned ID; 1509 if (getUnsigned(ID)) 1510 return true; 1511 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1512 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1513 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1514 Twine(ID) + "'"); 1515 lex(); 1516 FI = ObjectInfo->second; 1517 return false; 1518 } 1519 1520 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1521 int FI; 1522 if (parseFixedStackFrameIndex(FI)) 1523 return true; 1524 Dest = MachineOperand::CreateFI(FI); 1525 return false; 1526 } 1527 1528 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1529 switch (Token.kind()) { 1530 case MIToken::NamedGlobalValue: { 1531 const Module *M = MF.getFunction().getParent(); 1532 GV = M->getNamedValue(Token.stringValue()); 1533 if (!GV) 1534 return error(Twine("use of undefined global value '") + Token.range() + 1535 "'"); 1536 break; 1537 } 1538 case MIToken::GlobalValue: { 1539 unsigned GVIdx; 1540 if (getUnsigned(GVIdx)) 1541 return true; 1542 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1543 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1544 "'"); 1545 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1546 break; 1547 } 1548 default: 1549 llvm_unreachable("The current token should be a global value"); 1550 } 1551 return false; 1552 } 1553 1554 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1555 GlobalValue *GV = nullptr; 1556 if (parseGlobalValue(GV)) 1557 return true; 1558 lex(); 1559 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1560 if (parseOperandsOffset(Dest)) 1561 return true; 1562 return false; 1563 } 1564 1565 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1566 assert(Token.is(MIToken::ConstantPoolItem)); 1567 unsigned ID; 1568 if (getUnsigned(ID)) 1569 return true; 1570 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1571 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1572 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1573 lex(); 1574 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1575 if (parseOperandsOffset(Dest)) 1576 return true; 1577 return false; 1578 } 1579 1580 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1581 assert(Token.is(MIToken::JumpTableIndex)); 1582 unsigned ID; 1583 if (getUnsigned(ID)) 1584 return true; 1585 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1586 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1587 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1588 lex(); 1589 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1590 return false; 1591 } 1592 1593 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1594 assert(Token.is(MIToken::ExternalSymbol)); 1595 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1596 lex(); 1597 Dest = MachineOperand::CreateES(Symbol); 1598 if (parseOperandsOffset(Dest)) 1599 return true; 1600 return false; 1601 } 1602 1603 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1604 assert(Token.is(MIToken::MCSymbol)); 1605 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1606 lex(); 1607 Dest = MachineOperand::CreateMCSymbol(Symbol); 1608 if (parseOperandsOffset(Dest)) 1609 return true; 1610 return false; 1611 } 1612 1613 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1614 assert(Token.is(MIToken::SubRegisterIndex)); 1615 StringRef Name = Token.stringValue(); 1616 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1617 if (SubRegIndex == 0) 1618 return error(Twine("unknown subregister index '") + Name + "'"); 1619 lex(); 1620 Dest = MachineOperand::CreateImm(SubRegIndex); 1621 return false; 1622 } 1623 1624 bool MIParser::parseMDNode(MDNode *&Node) { 1625 assert(Token.is(MIToken::exclaim)); 1626 1627 auto Loc = Token.location(); 1628 lex(); 1629 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1630 return error("expected metadata id after '!'"); 1631 unsigned ID; 1632 if (getUnsigned(ID)) 1633 return true; 1634 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1635 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1636 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1637 lex(); 1638 Node = NodeInfo->second.get(); 1639 return false; 1640 } 1641 1642 bool MIParser::parseDIExpression(MDNode *&Expr) { 1643 assert(Token.is(MIToken::md_diexpr)); 1644 lex(); 1645 1646 // FIXME: Share this parsing with the IL parser. 1647 SmallVector<uint64_t, 8> Elements; 1648 1649 if (expectAndConsume(MIToken::lparen)) 1650 return true; 1651 1652 if (Token.isNot(MIToken::rparen)) { 1653 do { 1654 if (Token.is(MIToken::Identifier)) { 1655 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1656 lex(); 1657 Elements.push_back(Op); 1658 continue; 1659 } 1660 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1661 } 1662 1663 if (Token.isNot(MIToken::IntegerLiteral) || 1664 Token.integerValue().isSigned()) 1665 return error("expected unsigned integer"); 1666 1667 auto &U = Token.integerValue(); 1668 if (U.ugt(UINT64_MAX)) 1669 return error("element too large, limit is " + Twine(UINT64_MAX)); 1670 Elements.push_back(U.getZExtValue()); 1671 lex(); 1672 1673 } while (consumeIfPresent(MIToken::comma)); 1674 } 1675 1676 if (expectAndConsume(MIToken::rparen)) 1677 return true; 1678 1679 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1680 return false; 1681 } 1682 1683 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1684 MDNode *Node = nullptr; 1685 if (Token.is(MIToken::exclaim)) { 1686 if (parseMDNode(Node)) 1687 return true; 1688 } else if (Token.is(MIToken::md_diexpr)) { 1689 if (parseDIExpression(Node)) 1690 return true; 1691 } 1692 Dest = MachineOperand::CreateMetadata(Node); 1693 return false; 1694 } 1695 1696 bool MIParser::parseCFIOffset(int &Offset) { 1697 if (Token.isNot(MIToken::IntegerLiteral)) 1698 return error("expected a cfi offset"); 1699 if (Token.integerValue().getMinSignedBits() > 32) 1700 return error("expected a 32 bit integer (the cfi offset is too large)"); 1701 Offset = (int)Token.integerValue().getExtValue(); 1702 lex(); 1703 return false; 1704 } 1705 1706 bool MIParser::parseCFIRegister(unsigned &Reg) { 1707 if (Token.isNot(MIToken::NamedRegister)) 1708 return error("expected a cfi register"); 1709 unsigned LLVMReg; 1710 if (parseNamedRegister(LLVMReg)) 1711 return true; 1712 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1713 assert(TRI && "Expected target register info"); 1714 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1715 if (DwarfReg < 0) 1716 return error("invalid DWARF register"); 1717 Reg = (unsigned)DwarfReg; 1718 lex(); 1719 return false; 1720 } 1721 1722 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1723 do { 1724 if (Token.isNot(MIToken::HexLiteral)) 1725 return error("expected a hexadecimal literal"); 1726 unsigned Value; 1727 if (getUnsigned(Value)) 1728 return true; 1729 if (Value > UINT8_MAX) 1730 return error("expected a 8-bit integer (too large)"); 1731 Values.push_back(static_cast<uint8_t>(Value)); 1732 lex(); 1733 } while (consumeIfPresent(MIToken::comma)); 1734 return false; 1735 } 1736 1737 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1738 auto Kind = Token.kind(); 1739 lex(); 1740 int Offset; 1741 unsigned Reg; 1742 unsigned CFIIndex; 1743 switch (Kind) { 1744 case MIToken::kw_cfi_same_value: 1745 if (parseCFIRegister(Reg)) 1746 return true; 1747 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1748 break; 1749 case MIToken::kw_cfi_offset: 1750 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1751 parseCFIOffset(Offset)) 1752 return true; 1753 CFIIndex = 1754 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1755 break; 1756 case MIToken::kw_cfi_rel_offset: 1757 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1758 parseCFIOffset(Offset)) 1759 return true; 1760 CFIIndex = MF.addFrameInst( 1761 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1762 break; 1763 case MIToken::kw_cfi_def_cfa_register: 1764 if (parseCFIRegister(Reg)) 1765 return true; 1766 CFIIndex = 1767 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1768 break; 1769 case MIToken::kw_cfi_def_cfa_offset: 1770 if (parseCFIOffset(Offset)) 1771 return true; 1772 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1773 CFIIndex = MF.addFrameInst( 1774 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1775 break; 1776 case MIToken::kw_cfi_adjust_cfa_offset: 1777 if (parseCFIOffset(Offset)) 1778 return true; 1779 CFIIndex = MF.addFrameInst( 1780 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1781 break; 1782 case MIToken::kw_cfi_def_cfa: 1783 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1784 parseCFIOffset(Offset)) 1785 return true; 1786 // NB: MCCFIInstruction::createDefCfa negates the offset. 1787 CFIIndex = 1788 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1789 break; 1790 case MIToken::kw_cfi_remember_state: 1791 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1792 break; 1793 case MIToken::kw_cfi_restore: 1794 if (parseCFIRegister(Reg)) 1795 return true; 1796 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1797 break; 1798 case MIToken::kw_cfi_restore_state: 1799 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1800 break; 1801 case MIToken::kw_cfi_undefined: 1802 if (parseCFIRegister(Reg)) 1803 return true; 1804 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1805 break; 1806 case MIToken::kw_cfi_register: { 1807 unsigned Reg2; 1808 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1809 parseCFIRegister(Reg2)) 1810 return true; 1811 1812 CFIIndex = 1813 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1814 break; 1815 } 1816 case MIToken::kw_cfi_window_save: 1817 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1818 break; 1819 case MIToken::kw_cfi_escape: { 1820 std::string Values; 1821 if (parseCFIEscapeValues(Values)) 1822 return true; 1823 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1824 break; 1825 } 1826 default: 1827 // TODO: Parse the other CFI operands. 1828 llvm_unreachable("The current token should be a cfi operand"); 1829 } 1830 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1831 return false; 1832 } 1833 1834 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1835 switch (Token.kind()) { 1836 case MIToken::NamedIRBlock: { 1837 BB = dyn_cast_or_null<BasicBlock>( 1838 F.getValueSymbolTable()->lookup(Token.stringValue())); 1839 if (!BB) 1840 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1841 break; 1842 } 1843 case MIToken::IRBlock: { 1844 unsigned SlotNumber = 0; 1845 if (getUnsigned(SlotNumber)) 1846 return true; 1847 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1848 if (!BB) 1849 return error(Twine("use of undefined IR block '%ir-block.") + 1850 Twine(SlotNumber) + "'"); 1851 break; 1852 } 1853 default: 1854 llvm_unreachable("The current token should be an IR block reference"); 1855 } 1856 return false; 1857 } 1858 1859 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1860 assert(Token.is(MIToken::kw_blockaddress)); 1861 lex(); 1862 if (expectAndConsume(MIToken::lparen)) 1863 return true; 1864 if (Token.isNot(MIToken::GlobalValue) && 1865 Token.isNot(MIToken::NamedGlobalValue)) 1866 return error("expected a global value"); 1867 GlobalValue *GV = nullptr; 1868 if (parseGlobalValue(GV)) 1869 return true; 1870 auto *F = dyn_cast<Function>(GV); 1871 if (!F) 1872 return error("expected an IR function reference"); 1873 lex(); 1874 if (expectAndConsume(MIToken::comma)) 1875 return true; 1876 BasicBlock *BB = nullptr; 1877 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1878 return error("expected an IR block reference"); 1879 if (parseIRBlock(BB, *F)) 1880 return true; 1881 lex(); 1882 if (expectAndConsume(MIToken::rparen)) 1883 return true; 1884 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1885 if (parseOperandsOffset(Dest)) 1886 return true; 1887 return false; 1888 } 1889 1890 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1891 assert(Token.is(MIToken::kw_intrinsic)); 1892 lex(); 1893 if (expectAndConsume(MIToken::lparen)) 1894 return error("expected syntax intrinsic(@llvm.whatever)"); 1895 1896 if (Token.isNot(MIToken::NamedGlobalValue)) 1897 return error("expected syntax intrinsic(@llvm.whatever)"); 1898 1899 std::string Name = Token.stringValue(); 1900 lex(); 1901 1902 if (expectAndConsume(MIToken::rparen)) 1903 return error("expected ')' to terminate intrinsic name"); 1904 1905 // Find out what intrinsic we're dealing with, first try the global namespace 1906 // and then the target's private intrinsics if that fails. 1907 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1908 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1909 if (ID == Intrinsic::not_intrinsic && TII) 1910 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1911 1912 if (ID == Intrinsic::not_intrinsic) 1913 return error("unknown intrinsic name"); 1914 Dest = MachineOperand::CreateIntrinsicID(ID); 1915 1916 return false; 1917 } 1918 1919 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1920 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1921 bool IsFloat = Token.is(MIToken::kw_floatpred); 1922 lex(); 1923 1924 if (expectAndConsume(MIToken::lparen)) 1925 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1926 1927 if (Token.isNot(MIToken::Identifier)) 1928 return error("whatever"); 1929 1930 CmpInst::Predicate Pred; 1931 if (IsFloat) { 1932 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1933 .Case("false", CmpInst::FCMP_FALSE) 1934 .Case("oeq", CmpInst::FCMP_OEQ) 1935 .Case("ogt", CmpInst::FCMP_OGT) 1936 .Case("oge", CmpInst::FCMP_OGE) 1937 .Case("olt", CmpInst::FCMP_OLT) 1938 .Case("ole", CmpInst::FCMP_OLE) 1939 .Case("one", CmpInst::FCMP_ONE) 1940 .Case("ord", CmpInst::FCMP_ORD) 1941 .Case("uno", CmpInst::FCMP_UNO) 1942 .Case("ueq", CmpInst::FCMP_UEQ) 1943 .Case("ugt", CmpInst::FCMP_UGT) 1944 .Case("uge", CmpInst::FCMP_UGE) 1945 .Case("ult", CmpInst::FCMP_ULT) 1946 .Case("ule", CmpInst::FCMP_ULE) 1947 .Case("une", CmpInst::FCMP_UNE) 1948 .Case("true", CmpInst::FCMP_TRUE) 1949 .Default(CmpInst::BAD_FCMP_PREDICATE); 1950 if (!CmpInst::isFPPredicate(Pred)) 1951 return error("invalid floating-point predicate"); 1952 } else { 1953 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1954 .Case("eq", CmpInst::ICMP_EQ) 1955 .Case("ne", CmpInst::ICMP_NE) 1956 .Case("sgt", CmpInst::ICMP_SGT) 1957 .Case("sge", CmpInst::ICMP_SGE) 1958 .Case("slt", CmpInst::ICMP_SLT) 1959 .Case("sle", CmpInst::ICMP_SLE) 1960 .Case("ugt", CmpInst::ICMP_UGT) 1961 .Case("uge", CmpInst::ICMP_UGE) 1962 .Case("ult", CmpInst::ICMP_ULT) 1963 .Case("ule", CmpInst::ICMP_ULE) 1964 .Default(CmpInst::BAD_ICMP_PREDICATE); 1965 if (!CmpInst::isIntPredicate(Pred)) 1966 return error("invalid integer predicate"); 1967 } 1968 1969 lex(); 1970 Dest = MachineOperand::CreatePredicate(Pred); 1971 if (expectAndConsume(MIToken::rparen)) 1972 return error("predicate should be terminated by ')'."); 1973 1974 return false; 1975 } 1976 1977 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1978 assert(Token.is(MIToken::kw_target_index)); 1979 lex(); 1980 if (expectAndConsume(MIToken::lparen)) 1981 return true; 1982 if (Token.isNot(MIToken::Identifier)) 1983 return error("expected the name of the target index"); 1984 int Index = 0; 1985 if (getTargetIndex(Token.stringValue(), Index)) 1986 return error("use of undefined target index '" + Token.stringValue() + "'"); 1987 lex(); 1988 if (expectAndConsume(MIToken::rparen)) 1989 return true; 1990 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1991 if (parseOperandsOffset(Dest)) 1992 return true; 1993 return false; 1994 } 1995 1996 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1997 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1998 lex(); 1999 if (expectAndConsume(MIToken::lparen)) 2000 return true; 2001 2002 uint32_t *Mask = MF.allocateRegMask(); 2003 while (true) { 2004 if (Token.isNot(MIToken::NamedRegister)) 2005 return error("expected a named register"); 2006 unsigned Reg; 2007 if (parseNamedRegister(Reg)) 2008 return true; 2009 lex(); 2010 Mask[Reg / 32] |= 1U << (Reg % 32); 2011 // TODO: Report an error if the same register is used more than once. 2012 if (Token.isNot(MIToken::comma)) 2013 break; 2014 lex(); 2015 } 2016 2017 if (expectAndConsume(MIToken::rparen)) 2018 return true; 2019 Dest = MachineOperand::CreateRegMask(Mask); 2020 return false; 2021 } 2022 2023 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2024 assert(Token.is(MIToken::kw_liveout)); 2025 uint32_t *Mask = MF.allocateRegMask(); 2026 lex(); 2027 if (expectAndConsume(MIToken::lparen)) 2028 return true; 2029 while (true) { 2030 if (Token.isNot(MIToken::NamedRegister)) 2031 return error("expected a named register"); 2032 unsigned Reg; 2033 if (parseNamedRegister(Reg)) 2034 return true; 2035 lex(); 2036 Mask[Reg / 32] |= 1U << (Reg % 32); 2037 // TODO: Report an error if the same register is used more than once. 2038 if (Token.isNot(MIToken::comma)) 2039 break; 2040 lex(); 2041 } 2042 if (expectAndConsume(MIToken::rparen)) 2043 return true; 2044 Dest = MachineOperand::CreateRegLiveOut(Mask); 2045 return false; 2046 } 2047 2048 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2049 Optional<unsigned> &TiedDefIdx) { 2050 switch (Token.kind()) { 2051 case MIToken::kw_implicit: 2052 case MIToken::kw_implicit_define: 2053 case MIToken::kw_def: 2054 case MIToken::kw_dead: 2055 case MIToken::kw_killed: 2056 case MIToken::kw_undef: 2057 case MIToken::kw_internal: 2058 case MIToken::kw_early_clobber: 2059 case MIToken::kw_debug_use: 2060 case MIToken::kw_renamable: 2061 case MIToken::underscore: 2062 case MIToken::NamedRegister: 2063 case MIToken::VirtualRegister: 2064 case MIToken::NamedVirtualRegister: 2065 return parseRegisterOperand(Dest, TiedDefIdx); 2066 case MIToken::IntegerLiteral: 2067 return parseImmediateOperand(Dest); 2068 case MIToken::kw_half: 2069 case MIToken::kw_float: 2070 case MIToken::kw_double: 2071 case MIToken::kw_x86_fp80: 2072 case MIToken::kw_fp128: 2073 case MIToken::kw_ppc_fp128: 2074 return parseFPImmediateOperand(Dest); 2075 case MIToken::MachineBasicBlock: 2076 return parseMBBOperand(Dest); 2077 case MIToken::StackObject: 2078 return parseStackObjectOperand(Dest); 2079 case MIToken::FixedStackObject: 2080 return parseFixedStackObjectOperand(Dest); 2081 case MIToken::GlobalValue: 2082 case MIToken::NamedGlobalValue: 2083 return parseGlobalAddressOperand(Dest); 2084 case MIToken::ConstantPoolItem: 2085 return parseConstantPoolIndexOperand(Dest); 2086 case MIToken::JumpTableIndex: 2087 return parseJumpTableIndexOperand(Dest); 2088 case MIToken::ExternalSymbol: 2089 return parseExternalSymbolOperand(Dest); 2090 case MIToken::MCSymbol: 2091 return parseMCSymbolOperand(Dest); 2092 case MIToken::SubRegisterIndex: 2093 return parseSubRegisterIndexOperand(Dest); 2094 case MIToken::md_diexpr: 2095 case MIToken::exclaim: 2096 return parseMetadataOperand(Dest); 2097 case MIToken::kw_cfi_same_value: 2098 case MIToken::kw_cfi_offset: 2099 case MIToken::kw_cfi_rel_offset: 2100 case MIToken::kw_cfi_def_cfa_register: 2101 case MIToken::kw_cfi_def_cfa_offset: 2102 case MIToken::kw_cfi_adjust_cfa_offset: 2103 case MIToken::kw_cfi_escape: 2104 case MIToken::kw_cfi_def_cfa: 2105 case MIToken::kw_cfi_register: 2106 case MIToken::kw_cfi_remember_state: 2107 case MIToken::kw_cfi_restore: 2108 case MIToken::kw_cfi_restore_state: 2109 case MIToken::kw_cfi_undefined: 2110 case MIToken::kw_cfi_window_save: 2111 return parseCFIOperand(Dest); 2112 case MIToken::kw_blockaddress: 2113 return parseBlockAddressOperand(Dest); 2114 case MIToken::kw_intrinsic: 2115 return parseIntrinsicOperand(Dest); 2116 case MIToken::kw_target_index: 2117 return parseTargetIndexOperand(Dest); 2118 case MIToken::kw_liveout: 2119 return parseLiveoutRegisterMaskOperand(Dest); 2120 case MIToken::kw_floatpred: 2121 case MIToken::kw_intpred: 2122 return parsePredicateOperand(Dest); 2123 case MIToken::Error: 2124 return true; 2125 case MIToken::Identifier: 2126 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2127 Dest = MachineOperand::CreateRegMask(RegMask); 2128 lex(); 2129 break; 2130 } else if (Token.stringValue() == "CustomRegMask") { 2131 return parseCustomRegisterMaskOperand(Dest); 2132 } else 2133 return parseTypedImmediateOperand(Dest); 2134 default: 2135 // FIXME: Parse the MCSymbol machine operand. 2136 return error("expected a machine operand"); 2137 } 2138 return false; 2139 } 2140 2141 bool MIParser::parseMachineOperandAndTargetFlags( 2142 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2143 unsigned TF = 0; 2144 bool HasTargetFlags = false; 2145 if (Token.is(MIToken::kw_target_flags)) { 2146 HasTargetFlags = true; 2147 lex(); 2148 if (expectAndConsume(MIToken::lparen)) 2149 return true; 2150 if (Token.isNot(MIToken::Identifier)) 2151 return error("expected the name of the target flag"); 2152 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2153 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2154 return error("use of undefined target flag '" + Token.stringValue() + 2155 "'"); 2156 } 2157 lex(); 2158 while (Token.is(MIToken::comma)) { 2159 lex(); 2160 if (Token.isNot(MIToken::Identifier)) 2161 return error("expected the name of the target flag"); 2162 unsigned BitFlag = 0; 2163 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2164 return error("use of undefined target flag '" + Token.stringValue() + 2165 "'"); 2166 // TODO: Report an error when using a duplicate bit target flag. 2167 TF |= BitFlag; 2168 lex(); 2169 } 2170 if (expectAndConsume(MIToken::rparen)) 2171 return true; 2172 } 2173 auto Loc = Token.location(); 2174 if (parseMachineOperand(Dest, TiedDefIdx)) 2175 return true; 2176 if (!HasTargetFlags) 2177 return false; 2178 if (Dest.isReg()) 2179 return error(Loc, "register operands can't have target flags"); 2180 Dest.setTargetFlags(TF); 2181 return false; 2182 } 2183 2184 bool MIParser::parseOffset(int64_t &Offset) { 2185 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2186 return false; 2187 StringRef Sign = Token.range(); 2188 bool IsNegative = Token.is(MIToken::minus); 2189 lex(); 2190 if (Token.isNot(MIToken::IntegerLiteral)) 2191 return error("expected an integer literal after '" + Sign + "'"); 2192 if (Token.integerValue().getMinSignedBits() > 64) 2193 return error("expected 64-bit integer (too large)"); 2194 Offset = Token.integerValue().getExtValue(); 2195 if (IsNegative) 2196 Offset = -Offset; 2197 lex(); 2198 return false; 2199 } 2200 2201 bool MIParser::parseAlignment(unsigned &Alignment) { 2202 assert(Token.is(MIToken::kw_align)); 2203 lex(); 2204 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2205 return error("expected an integer literal after 'align'"); 2206 if (getUnsigned(Alignment)) 2207 return true; 2208 lex(); 2209 return false; 2210 } 2211 2212 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2213 assert(Token.is(MIToken::kw_addrspace)); 2214 lex(); 2215 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2216 return error("expected an integer literal after 'addrspace'"); 2217 if (getUnsigned(Addrspace)) 2218 return true; 2219 lex(); 2220 return false; 2221 } 2222 2223 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2224 int64_t Offset = 0; 2225 if (parseOffset(Offset)) 2226 return true; 2227 Op.setOffset(Offset); 2228 return false; 2229 } 2230 2231 bool MIParser::parseIRValue(const Value *&V) { 2232 switch (Token.kind()) { 2233 case MIToken::NamedIRValue: { 2234 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2235 break; 2236 } 2237 case MIToken::IRValue: { 2238 unsigned SlotNumber = 0; 2239 if (getUnsigned(SlotNumber)) 2240 return true; 2241 V = getIRValue(SlotNumber); 2242 break; 2243 } 2244 case MIToken::NamedGlobalValue: 2245 case MIToken::GlobalValue: { 2246 GlobalValue *GV = nullptr; 2247 if (parseGlobalValue(GV)) 2248 return true; 2249 V = GV; 2250 break; 2251 } 2252 case MIToken::QuotedIRValue: { 2253 const Constant *C = nullptr; 2254 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2255 return true; 2256 V = C; 2257 break; 2258 } 2259 default: 2260 llvm_unreachable("The current token should be an IR block reference"); 2261 } 2262 if (!V) 2263 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2264 return false; 2265 } 2266 2267 bool MIParser::getUint64(uint64_t &Result) { 2268 if (Token.hasIntegerValue()) { 2269 if (Token.integerValue().getActiveBits() > 64) 2270 return error("expected 64-bit integer (too large)"); 2271 Result = Token.integerValue().getZExtValue(); 2272 return false; 2273 } 2274 if (Token.is(MIToken::HexLiteral)) { 2275 APInt A; 2276 if (getHexUint(A)) 2277 return true; 2278 if (A.getBitWidth() > 64) 2279 return error("expected 64-bit integer (too large)"); 2280 Result = A.getZExtValue(); 2281 return false; 2282 } 2283 return true; 2284 } 2285 2286 bool MIParser::getHexUint(APInt &Result) { 2287 assert(Token.is(MIToken::HexLiteral)); 2288 StringRef S = Token.range(); 2289 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2290 // This could be a floating point literal with a special prefix. 2291 if (!isxdigit(S[2])) 2292 return true; 2293 StringRef V = S.substr(2); 2294 APInt A(V.size()*4, V, 16); 2295 2296 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2297 // sure it isn't the case before constructing result. 2298 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2299 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2300 return false; 2301 } 2302 2303 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2304 const auto OldFlags = Flags; 2305 switch (Token.kind()) { 2306 case MIToken::kw_volatile: 2307 Flags |= MachineMemOperand::MOVolatile; 2308 break; 2309 case MIToken::kw_non_temporal: 2310 Flags |= MachineMemOperand::MONonTemporal; 2311 break; 2312 case MIToken::kw_dereferenceable: 2313 Flags |= MachineMemOperand::MODereferenceable; 2314 break; 2315 case MIToken::kw_invariant: 2316 Flags |= MachineMemOperand::MOInvariant; 2317 break; 2318 case MIToken::StringConstant: { 2319 MachineMemOperand::Flags TF; 2320 if (getMMOTargetFlag(Token.stringValue(), TF)) 2321 return error("use of undefined target MMO flag '" + Token.stringValue() + 2322 "'"); 2323 Flags |= TF; 2324 break; 2325 } 2326 default: 2327 llvm_unreachable("The current token should be a memory operand flag"); 2328 } 2329 if (OldFlags == Flags) 2330 // We know that the same flag is specified more than once when the flags 2331 // weren't modified. 2332 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2333 lex(); 2334 return false; 2335 } 2336 2337 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2338 switch (Token.kind()) { 2339 case MIToken::kw_stack: 2340 PSV = MF.getPSVManager().getStack(); 2341 break; 2342 case MIToken::kw_got: 2343 PSV = MF.getPSVManager().getGOT(); 2344 break; 2345 case MIToken::kw_jump_table: 2346 PSV = MF.getPSVManager().getJumpTable(); 2347 break; 2348 case MIToken::kw_constant_pool: 2349 PSV = MF.getPSVManager().getConstantPool(); 2350 break; 2351 case MIToken::FixedStackObject: { 2352 int FI; 2353 if (parseFixedStackFrameIndex(FI)) 2354 return true; 2355 PSV = MF.getPSVManager().getFixedStack(FI); 2356 // The token was already consumed, so use return here instead of break. 2357 return false; 2358 } 2359 case MIToken::StackObject: { 2360 int FI; 2361 if (parseStackFrameIndex(FI)) 2362 return true; 2363 PSV = MF.getPSVManager().getFixedStack(FI); 2364 // The token was already consumed, so use return here instead of break. 2365 return false; 2366 } 2367 case MIToken::kw_call_entry: 2368 lex(); 2369 switch (Token.kind()) { 2370 case MIToken::GlobalValue: 2371 case MIToken::NamedGlobalValue: { 2372 GlobalValue *GV = nullptr; 2373 if (parseGlobalValue(GV)) 2374 return true; 2375 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2376 break; 2377 } 2378 case MIToken::ExternalSymbol: 2379 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2380 MF.createExternalSymbolName(Token.stringValue())); 2381 break; 2382 default: 2383 return error( 2384 "expected a global value or an external symbol after 'call-entry'"); 2385 } 2386 break; 2387 default: 2388 llvm_unreachable("The current token should be pseudo source value"); 2389 } 2390 lex(); 2391 return false; 2392 } 2393 2394 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2395 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2396 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2397 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2398 Token.is(MIToken::kw_call_entry)) { 2399 const PseudoSourceValue *PSV = nullptr; 2400 if (parseMemoryPseudoSourceValue(PSV)) 2401 return true; 2402 int64_t Offset = 0; 2403 if (parseOffset(Offset)) 2404 return true; 2405 Dest = MachinePointerInfo(PSV, Offset); 2406 return false; 2407 } 2408 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2409 Token.isNot(MIToken::GlobalValue) && 2410 Token.isNot(MIToken::NamedGlobalValue) && 2411 Token.isNot(MIToken::QuotedIRValue)) 2412 return error("expected an IR value reference"); 2413 const Value *V = nullptr; 2414 if (parseIRValue(V)) 2415 return true; 2416 if (!V->getType()->isPointerTy()) 2417 return error("expected a pointer IR value"); 2418 lex(); 2419 int64_t Offset = 0; 2420 if (parseOffset(Offset)) 2421 return true; 2422 Dest = MachinePointerInfo(V, Offset); 2423 return false; 2424 } 2425 2426 bool MIParser::parseOptionalScope(LLVMContext &Context, 2427 SyncScope::ID &SSID) { 2428 SSID = SyncScope::System; 2429 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2430 lex(); 2431 if (expectAndConsume(MIToken::lparen)) 2432 return error("expected '(' in syncscope"); 2433 2434 std::string SSN; 2435 if (parseStringConstant(SSN)) 2436 return true; 2437 2438 SSID = Context.getOrInsertSyncScopeID(SSN); 2439 if (expectAndConsume(MIToken::rparen)) 2440 return error("expected ')' in syncscope"); 2441 } 2442 2443 return false; 2444 } 2445 2446 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2447 Order = AtomicOrdering::NotAtomic; 2448 if (Token.isNot(MIToken::Identifier)) 2449 return false; 2450 2451 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2452 .Case("unordered", AtomicOrdering::Unordered) 2453 .Case("monotonic", AtomicOrdering::Monotonic) 2454 .Case("acquire", AtomicOrdering::Acquire) 2455 .Case("release", AtomicOrdering::Release) 2456 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2457 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2458 .Default(AtomicOrdering::NotAtomic); 2459 2460 if (Order != AtomicOrdering::NotAtomic) { 2461 lex(); 2462 return false; 2463 } 2464 2465 return error("expected an atomic scope, ordering or a size specification"); 2466 } 2467 2468 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2469 if (expectAndConsume(MIToken::lparen)) 2470 return true; 2471 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2472 while (Token.isMemoryOperandFlag()) { 2473 if (parseMemoryOperandFlag(Flags)) 2474 return true; 2475 } 2476 if (Token.isNot(MIToken::Identifier) || 2477 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2478 return error("expected 'load' or 'store' memory operation"); 2479 if (Token.stringValue() == "load") 2480 Flags |= MachineMemOperand::MOLoad; 2481 else 2482 Flags |= MachineMemOperand::MOStore; 2483 lex(); 2484 2485 // Optional 'store' for operands that both load and store. 2486 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2487 Flags |= MachineMemOperand::MOStore; 2488 lex(); 2489 } 2490 2491 // Optional synchronization scope. 2492 SyncScope::ID SSID; 2493 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2494 return true; 2495 2496 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2497 AtomicOrdering Order, FailureOrder; 2498 if (parseOptionalAtomicOrdering(Order)) 2499 return true; 2500 2501 if (parseOptionalAtomicOrdering(FailureOrder)) 2502 return true; 2503 2504 if (Token.isNot(MIToken::IntegerLiteral) && 2505 Token.isNot(MIToken::kw_unknown_size)) 2506 return error("expected the size integer literal or 'unknown-size' after " 2507 "memory operation"); 2508 uint64_t Size; 2509 if (Token.is(MIToken::IntegerLiteral)) { 2510 if (getUint64(Size)) 2511 return true; 2512 } else if (Token.is(MIToken::kw_unknown_size)) { 2513 Size = MemoryLocation::UnknownSize; 2514 } 2515 lex(); 2516 2517 MachinePointerInfo Ptr = MachinePointerInfo(); 2518 if (Token.is(MIToken::Identifier)) { 2519 const char *Word = 2520 ((Flags & MachineMemOperand::MOLoad) && 2521 (Flags & MachineMemOperand::MOStore)) 2522 ? "on" 2523 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2524 if (Token.stringValue() != Word) 2525 return error(Twine("expected '") + Word + "'"); 2526 lex(); 2527 2528 if (parseMachinePointerInfo(Ptr)) 2529 return true; 2530 } 2531 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2532 AAMDNodes AAInfo; 2533 MDNode *Range = nullptr; 2534 while (consumeIfPresent(MIToken::comma)) { 2535 switch (Token.kind()) { 2536 case MIToken::kw_align: 2537 if (parseAlignment(BaseAlignment)) 2538 return true; 2539 break; 2540 case MIToken::kw_addrspace: 2541 if (parseAddrspace(Ptr.AddrSpace)) 2542 return true; 2543 break; 2544 case MIToken::md_tbaa: 2545 lex(); 2546 if (parseMDNode(AAInfo.TBAA)) 2547 return true; 2548 break; 2549 case MIToken::md_alias_scope: 2550 lex(); 2551 if (parseMDNode(AAInfo.Scope)) 2552 return true; 2553 break; 2554 case MIToken::md_noalias: 2555 lex(); 2556 if (parseMDNode(AAInfo.NoAlias)) 2557 return true; 2558 break; 2559 case MIToken::md_range: 2560 lex(); 2561 if (parseMDNode(Range)) 2562 return true; 2563 break; 2564 // TODO: Report an error on duplicate metadata nodes. 2565 default: 2566 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2567 "'!noalias' or '!range'"); 2568 } 2569 } 2570 if (expectAndConsume(MIToken::rparen)) 2571 return true; 2572 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2573 SSID, Order, FailureOrder); 2574 return false; 2575 } 2576 2577 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2578 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2579 Token.is(MIToken::kw_post_instr_symbol)) && 2580 "Invalid token for a pre- post-instruction symbol!"); 2581 lex(); 2582 if (Token.isNot(MIToken::MCSymbol)) 2583 return error("expected a symbol after 'pre-instr-symbol'"); 2584 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2585 lex(); 2586 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2587 Token.is(MIToken::lbrace)) 2588 return false; 2589 if (Token.isNot(MIToken::comma)) 2590 return error("expected ',' before the next machine operand"); 2591 lex(); 2592 return false; 2593 } 2594 2595 void MIParser::initNames2InstrOpCodes() { 2596 if (!Names2InstrOpCodes.empty()) 2597 return; 2598 const auto *TII = MF.getSubtarget().getInstrInfo(); 2599 assert(TII && "Expected target instruction info"); 2600 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2601 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2602 } 2603 2604 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2605 initNames2InstrOpCodes(); 2606 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2607 if (InstrInfo == Names2InstrOpCodes.end()) 2608 return true; 2609 OpCode = InstrInfo->getValue(); 2610 return false; 2611 } 2612 2613 void MIParser::initNames2Regs() { 2614 if (!Names2Regs.empty()) 2615 return; 2616 // The '%noreg' register is the register 0. 2617 Names2Regs.insert(std::make_pair("noreg", 0)); 2618 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2619 assert(TRI && "Expected target register info"); 2620 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2621 bool WasInserted = 2622 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2623 .second; 2624 (void)WasInserted; 2625 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2626 } 2627 } 2628 2629 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2630 initNames2Regs(); 2631 auto RegInfo = Names2Regs.find(RegName); 2632 if (RegInfo == Names2Regs.end()) 2633 return true; 2634 Reg = RegInfo->getValue(); 2635 return false; 2636 } 2637 2638 void MIParser::initNames2RegMasks() { 2639 if (!Names2RegMasks.empty()) 2640 return; 2641 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2642 assert(TRI && "Expected target register info"); 2643 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2644 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2645 assert(RegMasks.size() == RegMaskNames.size()); 2646 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2647 Names2RegMasks.insert( 2648 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2649 } 2650 2651 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2652 initNames2RegMasks(); 2653 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2654 if (RegMaskInfo == Names2RegMasks.end()) 2655 return nullptr; 2656 return RegMaskInfo->getValue(); 2657 } 2658 2659 void MIParser::initNames2SubRegIndices() { 2660 if (!Names2SubRegIndices.empty()) 2661 return; 2662 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2663 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2664 Names2SubRegIndices.insert( 2665 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2666 } 2667 2668 unsigned MIParser::getSubRegIndex(StringRef Name) { 2669 initNames2SubRegIndices(); 2670 auto SubRegInfo = Names2SubRegIndices.find(Name); 2671 if (SubRegInfo == Names2SubRegIndices.end()) 2672 return 0; 2673 return SubRegInfo->getValue(); 2674 } 2675 2676 static void initSlots2BasicBlocks( 2677 const Function &F, 2678 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2679 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2680 MST.incorporateFunction(F); 2681 for (auto &BB : F) { 2682 if (BB.hasName()) 2683 continue; 2684 int Slot = MST.getLocalSlot(&BB); 2685 if (Slot == -1) 2686 continue; 2687 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2688 } 2689 } 2690 2691 static const BasicBlock *getIRBlockFromSlot( 2692 unsigned Slot, 2693 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2694 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2695 if (BlockInfo == Slots2BasicBlocks.end()) 2696 return nullptr; 2697 return BlockInfo->second; 2698 } 2699 2700 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2701 if (Slots2BasicBlocks.empty()) 2702 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2703 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2704 } 2705 2706 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2707 if (&F == &MF.getFunction()) 2708 return getIRBlock(Slot); 2709 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2710 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2711 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2712 } 2713 2714 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2715 DenseMap<unsigned, const Value *> &Slots2Values) { 2716 int Slot = MST.getLocalSlot(V); 2717 if (Slot == -1) 2718 return; 2719 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2720 } 2721 2722 /// Creates the mapping from slot numbers to function's unnamed IR values. 2723 static void initSlots2Values(const Function &F, 2724 DenseMap<unsigned, const Value *> &Slots2Values) { 2725 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2726 MST.incorporateFunction(F); 2727 for (const auto &Arg : F.args()) 2728 mapValueToSlot(&Arg, MST, Slots2Values); 2729 for (const auto &BB : F) { 2730 mapValueToSlot(&BB, MST, Slots2Values); 2731 for (const auto &I : BB) 2732 mapValueToSlot(&I, MST, Slots2Values); 2733 } 2734 } 2735 2736 const Value *MIParser::getIRValue(unsigned Slot) { 2737 if (Slots2Values.empty()) 2738 initSlots2Values(MF.getFunction(), Slots2Values); 2739 auto ValueInfo = Slots2Values.find(Slot); 2740 if (ValueInfo == Slots2Values.end()) 2741 return nullptr; 2742 return ValueInfo->second; 2743 } 2744 2745 void MIParser::initNames2TargetIndices() { 2746 if (!Names2TargetIndices.empty()) 2747 return; 2748 const auto *TII = MF.getSubtarget().getInstrInfo(); 2749 assert(TII && "Expected target instruction info"); 2750 auto Indices = TII->getSerializableTargetIndices(); 2751 for (const auto &I : Indices) 2752 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2753 } 2754 2755 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2756 initNames2TargetIndices(); 2757 auto IndexInfo = Names2TargetIndices.find(Name); 2758 if (IndexInfo == Names2TargetIndices.end()) 2759 return true; 2760 Index = IndexInfo->second; 2761 return false; 2762 } 2763 2764 void MIParser::initNames2DirectTargetFlags() { 2765 if (!Names2DirectTargetFlags.empty()) 2766 return; 2767 const auto *TII = MF.getSubtarget().getInstrInfo(); 2768 assert(TII && "Expected target instruction info"); 2769 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2770 for (const auto &I : Flags) 2771 Names2DirectTargetFlags.insert( 2772 std::make_pair(StringRef(I.second), I.first)); 2773 } 2774 2775 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2776 initNames2DirectTargetFlags(); 2777 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2778 if (FlagInfo == Names2DirectTargetFlags.end()) 2779 return true; 2780 Flag = FlagInfo->second; 2781 return false; 2782 } 2783 2784 void MIParser::initNames2BitmaskTargetFlags() { 2785 if (!Names2BitmaskTargetFlags.empty()) 2786 return; 2787 const auto *TII = MF.getSubtarget().getInstrInfo(); 2788 assert(TII && "Expected target instruction info"); 2789 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2790 for (const auto &I : Flags) 2791 Names2BitmaskTargetFlags.insert( 2792 std::make_pair(StringRef(I.second), I.first)); 2793 } 2794 2795 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2796 initNames2BitmaskTargetFlags(); 2797 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2798 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2799 return true; 2800 Flag = FlagInfo->second; 2801 return false; 2802 } 2803 2804 void MIParser::initNames2MMOTargetFlags() { 2805 if (!Names2MMOTargetFlags.empty()) 2806 return; 2807 const auto *TII = MF.getSubtarget().getInstrInfo(); 2808 assert(TII && "Expected target instruction info"); 2809 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2810 for (const auto &I : Flags) 2811 Names2MMOTargetFlags.insert( 2812 std::make_pair(StringRef(I.second), I.first)); 2813 } 2814 2815 bool MIParser::getMMOTargetFlag(StringRef Name, 2816 MachineMemOperand::Flags &Flag) { 2817 initNames2MMOTargetFlags(); 2818 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2819 if (FlagInfo == Names2MMOTargetFlags.end()) 2820 return true; 2821 Flag = FlagInfo->second; 2822 return false; 2823 } 2824 2825 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 2826 // FIXME: Currently we can't recognize temporary or local symbols and call all 2827 // of the appropriate forms to create them. However, this handles basic cases 2828 // well as most of the special aspects are recognized by a prefix on their 2829 // name, and the input names should already be unique. For test cases, keeping 2830 // the symbol name out of the symbol table isn't terribly important. 2831 return MF.getContext().getOrCreateSymbol(Name); 2832 } 2833 2834 bool MIParser::parseStringConstant(std::string &Result) { 2835 if (Token.isNot(MIToken::StringConstant)) 2836 return error("expected string constant"); 2837 Result = Token.stringValue(); 2838 lex(); 2839 return false; 2840 } 2841 2842 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2843 StringRef Src, 2844 SMDiagnostic &Error) { 2845 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2846 } 2847 2848 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2849 StringRef Src, SMDiagnostic &Error) { 2850 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2851 } 2852 2853 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2854 MachineBasicBlock *&MBB, StringRef Src, 2855 SMDiagnostic &Error) { 2856 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2857 } 2858 2859 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2860 unsigned &Reg, StringRef Src, 2861 SMDiagnostic &Error) { 2862 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2863 } 2864 2865 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2866 unsigned &Reg, StringRef Src, 2867 SMDiagnostic &Error) { 2868 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2869 } 2870 2871 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2872 VRegInfo *&Info, StringRef Src, 2873 SMDiagnostic &Error) { 2874 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2875 } 2876 2877 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2878 int &FI, StringRef Src, 2879 SMDiagnostic &Error) { 2880 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2881 } 2882 2883 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2884 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2885 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2886 } 2887