1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/AsmParser/Parser.h" 18 #include "llvm/AsmParser/SlotMapping.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/SourceMgr.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 37 using namespace llvm; 38 39 namespace { 40 41 /// A wrapper struct around the 'MachineOperand' struct that includes a source 42 /// range and other attributes. 43 struct ParsedMachineOperand { 44 MachineOperand Operand; 45 StringRef::iterator Begin; 46 StringRef::iterator End; 47 Optional<unsigned> TiedDefIdx; 48 49 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 50 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 51 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 52 if (TiedDefIdx) 53 assert(Operand.isReg() && Operand.isUse() && 54 "Only used register operands can be tied"); 55 } 56 }; 57 58 class MIParser { 59 SourceMgr &SM; 60 MachineFunction &MF; 61 SMDiagnostic &Error; 62 StringRef Source, CurrentSource; 63 MIToken Token; 64 const PerFunctionMIParsingState &PFS; 65 /// Maps from indices to unnamed global values and metadata nodes. 66 const SlotMapping &IRSlots; 67 /// Maps from instruction names to op codes. 68 StringMap<unsigned> Names2InstrOpCodes; 69 /// Maps from register names to registers. 70 StringMap<unsigned> Names2Regs; 71 /// Maps from register mask names to register masks. 72 StringMap<const uint32_t *> Names2RegMasks; 73 /// Maps from subregister names to subregister indices. 74 StringMap<unsigned> Names2SubRegIndices; 75 /// Maps from slot numbers to function's unnamed basic blocks. 76 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 77 /// Maps from slot numbers to function's unnamed values. 78 DenseMap<unsigned, const Value *> Slots2Values; 79 /// Maps from target index names to target indices. 80 StringMap<int> Names2TargetIndices; 81 /// Maps from direct target flag names to the direct target flag values. 82 StringMap<unsigned> Names2DirectTargetFlags; 83 /// Maps from direct target flag names to the bitmask target flag values. 84 StringMap<unsigned> Names2BitmaskTargetFlags; 85 86 public: 87 MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error, 88 StringRef Source, const PerFunctionMIParsingState &PFS, 89 const SlotMapping &IRSlots); 90 91 /// \p SkipChar gives the number of characters to skip before looking 92 /// for the next token. 93 void lex(unsigned SkipChar = 0); 94 95 /// Report an error at the current location with the given message. 96 /// 97 /// This function always return true. 98 bool error(const Twine &Msg); 99 100 /// Report an error at the given location with the given message. 101 /// 102 /// This function always return true. 103 bool error(StringRef::iterator Loc, const Twine &Msg); 104 105 bool 106 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 107 bool parseBasicBlocks(); 108 bool parse(MachineInstr *&MI); 109 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 110 bool parseStandaloneNamedRegister(unsigned &Reg); 111 bool parseStandaloneVirtualRegister(unsigned &Reg); 112 bool parseStandaloneStackObject(int &FI); 113 bool parseStandaloneMDNode(MDNode *&Node); 114 115 bool 116 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 117 bool parseBasicBlock(MachineBasicBlock &MBB); 118 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 119 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 120 121 bool parseRegister(unsigned &Reg); 122 bool parseRegisterFlag(unsigned &Flags); 123 bool parseSubRegisterIndex(unsigned &SubReg); 124 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 125 bool parseSize(unsigned &Size); 126 bool parseRegisterOperand(MachineOperand &Dest, 127 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 128 bool parseImmediateOperand(MachineOperand &Dest); 129 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 130 const Constant *&C); 131 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 132 bool parseIRType(StringRef::iterator Loc, StringRef Source, unsigned &Read, 133 Type *&Ty); 134 // \p MustBeSized defines whether or not \p Ty must be sized. 135 bool parseIRType(StringRef::iterator Loc, Type *&Ty, bool MustBeSized = true); 136 bool parseTypedImmediateOperand(MachineOperand &Dest); 137 bool parseFPImmediateOperand(MachineOperand &Dest); 138 bool parseMBBReference(MachineBasicBlock *&MBB); 139 bool parseMBBOperand(MachineOperand &Dest); 140 bool parseStackFrameIndex(int &FI); 141 bool parseStackObjectOperand(MachineOperand &Dest); 142 bool parseFixedStackFrameIndex(int &FI); 143 bool parseFixedStackObjectOperand(MachineOperand &Dest); 144 bool parseGlobalValue(GlobalValue *&GV); 145 bool parseGlobalAddressOperand(MachineOperand &Dest); 146 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 147 bool parseJumpTableIndexOperand(MachineOperand &Dest); 148 bool parseExternalSymbolOperand(MachineOperand &Dest); 149 bool parseMDNode(MDNode *&Node); 150 bool parseMetadataOperand(MachineOperand &Dest); 151 bool parseCFIOffset(int &Offset); 152 bool parseCFIRegister(unsigned &Reg); 153 bool parseCFIOperand(MachineOperand &Dest); 154 bool parseIRBlock(BasicBlock *&BB, const Function &F); 155 bool parseBlockAddressOperand(MachineOperand &Dest); 156 bool parseTargetIndexOperand(MachineOperand &Dest); 157 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 158 bool parseMachineOperand(MachineOperand &Dest, 159 Optional<unsigned> &TiedDefIdx); 160 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 161 Optional<unsigned> &TiedDefIdx); 162 bool parseOffset(int64_t &Offset); 163 bool parseAlignment(unsigned &Alignment); 164 bool parseOperandsOffset(MachineOperand &Op); 165 bool parseIRValue(const Value *&V); 166 bool parseMemoryOperandFlag(unsigned &Flags); 167 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 168 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 169 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 170 171 private: 172 /// Convert the integer literal in the current token into an unsigned integer. 173 /// 174 /// Return true if an error occurred. 175 bool getUnsigned(unsigned &Result); 176 177 /// Convert the integer literal in the current token into an uint64. 178 /// 179 /// Return true if an error occurred. 180 bool getUint64(uint64_t &Result); 181 182 /// If the current token is of the given kind, consume it and return false. 183 /// Otherwise report an error and return true. 184 bool expectAndConsume(MIToken::TokenKind TokenKind); 185 186 /// If the current token is of the given kind, consume it and return true. 187 /// Otherwise return false. 188 bool consumeIfPresent(MIToken::TokenKind TokenKind); 189 190 void initNames2InstrOpCodes(); 191 192 /// Try to convert an instruction name to an opcode. Return true if the 193 /// instruction name is invalid. 194 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 195 196 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 197 198 bool assignRegisterTies(MachineInstr &MI, 199 ArrayRef<ParsedMachineOperand> Operands); 200 201 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 202 const MCInstrDesc &MCID); 203 204 void initNames2Regs(); 205 206 /// Try to convert a register name to a register number. Return true if the 207 /// register name is invalid. 208 bool getRegisterByName(StringRef RegName, unsigned &Reg); 209 210 void initNames2RegMasks(); 211 212 /// Check if the given identifier is a name of a register mask. 213 /// 214 /// Return null if the identifier isn't a register mask. 215 const uint32_t *getRegMask(StringRef Identifier); 216 217 void initNames2SubRegIndices(); 218 219 /// Check if the given identifier is a name of a subregister index. 220 /// 221 /// Return 0 if the name isn't a subregister index class. 222 unsigned getSubRegIndex(StringRef Name); 223 224 const BasicBlock *getIRBlock(unsigned Slot); 225 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 226 227 const Value *getIRValue(unsigned Slot); 228 229 void initNames2TargetIndices(); 230 231 /// Try to convert a name of target index to the corresponding target index. 232 /// 233 /// Return true if the name isn't a name of a target index. 234 bool getTargetIndex(StringRef Name, int &Index); 235 236 void initNames2DirectTargetFlags(); 237 238 /// Try to convert a name of a direct target flag to the corresponding 239 /// target flag. 240 /// 241 /// Return true if the name isn't a name of a direct flag. 242 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 243 244 void initNames2BitmaskTargetFlags(); 245 246 /// Try to convert a name of a bitmask target flag to the corresponding 247 /// target flag. 248 /// 249 /// Return true if the name isn't a name of a bitmask target flag. 250 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 251 }; 252 253 } // end anonymous namespace 254 255 MIParser::MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error, 256 StringRef Source, const PerFunctionMIParsingState &PFS, 257 const SlotMapping &IRSlots) 258 : SM(SM), MF(MF), Error(Error), Source(Source), CurrentSource(Source), 259 PFS(PFS), IRSlots(IRSlots) {} 260 261 void MIParser::lex(unsigned SkipChar) { 262 CurrentSource = lexMIToken( 263 CurrentSource.data() + SkipChar, Token, 264 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 265 } 266 267 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 268 269 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 270 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 271 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 272 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 273 // Create an ordinary diagnostic when the source manager's buffer is the 274 // source string. 275 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 276 return true; 277 } 278 // Create a diagnostic for a YAML string literal. 279 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 280 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 281 Source, None, None); 282 return true; 283 } 284 285 static const char *toString(MIToken::TokenKind TokenKind) { 286 switch (TokenKind) { 287 case MIToken::comma: 288 return "','"; 289 case MIToken::equal: 290 return "'='"; 291 case MIToken::colon: 292 return "':'"; 293 case MIToken::lparen: 294 return "'('"; 295 case MIToken::rparen: 296 return "')'"; 297 default: 298 return "<unknown token>"; 299 } 300 } 301 302 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 303 if (Token.isNot(TokenKind)) 304 return error(Twine("expected ") + toString(TokenKind)); 305 lex(); 306 return false; 307 } 308 309 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 310 if (Token.isNot(TokenKind)) 311 return false; 312 lex(); 313 return true; 314 } 315 316 bool MIParser::parseBasicBlockDefinition( 317 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 318 assert(Token.is(MIToken::MachineBasicBlockLabel)); 319 unsigned ID = 0; 320 if (getUnsigned(ID)) 321 return true; 322 auto Loc = Token.location(); 323 auto Name = Token.stringValue(); 324 lex(); 325 bool HasAddressTaken = false; 326 bool IsLandingPad = false; 327 unsigned Alignment = 0; 328 BasicBlock *BB = nullptr; 329 if (consumeIfPresent(MIToken::lparen)) { 330 do { 331 // TODO: Report an error when multiple same attributes are specified. 332 switch (Token.kind()) { 333 case MIToken::kw_address_taken: 334 HasAddressTaken = true; 335 lex(); 336 break; 337 case MIToken::kw_landing_pad: 338 IsLandingPad = true; 339 lex(); 340 break; 341 case MIToken::kw_align: 342 if (parseAlignment(Alignment)) 343 return true; 344 break; 345 case MIToken::IRBlock: 346 // TODO: Report an error when both name and ir block are specified. 347 if (parseIRBlock(BB, *MF.getFunction())) 348 return true; 349 lex(); 350 break; 351 default: 352 break; 353 } 354 } while (consumeIfPresent(MIToken::comma)); 355 if (expectAndConsume(MIToken::rparen)) 356 return true; 357 } 358 if (expectAndConsume(MIToken::colon)) 359 return true; 360 361 if (!Name.empty()) { 362 BB = dyn_cast_or_null<BasicBlock>( 363 MF.getFunction()->getValueSymbolTable().lookup(Name)); 364 if (!BB) 365 return error(Loc, Twine("basic block '") + Name + 366 "' is not defined in the function '" + 367 MF.getName() + "'"); 368 } 369 auto *MBB = MF.CreateMachineBasicBlock(BB); 370 MF.insert(MF.end(), MBB); 371 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 372 if (!WasInserted) 373 return error(Loc, Twine("redefinition of machine basic block with id #") + 374 Twine(ID)); 375 if (Alignment) 376 MBB->setAlignment(Alignment); 377 if (HasAddressTaken) 378 MBB->setHasAddressTaken(); 379 MBB->setIsEHPad(IsLandingPad); 380 return false; 381 } 382 383 bool MIParser::parseBasicBlockDefinitions( 384 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 385 lex(); 386 // Skip until the first machine basic block. 387 while (Token.is(MIToken::Newline)) 388 lex(); 389 if (Token.isErrorOrEOF()) 390 return Token.isError(); 391 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 392 return error("expected a basic block definition before instructions"); 393 unsigned BraceDepth = 0; 394 do { 395 if (parseBasicBlockDefinition(MBBSlots)) 396 return true; 397 bool IsAfterNewline = false; 398 // Skip until the next machine basic block. 399 while (true) { 400 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 401 Token.isErrorOrEOF()) 402 break; 403 else if (Token.is(MIToken::MachineBasicBlockLabel)) 404 return error("basic block definition should be located at the start of " 405 "the line"); 406 else if (consumeIfPresent(MIToken::Newline)) { 407 IsAfterNewline = true; 408 continue; 409 } 410 IsAfterNewline = false; 411 if (Token.is(MIToken::lbrace)) 412 ++BraceDepth; 413 if (Token.is(MIToken::rbrace)) { 414 if (!BraceDepth) 415 return error("extraneous closing brace ('}')"); 416 --BraceDepth; 417 } 418 lex(); 419 } 420 // Verify that we closed all of the '{' at the end of a file or a block. 421 if (!Token.isError() && BraceDepth) 422 return error("expected '}'"); // FIXME: Report a note that shows '{'. 423 } while (!Token.isErrorOrEOF()); 424 return Token.isError(); 425 } 426 427 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 428 assert(Token.is(MIToken::kw_liveins)); 429 lex(); 430 if (expectAndConsume(MIToken::colon)) 431 return true; 432 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 433 return false; 434 do { 435 if (Token.isNot(MIToken::NamedRegister)) 436 return error("expected a named register"); 437 unsigned Reg = 0; 438 if (parseRegister(Reg)) 439 return true; 440 MBB.addLiveIn(Reg); 441 lex(); 442 } while (consumeIfPresent(MIToken::comma)); 443 return false; 444 } 445 446 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 447 assert(Token.is(MIToken::kw_successors)); 448 lex(); 449 if (expectAndConsume(MIToken::colon)) 450 return true; 451 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 452 return false; 453 do { 454 if (Token.isNot(MIToken::MachineBasicBlock)) 455 return error("expected a machine basic block reference"); 456 MachineBasicBlock *SuccMBB = nullptr; 457 if (parseMBBReference(SuccMBB)) 458 return true; 459 lex(); 460 unsigned Weight = 0; 461 if (consumeIfPresent(MIToken::lparen)) { 462 if (Token.isNot(MIToken::IntegerLiteral)) 463 return error("expected an integer literal after '('"); 464 if (getUnsigned(Weight)) 465 return true; 466 lex(); 467 if (expectAndConsume(MIToken::rparen)) 468 return true; 469 } 470 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 471 } while (consumeIfPresent(MIToken::comma)); 472 MBB.normalizeSuccProbs(); 473 return false; 474 } 475 476 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 477 // Skip the definition. 478 assert(Token.is(MIToken::MachineBasicBlockLabel)); 479 lex(); 480 if (consumeIfPresent(MIToken::lparen)) { 481 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 482 lex(); 483 consumeIfPresent(MIToken::rparen); 484 } 485 consumeIfPresent(MIToken::colon); 486 487 // Parse the liveins and successors. 488 // N.B: Multiple lists of successors and liveins are allowed and they're 489 // merged into one. 490 // Example: 491 // liveins: %edi 492 // liveins: %esi 493 // 494 // is equivalent to 495 // liveins: %edi, %esi 496 while (true) { 497 if (Token.is(MIToken::kw_successors)) { 498 if (parseBasicBlockSuccessors(MBB)) 499 return true; 500 } else if (Token.is(MIToken::kw_liveins)) { 501 if (parseBasicBlockLiveins(MBB)) 502 return true; 503 } else if (consumeIfPresent(MIToken::Newline)) { 504 continue; 505 } else 506 break; 507 if (!Token.isNewlineOrEOF()) 508 return error("expected line break at the end of a list"); 509 lex(); 510 } 511 512 // Parse the instructions. 513 bool IsInBundle = false; 514 MachineInstr *PrevMI = nullptr; 515 while (true) { 516 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 517 return false; 518 else if (consumeIfPresent(MIToken::Newline)) 519 continue; 520 if (consumeIfPresent(MIToken::rbrace)) { 521 // The first parsing pass should verify that all closing '}' have an 522 // opening '{'. 523 assert(IsInBundle); 524 IsInBundle = false; 525 continue; 526 } 527 MachineInstr *MI = nullptr; 528 if (parse(MI)) 529 return true; 530 MBB.insert(MBB.end(), MI); 531 if (IsInBundle) { 532 PrevMI->setFlag(MachineInstr::BundledSucc); 533 MI->setFlag(MachineInstr::BundledPred); 534 } 535 PrevMI = MI; 536 if (Token.is(MIToken::lbrace)) { 537 if (IsInBundle) 538 return error("nested instruction bundles are not allowed"); 539 lex(); 540 // This instruction is the start of the bundle. 541 MI->setFlag(MachineInstr::BundledSucc); 542 IsInBundle = true; 543 if (!Token.is(MIToken::Newline)) 544 // The next instruction can be on the same line. 545 continue; 546 } 547 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 548 lex(); 549 } 550 return false; 551 } 552 553 bool MIParser::parseBasicBlocks() { 554 lex(); 555 // Skip until the first machine basic block. 556 while (Token.is(MIToken::Newline)) 557 lex(); 558 if (Token.isErrorOrEOF()) 559 return Token.isError(); 560 // The first parsing pass should have verified that this token is a MBB label 561 // in the 'parseBasicBlockDefinitions' method. 562 assert(Token.is(MIToken::MachineBasicBlockLabel)); 563 do { 564 MachineBasicBlock *MBB = nullptr; 565 if (parseMBBReference(MBB)) 566 return true; 567 if (parseBasicBlock(*MBB)) 568 return true; 569 // The method 'parseBasicBlock' should parse the whole block until the next 570 // block or the end of file. 571 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 572 } while (Token.isNot(MIToken::Eof)); 573 return false; 574 } 575 576 bool MIParser::parse(MachineInstr *&MI) { 577 // Parse any register operands before '=' 578 MachineOperand MO = MachineOperand::CreateImm(0); 579 SmallVector<ParsedMachineOperand, 8> Operands; 580 while (Token.isRegister() || Token.isRegisterFlag()) { 581 auto Loc = Token.location(); 582 Optional<unsigned> TiedDefIdx; 583 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 584 return true; 585 Operands.push_back( 586 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 587 if (Token.isNot(MIToken::comma)) 588 break; 589 lex(); 590 } 591 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 592 return true; 593 594 unsigned OpCode, Flags = 0; 595 if (Token.isError() || parseInstruction(OpCode, Flags)) 596 return true; 597 598 Type *Ty = nullptr; 599 if (isPreISelGenericOpcode(OpCode)) { 600 // For generic opcode, a type is mandatory. 601 auto Loc = Token.location(); 602 if (parseIRType(Loc, Ty)) 603 return true; 604 } 605 606 // Parse the remaining machine operands. 607 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 608 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 609 auto Loc = Token.location(); 610 Optional<unsigned> TiedDefIdx; 611 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 612 return true; 613 Operands.push_back( 614 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 615 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 616 Token.is(MIToken::lbrace)) 617 break; 618 if (Token.isNot(MIToken::comma)) 619 return error("expected ',' before the next machine operand"); 620 lex(); 621 } 622 623 DebugLoc DebugLocation; 624 if (Token.is(MIToken::kw_debug_location)) { 625 lex(); 626 if (Token.isNot(MIToken::exclaim)) 627 return error("expected a metadata node after 'debug-location'"); 628 MDNode *Node = nullptr; 629 if (parseMDNode(Node)) 630 return true; 631 DebugLocation = DebugLoc(Node); 632 } 633 634 // Parse the machine memory operands. 635 SmallVector<MachineMemOperand *, 2> MemOperands; 636 if (Token.is(MIToken::coloncolon)) { 637 lex(); 638 while (!Token.isNewlineOrEOF()) { 639 MachineMemOperand *MemOp = nullptr; 640 if (parseMachineMemoryOperand(MemOp)) 641 return true; 642 MemOperands.push_back(MemOp); 643 if (Token.isNewlineOrEOF()) 644 break; 645 if (Token.isNot(MIToken::comma)) 646 return error("expected ',' before the next machine memory operand"); 647 lex(); 648 } 649 } 650 651 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 652 if (!MCID.isVariadic()) { 653 // FIXME: Move the implicit operand verification to the machine verifier. 654 if (verifyImplicitOperands(Operands, MCID)) 655 return true; 656 } 657 658 // TODO: Check for extraneous machine operands. 659 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 660 MI->setFlags(Flags); 661 if (Ty) 662 MI->setType(Ty); 663 for (const auto &Operand : Operands) 664 MI->addOperand(MF, Operand.Operand); 665 if (assignRegisterTies(*MI, Operands)) 666 return true; 667 if (MemOperands.empty()) 668 return false; 669 MachineInstr::mmo_iterator MemRefs = 670 MF.allocateMemRefsArray(MemOperands.size()); 671 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 672 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 673 return false; 674 } 675 676 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 677 lex(); 678 if (Token.isNot(MIToken::MachineBasicBlock)) 679 return error("expected a machine basic block reference"); 680 if (parseMBBReference(MBB)) 681 return true; 682 lex(); 683 if (Token.isNot(MIToken::Eof)) 684 return error( 685 "expected end of string after the machine basic block reference"); 686 return false; 687 } 688 689 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 690 lex(); 691 if (Token.isNot(MIToken::NamedRegister)) 692 return error("expected a named register"); 693 if (parseRegister(Reg)) 694 return true; 695 lex(); 696 if (Token.isNot(MIToken::Eof)) 697 return error("expected end of string after the register reference"); 698 return false; 699 } 700 701 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) { 702 lex(); 703 if (Token.isNot(MIToken::VirtualRegister)) 704 return error("expected a virtual register"); 705 if (parseRegister(Reg)) 706 return true; 707 lex(); 708 if (Token.isNot(MIToken::Eof)) 709 return error("expected end of string after the register reference"); 710 return false; 711 } 712 713 bool MIParser::parseStandaloneStackObject(int &FI) { 714 lex(); 715 if (Token.isNot(MIToken::StackObject)) 716 return error("expected a stack object"); 717 if (parseStackFrameIndex(FI)) 718 return true; 719 if (Token.isNot(MIToken::Eof)) 720 return error("expected end of string after the stack object reference"); 721 return false; 722 } 723 724 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 725 lex(); 726 if (Token.isNot(MIToken::exclaim)) 727 return error("expected a metadata node"); 728 if (parseMDNode(Node)) 729 return true; 730 if (Token.isNot(MIToken::Eof)) 731 return error("expected end of string after the metadata node"); 732 return false; 733 } 734 735 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 736 assert(MO.isImplicit()); 737 return MO.isDef() ? "implicit-def" : "implicit"; 738 } 739 740 static std::string getRegisterName(const TargetRegisterInfo *TRI, 741 unsigned Reg) { 742 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 743 return StringRef(TRI->getName(Reg)).lower(); 744 } 745 746 /// Return true if the parsed machine operands contain a given machine operand. 747 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 748 ArrayRef<ParsedMachineOperand> Operands) { 749 for (const auto &I : Operands) { 750 if (ImplicitOperand.isIdenticalTo(I.Operand)) 751 return true; 752 } 753 return false; 754 } 755 756 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 757 const MCInstrDesc &MCID) { 758 if (MCID.isCall()) 759 // We can't verify call instructions as they can contain arbitrary implicit 760 // register and register mask operands. 761 return false; 762 763 // Gather all the expected implicit operands. 764 SmallVector<MachineOperand, 4> ImplicitOperands; 765 if (MCID.ImplicitDefs) 766 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 767 ImplicitOperands.push_back( 768 MachineOperand::CreateReg(*ImpDefs, true, true)); 769 if (MCID.ImplicitUses) 770 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 771 ImplicitOperands.push_back( 772 MachineOperand::CreateReg(*ImpUses, false, true)); 773 774 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 775 assert(TRI && "Expected target register info"); 776 for (const auto &I : ImplicitOperands) { 777 if (isImplicitOperandIn(I, Operands)) 778 continue; 779 return error(Operands.empty() ? Token.location() : Operands.back().End, 780 Twine("missing implicit register operand '") + 781 printImplicitRegisterFlag(I) + " %" + 782 getRegisterName(TRI, I.getReg()) + "'"); 783 } 784 return false; 785 } 786 787 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 788 if (Token.is(MIToken::kw_frame_setup)) { 789 Flags |= MachineInstr::FrameSetup; 790 lex(); 791 } 792 if (Token.isNot(MIToken::Identifier)) 793 return error("expected a machine instruction"); 794 StringRef InstrName = Token.stringValue(); 795 if (parseInstrName(InstrName, OpCode)) 796 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 797 lex(); 798 return false; 799 } 800 801 bool MIParser::parseRegister(unsigned &Reg) { 802 switch (Token.kind()) { 803 case MIToken::underscore: 804 Reg = 0; 805 break; 806 case MIToken::NamedRegister: { 807 StringRef Name = Token.stringValue(); 808 if (getRegisterByName(Name, Reg)) 809 return error(Twine("unknown register name '") + Name + "'"); 810 break; 811 } 812 case MIToken::VirtualRegister: { 813 unsigned ID; 814 if (getUnsigned(ID)) 815 return true; 816 const auto RegInfo = PFS.VirtualRegisterSlots.find(ID); 817 if (RegInfo == PFS.VirtualRegisterSlots.end()) 818 return error(Twine("use of undefined virtual register '%") + Twine(ID) + 819 "'"); 820 Reg = RegInfo->second; 821 break; 822 } 823 // TODO: Parse other register kinds. 824 default: 825 llvm_unreachable("The current token should be a register"); 826 } 827 return false; 828 } 829 830 bool MIParser::parseRegisterFlag(unsigned &Flags) { 831 const unsigned OldFlags = Flags; 832 switch (Token.kind()) { 833 case MIToken::kw_implicit: 834 Flags |= RegState::Implicit; 835 break; 836 case MIToken::kw_implicit_define: 837 Flags |= RegState::ImplicitDefine; 838 break; 839 case MIToken::kw_def: 840 Flags |= RegState::Define; 841 break; 842 case MIToken::kw_dead: 843 Flags |= RegState::Dead; 844 break; 845 case MIToken::kw_killed: 846 Flags |= RegState::Kill; 847 break; 848 case MIToken::kw_undef: 849 Flags |= RegState::Undef; 850 break; 851 case MIToken::kw_internal: 852 Flags |= RegState::InternalRead; 853 break; 854 case MIToken::kw_early_clobber: 855 Flags |= RegState::EarlyClobber; 856 break; 857 case MIToken::kw_debug_use: 858 Flags |= RegState::Debug; 859 break; 860 default: 861 llvm_unreachable("The current token should be a register flag"); 862 } 863 if (OldFlags == Flags) 864 // We know that the same flag is specified more than once when the flags 865 // weren't modified. 866 return error("duplicate '" + Token.stringValue() + "' register flag"); 867 lex(); 868 return false; 869 } 870 871 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 872 assert(Token.is(MIToken::colon)); 873 lex(); 874 if (Token.isNot(MIToken::Identifier)) 875 return error("expected a subregister index after ':'"); 876 auto Name = Token.stringValue(); 877 SubReg = getSubRegIndex(Name); 878 if (!SubReg) 879 return error(Twine("use of unknown subregister index '") + Name + "'"); 880 lex(); 881 return false; 882 } 883 884 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 885 if (!consumeIfPresent(MIToken::kw_tied_def)) 886 return error("expected 'tied-def' after '('"); 887 if (Token.isNot(MIToken::IntegerLiteral)) 888 return error("expected an integer literal after 'tied-def'"); 889 if (getUnsigned(TiedDefIdx)) 890 return true; 891 lex(); 892 if (expectAndConsume(MIToken::rparen)) 893 return true; 894 return false; 895 } 896 897 bool MIParser::parseSize(unsigned &Size) { 898 if (Token.isNot(MIToken::IntegerLiteral)) 899 return error("expected an integer literal for the size"); 900 if (getUnsigned(Size)) 901 return true; 902 lex(); 903 if (expectAndConsume(MIToken::rparen)) 904 return true; 905 return false; 906 } 907 908 bool MIParser::assignRegisterTies(MachineInstr &MI, 909 ArrayRef<ParsedMachineOperand> Operands) { 910 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 911 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 912 if (!Operands[I].TiedDefIdx) 913 continue; 914 // The parser ensures that this operand is a register use, so we just have 915 // to check the tied-def operand. 916 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 917 if (DefIdx >= E) 918 return error(Operands[I].Begin, 919 Twine("use of invalid tied-def operand index '" + 920 Twine(DefIdx) + "'; instruction has only ") + 921 Twine(E) + " operands"); 922 const auto &DefOperand = Operands[DefIdx].Operand; 923 if (!DefOperand.isReg() || !DefOperand.isDef()) 924 // FIXME: add note with the def operand. 925 return error(Operands[I].Begin, 926 Twine("use of invalid tied-def operand index '") + 927 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 928 " isn't a defined register"); 929 // Check that the tied-def operand wasn't tied elsewhere. 930 for (const auto &TiedPair : TiedRegisterPairs) { 931 if (TiedPair.first == DefIdx) 932 return error(Operands[I].Begin, 933 Twine("the tied-def operand #") + Twine(DefIdx) + 934 " is already tied with another register operand"); 935 } 936 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 937 } 938 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 939 // indices must be less than tied max. 940 for (const auto &TiedPair : TiedRegisterPairs) 941 MI.tieOperands(TiedPair.first, TiedPair.second); 942 return false; 943 } 944 945 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 946 Optional<unsigned> &TiedDefIdx, 947 bool IsDef) { 948 unsigned Reg; 949 unsigned Flags = IsDef ? RegState::Define : 0; 950 while (Token.isRegisterFlag()) { 951 if (parseRegisterFlag(Flags)) 952 return true; 953 } 954 if (!Token.isRegister()) 955 return error("expected a register after register flags"); 956 if (parseRegister(Reg)) 957 return true; 958 lex(); 959 unsigned SubReg = 0; 960 if (Token.is(MIToken::colon)) { 961 if (parseSubRegisterIndex(SubReg)) 962 return true; 963 } 964 if ((Flags & RegState::Define) == 0) { 965 if (consumeIfPresent(MIToken::lparen)) { 966 unsigned Idx; 967 if (parseRegisterTiedDefIndex(Idx)) 968 return true; 969 TiedDefIdx = Idx; 970 } 971 } else if (consumeIfPresent(MIToken::lparen)) { 972 // Generic virtual registers must have a size. 973 // The "must" part will be verify by the machine verifier, 974 // because at this point we actually do not know if Reg is 975 // a generic virtual register. 976 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 977 return error("unexpected size on physical register"); 978 unsigned Size; 979 if (parseSize(Size)) 980 return true; 981 982 MachineRegisterInfo &MRI = MF.getRegInfo(); 983 MRI.setSize(Reg, Size); 984 } 985 Dest = MachineOperand::CreateReg( 986 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 987 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 988 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 989 Flags & RegState::InternalRead); 990 return false; 991 } 992 993 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 994 assert(Token.is(MIToken::IntegerLiteral)); 995 const APSInt &Int = Token.integerValue(); 996 if (Int.getMinSignedBits() > 64) 997 return error("integer literal is too large to be an immediate operand"); 998 Dest = MachineOperand::CreateImm(Int.getExtValue()); 999 lex(); 1000 return false; 1001 } 1002 1003 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1004 const Constant *&C) { 1005 auto Source = StringValue.str(); // The source has to be null terminated. 1006 SMDiagnostic Err; 1007 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(), 1008 &IRSlots); 1009 if (!C) 1010 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1011 return false; 1012 } 1013 1014 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1015 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1016 return true; 1017 lex(); 1018 return false; 1019 } 1020 1021 bool MIParser::parseIRType(StringRef::iterator Loc, StringRef StringValue, 1022 unsigned &Read, Type *&Ty) { 1023 auto Source = StringValue.str(); // The source has to be null terminated. 1024 SMDiagnostic Err; 1025 Ty = parseTypeAtBeginning(Source.c_str(), Read, Err, 1026 *MF.getFunction()->getParent(), &IRSlots); 1027 if (!Ty) 1028 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1029 return false; 1030 } 1031 1032 bool MIParser::parseIRType(StringRef::iterator Loc, Type *&Ty, 1033 bool MustBeSized) { 1034 // At this point we enter in the IR world, i.e., to get the correct type, 1035 // we need to hand off the whole string, not just the current token. 1036 // E.g., <4 x i64> would give '<' as a token and there is not much 1037 // the IR parser can do with that. 1038 unsigned Read = 0; 1039 if (parseIRType(Loc, StringRef(Loc), Read, Ty)) 1040 return true; 1041 // The type must be sized, otherwise there is not much the backend 1042 // can do with it. 1043 if (MustBeSized && !Ty->isSized()) 1044 return error("expected a sized type"); 1045 // The next token is Read characters from the Loc. 1046 // However, the current location is not Loc, but Loc + the length of Token. 1047 // Therefore, subtract the length of Token (range().end() - Loc) to the 1048 // number of characters to skip before the next token. 1049 lex(Read - (Token.range().end() - Loc)); 1050 return false; 1051 } 1052 1053 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1054 assert(Token.is(MIToken::IntegerType)); 1055 auto Loc = Token.location(); 1056 lex(); 1057 if (Token.isNot(MIToken::IntegerLiteral)) 1058 return error("expected an integer literal"); 1059 const Constant *C = nullptr; 1060 if (parseIRConstant(Loc, C)) 1061 return true; 1062 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1063 return false; 1064 } 1065 1066 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1067 auto Loc = Token.location(); 1068 lex(); 1069 if (Token.isNot(MIToken::FloatingPointLiteral)) 1070 return error("expected a floating point literal"); 1071 const Constant *C = nullptr; 1072 if (parseIRConstant(Loc, C)) 1073 return true; 1074 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1075 return false; 1076 } 1077 1078 bool MIParser::getUnsigned(unsigned &Result) { 1079 assert(Token.hasIntegerValue() && "Expected a token with an integer value"); 1080 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1081 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1082 if (Val64 == Limit) 1083 return error("expected 32-bit integer (too large)"); 1084 Result = Val64; 1085 return false; 1086 } 1087 1088 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1089 assert(Token.is(MIToken::MachineBasicBlock) || 1090 Token.is(MIToken::MachineBasicBlockLabel)); 1091 unsigned Number; 1092 if (getUnsigned(Number)) 1093 return true; 1094 auto MBBInfo = PFS.MBBSlots.find(Number); 1095 if (MBBInfo == PFS.MBBSlots.end()) 1096 return error(Twine("use of undefined machine basic block #") + 1097 Twine(Number)); 1098 MBB = MBBInfo->second; 1099 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1100 return error(Twine("the name of machine basic block #") + Twine(Number) + 1101 " isn't '" + Token.stringValue() + "'"); 1102 return false; 1103 } 1104 1105 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1106 MachineBasicBlock *MBB; 1107 if (parseMBBReference(MBB)) 1108 return true; 1109 Dest = MachineOperand::CreateMBB(MBB); 1110 lex(); 1111 return false; 1112 } 1113 1114 bool MIParser::parseStackFrameIndex(int &FI) { 1115 assert(Token.is(MIToken::StackObject)); 1116 unsigned ID; 1117 if (getUnsigned(ID)) 1118 return true; 1119 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1120 if (ObjectInfo == PFS.StackObjectSlots.end()) 1121 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1122 "'"); 1123 StringRef Name; 1124 if (const auto *Alloca = 1125 MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second)) 1126 Name = Alloca->getName(); 1127 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1128 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1129 "' isn't '" + Token.stringValue() + "'"); 1130 lex(); 1131 FI = ObjectInfo->second; 1132 return false; 1133 } 1134 1135 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1136 int FI; 1137 if (parseStackFrameIndex(FI)) 1138 return true; 1139 Dest = MachineOperand::CreateFI(FI); 1140 return false; 1141 } 1142 1143 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1144 assert(Token.is(MIToken::FixedStackObject)); 1145 unsigned ID; 1146 if (getUnsigned(ID)) 1147 return true; 1148 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1149 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1150 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1151 Twine(ID) + "'"); 1152 lex(); 1153 FI = ObjectInfo->second; 1154 return false; 1155 } 1156 1157 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1158 int FI; 1159 if (parseFixedStackFrameIndex(FI)) 1160 return true; 1161 Dest = MachineOperand::CreateFI(FI); 1162 return false; 1163 } 1164 1165 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1166 switch (Token.kind()) { 1167 case MIToken::NamedGlobalValue: { 1168 const Module *M = MF.getFunction()->getParent(); 1169 GV = M->getNamedValue(Token.stringValue()); 1170 if (!GV) 1171 return error(Twine("use of undefined global value '") + Token.range() + 1172 "'"); 1173 break; 1174 } 1175 case MIToken::GlobalValue: { 1176 unsigned GVIdx; 1177 if (getUnsigned(GVIdx)) 1178 return true; 1179 if (GVIdx >= IRSlots.GlobalValues.size()) 1180 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1181 "'"); 1182 GV = IRSlots.GlobalValues[GVIdx]; 1183 break; 1184 } 1185 default: 1186 llvm_unreachable("The current token should be a global value"); 1187 } 1188 return false; 1189 } 1190 1191 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1192 GlobalValue *GV = nullptr; 1193 if (parseGlobalValue(GV)) 1194 return true; 1195 lex(); 1196 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1197 if (parseOperandsOffset(Dest)) 1198 return true; 1199 return false; 1200 } 1201 1202 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1203 assert(Token.is(MIToken::ConstantPoolItem)); 1204 unsigned ID; 1205 if (getUnsigned(ID)) 1206 return true; 1207 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1208 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1209 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1210 lex(); 1211 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1212 if (parseOperandsOffset(Dest)) 1213 return true; 1214 return false; 1215 } 1216 1217 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1218 assert(Token.is(MIToken::JumpTableIndex)); 1219 unsigned ID; 1220 if (getUnsigned(ID)) 1221 return true; 1222 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1223 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1224 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1225 lex(); 1226 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1227 return false; 1228 } 1229 1230 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1231 assert(Token.is(MIToken::ExternalSymbol)); 1232 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1233 lex(); 1234 Dest = MachineOperand::CreateES(Symbol); 1235 if (parseOperandsOffset(Dest)) 1236 return true; 1237 return false; 1238 } 1239 1240 bool MIParser::parseMDNode(MDNode *&Node) { 1241 assert(Token.is(MIToken::exclaim)); 1242 auto Loc = Token.location(); 1243 lex(); 1244 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1245 return error("expected metadata id after '!'"); 1246 unsigned ID; 1247 if (getUnsigned(ID)) 1248 return true; 1249 auto NodeInfo = IRSlots.MetadataNodes.find(ID); 1250 if (NodeInfo == IRSlots.MetadataNodes.end()) 1251 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1252 lex(); 1253 Node = NodeInfo->second.get(); 1254 return false; 1255 } 1256 1257 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1258 MDNode *Node = nullptr; 1259 if (parseMDNode(Node)) 1260 return true; 1261 Dest = MachineOperand::CreateMetadata(Node); 1262 return false; 1263 } 1264 1265 bool MIParser::parseCFIOffset(int &Offset) { 1266 if (Token.isNot(MIToken::IntegerLiteral)) 1267 return error("expected a cfi offset"); 1268 if (Token.integerValue().getMinSignedBits() > 32) 1269 return error("expected a 32 bit integer (the cfi offset is too large)"); 1270 Offset = (int)Token.integerValue().getExtValue(); 1271 lex(); 1272 return false; 1273 } 1274 1275 bool MIParser::parseCFIRegister(unsigned &Reg) { 1276 if (Token.isNot(MIToken::NamedRegister)) 1277 return error("expected a cfi register"); 1278 unsigned LLVMReg; 1279 if (parseRegister(LLVMReg)) 1280 return true; 1281 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1282 assert(TRI && "Expected target register info"); 1283 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1284 if (DwarfReg < 0) 1285 return error("invalid DWARF register"); 1286 Reg = (unsigned)DwarfReg; 1287 lex(); 1288 return false; 1289 } 1290 1291 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1292 auto Kind = Token.kind(); 1293 lex(); 1294 auto &MMI = MF.getMMI(); 1295 int Offset; 1296 unsigned Reg; 1297 unsigned CFIIndex; 1298 switch (Kind) { 1299 case MIToken::kw_cfi_same_value: 1300 if (parseCFIRegister(Reg)) 1301 return true; 1302 CFIIndex = 1303 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1304 break; 1305 case MIToken::kw_cfi_offset: 1306 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1307 parseCFIOffset(Offset)) 1308 return true; 1309 CFIIndex = 1310 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1311 break; 1312 case MIToken::kw_cfi_def_cfa_register: 1313 if (parseCFIRegister(Reg)) 1314 return true; 1315 CFIIndex = 1316 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1317 break; 1318 case MIToken::kw_cfi_def_cfa_offset: 1319 if (parseCFIOffset(Offset)) 1320 return true; 1321 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1322 CFIIndex = MMI.addFrameInst( 1323 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1324 break; 1325 case MIToken::kw_cfi_def_cfa: 1326 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1327 parseCFIOffset(Offset)) 1328 return true; 1329 // NB: MCCFIInstruction::createDefCfa negates the offset. 1330 CFIIndex = 1331 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1332 break; 1333 default: 1334 // TODO: Parse the other CFI operands. 1335 llvm_unreachable("The current token should be a cfi operand"); 1336 } 1337 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1338 return false; 1339 } 1340 1341 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1342 switch (Token.kind()) { 1343 case MIToken::NamedIRBlock: { 1344 BB = dyn_cast_or_null<BasicBlock>( 1345 F.getValueSymbolTable().lookup(Token.stringValue())); 1346 if (!BB) 1347 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1348 break; 1349 } 1350 case MIToken::IRBlock: { 1351 unsigned SlotNumber = 0; 1352 if (getUnsigned(SlotNumber)) 1353 return true; 1354 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1355 if (!BB) 1356 return error(Twine("use of undefined IR block '%ir-block.") + 1357 Twine(SlotNumber) + "'"); 1358 break; 1359 } 1360 default: 1361 llvm_unreachable("The current token should be an IR block reference"); 1362 } 1363 return false; 1364 } 1365 1366 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1367 assert(Token.is(MIToken::kw_blockaddress)); 1368 lex(); 1369 if (expectAndConsume(MIToken::lparen)) 1370 return true; 1371 if (Token.isNot(MIToken::GlobalValue) && 1372 Token.isNot(MIToken::NamedGlobalValue)) 1373 return error("expected a global value"); 1374 GlobalValue *GV = nullptr; 1375 if (parseGlobalValue(GV)) 1376 return true; 1377 auto *F = dyn_cast<Function>(GV); 1378 if (!F) 1379 return error("expected an IR function reference"); 1380 lex(); 1381 if (expectAndConsume(MIToken::comma)) 1382 return true; 1383 BasicBlock *BB = nullptr; 1384 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1385 return error("expected an IR block reference"); 1386 if (parseIRBlock(BB, *F)) 1387 return true; 1388 lex(); 1389 if (expectAndConsume(MIToken::rparen)) 1390 return true; 1391 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1392 if (parseOperandsOffset(Dest)) 1393 return true; 1394 return false; 1395 } 1396 1397 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1398 assert(Token.is(MIToken::kw_target_index)); 1399 lex(); 1400 if (expectAndConsume(MIToken::lparen)) 1401 return true; 1402 if (Token.isNot(MIToken::Identifier)) 1403 return error("expected the name of the target index"); 1404 int Index = 0; 1405 if (getTargetIndex(Token.stringValue(), Index)) 1406 return error("use of undefined target index '" + Token.stringValue() + "'"); 1407 lex(); 1408 if (expectAndConsume(MIToken::rparen)) 1409 return true; 1410 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1411 if (parseOperandsOffset(Dest)) 1412 return true; 1413 return false; 1414 } 1415 1416 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1417 assert(Token.is(MIToken::kw_liveout)); 1418 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1419 assert(TRI && "Expected target register info"); 1420 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1421 lex(); 1422 if (expectAndConsume(MIToken::lparen)) 1423 return true; 1424 while (true) { 1425 if (Token.isNot(MIToken::NamedRegister)) 1426 return error("expected a named register"); 1427 unsigned Reg = 0; 1428 if (parseRegister(Reg)) 1429 return true; 1430 lex(); 1431 Mask[Reg / 32] |= 1U << (Reg % 32); 1432 // TODO: Report an error if the same register is used more than once. 1433 if (Token.isNot(MIToken::comma)) 1434 break; 1435 lex(); 1436 } 1437 if (expectAndConsume(MIToken::rparen)) 1438 return true; 1439 Dest = MachineOperand::CreateRegLiveOut(Mask); 1440 return false; 1441 } 1442 1443 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1444 Optional<unsigned> &TiedDefIdx) { 1445 switch (Token.kind()) { 1446 case MIToken::kw_implicit: 1447 case MIToken::kw_implicit_define: 1448 case MIToken::kw_def: 1449 case MIToken::kw_dead: 1450 case MIToken::kw_killed: 1451 case MIToken::kw_undef: 1452 case MIToken::kw_internal: 1453 case MIToken::kw_early_clobber: 1454 case MIToken::kw_debug_use: 1455 case MIToken::underscore: 1456 case MIToken::NamedRegister: 1457 case MIToken::VirtualRegister: 1458 return parseRegisterOperand(Dest, TiedDefIdx); 1459 case MIToken::IntegerLiteral: 1460 return parseImmediateOperand(Dest); 1461 case MIToken::IntegerType: 1462 return parseTypedImmediateOperand(Dest); 1463 case MIToken::kw_half: 1464 case MIToken::kw_float: 1465 case MIToken::kw_double: 1466 case MIToken::kw_x86_fp80: 1467 case MIToken::kw_fp128: 1468 case MIToken::kw_ppc_fp128: 1469 return parseFPImmediateOperand(Dest); 1470 case MIToken::MachineBasicBlock: 1471 return parseMBBOperand(Dest); 1472 case MIToken::StackObject: 1473 return parseStackObjectOperand(Dest); 1474 case MIToken::FixedStackObject: 1475 return parseFixedStackObjectOperand(Dest); 1476 case MIToken::GlobalValue: 1477 case MIToken::NamedGlobalValue: 1478 return parseGlobalAddressOperand(Dest); 1479 case MIToken::ConstantPoolItem: 1480 return parseConstantPoolIndexOperand(Dest); 1481 case MIToken::JumpTableIndex: 1482 return parseJumpTableIndexOperand(Dest); 1483 case MIToken::ExternalSymbol: 1484 return parseExternalSymbolOperand(Dest); 1485 case MIToken::exclaim: 1486 return parseMetadataOperand(Dest); 1487 case MIToken::kw_cfi_same_value: 1488 case MIToken::kw_cfi_offset: 1489 case MIToken::kw_cfi_def_cfa_register: 1490 case MIToken::kw_cfi_def_cfa_offset: 1491 case MIToken::kw_cfi_def_cfa: 1492 return parseCFIOperand(Dest); 1493 case MIToken::kw_blockaddress: 1494 return parseBlockAddressOperand(Dest); 1495 case MIToken::kw_target_index: 1496 return parseTargetIndexOperand(Dest); 1497 case MIToken::kw_liveout: 1498 return parseLiveoutRegisterMaskOperand(Dest); 1499 case MIToken::Error: 1500 return true; 1501 case MIToken::Identifier: 1502 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1503 Dest = MachineOperand::CreateRegMask(RegMask); 1504 lex(); 1505 break; 1506 } 1507 // fallthrough 1508 default: 1509 // FIXME: Parse the MCSymbol machine operand. 1510 return error("expected a machine operand"); 1511 } 1512 return false; 1513 } 1514 1515 bool MIParser::parseMachineOperandAndTargetFlags( 1516 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1517 unsigned TF = 0; 1518 bool HasTargetFlags = false; 1519 if (Token.is(MIToken::kw_target_flags)) { 1520 HasTargetFlags = true; 1521 lex(); 1522 if (expectAndConsume(MIToken::lparen)) 1523 return true; 1524 if (Token.isNot(MIToken::Identifier)) 1525 return error("expected the name of the target flag"); 1526 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1527 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1528 return error("use of undefined target flag '" + Token.stringValue() + 1529 "'"); 1530 } 1531 lex(); 1532 while (Token.is(MIToken::comma)) { 1533 lex(); 1534 if (Token.isNot(MIToken::Identifier)) 1535 return error("expected the name of the target flag"); 1536 unsigned BitFlag = 0; 1537 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1538 return error("use of undefined target flag '" + Token.stringValue() + 1539 "'"); 1540 // TODO: Report an error when using a duplicate bit target flag. 1541 TF |= BitFlag; 1542 lex(); 1543 } 1544 if (expectAndConsume(MIToken::rparen)) 1545 return true; 1546 } 1547 auto Loc = Token.location(); 1548 if (parseMachineOperand(Dest, TiedDefIdx)) 1549 return true; 1550 if (!HasTargetFlags) 1551 return false; 1552 if (Dest.isReg()) 1553 return error(Loc, "register operands can't have target flags"); 1554 Dest.setTargetFlags(TF); 1555 return false; 1556 } 1557 1558 bool MIParser::parseOffset(int64_t &Offset) { 1559 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1560 return false; 1561 StringRef Sign = Token.range(); 1562 bool IsNegative = Token.is(MIToken::minus); 1563 lex(); 1564 if (Token.isNot(MIToken::IntegerLiteral)) 1565 return error("expected an integer literal after '" + Sign + "'"); 1566 if (Token.integerValue().getMinSignedBits() > 64) 1567 return error("expected 64-bit integer (too large)"); 1568 Offset = Token.integerValue().getExtValue(); 1569 if (IsNegative) 1570 Offset = -Offset; 1571 lex(); 1572 return false; 1573 } 1574 1575 bool MIParser::parseAlignment(unsigned &Alignment) { 1576 assert(Token.is(MIToken::kw_align)); 1577 lex(); 1578 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1579 return error("expected an integer literal after 'align'"); 1580 if (getUnsigned(Alignment)) 1581 return true; 1582 lex(); 1583 return false; 1584 } 1585 1586 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1587 int64_t Offset = 0; 1588 if (parseOffset(Offset)) 1589 return true; 1590 Op.setOffset(Offset); 1591 return false; 1592 } 1593 1594 bool MIParser::parseIRValue(const Value *&V) { 1595 switch (Token.kind()) { 1596 case MIToken::NamedIRValue: { 1597 V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue()); 1598 break; 1599 } 1600 case MIToken::IRValue: { 1601 unsigned SlotNumber = 0; 1602 if (getUnsigned(SlotNumber)) 1603 return true; 1604 V = getIRValue(SlotNumber); 1605 break; 1606 } 1607 case MIToken::NamedGlobalValue: 1608 case MIToken::GlobalValue: { 1609 GlobalValue *GV = nullptr; 1610 if (parseGlobalValue(GV)) 1611 return true; 1612 V = GV; 1613 break; 1614 } 1615 case MIToken::QuotedIRValue: { 1616 const Constant *C = nullptr; 1617 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1618 return true; 1619 V = C; 1620 break; 1621 } 1622 default: 1623 llvm_unreachable("The current token should be an IR block reference"); 1624 } 1625 if (!V) 1626 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1627 return false; 1628 } 1629 1630 bool MIParser::getUint64(uint64_t &Result) { 1631 assert(Token.hasIntegerValue()); 1632 if (Token.integerValue().getActiveBits() > 64) 1633 return error("expected 64-bit integer (too large)"); 1634 Result = Token.integerValue().getZExtValue(); 1635 return false; 1636 } 1637 1638 bool MIParser::parseMemoryOperandFlag(unsigned &Flags) { 1639 const unsigned OldFlags = Flags; 1640 switch (Token.kind()) { 1641 case MIToken::kw_volatile: 1642 Flags |= MachineMemOperand::MOVolatile; 1643 break; 1644 case MIToken::kw_non_temporal: 1645 Flags |= MachineMemOperand::MONonTemporal; 1646 break; 1647 case MIToken::kw_invariant: 1648 Flags |= MachineMemOperand::MOInvariant; 1649 break; 1650 // TODO: parse the target specific memory operand flags. 1651 default: 1652 llvm_unreachable("The current token should be a memory operand flag"); 1653 } 1654 if (OldFlags == Flags) 1655 // We know that the same flag is specified more than once when the flags 1656 // weren't modified. 1657 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1658 lex(); 1659 return false; 1660 } 1661 1662 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1663 switch (Token.kind()) { 1664 case MIToken::kw_stack: 1665 PSV = MF.getPSVManager().getStack(); 1666 break; 1667 case MIToken::kw_got: 1668 PSV = MF.getPSVManager().getGOT(); 1669 break; 1670 case MIToken::kw_jump_table: 1671 PSV = MF.getPSVManager().getJumpTable(); 1672 break; 1673 case MIToken::kw_constant_pool: 1674 PSV = MF.getPSVManager().getConstantPool(); 1675 break; 1676 case MIToken::FixedStackObject: { 1677 int FI; 1678 if (parseFixedStackFrameIndex(FI)) 1679 return true; 1680 PSV = MF.getPSVManager().getFixedStack(FI); 1681 // The token was already consumed, so use return here instead of break. 1682 return false; 1683 } 1684 case MIToken::kw_call_entry: { 1685 lex(); 1686 switch (Token.kind()) { 1687 case MIToken::GlobalValue: 1688 case MIToken::NamedGlobalValue: { 1689 GlobalValue *GV = nullptr; 1690 if (parseGlobalValue(GV)) 1691 return true; 1692 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1693 break; 1694 } 1695 case MIToken::ExternalSymbol: 1696 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1697 MF.createExternalSymbolName(Token.stringValue())); 1698 break; 1699 default: 1700 return error( 1701 "expected a global value or an external symbol after 'call-entry'"); 1702 } 1703 break; 1704 } 1705 default: 1706 llvm_unreachable("The current token should be pseudo source value"); 1707 } 1708 lex(); 1709 return false; 1710 } 1711 1712 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1713 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1714 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1715 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::kw_call_entry)) { 1716 const PseudoSourceValue *PSV = nullptr; 1717 if (parseMemoryPseudoSourceValue(PSV)) 1718 return true; 1719 int64_t Offset = 0; 1720 if (parseOffset(Offset)) 1721 return true; 1722 Dest = MachinePointerInfo(PSV, Offset); 1723 return false; 1724 } 1725 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1726 Token.isNot(MIToken::GlobalValue) && 1727 Token.isNot(MIToken::NamedGlobalValue) && 1728 Token.isNot(MIToken::QuotedIRValue)) 1729 return error("expected an IR value reference"); 1730 const Value *V = nullptr; 1731 if (parseIRValue(V)) 1732 return true; 1733 if (!V->getType()->isPointerTy()) 1734 return error("expected a pointer IR value"); 1735 lex(); 1736 int64_t Offset = 0; 1737 if (parseOffset(Offset)) 1738 return true; 1739 Dest = MachinePointerInfo(V, Offset); 1740 return false; 1741 } 1742 1743 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1744 if (expectAndConsume(MIToken::lparen)) 1745 return true; 1746 unsigned Flags = 0; 1747 while (Token.isMemoryOperandFlag()) { 1748 if (parseMemoryOperandFlag(Flags)) 1749 return true; 1750 } 1751 if (Token.isNot(MIToken::Identifier) || 1752 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1753 return error("expected 'load' or 'store' memory operation"); 1754 if (Token.stringValue() == "load") 1755 Flags |= MachineMemOperand::MOLoad; 1756 else 1757 Flags |= MachineMemOperand::MOStore; 1758 lex(); 1759 1760 if (Token.isNot(MIToken::IntegerLiteral)) 1761 return error("expected the size integer literal after memory operation"); 1762 uint64_t Size; 1763 if (getUint64(Size)) 1764 return true; 1765 lex(); 1766 1767 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1768 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != Word) 1769 return error(Twine("expected '") + Word + "'"); 1770 lex(); 1771 1772 MachinePointerInfo Ptr = MachinePointerInfo(); 1773 if (parseMachinePointerInfo(Ptr)) 1774 return true; 1775 unsigned BaseAlignment = Size; 1776 AAMDNodes AAInfo; 1777 MDNode *Range = nullptr; 1778 while (consumeIfPresent(MIToken::comma)) { 1779 switch (Token.kind()) { 1780 case MIToken::kw_align: 1781 if (parseAlignment(BaseAlignment)) 1782 return true; 1783 break; 1784 case MIToken::md_tbaa: 1785 lex(); 1786 if (parseMDNode(AAInfo.TBAA)) 1787 return true; 1788 break; 1789 case MIToken::md_alias_scope: 1790 lex(); 1791 if (parseMDNode(AAInfo.Scope)) 1792 return true; 1793 break; 1794 case MIToken::md_noalias: 1795 lex(); 1796 if (parseMDNode(AAInfo.NoAlias)) 1797 return true; 1798 break; 1799 case MIToken::md_range: 1800 lex(); 1801 if (parseMDNode(Range)) 1802 return true; 1803 break; 1804 // TODO: Report an error on duplicate metadata nodes. 1805 default: 1806 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 1807 "'!noalias' or '!range'"); 1808 } 1809 } 1810 if (expectAndConsume(MIToken::rparen)) 1811 return true; 1812 Dest = 1813 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 1814 return false; 1815 } 1816 1817 void MIParser::initNames2InstrOpCodes() { 1818 if (!Names2InstrOpCodes.empty()) 1819 return; 1820 const auto *TII = MF.getSubtarget().getInstrInfo(); 1821 assert(TII && "Expected target instruction info"); 1822 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 1823 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 1824 } 1825 1826 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 1827 initNames2InstrOpCodes(); 1828 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 1829 if (InstrInfo == Names2InstrOpCodes.end()) 1830 return true; 1831 OpCode = InstrInfo->getValue(); 1832 return false; 1833 } 1834 1835 void MIParser::initNames2Regs() { 1836 if (!Names2Regs.empty()) 1837 return; 1838 // The '%noreg' register is the register 0. 1839 Names2Regs.insert(std::make_pair("noreg", 0)); 1840 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1841 assert(TRI && "Expected target register info"); 1842 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 1843 bool WasInserted = 1844 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 1845 .second; 1846 (void)WasInserted; 1847 assert(WasInserted && "Expected registers to be unique case-insensitively"); 1848 } 1849 } 1850 1851 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 1852 initNames2Regs(); 1853 auto RegInfo = Names2Regs.find(RegName); 1854 if (RegInfo == Names2Regs.end()) 1855 return true; 1856 Reg = RegInfo->getValue(); 1857 return false; 1858 } 1859 1860 void MIParser::initNames2RegMasks() { 1861 if (!Names2RegMasks.empty()) 1862 return; 1863 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1864 assert(TRI && "Expected target register info"); 1865 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 1866 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 1867 assert(RegMasks.size() == RegMaskNames.size()); 1868 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 1869 Names2RegMasks.insert( 1870 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 1871 } 1872 1873 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 1874 initNames2RegMasks(); 1875 auto RegMaskInfo = Names2RegMasks.find(Identifier); 1876 if (RegMaskInfo == Names2RegMasks.end()) 1877 return nullptr; 1878 return RegMaskInfo->getValue(); 1879 } 1880 1881 void MIParser::initNames2SubRegIndices() { 1882 if (!Names2SubRegIndices.empty()) 1883 return; 1884 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1885 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 1886 Names2SubRegIndices.insert( 1887 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 1888 } 1889 1890 unsigned MIParser::getSubRegIndex(StringRef Name) { 1891 initNames2SubRegIndices(); 1892 auto SubRegInfo = Names2SubRegIndices.find(Name); 1893 if (SubRegInfo == Names2SubRegIndices.end()) 1894 return 0; 1895 return SubRegInfo->getValue(); 1896 } 1897 1898 static void initSlots2BasicBlocks( 1899 const Function &F, 1900 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 1901 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 1902 MST.incorporateFunction(F); 1903 for (auto &BB : F) { 1904 if (BB.hasName()) 1905 continue; 1906 int Slot = MST.getLocalSlot(&BB); 1907 if (Slot == -1) 1908 continue; 1909 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 1910 } 1911 } 1912 1913 static const BasicBlock *getIRBlockFromSlot( 1914 unsigned Slot, 1915 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 1916 auto BlockInfo = Slots2BasicBlocks.find(Slot); 1917 if (BlockInfo == Slots2BasicBlocks.end()) 1918 return nullptr; 1919 return BlockInfo->second; 1920 } 1921 1922 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 1923 if (Slots2BasicBlocks.empty()) 1924 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 1925 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 1926 } 1927 1928 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 1929 if (&F == MF.getFunction()) 1930 return getIRBlock(Slot); 1931 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 1932 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 1933 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 1934 } 1935 1936 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 1937 DenseMap<unsigned, const Value *> &Slots2Values) { 1938 int Slot = MST.getLocalSlot(V); 1939 if (Slot == -1) 1940 return; 1941 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 1942 } 1943 1944 /// Creates the mapping from slot numbers to function's unnamed IR values. 1945 static void initSlots2Values(const Function &F, 1946 DenseMap<unsigned, const Value *> &Slots2Values) { 1947 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 1948 MST.incorporateFunction(F); 1949 for (const auto &Arg : F.args()) 1950 mapValueToSlot(&Arg, MST, Slots2Values); 1951 for (const auto &BB : F) { 1952 mapValueToSlot(&BB, MST, Slots2Values); 1953 for (const auto &I : BB) 1954 mapValueToSlot(&I, MST, Slots2Values); 1955 } 1956 } 1957 1958 const Value *MIParser::getIRValue(unsigned Slot) { 1959 if (Slots2Values.empty()) 1960 initSlots2Values(*MF.getFunction(), Slots2Values); 1961 auto ValueInfo = Slots2Values.find(Slot); 1962 if (ValueInfo == Slots2Values.end()) 1963 return nullptr; 1964 return ValueInfo->second; 1965 } 1966 1967 void MIParser::initNames2TargetIndices() { 1968 if (!Names2TargetIndices.empty()) 1969 return; 1970 const auto *TII = MF.getSubtarget().getInstrInfo(); 1971 assert(TII && "Expected target instruction info"); 1972 auto Indices = TII->getSerializableTargetIndices(); 1973 for (const auto &I : Indices) 1974 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 1975 } 1976 1977 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 1978 initNames2TargetIndices(); 1979 auto IndexInfo = Names2TargetIndices.find(Name); 1980 if (IndexInfo == Names2TargetIndices.end()) 1981 return true; 1982 Index = IndexInfo->second; 1983 return false; 1984 } 1985 1986 void MIParser::initNames2DirectTargetFlags() { 1987 if (!Names2DirectTargetFlags.empty()) 1988 return; 1989 const auto *TII = MF.getSubtarget().getInstrInfo(); 1990 assert(TII && "Expected target instruction info"); 1991 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 1992 for (const auto &I : Flags) 1993 Names2DirectTargetFlags.insert( 1994 std::make_pair(StringRef(I.second), I.first)); 1995 } 1996 1997 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 1998 initNames2DirectTargetFlags(); 1999 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2000 if (FlagInfo == Names2DirectTargetFlags.end()) 2001 return true; 2002 Flag = FlagInfo->second; 2003 return false; 2004 } 2005 2006 void MIParser::initNames2BitmaskTargetFlags() { 2007 if (!Names2BitmaskTargetFlags.empty()) 2008 return; 2009 const auto *TII = MF.getSubtarget().getInstrInfo(); 2010 assert(TII && "Expected target instruction info"); 2011 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2012 for (const auto &I : Flags) 2013 Names2BitmaskTargetFlags.insert( 2014 std::make_pair(StringRef(I.second), I.first)); 2015 } 2016 2017 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2018 initNames2BitmaskTargetFlags(); 2019 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2020 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2021 return true; 2022 Flag = FlagInfo->second; 2023 return false; 2024 } 2025 2026 bool llvm::parseMachineBasicBlockDefinitions(MachineFunction &MF, StringRef Src, 2027 PerFunctionMIParsingState &PFS, 2028 const SlotMapping &IRSlots, 2029 SMDiagnostic &Error) { 2030 SourceMgr SM; 2031 SM.AddNewSourceBuffer( 2032 MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false), 2033 SMLoc()); 2034 return MIParser(SM, MF, Error, Src, PFS, IRSlots) 2035 .parseBasicBlockDefinitions(PFS.MBBSlots); 2036 } 2037 2038 bool llvm::parseMachineInstructions(MachineFunction &MF, StringRef Src, 2039 const PerFunctionMIParsingState &PFS, 2040 const SlotMapping &IRSlots, 2041 SMDiagnostic &Error) { 2042 SourceMgr SM; 2043 SM.AddNewSourceBuffer( 2044 MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false), 2045 SMLoc()); 2046 return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseBasicBlocks(); 2047 } 2048 2049 bool llvm::parseMBBReference(MachineBasicBlock *&MBB, SourceMgr &SM, 2050 MachineFunction &MF, StringRef Src, 2051 const PerFunctionMIParsingState &PFS, 2052 const SlotMapping &IRSlots, SMDiagnostic &Error) { 2053 return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMBB(MBB); 2054 } 2055 2056 bool llvm::parseNamedRegisterReference(unsigned &Reg, SourceMgr &SM, 2057 MachineFunction &MF, StringRef Src, 2058 const PerFunctionMIParsingState &PFS, 2059 const SlotMapping &IRSlots, 2060 SMDiagnostic &Error) { 2061 return MIParser(SM, MF, Error, Src, PFS, IRSlots) 2062 .parseStandaloneNamedRegister(Reg); 2063 } 2064 2065 bool llvm::parseVirtualRegisterReference(unsigned &Reg, SourceMgr &SM, 2066 MachineFunction &MF, StringRef Src, 2067 const PerFunctionMIParsingState &PFS, 2068 const SlotMapping &IRSlots, 2069 SMDiagnostic &Error) { 2070 return MIParser(SM, MF, Error, Src, PFS, IRSlots) 2071 .parseStandaloneVirtualRegister(Reg); 2072 } 2073 2074 bool llvm::parseStackObjectReference(int &FI, SourceMgr &SM, 2075 MachineFunction &MF, StringRef Src, 2076 const PerFunctionMIParsingState &PFS, 2077 const SlotMapping &IRSlots, 2078 SMDiagnostic &Error) { 2079 return MIParser(SM, MF, Error, Src, PFS, IRSlots) 2080 .parseStandaloneStackObject(FI); 2081 } 2082 2083 bool llvm::parseMDNode(MDNode *&Node, SourceMgr &SM, MachineFunction &MF, 2084 StringRef Src, const PerFunctionMIParsingState &PFS, 2085 const SlotMapping &IRSlots, SMDiagnostic &Error) { 2086 return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMDNode(Node); 2087 } 2088