1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/AsmParser/Parser.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/SourceMgr.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 
37 using namespace llvm;
38 
39 namespace {
40 
41 /// A wrapper struct around the 'MachineOperand' struct that includes a source
42 /// range and other attributes.
43 struct ParsedMachineOperand {
44   MachineOperand Operand;
45   StringRef::iterator Begin;
46   StringRef::iterator End;
47   Optional<unsigned> TiedDefIdx;
48 
49   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
50                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
51       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
52     if (TiedDefIdx)
53       assert(Operand.isReg() && Operand.isUse() &&
54              "Only used register operands can be tied");
55   }
56 };
57 
58 class MIParser {
59   SourceMgr &SM;
60   MachineFunction &MF;
61   SMDiagnostic &Error;
62   StringRef Source, CurrentSource;
63   MIToken Token;
64   const PerFunctionMIParsingState &PFS;
65   /// Maps from indices to unnamed global values and metadata nodes.
66   const SlotMapping &IRSlots;
67   /// Maps from instruction names to op codes.
68   StringMap<unsigned> Names2InstrOpCodes;
69   /// Maps from register names to registers.
70   StringMap<unsigned> Names2Regs;
71   /// Maps from register mask names to register masks.
72   StringMap<const uint32_t *> Names2RegMasks;
73   /// Maps from subregister names to subregister indices.
74   StringMap<unsigned> Names2SubRegIndices;
75   /// Maps from slot numbers to function's unnamed basic blocks.
76   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
77   /// Maps from slot numbers to function's unnamed values.
78   DenseMap<unsigned, const Value *> Slots2Values;
79   /// Maps from target index names to target indices.
80   StringMap<int> Names2TargetIndices;
81   /// Maps from direct target flag names to the direct target flag values.
82   StringMap<unsigned> Names2DirectTargetFlags;
83   /// Maps from direct target flag names to the bitmask target flag values.
84   StringMap<unsigned> Names2BitmaskTargetFlags;
85 
86 public:
87   MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
88            StringRef Source, const PerFunctionMIParsingState &PFS,
89            const SlotMapping &IRSlots);
90 
91   /// \p SkipChar gives the number of characters to skip before looking
92   /// for the next token.
93   void lex(unsigned SkipChar = 0);
94 
95   /// Report an error at the current location with the given message.
96   ///
97   /// This function always return true.
98   bool error(const Twine &Msg);
99 
100   /// Report an error at the given location with the given message.
101   ///
102   /// This function always return true.
103   bool error(StringRef::iterator Loc, const Twine &Msg);
104 
105   bool
106   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
107   bool parseBasicBlocks();
108   bool parse(MachineInstr *&MI);
109   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
110   bool parseStandaloneNamedRegister(unsigned &Reg);
111   bool parseStandaloneVirtualRegister(unsigned &Reg);
112   bool parseStandaloneStackObject(int &FI);
113   bool parseStandaloneMDNode(MDNode *&Node);
114 
115   bool
116   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
117   bool parseBasicBlock(MachineBasicBlock &MBB);
118   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
119   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
120 
121   bool parseRegister(unsigned &Reg);
122   bool parseRegisterFlag(unsigned &Flags);
123   bool parseSubRegisterIndex(unsigned &SubReg);
124   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
125   bool parseSize(unsigned &Size);
126   bool parseRegisterOperand(MachineOperand &Dest,
127                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
128   bool parseImmediateOperand(MachineOperand &Dest);
129   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
130                        const Constant *&C);
131   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
132   bool parseIRType(StringRef::iterator Loc, StringRef Source, unsigned &Read,
133                    Type *&Ty);
134   // \p MustBeSized defines whether or not \p Ty must be sized.
135   bool parseIRType(StringRef::iterator Loc, Type *&Ty, bool MustBeSized = true);
136   bool parseTypedImmediateOperand(MachineOperand &Dest);
137   bool parseFPImmediateOperand(MachineOperand &Dest);
138   bool parseMBBReference(MachineBasicBlock *&MBB);
139   bool parseMBBOperand(MachineOperand &Dest);
140   bool parseStackFrameIndex(int &FI);
141   bool parseStackObjectOperand(MachineOperand &Dest);
142   bool parseFixedStackFrameIndex(int &FI);
143   bool parseFixedStackObjectOperand(MachineOperand &Dest);
144   bool parseGlobalValue(GlobalValue *&GV);
145   bool parseGlobalAddressOperand(MachineOperand &Dest);
146   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
147   bool parseJumpTableIndexOperand(MachineOperand &Dest);
148   bool parseExternalSymbolOperand(MachineOperand &Dest);
149   bool parseMDNode(MDNode *&Node);
150   bool parseMetadataOperand(MachineOperand &Dest);
151   bool parseCFIOffset(int &Offset);
152   bool parseCFIRegister(unsigned &Reg);
153   bool parseCFIOperand(MachineOperand &Dest);
154   bool parseIRBlock(BasicBlock *&BB, const Function &F);
155   bool parseBlockAddressOperand(MachineOperand &Dest);
156   bool parseTargetIndexOperand(MachineOperand &Dest);
157   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
158   bool parseMachineOperand(MachineOperand &Dest,
159                            Optional<unsigned> &TiedDefIdx);
160   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
161                                          Optional<unsigned> &TiedDefIdx);
162   bool parseOffset(int64_t &Offset);
163   bool parseAlignment(unsigned &Alignment);
164   bool parseOperandsOffset(MachineOperand &Op);
165   bool parseIRValue(const Value *&V);
166   bool parseMemoryOperandFlag(unsigned &Flags);
167   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
168   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
169   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
170 
171 private:
172   /// Convert the integer literal in the current token into an unsigned integer.
173   ///
174   /// Return true if an error occurred.
175   bool getUnsigned(unsigned &Result);
176 
177   /// Convert the integer literal in the current token into an uint64.
178   ///
179   /// Return true if an error occurred.
180   bool getUint64(uint64_t &Result);
181 
182   /// If the current token is of the given kind, consume it and return false.
183   /// Otherwise report an error and return true.
184   bool expectAndConsume(MIToken::TokenKind TokenKind);
185 
186   /// If the current token is of the given kind, consume it and return true.
187   /// Otherwise return false.
188   bool consumeIfPresent(MIToken::TokenKind TokenKind);
189 
190   void initNames2InstrOpCodes();
191 
192   /// Try to convert an instruction name to an opcode. Return true if the
193   /// instruction name is invalid.
194   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
195 
196   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
197 
198   bool assignRegisterTies(MachineInstr &MI,
199                           ArrayRef<ParsedMachineOperand> Operands);
200 
201   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
202                               const MCInstrDesc &MCID);
203 
204   void initNames2Regs();
205 
206   /// Try to convert a register name to a register number. Return true if the
207   /// register name is invalid.
208   bool getRegisterByName(StringRef RegName, unsigned &Reg);
209 
210   void initNames2RegMasks();
211 
212   /// Check if the given identifier is a name of a register mask.
213   ///
214   /// Return null if the identifier isn't a register mask.
215   const uint32_t *getRegMask(StringRef Identifier);
216 
217   void initNames2SubRegIndices();
218 
219   /// Check if the given identifier is a name of a subregister index.
220   ///
221   /// Return 0 if the name isn't a subregister index class.
222   unsigned getSubRegIndex(StringRef Name);
223 
224   const BasicBlock *getIRBlock(unsigned Slot);
225   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
226 
227   const Value *getIRValue(unsigned Slot);
228 
229   void initNames2TargetIndices();
230 
231   /// Try to convert a name of target index to the corresponding target index.
232   ///
233   /// Return true if the name isn't a name of a target index.
234   bool getTargetIndex(StringRef Name, int &Index);
235 
236   void initNames2DirectTargetFlags();
237 
238   /// Try to convert a name of a direct target flag to the corresponding
239   /// target flag.
240   ///
241   /// Return true if the name isn't a name of a direct flag.
242   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
243 
244   void initNames2BitmaskTargetFlags();
245 
246   /// Try to convert a name of a bitmask target flag to the corresponding
247   /// target flag.
248   ///
249   /// Return true if the name isn't a name of a bitmask target flag.
250   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
251 };
252 
253 } // end anonymous namespace
254 
255 MIParser::MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
256                    StringRef Source, const PerFunctionMIParsingState &PFS,
257                    const SlotMapping &IRSlots)
258     : SM(SM), MF(MF), Error(Error), Source(Source), CurrentSource(Source),
259       PFS(PFS), IRSlots(IRSlots) {}
260 
261 void MIParser::lex(unsigned SkipChar) {
262   CurrentSource = lexMIToken(
263       CurrentSource.data() + SkipChar, Token,
264       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
265 }
266 
267 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
268 
269 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
270   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
271   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
272   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
273     // Create an ordinary diagnostic when the source manager's buffer is the
274     // source string.
275     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
276     return true;
277   }
278   // Create a diagnostic for a YAML string literal.
279   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
280                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
281                        Source, None, None);
282   return true;
283 }
284 
285 static const char *toString(MIToken::TokenKind TokenKind) {
286   switch (TokenKind) {
287   case MIToken::comma:
288     return "','";
289   case MIToken::equal:
290     return "'='";
291   case MIToken::colon:
292     return "':'";
293   case MIToken::lparen:
294     return "'('";
295   case MIToken::rparen:
296     return "')'";
297   default:
298     return "<unknown token>";
299   }
300 }
301 
302 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
303   if (Token.isNot(TokenKind))
304     return error(Twine("expected ") + toString(TokenKind));
305   lex();
306   return false;
307 }
308 
309 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
310   if (Token.isNot(TokenKind))
311     return false;
312   lex();
313   return true;
314 }
315 
316 bool MIParser::parseBasicBlockDefinition(
317     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
318   assert(Token.is(MIToken::MachineBasicBlockLabel));
319   unsigned ID = 0;
320   if (getUnsigned(ID))
321     return true;
322   auto Loc = Token.location();
323   auto Name = Token.stringValue();
324   lex();
325   bool HasAddressTaken = false;
326   bool IsLandingPad = false;
327   unsigned Alignment = 0;
328   BasicBlock *BB = nullptr;
329   if (consumeIfPresent(MIToken::lparen)) {
330     do {
331       // TODO: Report an error when multiple same attributes are specified.
332       switch (Token.kind()) {
333       case MIToken::kw_address_taken:
334         HasAddressTaken = true;
335         lex();
336         break;
337       case MIToken::kw_landing_pad:
338         IsLandingPad = true;
339         lex();
340         break;
341       case MIToken::kw_align:
342         if (parseAlignment(Alignment))
343           return true;
344         break;
345       case MIToken::IRBlock:
346         // TODO: Report an error when both name and ir block are specified.
347         if (parseIRBlock(BB, *MF.getFunction()))
348           return true;
349         lex();
350         break;
351       default:
352         break;
353       }
354     } while (consumeIfPresent(MIToken::comma));
355     if (expectAndConsume(MIToken::rparen))
356       return true;
357   }
358   if (expectAndConsume(MIToken::colon))
359     return true;
360 
361   if (!Name.empty()) {
362     BB = dyn_cast_or_null<BasicBlock>(
363         MF.getFunction()->getValueSymbolTable().lookup(Name));
364     if (!BB)
365       return error(Loc, Twine("basic block '") + Name +
366                             "' is not defined in the function '" +
367                             MF.getName() + "'");
368   }
369   auto *MBB = MF.CreateMachineBasicBlock(BB);
370   MF.insert(MF.end(), MBB);
371   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
372   if (!WasInserted)
373     return error(Loc, Twine("redefinition of machine basic block with id #") +
374                           Twine(ID));
375   if (Alignment)
376     MBB->setAlignment(Alignment);
377   if (HasAddressTaken)
378     MBB->setHasAddressTaken();
379   MBB->setIsEHPad(IsLandingPad);
380   return false;
381 }
382 
383 bool MIParser::parseBasicBlockDefinitions(
384     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
385   lex();
386   // Skip until the first machine basic block.
387   while (Token.is(MIToken::Newline))
388     lex();
389   if (Token.isErrorOrEOF())
390     return Token.isError();
391   if (Token.isNot(MIToken::MachineBasicBlockLabel))
392     return error("expected a basic block definition before instructions");
393   unsigned BraceDepth = 0;
394   do {
395     if (parseBasicBlockDefinition(MBBSlots))
396       return true;
397     bool IsAfterNewline = false;
398     // Skip until the next machine basic block.
399     while (true) {
400       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
401           Token.isErrorOrEOF())
402         break;
403       else if (Token.is(MIToken::MachineBasicBlockLabel))
404         return error("basic block definition should be located at the start of "
405                      "the line");
406       else if (consumeIfPresent(MIToken::Newline)) {
407         IsAfterNewline = true;
408         continue;
409       }
410       IsAfterNewline = false;
411       if (Token.is(MIToken::lbrace))
412         ++BraceDepth;
413       if (Token.is(MIToken::rbrace)) {
414         if (!BraceDepth)
415           return error("extraneous closing brace ('}')");
416         --BraceDepth;
417       }
418       lex();
419     }
420     // Verify that we closed all of the '{' at the end of a file or a block.
421     if (!Token.isError() && BraceDepth)
422       return error("expected '}'"); // FIXME: Report a note that shows '{'.
423   } while (!Token.isErrorOrEOF());
424   return Token.isError();
425 }
426 
427 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
428   assert(Token.is(MIToken::kw_liveins));
429   lex();
430   if (expectAndConsume(MIToken::colon))
431     return true;
432   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
433     return false;
434   do {
435     if (Token.isNot(MIToken::NamedRegister))
436       return error("expected a named register");
437     unsigned Reg = 0;
438     if (parseRegister(Reg))
439       return true;
440     MBB.addLiveIn(Reg);
441     lex();
442   } while (consumeIfPresent(MIToken::comma));
443   return false;
444 }
445 
446 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
447   assert(Token.is(MIToken::kw_successors));
448   lex();
449   if (expectAndConsume(MIToken::colon))
450     return true;
451   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
452     return false;
453   do {
454     if (Token.isNot(MIToken::MachineBasicBlock))
455       return error("expected a machine basic block reference");
456     MachineBasicBlock *SuccMBB = nullptr;
457     if (parseMBBReference(SuccMBB))
458       return true;
459     lex();
460     unsigned Weight = 0;
461     if (consumeIfPresent(MIToken::lparen)) {
462       if (Token.isNot(MIToken::IntegerLiteral))
463         return error("expected an integer literal after '('");
464       if (getUnsigned(Weight))
465         return true;
466       lex();
467       if (expectAndConsume(MIToken::rparen))
468         return true;
469     }
470     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
471   } while (consumeIfPresent(MIToken::comma));
472   MBB.normalizeSuccProbs();
473   return false;
474 }
475 
476 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
477   // Skip the definition.
478   assert(Token.is(MIToken::MachineBasicBlockLabel));
479   lex();
480   if (consumeIfPresent(MIToken::lparen)) {
481     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
482       lex();
483     consumeIfPresent(MIToken::rparen);
484   }
485   consumeIfPresent(MIToken::colon);
486 
487   // Parse the liveins and successors.
488   // N.B: Multiple lists of successors and liveins are allowed and they're
489   // merged into one.
490   // Example:
491   //   liveins: %edi
492   //   liveins: %esi
493   //
494   // is equivalent to
495   //   liveins: %edi, %esi
496   while (true) {
497     if (Token.is(MIToken::kw_successors)) {
498       if (parseBasicBlockSuccessors(MBB))
499         return true;
500     } else if (Token.is(MIToken::kw_liveins)) {
501       if (parseBasicBlockLiveins(MBB))
502         return true;
503     } else if (consumeIfPresent(MIToken::Newline)) {
504       continue;
505     } else
506       break;
507     if (!Token.isNewlineOrEOF())
508       return error("expected line break at the end of a list");
509     lex();
510   }
511 
512   // Parse the instructions.
513   bool IsInBundle = false;
514   MachineInstr *PrevMI = nullptr;
515   while (true) {
516     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
517       return false;
518     else if (consumeIfPresent(MIToken::Newline))
519       continue;
520     if (consumeIfPresent(MIToken::rbrace)) {
521       // The first parsing pass should verify that all closing '}' have an
522       // opening '{'.
523       assert(IsInBundle);
524       IsInBundle = false;
525       continue;
526     }
527     MachineInstr *MI = nullptr;
528     if (parse(MI))
529       return true;
530     MBB.insert(MBB.end(), MI);
531     if (IsInBundle) {
532       PrevMI->setFlag(MachineInstr::BundledSucc);
533       MI->setFlag(MachineInstr::BundledPred);
534     }
535     PrevMI = MI;
536     if (Token.is(MIToken::lbrace)) {
537       if (IsInBundle)
538         return error("nested instruction bundles are not allowed");
539       lex();
540       // This instruction is the start of the bundle.
541       MI->setFlag(MachineInstr::BundledSucc);
542       IsInBundle = true;
543       if (!Token.is(MIToken::Newline))
544         // The next instruction can be on the same line.
545         continue;
546     }
547     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
548     lex();
549   }
550   return false;
551 }
552 
553 bool MIParser::parseBasicBlocks() {
554   lex();
555   // Skip until the first machine basic block.
556   while (Token.is(MIToken::Newline))
557     lex();
558   if (Token.isErrorOrEOF())
559     return Token.isError();
560   // The first parsing pass should have verified that this token is a MBB label
561   // in the 'parseBasicBlockDefinitions' method.
562   assert(Token.is(MIToken::MachineBasicBlockLabel));
563   do {
564     MachineBasicBlock *MBB = nullptr;
565     if (parseMBBReference(MBB))
566       return true;
567     if (parseBasicBlock(*MBB))
568       return true;
569     // The method 'parseBasicBlock' should parse the whole block until the next
570     // block or the end of file.
571     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
572   } while (Token.isNot(MIToken::Eof));
573   return false;
574 }
575 
576 bool MIParser::parse(MachineInstr *&MI) {
577   // Parse any register operands before '='
578   MachineOperand MO = MachineOperand::CreateImm(0);
579   SmallVector<ParsedMachineOperand, 8> Operands;
580   while (Token.isRegister() || Token.isRegisterFlag()) {
581     auto Loc = Token.location();
582     Optional<unsigned> TiedDefIdx;
583     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
584       return true;
585     Operands.push_back(
586         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
587     if (Token.isNot(MIToken::comma))
588       break;
589     lex();
590   }
591   if (!Operands.empty() && expectAndConsume(MIToken::equal))
592     return true;
593 
594   unsigned OpCode, Flags = 0;
595   if (Token.isError() || parseInstruction(OpCode, Flags))
596     return true;
597 
598   Type *Ty = nullptr;
599   if (isPreISelGenericOpcode(OpCode)) {
600     // For generic opcode, a type is mandatory.
601     auto Loc = Token.location();
602     if (parseIRType(Loc, Ty))
603       return true;
604   }
605 
606   // Parse the remaining machine operands.
607   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
608          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
609     auto Loc = Token.location();
610     Optional<unsigned> TiedDefIdx;
611     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
612       return true;
613     Operands.push_back(
614         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
615     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
616         Token.is(MIToken::lbrace))
617       break;
618     if (Token.isNot(MIToken::comma))
619       return error("expected ',' before the next machine operand");
620     lex();
621   }
622 
623   DebugLoc DebugLocation;
624   if (Token.is(MIToken::kw_debug_location)) {
625     lex();
626     if (Token.isNot(MIToken::exclaim))
627       return error("expected a metadata node after 'debug-location'");
628     MDNode *Node = nullptr;
629     if (parseMDNode(Node))
630       return true;
631     DebugLocation = DebugLoc(Node);
632   }
633 
634   // Parse the machine memory operands.
635   SmallVector<MachineMemOperand *, 2> MemOperands;
636   if (Token.is(MIToken::coloncolon)) {
637     lex();
638     while (!Token.isNewlineOrEOF()) {
639       MachineMemOperand *MemOp = nullptr;
640       if (parseMachineMemoryOperand(MemOp))
641         return true;
642       MemOperands.push_back(MemOp);
643       if (Token.isNewlineOrEOF())
644         break;
645       if (Token.isNot(MIToken::comma))
646         return error("expected ',' before the next machine memory operand");
647       lex();
648     }
649   }
650 
651   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
652   if (!MCID.isVariadic()) {
653     // FIXME: Move the implicit operand verification to the machine verifier.
654     if (verifyImplicitOperands(Operands, MCID))
655       return true;
656   }
657 
658   // TODO: Check for extraneous machine operands.
659   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
660   MI->setFlags(Flags);
661   if (Ty)
662     MI->setType(Ty);
663   for (const auto &Operand : Operands)
664     MI->addOperand(MF, Operand.Operand);
665   if (assignRegisterTies(*MI, Operands))
666     return true;
667   if (MemOperands.empty())
668     return false;
669   MachineInstr::mmo_iterator MemRefs =
670       MF.allocateMemRefsArray(MemOperands.size());
671   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
672   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
673   return false;
674 }
675 
676 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
677   lex();
678   if (Token.isNot(MIToken::MachineBasicBlock))
679     return error("expected a machine basic block reference");
680   if (parseMBBReference(MBB))
681     return true;
682   lex();
683   if (Token.isNot(MIToken::Eof))
684     return error(
685         "expected end of string after the machine basic block reference");
686   return false;
687 }
688 
689 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
690   lex();
691   if (Token.isNot(MIToken::NamedRegister))
692     return error("expected a named register");
693   if (parseRegister(Reg))
694     return true;
695   lex();
696   if (Token.isNot(MIToken::Eof))
697     return error("expected end of string after the register reference");
698   return false;
699 }
700 
701 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
702   lex();
703   if (Token.isNot(MIToken::VirtualRegister))
704     return error("expected a virtual register");
705   if (parseRegister(Reg))
706     return true;
707   lex();
708   if (Token.isNot(MIToken::Eof))
709     return error("expected end of string after the register reference");
710   return false;
711 }
712 
713 bool MIParser::parseStandaloneStackObject(int &FI) {
714   lex();
715   if (Token.isNot(MIToken::StackObject))
716     return error("expected a stack object");
717   if (parseStackFrameIndex(FI))
718     return true;
719   if (Token.isNot(MIToken::Eof))
720     return error("expected end of string after the stack object reference");
721   return false;
722 }
723 
724 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
725   lex();
726   if (Token.isNot(MIToken::exclaim))
727     return error("expected a metadata node");
728   if (parseMDNode(Node))
729     return true;
730   if (Token.isNot(MIToken::Eof))
731     return error("expected end of string after the metadata node");
732   return false;
733 }
734 
735 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
736   assert(MO.isImplicit());
737   return MO.isDef() ? "implicit-def" : "implicit";
738 }
739 
740 static std::string getRegisterName(const TargetRegisterInfo *TRI,
741                                    unsigned Reg) {
742   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
743   return StringRef(TRI->getName(Reg)).lower();
744 }
745 
746 /// Return true if the parsed machine operands contain a given machine operand.
747 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
748                                 ArrayRef<ParsedMachineOperand> Operands) {
749   for (const auto &I : Operands) {
750     if (ImplicitOperand.isIdenticalTo(I.Operand))
751       return true;
752   }
753   return false;
754 }
755 
756 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
757                                       const MCInstrDesc &MCID) {
758   if (MCID.isCall())
759     // We can't verify call instructions as they can contain arbitrary implicit
760     // register and register mask operands.
761     return false;
762 
763   // Gather all the expected implicit operands.
764   SmallVector<MachineOperand, 4> ImplicitOperands;
765   if (MCID.ImplicitDefs)
766     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
767       ImplicitOperands.push_back(
768           MachineOperand::CreateReg(*ImpDefs, true, true));
769   if (MCID.ImplicitUses)
770     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
771       ImplicitOperands.push_back(
772           MachineOperand::CreateReg(*ImpUses, false, true));
773 
774   const auto *TRI = MF.getSubtarget().getRegisterInfo();
775   assert(TRI && "Expected target register info");
776   for (const auto &I : ImplicitOperands) {
777     if (isImplicitOperandIn(I, Operands))
778       continue;
779     return error(Operands.empty() ? Token.location() : Operands.back().End,
780                  Twine("missing implicit register operand '") +
781                      printImplicitRegisterFlag(I) + " %" +
782                      getRegisterName(TRI, I.getReg()) + "'");
783   }
784   return false;
785 }
786 
787 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
788   if (Token.is(MIToken::kw_frame_setup)) {
789     Flags |= MachineInstr::FrameSetup;
790     lex();
791   }
792   if (Token.isNot(MIToken::Identifier))
793     return error("expected a machine instruction");
794   StringRef InstrName = Token.stringValue();
795   if (parseInstrName(InstrName, OpCode))
796     return error(Twine("unknown machine instruction name '") + InstrName + "'");
797   lex();
798   return false;
799 }
800 
801 bool MIParser::parseRegister(unsigned &Reg) {
802   switch (Token.kind()) {
803   case MIToken::underscore:
804     Reg = 0;
805     break;
806   case MIToken::NamedRegister: {
807     StringRef Name = Token.stringValue();
808     if (getRegisterByName(Name, Reg))
809       return error(Twine("unknown register name '") + Name + "'");
810     break;
811   }
812   case MIToken::VirtualRegister: {
813     unsigned ID;
814     if (getUnsigned(ID))
815       return true;
816     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
817     if (RegInfo == PFS.VirtualRegisterSlots.end())
818       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
819                    "'");
820     Reg = RegInfo->second;
821     break;
822   }
823   // TODO: Parse other register kinds.
824   default:
825     llvm_unreachable("The current token should be a register");
826   }
827   return false;
828 }
829 
830 bool MIParser::parseRegisterFlag(unsigned &Flags) {
831   const unsigned OldFlags = Flags;
832   switch (Token.kind()) {
833   case MIToken::kw_implicit:
834     Flags |= RegState::Implicit;
835     break;
836   case MIToken::kw_implicit_define:
837     Flags |= RegState::ImplicitDefine;
838     break;
839   case MIToken::kw_def:
840     Flags |= RegState::Define;
841     break;
842   case MIToken::kw_dead:
843     Flags |= RegState::Dead;
844     break;
845   case MIToken::kw_killed:
846     Flags |= RegState::Kill;
847     break;
848   case MIToken::kw_undef:
849     Flags |= RegState::Undef;
850     break;
851   case MIToken::kw_internal:
852     Flags |= RegState::InternalRead;
853     break;
854   case MIToken::kw_early_clobber:
855     Flags |= RegState::EarlyClobber;
856     break;
857   case MIToken::kw_debug_use:
858     Flags |= RegState::Debug;
859     break;
860   default:
861     llvm_unreachable("The current token should be a register flag");
862   }
863   if (OldFlags == Flags)
864     // We know that the same flag is specified more than once when the flags
865     // weren't modified.
866     return error("duplicate '" + Token.stringValue() + "' register flag");
867   lex();
868   return false;
869 }
870 
871 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
872   assert(Token.is(MIToken::colon));
873   lex();
874   if (Token.isNot(MIToken::Identifier))
875     return error("expected a subregister index after ':'");
876   auto Name = Token.stringValue();
877   SubReg = getSubRegIndex(Name);
878   if (!SubReg)
879     return error(Twine("use of unknown subregister index '") + Name + "'");
880   lex();
881   return false;
882 }
883 
884 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
885   if (!consumeIfPresent(MIToken::kw_tied_def))
886     return error("expected 'tied-def' after '('");
887   if (Token.isNot(MIToken::IntegerLiteral))
888     return error("expected an integer literal after 'tied-def'");
889   if (getUnsigned(TiedDefIdx))
890     return true;
891   lex();
892   if (expectAndConsume(MIToken::rparen))
893     return true;
894   return false;
895 }
896 
897 bool MIParser::parseSize(unsigned &Size) {
898   if (Token.isNot(MIToken::IntegerLiteral))
899     return error("expected an integer literal for the size");
900   if (getUnsigned(Size))
901     return true;
902   lex();
903   if (expectAndConsume(MIToken::rparen))
904     return true;
905   return false;
906 }
907 
908 bool MIParser::assignRegisterTies(MachineInstr &MI,
909                                   ArrayRef<ParsedMachineOperand> Operands) {
910   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
911   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
912     if (!Operands[I].TiedDefIdx)
913       continue;
914     // The parser ensures that this operand is a register use, so we just have
915     // to check the tied-def operand.
916     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
917     if (DefIdx >= E)
918       return error(Operands[I].Begin,
919                    Twine("use of invalid tied-def operand index '" +
920                          Twine(DefIdx) + "'; instruction has only ") +
921                        Twine(E) + " operands");
922     const auto &DefOperand = Operands[DefIdx].Operand;
923     if (!DefOperand.isReg() || !DefOperand.isDef())
924       // FIXME: add note with the def operand.
925       return error(Operands[I].Begin,
926                    Twine("use of invalid tied-def operand index '") +
927                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
928                        " isn't a defined register");
929     // Check that the tied-def operand wasn't tied elsewhere.
930     for (const auto &TiedPair : TiedRegisterPairs) {
931       if (TiedPair.first == DefIdx)
932         return error(Operands[I].Begin,
933                      Twine("the tied-def operand #") + Twine(DefIdx) +
934                          " is already tied with another register operand");
935     }
936     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
937   }
938   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
939   // indices must be less than tied max.
940   for (const auto &TiedPair : TiedRegisterPairs)
941     MI.tieOperands(TiedPair.first, TiedPair.second);
942   return false;
943 }
944 
945 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
946                                     Optional<unsigned> &TiedDefIdx,
947                                     bool IsDef) {
948   unsigned Reg;
949   unsigned Flags = IsDef ? RegState::Define : 0;
950   while (Token.isRegisterFlag()) {
951     if (parseRegisterFlag(Flags))
952       return true;
953   }
954   if (!Token.isRegister())
955     return error("expected a register after register flags");
956   if (parseRegister(Reg))
957     return true;
958   lex();
959   unsigned SubReg = 0;
960   if (Token.is(MIToken::colon)) {
961     if (parseSubRegisterIndex(SubReg))
962       return true;
963   }
964   if ((Flags & RegState::Define) == 0) {
965     if (consumeIfPresent(MIToken::lparen)) {
966       unsigned Idx;
967       if (parseRegisterTiedDefIndex(Idx))
968         return true;
969       TiedDefIdx = Idx;
970     }
971   } else if (consumeIfPresent(MIToken::lparen)) {
972     // Generic virtual registers must have a size.
973     // The "must" part will be verify by the machine verifier,
974     // because at this point we actually do not know if Reg is
975     // a generic virtual register.
976     if (!TargetRegisterInfo::isVirtualRegister(Reg))
977       return error("unexpected size on physical register");
978     unsigned Size;
979     if (parseSize(Size))
980       return true;
981 
982     MachineRegisterInfo &MRI = MF.getRegInfo();
983     MRI.setSize(Reg, Size);
984   }
985   Dest = MachineOperand::CreateReg(
986       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
987       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
988       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
989       Flags & RegState::InternalRead);
990   return false;
991 }
992 
993 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
994   assert(Token.is(MIToken::IntegerLiteral));
995   const APSInt &Int = Token.integerValue();
996   if (Int.getMinSignedBits() > 64)
997     return error("integer literal is too large to be an immediate operand");
998   Dest = MachineOperand::CreateImm(Int.getExtValue());
999   lex();
1000   return false;
1001 }
1002 
1003 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1004                                const Constant *&C) {
1005   auto Source = StringValue.str(); // The source has to be null terminated.
1006   SMDiagnostic Err;
1007   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1008                          &IRSlots);
1009   if (!C)
1010     return error(Loc + Err.getColumnNo(), Err.getMessage());
1011   return false;
1012 }
1013 
1014 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1015   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1016     return true;
1017   lex();
1018   return false;
1019 }
1020 
1021 bool MIParser::parseIRType(StringRef::iterator Loc, StringRef StringValue,
1022                            unsigned &Read, Type *&Ty) {
1023   auto Source = StringValue.str(); // The source has to be null terminated.
1024   SMDiagnostic Err;
1025   Ty = parseTypeAtBeginning(Source.c_str(), Read, Err,
1026                             *MF.getFunction()->getParent(), &IRSlots);
1027   if (!Ty)
1028     return error(Loc + Err.getColumnNo(), Err.getMessage());
1029   return false;
1030 }
1031 
1032 bool MIParser::parseIRType(StringRef::iterator Loc, Type *&Ty,
1033                            bool MustBeSized) {
1034   // At this point we enter in the IR world, i.e., to get the correct type,
1035   // we need to hand off the whole string, not just the current token.
1036   // E.g., <4 x i64> would give '<' as a token and there is not much
1037   // the IR parser can do with that.
1038   unsigned Read = 0;
1039   if (parseIRType(Loc, StringRef(Loc), Read, Ty))
1040     return true;
1041   // The type must be sized, otherwise there is not much the backend
1042   // can do with it.
1043   if (MustBeSized && !Ty->isSized())
1044     return error("expected a sized type");
1045   // The next token is Read characters from the Loc.
1046   // However, the current location is not Loc, but Loc + the length of Token.
1047   // Therefore, subtract the length of Token (range().end() - Loc) to the
1048   // number of characters to skip before the next token.
1049   lex(Read - (Token.range().end() - Loc));
1050   return false;
1051 }
1052 
1053 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1054   assert(Token.is(MIToken::IntegerType));
1055   auto Loc = Token.location();
1056   lex();
1057   if (Token.isNot(MIToken::IntegerLiteral))
1058     return error("expected an integer literal");
1059   const Constant *C = nullptr;
1060   if (parseIRConstant(Loc, C))
1061     return true;
1062   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1063   return false;
1064 }
1065 
1066 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1067   auto Loc = Token.location();
1068   lex();
1069   if (Token.isNot(MIToken::FloatingPointLiteral))
1070     return error("expected a floating point literal");
1071   const Constant *C = nullptr;
1072   if (parseIRConstant(Loc, C))
1073     return true;
1074   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1075   return false;
1076 }
1077 
1078 bool MIParser::getUnsigned(unsigned &Result) {
1079   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1080   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1081   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1082   if (Val64 == Limit)
1083     return error("expected 32-bit integer (too large)");
1084   Result = Val64;
1085   return false;
1086 }
1087 
1088 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1089   assert(Token.is(MIToken::MachineBasicBlock) ||
1090          Token.is(MIToken::MachineBasicBlockLabel));
1091   unsigned Number;
1092   if (getUnsigned(Number))
1093     return true;
1094   auto MBBInfo = PFS.MBBSlots.find(Number);
1095   if (MBBInfo == PFS.MBBSlots.end())
1096     return error(Twine("use of undefined machine basic block #") +
1097                  Twine(Number));
1098   MBB = MBBInfo->second;
1099   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1100     return error(Twine("the name of machine basic block #") + Twine(Number) +
1101                  " isn't '" + Token.stringValue() + "'");
1102   return false;
1103 }
1104 
1105 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1106   MachineBasicBlock *MBB;
1107   if (parseMBBReference(MBB))
1108     return true;
1109   Dest = MachineOperand::CreateMBB(MBB);
1110   lex();
1111   return false;
1112 }
1113 
1114 bool MIParser::parseStackFrameIndex(int &FI) {
1115   assert(Token.is(MIToken::StackObject));
1116   unsigned ID;
1117   if (getUnsigned(ID))
1118     return true;
1119   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1120   if (ObjectInfo == PFS.StackObjectSlots.end())
1121     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1122                  "'");
1123   StringRef Name;
1124   if (const auto *Alloca =
1125           MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second))
1126     Name = Alloca->getName();
1127   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1128     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1129                  "' isn't '" + Token.stringValue() + "'");
1130   lex();
1131   FI = ObjectInfo->second;
1132   return false;
1133 }
1134 
1135 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1136   int FI;
1137   if (parseStackFrameIndex(FI))
1138     return true;
1139   Dest = MachineOperand::CreateFI(FI);
1140   return false;
1141 }
1142 
1143 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1144   assert(Token.is(MIToken::FixedStackObject));
1145   unsigned ID;
1146   if (getUnsigned(ID))
1147     return true;
1148   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1149   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1150     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1151                  Twine(ID) + "'");
1152   lex();
1153   FI = ObjectInfo->second;
1154   return false;
1155 }
1156 
1157 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1158   int FI;
1159   if (parseFixedStackFrameIndex(FI))
1160     return true;
1161   Dest = MachineOperand::CreateFI(FI);
1162   return false;
1163 }
1164 
1165 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1166   switch (Token.kind()) {
1167   case MIToken::NamedGlobalValue: {
1168     const Module *M = MF.getFunction()->getParent();
1169     GV = M->getNamedValue(Token.stringValue());
1170     if (!GV)
1171       return error(Twine("use of undefined global value '") + Token.range() +
1172                    "'");
1173     break;
1174   }
1175   case MIToken::GlobalValue: {
1176     unsigned GVIdx;
1177     if (getUnsigned(GVIdx))
1178       return true;
1179     if (GVIdx >= IRSlots.GlobalValues.size())
1180       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1181                    "'");
1182     GV = IRSlots.GlobalValues[GVIdx];
1183     break;
1184   }
1185   default:
1186     llvm_unreachable("The current token should be a global value");
1187   }
1188   return false;
1189 }
1190 
1191 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1192   GlobalValue *GV = nullptr;
1193   if (parseGlobalValue(GV))
1194     return true;
1195   lex();
1196   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1197   if (parseOperandsOffset(Dest))
1198     return true;
1199   return false;
1200 }
1201 
1202 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1203   assert(Token.is(MIToken::ConstantPoolItem));
1204   unsigned ID;
1205   if (getUnsigned(ID))
1206     return true;
1207   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1208   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1209     return error("use of undefined constant '%const." + Twine(ID) + "'");
1210   lex();
1211   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1212   if (parseOperandsOffset(Dest))
1213     return true;
1214   return false;
1215 }
1216 
1217 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1218   assert(Token.is(MIToken::JumpTableIndex));
1219   unsigned ID;
1220   if (getUnsigned(ID))
1221     return true;
1222   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1223   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1224     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1225   lex();
1226   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1227   return false;
1228 }
1229 
1230 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1231   assert(Token.is(MIToken::ExternalSymbol));
1232   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1233   lex();
1234   Dest = MachineOperand::CreateES(Symbol);
1235   if (parseOperandsOffset(Dest))
1236     return true;
1237   return false;
1238 }
1239 
1240 bool MIParser::parseMDNode(MDNode *&Node) {
1241   assert(Token.is(MIToken::exclaim));
1242   auto Loc = Token.location();
1243   lex();
1244   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1245     return error("expected metadata id after '!'");
1246   unsigned ID;
1247   if (getUnsigned(ID))
1248     return true;
1249   auto NodeInfo = IRSlots.MetadataNodes.find(ID);
1250   if (NodeInfo == IRSlots.MetadataNodes.end())
1251     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1252   lex();
1253   Node = NodeInfo->second.get();
1254   return false;
1255 }
1256 
1257 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1258   MDNode *Node = nullptr;
1259   if (parseMDNode(Node))
1260     return true;
1261   Dest = MachineOperand::CreateMetadata(Node);
1262   return false;
1263 }
1264 
1265 bool MIParser::parseCFIOffset(int &Offset) {
1266   if (Token.isNot(MIToken::IntegerLiteral))
1267     return error("expected a cfi offset");
1268   if (Token.integerValue().getMinSignedBits() > 32)
1269     return error("expected a 32 bit integer (the cfi offset is too large)");
1270   Offset = (int)Token.integerValue().getExtValue();
1271   lex();
1272   return false;
1273 }
1274 
1275 bool MIParser::parseCFIRegister(unsigned &Reg) {
1276   if (Token.isNot(MIToken::NamedRegister))
1277     return error("expected a cfi register");
1278   unsigned LLVMReg;
1279   if (parseRegister(LLVMReg))
1280     return true;
1281   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1282   assert(TRI && "Expected target register info");
1283   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1284   if (DwarfReg < 0)
1285     return error("invalid DWARF register");
1286   Reg = (unsigned)DwarfReg;
1287   lex();
1288   return false;
1289 }
1290 
1291 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1292   auto Kind = Token.kind();
1293   lex();
1294   auto &MMI = MF.getMMI();
1295   int Offset;
1296   unsigned Reg;
1297   unsigned CFIIndex;
1298   switch (Kind) {
1299   case MIToken::kw_cfi_same_value:
1300     if (parseCFIRegister(Reg))
1301       return true;
1302     CFIIndex =
1303         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1304     break;
1305   case MIToken::kw_cfi_offset:
1306     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1307         parseCFIOffset(Offset))
1308       return true;
1309     CFIIndex =
1310         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1311     break;
1312   case MIToken::kw_cfi_def_cfa_register:
1313     if (parseCFIRegister(Reg))
1314       return true;
1315     CFIIndex =
1316         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1317     break;
1318   case MIToken::kw_cfi_def_cfa_offset:
1319     if (parseCFIOffset(Offset))
1320       return true;
1321     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1322     CFIIndex = MMI.addFrameInst(
1323         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1324     break;
1325   case MIToken::kw_cfi_def_cfa:
1326     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1327         parseCFIOffset(Offset))
1328       return true;
1329     // NB: MCCFIInstruction::createDefCfa negates the offset.
1330     CFIIndex =
1331         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1332     break;
1333   default:
1334     // TODO: Parse the other CFI operands.
1335     llvm_unreachable("The current token should be a cfi operand");
1336   }
1337   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1338   return false;
1339 }
1340 
1341 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1342   switch (Token.kind()) {
1343   case MIToken::NamedIRBlock: {
1344     BB = dyn_cast_or_null<BasicBlock>(
1345         F.getValueSymbolTable().lookup(Token.stringValue()));
1346     if (!BB)
1347       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1348     break;
1349   }
1350   case MIToken::IRBlock: {
1351     unsigned SlotNumber = 0;
1352     if (getUnsigned(SlotNumber))
1353       return true;
1354     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1355     if (!BB)
1356       return error(Twine("use of undefined IR block '%ir-block.") +
1357                    Twine(SlotNumber) + "'");
1358     break;
1359   }
1360   default:
1361     llvm_unreachable("The current token should be an IR block reference");
1362   }
1363   return false;
1364 }
1365 
1366 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1367   assert(Token.is(MIToken::kw_blockaddress));
1368   lex();
1369   if (expectAndConsume(MIToken::lparen))
1370     return true;
1371   if (Token.isNot(MIToken::GlobalValue) &&
1372       Token.isNot(MIToken::NamedGlobalValue))
1373     return error("expected a global value");
1374   GlobalValue *GV = nullptr;
1375   if (parseGlobalValue(GV))
1376     return true;
1377   auto *F = dyn_cast<Function>(GV);
1378   if (!F)
1379     return error("expected an IR function reference");
1380   lex();
1381   if (expectAndConsume(MIToken::comma))
1382     return true;
1383   BasicBlock *BB = nullptr;
1384   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1385     return error("expected an IR block reference");
1386   if (parseIRBlock(BB, *F))
1387     return true;
1388   lex();
1389   if (expectAndConsume(MIToken::rparen))
1390     return true;
1391   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1392   if (parseOperandsOffset(Dest))
1393     return true;
1394   return false;
1395 }
1396 
1397 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1398   assert(Token.is(MIToken::kw_target_index));
1399   lex();
1400   if (expectAndConsume(MIToken::lparen))
1401     return true;
1402   if (Token.isNot(MIToken::Identifier))
1403     return error("expected the name of the target index");
1404   int Index = 0;
1405   if (getTargetIndex(Token.stringValue(), Index))
1406     return error("use of undefined target index '" + Token.stringValue() + "'");
1407   lex();
1408   if (expectAndConsume(MIToken::rparen))
1409     return true;
1410   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1411   if (parseOperandsOffset(Dest))
1412     return true;
1413   return false;
1414 }
1415 
1416 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1417   assert(Token.is(MIToken::kw_liveout));
1418   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1419   assert(TRI && "Expected target register info");
1420   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1421   lex();
1422   if (expectAndConsume(MIToken::lparen))
1423     return true;
1424   while (true) {
1425     if (Token.isNot(MIToken::NamedRegister))
1426       return error("expected a named register");
1427     unsigned Reg = 0;
1428     if (parseRegister(Reg))
1429       return true;
1430     lex();
1431     Mask[Reg / 32] |= 1U << (Reg % 32);
1432     // TODO: Report an error if the same register is used more than once.
1433     if (Token.isNot(MIToken::comma))
1434       break;
1435     lex();
1436   }
1437   if (expectAndConsume(MIToken::rparen))
1438     return true;
1439   Dest = MachineOperand::CreateRegLiveOut(Mask);
1440   return false;
1441 }
1442 
1443 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1444                                    Optional<unsigned> &TiedDefIdx) {
1445   switch (Token.kind()) {
1446   case MIToken::kw_implicit:
1447   case MIToken::kw_implicit_define:
1448   case MIToken::kw_def:
1449   case MIToken::kw_dead:
1450   case MIToken::kw_killed:
1451   case MIToken::kw_undef:
1452   case MIToken::kw_internal:
1453   case MIToken::kw_early_clobber:
1454   case MIToken::kw_debug_use:
1455   case MIToken::underscore:
1456   case MIToken::NamedRegister:
1457   case MIToken::VirtualRegister:
1458     return parseRegisterOperand(Dest, TiedDefIdx);
1459   case MIToken::IntegerLiteral:
1460     return parseImmediateOperand(Dest);
1461   case MIToken::IntegerType:
1462     return parseTypedImmediateOperand(Dest);
1463   case MIToken::kw_half:
1464   case MIToken::kw_float:
1465   case MIToken::kw_double:
1466   case MIToken::kw_x86_fp80:
1467   case MIToken::kw_fp128:
1468   case MIToken::kw_ppc_fp128:
1469     return parseFPImmediateOperand(Dest);
1470   case MIToken::MachineBasicBlock:
1471     return parseMBBOperand(Dest);
1472   case MIToken::StackObject:
1473     return parseStackObjectOperand(Dest);
1474   case MIToken::FixedStackObject:
1475     return parseFixedStackObjectOperand(Dest);
1476   case MIToken::GlobalValue:
1477   case MIToken::NamedGlobalValue:
1478     return parseGlobalAddressOperand(Dest);
1479   case MIToken::ConstantPoolItem:
1480     return parseConstantPoolIndexOperand(Dest);
1481   case MIToken::JumpTableIndex:
1482     return parseJumpTableIndexOperand(Dest);
1483   case MIToken::ExternalSymbol:
1484     return parseExternalSymbolOperand(Dest);
1485   case MIToken::exclaim:
1486     return parseMetadataOperand(Dest);
1487   case MIToken::kw_cfi_same_value:
1488   case MIToken::kw_cfi_offset:
1489   case MIToken::kw_cfi_def_cfa_register:
1490   case MIToken::kw_cfi_def_cfa_offset:
1491   case MIToken::kw_cfi_def_cfa:
1492     return parseCFIOperand(Dest);
1493   case MIToken::kw_blockaddress:
1494     return parseBlockAddressOperand(Dest);
1495   case MIToken::kw_target_index:
1496     return parseTargetIndexOperand(Dest);
1497   case MIToken::kw_liveout:
1498     return parseLiveoutRegisterMaskOperand(Dest);
1499   case MIToken::Error:
1500     return true;
1501   case MIToken::Identifier:
1502     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1503       Dest = MachineOperand::CreateRegMask(RegMask);
1504       lex();
1505       break;
1506     }
1507   // fallthrough
1508   default:
1509     // FIXME: Parse the MCSymbol machine operand.
1510     return error("expected a machine operand");
1511   }
1512   return false;
1513 }
1514 
1515 bool MIParser::parseMachineOperandAndTargetFlags(
1516     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1517   unsigned TF = 0;
1518   bool HasTargetFlags = false;
1519   if (Token.is(MIToken::kw_target_flags)) {
1520     HasTargetFlags = true;
1521     lex();
1522     if (expectAndConsume(MIToken::lparen))
1523       return true;
1524     if (Token.isNot(MIToken::Identifier))
1525       return error("expected the name of the target flag");
1526     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1527       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1528         return error("use of undefined target flag '" + Token.stringValue() +
1529                      "'");
1530     }
1531     lex();
1532     while (Token.is(MIToken::comma)) {
1533       lex();
1534       if (Token.isNot(MIToken::Identifier))
1535         return error("expected the name of the target flag");
1536       unsigned BitFlag = 0;
1537       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1538         return error("use of undefined target flag '" + Token.stringValue() +
1539                      "'");
1540       // TODO: Report an error when using a duplicate bit target flag.
1541       TF |= BitFlag;
1542       lex();
1543     }
1544     if (expectAndConsume(MIToken::rparen))
1545       return true;
1546   }
1547   auto Loc = Token.location();
1548   if (parseMachineOperand(Dest, TiedDefIdx))
1549     return true;
1550   if (!HasTargetFlags)
1551     return false;
1552   if (Dest.isReg())
1553     return error(Loc, "register operands can't have target flags");
1554   Dest.setTargetFlags(TF);
1555   return false;
1556 }
1557 
1558 bool MIParser::parseOffset(int64_t &Offset) {
1559   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1560     return false;
1561   StringRef Sign = Token.range();
1562   bool IsNegative = Token.is(MIToken::minus);
1563   lex();
1564   if (Token.isNot(MIToken::IntegerLiteral))
1565     return error("expected an integer literal after '" + Sign + "'");
1566   if (Token.integerValue().getMinSignedBits() > 64)
1567     return error("expected 64-bit integer (too large)");
1568   Offset = Token.integerValue().getExtValue();
1569   if (IsNegative)
1570     Offset = -Offset;
1571   lex();
1572   return false;
1573 }
1574 
1575 bool MIParser::parseAlignment(unsigned &Alignment) {
1576   assert(Token.is(MIToken::kw_align));
1577   lex();
1578   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1579     return error("expected an integer literal after 'align'");
1580   if (getUnsigned(Alignment))
1581     return true;
1582   lex();
1583   return false;
1584 }
1585 
1586 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1587   int64_t Offset = 0;
1588   if (parseOffset(Offset))
1589     return true;
1590   Op.setOffset(Offset);
1591   return false;
1592 }
1593 
1594 bool MIParser::parseIRValue(const Value *&V) {
1595   switch (Token.kind()) {
1596   case MIToken::NamedIRValue: {
1597     V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1598     break;
1599   }
1600   case MIToken::IRValue: {
1601     unsigned SlotNumber = 0;
1602     if (getUnsigned(SlotNumber))
1603       return true;
1604     V = getIRValue(SlotNumber);
1605     break;
1606   }
1607   case MIToken::NamedGlobalValue:
1608   case MIToken::GlobalValue: {
1609     GlobalValue *GV = nullptr;
1610     if (parseGlobalValue(GV))
1611       return true;
1612     V = GV;
1613     break;
1614   }
1615   case MIToken::QuotedIRValue: {
1616     const Constant *C = nullptr;
1617     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1618       return true;
1619     V = C;
1620     break;
1621   }
1622   default:
1623     llvm_unreachable("The current token should be an IR block reference");
1624   }
1625   if (!V)
1626     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1627   return false;
1628 }
1629 
1630 bool MIParser::getUint64(uint64_t &Result) {
1631   assert(Token.hasIntegerValue());
1632   if (Token.integerValue().getActiveBits() > 64)
1633     return error("expected 64-bit integer (too large)");
1634   Result = Token.integerValue().getZExtValue();
1635   return false;
1636 }
1637 
1638 bool MIParser::parseMemoryOperandFlag(unsigned &Flags) {
1639   const unsigned OldFlags = Flags;
1640   switch (Token.kind()) {
1641   case MIToken::kw_volatile:
1642     Flags |= MachineMemOperand::MOVolatile;
1643     break;
1644   case MIToken::kw_non_temporal:
1645     Flags |= MachineMemOperand::MONonTemporal;
1646     break;
1647   case MIToken::kw_invariant:
1648     Flags |= MachineMemOperand::MOInvariant;
1649     break;
1650   // TODO: parse the target specific memory operand flags.
1651   default:
1652     llvm_unreachable("The current token should be a memory operand flag");
1653   }
1654   if (OldFlags == Flags)
1655     // We know that the same flag is specified more than once when the flags
1656     // weren't modified.
1657     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1658   lex();
1659   return false;
1660 }
1661 
1662 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1663   switch (Token.kind()) {
1664   case MIToken::kw_stack:
1665     PSV = MF.getPSVManager().getStack();
1666     break;
1667   case MIToken::kw_got:
1668     PSV = MF.getPSVManager().getGOT();
1669     break;
1670   case MIToken::kw_jump_table:
1671     PSV = MF.getPSVManager().getJumpTable();
1672     break;
1673   case MIToken::kw_constant_pool:
1674     PSV = MF.getPSVManager().getConstantPool();
1675     break;
1676   case MIToken::FixedStackObject: {
1677     int FI;
1678     if (parseFixedStackFrameIndex(FI))
1679       return true;
1680     PSV = MF.getPSVManager().getFixedStack(FI);
1681     // The token was already consumed, so use return here instead of break.
1682     return false;
1683   }
1684   case MIToken::kw_call_entry: {
1685     lex();
1686     switch (Token.kind()) {
1687     case MIToken::GlobalValue:
1688     case MIToken::NamedGlobalValue: {
1689       GlobalValue *GV = nullptr;
1690       if (parseGlobalValue(GV))
1691         return true;
1692       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1693       break;
1694     }
1695     case MIToken::ExternalSymbol:
1696       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1697           MF.createExternalSymbolName(Token.stringValue()));
1698       break;
1699     default:
1700       return error(
1701           "expected a global value or an external symbol after 'call-entry'");
1702     }
1703     break;
1704   }
1705   default:
1706     llvm_unreachable("The current token should be pseudo source value");
1707   }
1708   lex();
1709   return false;
1710 }
1711 
1712 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1713   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1714       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1715       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::kw_call_entry)) {
1716     const PseudoSourceValue *PSV = nullptr;
1717     if (parseMemoryPseudoSourceValue(PSV))
1718       return true;
1719     int64_t Offset = 0;
1720     if (parseOffset(Offset))
1721       return true;
1722     Dest = MachinePointerInfo(PSV, Offset);
1723     return false;
1724   }
1725   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1726       Token.isNot(MIToken::GlobalValue) &&
1727       Token.isNot(MIToken::NamedGlobalValue) &&
1728       Token.isNot(MIToken::QuotedIRValue))
1729     return error("expected an IR value reference");
1730   const Value *V = nullptr;
1731   if (parseIRValue(V))
1732     return true;
1733   if (!V->getType()->isPointerTy())
1734     return error("expected a pointer IR value");
1735   lex();
1736   int64_t Offset = 0;
1737   if (parseOffset(Offset))
1738     return true;
1739   Dest = MachinePointerInfo(V, Offset);
1740   return false;
1741 }
1742 
1743 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1744   if (expectAndConsume(MIToken::lparen))
1745     return true;
1746   unsigned Flags = 0;
1747   while (Token.isMemoryOperandFlag()) {
1748     if (parseMemoryOperandFlag(Flags))
1749       return true;
1750   }
1751   if (Token.isNot(MIToken::Identifier) ||
1752       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1753     return error("expected 'load' or 'store' memory operation");
1754   if (Token.stringValue() == "load")
1755     Flags |= MachineMemOperand::MOLoad;
1756   else
1757     Flags |= MachineMemOperand::MOStore;
1758   lex();
1759 
1760   if (Token.isNot(MIToken::IntegerLiteral))
1761     return error("expected the size integer literal after memory operation");
1762   uint64_t Size;
1763   if (getUint64(Size))
1764     return true;
1765   lex();
1766 
1767   const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1768   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != Word)
1769     return error(Twine("expected '") + Word + "'");
1770   lex();
1771 
1772   MachinePointerInfo Ptr = MachinePointerInfo();
1773   if (parseMachinePointerInfo(Ptr))
1774     return true;
1775   unsigned BaseAlignment = Size;
1776   AAMDNodes AAInfo;
1777   MDNode *Range = nullptr;
1778   while (consumeIfPresent(MIToken::comma)) {
1779     switch (Token.kind()) {
1780     case MIToken::kw_align:
1781       if (parseAlignment(BaseAlignment))
1782         return true;
1783       break;
1784     case MIToken::md_tbaa:
1785       lex();
1786       if (parseMDNode(AAInfo.TBAA))
1787         return true;
1788       break;
1789     case MIToken::md_alias_scope:
1790       lex();
1791       if (parseMDNode(AAInfo.Scope))
1792         return true;
1793       break;
1794     case MIToken::md_noalias:
1795       lex();
1796       if (parseMDNode(AAInfo.NoAlias))
1797         return true;
1798       break;
1799     case MIToken::md_range:
1800       lex();
1801       if (parseMDNode(Range))
1802         return true;
1803       break;
1804     // TODO: Report an error on duplicate metadata nodes.
1805     default:
1806       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1807                    "'!noalias' or '!range'");
1808     }
1809   }
1810   if (expectAndConsume(MIToken::rparen))
1811     return true;
1812   Dest =
1813       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1814   return false;
1815 }
1816 
1817 void MIParser::initNames2InstrOpCodes() {
1818   if (!Names2InstrOpCodes.empty())
1819     return;
1820   const auto *TII = MF.getSubtarget().getInstrInfo();
1821   assert(TII && "Expected target instruction info");
1822   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1823     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1824 }
1825 
1826 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1827   initNames2InstrOpCodes();
1828   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1829   if (InstrInfo == Names2InstrOpCodes.end())
1830     return true;
1831   OpCode = InstrInfo->getValue();
1832   return false;
1833 }
1834 
1835 void MIParser::initNames2Regs() {
1836   if (!Names2Regs.empty())
1837     return;
1838   // The '%noreg' register is the register 0.
1839   Names2Regs.insert(std::make_pair("noreg", 0));
1840   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1841   assert(TRI && "Expected target register info");
1842   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1843     bool WasInserted =
1844         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1845             .second;
1846     (void)WasInserted;
1847     assert(WasInserted && "Expected registers to be unique case-insensitively");
1848   }
1849 }
1850 
1851 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
1852   initNames2Regs();
1853   auto RegInfo = Names2Regs.find(RegName);
1854   if (RegInfo == Names2Regs.end())
1855     return true;
1856   Reg = RegInfo->getValue();
1857   return false;
1858 }
1859 
1860 void MIParser::initNames2RegMasks() {
1861   if (!Names2RegMasks.empty())
1862     return;
1863   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1864   assert(TRI && "Expected target register info");
1865   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
1866   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
1867   assert(RegMasks.size() == RegMaskNames.size());
1868   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
1869     Names2RegMasks.insert(
1870         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
1871 }
1872 
1873 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
1874   initNames2RegMasks();
1875   auto RegMaskInfo = Names2RegMasks.find(Identifier);
1876   if (RegMaskInfo == Names2RegMasks.end())
1877     return nullptr;
1878   return RegMaskInfo->getValue();
1879 }
1880 
1881 void MIParser::initNames2SubRegIndices() {
1882   if (!Names2SubRegIndices.empty())
1883     return;
1884   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1885   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
1886     Names2SubRegIndices.insert(
1887         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
1888 }
1889 
1890 unsigned MIParser::getSubRegIndex(StringRef Name) {
1891   initNames2SubRegIndices();
1892   auto SubRegInfo = Names2SubRegIndices.find(Name);
1893   if (SubRegInfo == Names2SubRegIndices.end())
1894     return 0;
1895   return SubRegInfo->getValue();
1896 }
1897 
1898 static void initSlots2BasicBlocks(
1899     const Function &F,
1900     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1901   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1902   MST.incorporateFunction(F);
1903   for (auto &BB : F) {
1904     if (BB.hasName())
1905       continue;
1906     int Slot = MST.getLocalSlot(&BB);
1907     if (Slot == -1)
1908       continue;
1909     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
1910   }
1911 }
1912 
1913 static const BasicBlock *getIRBlockFromSlot(
1914     unsigned Slot,
1915     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1916   auto BlockInfo = Slots2BasicBlocks.find(Slot);
1917   if (BlockInfo == Slots2BasicBlocks.end())
1918     return nullptr;
1919   return BlockInfo->second;
1920 }
1921 
1922 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
1923   if (Slots2BasicBlocks.empty())
1924     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
1925   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
1926 }
1927 
1928 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
1929   if (&F == MF.getFunction())
1930     return getIRBlock(Slot);
1931   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
1932   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
1933   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
1934 }
1935 
1936 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
1937                            DenseMap<unsigned, const Value *> &Slots2Values) {
1938   int Slot = MST.getLocalSlot(V);
1939   if (Slot == -1)
1940     return;
1941   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
1942 }
1943 
1944 /// Creates the mapping from slot numbers to function's unnamed IR values.
1945 static void initSlots2Values(const Function &F,
1946                              DenseMap<unsigned, const Value *> &Slots2Values) {
1947   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1948   MST.incorporateFunction(F);
1949   for (const auto &Arg : F.args())
1950     mapValueToSlot(&Arg, MST, Slots2Values);
1951   for (const auto &BB : F) {
1952     mapValueToSlot(&BB, MST, Slots2Values);
1953     for (const auto &I : BB)
1954       mapValueToSlot(&I, MST, Slots2Values);
1955   }
1956 }
1957 
1958 const Value *MIParser::getIRValue(unsigned Slot) {
1959   if (Slots2Values.empty())
1960     initSlots2Values(*MF.getFunction(), Slots2Values);
1961   auto ValueInfo = Slots2Values.find(Slot);
1962   if (ValueInfo == Slots2Values.end())
1963     return nullptr;
1964   return ValueInfo->second;
1965 }
1966 
1967 void MIParser::initNames2TargetIndices() {
1968   if (!Names2TargetIndices.empty())
1969     return;
1970   const auto *TII = MF.getSubtarget().getInstrInfo();
1971   assert(TII && "Expected target instruction info");
1972   auto Indices = TII->getSerializableTargetIndices();
1973   for (const auto &I : Indices)
1974     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
1975 }
1976 
1977 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
1978   initNames2TargetIndices();
1979   auto IndexInfo = Names2TargetIndices.find(Name);
1980   if (IndexInfo == Names2TargetIndices.end())
1981     return true;
1982   Index = IndexInfo->second;
1983   return false;
1984 }
1985 
1986 void MIParser::initNames2DirectTargetFlags() {
1987   if (!Names2DirectTargetFlags.empty())
1988     return;
1989   const auto *TII = MF.getSubtarget().getInstrInfo();
1990   assert(TII && "Expected target instruction info");
1991   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
1992   for (const auto &I : Flags)
1993     Names2DirectTargetFlags.insert(
1994         std::make_pair(StringRef(I.second), I.first));
1995 }
1996 
1997 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
1998   initNames2DirectTargetFlags();
1999   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2000   if (FlagInfo == Names2DirectTargetFlags.end())
2001     return true;
2002   Flag = FlagInfo->second;
2003   return false;
2004 }
2005 
2006 void MIParser::initNames2BitmaskTargetFlags() {
2007   if (!Names2BitmaskTargetFlags.empty())
2008     return;
2009   const auto *TII = MF.getSubtarget().getInstrInfo();
2010   assert(TII && "Expected target instruction info");
2011   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2012   for (const auto &I : Flags)
2013     Names2BitmaskTargetFlags.insert(
2014         std::make_pair(StringRef(I.second), I.first));
2015 }
2016 
2017 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2018   initNames2BitmaskTargetFlags();
2019   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2020   if (FlagInfo == Names2BitmaskTargetFlags.end())
2021     return true;
2022   Flag = FlagInfo->second;
2023   return false;
2024 }
2025 
2026 bool llvm::parseMachineBasicBlockDefinitions(MachineFunction &MF, StringRef Src,
2027                                              PerFunctionMIParsingState &PFS,
2028                                              const SlotMapping &IRSlots,
2029                                              SMDiagnostic &Error) {
2030   SourceMgr SM;
2031   SM.AddNewSourceBuffer(
2032       MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false),
2033       SMLoc());
2034   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2035       .parseBasicBlockDefinitions(PFS.MBBSlots);
2036 }
2037 
2038 bool llvm::parseMachineInstructions(MachineFunction &MF, StringRef Src,
2039                                     const PerFunctionMIParsingState &PFS,
2040                                     const SlotMapping &IRSlots,
2041                                     SMDiagnostic &Error) {
2042   SourceMgr SM;
2043   SM.AddNewSourceBuffer(
2044       MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false),
2045       SMLoc());
2046   return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseBasicBlocks();
2047 }
2048 
2049 bool llvm::parseMBBReference(MachineBasicBlock *&MBB, SourceMgr &SM,
2050                              MachineFunction &MF, StringRef Src,
2051                              const PerFunctionMIParsingState &PFS,
2052                              const SlotMapping &IRSlots, SMDiagnostic &Error) {
2053   return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMBB(MBB);
2054 }
2055 
2056 bool llvm::parseNamedRegisterReference(unsigned &Reg, SourceMgr &SM,
2057                                        MachineFunction &MF, StringRef Src,
2058                                        const PerFunctionMIParsingState &PFS,
2059                                        const SlotMapping &IRSlots,
2060                                        SMDiagnostic &Error) {
2061   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2062       .parseStandaloneNamedRegister(Reg);
2063 }
2064 
2065 bool llvm::parseVirtualRegisterReference(unsigned &Reg, SourceMgr &SM,
2066                                          MachineFunction &MF, StringRef Src,
2067                                          const PerFunctionMIParsingState &PFS,
2068                                          const SlotMapping &IRSlots,
2069                                          SMDiagnostic &Error) {
2070   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2071       .parseStandaloneVirtualRegister(Reg);
2072 }
2073 
2074 bool llvm::parseStackObjectReference(int &FI, SourceMgr &SM,
2075                                      MachineFunction &MF, StringRef Src,
2076                                      const PerFunctionMIParsingState &PFS,
2077                                      const SlotMapping &IRSlots,
2078                                      SMDiagnostic &Error) {
2079   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2080       .parseStandaloneStackObject(FI);
2081 }
2082 
2083 bool llvm::parseMDNode(MDNode *&Node, SourceMgr &SM, MachineFunction &MF,
2084                        StringRef Src, const PerFunctionMIParsingState &PFS,
2085                        const SlotMapping &IRSlots, SMDiagnostic &Error) {
2086   return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMDNode(Node);
2087 }
2088