1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueSymbolTable.h" 56 #include "llvm/MC/LaneBitmask.h" 57 #include "llvm/MC/MCDwarf.h" 58 #include "llvm/MC/MCInstrDesc.h" 59 #include "llvm/MC/MCRegisterInfo.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MemoryBuffer.h" 66 #include "llvm/Support/SMLoc.h" 67 #include "llvm/Support/SourceMgr.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cctype> 74 #include <cstddef> 75 #include <cstdint> 76 #include <limits> 77 #include <string> 78 #include <utility> 79 80 using namespace llvm; 81 82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 83 SourceMgr &SM, const SlotMapping &IRSlots, 84 const Name2RegClassMap &Names2RegClasses, 85 const Name2RegBankMap &Names2RegBanks) 86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 87 Names2RegBanks(Names2RegBanks) { 88 } 89 90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 92 if (I.second) { 93 MachineRegisterInfo &MRI = MF.getRegInfo(); 94 VRegInfo *Info = new (Allocator) VRegInfo; 95 Info->VReg = MRI.createIncompleteVirtualRegister(); 96 I.first->second = Info; 97 } 98 return *I.first->second; 99 } 100 101 namespace { 102 103 /// A wrapper struct around the 'MachineOperand' struct that includes a source 104 /// range and other attributes. 105 struct ParsedMachineOperand { 106 MachineOperand Operand; 107 StringRef::iterator Begin; 108 StringRef::iterator End; 109 Optional<unsigned> TiedDefIdx; 110 111 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 112 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 113 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 114 if (TiedDefIdx) 115 assert(Operand.isReg() && Operand.isUse() && 116 "Only used register operands can be tied"); 117 } 118 }; 119 120 class MIParser { 121 MachineFunction &MF; 122 SMDiagnostic &Error; 123 StringRef Source, CurrentSource; 124 MIToken Token; 125 PerFunctionMIParsingState &PFS; 126 /// Maps from instruction names to op codes. 127 StringMap<unsigned> Names2InstrOpCodes; 128 /// Maps from register names to registers. 129 StringMap<unsigned> Names2Regs; 130 /// Maps from register mask names to register masks. 131 StringMap<const uint32_t *> Names2RegMasks; 132 /// Maps from subregister names to subregister indices. 133 StringMap<unsigned> Names2SubRegIndices; 134 /// Maps from slot numbers to function's unnamed basic blocks. 135 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 136 /// Maps from slot numbers to function's unnamed values. 137 DenseMap<unsigned, const Value *> Slots2Values; 138 /// Maps from target index names to target indices. 139 StringMap<int> Names2TargetIndices; 140 /// Maps from direct target flag names to the direct target flag values. 141 StringMap<unsigned> Names2DirectTargetFlags; 142 /// Maps from direct target flag names to the bitmask target flag values. 143 StringMap<unsigned> Names2BitmaskTargetFlags; 144 /// Maps from MMO target flag names to MMO target flag values. 145 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 146 147 public: 148 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 149 StringRef Source); 150 151 /// \p SkipChar gives the number of characters to skip before looking 152 /// for the next token. 153 void lex(unsigned SkipChar = 0); 154 155 /// Report an error at the current location with the given message. 156 /// 157 /// This function always return true. 158 bool error(const Twine &Msg); 159 160 /// Report an error at the given location with the given message. 161 /// 162 /// This function always return true. 163 bool error(StringRef::iterator Loc, const Twine &Msg); 164 165 bool 166 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 167 bool parseBasicBlocks(); 168 bool parse(MachineInstr *&MI); 169 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 170 bool parseStandaloneNamedRegister(unsigned &Reg); 171 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 172 bool parseStandaloneRegister(unsigned &Reg); 173 bool parseStandaloneStackObject(int &FI); 174 bool parseStandaloneMDNode(MDNode *&Node); 175 176 bool 177 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 178 bool parseBasicBlock(MachineBasicBlock &MBB, 179 MachineBasicBlock *&AddFalthroughFrom); 180 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 181 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 182 183 bool parseNamedRegister(unsigned &Reg); 184 bool parseVirtualRegister(VRegInfo *&Info); 185 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 186 bool parseRegisterFlag(unsigned &Flags); 187 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 188 bool parseSubRegisterIndex(unsigned &SubReg); 189 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 190 bool parseRegisterOperand(MachineOperand &Dest, 191 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 192 bool parseImmediateOperand(MachineOperand &Dest); 193 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 194 const Constant *&C); 195 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 196 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 197 bool parseTypedImmediateOperand(MachineOperand &Dest); 198 bool parseFPImmediateOperand(MachineOperand &Dest); 199 bool parseMBBReference(MachineBasicBlock *&MBB); 200 bool parseMBBOperand(MachineOperand &Dest); 201 bool parseStackFrameIndex(int &FI); 202 bool parseStackObjectOperand(MachineOperand &Dest); 203 bool parseFixedStackFrameIndex(int &FI); 204 bool parseFixedStackObjectOperand(MachineOperand &Dest); 205 bool parseGlobalValue(GlobalValue *&GV); 206 bool parseGlobalAddressOperand(MachineOperand &Dest); 207 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 208 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 209 bool parseJumpTableIndexOperand(MachineOperand &Dest); 210 bool parseExternalSymbolOperand(MachineOperand &Dest); 211 bool parseMDNode(MDNode *&Node); 212 bool parseDIExpression(MDNode *&Node); 213 bool parseMetadataOperand(MachineOperand &Dest); 214 bool parseCFIOffset(int &Offset); 215 bool parseCFIRegister(unsigned &Reg); 216 bool parseCFIEscapeValues(std::string& Values); 217 bool parseCFIOperand(MachineOperand &Dest); 218 bool parseIRBlock(BasicBlock *&BB, const Function &F); 219 bool parseBlockAddressOperand(MachineOperand &Dest); 220 bool parseIntrinsicOperand(MachineOperand &Dest); 221 bool parsePredicateOperand(MachineOperand &Dest); 222 bool parseTargetIndexOperand(MachineOperand &Dest); 223 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 224 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 225 bool parseMachineOperand(MachineOperand &Dest, 226 Optional<unsigned> &TiedDefIdx); 227 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 228 Optional<unsigned> &TiedDefIdx); 229 bool parseOffset(int64_t &Offset); 230 bool parseAlignment(unsigned &Alignment); 231 bool parseOperandsOffset(MachineOperand &Op); 232 bool parseIRValue(const Value *&V); 233 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 234 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 235 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 236 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 237 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 238 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 239 240 private: 241 /// Convert the integer literal in the current token into an unsigned integer. 242 /// 243 /// Return true if an error occurred. 244 bool getUnsigned(unsigned &Result); 245 246 /// Convert the integer literal in the current token into an uint64. 247 /// 248 /// Return true if an error occurred. 249 bool getUint64(uint64_t &Result); 250 251 /// Convert the hexadecimal literal in the current token into an unsigned 252 /// APInt with a minimum bitwidth required to represent the value. 253 /// 254 /// Return true if the literal does not represent an integer value. 255 bool getHexUint(APInt &Result); 256 257 /// If the current token is of the given kind, consume it and return false. 258 /// Otherwise report an error and return true. 259 bool expectAndConsume(MIToken::TokenKind TokenKind); 260 261 /// If the current token is of the given kind, consume it and return true. 262 /// Otherwise return false. 263 bool consumeIfPresent(MIToken::TokenKind TokenKind); 264 265 void initNames2InstrOpCodes(); 266 267 /// Try to convert an instruction name to an opcode. Return true if the 268 /// instruction name is invalid. 269 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 270 271 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 272 273 bool assignRegisterTies(MachineInstr &MI, 274 ArrayRef<ParsedMachineOperand> Operands); 275 276 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 277 const MCInstrDesc &MCID); 278 279 void initNames2Regs(); 280 281 /// Try to convert a register name to a register number. Return true if the 282 /// register name is invalid. 283 bool getRegisterByName(StringRef RegName, unsigned &Reg); 284 285 void initNames2RegMasks(); 286 287 /// Check if the given identifier is a name of a register mask. 288 /// 289 /// Return null if the identifier isn't a register mask. 290 const uint32_t *getRegMask(StringRef Identifier); 291 292 void initNames2SubRegIndices(); 293 294 /// Check if the given identifier is a name of a subregister index. 295 /// 296 /// Return 0 if the name isn't a subregister index class. 297 unsigned getSubRegIndex(StringRef Name); 298 299 const BasicBlock *getIRBlock(unsigned Slot); 300 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 301 302 const Value *getIRValue(unsigned Slot); 303 304 void initNames2TargetIndices(); 305 306 /// Try to convert a name of target index to the corresponding target index. 307 /// 308 /// Return true if the name isn't a name of a target index. 309 bool getTargetIndex(StringRef Name, int &Index); 310 311 void initNames2DirectTargetFlags(); 312 313 /// Try to convert a name of a direct target flag to the corresponding 314 /// target flag. 315 /// 316 /// Return true if the name isn't a name of a direct flag. 317 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 318 319 void initNames2BitmaskTargetFlags(); 320 321 /// Try to convert a name of a bitmask target flag to the corresponding 322 /// target flag. 323 /// 324 /// Return true if the name isn't a name of a bitmask target flag. 325 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 326 327 void initNames2MMOTargetFlags(); 328 329 /// Try to convert a name of a MachineMemOperand target flag to the 330 /// corresponding target flag. 331 /// 332 /// Return true if the name isn't a name of a target MMO flag. 333 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 334 335 /// parseStringConstant 336 /// ::= StringConstant 337 bool parseStringConstant(std::string &Result); 338 }; 339 340 } // end anonymous namespace 341 342 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 343 StringRef Source) 344 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 345 {} 346 347 void MIParser::lex(unsigned SkipChar) { 348 CurrentSource = lexMIToken( 349 CurrentSource.data() + SkipChar, Token, 350 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 351 } 352 353 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 354 355 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 356 const SourceMgr &SM = *PFS.SM; 357 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 358 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 359 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 360 // Create an ordinary diagnostic when the source manager's buffer is the 361 // source string. 362 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 363 return true; 364 } 365 // Create a diagnostic for a YAML string literal. 366 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 367 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 368 Source, None, None); 369 return true; 370 } 371 372 static const char *toString(MIToken::TokenKind TokenKind) { 373 switch (TokenKind) { 374 case MIToken::comma: 375 return "','"; 376 case MIToken::equal: 377 return "'='"; 378 case MIToken::colon: 379 return "':'"; 380 case MIToken::lparen: 381 return "'('"; 382 case MIToken::rparen: 383 return "')'"; 384 default: 385 return "<unknown token>"; 386 } 387 } 388 389 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 390 if (Token.isNot(TokenKind)) 391 return error(Twine("expected ") + toString(TokenKind)); 392 lex(); 393 return false; 394 } 395 396 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 397 if (Token.isNot(TokenKind)) 398 return false; 399 lex(); 400 return true; 401 } 402 403 bool MIParser::parseBasicBlockDefinition( 404 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 405 assert(Token.is(MIToken::MachineBasicBlockLabel)); 406 unsigned ID = 0; 407 if (getUnsigned(ID)) 408 return true; 409 auto Loc = Token.location(); 410 auto Name = Token.stringValue(); 411 lex(); 412 bool HasAddressTaken = false; 413 bool IsLandingPad = false; 414 unsigned Alignment = 0; 415 BasicBlock *BB = nullptr; 416 if (consumeIfPresent(MIToken::lparen)) { 417 do { 418 // TODO: Report an error when multiple same attributes are specified. 419 switch (Token.kind()) { 420 case MIToken::kw_address_taken: 421 HasAddressTaken = true; 422 lex(); 423 break; 424 case MIToken::kw_landing_pad: 425 IsLandingPad = true; 426 lex(); 427 break; 428 case MIToken::kw_align: 429 if (parseAlignment(Alignment)) 430 return true; 431 break; 432 case MIToken::IRBlock: 433 // TODO: Report an error when both name and ir block are specified. 434 if (parseIRBlock(BB, MF.getFunction())) 435 return true; 436 lex(); 437 break; 438 default: 439 break; 440 } 441 } while (consumeIfPresent(MIToken::comma)); 442 if (expectAndConsume(MIToken::rparen)) 443 return true; 444 } 445 if (expectAndConsume(MIToken::colon)) 446 return true; 447 448 if (!Name.empty()) { 449 BB = dyn_cast_or_null<BasicBlock>( 450 MF.getFunction().getValueSymbolTable()->lookup(Name)); 451 if (!BB) 452 return error(Loc, Twine("basic block '") + Name + 453 "' is not defined in the function '" + 454 MF.getName() + "'"); 455 } 456 auto *MBB = MF.CreateMachineBasicBlock(BB); 457 MF.insert(MF.end(), MBB); 458 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 459 if (!WasInserted) 460 return error(Loc, Twine("redefinition of machine basic block with id #") + 461 Twine(ID)); 462 if (Alignment) 463 MBB->setAlignment(Alignment); 464 if (HasAddressTaken) 465 MBB->setHasAddressTaken(); 466 MBB->setIsEHPad(IsLandingPad); 467 return false; 468 } 469 470 bool MIParser::parseBasicBlockDefinitions( 471 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 472 lex(); 473 // Skip until the first machine basic block. 474 while (Token.is(MIToken::Newline)) 475 lex(); 476 if (Token.isErrorOrEOF()) 477 return Token.isError(); 478 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 479 return error("expected a basic block definition before instructions"); 480 unsigned BraceDepth = 0; 481 do { 482 if (parseBasicBlockDefinition(MBBSlots)) 483 return true; 484 bool IsAfterNewline = false; 485 // Skip until the next machine basic block. 486 while (true) { 487 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 488 Token.isErrorOrEOF()) 489 break; 490 else if (Token.is(MIToken::MachineBasicBlockLabel)) 491 return error("basic block definition should be located at the start of " 492 "the line"); 493 else if (consumeIfPresent(MIToken::Newline)) { 494 IsAfterNewline = true; 495 continue; 496 } 497 IsAfterNewline = false; 498 if (Token.is(MIToken::lbrace)) 499 ++BraceDepth; 500 if (Token.is(MIToken::rbrace)) { 501 if (!BraceDepth) 502 return error("extraneous closing brace ('}')"); 503 --BraceDepth; 504 } 505 lex(); 506 } 507 // Verify that we closed all of the '{' at the end of a file or a block. 508 if (!Token.isError() && BraceDepth) 509 return error("expected '}'"); // FIXME: Report a note that shows '{'. 510 } while (!Token.isErrorOrEOF()); 511 return Token.isError(); 512 } 513 514 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 515 assert(Token.is(MIToken::kw_liveins)); 516 lex(); 517 if (expectAndConsume(MIToken::colon)) 518 return true; 519 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 520 return false; 521 do { 522 if (Token.isNot(MIToken::NamedRegister)) 523 return error("expected a named register"); 524 unsigned Reg = 0; 525 if (parseNamedRegister(Reg)) 526 return true; 527 lex(); 528 LaneBitmask Mask = LaneBitmask::getAll(); 529 if (consumeIfPresent(MIToken::colon)) { 530 // Parse lane mask. 531 if (Token.isNot(MIToken::IntegerLiteral) && 532 Token.isNot(MIToken::HexLiteral)) 533 return error("expected a lane mask"); 534 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 535 "Use correct get-function for lane mask"); 536 LaneBitmask::Type V; 537 if (getUnsigned(V)) 538 return error("invalid lane mask value"); 539 Mask = LaneBitmask(V); 540 lex(); 541 } 542 MBB.addLiveIn(Reg, Mask); 543 } while (consumeIfPresent(MIToken::comma)); 544 return false; 545 } 546 547 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 548 assert(Token.is(MIToken::kw_successors)); 549 lex(); 550 if (expectAndConsume(MIToken::colon)) 551 return true; 552 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 553 return false; 554 do { 555 if (Token.isNot(MIToken::MachineBasicBlock)) 556 return error("expected a machine basic block reference"); 557 MachineBasicBlock *SuccMBB = nullptr; 558 if (parseMBBReference(SuccMBB)) 559 return true; 560 lex(); 561 unsigned Weight = 0; 562 if (consumeIfPresent(MIToken::lparen)) { 563 if (Token.isNot(MIToken::IntegerLiteral) && 564 Token.isNot(MIToken::HexLiteral)) 565 return error("expected an integer literal after '('"); 566 if (getUnsigned(Weight)) 567 return true; 568 lex(); 569 if (expectAndConsume(MIToken::rparen)) 570 return true; 571 } 572 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 573 } while (consumeIfPresent(MIToken::comma)); 574 MBB.normalizeSuccProbs(); 575 return false; 576 } 577 578 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 579 MachineBasicBlock *&AddFalthroughFrom) { 580 // Skip the definition. 581 assert(Token.is(MIToken::MachineBasicBlockLabel)); 582 lex(); 583 if (consumeIfPresent(MIToken::lparen)) { 584 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 585 lex(); 586 consumeIfPresent(MIToken::rparen); 587 } 588 consumeIfPresent(MIToken::colon); 589 590 // Parse the liveins and successors. 591 // N.B: Multiple lists of successors and liveins are allowed and they're 592 // merged into one. 593 // Example: 594 // liveins: %edi 595 // liveins: %esi 596 // 597 // is equivalent to 598 // liveins: %edi, %esi 599 bool ExplicitSuccessors = false; 600 while (true) { 601 if (Token.is(MIToken::kw_successors)) { 602 if (parseBasicBlockSuccessors(MBB)) 603 return true; 604 ExplicitSuccessors = true; 605 } else if (Token.is(MIToken::kw_liveins)) { 606 if (parseBasicBlockLiveins(MBB)) 607 return true; 608 } else if (consumeIfPresent(MIToken::Newline)) { 609 continue; 610 } else 611 break; 612 if (!Token.isNewlineOrEOF()) 613 return error("expected line break at the end of a list"); 614 lex(); 615 } 616 617 // Parse the instructions. 618 bool IsInBundle = false; 619 MachineInstr *PrevMI = nullptr; 620 while (!Token.is(MIToken::MachineBasicBlockLabel) && 621 !Token.is(MIToken::Eof)) { 622 if (consumeIfPresent(MIToken::Newline)) 623 continue; 624 if (consumeIfPresent(MIToken::rbrace)) { 625 // The first parsing pass should verify that all closing '}' have an 626 // opening '{'. 627 assert(IsInBundle); 628 IsInBundle = false; 629 continue; 630 } 631 MachineInstr *MI = nullptr; 632 if (parse(MI)) 633 return true; 634 MBB.insert(MBB.end(), MI); 635 if (IsInBundle) { 636 PrevMI->setFlag(MachineInstr::BundledSucc); 637 MI->setFlag(MachineInstr::BundledPred); 638 } 639 PrevMI = MI; 640 if (Token.is(MIToken::lbrace)) { 641 if (IsInBundle) 642 return error("nested instruction bundles are not allowed"); 643 lex(); 644 // This instruction is the start of the bundle. 645 MI->setFlag(MachineInstr::BundledSucc); 646 IsInBundle = true; 647 if (!Token.is(MIToken::Newline)) 648 // The next instruction can be on the same line. 649 continue; 650 } 651 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 652 lex(); 653 } 654 655 // Construct successor list by searching for basic block machine operands. 656 if (!ExplicitSuccessors) { 657 SmallVector<MachineBasicBlock*,4> Successors; 658 bool IsFallthrough; 659 guessSuccessors(MBB, Successors, IsFallthrough); 660 for (MachineBasicBlock *Succ : Successors) 661 MBB.addSuccessor(Succ); 662 663 if (IsFallthrough) { 664 AddFalthroughFrom = &MBB; 665 } else { 666 MBB.normalizeSuccProbs(); 667 } 668 } 669 670 return false; 671 } 672 673 bool MIParser::parseBasicBlocks() { 674 lex(); 675 // Skip until the first machine basic block. 676 while (Token.is(MIToken::Newline)) 677 lex(); 678 if (Token.isErrorOrEOF()) 679 return Token.isError(); 680 // The first parsing pass should have verified that this token is a MBB label 681 // in the 'parseBasicBlockDefinitions' method. 682 assert(Token.is(MIToken::MachineBasicBlockLabel)); 683 MachineBasicBlock *AddFalthroughFrom = nullptr; 684 do { 685 MachineBasicBlock *MBB = nullptr; 686 if (parseMBBReference(MBB)) 687 return true; 688 if (AddFalthroughFrom) { 689 if (!AddFalthroughFrom->isSuccessor(MBB)) 690 AddFalthroughFrom->addSuccessor(MBB); 691 AddFalthroughFrom->normalizeSuccProbs(); 692 AddFalthroughFrom = nullptr; 693 } 694 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 695 return true; 696 // The method 'parseBasicBlock' should parse the whole block until the next 697 // block or the end of file. 698 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 699 } while (Token.isNot(MIToken::Eof)); 700 return false; 701 } 702 703 bool MIParser::parse(MachineInstr *&MI) { 704 // Parse any register operands before '=' 705 MachineOperand MO = MachineOperand::CreateImm(0); 706 SmallVector<ParsedMachineOperand, 8> Operands; 707 while (Token.isRegister() || Token.isRegisterFlag()) { 708 auto Loc = Token.location(); 709 Optional<unsigned> TiedDefIdx; 710 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 711 return true; 712 Operands.push_back( 713 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 714 if (Token.isNot(MIToken::comma)) 715 break; 716 lex(); 717 } 718 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 719 return true; 720 721 unsigned OpCode, Flags = 0; 722 if (Token.isError() || parseInstruction(OpCode, Flags)) 723 return true; 724 725 // Parse the remaining machine operands. 726 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 727 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 728 auto Loc = Token.location(); 729 Optional<unsigned> TiedDefIdx; 730 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 731 return true; 732 Operands.push_back( 733 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 734 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 735 Token.is(MIToken::lbrace)) 736 break; 737 if (Token.isNot(MIToken::comma)) 738 return error("expected ',' before the next machine operand"); 739 lex(); 740 } 741 742 DebugLoc DebugLocation; 743 if (Token.is(MIToken::kw_debug_location)) { 744 lex(); 745 if (Token.isNot(MIToken::exclaim)) 746 return error("expected a metadata node after 'debug-location'"); 747 MDNode *Node = nullptr; 748 if (parseMDNode(Node)) 749 return true; 750 DebugLocation = DebugLoc(Node); 751 } 752 753 // Parse the machine memory operands. 754 SmallVector<MachineMemOperand *, 2> MemOperands; 755 if (Token.is(MIToken::coloncolon)) { 756 lex(); 757 while (!Token.isNewlineOrEOF()) { 758 MachineMemOperand *MemOp = nullptr; 759 if (parseMachineMemoryOperand(MemOp)) 760 return true; 761 MemOperands.push_back(MemOp); 762 if (Token.isNewlineOrEOF()) 763 break; 764 if (Token.isNot(MIToken::comma)) 765 return error("expected ',' before the next machine memory operand"); 766 lex(); 767 } 768 } 769 770 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 771 if (!MCID.isVariadic()) { 772 // FIXME: Move the implicit operand verification to the machine verifier. 773 if (verifyImplicitOperands(Operands, MCID)) 774 return true; 775 } 776 777 // TODO: Check for extraneous machine operands. 778 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 779 MI->setFlags(Flags); 780 for (const auto &Operand : Operands) 781 MI->addOperand(MF, Operand.Operand); 782 if (assignRegisterTies(*MI, Operands)) 783 return true; 784 if (MemOperands.empty()) 785 return false; 786 MachineInstr::mmo_iterator MemRefs = 787 MF.allocateMemRefsArray(MemOperands.size()); 788 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 789 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 790 return false; 791 } 792 793 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 794 lex(); 795 if (Token.isNot(MIToken::MachineBasicBlock)) 796 return error("expected a machine basic block reference"); 797 if (parseMBBReference(MBB)) 798 return true; 799 lex(); 800 if (Token.isNot(MIToken::Eof)) 801 return error( 802 "expected end of string after the machine basic block reference"); 803 return false; 804 } 805 806 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 807 lex(); 808 if (Token.isNot(MIToken::NamedRegister)) 809 return error("expected a named register"); 810 if (parseNamedRegister(Reg)) 811 return true; 812 lex(); 813 if (Token.isNot(MIToken::Eof)) 814 return error("expected end of string after the register reference"); 815 return false; 816 } 817 818 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 819 lex(); 820 if (Token.isNot(MIToken::VirtualRegister)) 821 return error("expected a virtual register"); 822 if (parseVirtualRegister(Info)) 823 return true; 824 lex(); 825 if (Token.isNot(MIToken::Eof)) 826 return error("expected end of string after the register reference"); 827 return false; 828 } 829 830 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 831 lex(); 832 if (Token.isNot(MIToken::NamedRegister) && 833 Token.isNot(MIToken::VirtualRegister)) 834 return error("expected either a named or virtual register"); 835 836 VRegInfo *Info; 837 if (parseRegister(Reg, Info)) 838 return true; 839 840 lex(); 841 if (Token.isNot(MIToken::Eof)) 842 return error("expected end of string after the register reference"); 843 return false; 844 } 845 846 bool MIParser::parseStandaloneStackObject(int &FI) { 847 lex(); 848 if (Token.isNot(MIToken::StackObject)) 849 return error("expected a stack object"); 850 if (parseStackFrameIndex(FI)) 851 return true; 852 if (Token.isNot(MIToken::Eof)) 853 return error("expected end of string after the stack object reference"); 854 return false; 855 } 856 857 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 858 lex(); 859 if (Token.is(MIToken::exclaim)) { 860 if (parseMDNode(Node)) 861 return true; 862 } else if (Token.is(MIToken::md_diexpr)) { 863 if (parseDIExpression(Node)) 864 return true; 865 } else 866 return error("expected a metadata node"); 867 if (Token.isNot(MIToken::Eof)) 868 return error("expected end of string after the metadata node"); 869 return false; 870 } 871 872 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 873 assert(MO.isImplicit()); 874 return MO.isDef() ? "implicit-def" : "implicit"; 875 } 876 877 static std::string getRegisterName(const TargetRegisterInfo *TRI, 878 unsigned Reg) { 879 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 880 return StringRef(TRI->getName(Reg)).lower(); 881 } 882 883 /// Return true if the parsed machine operands contain a given machine operand. 884 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 885 ArrayRef<ParsedMachineOperand> Operands) { 886 for (const auto &I : Operands) { 887 if (ImplicitOperand.isIdenticalTo(I.Operand)) 888 return true; 889 } 890 return false; 891 } 892 893 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 894 const MCInstrDesc &MCID) { 895 if (MCID.isCall()) 896 // We can't verify call instructions as they can contain arbitrary implicit 897 // register and register mask operands. 898 return false; 899 900 // Gather all the expected implicit operands. 901 SmallVector<MachineOperand, 4> ImplicitOperands; 902 if (MCID.ImplicitDefs) 903 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 904 ImplicitOperands.push_back( 905 MachineOperand::CreateReg(*ImpDefs, true, true)); 906 if (MCID.ImplicitUses) 907 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 908 ImplicitOperands.push_back( 909 MachineOperand::CreateReg(*ImpUses, false, true)); 910 911 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 912 assert(TRI && "Expected target register info"); 913 for (const auto &I : ImplicitOperands) { 914 if (isImplicitOperandIn(I, Operands)) 915 continue; 916 return error(Operands.empty() ? Token.location() : Operands.back().End, 917 Twine("missing implicit register operand '") + 918 printImplicitRegisterFlag(I) + " %" + 919 getRegisterName(TRI, I.getReg()) + "'"); 920 } 921 return false; 922 } 923 924 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 925 if (Token.is(MIToken::kw_frame_setup)) { 926 Flags |= MachineInstr::FrameSetup; 927 lex(); 928 } 929 if (Token.isNot(MIToken::Identifier)) 930 return error("expected a machine instruction"); 931 StringRef InstrName = Token.stringValue(); 932 if (parseInstrName(InstrName, OpCode)) 933 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 934 lex(); 935 return false; 936 } 937 938 bool MIParser::parseNamedRegister(unsigned &Reg) { 939 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 940 StringRef Name = Token.stringValue(); 941 if (getRegisterByName(Name, Reg)) 942 return error(Twine("unknown register name '") + Name + "'"); 943 return false; 944 } 945 946 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 947 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 948 unsigned ID; 949 if (getUnsigned(ID)) 950 return true; 951 Info = &PFS.getVRegInfo(ID); 952 return false; 953 } 954 955 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 956 switch (Token.kind()) { 957 case MIToken::underscore: 958 Reg = 0; 959 return false; 960 case MIToken::NamedRegister: 961 return parseNamedRegister(Reg); 962 case MIToken::VirtualRegister: 963 if (parseVirtualRegister(Info)) 964 return true; 965 Reg = Info->VReg; 966 return false; 967 // TODO: Parse other register kinds. 968 default: 969 llvm_unreachable("The current token should be a register"); 970 } 971 } 972 973 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 974 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 975 return error("expected '_', register class, or register bank name"); 976 StringRef::iterator Loc = Token.location(); 977 StringRef Name = Token.stringValue(); 978 979 // Was it a register class? 980 auto RCNameI = PFS.Names2RegClasses.find(Name); 981 if (RCNameI != PFS.Names2RegClasses.end()) { 982 lex(); 983 const TargetRegisterClass &RC = *RCNameI->getValue(); 984 985 switch (RegInfo.Kind) { 986 case VRegInfo::UNKNOWN: 987 case VRegInfo::NORMAL: 988 RegInfo.Kind = VRegInfo::NORMAL; 989 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 990 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 991 return error(Loc, Twine("conflicting register classes, previously: ") + 992 Twine(TRI.getRegClassName(RegInfo.D.RC))); 993 } 994 RegInfo.D.RC = &RC; 995 RegInfo.Explicit = true; 996 return false; 997 998 case VRegInfo::GENERIC: 999 case VRegInfo::REGBANK: 1000 return error(Loc, "register class specification on generic register"); 1001 } 1002 llvm_unreachable("Unexpected register kind"); 1003 } 1004 1005 // Should be a register bank or a generic register. 1006 const RegisterBank *RegBank = nullptr; 1007 if (Name != "_") { 1008 auto RBNameI = PFS.Names2RegBanks.find(Name); 1009 if (RBNameI == PFS.Names2RegBanks.end()) 1010 return error(Loc, "expected '_', register class, or register bank name"); 1011 RegBank = RBNameI->getValue(); 1012 } 1013 1014 lex(); 1015 1016 switch (RegInfo.Kind) { 1017 case VRegInfo::UNKNOWN: 1018 case VRegInfo::GENERIC: 1019 case VRegInfo::REGBANK: 1020 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1021 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1022 return error(Loc, "conflicting generic register banks"); 1023 RegInfo.D.RegBank = RegBank; 1024 RegInfo.Explicit = true; 1025 return false; 1026 1027 case VRegInfo::NORMAL: 1028 return error(Loc, "register bank specification on normal register"); 1029 } 1030 llvm_unreachable("Unexpected register kind"); 1031 } 1032 1033 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1034 const unsigned OldFlags = Flags; 1035 switch (Token.kind()) { 1036 case MIToken::kw_implicit: 1037 Flags |= RegState::Implicit; 1038 break; 1039 case MIToken::kw_implicit_define: 1040 Flags |= RegState::ImplicitDefine; 1041 break; 1042 case MIToken::kw_def: 1043 Flags |= RegState::Define; 1044 break; 1045 case MIToken::kw_dead: 1046 Flags |= RegState::Dead; 1047 break; 1048 case MIToken::kw_killed: 1049 Flags |= RegState::Kill; 1050 break; 1051 case MIToken::kw_undef: 1052 Flags |= RegState::Undef; 1053 break; 1054 case MIToken::kw_internal: 1055 Flags |= RegState::InternalRead; 1056 break; 1057 case MIToken::kw_early_clobber: 1058 Flags |= RegState::EarlyClobber; 1059 break; 1060 case MIToken::kw_debug_use: 1061 Flags |= RegState::Debug; 1062 break; 1063 case MIToken::kw_renamable: 1064 Flags |= RegState::Renamable; 1065 break; 1066 default: 1067 llvm_unreachable("The current token should be a register flag"); 1068 } 1069 if (OldFlags == Flags) 1070 // We know that the same flag is specified more than once when the flags 1071 // weren't modified. 1072 return error("duplicate '" + Token.stringValue() + "' register flag"); 1073 lex(); 1074 return false; 1075 } 1076 1077 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1078 assert(Token.is(MIToken::dot)); 1079 lex(); 1080 if (Token.isNot(MIToken::Identifier)) 1081 return error("expected a subregister index after '.'"); 1082 auto Name = Token.stringValue(); 1083 SubReg = getSubRegIndex(Name); 1084 if (!SubReg) 1085 return error(Twine("use of unknown subregister index '") + Name + "'"); 1086 lex(); 1087 return false; 1088 } 1089 1090 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1091 if (!consumeIfPresent(MIToken::kw_tied_def)) 1092 return true; 1093 if (Token.isNot(MIToken::IntegerLiteral)) 1094 return error("expected an integer literal after 'tied-def'"); 1095 if (getUnsigned(TiedDefIdx)) 1096 return true; 1097 lex(); 1098 if (expectAndConsume(MIToken::rparen)) 1099 return true; 1100 return false; 1101 } 1102 1103 bool MIParser::assignRegisterTies(MachineInstr &MI, 1104 ArrayRef<ParsedMachineOperand> Operands) { 1105 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1106 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1107 if (!Operands[I].TiedDefIdx) 1108 continue; 1109 // The parser ensures that this operand is a register use, so we just have 1110 // to check the tied-def operand. 1111 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1112 if (DefIdx >= E) 1113 return error(Operands[I].Begin, 1114 Twine("use of invalid tied-def operand index '" + 1115 Twine(DefIdx) + "'; instruction has only ") + 1116 Twine(E) + " operands"); 1117 const auto &DefOperand = Operands[DefIdx].Operand; 1118 if (!DefOperand.isReg() || !DefOperand.isDef()) 1119 // FIXME: add note with the def operand. 1120 return error(Operands[I].Begin, 1121 Twine("use of invalid tied-def operand index '") + 1122 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1123 " isn't a defined register"); 1124 // Check that the tied-def operand wasn't tied elsewhere. 1125 for (const auto &TiedPair : TiedRegisterPairs) { 1126 if (TiedPair.first == DefIdx) 1127 return error(Operands[I].Begin, 1128 Twine("the tied-def operand #") + Twine(DefIdx) + 1129 " is already tied with another register operand"); 1130 } 1131 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1132 } 1133 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1134 // indices must be less than tied max. 1135 for (const auto &TiedPair : TiedRegisterPairs) 1136 MI.tieOperands(TiedPair.first, TiedPair.second); 1137 return false; 1138 } 1139 1140 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1141 Optional<unsigned> &TiedDefIdx, 1142 bool IsDef) { 1143 unsigned Flags = IsDef ? RegState::Define : 0; 1144 while (Token.isRegisterFlag()) { 1145 if (parseRegisterFlag(Flags)) 1146 return true; 1147 } 1148 if (!Token.isRegister()) 1149 return error("expected a register after register flags"); 1150 unsigned Reg; 1151 VRegInfo *RegInfo; 1152 if (parseRegister(Reg, RegInfo)) 1153 return true; 1154 lex(); 1155 unsigned SubReg = 0; 1156 if (Token.is(MIToken::dot)) { 1157 if (parseSubRegisterIndex(SubReg)) 1158 return true; 1159 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1160 return error("subregister index expects a virtual register"); 1161 } 1162 if (Token.is(MIToken::colon)) { 1163 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1164 return error("register class specification expects a virtual register"); 1165 lex(); 1166 if (parseRegisterClassOrBank(*RegInfo)) 1167 return true; 1168 } 1169 MachineRegisterInfo &MRI = MF.getRegInfo(); 1170 if ((Flags & RegState::Define) == 0) { 1171 if (consumeIfPresent(MIToken::lparen)) { 1172 unsigned Idx; 1173 if (!parseRegisterTiedDefIndex(Idx)) 1174 TiedDefIdx = Idx; 1175 else { 1176 // Try a redundant low-level type. 1177 LLT Ty; 1178 if (parseLowLevelType(Token.location(), Ty)) 1179 return error("expected tied-def or low-level type after '('"); 1180 1181 if (expectAndConsume(MIToken::rparen)) 1182 return true; 1183 1184 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1185 return error("inconsistent type for generic virtual register"); 1186 1187 MRI.setType(Reg, Ty); 1188 } 1189 } 1190 } else if (consumeIfPresent(MIToken::lparen)) { 1191 // Virtual registers may have a tpe with GlobalISel. 1192 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1193 return error("unexpected type on physical register"); 1194 1195 LLT Ty; 1196 if (parseLowLevelType(Token.location(), Ty)) 1197 return true; 1198 1199 if (expectAndConsume(MIToken::rparen)) 1200 return true; 1201 1202 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1203 return error("inconsistent type for generic virtual register"); 1204 1205 MRI.setType(Reg, Ty); 1206 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1207 // Generic virtual registers must have a type. 1208 // If we end up here this means the type hasn't been specified and 1209 // this is bad! 1210 if (RegInfo->Kind == VRegInfo::GENERIC || 1211 RegInfo->Kind == VRegInfo::REGBANK) 1212 return error("generic virtual registers must have a type"); 1213 } 1214 Dest = MachineOperand::CreateReg( 1215 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1216 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1217 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1218 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1219 1220 return false; 1221 } 1222 1223 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1224 assert(Token.is(MIToken::IntegerLiteral)); 1225 const APSInt &Int = Token.integerValue(); 1226 if (Int.getMinSignedBits() > 64) 1227 return error("integer literal is too large to be an immediate operand"); 1228 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1229 lex(); 1230 return false; 1231 } 1232 1233 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1234 const Constant *&C) { 1235 auto Source = StringValue.str(); // The source has to be null terminated. 1236 SMDiagnostic Err; 1237 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1238 &PFS.IRSlots); 1239 if (!C) 1240 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1241 return false; 1242 } 1243 1244 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1245 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1246 return true; 1247 lex(); 1248 return false; 1249 } 1250 1251 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1252 if (Token.is(MIToken::ScalarType)) { 1253 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1254 lex(); 1255 return false; 1256 } else if (Token.is(MIToken::PointerType)) { 1257 const DataLayout &DL = MF.getDataLayout(); 1258 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1259 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1260 lex(); 1261 return false; 1262 } 1263 1264 // Now we're looking for a vector. 1265 if (Token.isNot(MIToken::less)) 1266 return error(Loc, 1267 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1268 1269 lex(); 1270 1271 if (Token.isNot(MIToken::IntegerLiteral)) 1272 return error(Loc, "expected <N x sM> for vctor type"); 1273 uint64_t NumElements = Token.integerValue().getZExtValue(); 1274 lex(); 1275 1276 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1277 return error(Loc, "expected '<N x sM>' for vector type"); 1278 lex(); 1279 1280 if (Token.isNot(MIToken::ScalarType)) 1281 return error(Loc, "expected '<N x sM>' for vector type"); 1282 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1283 lex(); 1284 1285 if (Token.isNot(MIToken::greater)) 1286 return error(Loc, "expected '<N x sM>' for vector type"); 1287 lex(); 1288 1289 Ty = LLT::vector(NumElements, ScalarSize); 1290 return false; 1291 } 1292 1293 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1294 assert(Token.is(MIToken::IntegerType)); 1295 auto Loc = Token.location(); 1296 lex(); 1297 if (Token.isNot(MIToken::IntegerLiteral)) 1298 return error("expected an integer literal"); 1299 const Constant *C = nullptr; 1300 if (parseIRConstant(Loc, C)) 1301 return true; 1302 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1303 return false; 1304 } 1305 1306 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1307 auto Loc = Token.location(); 1308 lex(); 1309 if (Token.isNot(MIToken::FloatingPointLiteral) && 1310 Token.isNot(MIToken::HexLiteral)) 1311 return error("expected a floating point literal"); 1312 const Constant *C = nullptr; 1313 if (parseIRConstant(Loc, C)) 1314 return true; 1315 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1316 return false; 1317 } 1318 1319 bool MIParser::getUnsigned(unsigned &Result) { 1320 if (Token.hasIntegerValue()) { 1321 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1322 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1323 if (Val64 == Limit) 1324 return error("expected 32-bit integer (too large)"); 1325 Result = Val64; 1326 return false; 1327 } 1328 if (Token.is(MIToken::HexLiteral)) { 1329 APInt A; 1330 if (getHexUint(A)) 1331 return true; 1332 if (A.getBitWidth() > 32) 1333 return error("expected 32-bit integer (too large)"); 1334 Result = A.getZExtValue(); 1335 return false; 1336 } 1337 return true; 1338 } 1339 1340 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1341 assert(Token.is(MIToken::MachineBasicBlock) || 1342 Token.is(MIToken::MachineBasicBlockLabel)); 1343 unsigned Number; 1344 if (getUnsigned(Number)) 1345 return true; 1346 auto MBBInfo = PFS.MBBSlots.find(Number); 1347 if (MBBInfo == PFS.MBBSlots.end()) 1348 return error(Twine("use of undefined machine basic block #") + 1349 Twine(Number)); 1350 MBB = MBBInfo->second; 1351 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1352 // we drop the <irname> from the bb.<id>.<irname> format. 1353 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1354 return error(Twine("the name of machine basic block #") + Twine(Number) + 1355 " isn't '" + Token.stringValue() + "'"); 1356 return false; 1357 } 1358 1359 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1360 MachineBasicBlock *MBB; 1361 if (parseMBBReference(MBB)) 1362 return true; 1363 Dest = MachineOperand::CreateMBB(MBB); 1364 lex(); 1365 return false; 1366 } 1367 1368 bool MIParser::parseStackFrameIndex(int &FI) { 1369 assert(Token.is(MIToken::StackObject)); 1370 unsigned ID; 1371 if (getUnsigned(ID)) 1372 return true; 1373 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1374 if (ObjectInfo == PFS.StackObjectSlots.end()) 1375 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1376 "'"); 1377 StringRef Name; 1378 if (const auto *Alloca = 1379 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1380 Name = Alloca->getName(); 1381 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1382 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1383 "' isn't '" + Token.stringValue() + "'"); 1384 lex(); 1385 FI = ObjectInfo->second; 1386 return false; 1387 } 1388 1389 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1390 int FI; 1391 if (parseStackFrameIndex(FI)) 1392 return true; 1393 Dest = MachineOperand::CreateFI(FI); 1394 return false; 1395 } 1396 1397 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1398 assert(Token.is(MIToken::FixedStackObject)); 1399 unsigned ID; 1400 if (getUnsigned(ID)) 1401 return true; 1402 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1403 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1404 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1405 Twine(ID) + "'"); 1406 lex(); 1407 FI = ObjectInfo->second; 1408 return false; 1409 } 1410 1411 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1412 int FI; 1413 if (parseFixedStackFrameIndex(FI)) 1414 return true; 1415 Dest = MachineOperand::CreateFI(FI); 1416 return false; 1417 } 1418 1419 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1420 switch (Token.kind()) { 1421 case MIToken::NamedGlobalValue: { 1422 const Module *M = MF.getFunction().getParent(); 1423 GV = M->getNamedValue(Token.stringValue()); 1424 if (!GV) 1425 return error(Twine("use of undefined global value '") + Token.range() + 1426 "'"); 1427 break; 1428 } 1429 case MIToken::GlobalValue: { 1430 unsigned GVIdx; 1431 if (getUnsigned(GVIdx)) 1432 return true; 1433 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1434 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1435 "'"); 1436 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1437 break; 1438 } 1439 default: 1440 llvm_unreachable("The current token should be a global value"); 1441 } 1442 return false; 1443 } 1444 1445 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1446 GlobalValue *GV = nullptr; 1447 if (parseGlobalValue(GV)) 1448 return true; 1449 lex(); 1450 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1451 if (parseOperandsOffset(Dest)) 1452 return true; 1453 return false; 1454 } 1455 1456 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1457 assert(Token.is(MIToken::ConstantPoolItem)); 1458 unsigned ID; 1459 if (getUnsigned(ID)) 1460 return true; 1461 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1462 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1463 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1464 lex(); 1465 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1466 if (parseOperandsOffset(Dest)) 1467 return true; 1468 return false; 1469 } 1470 1471 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1472 assert(Token.is(MIToken::JumpTableIndex)); 1473 unsigned ID; 1474 if (getUnsigned(ID)) 1475 return true; 1476 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1477 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1478 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1479 lex(); 1480 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1481 return false; 1482 } 1483 1484 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1485 assert(Token.is(MIToken::ExternalSymbol)); 1486 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1487 lex(); 1488 Dest = MachineOperand::CreateES(Symbol); 1489 if (parseOperandsOffset(Dest)) 1490 return true; 1491 return false; 1492 } 1493 1494 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1495 assert(Token.is(MIToken::SubRegisterIndex)); 1496 StringRef Name = Token.stringValue(); 1497 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1498 if (SubRegIndex == 0) 1499 return error(Twine("unknown subregister index '") + Name + "'"); 1500 lex(); 1501 Dest = MachineOperand::CreateImm(SubRegIndex); 1502 return false; 1503 } 1504 1505 bool MIParser::parseMDNode(MDNode *&Node) { 1506 assert(Token.is(MIToken::exclaim)); 1507 1508 auto Loc = Token.location(); 1509 lex(); 1510 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1511 return error("expected metadata id after '!'"); 1512 unsigned ID; 1513 if (getUnsigned(ID)) 1514 return true; 1515 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1516 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1517 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1518 lex(); 1519 Node = NodeInfo->second.get(); 1520 return false; 1521 } 1522 1523 bool MIParser::parseDIExpression(MDNode *&Expr) { 1524 assert(Token.is(MIToken::md_diexpr)); 1525 lex(); 1526 1527 // FIXME: Share this parsing with the IL parser. 1528 SmallVector<uint64_t, 8> Elements; 1529 1530 if (expectAndConsume(MIToken::lparen)) 1531 return true; 1532 1533 if (Token.isNot(MIToken::rparen)) { 1534 do { 1535 if (Token.is(MIToken::Identifier)) { 1536 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1537 lex(); 1538 Elements.push_back(Op); 1539 continue; 1540 } 1541 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1542 } 1543 1544 if (Token.isNot(MIToken::IntegerLiteral) || 1545 Token.integerValue().isSigned()) 1546 return error("expected unsigned integer"); 1547 1548 auto &U = Token.integerValue(); 1549 if (U.ugt(UINT64_MAX)) 1550 return error("element too large, limit is " + Twine(UINT64_MAX)); 1551 Elements.push_back(U.getZExtValue()); 1552 lex(); 1553 1554 } while (consumeIfPresent(MIToken::comma)); 1555 } 1556 1557 if (expectAndConsume(MIToken::rparen)) 1558 return true; 1559 1560 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1561 return false; 1562 } 1563 1564 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1565 MDNode *Node = nullptr; 1566 if (Token.is(MIToken::exclaim)) { 1567 if (parseMDNode(Node)) 1568 return true; 1569 } else if (Token.is(MIToken::md_diexpr)) { 1570 if (parseDIExpression(Node)) 1571 return true; 1572 } 1573 Dest = MachineOperand::CreateMetadata(Node); 1574 return false; 1575 } 1576 1577 bool MIParser::parseCFIOffset(int &Offset) { 1578 if (Token.isNot(MIToken::IntegerLiteral)) 1579 return error("expected a cfi offset"); 1580 if (Token.integerValue().getMinSignedBits() > 32) 1581 return error("expected a 32 bit integer (the cfi offset is too large)"); 1582 Offset = (int)Token.integerValue().getExtValue(); 1583 lex(); 1584 return false; 1585 } 1586 1587 bool MIParser::parseCFIRegister(unsigned &Reg) { 1588 if (Token.isNot(MIToken::NamedRegister)) 1589 return error("expected a cfi register"); 1590 unsigned LLVMReg; 1591 if (parseNamedRegister(LLVMReg)) 1592 return true; 1593 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1594 assert(TRI && "Expected target register info"); 1595 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1596 if (DwarfReg < 0) 1597 return error("invalid DWARF register"); 1598 Reg = (unsigned)DwarfReg; 1599 lex(); 1600 return false; 1601 } 1602 1603 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1604 do { 1605 if (Token.isNot(MIToken::HexLiteral)) 1606 return error("expected a hexadecimal literal"); 1607 unsigned Value; 1608 if (getUnsigned(Value)) 1609 return true; 1610 if (Value > UINT8_MAX) 1611 return error("expected a 8-bit integer (too large)"); 1612 Values.push_back(static_cast<uint8_t>(Value)); 1613 lex(); 1614 } while (consumeIfPresent(MIToken::comma)); 1615 return false; 1616 } 1617 1618 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1619 auto Kind = Token.kind(); 1620 lex(); 1621 int Offset; 1622 unsigned Reg; 1623 unsigned CFIIndex; 1624 switch (Kind) { 1625 case MIToken::kw_cfi_same_value: 1626 if (parseCFIRegister(Reg)) 1627 return true; 1628 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1629 break; 1630 case MIToken::kw_cfi_offset: 1631 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1632 parseCFIOffset(Offset)) 1633 return true; 1634 CFIIndex = 1635 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1636 break; 1637 case MIToken::kw_cfi_rel_offset: 1638 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1639 parseCFIOffset(Offset)) 1640 return true; 1641 CFIIndex = MF.addFrameInst( 1642 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1643 break; 1644 case MIToken::kw_cfi_def_cfa_register: 1645 if (parseCFIRegister(Reg)) 1646 return true; 1647 CFIIndex = 1648 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1649 break; 1650 case MIToken::kw_cfi_def_cfa_offset: 1651 if (parseCFIOffset(Offset)) 1652 return true; 1653 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1654 CFIIndex = MF.addFrameInst( 1655 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1656 break; 1657 case MIToken::kw_cfi_adjust_cfa_offset: 1658 if (parseCFIOffset(Offset)) 1659 return true; 1660 CFIIndex = MF.addFrameInst( 1661 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1662 break; 1663 case MIToken::kw_cfi_def_cfa: 1664 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1665 parseCFIOffset(Offset)) 1666 return true; 1667 // NB: MCCFIInstruction::createDefCfa negates the offset. 1668 CFIIndex = 1669 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1670 break; 1671 case MIToken::kw_cfi_remember_state: 1672 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1673 break; 1674 case MIToken::kw_cfi_restore: 1675 if (parseCFIRegister(Reg)) 1676 return true; 1677 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1678 break; 1679 case MIToken::kw_cfi_restore_state: 1680 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1681 break; 1682 case MIToken::kw_cfi_undefined: 1683 if (parseCFIRegister(Reg)) 1684 return true; 1685 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1686 break; 1687 case MIToken::kw_cfi_register: { 1688 unsigned Reg2; 1689 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1690 parseCFIRegister(Reg2)) 1691 return true; 1692 1693 CFIIndex = 1694 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1695 break; 1696 } 1697 case MIToken::kw_cfi_window_save: 1698 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1699 break; 1700 case MIToken::kw_cfi_escape: { 1701 std::string Values; 1702 if (parseCFIEscapeValues(Values)) 1703 return true; 1704 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1705 break; 1706 } 1707 default: 1708 // TODO: Parse the other CFI operands. 1709 llvm_unreachable("The current token should be a cfi operand"); 1710 } 1711 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1712 return false; 1713 } 1714 1715 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1716 switch (Token.kind()) { 1717 case MIToken::NamedIRBlock: { 1718 BB = dyn_cast_or_null<BasicBlock>( 1719 F.getValueSymbolTable()->lookup(Token.stringValue())); 1720 if (!BB) 1721 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1722 break; 1723 } 1724 case MIToken::IRBlock: { 1725 unsigned SlotNumber = 0; 1726 if (getUnsigned(SlotNumber)) 1727 return true; 1728 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1729 if (!BB) 1730 return error(Twine("use of undefined IR block '%ir-block.") + 1731 Twine(SlotNumber) + "'"); 1732 break; 1733 } 1734 default: 1735 llvm_unreachable("The current token should be an IR block reference"); 1736 } 1737 return false; 1738 } 1739 1740 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1741 assert(Token.is(MIToken::kw_blockaddress)); 1742 lex(); 1743 if (expectAndConsume(MIToken::lparen)) 1744 return true; 1745 if (Token.isNot(MIToken::GlobalValue) && 1746 Token.isNot(MIToken::NamedGlobalValue)) 1747 return error("expected a global value"); 1748 GlobalValue *GV = nullptr; 1749 if (parseGlobalValue(GV)) 1750 return true; 1751 auto *F = dyn_cast<Function>(GV); 1752 if (!F) 1753 return error("expected an IR function reference"); 1754 lex(); 1755 if (expectAndConsume(MIToken::comma)) 1756 return true; 1757 BasicBlock *BB = nullptr; 1758 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1759 return error("expected an IR block reference"); 1760 if (parseIRBlock(BB, *F)) 1761 return true; 1762 lex(); 1763 if (expectAndConsume(MIToken::rparen)) 1764 return true; 1765 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1766 if (parseOperandsOffset(Dest)) 1767 return true; 1768 return false; 1769 } 1770 1771 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1772 assert(Token.is(MIToken::kw_intrinsic)); 1773 lex(); 1774 if (expectAndConsume(MIToken::lparen)) 1775 return error("expected syntax intrinsic(@llvm.whatever)"); 1776 1777 if (Token.isNot(MIToken::NamedGlobalValue)) 1778 return error("expected syntax intrinsic(@llvm.whatever)"); 1779 1780 std::string Name = Token.stringValue(); 1781 lex(); 1782 1783 if (expectAndConsume(MIToken::rparen)) 1784 return error("expected ')' to terminate intrinsic name"); 1785 1786 // Find out what intrinsic we're dealing with, first try the global namespace 1787 // and then the target's private intrinsics if that fails. 1788 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1789 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1790 if (ID == Intrinsic::not_intrinsic && TII) 1791 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1792 1793 if (ID == Intrinsic::not_intrinsic) 1794 return error("unknown intrinsic name"); 1795 Dest = MachineOperand::CreateIntrinsicID(ID); 1796 1797 return false; 1798 } 1799 1800 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1801 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1802 bool IsFloat = Token.is(MIToken::kw_floatpred); 1803 lex(); 1804 1805 if (expectAndConsume(MIToken::lparen)) 1806 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1807 1808 if (Token.isNot(MIToken::Identifier)) 1809 return error("whatever"); 1810 1811 CmpInst::Predicate Pred; 1812 if (IsFloat) { 1813 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1814 .Case("false", CmpInst::FCMP_FALSE) 1815 .Case("oeq", CmpInst::FCMP_OEQ) 1816 .Case("ogt", CmpInst::FCMP_OGT) 1817 .Case("oge", CmpInst::FCMP_OGE) 1818 .Case("olt", CmpInst::FCMP_OLT) 1819 .Case("ole", CmpInst::FCMP_OLE) 1820 .Case("one", CmpInst::FCMP_ONE) 1821 .Case("ord", CmpInst::FCMP_ORD) 1822 .Case("uno", CmpInst::FCMP_UNO) 1823 .Case("ueq", CmpInst::FCMP_UEQ) 1824 .Case("ugt", CmpInst::FCMP_UGT) 1825 .Case("uge", CmpInst::FCMP_UGE) 1826 .Case("ult", CmpInst::FCMP_ULT) 1827 .Case("ule", CmpInst::FCMP_ULE) 1828 .Case("une", CmpInst::FCMP_UNE) 1829 .Case("true", CmpInst::FCMP_TRUE) 1830 .Default(CmpInst::BAD_FCMP_PREDICATE); 1831 if (!CmpInst::isFPPredicate(Pred)) 1832 return error("invalid floating-point predicate"); 1833 } else { 1834 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1835 .Case("eq", CmpInst::ICMP_EQ) 1836 .Case("ne", CmpInst::ICMP_NE) 1837 .Case("sgt", CmpInst::ICMP_SGT) 1838 .Case("sge", CmpInst::ICMP_SGE) 1839 .Case("slt", CmpInst::ICMP_SLT) 1840 .Case("sle", CmpInst::ICMP_SLE) 1841 .Case("ugt", CmpInst::ICMP_UGT) 1842 .Case("uge", CmpInst::ICMP_UGE) 1843 .Case("ult", CmpInst::ICMP_ULT) 1844 .Case("ule", CmpInst::ICMP_ULE) 1845 .Default(CmpInst::BAD_ICMP_PREDICATE); 1846 if (!CmpInst::isIntPredicate(Pred)) 1847 return error("invalid integer predicate"); 1848 } 1849 1850 lex(); 1851 Dest = MachineOperand::CreatePredicate(Pred); 1852 if (expectAndConsume(MIToken::rparen)) 1853 return error("predicate should be terminated by ')'."); 1854 1855 return false; 1856 } 1857 1858 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1859 assert(Token.is(MIToken::kw_target_index)); 1860 lex(); 1861 if (expectAndConsume(MIToken::lparen)) 1862 return true; 1863 if (Token.isNot(MIToken::Identifier)) 1864 return error("expected the name of the target index"); 1865 int Index = 0; 1866 if (getTargetIndex(Token.stringValue(), Index)) 1867 return error("use of undefined target index '" + Token.stringValue() + "'"); 1868 lex(); 1869 if (expectAndConsume(MIToken::rparen)) 1870 return true; 1871 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1872 if (parseOperandsOffset(Dest)) 1873 return true; 1874 return false; 1875 } 1876 1877 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1878 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1879 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1880 assert(TRI && "Expected target register info"); 1881 lex(); 1882 if (expectAndConsume(MIToken::lparen)) 1883 return true; 1884 1885 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1886 while (true) { 1887 if (Token.isNot(MIToken::NamedRegister)) 1888 return error("expected a named register"); 1889 unsigned Reg; 1890 if (parseNamedRegister(Reg)) 1891 return true; 1892 lex(); 1893 Mask[Reg / 32] |= 1U << (Reg % 32); 1894 // TODO: Report an error if the same register is used more than once. 1895 if (Token.isNot(MIToken::comma)) 1896 break; 1897 lex(); 1898 } 1899 1900 if (expectAndConsume(MIToken::rparen)) 1901 return true; 1902 Dest = MachineOperand::CreateRegMask(Mask); 1903 return false; 1904 } 1905 1906 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1907 assert(Token.is(MIToken::kw_liveout)); 1908 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1909 assert(TRI && "Expected target register info"); 1910 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1911 lex(); 1912 if (expectAndConsume(MIToken::lparen)) 1913 return true; 1914 while (true) { 1915 if (Token.isNot(MIToken::NamedRegister)) 1916 return error("expected a named register"); 1917 unsigned Reg; 1918 if (parseNamedRegister(Reg)) 1919 return true; 1920 lex(); 1921 Mask[Reg / 32] |= 1U << (Reg % 32); 1922 // TODO: Report an error if the same register is used more than once. 1923 if (Token.isNot(MIToken::comma)) 1924 break; 1925 lex(); 1926 } 1927 if (expectAndConsume(MIToken::rparen)) 1928 return true; 1929 Dest = MachineOperand::CreateRegLiveOut(Mask); 1930 return false; 1931 } 1932 1933 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1934 Optional<unsigned> &TiedDefIdx) { 1935 switch (Token.kind()) { 1936 case MIToken::kw_implicit: 1937 case MIToken::kw_implicit_define: 1938 case MIToken::kw_def: 1939 case MIToken::kw_dead: 1940 case MIToken::kw_killed: 1941 case MIToken::kw_undef: 1942 case MIToken::kw_internal: 1943 case MIToken::kw_early_clobber: 1944 case MIToken::kw_debug_use: 1945 case MIToken::kw_renamable: 1946 case MIToken::underscore: 1947 case MIToken::NamedRegister: 1948 case MIToken::VirtualRegister: 1949 return parseRegisterOperand(Dest, TiedDefIdx); 1950 case MIToken::IntegerLiteral: 1951 return parseImmediateOperand(Dest); 1952 case MIToken::IntegerType: 1953 return parseTypedImmediateOperand(Dest); 1954 case MIToken::kw_half: 1955 case MIToken::kw_float: 1956 case MIToken::kw_double: 1957 case MIToken::kw_x86_fp80: 1958 case MIToken::kw_fp128: 1959 case MIToken::kw_ppc_fp128: 1960 return parseFPImmediateOperand(Dest); 1961 case MIToken::MachineBasicBlock: 1962 return parseMBBOperand(Dest); 1963 case MIToken::StackObject: 1964 return parseStackObjectOperand(Dest); 1965 case MIToken::FixedStackObject: 1966 return parseFixedStackObjectOperand(Dest); 1967 case MIToken::GlobalValue: 1968 case MIToken::NamedGlobalValue: 1969 return parseGlobalAddressOperand(Dest); 1970 case MIToken::ConstantPoolItem: 1971 return parseConstantPoolIndexOperand(Dest); 1972 case MIToken::JumpTableIndex: 1973 return parseJumpTableIndexOperand(Dest); 1974 case MIToken::ExternalSymbol: 1975 return parseExternalSymbolOperand(Dest); 1976 case MIToken::SubRegisterIndex: 1977 return parseSubRegisterIndexOperand(Dest); 1978 case MIToken::md_diexpr: 1979 case MIToken::exclaim: 1980 return parseMetadataOperand(Dest); 1981 case MIToken::kw_cfi_same_value: 1982 case MIToken::kw_cfi_offset: 1983 case MIToken::kw_cfi_rel_offset: 1984 case MIToken::kw_cfi_def_cfa_register: 1985 case MIToken::kw_cfi_def_cfa_offset: 1986 case MIToken::kw_cfi_adjust_cfa_offset: 1987 case MIToken::kw_cfi_escape: 1988 case MIToken::kw_cfi_def_cfa: 1989 case MIToken::kw_cfi_register: 1990 case MIToken::kw_cfi_remember_state: 1991 case MIToken::kw_cfi_restore: 1992 case MIToken::kw_cfi_restore_state: 1993 case MIToken::kw_cfi_undefined: 1994 case MIToken::kw_cfi_window_save: 1995 return parseCFIOperand(Dest); 1996 case MIToken::kw_blockaddress: 1997 return parseBlockAddressOperand(Dest); 1998 case MIToken::kw_intrinsic: 1999 return parseIntrinsicOperand(Dest); 2000 case MIToken::kw_target_index: 2001 return parseTargetIndexOperand(Dest); 2002 case MIToken::kw_liveout: 2003 return parseLiveoutRegisterMaskOperand(Dest); 2004 case MIToken::kw_floatpred: 2005 case MIToken::kw_intpred: 2006 return parsePredicateOperand(Dest); 2007 case MIToken::Error: 2008 return true; 2009 case MIToken::Identifier: 2010 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2011 Dest = MachineOperand::CreateRegMask(RegMask); 2012 lex(); 2013 break; 2014 } else 2015 return parseCustomRegisterMaskOperand(Dest); 2016 default: 2017 // FIXME: Parse the MCSymbol machine operand. 2018 return error("expected a machine operand"); 2019 } 2020 return false; 2021 } 2022 2023 bool MIParser::parseMachineOperandAndTargetFlags( 2024 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2025 unsigned TF = 0; 2026 bool HasTargetFlags = false; 2027 if (Token.is(MIToken::kw_target_flags)) { 2028 HasTargetFlags = true; 2029 lex(); 2030 if (expectAndConsume(MIToken::lparen)) 2031 return true; 2032 if (Token.isNot(MIToken::Identifier)) 2033 return error("expected the name of the target flag"); 2034 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2035 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2036 return error("use of undefined target flag '" + Token.stringValue() + 2037 "'"); 2038 } 2039 lex(); 2040 while (Token.is(MIToken::comma)) { 2041 lex(); 2042 if (Token.isNot(MIToken::Identifier)) 2043 return error("expected the name of the target flag"); 2044 unsigned BitFlag = 0; 2045 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2046 return error("use of undefined target flag '" + Token.stringValue() + 2047 "'"); 2048 // TODO: Report an error when using a duplicate bit target flag. 2049 TF |= BitFlag; 2050 lex(); 2051 } 2052 if (expectAndConsume(MIToken::rparen)) 2053 return true; 2054 } 2055 auto Loc = Token.location(); 2056 if (parseMachineOperand(Dest, TiedDefIdx)) 2057 return true; 2058 if (!HasTargetFlags) 2059 return false; 2060 if (Dest.isReg()) 2061 return error(Loc, "register operands can't have target flags"); 2062 Dest.setTargetFlags(TF); 2063 return false; 2064 } 2065 2066 bool MIParser::parseOffset(int64_t &Offset) { 2067 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2068 return false; 2069 StringRef Sign = Token.range(); 2070 bool IsNegative = Token.is(MIToken::minus); 2071 lex(); 2072 if (Token.isNot(MIToken::IntegerLiteral)) 2073 return error("expected an integer literal after '" + Sign + "'"); 2074 if (Token.integerValue().getMinSignedBits() > 64) 2075 return error("expected 64-bit integer (too large)"); 2076 Offset = Token.integerValue().getExtValue(); 2077 if (IsNegative) 2078 Offset = -Offset; 2079 lex(); 2080 return false; 2081 } 2082 2083 bool MIParser::parseAlignment(unsigned &Alignment) { 2084 assert(Token.is(MIToken::kw_align)); 2085 lex(); 2086 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2087 return error("expected an integer literal after 'align'"); 2088 if (getUnsigned(Alignment)) 2089 return true; 2090 lex(); 2091 return false; 2092 } 2093 2094 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2095 int64_t Offset = 0; 2096 if (parseOffset(Offset)) 2097 return true; 2098 Op.setOffset(Offset); 2099 return false; 2100 } 2101 2102 bool MIParser::parseIRValue(const Value *&V) { 2103 switch (Token.kind()) { 2104 case MIToken::NamedIRValue: { 2105 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2106 break; 2107 } 2108 case MIToken::IRValue: { 2109 unsigned SlotNumber = 0; 2110 if (getUnsigned(SlotNumber)) 2111 return true; 2112 V = getIRValue(SlotNumber); 2113 break; 2114 } 2115 case MIToken::NamedGlobalValue: 2116 case MIToken::GlobalValue: { 2117 GlobalValue *GV = nullptr; 2118 if (parseGlobalValue(GV)) 2119 return true; 2120 V = GV; 2121 break; 2122 } 2123 case MIToken::QuotedIRValue: { 2124 const Constant *C = nullptr; 2125 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2126 return true; 2127 V = C; 2128 break; 2129 } 2130 default: 2131 llvm_unreachable("The current token should be an IR block reference"); 2132 } 2133 if (!V) 2134 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2135 return false; 2136 } 2137 2138 bool MIParser::getUint64(uint64_t &Result) { 2139 if (Token.hasIntegerValue()) { 2140 if (Token.integerValue().getActiveBits() > 64) 2141 return error("expected 64-bit integer (too large)"); 2142 Result = Token.integerValue().getZExtValue(); 2143 return false; 2144 } 2145 if (Token.is(MIToken::HexLiteral)) { 2146 APInt A; 2147 if (getHexUint(A)) 2148 return true; 2149 if (A.getBitWidth() > 64) 2150 return error("expected 64-bit integer (too large)"); 2151 Result = A.getZExtValue(); 2152 return false; 2153 } 2154 return true; 2155 } 2156 2157 bool MIParser::getHexUint(APInt &Result) { 2158 assert(Token.is(MIToken::HexLiteral)); 2159 StringRef S = Token.range(); 2160 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2161 // This could be a floating point literal with a special prefix. 2162 if (!isxdigit(S[2])) 2163 return true; 2164 StringRef V = S.substr(2); 2165 APInt A(V.size()*4, V, 16); 2166 2167 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2168 // sure it isn't the case before constructing result. 2169 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2170 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2171 return false; 2172 } 2173 2174 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2175 const auto OldFlags = Flags; 2176 switch (Token.kind()) { 2177 case MIToken::kw_volatile: 2178 Flags |= MachineMemOperand::MOVolatile; 2179 break; 2180 case MIToken::kw_non_temporal: 2181 Flags |= MachineMemOperand::MONonTemporal; 2182 break; 2183 case MIToken::kw_dereferenceable: 2184 Flags |= MachineMemOperand::MODereferenceable; 2185 break; 2186 case MIToken::kw_invariant: 2187 Flags |= MachineMemOperand::MOInvariant; 2188 break; 2189 case MIToken::StringConstant: { 2190 MachineMemOperand::Flags TF; 2191 if (getMMOTargetFlag(Token.stringValue(), TF)) 2192 return error("use of undefined target MMO flag '" + Token.stringValue() + 2193 "'"); 2194 Flags |= TF; 2195 break; 2196 } 2197 default: 2198 llvm_unreachable("The current token should be a memory operand flag"); 2199 } 2200 if (OldFlags == Flags) 2201 // We know that the same flag is specified more than once when the flags 2202 // weren't modified. 2203 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2204 lex(); 2205 return false; 2206 } 2207 2208 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2209 switch (Token.kind()) { 2210 case MIToken::kw_stack: 2211 PSV = MF.getPSVManager().getStack(); 2212 break; 2213 case MIToken::kw_got: 2214 PSV = MF.getPSVManager().getGOT(); 2215 break; 2216 case MIToken::kw_jump_table: 2217 PSV = MF.getPSVManager().getJumpTable(); 2218 break; 2219 case MIToken::kw_constant_pool: 2220 PSV = MF.getPSVManager().getConstantPool(); 2221 break; 2222 case MIToken::FixedStackObject: { 2223 int FI; 2224 if (parseFixedStackFrameIndex(FI)) 2225 return true; 2226 PSV = MF.getPSVManager().getFixedStack(FI); 2227 // The token was already consumed, so use return here instead of break. 2228 return false; 2229 } 2230 case MIToken::StackObject: { 2231 int FI; 2232 if (parseStackFrameIndex(FI)) 2233 return true; 2234 PSV = MF.getPSVManager().getFixedStack(FI); 2235 // The token was already consumed, so use return here instead of break. 2236 return false; 2237 } 2238 case MIToken::kw_call_entry: 2239 lex(); 2240 switch (Token.kind()) { 2241 case MIToken::GlobalValue: 2242 case MIToken::NamedGlobalValue: { 2243 GlobalValue *GV = nullptr; 2244 if (parseGlobalValue(GV)) 2245 return true; 2246 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2247 break; 2248 } 2249 case MIToken::ExternalSymbol: 2250 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2251 MF.createExternalSymbolName(Token.stringValue())); 2252 break; 2253 default: 2254 return error( 2255 "expected a global value or an external symbol after 'call-entry'"); 2256 } 2257 break; 2258 default: 2259 llvm_unreachable("The current token should be pseudo source value"); 2260 } 2261 lex(); 2262 return false; 2263 } 2264 2265 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2266 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2267 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2268 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2269 Token.is(MIToken::kw_call_entry)) { 2270 const PseudoSourceValue *PSV = nullptr; 2271 if (parseMemoryPseudoSourceValue(PSV)) 2272 return true; 2273 int64_t Offset = 0; 2274 if (parseOffset(Offset)) 2275 return true; 2276 Dest = MachinePointerInfo(PSV, Offset); 2277 return false; 2278 } 2279 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2280 Token.isNot(MIToken::GlobalValue) && 2281 Token.isNot(MIToken::NamedGlobalValue) && 2282 Token.isNot(MIToken::QuotedIRValue)) 2283 return error("expected an IR value reference"); 2284 const Value *V = nullptr; 2285 if (parseIRValue(V)) 2286 return true; 2287 if (!V->getType()->isPointerTy()) 2288 return error("expected a pointer IR value"); 2289 lex(); 2290 int64_t Offset = 0; 2291 if (parseOffset(Offset)) 2292 return true; 2293 Dest = MachinePointerInfo(V, Offset); 2294 return false; 2295 } 2296 2297 bool MIParser::parseOptionalScope(LLVMContext &Context, 2298 SyncScope::ID &SSID) { 2299 SSID = SyncScope::System; 2300 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2301 lex(); 2302 if (expectAndConsume(MIToken::lparen)) 2303 return error("expected '(' in syncscope"); 2304 2305 std::string SSN; 2306 if (parseStringConstant(SSN)) 2307 return true; 2308 2309 SSID = Context.getOrInsertSyncScopeID(SSN); 2310 if (expectAndConsume(MIToken::rparen)) 2311 return error("expected ')' in syncscope"); 2312 } 2313 2314 return false; 2315 } 2316 2317 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2318 Order = AtomicOrdering::NotAtomic; 2319 if (Token.isNot(MIToken::Identifier)) 2320 return false; 2321 2322 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2323 .Case("unordered", AtomicOrdering::Unordered) 2324 .Case("monotonic", AtomicOrdering::Monotonic) 2325 .Case("acquire", AtomicOrdering::Acquire) 2326 .Case("release", AtomicOrdering::Release) 2327 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2328 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2329 .Default(AtomicOrdering::NotAtomic); 2330 2331 if (Order != AtomicOrdering::NotAtomic) { 2332 lex(); 2333 return false; 2334 } 2335 2336 return error("expected an atomic scope, ordering or a size integer literal"); 2337 } 2338 2339 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2340 if (expectAndConsume(MIToken::lparen)) 2341 return true; 2342 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2343 while (Token.isMemoryOperandFlag()) { 2344 if (parseMemoryOperandFlag(Flags)) 2345 return true; 2346 } 2347 if (Token.isNot(MIToken::Identifier) || 2348 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2349 return error("expected 'load' or 'store' memory operation"); 2350 if (Token.stringValue() == "load") 2351 Flags |= MachineMemOperand::MOLoad; 2352 else 2353 Flags |= MachineMemOperand::MOStore; 2354 lex(); 2355 2356 // Optional 'store' for operands that both load and store. 2357 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2358 Flags |= MachineMemOperand::MOStore; 2359 lex(); 2360 } 2361 2362 // Optional synchronization scope. 2363 SyncScope::ID SSID; 2364 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2365 return true; 2366 2367 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2368 AtomicOrdering Order, FailureOrder; 2369 if (parseOptionalAtomicOrdering(Order)) 2370 return true; 2371 2372 if (parseOptionalAtomicOrdering(FailureOrder)) 2373 return true; 2374 2375 if (Token.isNot(MIToken::IntegerLiteral)) 2376 return error("expected the size integer literal after memory operation"); 2377 uint64_t Size; 2378 if (getUint64(Size)) 2379 return true; 2380 lex(); 2381 2382 MachinePointerInfo Ptr = MachinePointerInfo(); 2383 if (Token.is(MIToken::Identifier)) { 2384 const char *Word = 2385 ((Flags & MachineMemOperand::MOLoad) && 2386 (Flags & MachineMemOperand::MOStore)) 2387 ? "on" 2388 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2389 if (Token.stringValue() != Word) 2390 return error(Twine("expected '") + Word + "'"); 2391 lex(); 2392 2393 if (parseMachinePointerInfo(Ptr)) 2394 return true; 2395 } 2396 unsigned BaseAlignment = Size; 2397 AAMDNodes AAInfo; 2398 MDNode *Range = nullptr; 2399 while (consumeIfPresent(MIToken::comma)) { 2400 switch (Token.kind()) { 2401 case MIToken::kw_align: 2402 if (parseAlignment(BaseAlignment)) 2403 return true; 2404 break; 2405 case MIToken::md_tbaa: 2406 lex(); 2407 if (parseMDNode(AAInfo.TBAA)) 2408 return true; 2409 break; 2410 case MIToken::md_alias_scope: 2411 lex(); 2412 if (parseMDNode(AAInfo.Scope)) 2413 return true; 2414 break; 2415 case MIToken::md_noalias: 2416 lex(); 2417 if (parseMDNode(AAInfo.NoAlias)) 2418 return true; 2419 break; 2420 case MIToken::md_range: 2421 lex(); 2422 if (parseMDNode(Range)) 2423 return true; 2424 break; 2425 // TODO: Report an error on duplicate metadata nodes. 2426 default: 2427 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2428 "'!noalias' or '!range'"); 2429 } 2430 } 2431 if (expectAndConsume(MIToken::rparen)) 2432 return true; 2433 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2434 SSID, Order, FailureOrder); 2435 return false; 2436 } 2437 2438 void MIParser::initNames2InstrOpCodes() { 2439 if (!Names2InstrOpCodes.empty()) 2440 return; 2441 const auto *TII = MF.getSubtarget().getInstrInfo(); 2442 assert(TII && "Expected target instruction info"); 2443 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2444 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2445 } 2446 2447 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2448 initNames2InstrOpCodes(); 2449 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2450 if (InstrInfo == Names2InstrOpCodes.end()) 2451 return true; 2452 OpCode = InstrInfo->getValue(); 2453 return false; 2454 } 2455 2456 void MIParser::initNames2Regs() { 2457 if (!Names2Regs.empty()) 2458 return; 2459 // The '%noreg' register is the register 0. 2460 Names2Regs.insert(std::make_pair("noreg", 0)); 2461 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2462 assert(TRI && "Expected target register info"); 2463 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2464 bool WasInserted = 2465 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2466 .second; 2467 (void)WasInserted; 2468 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2469 } 2470 } 2471 2472 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2473 initNames2Regs(); 2474 auto RegInfo = Names2Regs.find(RegName); 2475 if (RegInfo == Names2Regs.end()) 2476 return true; 2477 Reg = RegInfo->getValue(); 2478 return false; 2479 } 2480 2481 void MIParser::initNames2RegMasks() { 2482 if (!Names2RegMasks.empty()) 2483 return; 2484 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2485 assert(TRI && "Expected target register info"); 2486 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2487 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2488 assert(RegMasks.size() == RegMaskNames.size()); 2489 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2490 Names2RegMasks.insert( 2491 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2492 } 2493 2494 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2495 initNames2RegMasks(); 2496 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2497 if (RegMaskInfo == Names2RegMasks.end()) 2498 return nullptr; 2499 return RegMaskInfo->getValue(); 2500 } 2501 2502 void MIParser::initNames2SubRegIndices() { 2503 if (!Names2SubRegIndices.empty()) 2504 return; 2505 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2506 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2507 Names2SubRegIndices.insert( 2508 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2509 } 2510 2511 unsigned MIParser::getSubRegIndex(StringRef Name) { 2512 initNames2SubRegIndices(); 2513 auto SubRegInfo = Names2SubRegIndices.find(Name); 2514 if (SubRegInfo == Names2SubRegIndices.end()) 2515 return 0; 2516 return SubRegInfo->getValue(); 2517 } 2518 2519 static void initSlots2BasicBlocks( 2520 const Function &F, 2521 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2522 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2523 MST.incorporateFunction(F); 2524 for (auto &BB : F) { 2525 if (BB.hasName()) 2526 continue; 2527 int Slot = MST.getLocalSlot(&BB); 2528 if (Slot == -1) 2529 continue; 2530 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2531 } 2532 } 2533 2534 static const BasicBlock *getIRBlockFromSlot( 2535 unsigned Slot, 2536 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2537 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2538 if (BlockInfo == Slots2BasicBlocks.end()) 2539 return nullptr; 2540 return BlockInfo->second; 2541 } 2542 2543 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2544 if (Slots2BasicBlocks.empty()) 2545 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2546 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2547 } 2548 2549 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2550 if (&F == &MF.getFunction()) 2551 return getIRBlock(Slot); 2552 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2553 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2554 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2555 } 2556 2557 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2558 DenseMap<unsigned, const Value *> &Slots2Values) { 2559 int Slot = MST.getLocalSlot(V); 2560 if (Slot == -1) 2561 return; 2562 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2563 } 2564 2565 /// Creates the mapping from slot numbers to function's unnamed IR values. 2566 static void initSlots2Values(const Function &F, 2567 DenseMap<unsigned, const Value *> &Slots2Values) { 2568 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2569 MST.incorporateFunction(F); 2570 for (const auto &Arg : F.args()) 2571 mapValueToSlot(&Arg, MST, Slots2Values); 2572 for (const auto &BB : F) { 2573 mapValueToSlot(&BB, MST, Slots2Values); 2574 for (const auto &I : BB) 2575 mapValueToSlot(&I, MST, Slots2Values); 2576 } 2577 } 2578 2579 const Value *MIParser::getIRValue(unsigned Slot) { 2580 if (Slots2Values.empty()) 2581 initSlots2Values(MF.getFunction(), Slots2Values); 2582 auto ValueInfo = Slots2Values.find(Slot); 2583 if (ValueInfo == Slots2Values.end()) 2584 return nullptr; 2585 return ValueInfo->second; 2586 } 2587 2588 void MIParser::initNames2TargetIndices() { 2589 if (!Names2TargetIndices.empty()) 2590 return; 2591 const auto *TII = MF.getSubtarget().getInstrInfo(); 2592 assert(TII && "Expected target instruction info"); 2593 auto Indices = TII->getSerializableTargetIndices(); 2594 for (const auto &I : Indices) 2595 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2596 } 2597 2598 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2599 initNames2TargetIndices(); 2600 auto IndexInfo = Names2TargetIndices.find(Name); 2601 if (IndexInfo == Names2TargetIndices.end()) 2602 return true; 2603 Index = IndexInfo->second; 2604 return false; 2605 } 2606 2607 void MIParser::initNames2DirectTargetFlags() { 2608 if (!Names2DirectTargetFlags.empty()) 2609 return; 2610 const auto *TII = MF.getSubtarget().getInstrInfo(); 2611 assert(TII && "Expected target instruction info"); 2612 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2613 for (const auto &I : Flags) 2614 Names2DirectTargetFlags.insert( 2615 std::make_pair(StringRef(I.second), I.first)); 2616 } 2617 2618 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2619 initNames2DirectTargetFlags(); 2620 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2621 if (FlagInfo == Names2DirectTargetFlags.end()) 2622 return true; 2623 Flag = FlagInfo->second; 2624 return false; 2625 } 2626 2627 void MIParser::initNames2BitmaskTargetFlags() { 2628 if (!Names2BitmaskTargetFlags.empty()) 2629 return; 2630 const auto *TII = MF.getSubtarget().getInstrInfo(); 2631 assert(TII && "Expected target instruction info"); 2632 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2633 for (const auto &I : Flags) 2634 Names2BitmaskTargetFlags.insert( 2635 std::make_pair(StringRef(I.second), I.first)); 2636 } 2637 2638 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2639 initNames2BitmaskTargetFlags(); 2640 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2641 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2642 return true; 2643 Flag = FlagInfo->second; 2644 return false; 2645 } 2646 2647 void MIParser::initNames2MMOTargetFlags() { 2648 if (!Names2MMOTargetFlags.empty()) 2649 return; 2650 const auto *TII = MF.getSubtarget().getInstrInfo(); 2651 assert(TII && "Expected target instruction info"); 2652 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2653 for (const auto &I : Flags) 2654 Names2MMOTargetFlags.insert( 2655 std::make_pair(StringRef(I.second), I.first)); 2656 } 2657 2658 bool MIParser::getMMOTargetFlag(StringRef Name, 2659 MachineMemOperand::Flags &Flag) { 2660 initNames2MMOTargetFlags(); 2661 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2662 if (FlagInfo == Names2MMOTargetFlags.end()) 2663 return true; 2664 Flag = FlagInfo->second; 2665 return false; 2666 } 2667 2668 bool MIParser::parseStringConstant(std::string &Result) { 2669 if (Token.isNot(MIToken::StringConstant)) 2670 return error("expected string constant"); 2671 Result = Token.stringValue(); 2672 lex(); 2673 return false; 2674 } 2675 2676 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2677 StringRef Src, 2678 SMDiagnostic &Error) { 2679 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2680 } 2681 2682 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2683 StringRef Src, SMDiagnostic &Error) { 2684 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2685 } 2686 2687 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2688 MachineBasicBlock *&MBB, StringRef Src, 2689 SMDiagnostic &Error) { 2690 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2691 } 2692 2693 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2694 unsigned &Reg, StringRef Src, 2695 SMDiagnostic &Error) { 2696 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2697 } 2698 2699 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2700 unsigned &Reg, StringRef Src, 2701 SMDiagnostic &Error) { 2702 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2703 } 2704 2705 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2706 VRegInfo *&Info, StringRef Src, 2707 SMDiagnostic &Error) { 2708 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2709 } 2710 2711 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2712 int &FI, StringRef Src, 2713 SMDiagnostic &Error) { 2714 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2715 } 2716 2717 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2718 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2719 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2720 } 2721