1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cctype>
40 
41 using namespace llvm;
42 
43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
44     SourceMgr &SM, const SlotMapping &IRSlots)
45   : MF(MF), SM(&SM), IRSlots(IRSlots) {
46 }
47 
48 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
49   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
50   if (I.second) {
51     MachineRegisterInfo &MRI = MF.getRegInfo();
52     VRegInfo *Info = new (Allocator) VRegInfo;
53     Info->VReg = MRI.createIncompleteVirtualRegister();
54     I.first->second = Info;
55   }
56   return *I.first->second;
57 }
58 
59 namespace {
60 
61 /// A wrapper struct around the 'MachineOperand' struct that includes a source
62 /// range and other attributes.
63 struct ParsedMachineOperand {
64   MachineOperand Operand;
65   StringRef::iterator Begin;
66   StringRef::iterator End;
67   Optional<unsigned> TiedDefIdx;
68 
69   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
70                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
71       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
72     if (TiedDefIdx)
73       assert(Operand.isReg() && Operand.isUse() &&
74              "Only used register operands can be tied");
75   }
76 };
77 
78 class MIParser {
79   MachineFunction &MF;
80   SMDiagnostic &Error;
81   StringRef Source, CurrentSource;
82   MIToken Token;
83   PerFunctionMIParsingState &PFS;
84   /// Maps from instruction names to op codes.
85   StringMap<unsigned> Names2InstrOpCodes;
86   /// Maps from register names to registers.
87   StringMap<unsigned> Names2Regs;
88   /// Maps from register mask names to register masks.
89   StringMap<const uint32_t *> Names2RegMasks;
90   /// Maps from subregister names to subregister indices.
91   StringMap<unsigned> Names2SubRegIndices;
92   /// Maps from slot numbers to function's unnamed basic blocks.
93   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
94   /// Maps from slot numbers to function's unnamed values.
95   DenseMap<unsigned, const Value *> Slots2Values;
96   /// Maps from target index names to target indices.
97   StringMap<int> Names2TargetIndices;
98   /// Maps from direct target flag names to the direct target flag values.
99   StringMap<unsigned> Names2DirectTargetFlags;
100   /// Maps from direct target flag names to the bitmask target flag values.
101   StringMap<unsigned> Names2BitmaskTargetFlags;
102 
103 public:
104   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
105            StringRef Source);
106 
107   /// \p SkipChar gives the number of characters to skip before looking
108   /// for the next token.
109   void lex(unsigned SkipChar = 0);
110 
111   /// Report an error at the current location with the given message.
112   ///
113   /// This function always return true.
114   bool error(const Twine &Msg);
115 
116   /// Report an error at the given location with the given message.
117   ///
118   /// This function always return true.
119   bool error(StringRef::iterator Loc, const Twine &Msg);
120 
121   bool
122   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
123   bool parseBasicBlocks();
124   bool parse(MachineInstr *&MI);
125   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
126   bool parseStandaloneNamedRegister(unsigned &Reg);
127   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
128   bool parseStandaloneRegister(unsigned &Reg);
129   bool parseStandaloneStackObject(int &FI);
130   bool parseStandaloneMDNode(MDNode *&Node);
131 
132   bool
133   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
134   bool parseBasicBlock(MachineBasicBlock &MBB);
135   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
136   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
137 
138   bool parseNamedRegister(unsigned &Reg);
139   bool parseVirtualRegister(VRegInfo *&Info);
140   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
141   bool parseRegisterFlag(unsigned &Flags);
142   bool parseSubRegisterIndex(unsigned &SubReg);
143   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
144   bool parseRegisterOperand(MachineOperand &Dest,
145                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
146   bool parseImmediateOperand(MachineOperand &Dest);
147   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
148                        const Constant *&C);
149   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
150   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
151   bool parseTypedImmediateOperand(MachineOperand &Dest);
152   bool parseFPImmediateOperand(MachineOperand &Dest);
153   bool parseMBBReference(MachineBasicBlock *&MBB);
154   bool parseMBBOperand(MachineOperand &Dest);
155   bool parseStackFrameIndex(int &FI);
156   bool parseStackObjectOperand(MachineOperand &Dest);
157   bool parseFixedStackFrameIndex(int &FI);
158   bool parseFixedStackObjectOperand(MachineOperand &Dest);
159   bool parseGlobalValue(GlobalValue *&GV);
160   bool parseGlobalAddressOperand(MachineOperand &Dest);
161   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
162   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
163   bool parseJumpTableIndexOperand(MachineOperand &Dest);
164   bool parseExternalSymbolOperand(MachineOperand &Dest);
165   bool parseMDNode(MDNode *&Node);
166   bool parseMetadataOperand(MachineOperand &Dest);
167   bool parseCFIOffset(int &Offset);
168   bool parseCFIRegister(unsigned &Reg);
169   bool parseCFIOperand(MachineOperand &Dest);
170   bool parseIRBlock(BasicBlock *&BB, const Function &F);
171   bool parseBlockAddressOperand(MachineOperand &Dest);
172   bool parseIntrinsicOperand(MachineOperand &Dest);
173   bool parsePredicateOperand(MachineOperand &Dest);
174   bool parseTargetIndexOperand(MachineOperand &Dest);
175   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
176   bool parseMachineOperand(MachineOperand &Dest,
177                            Optional<unsigned> &TiedDefIdx);
178   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
179                                          Optional<unsigned> &TiedDefIdx);
180   bool parseOffset(int64_t &Offset);
181   bool parseAlignment(unsigned &Alignment);
182   bool parseOperandsOffset(MachineOperand &Op);
183   bool parseIRValue(const Value *&V);
184   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
185   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
186   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
187   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
188 
189 private:
190   /// Convert the integer literal in the current token into an unsigned integer.
191   ///
192   /// Return true if an error occurred.
193   bool getUnsigned(unsigned &Result);
194 
195   /// Convert the integer literal in the current token into an uint64.
196   ///
197   /// Return true if an error occurred.
198   bool getUint64(uint64_t &Result);
199 
200   /// If the current token is of the given kind, consume it and return false.
201   /// Otherwise report an error and return true.
202   bool expectAndConsume(MIToken::TokenKind TokenKind);
203 
204   /// If the current token is of the given kind, consume it and return true.
205   /// Otherwise return false.
206   bool consumeIfPresent(MIToken::TokenKind TokenKind);
207 
208   void initNames2InstrOpCodes();
209 
210   /// Try to convert an instruction name to an opcode. Return true if the
211   /// instruction name is invalid.
212   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
213 
214   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
215 
216   bool assignRegisterTies(MachineInstr &MI,
217                           ArrayRef<ParsedMachineOperand> Operands);
218 
219   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
220                               const MCInstrDesc &MCID);
221 
222   void initNames2Regs();
223 
224   /// Try to convert a register name to a register number. Return true if the
225   /// register name is invalid.
226   bool getRegisterByName(StringRef RegName, unsigned &Reg);
227 
228   void initNames2RegMasks();
229 
230   /// Check if the given identifier is a name of a register mask.
231   ///
232   /// Return null if the identifier isn't a register mask.
233   const uint32_t *getRegMask(StringRef Identifier);
234 
235   void initNames2SubRegIndices();
236 
237   /// Check if the given identifier is a name of a subregister index.
238   ///
239   /// Return 0 if the name isn't a subregister index class.
240   unsigned getSubRegIndex(StringRef Name);
241 
242   const BasicBlock *getIRBlock(unsigned Slot);
243   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
244 
245   const Value *getIRValue(unsigned Slot);
246 
247   void initNames2TargetIndices();
248 
249   /// Try to convert a name of target index to the corresponding target index.
250   ///
251   /// Return true if the name isn't a name of a target index.
252   bool getTargetIndex(StringRef Name, int &Index);
253 
254   void initNames2DirectTargetFlags();
255 
256   /// Try to convert a name of a direct target flag to the corresponding
257   /// target flag.
258   ///
259   /// Return true if the name isn't a name of a direct flag.
260   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
261 
262   void initNames2BitmaskTargetFlags();
263 
264   /// Try to convert a name of a bitmask target flag to the corresponding
265   /// target flag.
266   ///
267   /// Return true if the name isn't a name of a bitmask target flag.
268   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
269 };
270 
271 } // end anonymous namespace
272 
273 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
274                    StringRef Source)
275     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
276 {}
277 
278 void MIParser::lex(unsigned SkipChar) {
279   CurrentSource = lexMIToken(
280       CurrentSource.data() + SkipChar, Token,
281       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
282 }
283 
284 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
285 
286 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
287   const SourceMgr &SM = *PFS.SM;
288   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
289   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
290   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
291     // Create an ordinary diagnostic when the source manager's buffer is the
292     // source string.
293     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
294     return true;
295   }
296   // Create a diagnostic for a YAML string literal.
297   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
298                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
299                        Source, None, None);
300   return true;
301 }
302 
303 static const char *toString(MIToken::TokenKind TokenKind) {
304   switch (TokenKind) {
305   case MIToken::comma:
306     return "','";
307   case MIToken::equal:
308     return "'='";
309   case MIToken::colon:
310     return "':'";
311   case MIToken::lparen:
312     return "'('";
313   case MIToken::rparen:
314     return "')'";
315   default:
316     return "<unknown token>";
317   }
318 }
319 
320 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
321   if (Token.isNot(TokenKind))
322     return error(Twine("expected ") + toString(TokenKind));
323   lex();
324   return false;
325 }
326 
327 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
328   if (Token.isNot(TokenKind))
329     return false;
330   lex();
331   return true;
332 }
333 
334 bool MIParser::parseBasicBlockDefinition(
335     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
336   assert(Token.is(MIToken::MachineBasicBlockLabel));
337   unsigned ID = 0;
338   if (getUnsigned(ID))
339     return true;
340   auto Loc = Token.location();
341   auto Name = Token.stringValue();
342   lex();
343   bool HasAddressTaken = false;
344   bool IsLandingPad = false;
345   unsigned Alignment = 0;
346   BasicBlock *BB = nullptr;
347   if (consumeIfPresent(MIToken::lparen)) {
348     do {
349       // TODO: Report an error when multiple same attributes are specified.
350       switch (Token.kind()) {
351       case MIToken::kw_address_taken:
352         HasAddressTaken = true;
353         lex();
354         break;
355       case MIToken::kw_landing_pad:
356         IsLandingPad = true;
357         lex();
358         break;
359       case MIToken::kw_align:
360         if (parseAlignment(Alignment))
361           return true;
362         break;
363       case MIToken::IRBlock:
364         // TODO: Report an error when both name and ir block are specified.
365         if (parseIRBlock(BB, *MF.getFunction()))
366           return true;
367         lex();
368         break;
369       default:
370         break;
371       }
372     } while (consumeIfPresent(MIToken::comma));
373     if (expectAndConsume(MIToken::rparen))
374       return true;
375   }
376   if (expectAndConsume(MIToken::colon))
377     return true;
378 
379   if (!Name.empty()) {
380     BB = dyn_cast_or_null<BasicBlock>(
381         MF.getFunction()->getValueSymbolTable()->lookup(Name));
382     if (!BB)
383       return error(Loc, Twine("basic block '") + Name +
384                             "' is not defined in the function '" +
385                             MF.getName() + "'");
386   }
387   auto *MBB = MF.CreateMachineBasicBlock(BB);
388   MF.insert(MF.end(), MBB);
389   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
390   if (!WasInserted)
391     return error(Loc, Twine("redefinition of machine basic block with id #") +
392                           Twine(ID));
393   if (Alignment)
394     MBB->setAlignment(Alignment);
395   if (HasAddressTaken)
396     MBB->setHasAddressTaken();
397   MBB->setIsEHPad(IsLandingPad);
398   return false;
399 }
400 
401 bool MIParser::parseBasicBlockDefinitions(
402     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
403   lex();
404   // Skip until the first machine basic block.
405   while (Token.is(MIToken::Newline))
406     lex();
407   if (Token.isErrorOrEOF())
408     return Token.isError();
409   if (Token.isNot(MIToken::MachineBasicBlockLabel))
410     return error("expected a basic block definition before instructions");
411   unsigned BraceDepth = 0;
412   do {
413     if (parseBasicBlockDefinition(MBBSlots))
414       return true;
415     bool IsAfterNewline = false;
416     // Skip until the next machine basic block.
417     while (true) {
418       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
419           Token.isErrorOrEOF())
420         break;
421       else if (Token.is(MIToken::MachineBasicBlockLabel))
422         return error("basic block definition should be located at the start of "
423                      "the line");
424       else if (consumeIfPresent(MIToken::Newline)) {
425         IsAfterNewline = true;
426         continue;
427       }
428       IsAfterNewline = false;
429       if (Token.is(MIToken::lbrace))
430         ++BraceDepth;
431       if (Token.is(MIToken::rbrace)) {
432         if (!BraceDepth)
433           return error("extraneous closing brace ('}')");
434         --BraceDepth;
435       }
436       lex();
437     }
438     // Verify that we closed all of the '{' at the end of a file or a block.
439     if (!Token.isError() && BraceDepth)
440       return error("expected '}'"); // FIXME: Report a note that shows '{'.
441   } while (!Token.isErrorOrEOF());
442   return Token.isError();
443 }
444 
445 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
446   assert(Token.is(MIToken::kw_liveins));
447   lex();
448   if (expectAndConsume(MIToken::colon))
449     return true;
450   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
451     return false;
452   do {
453     if (Token.isNot(MIToken::NamedRegister))
454       return error("expected a named register");
455     unsigned Reg = 0;
456     if (parseNamedRegister(Reg))
457       return true;
458     lex();
459     LaneBitmask Mask = ~LaneBitmask(0);
460     if (consumeIfPresent(MIToken::colon)) {
461       // Parse lane mask.
462       if (Token.isNot(MIToken::IntegerLiteral) &&
463           Token.isNot(MIToken::HexLiteral))
464         return error("expected a lane mask");
465       static_assert(sizeof(LaneBitmask) == sizeof(unsigned), "");
466       if (getUnsigned(Mask))
467         return error("invalid lane mask value");
468       lex();
469     }
470     MBB.addLiveIn(Reg, Mask);
471   } while (consumeIfPresent(MIToken::comma));
472   return false;
473 }
474 
475 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
476   assert(Token.is(MIToken::kw_successors));
477   lex();
478   if (expectAndConsume(MIToken::colon))
479     return true;
480   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
481     return false;
482   do {
483     if (Token.isNot(MIToken::MachineBasicBlock))
484       return error("expected a machine basic block reference");
485     MachineBasicBlock *SuccMBB = nullptr;
486     if (parseMBBReference(SuccMBB))
487       return true;
488     lex();
489     unsigned Weight = 0;
490     if (consumeIfPresent(MIToken::lparen)) {
491       if (Token.isNot(MIToken::IntegerLiteral) &&
492           Token.isNot(MIToken::HexLiteral))
493         return error("expected an integer literal after '('");
494       if (getUnsigned(Weight))
495         return true;
496       lex();
497       if (expectAndConsume(MIToken::rparen))
498         return true;
499     }
500     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
501   } while (consumeIfPresent(MIToken::comma));
502   MBB.normalizeSuccProbs();
503   return false;
504 }
505 
506 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
507   // Skip the definition.
508   assert(Token.is(MIToken::MachineBasicBlockLabel));
509   lex();
510   if (consumeIfPresent(MIToken::lparen)) {
511     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
512       lex();
513     consumeIfPresent(MIToken::rparen);
514   }
515   consumeIfPresent(MIToken::colon);
516 
517   // Parse the liveins and successors.
518   // N.B: Multiple lists of successors and liveins are allowed and they're
519   // merged into one.
520   // Example:
521   //   liveins: %edi
522   //   liveins: %esi
523   //
524   // is equivalent to
525   //   liveins: %edi, %esi
526   while (true) {
527     if (Token.is(MIToken::kw_successors)) {
528       if (parseBasicBlockSuccessors(MBB))
529         return true;
530     } else if (Token.is(MIToken::kw_liveins)) {
531       if (parseBasicBlockLiveins(MBB))
532         return true;
533     } else if (consumeIfPresent(MIToken::Newline)) {
534       continue;
535     } else
536       break;
537     if (!Token.isNewlineOrEOF())
538       return error("expected line break at the end of a list");
539     lex();
540   }
541 
542   // Parse the instructions.
543   bool IsInBundle = false;
544   MachineInstr *PrevMI = nullptr;
545   while (true) {
546     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
547       return false;
548     else if (consumeIfPresent(MIToken::Newline))
549       continue;
550     if (consumeIfPresent(MIToken::rbrace)) {
551       // The first parsing pass should verify that all closing '}' have an
552       // opening '{'.
553       assert(IsInBundle);
554       IsInBundle = false;
555       continue;
556     }
557     MachineInstr *MI = nullptr;
558     if (parse(MI))
559       return true;
560     MBB.insert(MBB.end(), MI);
561     if (IsInBundle) {
562       PrevMI->setFlag(MachineInstr::BundledSucc);
563       MI->setFlag(MachineInstr::BundledPred);
564     }
565     PrevMI = MI;
566     if (Token.is(MIToken::lbrace)) {
567       if (IsInBundle)
568         return error("nested instruction bundles are not allowed");
569       lex();
570       // This instruction is the start of the bundle.
571       MI->setFlag(MachineInstr::BundledSucc);
572       IsInBundle = true;
573       if (!Token.is(MIToken::Newline))
574         // The next instruction can be on the same line.
575         continue;
576     }
577     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
578     lex();
579   }
580   return false;
581 }
582 
583 bool MIParser::parseBasicBlocks() {
584   lex();
585   // Skip until the first machine basic block.
586   while (Token.is(MIToken::Newline))
587     lex();
588   if (Token.isErrorOrEOF())
589     return Token.isError();
590   // The first parsing pass should have verified that this token is a MBB label
591   // in the 'parseBasicBlockDefinitions' method.
592   assert(Token.is(MIToken::MachineBasicBlockLabel));
593   do {
594     MachineBasicBlock *MBB = nullptr;
595     if (parseMBBReference(MBB))
596       return true;
597     if (parseBasicBlock(*MBB))
598       return true;
599     // The method 'parseBasicBlock' should parse the whole block until the next
600     // block or the end of file.
601     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
602   } while (Token.isNot(MIToken::Eof));
603   return false;
604 }
605 
606 bool MIParser::parse(MachineInstr *&MI) {
607   // Parse any register operands before '='
608   MachineOperand MO = MachineOperand::CreateImm(0);
609   SmallVector<ParsedMachineOperand, 8> Operands;
610   while (Token.isRegister() || Token.isRegisterFlag()) {
611     auto Loc = Token.location();
612     Optional<unsigned> TiedDefIdx;
613     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
614       return true;
615     Operands.push_back(
616         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
617     if (Token.isNot(MIToken::comma))
618       break;
619     lex();
620   }
621   if (!Operands.empty() && expectAndConsume(MIToken::equal))
622     return true;
623 
624   unsigned OpCode, Flags = 0;
625   if (Token.isError() || parseInstruction(OpCode, Flags))
626     return true;
627 
628   // Parse the remaining machine operands.
629   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
630          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
631     auto Loc = Token.location();
632     Optional<unsigned> TiedDefIdx;
633     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
634       return true;
635     Operands.push_back(
636         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
637     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
638         Token.is(MIToken::lbrace))
639       break;
640     if (Token.isNot(MIToken::comma))
641       return error("expected ',' before the next machine operand");
642     lex();
643   }
644 
645   DebugLoc DebugLocation;
646   if (Token.is(MIToken::kw_debug_location)) {
647     lex();
648     if (Token.isNot(MIToken::exclaim))
649       return error("expected a metadata node after 'debug-location'");
650     MDNode *Node = nullptr;
651     if (parseMDNode(Node))
652       return true;
653     DebugLocation = DebugLoc(Node);
654   }
655 
656   // Parse the machine memory operands.
657   SmallVector<MachineMemOperand *, 2> MemOperands;
658   if (Token.is(MIToken::coloncolon)) {
659     lex();
660     while (!Token.isNewlineOrEOF()) {
661       MachineMemOperand *MemOp = nullptr;
662       if (parseMachineMemoryOperand(MemOp))
663         return true;
664       MemOperands.push_back(MemOp);
665       if (Token.isNewlineOrEOF())
666         break;
667       if (Token.isNot(MIToken::comma))
668         return error("expected ',' before the next machine memory operand");
669       lex();
670     }
671   }
672 
673   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
674   if (!MCID.isVariadic()) {
675     // FIXME: Move the implicit operand verification to the machine verifier.
676     if (verifyImplicitOperands(Operands, MCID))
677       return true;
678   }
679 
680   // TODO: Check for extraneous machine operands.
681   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
682   MI->setFlags(Flags);
683   for (const auto &Operand : Operands)
684     MI->addOperand(MF, Operand.Operand);
685   if (assignRegisterTies(*MI, Operands))
686     return true;
687   if (MemOperands.empty())
688     return false;
689   MachineInstr::mmo_iterator MemRefs =
690       MF.allocateMemRefsArray(MemOperands.size());
691   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
692   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
693   return false;
694 }
695 
696 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
697   lex();
698   if (Token.isNot(MIToken::MachineBasicBlock))
699     return error("expected a machine basic block reference");
700   if (parseMBBReference(MBB))
701     return true;
702   lex();
703   if (Token.isNot(MIToken::Eof))
704     return error(
705         "expected end of string after the machine basic block reference");
706   return false;
707 }
708 
709 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
710   lex();
711   if (Token.isNot(MIToken::NamedRegister))
712     return error("expected a named register");
713   if (parseNamedRegister(Reg))
714     return true;
715   lex();
716   if (Token.isNot(MIToken::Eof))
717     return error("expected end of string after the register reference");
718   return false;
719 }
720 
721 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
722   lex();
723   if (Token.isNot(MIToken::VirtualRegister))
724     return error("expected a virtual register");
725   if (parseVirtualRegister(Info))
726     return true;
727   lex();
728   if (Token.isNot(MIToken::Eof))
729     return error("expected end of string after the register reference");
730   return false;
731 }
732 
733 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
734   lex();
735   if (Token.isNot(MIToken::NamedRegister) &&
736       Token.isNot(MIToken::VirtualRegister))
737     return error("expected either a named or virtual register");
738 
739   VRegInfo *Info;
740   if (parseRegister(Reg, Info))
741     return true;
742 
743   lex();
744   if (Token.isNot(MIToken::Eof))
745     return error("expected end of string after the register reference");
746   return false;
747 }
748 
749 bool MIParser::parseStandaloneStackObject(int &FI) {
750   lex();
751   if (Token.isNot(MIToken::StackObject))
752     return error("expected a stack object");
753   if (parseStackFrameIndex(FI))
754     return true;
755   if (Token.isNot(MIToken::Eof))
756     return error("expected end of string after the stack object reference");
757   return false;
758 }
759 
760 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
761   lex();
762   if (Token.isNot(MIToken::exclaim))
763     return error("expected a metadata node");
764   if (parseMDNode(Node))
765     return true;
766   if (Token.isNot(MIToken::Eof))
767     return error("expected end of string after the metadata node");
768   return false;
769 }
770 
771 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
772   assert(MO.isImplicit());
773   return MO.isDef() ? "implicit-def" : "implicit";
774 }
775 
776 static std::string getRegisterName(const TargetRegisterInfo *TRI,
777                                    unsigned Reg) {
778   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
779   return StringRef(TRI->getName(Reg)).lower();
780 }
781 
782 /// Return true if the parsed machine operands contain a given machine operand.
783 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
784                                 ArrayRef<ParsedMachineOperand> Operands) {
785   for (const auto &I : Operands) {
786     if (ImplicitOperand.isIdenticalTo(I.Operand))
787       return true;
788   }
789   return false;
790 }
791 
792 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
793                                       const MCInstrDesc &MCID) {
794   if (MCID.isCall())
795     // We can't verify call instructions as they can contain arbitrary implicit
796     // register and register mask operands.
797     return false;
798 
799   // Gather all the expected implicit operands.
800   SmallVector<MachineOperand, 4> ImplicitOperands;
801   if (MCID.ImplicitDefs)
802     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
803       ImplicitOperands.push_back(
804           MachineOperand::CreateReg(*ImpDefs, true, true));
805   if (MCID.ImplicitUses)
806     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
807       ImplicitOperands.push_back(
808           MachineOperand::CreateReg(*ImpUses, false, true));
809 
810   const auto *TRI = MF.getSubtarget().getRegisterInfo();
811   assert(TRI && "Expected target register info");
812   for (const auto &I : ImplicitOperands) {
813     if (isImplicitOperandIn(I, Operands))
814       continue;
815     return error(Operands.empty() ? Token.location() : Operands.back().End,
816                  Twine("missing implicit register operand '") +
817                      printImplicitRegisterFlag(I) + " %" +
818                      getRegisterName(TRI, I.getReg()) + "'");
819   }
820   return false;
821 }
822 
823 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
824   if (Token.is(MIToken::kw_frame_setup)) {
825     Flags |= MachineInstr::FrameSetup;
826     lex();
827   }
828   if (Token.isNot(MIToken::Identifier))
829     return error("expected a machine instruction");
830   StringRef InstrName = Token.stringValue();
831   if (parseInstrName(InstrName, OpCode))
832     return error(Twine("unknown machine instruction name '") + InstrName + "'");
833   lex();
834   return false;
835 }
836 
837 bool MIParser::parseNamedRegister(unsigned &Reg) {
838   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
839   StringRef Name = Token.stringValue();
840   if (getRegisterByName(Name, Reg))
841     return error(Twine("unknown register name '") + Name + "'");
842   return false;
843 }
844 
845 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
846   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
847   unsigned ID;
848   if (getUnsigned(ID))
849     return true;
850   Info = &PFS.getVRegInfo(ID);
851   return false;
852 }
853 
854 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
855   switch (Token.kind()) {
856   case MIToken::underscore:
857     Reg = 0;
858     return false;
859   case MIToken::NamedRegister:
860     return parseNamedRegister(Reg);
861   case MIToken::VirtualRegister:
862     if (parseVirtualRegister(Info))
863       return true;
864     Reg = Info->VReg;
865     return false;
866   // TODO: Parse other register kinds.
867   default:
868     llvm_unreachable("The current token should be a register");
869   }
870 }
871 
872 bool MIParser::parseRegisterFlag(unsigned &Flags) {
873   const unsigned OldFlags = Flags;
874   switch (Token.kind()) {
875   case MIToken::kw_implicit:
876     Flags |= RegState::Implicit;
877     break;
878   case MIToken::kw_implicit_define:
879     Flags |= RegState::ImplicitDefine;
880     break;
881   case MIToken::kw_def:
882     Flags |= RegState::Define;
883     break;
884   case MIToken::kw_dead:
885     Flags |= RegState::Dead;
886     break;
887   case MIToken::kw_killed:
888     Flags |= RegState::Kill;
889     break;
890   case MIToken::kw_undef:
891     Flags |= RegState::Undef;
892     break;
893   case MIToken::kw_internal:
894     Flags |= RegState::InternalRead;
895     break;
896   case MIToken::kw_early_clobber:
897     Flags |= RegState::EarlyClobber;
898     break;
899   case MIToken::kw_debug_use:
900     Flags |= RegState::Debug;
901     break;
902   default:
903     llvm_unreachable("The current token should be a register flag");
904   }
905   if (OldFlags == Flags)
906     // We know that the same flag is specified more than once when the flags
907     // weren't modified.
908     return error("duplicate '" + Token.stringValue() + "' register flag");
909   lex();
910   return false;
911 }
912 
913 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
914   assert(Token.is(MIToken::dot));
915   lex();
916   if (Token.isNot(MIToken::Identifier))
917     return error("expected a subregister index after '.'");
918   auto Name = Token.stringValue();
919   SubReg = getSubRegIndex(Name);
920   if (!SubReg)
921     return error(Twine("use of unknown subregister index '") + Name + "'");
922   lex();
923   return false;
924 }
925 
926 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
927   if (!consumeIfPresent(MIToken::kw_tied_def))
928     return true;
929   if (Token.isNot(MIToken::IntegerLiteral))
930     return error("expected an integer literal after 'tied-def'");
931   if (getUnsigned(TiedDefIdx))
932     return true;
933   lex();
934   if (expectAndConsume(MIToken::rparen))
935     return true;
936   return false;
937 }
938 
939 bool MIParser::assignRegisterTies(MachineInstr &MI,
940                                   ArrayRef<ParsedMachineOperand> Operands) {
941   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
942   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
943     if (!Operands[I].TiedDefIdx)
944       continue;
945     // The parser ensures that this operand is a register use, so we just have
946     // to check the tied-def operand.
947     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
948     if (DefIdx >= E)
949       return error(Operands[I].Begin,
950                    Twine("use of invalid tied-def operand index '" +
951                          Twine(DefIdx) + "'; instruction has only ") +
952                        Twine(E) + " operands");
953     const auto &DefOperand = Operands[DefIdx].Operand;
954     if (!DefOperand.isReg() || !DefOperand.isDef())
955       // FIXME: add note with the def operand.
956       return error(Operands[I].Begin,
957                    Twine("use of invalid tied-def operand index '") +
958                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
959                        " isn't a defined register");
960     // Check that the tied-def operand wasn't tied elsewhere.
961     for (const auto &TiedPair : TiedRegisterPairs) {
962       if (TiedPair.first == DefIdx)
963         return error(Operands[I].Begin,
964                      Twine("the tied-def operand #") + Twine(DefIdx) +
965                          " is already tied with another register operand");
966     }
967     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
968   }
969   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
970   // indices must be less than tied max.
971   for (const auto &TiedPair : TiedRegisterPairs)
972     MI.tieOperands(TiedPair.first, TiedPair.second);
973   return false;
974 }
975 
976 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
977                                     Optional<unsigned> &TiedDefIdx,
978                                     bool IsDef) {
979   unsigned Flags = IsDef ? RegState::Define : 0;
980   while (Token.isRegisterFlag()) {
981     if (parseRegisterFlag(Flags))
982       return true;
983   }
984   if (!Token.isRegister())
985     return error("expected a register after register flags");
986   unsigned Reg;
987   VRegInfo *RegInfo;
988   if (parseRegister(Reg, RegInfo))
989     return true;
990   lex();
991   unsigned SubReg = 0;
992   if (Token.is(MIToken::dot)) {
993     if (parseSubRegisterIndex(SubReg))
994       return true;
995     if (!TargetRegisterInfo::isVirtualRegister(Reg))
996       return error("subregister index expects a virtual register");
997   }
998   MachineRegisterInfo &MRI = MF.getRegInfo();
999   if ((Flags & RegState::Define) == 0) {
1000     if (consumeIfPresent(MIToken::lparen)) {
1001       unsigned Idx;
1002       if (!parseRegisterTiedDefIndex(Idx))
1003         TiedDefIdx = Idx;
1004       else {
1005         // Try a redundant low-level type.
1006         LLT Ty;
1007         if (parseLowLevelType(Token.location(), Ty))
1008           return error("expected tied-def or low-level type after '('");
1009 
1010         if (expectAndConsume(MIToken::rparen))
1011           return true;
1012 
1013         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1014           return error("inconsistent type for generic virtual register");
1015 
1016         MRI.setType(Reg, Ty);
1017       }
1018     }
1019   } else if (consumeIfPresent(MIToken::lparen)) {
1020     // Virtual registers may have a size with GlobalISel.
1021     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1022       return error("unexpected size on physical register");
1023     if (RegInfo->Kind != VRegInfo::GENERIC &&
1024         RegInfo->Kind != VRegInfo::REGBANK)
1025       return error("unexpected size on non-generic virtual register");
1026 
1027     LLT Ty;
1028     if (parseLowLevelType(Token.location(), Ty))
1029       return true;
1030 
1031     if (expectAndConsume(MIToken::rparen))
1032       return true;
1033 
1034     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1035       return error("inconsistent type for generic virtual register");
1036 
1037     MRI.setType(Reg, Ty);
1038   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1039     // Generic virtual registers must have a size.
1040     // If we end up here this means the size hasn't been specified and
1041     // this is bad!
1042     if (RegInfo->Kind == VRegInfo::GENERIC ||
1043         RegInfo->Kind == VRegInfo::REGBANK)
1044       return error("generic virtual registers must have a size");
1045   }
1046   Dest = MachineOperand::CreateReg(
1047       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1048       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1049       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1050       Flags & RegState::InternalRead);
1051   return false;
1052 }
1053 
1054 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1055   assert(Token.is(MIToken::IntegerLiteral));
1056   const APSInt &Int = Token.integerValue();
1057   if (Int.getMinSignedBits() > 64)
1058     return error("integer literal is too large to be an immediate operand");
1059   Dest = MachineOperand::CreateImm(Int.getExtValue());
1060   lex();
1061   return false;
1062 }
1063 
1064 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1065                                const Constant *&C) {
1066   auto Source = StringValue.str(); // The source has to be null terminated.
1067   SMDiagnostic Err;
1068   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1069                          &PFS.IRSlots);
1070   if (!C)
1071     return error(Loc + Err.getColumnNo(), Err.getMessage());
1072   return false;
1073 }
1074 
1075 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1076   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1077     return true;
1078   lex();
1079   return false;
1080 }
1081 
1082 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1083   if (Token.is(MIToken::ScalarType)) {
1084     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1085     lex();
1086     return false;
1087   } else if (Token.is(MIToken::PointerType)) {
1088     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1089     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1090     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1091     lex();
1092     return false;
1093   }
1094 
1095   // Now we're looking for a vector.
1096   if (Token.isNot(MIToken::less))
1097     return error(Loc,
1098                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1099 
1100   lex();
1101 
1102   if (Token.isNot(MIToken::IntegerLiteral))
1103     return error(Loc, "expected <N x sM> for vctor type");
1104   uint64_t NumElements = Token.integerValue().getZExtValue();
1105   lex();
1106 
1107   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1108     return error(Loc, "expected '<N x sM>' for vector type");
1109   lex();
1110 
1111   if (Token.isNot(MIToken::ScalarType))
1112     return error(Loc, "expected '<N x sM>' for vector type");
1113   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1114   lex();
1115 
1116   if (Token.isNot(MIToken::greater))
1117     return error(Loc, "expected '<N x sM>' for vector type");
1118   lex();
1119 
1120   Ty = LLT::vector(NumElements, ScalarSize);
1121   return false;
1122 }
1123 
1124 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1125   assert(Token.is(MIToken::IntegerType));
1126   auto Loc = Token.location();
1127   lex();
1128   if (Token.isNot(MIToken::IntegerLiteral))
1129     return error("expected an integer literal");
1130   const Constant *C = nullptr;
1131   if (parseIRConstant(Loc, C))
1132     return true;
1133   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1134   return false;
1135 }
1136 
1137 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1138   auto Loc = Token.location();
1139   lex();
1140   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1141       Token.isNot(MIToken::HexLiteral))
1142     return error("expected a floating point literal");
1143   const Constant *C = nullptr;
1144   if (parseIRConstant(Loc, C))
1145     return true;
1146   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1147   return false;
1148 }
1149 
1150 bool MIParser::getUnsigned(unsigned &Result) {
1151   if (Token.hasIntegerValue()) {
1152     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1153     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1154     if (Val64 == Limit)
1155       return error("expected 32-bit integer (too large)");
1156     Result = Val64;
1157     return false;
1158   }
1159   if (Token.is(MIToken::HexLiteral)) {
1160     StringRef S = Token.range();
1161     assert(S[0] == '0' && tolower(S[1]) == 'x');
1162     // This could be a floating point literal with a special prefix.
1163     if (!isxdigit(S[2]))
1164       return true;
1165     StringRef V = S.substr(2);
1166     unsigned BW = std::min<unsigned>(V.size()*4, 32);
1167     APInt A(BW, V, 16);
1168     APInt Limit = APInt(BW, std::numeric_limits<unsigned>::max());
1169     if (A.ugt(Limit))
1170       return error("expected 32-bit integer (too large)");
1171     Result = A.getZExtValue();
1172     return false;
1173   }
1174   return true;
1175 }
1176 
1177 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1178   assert(Token.is(MIToken::MachineBasicBlock) ||
1179          Token.is(MIToken::MachineBasicBlockLabel));
1180   unsigned Number;
1181   if (getUnsigned(Number))
1182     return true;
1183   auto MBBInfo = PFS.MBBSlots.find(Number);
1184   if (MBBInfo == PFS.MBBSlots.end())
1185     return error(Twine("use of undefined machine basic block #") +
1186                  Twine(Number));
1187   MBB = MBBInfo->second;
1188   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1189     return error(Twine("the name of machine basic block #") + Twine(Number) +
1190                  " isn't '" + Token.stringValue() + "'");
1191   return false;
1192 }
1193 
1194 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1195   MachineBasicBlock *MBB;
1196   if (parseMBBReference(MBB))
1197     return true;
1198   Dest = MachineOperand::CreateMBB(MBB);
1199   lex();
1200   return false;
1201 }
1202 
1203 bool MIParser::parseStackFrameIndex(int &FI) {
1204   assert(Token.is(MIToken::StackObject));
1205   unsigned ID;
1206   if (getUnsigned(ID))
1207     return true;
1208   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1209   if (ObjectInfo == PFS.StackObjectSlots.end())
1210     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1211                  "'");
1212   StringRef Name;
1213   if (const auto *Alloca =
1214           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1215     Name = Alloca->getName();
1216   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1217     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1218                  "' isn't '" + Token.stringValue() + "'");
1219   lex();
1220   FI = ObjectInfo->second;
1221   return false;
1222 }
1223 
1224 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1225   int FI;
1226   if (parseStackFrameIndex(FI))
1227     return true;
1228   Dest = MachineOperand::CreateFI(FI);
1229   return false;
1230 }
1231 
1232 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1233   assert(Token.is(MIToken::FixedStackObject));
1234   unsigned ID;
1235   if (getUnsigned(ID))
1236     return true;
1237   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1238   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1239     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1240                  Twine(ID) + "'");
1241   lex();
1242   FI = ObjectInfo->second;
1243   return false;
1244 }
1245 
1246 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1247   int FI;
1248   if (parseFixedStackFrameIndex(FI))
1249     return true;
1250   Dest = MachineOperand::CreateFI(FI);
1251   return false;
1252 }
1253 
1254 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1255   switch (Token.kind()) {
1256   case MIToken::NamedGlobalValue: {
1257     const Module *M = MF.getFunction()->getParent();
1258     GV = M->getNamedValue(Token.stringValue());
1259     if (!GV)
1260       return error(Twine("use of undefined global value '") + Token.range() +
1261                    "'");
1262     break;
1263   }
1264   case MIToken::GlobalValue: {
1265     unsigned GVIdx;
1266     if (getUnsigned(GVIdx))
1267       return true;
1268     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1269       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1270                    "'");
1271     GV = PFS.IRSlots.GlobalValues[GVIdx];
1272     break;
1273   }
1274   default:
1275     llvm_unreachable("The current token should be a global value");
1276   }
1277   return false;
1278 }
1279 
1280 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1281   GlobalValue *GV = nullptr;
1282   if (parseGlobalValue(GV))
1283     return true;
1284   lex();
1285   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1286   if (parseOperandsOffset(Dest))
1287     return true;
1288   return false;
1289 }
1290 
1291 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1292   assert(Token.is(MIToken::ConstantPoolItem));
1293   unsigned ID;
1294   if (getUnsigned(ID))
1295     return true;
1296   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1297   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1298     return error("use of undefined constant '%const." + Twine(ID) + "'");
1299   lex();
1300   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1301   if (parseOperandsOffset(Dest))
1302     return true;
1303   return false;
1304 }
1305 
1306 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1307   assert(Token.is(MIToken::JumpTableIndex));
1308   unsigned ID;
1309   if (getUnsigned(ID))
1310     return true;
1311   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1312   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1313     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1314   lex();
1315   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1316   return false;
1317 }
1318 
1319 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1320   assert(Token.is(MIToken::ExternalSymbol));
1321   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1322   lex();
1323   Dest = MachineOperand::CreateES(Symbol);
1324   if (parseOperandsOffset(Dest))
1325     return true;
1326   return false;
1327 }
1328 
1329 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1330   assert(Token.is(MIToken::SubRegisterIndex));
1331   StringRef Name = Token.stringValue();
1332   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1333   if (SubRegIndex == 0)
1334     return error(Twine("unknown subregister index '") + Name + "'");
1335   lex();
1336   Dest = MachineOperand::CreateImm(SubRegIndex);
1337   return false;
1338 }
1339 
1340 bool MIParser::parseMDNode(MDNode *&Node) {
1341   assert(Token.is(MIToken::exclaim));
1342   auto Loc = Token.location();
1343   lex();
1344   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1345     return error("expected metadata id after '!'");
1346   unsigned ID;
1347   if (getUnsigned(ID))
1348     return true;
1349   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1350   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1351     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1352   lex();
1353   Node = NodeInfo->second.get();
1354   return false;
1355 }
1356 
1357 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1358   MDNode *Node = nullptr;
1359   if (parseMDNode(Node))
1360     return true;
1361   Dest = MachineOperand::CreateMetadata(Node);
1362   return false;
1363 }
1364 
1365 bool MIParser::parseCFIOffset(int &Offset) {
1366   if (Token.isNot(MIToken::IntegerLiteral))
1367     return error("expected a cfi offset");
1368   if (Token.integerValue().getMinSignedBits() > 32)
1369     return error("expected a 32 bit integer (the cfi offset is too large)");
1370   Offset = (int)Token.integerValue().getExtValue();
1371   lex();
1372   return false;
1373 }
1374 
1375 bool MIParser::parseCFIRegister(unsigned &Reg) {
1376   if (Token.isNot(MIToken::NamedRegister))
1377     return error("expected a cfi register");
1378   unsigned LLVMReg;
1379   if (parseNamedRegister(LLVMReg))
1380     return true;
1381   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1382   assert(TRI && "Expected target register info");
1383   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1384   if (DwarfReg < 0)
1385     return error("invalid DWARF register");
1386   Reg = (unsigned)DwarfReg;
1387   lex();
1388   return false;
1389 }
1390 
1391 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1392   auto Kind = Token.kind();
1393   lex();
1394   auto &MMI = MF.getMMI();
1395   int Offset;
1396   unsigned Reg;
1397   unsigned CFIIndex;
1398   switch (Kind) {
1399   case MIToken::kw_cfi_same_value:
1400     if (parseCFIRegister(Reg))
1401       return true;
1402     CFIIndex =
1403         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1404     break;
1405   case MIToken::kw_cfi_offset:
1406     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1407         parseCFIOffset(Offset))
1408       return true;
1409     CFIIndex =
1410         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1411     break;
1412   case MIToken::kw_cfi_def_cfa_register:
1413     if (parseCFIRegister(Reg))
1414       return true;
1415     CFIIndex =
1416         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1417     break;
1418   case MIToken::kw_cfi_def_cfa_offset:
1419     if (parseCFIOffset(Offset))
1420       return true;
1421     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1422     CFIIndex = MMI.addFrameInst(
1423         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1424     break;
1425   case MIToken::kw_cfi_def_cfa:
1426     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1427         parseCFIOffset(Offset))
1428       return true;
1429     // NB: MCCFIInstruction::createDefCfa negates the offset.
1430     CFIIndex =
1431         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1432     break;
1433   default:
1434     // TODO: Parse the other CFI operands.
1435     llvm_unreachable("The current token should be a cfi operand");
1436   }
1437   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1438   return false;
1439 }
1440 
1441 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1442   switch (Token.kind()) {
1443   case MIToken::NamedIRBlock: {
1444     BB = dyn_cast_or_null<BasicBlock>(
1445         F.getValueSymbolTable()->lookup(Token.stringValue()));
1446     if (!BB)
1447       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1448     break;
1449   }
1450   case MIToken::IRBlock: {
1451     unsigned SlotNumber = 0;
1452     if (getUnsigned(SlotNumber))
1453       return true;
1454     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1455     if (!BB)
1456       return error(Twine("use of undefined IR block '%ir-block.") +
1457                    Twine(SlotNumber) + "'");
1458     break;
1459   }
1460   default:
1461     llvm_unreachable("The current token should be an IR block reference");
1462   }
1463   return false;
1464 }
1465 
1466 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1467   assert(Token.is(MIToken::kw_blockaddress));
1468   lex();
1469   if (expectAndConsume(MIToken::lparen))
1470     return true;
1471   if (Token.isNot(MIToken::GlobalValue) &&
1472       Token.isNot(MIToken::NamedGlobalValue))
1473     return error("expected a global value");
1474   GlobalValue *GV = nullptr;
1475   if (parseGlobalValue(GV))
1476     return true;
1477   auto *F = dyn_cast<Function>(GV);
1478   if (!F)
1479     return error("expected an IR function reference");
1480   lex();
1481   if (expectAndConsume(MIToken::comma))
1482     return true;
1483   BasicBlock *BB = nullptr;
1484   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1485     return error("expected an IR block reference");
1486   if (parseIRBlock(BB, *F))
1487     return true;
1488   lex();
1489   if (expectAndConsume(MIToken::rparen))
1490     return true;
1491   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1492   if (parseOperandsOffset(Dest))
1493     return true;
1494   return false;
1495 }
1496 
1497 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1498   assert(Token.is(MIToken::kw_intrinsic));
1499   lex();
1500   if (expectAndConsume(MIToken::lparen))
1501     return error("expected syntax intrinsic(@llvm.whatever)");
1502 
1503   if (Token.isNot(MIToken::NamedGlobalValue))
1504     return error("expected syntax intrinsic(@llvm.whatever)");
1505 
1506   std::string Name = Token.stringValue();
1507   lex();
1508 
1509   if (expectAndConsume(MIToken::rparen))
1510     return error("expected ')' to terminate intrinsic name");
1511 
1512   // Find out what intrinsic we're dealing with, first try the global namespace
1513   // and then the target's private intrinsics if that fails.
1514   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1515   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1516   if (ID == Intrinsic::not_intrinsic && TII)
1517     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1518 
1519   if (ID == Intrinsic::not_intrinsic)
1520     return error("unknown intrinsic name");
1521   Dest = MachineOperand::CreateIntrinsicID(ID);
1522 
1523   return false;
1524 }
1525 
1526 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1527   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1528   bool IsFloat = Token.is(MIToken::kw_floatpred);
1529   lex();
1530 
1531   if (expectAndConsume(MIToken::lparen))
1532     return error("expected syntax intpred(whatever) or floatpred(whatever");
1533 
1534   if (Token.isNot(MIToken::Identifier))
1535     return error("whatever");
1536 
1537   CmpInst::Predicate Pred;
1538   if (IsFloat) {
1539     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1540                .Case("false", CmpInst::FCMP_FALSE)
1541                .Case("oeq", CmpInst::FCMP_OEQ)
1542                .Case("ogt", CmpInst::FCMP_OGT)
1543                .Case("oge", CmpInst::FCMP_OGE)
1544                .Case("olt", CmpInst::FCMP_OLT)
1545                .Case("ole", CmpInst::FCMP_OLE)
1546                .Case("one", CmpInst::FCMP_ONE)
1547                .Case("ord", CmpInst::FCMP_ORD)
1548                .Case("uno", CmpInst::FCMP_UNO)
1549                .Case("ueq", CmpInst::FCMP_UEQ)
1550                .Case("ugt", CmpInst::FCMP_UGT)
1551                .Case("uge", CmpInst::FCMP_UGE)
1552                .Case("ult", CmpInst::FCMP_ULT)
1553                .Case("ule", CmpInst::FCMP_ULE)
1554                .Case("une", CmpInst::FCMP_UNE)
1555                .Case("true", CmpInst::FCMP_TRUE)
1556                .Default(CmpInst::BAD_FCMP_PREDICATE);
1557     if (!CmpInst::isFPPredicate(Pred))
1558       return error("invalid floating-point predicate");
1559   } else {
1560     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1561                .Case("eq", CmpInst::ICMP_EQ)
1562                .Case("ne", CmpInst::ICMP_NE)
1563                .Case("sgt", CmpInst::ICMP_SGT)
1564                .Case("sge", CmpInst::ICMP_SGE)
1565                .Case("slt", CmpInst::ICMP_SLT)
1566                .Case("sle", CmpInst::ICMP_SLE)
1567                .Case("ugt", CmpInst::ICMP_UGT)
1568                .Case("uge", CmpInst::ICMP_UGE)
1569                .Case("ult", CmpInst::ICMP_ULT)
1570                .Case("ule", CmpInst::ICMP_ULE)
1571                .Default(CmpInst::BAD_ICMP_PREDICATE);
1572     if (!CmpInst::isIntPredicate(Pred))
1573       return error("invalid integer predicate");
1574   }
1575 
1576   lex();
1577   Dest = MachineOperand::CreatePredicate(Pred);
1578   if (expectAndConsume(MIToken::rparen))
1579     return error("predicate should be terminated by ')'.");
1580 
1581   return false;
1582 }
1583 
1584 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1585   assert(Token.is(MIToken::kw_target_index));
1586   lex();
1587   if (expectAndConsume(MIToken::lparen))
1588     return true;
1589   if (Token.isNot(MIToken::Identifier))
1590     return error("expected the name of the target index");
1591   int Index = 0;
1592   if (getTargetIndex(Token.stringValue(), Index))
1593     return error("use of undefined target index '" + Token.stringValue() + "'");
1594   lex();
1595   if (expectAndConsume(MIToken::rparen))
1596     return true;
1597   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1598   if (parseOperandsOffset(Dest))
1599     return true;
1600   return false;
1601 }
1602 
1603 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1604   assert(Token.is(MIToken::kw_liveout));
1605   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1606   assert(TRI && "Expected target register info");
1607   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1608   lex();
1609   if (expectAndConsume(MIToken::lparen))
1610     return true;
1611   while (true) {
1612     if (Token.isNot(MIToken::NamedRegister))
1613       return error("expected a named register");
1614     unsigned Reg;
1615     if (parseNamedRegister(Reg))
1616       return true;
1617     lex();
1618     Mask[Reg / 32] |= 1U << (Reg % 32);
1619     // TODO: Report an error if the same register is used more than once.
1620     if (Token.isNot(MIToken::comma))
1621       break;
1622     lex();
1623   }
1624   if (expectAndConsume(MIToken::rparen))
1625     return true;
1626   Dest = MachineOperand::CreateRegLiveOut(Mask);
1627   return false;
1628 }
1629 
1630 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1631                                    Optional<unsigned> &TiedDefIdx) {
1632   switch (Token.kind()) {
1633   case MIToken::kw_implicit:
1634   case MIToken::kw_implicit_define:
1635   case MIToken::kw_def:
1636   case MIToken::kw_dead:
1637   case MIToken::kw_killed:
1638   case MIToken::kw_undef:
1639   case MIToken::kw_internal:
1640   case MIToken::kw_early_clobber:
1641   case MIToken::kw_debug_use:
1642   case MIToken::underscore:
1643   case MIToken::NamedRegister:
1644   case MIToken::VirtualRegister:
1645     return parseRegisterOperand(Dest, TiedDefIdx);
1646   case MIToken::IntegerLiteral:
1647     return parseImmediateOperand(Dest);
1648   case MIToken::IntegerType:
1649     return parseTypedImmediateOperand(Dest);
1650   case MIToken::kw_half:
1651   case MIToken::kw_float:
1652   case MIToken::kw_double:
1653   case MIToken::kw_x86_fp80:
1654   case MIToken::kw_fp128:
1655   case MIToken::kw_ppc_fp128:
1656     return parseFPImmediateOperand(Dest);
1657   case MIToken::MachineBasicBlock:
1658     return parseMBBOperand(Dest);
1659   case MIToken::StackObject:
1660     return parseStackObjectOperand(Dest);
1661   case MIToken::FixedStackObject:
1662     return parseFixedStackObjectOperand(Dest);
1663   case MIToken::GlobalValue:
1664   case MIToken::NamedGlobalValue:
1665     return parseGlobalAddressOperand(Dest);
1666   case MIToken::ConstantPoolItem:
1667     return parseConstantPoolIndexOperand(Dest);
1668   case MIToken::JumpTableIndex:
1669     return parseJumpTableIndexOperand(Dest);
1670   case MIToken::ExternalSymbol:
1671     return parseExternalSymbolOperand(Dest);
1672   case MIToken::SubRegisterIndex:
1673     return parseSubRegisterIndexOperand(Dest);
1674   case MIToken::exclaim:
1675     return parseMetadataOperand(Dest);
1676   case MIToken::kw_cfi_same_value:
1677   case MIToken::kw_cfi_offset:
1678   case MIToken::kw_cfi_def_cfa_register:
1679   case MIToken::kw_cfi_def_cfa_offset:
1680   case MIToken::kw_cfi_def_cfa:
1681     return parseCFIOperand(Dest);
1682   case MIToken::kw_blockaddress:
1683     return parseBlockAddressOperand(Dest);
1684   case MIToken::kw_intrinsic:
1685     return parseIntrinsicOperand(Dest);
1686   case MIToken::kw_target_index:
1687     return parseTargetIndexOperand(Dest);
1688   case MIToken::kw_liveout:
1689     return parseLiveoutRegisterMaskOperand(Dest);
1690   case MIToken::kw_floatpred:
1691   case MIToken::kw_intpred:
1692     return parsePredicateOperand(Dest);
1693   case MIToken::Error:
1694     return true;
1695   case MIToken::Identifier:
1696     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1697       Dest = MachineOperand::CreateRegMask(RegMask);
1698       lex();
1699       break;
1700     }
1701     LLVM_FALLTHROUGH;
1702   default:
1703     // FIXME: Parse the MCSymbol machine operand.
1704     return error("expected a machine operand");
1705   }
1706   return false;
1707 }
1708 
1709 bool MIParser::parseMachineOperandAndTargetFlags(
1710     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1711   unsigned TF = 0;
1712   bool HasTargetFlags = false;
1713   if (Token.is(MIToken::kw_target_flags)) {
1714     HasTargetFlags = true;
1715     lex();
1716     if (expectAndConsume(MIToken::lparen))
1717       return true;
1718     if (Token.isNot(MIToken::Identifier))
1719       return error("expected the name of the target flag");
1720     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1721       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1722         return error("use of undefined target flag '" + Token.stringValue() +
1723                      "'");
1724     }
1725     lex();
1726     while (Token.is(MIToken::comma)) {
1727       lex();
1728       if (Token.isNot(MIToken::Identifier))
1729         return error("expected the name of the target flag");
1730       unsigned BitFlag = 0;
1731       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1732         return error("use of undefined target flag '" + Token.stringValue() +
1733                      "'");
1734       // TODO: Report an error when using a duplicate bit target flag.
1735       TF |= BitFlag;
1736       lex();
1737     }
1738     if (expectAndConsume(MIToken::rparen))
1739       return true;
1740   }
1741   auto Loc = Token.location();
1742   if (parseMachineOperand(Dest, TiedDefIdx))
1743     return true;
1744   if (!HasTargetFlags)
1745     return false;
1746   if (Dest.isReg())
1747     return error(Loc, "register operands can't have target flags");
1748   Dest.setTargetFlags(TF);
1749   return false;
1750 }
1751 
1752 bool MIParser::parseOffset(int64_t &Offset) {
1753   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1754     return false;
1755   StringRef Sign = Token.range();
1756   bool IsNegative = Token.is(MIToken::minus);
1757   lex();
1758   if (Token.isNot(MIToken::IntegerLiteral))
1759     return error("expected an integer literal after '" + Sign + "'");
1760   if (Token.integerValue().getMinSignedBits() > 64)
1761     return error("expected 64-bit integer (too large)");
1762   Offset = Token.integerValue().getExtValue();
1763   if (IsNegative)
1764     Offset = -Offset;
1765   lex();
1766   return false;
1767 }
1768 
1769 bool MIParser::parseAlignment(unsigned &Alignment) {
1770   assert(Token.is(MIToken::kw_align));
1771   lex();
1772   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1773     return error("expected an integer literal after 'align'");
1774   if (getUnsigned(Alignment))
1775     return true;
1776   lex();
1777   return false;
1778 }
1779 
1780 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1781   int64_t Offset = 0;
1782   if (parseOffset(Offset))
1783     return true;
1784   Op.setOffset(Offset);
1785   return false;
1786 }
1787 
1788 bool MIParser::parseIRValue(const Value *&V) {
1789   switch (Token.kind()) {
1790   case MIToken::NamedIRValue: {
1791     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1792     break;
1793   }
1794   case MIToken::IRValue: {
1795     unsigned SlotNumber = 0;
1796     if (getUnsigned(SlotNumber))
1797       return true;
1798     V = getIRValue(SlotNumber);
1799     break;
1800   }
1801   case MIToken::NamedGlobalValue:
1802   case MIToken::GlobalValue: {
1803     GlobalValue *GV = nullptr;
1804     if (parseGlobalValue(GV))
1805       return true;
1806     V = GV;
1807     break;
1808   }
1809   case MIToken::QuotedIRValue: {
1810     const Constant *C = nullptr;
1811     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1812       return true;
1813     V = C;
1814     break;
1815   }
1816   default:
1817     llvm_unreachable("The current token should be an IR block reference");
1818   }
1819   if (!V)
1820     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1821   return false;
1822 }
1823 
1824 bool MIParser::getUint64(uint64_t &Result) {
1825   assert(Token.hasIntegerValue());
1826   if (Token.integerValue().getActiveBits() > 64)
1827     return error("expected 64-bit integer (too large)");
1828   Result = Token.integerValue().getZExtValue();
1829   return false;
1830 }
1831 
1832 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1833   const auto OldFlags = Flags;
1834   switch (Token.kind()) {
1835   case MIToken::kw_volatile:
1836     Flags |= MachineMemOperand::MOVolatile;
1837     break;
1838   case MIToken::kw_non_temporal:
1839     Flags |= MachineMemOperand::MONonTemporal;
1840     break;
1841   case MIToken::kw_dereferenceable:
1842     Flags |= MachineMemOperand::MODereferenceable;
1843     break;
1844   case MIToken::kw_invariant:
1845     Flags |= MachineMemOperand::MOInvariant;
1846     break;
1847   // TODO: parse the target specific memory operand flags.
1848   default:
1849     llvm_unreachable("The current token should be a memory operand flag");
1850   }
1851   if (OldFlags == Flags)
1852     // We know that the same flag is specified more than once when the flags
1853     // weren't modified.
1854     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1855   lex();
1856   return false;
1857 }
1858 
1859 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1860   switch (Token.kind()) {
1861   case MIToken::kw_stack:
1862     PSV = MF.getPSVManager().getStack();
1863     break;
1864   case MIToken::kw_got:
1865     PSV = MF.getPSVManager().getGOT();
1866     break;
1867   case MIToken::kw_jump_table:
1868     PSV = MF.getPSVManager().getJumpTable();
1869     break;
1870   case MIToken::kw_constant_pool:
1871     PSV = MF.getPSVManager().getConstantPool();
1872     break;
1873   case MIToken::FixedStackObject: {
1874     int FI;
1875     if (parseFixedStackFrameIndex(FI))
1876       return true;
1877     PSV = MF.getPSVManager().getFixedStack(FI);
1878     // The token was already consumed, so use return here instead of break.
1879     return false;
1880   }
1881   case MIToken::StackObject: {
1882     int FI;
1883     if (parseStackFrameIndex(FI))
1884       return true;
1885     PSV = MF.getPSVManager().getFixedStack(FI);
1886     // The token was already consumed, so use return here instead of break.
1887     return false;
1888   }
1889   case MIToken::kw_call_entry: {
1890     lex();
1891     switch (Token.kind()) {
1892     case MIToken::GlobalValue:
1893     case MIToken::NamedGlobalValue: {
1894       GlobalValue *GV = nullptr;
1895       if (parseGlobalValue(GV))
1896         return true;
1897       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1898       break;
1899     }
1900     case MIToken::ExternalSymbol:
1901       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1902           MF.createExternalSymbolName(Token.stringValue()));
1903       break;
1904     default:
1905       return error(
1906           "expected a global value or an external symbol after 'call-entry'");
1907     }
1908     break;
1909   }
1910   default:
1911     llvm_unreachable("The current token should be pseudo source value");
1912   }
1913   lex();
1914   return false;
1915 }
1916 
1917 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1918   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1919       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1920       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1921       Token.is(MIToken::kw_call_entry)) {
1922     const PseudoSourceValue *PSV = nullptr;
1923     if (parseMemoryPseudoSourceValue(PSV))
1924       return true;
1925     int64_t Offset = 0;
1926     if (parseOffset(Offset))
1927       return true;
1928     Dest = MachinePointerInfo(PSV, Offset);
1929     return false;
1930   }
1931   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1932       Token.isNot(MIToken::GlobalValue) &&
1933       Token.isNot(MIToken::NamedGlobalValue) &&
1934       Token.isNot(MIToken::QuotedIRValue))
1935     return error("expected an IR value reference");
1936   const Value *V = nullptr;
1937   if (parseIRValue(V))
1938     return true;
1939   if (!V->getType()->isPointerTy())
1940     return error("expected a pointer IR value");
1941   lex();
1942   int64_t Offset = 0;
1943   if (parseOffset(Offset))
1944     return true;
1945   Dest = MachinePointerInfo(V, Offset);
1946   return false;
1947 }
1948 
1949 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1950   if (expectAndConsume(MIToken::lparen))
1951     return true;
1952   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1953   while (Token.isMemoryOperandFlag()) {
1954     if (parseMemoryOperandFlag(Flags))
1955       return true;
1956   }
1957   if (Token.isNot(MIToken::Identifier) ||
1958       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1959     return error("expected 'load' or 'store' memory operation");
1960   if (Token.stringValue() == "load")
1961     Flags |= MachineMemOperand::MOLoad;
1962   else
1963     Flags |= MachineMemOperand::MOStore;
1964   lex();
1965 
1966   if (Token.isNot(MIToken::IntegerLiteral))
1967     return error("expected the size integer literal after memory operation");
1968   uint64_t Size;
1969   if (getUint64(Size))
1970     return true;
1971   lex();
1972 
1973   MachinePointerInfo Ptr = MachinePointerInfo();
1974   if (Token.is(MIToken::Identifier)) {
1975     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1976     if (Token.stringValue() != Word)
1977       return error(Twine("expected '") + Word + "'");
1978     lex();
1979 
1980     if (parseMachinePointerInfo(Ptr))
1981       return true;
1982   }
1983   unsigned BaseAlignment = Size;
1984   AAMDNodes AAInfo;
1985   MDNode *Range = nullptr;
1986   while (consumeIfPresent(MIToken::comma)) {
1987     switch (Token.kind()) {
1988     case MIToken::kw_align:
1989       if (parseAlignment(BaseAlignment))
1990         return true;
1991       break;
1992     case MIToken::md_tbaa:
1993       lex();
1994       if (parseMDNode(AAInfo.TBAA))
1995         return true;
1996       break;
1997     case MIToken::md_alias_scope:
1998       lex();
1999       if (parseMDNode(AAInfo.Scope))
2000         return true;
2001       break;
2002     case MIToken::md_noalias:
2003       lex();
2004       if (parseMDNode(AAInfo.NoAlias))
2005         return true;
2006       break;
2007     case MIToken::md_range:
2008       lex();
2009       if (parseMDNode(Range))
2010         return true;
2011       break;
2012     // TODO: Report an error on duplicate metadata nodes.
2013     default:
2014       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2015                    "'!noalias' or '!range'");
2016     }
2017   }
2018   if (expectAndConsume(MIToken::rparen))
2019     return true;
2020   Dest =
2021       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
2022   return false;
2023 }
2024 
2025 void MIParser::initNames2InstrOpCodes() {
2026   if (!Names2InstrOpCodes.empty())
2027     return;
2028   const auto *TII = MF.getSubtarget().getInstrInfo();
2029   assert(TII && "Expected target instruction info");
2030   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2031     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2032 }
2033 
2034 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2035   initNames2InstrOpCodes();
2036   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2037   if (InstrInfo == Names2InstrOpCodes.end())
2038     return true;
2039   OpCode = InstrInfo->getValue();
2040   return false;
2041 }
2042 
2043 void MIParser::initNames2Regs() {
2044   if (!Names2Regs.empty())
2045     return;
2046   // The '%noreg' register is the register 0.
2047   Names2Regs.insert(std::make_pair("noreg", 0));
2048   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2049   assert(TRI && "Expected target register info");
2050   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2051     bool WasInserted =
2052         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2053             .second;
2054     (void)WasInserted;
2055     assert(WasInserted && "Expected registers to be unique case-insensitively");
2056   }
2057 }
2058 
2059 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2060   initNames2Regs();
2061   auto RegInfo = Names2Regs.find(RegName);
2062   if (RegInfo == Names2Regs.end())
2063     return true;
2064   Reg = RegInfo->getValue();
2065   return false;
2066 }
2067 
2068 void MIParser::initNames2RegMasks() {
2069   if (!Names2RegMasks.empty())
2070     return;
2071   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2072   assert(TRI && "Expected target register info");
2073   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2074   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2075   assert(RegMasks.size() == RegMaskNames.size());
2076   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2077     Names2RegMasks.insert(
2078         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2079 }
2080 
2081 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2082   initNames2RegMasks();
2083   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2084   if (RegMaskInfo == Names2RegMasks.end())
2085     return nullptr;
2086   return RegMaskInfo->getValue();
2087 }
2088 
2089 void MIParser::initNames2SubRegIndices() {
2090   if (!Names2SubRegIndices.empty())
2091     return;
2092   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2093   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2094     Names2SubRegIndices.insert(
2095         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2096 }
2097 
2098 unsigned MIParser::getSubRegIndex(StringRef Name) {
2099   initNames2SubRegIndices();
2100   auto SubRegInfo = Names2SubRegIndices.find(Name);
2101   if (SubRegInfo == Names2SubRegIndices.end())
2102     return 0;
2103   return SubRegInfo->getValue();
2104 }
2105 
2106 static void initSlots2BasicBlocks(
2107     const Function &F,
2108     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2109   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2110   MST.incorporateFunction(F);
2111   for (auto &BB : F) {
2112     if (BB.hasName())
2113       continue;
2114     int Slot = MST.getLocalSlot(&BB);
2115     if (Slot == -1)
2116       continue;
2117     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2118   }
2119 }
2120 
2121 static const BasicBlock *getIRBlockFromSlot(
2122     unsigned Slot,
2123     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2124   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2125   if (BlockInfo == Slots2BasicBlocks.end())
2126     return nullptr;
2127   return BlockInfo->second;
2128 }
2129 
2130 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2131   if (Slots2BasicBlocks.empty())
2132     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2133   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2134 }
2135 
2136 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2137   if (&F == MF.getFunction())
2138     return getIRBlock(Slot);
2139   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2140   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2141   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2142 }
2143 
2144 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2145                            DenseMap<unsigned, const Value *> &Slots2Values) {
2146   int Slot = MST.getLocalSlot(V);
2147   if (Slot == -1)
2148     return;
2149   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2150 }
2151 
2152 /// Creates the mapping from slot numbers to function's unnamed IR values.
2153 static void initSlots2Values(const Function &F,
2154                              DenseMap<unsigned, const Value *> &Slots2Values) {
2155   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2156   MST.incorporateFunction(F);
2157   for (const auto &Arg : F.args())
2158     mapValueToSlot(&Arg, MST, Slots2Values);
2159   for (const auto &BB : F) {
2160     mapValueToSlot(&BB, MST, Slots2Values);
2161     for (const auto &I : BB)
2162       mapValueToSlot(&I, MST, Slots2Values);
2163   }
2164 }
2165 
2166 const Value *MIParser::getIRValue(unsigned Slot) {
2167   if (Slots2Values.empty())
2168     initSlots2Values(*MF.getFunction(), Slots2Values);
2169   auto ValueInfo = Slots2Values.find(Slot);
2170   if (ValueInfo == Slots2Values.end())
2171     return nullptr;
2172   return ValueInfo->second;
2173 }
2174 
2175 void MIParser::initNames2TargetIndices() {
2176   if (!Names2TargetIndices.empty())
2177     return;
2178   const auto *TII = MF.getSubtarget().getInstrInfo();
2179   assert(TII && "Expected target instruction info");
2180   auto Indices = TII->getSerializableTargetIndices();
2181   for (const auto &I : Indices)
2182     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2183 }
2184 
2185 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2186   initNames2TargetIndices();
2187   auto IndexInfo = Names2TargetIndices.find(Name);
2188   if (IndexInfo == Names2TargetIndices.end())
2189     return true;
2190   Index = IndexInfo->second;
2191   return false;
2192 }
2193 
2194 void MIParser::initNames2DirectTargetFlags() {
2195   if (!Names2DirectTargetFlags.empty())
2196     return;
2197   const auto *TII = MF.getSubtarget().getInstrInfo();
2198   assert(TII && "Expected target instruction info");
2199   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2200   for (const auto &I : Flags)
2201     Names2DirectTargetFlags.insert(
2202         std::make_pair(StringRef(I.second), I.first));
2203 }
2204 
2205 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2206   initNames2DirectTargetFlags();
2207   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2208   if (FlagInfo == Names2DirectTargetFlags.end())
2209     return true;
2210   Flag = FlagInfo->second;
2211   return false;
2212 }
2213 
2214 void MIParser::initNames2BitmaskTargetFlags() {
2215   if (!Names2BitmaskTargetFlags.empty())
2216     return;
2217   const auto *TII = MF.getSubtarget().getInstrInfo();
2218   assert(TII && "Expected target instruction info");
2219   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2220   for (const auto &I : Flags)
2221     Names2BitmaskTargetFlags.insert(
2222         std::make_pair(StringRef(I.second), I.first));
2223 }
2224 
2225 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2226   initNames2BitmaskTargetFlags();
2227   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2228   if (FlagInfo == Names2BitmaskTargetFlags.end())
2229     return true;
2230   Flag = FlagInfo->second;
2231   return false;
2232 }
2233 
2234 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2235                                              StringRef Src,
2236                                              SMDiagnostic &Error) {
2237   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2238 }
2239 
2240 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2241                                     StringRef Src, SMDiagnostic &Error) {
2242   return MIParser(PFS, Error, Src).parseBasicBlocks();
2243 }
2244 
2245 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2246                              MachineBasicBlock *&MBB, StringRef Src,
2247                              SMDiagnostic &Error) {
2248   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2249 }
2250 
2251 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2252                                   unsigned &Reg, StringRef Src,
2253                                   SMDiagnostic &Error) {
2254   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2255 }
2256 
2257 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2258                                        unsigned &Reg, StringRef Src,
2259                                        SMDiagnostic &Error) {
2260   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2261 }
2262 
2263 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2264                                          VRegInfo *&Info, StringRef Src,
2265                                          SMDiagnostic &Error) {
2266   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2267 }
2268 
2269 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2270                                      int &FI, StringRef Src,
2271                                      SMDiagnostic &Error) {
2272   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2273 }
2274 
2275 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2276                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2277   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2278 }
2279