1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cctype> 40 41 using namespace llvm; 42 43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 44 SourceMgr &SM, const SlotMapping &IRSlots) 45 : MF(MF), SM(&SM), IRSlots(IRSlots) { 46 } 47 48 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 49 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 50 if (I.second) { 51 MachineRegisterInfo &MRI = MF.getRegInfo(); 52 VRegInfo *Info = new (Allocator) VRegInfo; 53 Info->VReg = MRI.createIncompleteVirtualRegister(); 54 I.first->second = Info; 55 } 56 return *I.first->second; 57 } 58 59 namespace { 60 61 /// A wrapper struct around the 'MachineOperand' struct that includes a source 62 /// range and other attributes. 63 struct ParsedMachineOperand { 64 MachineOperand Operand; 65 StringRef::iterator Begin; 66 StringRef::iterator End; 67 Optional<unsigned> TiedDefIdx; 68 69 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 70 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 71 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 72 if (TiedDefIdx) 73 assert(Operand.isReg() && Operand.isUse() && 74 "Only used register operands can be tied"); 75 } 76 }; 77 78 class MIParser { 79 MachineFunction &MF; 80 SMDiagnostic &Error; 81 StringRef Source, CurrentSource; 82 MIToken Token; 83 PerFunctionMIParsingState &PFS; 84 /// Maps from instruction names to op codes. 85 StringMap<unsigned> Names2InstrOpCodes; 86 /// Maps from register names to registers. 87 StringMap<unsigned> Names2Regs; 88 /// Maps from register mask names to register masks. 89 StringMap<const uint32_t *> Names2RegMasks; 90 /// Maps from subregister names to subregister indices. 91 StringMap<unsigned> Names2SubRegIndices; 92 /// Maps from slot numbers to function's unnamed basic blocks. 93 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 94 /// Maps from slot numbers to function's unnamed values. 95 DenseMap<unsigned, const Value *> Slots2Values; 96 /// Maps from target index names to target indices. 97 StringMap<int> Names2TargetIndices; 98 /// Maps from direct target flag names to the direct target flag values. 99 StringMap<unsigned> Names2DirectTargetFlags; 100 /// Maps from direct target flag names to the bitmask target flag values. 101 StringMap<unsigned> Names2BitmaskTargetFlags; 102 103 public: 104 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 105 StringRef Source); 106 107 /// \p SkipChar gives the number of characters to skip before looking 108 /// for the next token. 109 void lex(unsigned SkipChar = 0); 110 111 /// Report an error at the current location with the given message. 112 /// 113 /// This function always return true. 114 bool error(const Twine &Msg); 115 116 /// Report an error at the given location with the given message. 117 /// 118 /// This function always return true. 119 bool error(StringRef::iterator Loc, const Twine &Msg); 120 121 bool 122 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 123 bool parseBasicBlocks(); 124 bool parse(MachineInstr *&MI); 125 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 126 bool parseStandaloneNamedRegister(unsigned &Reg); 127 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 128 bool parseStandaloneRegister(unsigned &Reg); 129 bool parseStandaloneStackObject(int &FI); 130 bool parseStandaloneMDNode(MDNode *&Node); 131 132 bool 133 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 134 bool parseBasicBlock(MachineBasicBlock &MBB); 135 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 136 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 137 138 bool parseNamedRegister(unsigned &Reg); 139 bool parseVirtualRegister(VRegInfo *&Info); 140 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 141 bool parseRegisterFlag(unsigned &Flags); 142 bool parseSubRegisterIndex(unsigned &SubReg); 143 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 144 bool parseRegisterOperand(MachineOperand &Dest, 145 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 146 bool parseImmediateOperand(MachineOperand &Dest); 147 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 148 const Constant *&C); 149 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 150 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 151 bool parseTypedImmediateOperand(MachineOperand &Dest); 152 bool parseFPImmediateOperand(MachineOperand &Dest); 153 bool parseMBBReference(MachineBasicBlock *&MBB); 154 bool parseMBBOperand(MachineOperand &Dest); 155 bool parseStackFrameIndex(int &FI); 156 bool parseStackObjectOperand(MachineOperand &Dest); 157 bool parseFixedStackFrameIndex(int &FI); 158 bool parseFixedStackObjectOperand(MachineOperand &Dest); 159 bool parseGlobalValue(GlobalValue *&GV); 160 bool parseGlobalAddressOperand(MachineOperand &Dest); 161 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 162 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 163 bool parseJumpTableIndexOperand(MachineOperand &Dest); 164 bool parseExternalSymbolOperand(MachineOperand &Dest); 165 bool parseMDNode(MDNode *&Node); 166 bool parseMetadataOperand(MachineOperand &Dest); 167 bool parseCFIOffset(int &Offset); 168 bool parseCFIRegister(unsigned &Reg); 169 bool parseCFIOperand(MachineOperand &Dest); 170 bool parseIRBlock(BasicBlock *&BB, const Function &F); 171 bool parseBlockAddressOperand(MachineOperand &Dest); 172 bool parseIntrinsicOperand(MachineOperand &Dest); 173 bool parsePredicateOperand(MachineOperand &Dest); 174 bool parseTargetIndexOperand(MachineOperand &Dest); 175 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 176 bool parseMachineOperand(MachineOperand &Dest, 177 Optional<unsigned> &TiedDefIdx); 178 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 179 Optional<unsigned> &TiedDefIdx); 180 bool parseOffset(int64_t &Offset); 181 bool parseAlignment(unsigned &Alignment); 182 bool parseOperandsOffset(MachineOperand &Op); 183 bool parseIRValue(const Value *&V); 184 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 185 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 186 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 187 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 188 189 private: 190 /// Convert the integer literal in the current token into an unsigned integer. 191 /// 192 /// Return true if an error occurred. 193 bool getUnsigned(unsigned &Result); 194 195 /// Convert the integer literal in the current token into an uint64. 196 /// 197 /// Return true if an error occurred. 198 bool getUint64(uint64_t &Result); 199 200 /// If the current token is of the given kind, consume it and return false. 201 /// Otherwise report an error and return true. 202 bool expectAndConsume(MIToken::TokenKind TokenKind); 203 204 /// If the current token is of the given kind, consume it and return true. 205 /// Otherwise return false. 206 bool consumeIfPresent(MIToken::TokenKind TokenKind); 207 208 void initNames2InstrOpCodes(); 209 210 /// Try to convert an instruction name to an opcode. Return true if the 211 /// instruction name is invalid. 212 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 213 214 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 215 216 bool assignRegisterTies(MachineInstr &MI, 217 ArrayRef<ParsedMachineOperand> Operands); 218 219 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 220 const MCInstrDesc &MCID); 221 222 void initNames2Regs(); 223 224 /// Try to convert a register name to a register number. Return true if the 225 /// register name is invalid. 226 bool getRegisterByName(StringRef RegName, unsigned &Reg); 227 228 void initNames2RegMasks(); 229 230 /// Check if the given identifier is a name of a register mask. 231 /// 232 /// Return null if the identifier isn't a register mask. 233 const uint32_t *getRegMask(StringRef Identifier); 234 235 void initNames2SubRegIndices(); 236 237 /// Check if the given identifier is a name of a subregister index. 238 /// 239 /// Return 0 if the name isn't a subregister index class. 240 unsigned getSubRegIndex(StringRef Name); 241 242 const BasicBlock *getIRBlock(unsigned Slot); 243 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 244 245 const Value *getIRValue(unsigned Slot); 246 247 void initNames2TargetIndices(); 248 249 /// Try to convert a name of target index to the corresponding target index. 250 /// 251 /// Return true if the name isn't a name of a target index. 252 bool getTargetIndex(StringRef Name, int &Index); 253 254 void initNames2DirectTargetFlags(); 255 256 /// Try to convert a name of a direct target flag to the corresponding 257 /// target flag. 258 /// 259 /// Return true if the name isn't a name of a direct flag. 260 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 261 262 void initNames2BitmaskTargetFlags(); 263 264 /// Try to convert a name of a bitmask target flag to the corresponding 265 /// target flag. 266 /// 267 /// Return true if the name isn't a name of a bitmask target flag. 268 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 269 }; 270 271 } // end anonymous namespace 272 273 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 274 StringRef Source) 275 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 276 {} 277 278 void MIParser::lex(unsigned SkipChar) { 279 CurrentSource = lexMIToken( 280 CurrentSource.data() + SkipChar, Token, 281 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 282 } 283 284 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 285 286 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 287 const SourceMgr &SM = *PFS.SM; 288 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 289 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 290 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 291 // Create an ordinary diagnostic when the source manager's buffer is the 292 // source string. 293 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 294 return true; 295 } 296 // Create a diagnostic for a YAML string literal. 297 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 298 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 299 Source, None, None); 300 return true; 301 } 302 303 static const char *toString(MIToken::TokenKind TokenKind) { 304 switch (TokenKind) { 305 case MIToken::comma: 306 return "','"; 307 case MIToken::equal: 308 return "'='"; 309 case MIToken::colon: 310 return "':'"; 311 case MIToken::lparen: 312 return "'('"; 313 case MIToken::rparen: 314 return "')'"; 315 default: 316 return "<unknown token>"; 317 } 318 } 319 320 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 321 if (Token.isNot(TokenKind)) 322 return error(Twine("expected ") + toString(TokenKind)); 323 lex(); 324 return false; 325 } 326 327 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 328 if (Token.isNot(TokenKind)) 329 return false; 330 lex(); 331 return true; 332 } 333 334 bool MIParser::parseBasicBlockDefinition( 335 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 336 assert(Token.is(MIToken::MachineBasicBlockLabel)); 337 unsigned ID = 0; 338 if (getUnsigned(ID)) 339 return true; 340 auto Loc = Token.location(); 341 auto Name = Token.stringValue(); 342 lex(); 343 bool HasAddressTaken = false; 344 bool IsLandingPad = false; 345 unsigned Alignment = 0; 346 BasicBlock *BB = nullptr; 347 if (consumeIfPresent(MIToken::lparen)) { 348 do { 349 // TODO: Report an error when multiple same attributes are specified. 350 switch (Token.kind()) { 351 case MIToken::kw_address_taken: 352 HasAddressTaken = true; 353 lex(); 354 break; 355 case MIToken::kw_landing_pad: 356 IsLandingPad = true; 357 lex(); 358 break; 359 case MIToken::kw_align: 360 if (parseAlignment(Alignment)) 361 return true; 362 break; 363 case MIToken::IRBlock: 364 // TODO: Report an error when both name and ir block are specified. 365 if (parseIRBlock(BB, *MF.getFunction())) 366 return true; 367 lex(); 368 break; 369 default: 370 break; 371 } 372 } while (consumeIfPresent(MIToken::comma)); 373 if (expectAndConsume(MIToken::rparen)) 374 return true; 375 } 376 if (expectAndConsume(MIToken::colon)) 377 return true; 378 379 if (!Name.empty()) { 380 BB = dyn_cast_or_null<BasicBlock>( 381 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 382 if (!BB) 383 return error(Loc, Twine("basic block '") + Name + 384 "' is not defined in the function '" + 385 MF.getName() + "'"); 386 } 387 auto *MBB = MF.CreateMachineBasicBlock(BB); 388 MF.insert(MF.end(), MBB); 389 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 390 if (!WasInserted) 391 return error(Loc, Twine("redefinition of machine basic block with id #") + 392 Twine(ID)); 393 if (Alignment) 394 MBB->setAlignment(Alignment); 395 if (HasAddressTaken) 396 MBB->setHasAddressTaken(); 397 MBB->setIsEHPad(IsLandingPad); 398 return false; 399 } 400 401 bool MIParser::parseBasicBlockDefinitions( 402 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 403 lex(); 404 // Skip until the first machine basic block. 405 while (Token.is(MIToken::Newline)) 406 lex(); 407 if (Token.isErrorOrEOF()) 408 return Token.isError(); 409 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 410 return error("expected a basic block definition before instructions"); 411 unsigned BraceDepth = 0; 412 do { 413 if (parseBasicBlockDefinition(MBBSlots)) 414 return true; 415 bool IsAfterNewline = false; 416 // Skip until the next machine basic block. 417 while (true) { 418 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 419 Token.isErrorOrEOF()) 420 break; 421 else if (Token.is(MIToken::MachineBasicBlockLabel)) 422 return error("basic block definition should be located at the start of " 423 "the line"); 424 else if (consumeIfPresent(MIToken::Newline)) { 425 IsAfterNewline = true; 426 continue; 427 } 428 IsAfterNewline = false; 429 if (Token.is(MIToken::lbrace)) 430 ++BraceDepth; 431 if (Token.is(MIToken::rbrace)) { 432 if (!BraceDepth) 433 return error("extraneous closing brace ('}')"); 434 --BraceDepth; 435 } 436 lex(); 437 } 438 // Verify that we closed all of the '{' at the end of a file or a block. 439 if (!Token.isError() && BraceDepth) 440 return error("expected '}'"); // FIXME: Report a note that shows '{'. 441 } while (!Token.isErrorOrEOF()); 442 return Token.isError(); 443 } 444 445 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 446 assert(Token.is(MIToken::kw_liveins)); 447 lex(); 448 if (expectAndConsume(MIToken::colon)) 449 return true; 450 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 451 return false; 452 do { 453 if (Token.isNot(MIToken::NamedRegister)) 454 return error("expected a named register"); 455 unsigned Reg = 0; 456 if (parseNamedRegister(Reg)) 457 return true; 458 lex(); 459 LaneBitmask Mask = ~LaneBitmask(0); 460 if (consumeIfPresent(MIToken::colon)) { 461 // Parse lane mask. 462 if (Token.isNot(MIToken::IntegerLiteral) && 463 Token.isNot(MIToken::HexLiteral)) 464 return error("expected a lane mask"); 465 static_assert(sizeof(LaneBitmask) == sizeof(unsigned), ""); 466 if (getUnsigned(Mask)) 467 return error("invalid lane mask value"); 468 lex(); 469 } 470 MBB.addLiveIn(Reg, Mask); 471 } while (consumeIfPresent(MIToken::comma)); 472 return false; 473 } 474 475 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 476 assert(Token.is(MIToken::kw_successors)); 477 lex(); 478 if (expectAndConsume(MIToken::colon)) 479 return true; 480 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 481 return false; 482 do { 483 if (Token.isNot(MIToken::MachineBasicBlock)) 484 return error("expected a machine basic block reference"); 485 MachineBasicBlock *SuccMBB = nullptr; 486 if (parseMBBReference(SuccMBB)) 487 return true; 488 lex(); 489 unsigned Weight = 0; 490 if (consumeIfPresent(MIToken::lparen)) { 491 if (Token.isNot(MIToken::IntegerLiteral) && 492 Token.isNot(MIToken::HexLiteral)) 493 return error("expected an integer literal after '('"); 494 if (getUnsigned(Weight)) 495 return true; 496 lex(); 497 if (expectAndConsume(MIToken::rparen)) 498 return true; 499 } 500 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 501 } while (consumeIfPresent(MIToken::comma)); 502 MBB.normalizeSuccProbs(); 503 return false; 504 } 505 506 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 507 // Skip the definition. 508 assert(Token.is(MIToken::MachineBasicBlockLabel)); 509 lex(); 510 if (consumeIfPresent(MIToken::lparen)) { 511 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 512 lex(); 513 consumeIfPresent(MIToken::rparen); 514 } 515 consumeIfPresent(MIToken::colon); 516 517 // Parse the liveins and successors. 518 // N.B: Multiple lists of successors and liveins are allowed and they're 519 // merged into one. 520 // Example: 521 // liveins: %edi 522 // liveins: %esi 523 // 524 // is equivalent to 525 // liveins: %edi, %esi 526 while (true) { 527 if (Token.is(MIToken::kw_successors)) { 528 if (parseBasicBlockSuccessors(MBB)) 529 return true; 530 } else if (Token.is(MIToken::kw_liveins)) { 531 if (parseBasicBlockLiveins(MBB)) 532 return true; 533 } else if (consumeIfPresent(MIToken::Newline)) { 534 continue; 535 } else 536 break; 537 if (!Token.isNewlineOrEOF()) 538 return error("expected line break at the end of a list"); 539 lex(); 540 } 541 542 // Parse the instructions. 543 bool IsInBundle = false; 544 MachineInstr *PrevMI = nullptr; 545 while (true) { 546 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 547 return false; 548 else if (consumeIfPresent(MIToken::Newline)) 549 continue; 550 if (consumeIfPresent(MIToken::rbrace)) { 551 // The first parsing pass should verify that all closing '}' have an 552 // opening '{'. 553 assert(IsInBundle); 554 IsInBundle = false; 555 continue; 556 } 557 MachineInstr *MI = nullptr; 558 if (parse(MI)) 559 return true; 560 MBB.insert(MBB.end(), MI); 561 if (IsInBundle) { 562 PrevMI->setFlag(MachineInstr::BundledSucc); 563 MI->setFlag(MachineInstr::BundledPred); 564 } 565 PrevMI = MI; 566 if (Token.is(MIToken::lbrace)) { 567 if (IsInBundle) 568 return error("nested instruction bundles are not allowed"); 569 lex(); 570 // This instruction is the start of the bundle. 571 MI->setFlag(MachineInstr::BundledSucc); 572 IsInBundle = true; 573 if (!Token.is(MIToken::Newline)) 574 // The next instruction can be on the same line. 575 continue; 576 } 577 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 578 lex(); 579 } 580 return false; 581 } 582 583 bool MIParser::parseBasicBlocks() { 584 lex(); 585 // Skip until the first machine basic block. 586 while (Token.is(MIToken::Newline)) 587 lex(); 588 if (Token.isErrorOrEOF()) 589 return Token.isError(); 590 // The first parsing pass should have verified that this token is a MBB label 591 // in the 'parseBasicBlockDefinitions' method. 592 assert(Token.is(MIToken::MachineBasicBlockLabel)); 593 do { 594 MachineBasicBlock *MBB = nullptr; 595 if (parseMBBReference(MBB)) 596 return true; 597 if (parseBasicBlock(*MBB)) 598 return true; 599 // The method 'parseBasicBlock' should parse the whole block until the next 600 // block or the end of file. 601 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 602 } while (Token.isNot(MIToken::Eof)); 603 return false; 604 } 605 606 bool MIParser::parse(MachineInstr *&MI) { 607 // Parse any register operands before '=' 608 MachineOperand MO = MachineOperand::CreateImm(0); 609 SmallVector<ParsedMachineOperand, 8> Operands; 610 while (Token.isRegister() || Token.isRegisterFlag()) { 611 auto Loc = Token.location(); 612 Optional<unsigned> TiedDefIdx; 613 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 614 return true; 615 Operands.push_back( 616 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 617 if (Token.isNot(MIToken::comma)) 618 break; 619 lex(); 620 } 621 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 622 return true; 623 624 unsigned OpCode, Flags = 0; 625 if (Token.isError() || parseInstruction(OpCode, Flags)) 626 return true; 627 628 // Parse the remaining machine operands. 629 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 630 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 631 auto Loc = Token.location(); 632 Optional<unsigned> TiedDefIdx; 633 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 634 return true; 635 Operands.push_back( 636 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 637 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 638 Token.is(MIToken::lbrace)) 639 break; 640 if (Token.isNot(MIToken::comma)) 641 return error("expected ',' before the next machine operand"); 642 lex(); 643 } 644 645 DebugLoc DebugLocation; 646 if (Token.is(MIToken::kw_debug_location)) { 647 lex(); 648 if (Token.isNot(MIToken::exclaim)) 649 return error("expected a metadata node after 'debug-location'"); 650 MDNode *Node = nullptr; 651 if (parseMDNode(Node)) 652 return true; 653 DebugLocation = DebugLoc(Node); 654 } 655 656 // Parse the machine memory operands. 657 SmallVector<MachineMemOperand *, 2> MemOperands; 658 if (Token.is(MIToken::coloncolon)) { 659 lex(); 660 while (!Token.isNewlineOrEOF()) { 661 MachineMemOperand *MemOp = nullptr; 662 if (parseMachineMemoryOperand(MemOp)) 663 return true; 664 MemOperands.push_back(MemOp); 665 if (Token.isNewlineOrEOF()) 666 break; 667 if (Token.isNot(MIToken::comma)) 668 return error("expected ',' before the next machine memory operand"); 669 lex(); 670 } 671 } 672 673 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 674 if (!MCID.isVariadic()) { 675 // FIXME: Move the implicit operand verification to the machine verifier. 676 if (verifyImplicitOperands(Operands, MCID)) 677 return true; 678 } 679 680 // TODO: Check for extraneous machine operands. 681 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 682 MI->setFlags(Flags); 683 for (const auto &Operand : Operands) 684 MI->addOperand(MF, Operand.Operand); 685 if (assignRegisterTies(*MI, Operands)) 686 return true; 687 if (MemOperands.empty()) 688 return false; 689 MachineInstr::mmo_iterator MemRefs = 690 MF.allocateMemRefsArray(MemOperands.size()); 691 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 692 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 693 return false; 694 } 695 696 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 697 lex(); 698 if (Token.isNot(MIToken::MachineBasicBlock)) 699 return error("expected a machine basic block reference"); 700 if (parseMBBReference(MBB)) 701 return true; 702 lex(); 703 if (Token.isNot(MIToken::Eof)) 704 return error( 705 "expected end of string after the machine basic block reference"); 706 return false; 707 } 708 709 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 710 lex(); 711 if (Token.isNot(MIToken::NamedRegister)) 712 return error("expected a named register"); 713 if (parseNamedRegister(Reg)) 714 return true; 715 lex(); 716 if (Token.isNot(MIToken::Eof)) 717 return error("expected end of string after the register reference"); 718 return false; 719 } 720 721 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 722 lex(); 723 if (Token.isNot(MIToken::VirtualRegister)) 724 return error("expected a virtual register"); 725 if (parseVirtualRegister(Info)) 726 return true; 727 lex(); 728 if (Token.isNot(MIToken::Eof)) 729 return error("expected end of string after the register reference"); 730 return false; 731 } 732 733 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 734 lex(); 735 if (Token.isNot(MIToken::NamedRegister) && 736 Token.isNot(MIToken::VirtualRegister)) 737 return error("expected either a named or virtual register"); 738 739 VRegInfo *Info; 740 if (parseRegister(Reg, Info)) 741 return true; 742 743 lex(); 744 if (Token.isNot(MIToken::Eof)) 745 return error("expected end of string after the register reference"); 746 return false; 747 } 748 749 bool MIParser::parseStandaloneStackObject(int &FI) { 750 lex(); 751 if (Token.isNot(MIToken::StackObject)) 752 return error("expected a stack object"); 753 if (parseStackFrameIndex(FI)) 754 return true; 755 if (Token.isNot(MIToken::Eof)) 756 return error("expected end of string after the stack object reference"); 757 return false; 758 } 759 760 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 761 lex(); 762 if (Token.isNot(MIToken::exclaim)) 763 return error("expected a metadata node"); 764 if (parseMDNode(Node)) 765 return true; 766 if (Token.isNot(MIToken::Eof)) 767 return error("expected end of string after the metadata node"); 768 return false; 769 } 770 771 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 772 assert(MO.isImplicit()); 773 return MO.isDef() ? "implicit-def" : "implicit"; 774 } 775 776 static std::string getRegisterName(const TargetRegisterInfo *TRI, 777 unsigned Reg) { 778 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 779 return StringRef(TRI->getName(Reg)).lower(); 780 } 781 782 /// Return true if the parsed machine operands contain a given machine operand. 783 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 784 ArrayRef<ParsedMachineOperand> Operands) { 785 for (const auto &I : Operands) { 786 if (ImplicitOperand.isIdenticalTo(I.Operand)) 787 return true; 788 } 789 return false; 790 } 791 792 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 793 const MCInstrDesc &MCID) { 794 if (MCID.isCall()) 795 // We can't verify call instructions as they can contain arbitrary implicit 796 // register and register mask operands. 797 return false; 798 799 // Gather all the expected implicit operands. 800 SmallVector<MachineOperand, 4> ImplicitOperands; 801 if (MCID.ImplicitDefs) 802 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 803 ImplicitOperands.push_back( 804 MachineOperand::CreateReg(*ImpDefs, true, true)); 805 if (MCID.ImplicitUses) 806 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 807 ImplicitOperands.push_back( 808 MachineOperand::CreateReg(*ImpUses, false, true)); 809 810 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 811 assert(TRI && "Expected target register info"); 812 for (const auto &I : ImplicitOperands) { 813 if (isImplicitOperandIn(I, Operands)) 814 continue; 815 return error(Operands.empty() ? Token.location() : Operands.back().End, 816 Twine("missing implicit register operand '") + 817 printImplicitRegisterFlag(I) + " %" + 818 getRegisterName(TRI, I.getReg()) + "'"); 819 } 820 return false; 821 } 822 823 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 824 if (Token.is(MIToken::kw_frame_setup)) { 825 Flags |= MachineInstr::FrameSetup; 826 lex(); 827 } 828 if (Token.isNot(MIToken::Identifier)) 829 return error("expected a machine instruction"); 830 StringRef InstrName = Token.stringValue(); 831 if (parseInstrName(InstrName, OpCode)) 832 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 833 lex(); 834 return false; 835 } 836 837 bool MIParser::parseNamedRegister(unsigned &Reg) { 838 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 839 StringRef Name = Token.stringValue(); 840 if (getRegisterByName(Name, Reg)) 841 return error(Twine("unknown register name '") + Name + "'"); 842 return false; 843 } 844 845 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 846 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 847 unsigned ID; 848 if (getUnsigned(ID)) 849 return true; 850 Info = &PFS.getVRegInfo(ID); 851 return false; 852 } 853 854 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 855 switch (Token.kind()) { 856 case MIToken::underscore: 857 Reg = 0; 858 return false; 859 case MIToken::NamedRegister: 860 return parseNamedRegister(Reg); 861 case MIToken::VirtualRegister: 862 if (parseVirtualRegister(Info)) 863 return true; 864 Reg = Info->VReg; 865 return false; 866 // TODO: Parse other register kinds. 867 default: 868 llvm_unreachable("The current token should be a register"); 869 } 870 } 871 872 bool MIParser::parseRegisterFlag(unsigned &Flags) { 873 const unsigned OldFlags = Flags; 874 switch (Token.kind()) { 875 case MIToken::kw_implicit: 876 Flags |= RegState::Implicit; 877 break; 878 case MIToken::kw_implicit_define: 879 Flags |= RegState::ImplicitDefine; 880 break; 881 case MIToken::kw_def: 882 Flags |= RegState::Define; 883 break; 884 case MIToken::kw_dead: 885 Flags |= RegState::Dead; 886 break; 887 case MIToken::kw_killed: 888 Flags |= RegState::Kill; 889 break; 890 case MIToken::kw_undef: 891 Flags |= RegState::Undef; 892 break; 893 case MIToken::kw_internal: 894 Flags |= RegState::InternalRead; 895 break; 896 case MIToken::kw_early_clobber: 897 Flags |= RegState::EarlyClobber; 898 break; 899 case MIToken::kw_debug_use: 900 Flags |= RegState::Debug; 901 break; 902 default: 903 llvm_unreachable("The current token should be a register flag"); 904 } 905 if (OldFlags == Flags) 906 // We know that the same flag is specified more than once when the flags 907 // weren't modified. 908 return error("duplicate '" + Token.stringValue() + "' register flag"); 909 lex(); 910 return false; 911 } 912 913 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 914 assert(Token.is(MIToken::dot)); 915 lex(); 916 if (Token.isNot(MIToken::Identifier)) 917 return error("expected a subregister index after '.'"); 918 auto Name = Token.stringValue(); 919 SubReg = getSubRegIndex(Name); 920 if (!SubReg) 921 return error(Twine("use of unknown subregister index '") + Name + "'"); 922 lex(); 923 return false; 924 } 925 926 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 927 if (!consumeIfPresent(MIToken::kw_tied_def)) 928 return true; 929 if (Token.isNot(MIToken::IntegerLiteral)) 930 return error("expected an integer literal after 'tied-def'"); 931 if (getUnsigned(TiedDefIdx)) 932 return true; 933 lex(); 934 if (expectAndConsume(MIToken::rparen)) 935 return true; 936 return false; 937 } 938 939 bool MIParser::assignRegisterTies(MachineInstr &MI, 940 ArrayRef<ParsedMachineOperand> Operands) { 941 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 942 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 943 if (!Operands[I].TiedDefIdx) 944 continue; 945 // The parser ensures that this operand is a register use, so we just have 946 // to check the tied-def operand. 947 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 948 if (DefIdx >= E) 949 return error(Operands[I].Begin, 950 Twine("use of invalid tied-def operand index '" + 951 Twine(DefIdx) + "'; instruction has only ") + 952 Twine(E) + " operands"); 953 const auto &DefOperand = Operands[DefIdx].Operand; 954 if (!DefOperand.isReg() || !DefOperand.isDef()) 955 // FIXME: add note with the def operand. 956 return error(Operands[I].Begin, 957 Twine("use of invalid tied-def operand index '") + 958 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 959 " isn't a defined register"); 960 // Check that the tied-def operand wasn't tied elsewhere. 961 for (const auto &TiedPair : TiedRegisterPairs) { 962 if (TiedPair.first == DefIdx) 963 return error(Operands[I].Begin, 964 Twine("the tied-def operand #") + Twine(DefIdx) + 965 " is already tied with another register operand"); 966 } 967 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 968 } 969 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 970 // indices must be less than tied max. 971 for (const auto &TiedPair : TiedRegisterPairs) 972 MI.tieOperands(TiedPair.first, TiedPair.second); 973 return false; 974 } 975 976 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 977 Optional<unsigned> &TiedDefIdx, 978 bool IsDef) { 979 unsigned Flags = IsDef ? RegState::Define : 0; 980 while (Token.isRegisterFlag()) { 981 if (parseRegisterFlag(Flags)) 982 return true; 983 } 984 if (!Token.isRegister()) 985 return error("expected a register after register flags"); 986 unsigned Reg; 987 VRegInfo *RegInfo; 988 if (parseRegister(Reg, RegInfo)) 989 return true; 990 lex(); 991 unsigned SubReg = 0; 992 if (Token.is(MIToken::dot)) { 993 if (parseSubRegisterIndex(SubReg)) 994 return true; 995 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 996 return error("subregister index expects a virtual register"); 997 } 998 MachineRegisterInfo &MRI = MF.getRegInfo(); 999 if ((Flags & RegState::Define) == 0) { 1000 if (consumeIfPresent(MIToken::lparen)) { 1001 unsigned Idx; 1002 if (!parseRegisterTiedDefIndex(Idx)) 1003 TiedDefIdx = Idx; 1004 else { 1005 // Try a redundant low-level type. 1006 LLT Ty; 1007 if (parseLowLevelType(Token.location(), Ty)) 1008 return error("expected tied-def or low-level type after '('"); 1009 1010 if (expectAndConsume(MIToken::rparen)) 1011 return true; 1012 1013 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1014 return error("inconsistent type for generic virtual register"); 1015 1016 MRI.setType(Reg, Ty); 1017 } 1018 } 1019 } else if (consumeIfPresent(MIToken::lparen)) { 1020 // Virtual registers may have a size with GlobalISel. 1021 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1022 return error("unexpected size on physical register"); 1023 if (RegInfo->Kind != VRegInfo::GENERIC && 1024 RegInfo->Kind != VRegInfo::REGBANK) 1025 return error("unexpected size on non-generic virtual register"); 1026 1027 LLT Ty; 1028 if (parseLowLevelType(Token.location(), Ty)) 1029 return true; 1030 1031 if (expectAndConsume(MIToken::rparen)) 1032 return true; 1033 1034 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1035 return error("inconsistent type for generic virtual register"); 1036 1037 MRI.setType(Reg, Ty); 1038 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1039 // Generic virtual registers must have a size. 1040 // If we end up here this means the size hasn't been specified and 1041 // this is bad! 1042 if (RegInfo->Kind == VRegInfo::GENERIC || 1043 RegInfo->Kind == VRegInfo::REGBANK) 1044 return error("generic virtual registers must have a size"); 1045 } 1046 Dest = MachineOperand::CreateReg( 1047 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1048 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1049 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1050 Flags & RegState::InternalRead); 1051 return false; 1052 } 1053 1054 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1055 assert(Token.is(MIToken::IntegerLiteral)); 1056 const APSInt &Int = Token.integerValue(); 1057 if (Int.getMinSignedBits() > 64) 1058 return error("integer literal is too large to be an immediate operand"); 1059 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1060 lex(); 1061 return false; 1062 } 1063 1064 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1065 const Constant *&C) { 1066 auto Source = StringValue.str(); // The source has to be null terminated. 1067 SMDiagnostic Err; 1068 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1069 &PFS.IRSlots); 1070 if (!C) 1071 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1072 return false; 1073 } 1074 1075 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1076 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1077 return true; 1078 lex(); 1079 return false; 1080 } 1081 1082 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1083 if (Token.is(MIToken::ScalarType)) { 1084 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1085 lex(); 1086 return false; 1087 } else if (Token.is(MIToken::PointerType)) { 1088 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1089 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1090 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1091 lex(); 1092 return false; 1093 } 1094 1095 // Now we're looking for a vector. 1096 if (Token.isNot(MIToken::less)) 1097 return error(Loc, 1098 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1099 1100 lex(); 1101 1102 if (Token.isNot(MIToken::IntegerLiteral)) 1103 return error(Loc, "expected <N x sM> for vctor type"); 1104 uint64_t NumElements = Token.integerValue().getZExtValue(); 1105 lex(); 1106 1107 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1108 return error(Loc, "expected '<N x sM>' for vector type"); 1109 lex(); 1110 1111 if (Token.isNot(MIToken::ScalarType)) 1112 return error(Loc, "expected '<N x sM>' for vector type"); 1113 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1114 lex(); 1115 1116 if (Token.isNot(MIToken::greater)) 1117 return error(Loc, "expected '<N x sM>' for vector type"); 1118 lex(); 1119 1120 Ty = LLT::vector(NumElements, ScalarSize); 1121 return false; 1122 } 1123 1124 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1125 assert(Token.is(MIToken::IntegerType)); 1126 auto Loc = Token.location(); 1127 lex(); 1128 if (Token.isNot(MIToken::IntegerLiteral)) 1129 return error("expected an integer literal"); 1130 const Constant *C = nullptr; 1131 if (parseIRConstant(Loc, C)) 1132 return true; 1133 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1134 return false; 1135 } 1136 1137 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1138 auto Loc = Token.location(); 1139 lex(); 1140 if (Token.isNot(MIToken::FloatingPointLiteral) && 1141 Token.isNot(MIToken::HexLiteral)) 1142 return error("expected a floating point literal"); 1143 const Constant *C = nullptr; 1144 if (parseIRConstant(Loc, C)) 1145 return true; 1146 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1147 return false; 1148 } 1149 1150 bool MIParser::getUnsigned(unsigned &Result) { 1151 if (Token.hasIntegerValue()) { 1152 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1153 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1154 if (Val64 == Limit) 1155 return error("expected 32-bit integer (too large)"); 1156 Result = Val64; 1157 return false; 1158 } 1159 if (Token.is(MIToken::HexLiteral)) { 1160 StringRef S = Token.range(); 1161 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1162 // This could be a floating point literal with a special prefix. 1163 if (!isxdigit(S[2])) 1164 return true; 1165 StringRef V = S.substr(2); 1166 unsigned BW = std::min<unsigned>(V.size()*4, 32); 1167 APInt A(BW, V, 16); 1168 APInt Limit = APInt(BW, std::numeric_limits<unsigned>::max()); 1169 if (A.ugt(Limit)) 1170 return error("expected 32-bit integer (too large)"); 1171 Result = A.getZExtValue(); 1172 return false; 1173 } 1174 return true; 1175 } 1176 1177 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1178 assert(Token.is(MIToken::MachineBasicBlock) || 1179 Token.is(MIToken::MachineBasicBlockLabel)); 1180 unsigned Number; 1181 if (getUnsigned(Number)) 1182 return true; 1183 auto MBBInfo = PFS.MBBSlots.find(Number); 1184 if (MBBInfo == PFS.MBBSlots.end()) 1185 return error(Twine("use of undefined machine basic block #") + 1186 Twine(Number)); 1187 MBB = MBBInfo->second; 1188 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1189 return error(Twine("the name of machine basic block #") + Twine(Number) + 1190 " isn't '" + Token.stringValue() + "'"); 1191 return false; 1192 } 1193 1194 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1195 MachineBasicBlock *MBB; 1196 if (parseMBBReference(MBB)) 1197 return true; 1198 Dest = MachineOperand::CreateMBB(MBB); 1199 lex(); 1200 return false; 1201 } 1202 1203 bool MIParser::parseStackFrameIndex(int &FI) { 1204 assert(Token.is(MIToken::StackObject)); 1205 unsigned ID; 1206 if (getUnsigned(ID)) 1207 return true; 1208 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1209 if (ObjectInfo == PFS.StackObjectSlots.end()) 1210 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1211 "'"); 1212 StringRef Name; 1213 if (const auto *Alloca = 1214 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1215 Name = Alloca->getName(); 1216 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1217 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1218 "' isn't '" + Token.stringValue() + "'"); 1219 lex(); 1220 FI = ObjectInfo->second; 1221 return false; 1222 } 1223 1224 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1225 int FI; 1226 if (parseStackFrameIndex(FI)) 1227 return true; 1228 Dest = MachineOperand::CreateFI(FI); 1229 return false; 1230 } 1231 1232 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1233 assert(Token.is(MIToken::FixedStackObject)); 1234 unsigned ID; 1235 if (getUnsigned(ID)) 1236 return true; 1237 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1238 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1239 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1240 Twine(ID) + "'"); 1241 lex(); 1242 FI = ObjectInfo->second; 1243 return false; 1244 } 1245 1246 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1247 int FI; 1248 if (parseFixedStackFrameIndex(FI)) 1249 return true; 1250 Dest = MachineOperand::CreateFI(FI); 1251 return false; 1252 } 1253 1254 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1255 switch (Token.kind()) { 1256 case MIToken::NamedGlobalValue: { 1257 const Module *M = MF.getFunction()->getParent(); 1258 GV = M->getNamedValue(Token.stringValue()); 1259 if (!GV) 1260 return error(Twine("use of undefined global value '") + Token.range() + 1261 "'"); 1262 break; 1263 } 1264 case MIToken::GlobalValue: { 1265 unsigned GVIdx; 1266 if (getUnsigned(GVIdx)) 1267 return true; 1268 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1269 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1270 "'"); 1271 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1272 break; 1273 } 1274 default: 1275 llvm_unreachable("The current token should be a global value"); 1276 } 1277 return false; 1278 } 1279 1280 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1281 GlobalValue *GV = nullptr; 1282 if (parseGlobalValue(GV)) 1283 return true; 1284 lex(); 1285 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1286 if (parseOperandsOffset(Dest)) 1287 return true; 1288 return false; 1289 } 1290 1291 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1292 assert(Token.is(MIToken::ConstantPoolItem)); 1293 unsigned ID; 1294 if (getUnsigned(ID)) 1295 return true; 1296 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1297 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1298 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1299 lex(); 1300 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1301 if (parseOperandsOffset(Dest)) 1302 return true; 1303 return false; 1304 } 1305 1306 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1307 assert(Token.is(MIToken::JumpTableIndex)); 1308 unsigned ID; 1309 if (getUnsigned(ID)) 1310 return true; 1311 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1312 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1313 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1314 lex(); 1315 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1316 return false; 1317 } 1318 1319 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1320 assert(Token.is(MIToken::ExternalSymbol)); 1321 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1322 lex(); 1323 Dest = MachineOperand::CreateES(Symbol); 1324 if (parseOperandsOffset(Dest)) 1325 return true; 1326 return false; 1327 } 1328 1329 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1330 assert(Token.is(MIToken::SubRegisterIndex)); 1331 StringRef Name = Token.stringValue(); 1332 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1333 if (SubRegIndex == 0) 1334 return error(Twine("unknown subregister index '") + Name + "'"); 1335 lex(); 1336 Dest = MachineOperand::CreateImm(SubRegIndex); 1337 return false; 1338 } 1339 1340 bool MIParser::parseMDNode(MDNode *&Node) { 1341 assert(Token.is(MIToken::exclaim)); 1342 auto Loc = Token.location(); 1343 lex(); 1344 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1345 return error("expected metadata id after '!'"); 1346 unsigned ID; 1347 if (getUnsigned(ID)) 1348 return true; 1349 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1350 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1351 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1352 lex(); 1353 Node = NodeInfo->second.get(); 1354 return false; 1355 } 1356 1357 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1358 MDNode *Node = nullptr; 1359 if (parseMDNode(Node)) 1360 return true; 1361 Dest = MachineOperand::CreateMetadata(Node); 1362 return false; 1363 } 1364 1365 bool MIParser::parseCFIOffset(int &Offset) { 1366 if (Token.isNot(MIToken::IntegerLiteral)) 1367 return error("expected a cfi offset"); 1368 if (Token.integerValue().getMinSignedBits() > 32) 1369 return error("expected a 32 bit integer (the cfi offset is too large)"); 1370 Offset = (int)Token.integerValue().getExtValue(); 1371 lex(); 1372 return false; 1373 } 1374 1375 bool MIParser::parseCFIRegister(unsigned &Reg) { 1376 if (Token.isNot(MIToken::NamedRegister)) 1377 return error("expected a cfi register"); 1378 unsigned LLVMReg; 1379 if (parseNamedRegister(LLVMReg)) 1380 return true; 1381 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1382 assert(TRI && "Expected target register info"); 1383 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1384 if (DwarfReg < 0) 1385 return error("invalid DWARF register"); 1386 Reg = (unsigned)DwarfReg; 1387 lex(); 1388 return false; 1389 } 1390 1391 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1392 auto Kind = Token.kind(); 1393 lex(); 1394 auto &MMI = MF.getMMI(); 1395 int Offset; 1396 unsigned Reg; 1397 unsigned CFIIndex; 1398 switch (Kind) { 1399 case MIToken::kw_cfi_same_value: 1400 if (parseCFIRegister(Reg)) 1401 return true; 1402 CFIIndex = 1403 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1404 break; 1405 case MIToken::kw_cfi_offset: 1406 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1407 parseCFIOffset(Offset)) 1408 return true; 1409 CFIIndex = 1410 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1411 break; 1412 case MIToken::kw_cfi_def_cfa_register: 1413 if (parseCFIRegister(Reg)) 1414 return true; 1415 CFIIndex = 1416 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1417 break; 1418 case MIToken::kw_cfi_def_cfa_offset: 1419 if (parseCFIOffset(Offset)) 1420 return true; 1421 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1422 CFIIndex = MMI.addFrameInst( 1423 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1424 break; 1425 case MIToken::kw_cfi_def_cfa: 1426 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1427 parseCFIOffset(Offset)) 1428 return true; 1429 // NB: MCCFIInstruction::createDefCfa negates the offset. 1430 CFIIndex = 1431 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1432 break; 1433 default: 1434 // TODO: Parse the other CFI operands. 1435 llvm_unreachable("The current token should be a cfi operand"); 1436 } 1437 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1438 return false; 1439 } 1440 1441 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1442 switch (Token.kind()) { 1443 case MIToken::NamedIRBlock: { 1444 BB = dyn_cast_or_null<BasicBlock>( 1445 F.getValueSymbolTable()->lookup(Token.stringValue())); 1446 if (!BB) 1447 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1448 break; 1449 } 1450 case MIToken::IRBlock: { 1451 unsigned SlotNumber = 0; 1452 if (getUnsigned(SlotNumber)) 1453 return true; 1454 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1455 if (!BB) 1456 return error(Twine("use of undefined IR block '%ir-block.") + 1457 Twine(SlotNumber) + "'"); 1458 break; 1459 } 1460 default: 1461 llvm_unreachable("The current token should be an IR block reference"); 1462 } 1463 return false; 1464 } 1465 1466 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1467 assert(Token.is(MIToken::kw_blockaddress)); 1468 lex(); 1469 if (expectAndConsume(MIToken::lparen)) 1470 return true; 1471 if (Token.isNot(MIToken::GlobalValue) && 1472 Token.isNot(MIToken::NamedGlobalValue)) 1473 return error("expected a global value"); 1474 GlobalValue *GV = nullptr; 1475 if (parseGlobalValue(GV)) 1476 return true; 1477 auto *F = dyn_cast<Function>(GV); 1478 if (!F) 1479 return error("expected an IR function reference"); 1480 lex(); 1481 if (expectAndConsume(MIToken::comma)) 1482 return true; 1483 BasicBlock *BB = nullptr; 1484 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1485 return error("expected an IR block reference"); 1486 if (parseIRBlock(BB, *F)) 1487 return true; 1488 lex(); 1489 if (expectAndConsume(MIToken::rparen)) 1490 return true; 1491 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1492 if (parseOperandsOffset(Dest)) 1493 return true; 1494 return false; 1495 } 1496 1497 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1498 assert(Token.is(MIToken::kw_intrinsic)); 1499 lex(); 1500 if (expectAndConsume(MIToken::lparen)) 1501 return error("expected syntax intrinsic(@llvm.whatever)"); 1502 1503 if (Token.isNot(MIToken::NamedGlobalValue)) 1504 return error("expected syntax intrinsic(@llvm.whatever)"); 1505 1506 std::string Name = Token.stringValue(); 1507 lex(); 1508 1509 if (expectAndConsume(MIToken::rparen)) 1510 return error("expected ')' to terminate intrinsic name"); 1511 1512 // Find out what intrinsic we're dealing with, first try the global namespace 1513 // and then the target's private intrinsics if that fails. 1514 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1515 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1516 if (ID == Intrinsic::not_intrinsic && TII) 1517 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1518 1519 if (ID == Intrinsic::not_intrinsic) 1520 return error("unknown intrinsic name"); 1521 Dest = MachineOperand::CreateIntrinsicID(ID); 1522 1523 return false; 1524 } 1525 1526 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1527 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1528 bool IsFloat = Token.is(MIToken::kw_floatpred); 1529 lex(); 1530 1531 if (expectAndConsume(MIToken::lparen)) 1532 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1533 1534 if (Token.isNot(MIToken::Identifier)) 1535 return error("whatever"); 1536 1537 CmpInst::Predicate Pred; 1538 if (IsFloat) { 1539 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1540 .Case("false", CmpInst::FCMP_FALSE) 1541 .Case("oeq", CmpInst::FCMP_OEQ) 1542 .Case("ogt", CmpInst::FCMP_OGT) 1543 .Case("oge", CmpInst::FCMP_OGE) 1544 .Case("olt", CmpInst::FCMP_OLT) 1545 .Case("ole", CmpInst::FCMP_OLE) 1546 .Case("one", CmpInst::FCMP_ONE) 1547 .Case("ord", CmpInst::FCMP_ORD) 1548 .Case("uno", CmpInst::FCMP_UNO) 1549 .Case("ueq", CmpInst::FCMP_UEQ) 1550 .Case("ugt", CmpInst::FCMP_UGT) 1551 .Case("uge", CmpInst::FCMP_UGE) 1552 .Case("ult", CmpInst::FCMP_ULT) 1553 .Case("ule", CmpInst::FCMP_ULE) 1554 .Case("une", CmpInst::FCMP_UNE) 1555 .Case("true", CmpInst::FCMP_TRUE) 1556 .Default(CmpInst::BAD_FCMP_PREDICATE); 1557 if (!CmpInst::isFPPredicate(Pred)) 1558 return error("invalid floating-point predicate"); 1559 } else { 1560 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1561 .Case("eq", CmpInst::ICMP_EQ) 1562 .Case("ne", CmpInst::ICMP_NE) 1563 .Case("sgt", CmpInst::ICMP_SGT) 1564 .Case("sge", CmpInst::ICMP_SGE) 1565 .Case("slt", CmpInst::ICMP_SLT) 1566 .Case("sle", CmpInst::ICMP_SLE) 1567 .Case("ugt", CmpInst::ICMP_UGT) 1568 .Case("uge", CmpInst::ICMP_UGE) 1569 .Case("ult", CmpInst::ICMP_ULT) 1570 .Case("ule", CmpInst::ICMP_ULE) 1571 .Default(CmpInst::BAD_ICMP_PREDICATE); 1572 if (!CmpInst::isIntPredicate(Pred)) 1573 return error("invalid integer predicate"); 1574 } 1575 1576 lex(); 1577 Dest = MachineOperand::CreatePredicate(Pred); 1578 if (expectAndConsume(MIToken::rparen)) 1579 return error("predicate should be terminated by ')'."); 1580 1581 return false; 1582 } 1583 1584 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1585 assert(Token.is(MIToken::kw_target_index)); 1586 lex(); 1587 if (expectAndConsume(MIToken::lparen)) 1588 return true; 1589 if (Token.isNot(MIToken::Identifier)) 1590 return error("expected the name of the target index"); 1591 int Index = 0; 1592 if (getTargetIndex(Token.stringValue(), Index)) 1593 return error("use of undefined target index '" + Token.stringValue() + "'"); 1594 lex(); 1595 if (expectAndConsume(MIToken::rparen)) 1596 return true; 1597 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1598 if (parseOperandsOffset(Dest)) 1599 return true; 1600 return false; 1601 } 1602 1603 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1604 assert(Token.is(MIToken::kw_liveout)); 1605 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1606 assert(TRI && "Expected target register info"); 1607 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1608 lex(); 1609 if (expectAndConsume(MIToken::lparen)) 1610 return true; 1611 while (true) { 1612 if (Token.isNot(MIToken::NamedRegister)) 1613 return error("expected a named register"); 1614 unsigned Reg; 1615 if (parseNamedRegister(Reg)) 1616 return true; 1617 lex(); 1618 Mask[Reg / 32] |= 1U << (Reg % 32); 1619 // TODO: Report an error if the same register is used more than once. 1620 if (Token.isNot(MIToken::comma)) 1621 break; 1622 lex(); 1623 } 1624 if (expectAndConsume(MIToken::rparen)) 1625 return true; 1626 Dest = MachineOperand::CreateRegLiveOut(Mask); 1627 return false; 1628 } 1629 1630 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1631 Optional<unsigned> &TiedDefIdx) { 1632 switch (Token.kind()) { 1633 case MIToken::kw_implicit: 1634 case MIToken::kw_implicit_define: 1635 case MIToken::kw_def: 1636 case MIToken::kw_dead: 1637 case MIToken::kw_killed: 1638 case MIToken::kw_undef: 1639 case MIToken::kw_internal: 1640 case MIToken::kw_early_clobber: 1641 case MIToken::kw_debug_use: 1642 case MIToken::underscore: 1643 case MIToken::NamedRegister: 1644 case MIToken::VirtualRegister: 1645 return parseRegisterOperand(Dest, TiedDefIdx); 1646 case MIToken::IntegerLiteral: 1647 return parseImmediateOperand(Dest); 1648 case MIToken::IntegerType: 1649 return parseTypedImmediateOperand(Dest); 1650 case MIToken::kw_half: 1651 case MIToken::kw_float: 1652 case MIToken::kw_double: 1653 case MIToken::kw_x86_fp80: 1654 case MIToken::kw_fp128: 1655 case MIToken::kw_ppc_fp128: 1656 return parseFPImmediateOperand(Dest); 1657 case MIToken::MachineBasicBlock: 1658 return parseMBBOperand(Dest); 1659 case MIToken::StackObject: 1660 return parseStackObjectOperand(Dest); 1661 case MIToken::FixedStackObject: 1662 return parseFixedStackObjectOperand(Dest); 1663 case MIToken::GlobalValue: 1664 case MIToken::NamedGlobalValue: 1665 return parseGlobalAddressOperand(Dest); 1666 case MIToken::ConstantPoolItem: 1667 return parseConstantPoolIndexOperand(Dest); 1668 case MIToken::JumpTableIndex: 1669 return parseJumpTableIndexOperand(Dest); 1670 case MIToken::ExternalSymbol: 1671 return parseExternalSymbolOperand(Dest); 1672 case MIToken::SubRegisterIndex: 1673 return parseSubRegisterIndexOperand(Dest); 1674 case MIToken::exclaim: 1675 return parseMetadataOperand(Dest); 1676 case MIToken::kw_cfi_same_value: 1677 case MIToken::kw_cfi_offset: 1678 case MIToken::kw_cfi_def_cfa_register: 1679 case MIToken::kw_cfi_def_cfa_offset: 1680 case MIToken::kw_cfi_def_cfa: 1681 return parseCFIOperand(Dest); 1682 case MIToken::kw_blockaddress: 1683 return parseBlockAddressOperand(Dest); 1684 case MIToken::kw_intrinsic: 1685 return parseIntrinsicOperand(Dest); 1686 case MIToken::kw_target_index: 1687 return parseTargetIndexOperand(Dest); 1688 case MIToken::kw_liveout: 1689 return parseLiveoutRegisterMaskOperand(Dest); 1690 case MIToken::kw_floatpred: 1691 case MIToken::kw_intpred: 1692 return parsePredicateOperand(Dest); 1693 case MIToken::Error: 1694 return true; 1695 case MIToken::Identifier: 1696 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1697 Dest = MachineOperand::CreateRegMask(RegMask); 1698 lex(); 1699 break; 1700 } 1701 LLVM_FALLTHROUGH; 1702 default: 1703 // FIXME: Parse the MCSymbol machine operand. 1704 return error("expected a machine operand"); 1705 } 1706 return false; 1707 } 1708 1709 bool MIParser::parseMachineOperandAndTargetFlags( 1710 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1711 unsigned TF = 0; 1712 bool HasTargetFlags = false; 1713 if (Token.is(MIToken::kw_target_flags)) { 1714 HasTargetFlags = true; 1715 lex(); 1716 if (expectAndConsume(MIToken::lparen)) 1717 return true; 1718 if (Token.isNot(MIToken::Identifier)) 1719 return error("expected the name of the target flag"); 1720 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1721 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1722 return error("use of undefined target flag '" + Token.stringValue() + 1723 "'"); 1724 } 1725 lex(); 1726 while (Token.is(MIToken::comma)) { 1727 lex(); 1728 if (Token.isNot(MIToken::Identifier)) 1729 return error("expected the name of the target flag"); 1730 unsigned BitFlag = 0; 1731 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1732 return error("use of undefined target flag '" + Token.stringValue() + 1733 "'"); 1734 // TODO: Report an error when using a duplicate bit target flag. 1735 TF |= BitFlag; 1736 lex(); 1737 } 1738 if (expectAndConsume(MIToken::rparen)) 1739 return true; 1740 } 1741 auto Loc = Token.location(); 1742 if (parseMachineOperand(Dest, TiedDefIdx)) 1743 return true; 1744 if (!HasTargetFlags) 1745 return false; 1746 if (Dest.isReg()) 1747 return error(Loc, "register operands can't have target flags"); 1748 Dest.setTargetFlags(TF); 1749 return false; 1750 } 1751 1752 bool MIParser::parseOffset(int64_t &Offset) { 1753 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1754 return false; 1755 StringRef Sign = Token.range(); 1756 bool IsNegative = Token.is(MIToken::minus); 1757 lex(); 1758 if (Token.isNot(MIToken::IntegerLiteral)) 1759 return error("expected an integer literal after '" + Sign + "'"); 1760 if (Token.integerValue().getMinSignedBits() > 64) 1761 return error("expected 64-bit integer (too large)"); 1762 Offset = Token.integerValue().getExtValue(); 1763 if (IsNegative) 1764 Offset = -Offset; 1765 lex(); 1766 return false; 1767 } 1768 1769 bool MIParser::parseAlignment(unsigned &Alignment) { 1770 assert(Token.is(MIToken::kw_align)); 1771 lex(); 1772 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1773 return error("expected an integer literal after 'align'"); 1774 if (getUnsigned(Alignment)) 1775 return true; 1776 lex(); 1777 return false; 1778 } 1779 1780 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1781 int64_t Offset = 0; 1782 if (parseOffset(Offset)) 1783 return true; 1784 Op.setOffset(Offset); 1785 return false; 1786 } 1787 1788 bool MIParser::parseIRValue(const Value *&V) { 1789 switch (Token.kind()) { 1790 case MIToken::NamedIRValue: { 1791 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1792 break; 1793 } 1794 case MIToken::IRValue: { 1795 unsigned SlotNumber = 0; 1796 if (getUnsigned(SlotNumber)) 1797 return true; 1798 V = getIRValue(SlotNumber); 1799 break; 1800 } 1801 case MIToken::NamedGlobalValue: 1802 case MIToken::GlobalValue: { 1803 GlobalValue *GV = nullptr; 1804 if (parseGlobalValue(GV)) 1805 return true; 1806 V = GV; 1807 break; 1808 } 1809 case MIToken::QuotedIRValue: { 1810 const Constant *C = nullptr; 1811 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1812 return true; 1813 V = C; 1814 break; 1815 } 1816 default: 1817 llvm_unreachable("The current token should be an IR block reference"); 1818 } 1819 if (!V) 1820 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1821 return false; 1822 } 1823 1824 bool MIParser::getUint64(uint64_t &Result) { 1825 assert(Token.hasIntegerValue()); 1826 if (Token.integerValue().getActiveBits() > 64) 1827 return error("expected 64-bit integer (too large)"); 1828 Result = Token.integerValue().getZExtValue(); 1829 return false; 1830 } 1831 1832 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1833 const auto OldFlags = Flags; 1834 switch (Token.kind()) { 1835 case MIToken::kw_volatile: 1836 Flags |= MachineMemOperand::MOVolatile; 1837 break; 1838 case MIToken::kw_non_temporal: 1839 Flags |= MachineMemOperand::MONonTemporal; 1840 break; 1841 case MIToken::kw_dereferenceable: 1842 Flags |= MachineMemOperand::MODereferenceable; 1843 break; 1844 case MIToken::kw_invariant: 1845 Flags |= MachineMemOperand::MOInvariant; 1846 break; 1847 // TODO: parse the target specific memory operand flags. 1848 default: 1849 llvm_unreachable("The current token should be a memory operand flag"); 1850 } 1851 if (OldFlags == Flags) 1852 // We know that the same flag is specified more than once when the flags 1853 // weren't modified. 1854 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1855 lex(); 1856 return false; 1857 } 1858 1859 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1860 switch (Token.kind()) { 1861 case MIToken::kw_stack: 1862 PSV = MF.getPSVManager().getStack(); 1863 break; 1864 case MIToken::kw_got: 1865 PSV = MF.getPSVManager().getGOT(); 1866 break; 1867 case MIToken::kw_jump_table: 1868 PSV = MF.getPSVManager().getJumpTable(); 1869 break; 1870 case MIToken::kw_constant_pool: 1871 PSV = MF.getPSVManager().getConstantPool(); 1872 break; 1873 case MIToken::FixedStackObject: { 1874 int FI; 1875 if (parseFixedStackFrameIndex(FI)) 1876 return true; 1877 PSV = MF.getPSVManager().getFixedStack(FI); 1878 // The token was already consumed, so use return here instead of break. 1879 return false; 1880 } 1881 case MIToken::StackObject: { 1882 int FI; 1883 if (parseStackFrameIndex(FI)) 1884 return true; 1885 PSV = MF.getPSVManager().getFixedStack(FI); 1886 // The token was already consumed, so use return here instead of break. 1887 return false; 1888 } 1889 case MIToken::kw_call_entry: { 1890 lex(); 1891 switch (Token.kind()) { 1892 case MIToken::GlobalValue: 1893 case MIToken::NamedGlobalValue: { 1894 GlobalValue *GV = nullptr; 1895 if (parseGlobalValue(GV)) 1896 return true; 1897 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1898 break; 1899 } 1900 case MIToken::ExternalSymbol: 1901 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1902 MF.createExternalSymbolName(Token.stringValue())); 1903 break; 1904 default: 1905 return error( 1906 "expected a global value or an external symbol after 'call-entry'"); 1907 } 1908 break; 1909 } 1910 default: 1911 llvm_unreachable("The current token should be pseudo source value"); 1912 } 1913 lex(); 1914 return false; 1915 } 1916 1917 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1918 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1919 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1920 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1921 Token.is(MIToken::kw_call_entry)) { 1922 const PseudoSourceValue *PSV = nullptr; 1923 if (parseMemoryPseudoSourceValue(PSV)) 1924 return true; 1925 int64_t Offset = 0; 1926 if (parseOffset(Offset)) 1927 return true; 1928 Dest = MachinePointerInfo(PSV, Offset); 1929 return false; 1930 } 1931 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1932 Token.isNot(MIToken::GlobalValue) && 1933 Token.isNot(MIToken::NamedGlobalValue) && 1934 Token.isNot(MIToken::QuotedIRValue)) 1935 return error("expected an IR value reference"); 1936 const Value *V = nullptr; 1937 if (parseIRValue(V)) 1938 return true; 1939 if (!V->getType()->isPointerTy()) 1940 return error("expected a pointer IR value"); 1941 lex(); 1942 int64_t Offset = 0; 1943 if (parseOffset(Offset)) 1944 return true; 1945 Dest = MachinePointerInfo(V, Offset); 1946 return false; 1947 } 1948 1949 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1950 if (expectAndConsume(MIToken::lparen)) 1951 return true; 1952 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 1953 while (Token.isMemoryOperandFlag()) { 1954 if (parseMemoryOperandFlag(Flags)) 1955 return true; 1956 } 1957 if (Token.isNot(MIToken::Identifier) || 1958 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1959 return error("expected 'load' or 'store' memory operation"); 1960 if (Token.stringValue() == "load") 1961 Flags |= MachineMemOperand::MOLoad; 1962 else 1963 Flags |= MachineMemOperand::MOStore; 1964 lex(); 1965 1966 if (Token.isNot(MIToken::IntegerLiteral)) 1967 return error("expected the size integer literal after memory operation"); 1968 uint64_t Size; 1969 if (getUint64(Size)) 1970 return true; 1971 lex(); 1972 1973 MachinePointerInfo Ptr = MachinePointerInfo(); 1974 if (Token.is(MIToken::Identifier)) { 1975 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1976 if (Token.stringValue() != Word) 1977 return error(Twine("expected '") + Word + "'"); 1978 lex(); 1979 1980 if (parseMachinePointerInfo(Ptr)) 1981 return true; 1982 } 1983 unsigned BaseAlignment = Size; 1984 AAMDNodes AAInfo; 1985 MDNode *Range = nullptr; 1986 while (consumeIfPresent(MIToken::comma)) { 1987 switch (Token.kind()) { 1988 case MIToken::kw_align: 1989 if (parseAlignment(BaseAlignment)) 1990 return true; 1991 break; 1992 case MIToken::md_tbaa: 1993 lex(); 1994 if (parseMDNode(AAInfo.TBAA)) 1995 return true; 1996 break; 1997 case MIToken::md_alias_scope: 1998 lex(); 1999 if (parseMDNode(AAInfo.Scope)) 2000 return true; 2001 break; 2002 case MIToken::md_noalias: 2003 lex(); 2004 if (parseMDNode(AAInfo.NoAlias)) 2005 return true; 2006 break; 2007 case MIToken::md_range: 2008 lex(); 2009 if (parseMDNode(Range)) 2010 return true; 2011 break; 2012 // TODO: Report an error on duplicate metadata nodes. 2013 default: 2014 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2015 "'!noalias' or '!range'"); 2016 } 2017 } 2018 if (expectAndConsume(MIToken::rparen)) 2019 return true; 2020 Dest = 2021 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 2022 return false; 2023 } 2024 2025 void MIParser::initNames2InstrOpCodes() { 2026 if (!Names2InstrOpCodes.empty()) 2027 return; 2028 const auto *TII = MF.getSubtarget().getInstrInfo(); 2029 assert(TII && "Expected target instruction info"); 2030 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2031 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2032 } 2033 2034 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2035 initNames2InstrOpCodes(); 2036 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2037 if (InstrInfo == Names2InstrOpCodes.end()) 2038 return true; 2039 OpCode = InstrInfo->getValue(); 2040 return false; 2041 } 2042 2043 void MIParser::initNames2Regs() { 2044 if (!Names2Regs.empty()) 2045 return; 2046 // The '%noreg' register is the register 0. 2047 Names2Regs.insert(std::make_pair("noreg", 0)); 2048 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2049 assert(TRI && "Expected target register info"); 2050 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2051 bool WasInserted = 2052 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2053 .second; 2054 (void)WasInserted; 2055 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2056 } 2057 } 2058 2059 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2060 initNames2Regs(); 2061 auto RegInfo = Names2Regs.find(RegName); 2062 if (RegInfo == Names2Regs.end()) 2063 return true; 2064 Reg = RegInfo->getValue(); 2065 return false; 2066 } 2067 2068 void MIParser::initNames2RegMasks() { 2069 if (!Names2RegMasks.empty()) 2070 return; 2071 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2072 assert(TRI && "Expected target register info"); 2073 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2074 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2075 assert(RegMasks.size() == RegMaskNames.size()); 2076 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2077 Names2RegMasks.insert( 2078 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2079 } 2080 2081 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2082 initNames2RegMasks(); 2083 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2084 if (RegMaskInfo == Names2RegMasks.end()) 2085 return nullptr; 2086 return RegMaskInfo->getValue(); 2087 } 2088 2089 void MIParser::initNames2SubRegIndices() { 2090 if (!Names2SubRegIndices.empty()) 2091 return; 2092 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2093 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2094 Names2SubRegIndices.insert( 2095 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2096 } 2097 2098 unsigned MIParser::getSubRegIndex(StringRef Name) { 2099 initNames2SubRegIndices(); 2100 auto SubRegInfo = Names2SubRegIndices.find(Name); 2101 if (SubRegInfo == Names2SubRegIndices.end()) 2102 return 0; 2103 return SubRegInfo->getValue(); 2104 } 2105 2106 static void initSlots2BasicBlocks( 2107 const Function &F, 2108 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2109 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2110 MST.incorporateFunction(F); 2111 for (auto &BB : F) { 2112 if (BB.hasName()) 2113 continue; 2114 int Slot = MST.getLocalSlot(&BB); 2115 if (Slot == -1) 2116 continue; 2117 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2118 } 2119 } 2120 2121 static const BasicBlock *getIRBlockFromSlot( 2122 unsigned Slot, 2123 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2124 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2125 if (BlockInfo == Slots2BasicBlocks.end()) 2126 return nullptr; 2127 return BlockInfo->second; 2128 } 2129 2130 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2131 if (Slots2BasicBlocks.empty()) 2132 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2133 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2134 } 2135 2136 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2137 if (&F == MF.getFunction()) 2138 return getIRBlock(Slot); 2139 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2140 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2141 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2142 } 2143 2144 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2145 DenseMap<unsigned, const Value *> &Slots2Values) { 2146 int Slot = MST.getLocalSlot(V); 2147 if (Slot == -1) 2148 return; 2149 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2150 } 2151 2152 /// Creates the mapping from slot numbers to function's unnamed IR values. 2153 static void initSlots2Values(const Function &F, 2154 DenseMap<unsigned, const Value *> &Slots2Values) { 2155 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2156 MST.incorporateFunction(F); 2157 for (const auto &Arg : F.args()) 2158 mapValueToSlot(&Arg, MST, Slots2Values); 2159 for (const auto &BB : F) { 2160 mapValueToSlot(&BB, MST, Slots2Values); 2161 for (const auto &I : BB) 2162 mapValueToSlot(&I, MST, Slots2Values); 2163 } 2164 } 2165 2166 const Value *MIParser::getIRValue(unsigned Slot) { 2167 if (Slots2Values.empty()) 2168 initSlots2Values(*MF.getFunction(), Slots2Values); 2169 auto ValueInfo = Slots2Values.find(Slot); 2170 if (ValueInfo == Slots2Values.end()) 2171 return nullptr; 2172 return ValueInfo->second; 2173 } 2174 2175 void MIParser::initNames2TargetIndices() { 2176 if (!Names2TargetIndices.empty()) 2177 return; 2178 const auto *TII = MF.getSubtarget().getInstrInfo(); 2179 assert(TII && "Expected target instruction info"); 2180 auto Indices = TII->getSerializableTargetIndices(); 2181 for (const auto &I : Indices) 2182 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2183 } 2184 2185 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2186 initNames2TargetIndices(); 2187 auto IndexInfo = Names2TargetIndices.find(Name); 2188 if (IndexInfo == Names2TargetIndices.end()) 2189 return true; 2190 Index = IndexInfo->second; 2191 return false; 2192 } 2193 2194 void MIParser::initNames2DirectTargetFlags() { 2195 if (!Names2DirectTargetFlags.empty()) 2196 return; 2197 const auto *TII = MF.getSubtarget().getInstrInfo(); 2198 assert(TII && "Expected target instruction info"); 2199 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2200 for (const auto &I : Flags) 2201 Names2DirectTargetFlags.insert( 2202 std::make_pair(StringRef(I.second), I.first)); 2203 } 2204 2205 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2206 initNames2DirectTargetFlags(); 2207 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2208 if (FlagInfo == Names2DirectTargetFlags.end()) 2209 return true; 2210 Flag = FlagInfo->second; 2211 return false; 2212 } 2213 2214 void MIParser::initNames2BitmaskTargetFlags() { 2215 if (!Names2BitmaskTargetFlags.empty()) 2216 return; 2217 const auto *TII = MF.getSubtarget().getInstrInfo(); 2218 assert(TII && "Expected target instruction info"); 2219 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2220 for (const auto &I : Flags) 2221 Names2BitmaskTargetFlags.insert( 2222 std::make_pair(StringRef(I.second), I.first)); 2223 } 2224 2225 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2226 initNames2BitmaskTargetFlags(); 2227 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2228 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2229 return true; 2230 Flag = FlagInfo->second; 2231 return false; 2232 } 2233 2234 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2235 StringRef Src, 2236 SMDiagnostic &Error) { 2237 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2238 } 2239 2240 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2241 StringRef Src, SMDiagnostic &Error) { 2242 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2243 } 2244 2245 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2246 MachineBasicBlock *&MBB, StringRef Src, 2247 SMDiagnostic &Error) { 2248 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2249 } 2250 2251 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2252 unsigned &Reg, StringRef Src, 2253 SMDiagnostic &Error) { 2254 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2255 } 2256 2257 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2258 unsigned &Reg, StringRef Src, 2259 SMDiagnostic &Error) { 2260 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2261 } 2262 2263 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2264 VRegInfo *&Info, StringRef Src, 2265 SMDiagnostic &Error) { 2266 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2267 } 2268 2269 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2270 int &FI, StringRef Src, 2271 SMDiagnostic &Error) { 2272 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2273 } 2274 2275 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2276 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2277 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2278 } 2279