1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueSymbolTable.h" 56 #include "llvm/MC/LaneBitmask.h" 57 #include "llvm/MC/MCDwarf.h" 58 #include "llvm/MC/MCInstrDesc.h" 59 #include "llvm/MC/MCRegisterInfo.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MemoryBuffer.h" 66 #include "llvm/Support/SMLoc.h" 67 #include "llvm/Support/SourceMgr.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cctype> 74 #include <cstddef> 75 #include <cstdint> 76 #include <limits> 77 #include <string> 78 #include <utility> 79 80 using namespace llvm; 81 82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 83 SourceMgr &SM, const SlotMapping &IRSlots, 84 const Name2RegClassMap &Names2RegClasses, 85 const Name2RegBankMap &Names2RegBanks) 86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 87 Names2RegBanks(Names2RegBanks) { 88 } 89 90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 92 if (I.second) { 93 MachineRegisterInfo &MRI = MF.getRegInfo(); 94 VRegInfo *Info = new (Allocator) VRegInfo; 95 Info->VReg = MRI.createIncompleteVirtualRegister(); 96 I.first->second = Info; 97 } 98 return *I.first->second; 99 } 100 101 namespace { 102 103 /// A wrapper struct around the 'MachineOperand' struct that includes a source 104 /// range and other attributes. 105 struct ParsedMachineOperand { 106 MachineOperand Operand; 107 StringRef::iterator Begin; 108 StringRef::iterator End; 109 Optional<unsigned> TiedDefIdx; 110 111 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 112 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 113 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 114 if (TiedDefIdx) 115 assert(Operand.isReg() && Operand.isUse() && 116 "Only used register operands can be tied"); 117 } 118 }; 119 120 class MIParser { 121 MachineFunction &MF; 122 SMDiagnostic &Error; 123 StringRef Source, CurrentSource; 124 MIToken Token; 125 PerFunctionMIParsingState &PFS; 126 /// Maps from instruction names to op codes. 127 StringMap<unsigned> Names2InstrOpCodes; 128 /// Maps from register names to registers. 129 StringMap<unsigned> Names2Regs; 130 /// Maps from register mask names to register masks. 131 StringMap<const uint32_t *> Names2RegMasks; 132 /// Maps from subregister names to subregister indices. 133 StringMap<unsigned> Names2SubRegIndices; 134 /// Maps from slot numbers to function's unnamed basic blocks. 135 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 136 /// Maps from slot numbers to function's unnamed values. 137 DenseMap<unsigned, const Value *> Slots2Values; 138 /// Maps from target index names to target indices. 139 StringMap<int> Names2TargetIndices; 140 /// Maps from direct target flag names to the direct target flag values. 141 StringMap<unsigned> Names2DirectTargetFlags; 142 /// Maps from direct target flag names to the bitmask target flag values. 143 StringMap<unsigned> Names2BitmaskTargetFlags; 144 /// Maps from MMO target flag names to MMO target flag values. 145 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 146 147 public: 148 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 149 StringRef Source); 150 151 /// \p SkipChar gives the number of characters to skip before looking 152 /// for the next token. 153 void lex(unsigned SkipChar = 0); 154 155 /// Report an error at the current location with the given message. 156 /// 157 /// This function always return true. 158 bool error(const Twine &Msg); 159 160 /// Report an error at the given location with the given message. 161 /// 162 /// This function always return true. 163 bool error(StringRef::iterator Loc, const Twine &Msg); 164 165 bool 166 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 167 bool parseBasicBlocks(); 168 bool parse(MachineInstr *&MI); 169 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 170 bool parseStandaloneNamedRegister(unsigned &Reg); 171 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 172 bool parseStandaloneRegister(unsigned &Reg); 173 bool parseStandaloneStackObject(int &FI); 174 bool parseStandaloneMDNode(MDNode *&Node); 175 176 bool 177 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 178 bool parseBasicBlock(MachineBasicBlock &MBB, 179 MachineBasicBlock *&AddFalthroughFrom); 180 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 181 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 182 183 bool parseNamedRegister(unsigned &Reg); 184 bool parseVirtualRegister(VRegInfo *&Info); 185 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 186 bool parseRegisterFlag(unsigned &Flags); 187 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 188 bool parseSubRegisterIndex(unsigned &SubReg); 189 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 190 bool parseRegisterOperand(MachineOperand &Dest, 191 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 192 bool parseImmediateOperand(MachineOperand &Dest); 193 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 194 const Constant *&C); 195 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 196 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 197 bool parseTypedImmediateOperand(MachineOperand &Dest); 198 bool parseFPImmediateOperand(MachineOperand &Dest); 199 bool parseMBBReference(MachineBasicBlock *&MBB); 200 bool parseMBBOperand(MachineOperand &Dest); 201 bool parseStackFrameIndex(int &FI); 202 bool parseStackObjectOperand(MachineOperand &Dest); 203 bool parseFixedStackFrameIndex(int &FI); 204 bool parseFixedStackObjectOperand(MachineOperand &Dest); 205 bool parseGlobalValue(GlobalValue *&GV); 206 bool parseGlobalAddressOperand(MachineOperand &Dest); 207 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 208 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 209 bool parseJumpTableIndexOperand(MachineOperand &Dest); 210 bool parseExternalSymbolOperand(MachineOperand &Dest); 211 bool parseMDNode(MDNode *&Node); 212 bool parseDIExpression(MDNode *&Node); 213 bool parseMetadataOperand(MachineOperand &Dest); 214 bool parseCFIOffset(int &Offset); 215 bool parseCFIRegister(unsigned &Reg); 216 bool parseCFIEscapeValues(std::string& Values); 217 bool parseCFIOperand(MachineOperand &Dest); 218 bool parseIRBlock(BasicBlock *&BB, const Function &F); 219 bool parseBlockAddressOperand(MachineOperand &Dest); 220 bool parseIntrinsicOperand(MachineOperand &Dest); 221 bool parsePredicateOperand(MachineOperand &Dest); 222 bool parseTargetIndexOperand(MachineOperand &Dest); 223 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 224 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 225 bool parseMachineOperand(MachineOperand &Dest, 226 Optional<unsigned> &TiedDefIdx); 227 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 228 Optional<unsigned> &TiedDefIdx); 229 bool parseOffset(int64_t &Offset); 230 bool parseAlignment(unsigned &Alignment); 231 bool parseOperandsOffset(MachineOperand &Op); 232 bool parseIRValue(const Value *&V); 233 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 234 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 235 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 236 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 237 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 238 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 239 240 private: 241 /// Convert the integer literal in the current token into an unsigned integer. 242 /// 243 /// Return true if an error occurred. 244 bool getUnsigned(unsigned &Result); 245 246 /// Convert the integer literal in the current token into an uint64. 247 /// 248 /// Return true if an error occurred. 249 bool getUint64(uint64_t &Result); 250 251 /// Convert the hexadecimal literal in the current token into an unsigned 252 /// APInt with a minimum bitwidth required to represent the value. 253 /// 254 /// Return true if the literal does not represent an integer value. 255 bool getHexUint(APInt &Result); 256 257 /// If the current token is of the given kind, consume it and return false. 258 /// Otherwise report an error and return true. 259 bool expectAndConsume(MIToken::TokenKind TokenKind); 260 261 /// If the current token is of the given kind, consume it and return true. 262 /// Otherwise return false. 263 bool consumeIfPresent(MIToken::TokenKind TokenKind); 264 265 void initNames2InstrOpCodes(); 266 267 /// Try to convert an instruction name to an opcode. Return true if the 268 /// instruction name is invalid. 269 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 270 271 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 272 273 bool assignRegisterTies(MachineInstr &MI, 274 ArrayRef<ParsedMachineOperand> Operands); 275 276 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 277 const MCInstrDesc &MCID); 278 279 void initNames2Regs(); 280 281 /// Try to convert a register name to a register number. Return true if the 282 /// register name is invalid. 283 bool getRegisterByName(StringRef RegName, unsigned &Reg); 284 285 void initNames2RegMasks(); 286 287 /// Check if the given identifier is a name of a register mask. 288 /// 289 /// Return null if the identifier isn't a register mask. 290 const uint32_t *getRegMask(StringRef Identifier); 291 292 void initNames2SubRegIndices(); 293 294 /// Check if the given identifier is a name of a subregister index. 295 /// 296 /// Return 0 if the name isn't a subregister index class. 297 unsigned getSubRegIndex(StringRef Name); 298 299 const BasicBlock *getIRBlock(unsigned Slot); 300 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 301 302 const Value *getIRValue(unsigned Slot); 303 304 void initNames2TargetIndices(); 305 306 /// Try to convert a name of target index to the corresponding target index. 307 /// 308 /// Return true if the name isn't a name of a target index. 309 bool getTargetIndex(StringRef Name, int &Index); 310 311 void initNames2DirectTargetFlags(); 312 313 /// Try to convert a name of a direct target flag to the corresponding 314 /// target flag. 315 /// 316 /// Return true if the name isn't a name of a direct flag. 317 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 318 319 void initNames2BitmaskTargetFlags(); 320 321 /// Try to convert a name of a bitmask target flag to the corresponding 322 /// target flag. 323 /// 324 /// Return true if the name isn't a name of a bitmask target flag. 325 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 326 327 void initNames2MMOTargetFlags(); 328 329 /// Try to convert a name of a MachineMemOperand target flag to the 330 /// corresponding target flag. 331 /// 332 /// Return true if the name isn't a name of a target MMO flag. 333 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 334 335 /// parseStringConstant 336 /// ::= StringConstant 337 bool parseStringConstant(std::string &Result); 338 }; 339 340 } // end anonymous namespace 341 342 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 343 StringRef Source) 344 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 345 {} 346 347 void MIParser::lex(unsigned SkipChar) { 348 CurrentSource = lexMIToken( 349 CurrentSource.data() + SkipChar, Token, 350 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 351 } 352 353 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 354 355 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 356 const SourceMgr &SM = *PFS.SM; 357 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 358 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 359 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 360 // Create an ordinary diagnostic when the source manager's buffer is the 361 // source string. 362 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 363 return true; 364 } 365 // Create a diagnostic for a YAML string literal. 366 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 367 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 368 Source, None, None); 369 return true; 370 } 371 372 static const char *toString(MIToken::TokenKind TokenKind) { 373 switch (TokenKind) { 374 case MIToken::comma: 375 return "','"; 376 case MIToken::equal: 377 return "'='"; 378 case MIToken::colon: 379 return "':'"; 380 case MIToken::lparen: 381 return "'('"; 382 case MIToken::rparen: 383 return "')'"; 384 default: 385 return "<unknown token>"; 386 } 387 } 388 389 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 390 if (Token.isNot(TokenKind)) 391 return error(Twine("expected ") + toString(TokenKind)); 392 lex(); 393 return false; 394 } 395 396 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 397 if (Token.isNot(TokenKind)) 398 return false; 399 lex(); 400 return true; 401 } 402 403 bool MIParser::parseBasicBlockDefinition( 404 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 405 assert(Token.is(MIToken::MachineBasicBlockLabel)); 406 unsigned ID = 0; 407 if (getUnsigned(ID)) 408 return true; 409 auto Loc = Token.location(); 410 auto Name = Token.stringValue(); 411 lex(); 412 bool HasAddressTaken = false; 413 bool IsLandingPad = false; 414 unsigned Alignment = 0; 415 BasicBlock *BB = nullptr; 416 if (consumeIfPresent(MIToken::lparen)) { 417 do { 418 // TODO: Report an error when multiple same attributes are specified. 419 switch (Token.kind()) { 420 case MIToken::kw_address_taken: 421 HasAddressTaken = true; 422 lex(); 423 break; 424 case MIToken::kw_landing_pad: 425 IsLandingPad = true; 426 lex(); 427 break; 428 case MIToken::kw_align: 429 if (parseAlignment(Alignment)) 430 return true; 431 break; 432 case MIToken::IRBlock: 433 // TODO: Report an error when both name and ir block are specified. 434 if (parseIRBlock(BB, MF.getFunction())) 435 return true; 436 lex(); 437 break; 438 default: 439 break; 440 } 441 } while (consumeIfPresent(MIToken::comma)); 442 if (expectAndConsume(MIToken::rparen)) 443 return true; 444 } 445 if (expectAndConsume(MIToken::colon)) 446 return true; 447 448 if (!Name.empty()) { 449 BB = dyn_cast_or_null<BasicBlock>( 450 MF.getFunction().getValueSymbolTable()->lookup(Name)); 451 if (!BB) 452 return error(Loc, Twine("basic block '") + Name + 453 "' is not defined in the function '" + 454 MF.getName() + "'"); 455 } 456 auto *MBB = MF.CreateMachineBasicBlock(BB); 457 MF.insert(MF.end(), MBB); 458 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 459 if (!WasInserted) 460 return error(Loc, Twine("redefinition of machine basic block with id #") + 461 Twine(ID)); 462 if (Alignment) 463 MBB->setAlignment(Alignment); 464 if (HasAddressTaken) 465 MBB->setHasAddressTaken(); 466 MBB->setIsEHPad(IsLandingPad); 467 return false; 468 } 469 470 bool MIParser::parseBasicBlockDefinitions( 471 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 472 lex(); 473 // Skip until the first machine basic block. 474 while (Token.is(MIToken::Newline)) 475 lex(); 476 if (Token.isErrorOrEOF()) 477 return Token.isError(); 478 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 479 return error("expected a basic block definition before instructions"); 480 unsigned BraceDepth = 0; 481 do { 482 if (parseBasicBlockDefinition(MBBSlots)) 483 return true; 484 bool IsAfterNewline = false; 485 // Skip until the next machine basic block. 486 while (true) { 487 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 488 Token.isErrorOrEOF()) 489 break; 490 else if (Token.is(MIToken::MachineBasicBlockLabel)) 491 return error("basic block definition should be located at the start of " 492 "the line"); 493 else if (consumeIfPresent(MIToken::Newline)) { 494 IsAfterNewline = true; 495 continue; 496 } 497 IsAfterNewline = false; 498 if (Token.is(MIToken::lbrace)) 499 ++BraceDepth; 500 if (Token.is(MIToken::rbrace)) { 501 if (!BraceDepth) 502 return error("extraneous closing brace ('}')"); 503 --BraceDepth; 504 } 505 lex(); 506 } 507 // Verify that we closed all of the '{' at the end of a file or a block. 508 if (!Token.isError() && BraceDepth) 509 return error("expected '}'"); // FIXME: Report a note that shows '{'. 510 } while (!Token.isErrorOrEOF()); 511 return Token.isError(); 512 } 513 514 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 515 assert(Token.is(MIToken::kw_liveins)); 516 lex(); 517 if (expectAndConsume(MIToken::colon)) 518 return true; 519 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 520 return false; 521 do { 522 if (Token.isNot(MIToken::NamedRegister)) 523 return error("expected a named register"); 524 unsigned Reg = 0; 525 if (parseNamedRegister(Reg)) 526 return true; 527 lex(); 528 LaneBitmask Mask = LaneBitmask::getAll(); 529 if (consumeIfPresent(MIToken::colon)) { 530 // Parse lane mask. 531 if (Token.isNot(MIToken::IntegerLiteral) && 532 Token.isNot(MIToken::HexLiteral)) 533 return error("expected a lane mask"); 534 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 535 "Use correct get-function for lane mask"); 536 LaneBitmask::Type V; 537 if (getUnsigned(V)) 538 return error("invalid lane mask value"); 539 Mask = LaneBitmask(V); 540 lex(); 541 } 542 MBB.addLiveIn(Reg, Mask); 543 } while (consumeIfPresent(MIToken::comma)); 544 return false; 545 } 546 547 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 548 assert(Token.is(MIToken::kw_successors)); 549 lex(); 550 if (expectAndConsume(MIToken::colon)) 551 return true; 552 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 553 return false; 554 do { 555 if (Token.isNot(MIToken::MachineBasicBlock)) 556 return error("expected a machine basic block reference"); 557 MachineBasicBlock *SuccMBB = nullptr; 558 if (parseMBBReference(SuccMBB)) 559 return true; 560 lex(); 561 unsigned Weight = 0; 562 if (consumeIfPresent(MIToken::lparen)) { 563 if (Token.isNot(MIToken::IntegerLiteral) && 564 Token.isNot(MIToken::HexLiteral)) 565 return error("expected an integer literal after '('"); 566 if (getUnsigned(Weight)) 567 return true; 568 lex(); 569 if (expectAndConsume(MIToken::rparen)) 570 return true; 571 } 572 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 573 } while (consumeIfPresent(MIToken::comma)); 574 MBB.normalizeSuccProbs(); 575 return false; 576 } 577 578 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 579 MachineBasicBlock *&AddFalthroughFrom) { 580 // Skip the definition. 581 assert(Token.is(MIToken::MachineBasicBlockLabel)); 582 lex(); 583 if (consumeIfPresent(MIToken::lparen)) { 584 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 585 lex(); 586 consumeIfPresent(MIToken::rparen); 587 } 588 consumeIfPresent(MIToken::colon); 589 590 // Parse the liveins and successors. 591 // N.B: Multiple lists of successors and liveins are allowed and they're 592 // merged into one. 593 // Example: 594 // liveins: %edi 595 // liveins: %esi 596 // 597 // is equivalent to 598 // liveins: %edi, %esi 599 bool ExplicitSuccessors = false; 600 while (true) { 601 if (Token.is(MIToken::kw_successors)) { 602 if (parseBasicBlockSuccessors(MBB)) 603 return true; 604 ExplicitSuccessors = true; 605 } else if (Token.is(MIToken::kw_liveins)) { 606 if (parseBasicBlockLiveins(MBB)) 607 return true; 608 } else if (consumeIfPresent(MIToken::Newline)) { 609 continue; 610 } else 611 break; 612 if (!Token.isNewlineOrEOF()) 613 return error("expected line break at the end of a list"); 614 lex(); 615 } 616 617 // Parse the instructions. 618 bool IsInBundle = false; 619 MachineInstr *PrevMI = nullptr; 620 while (!Token.is(MIToken::MachineBasicBlockLabel) && 621 !Token.is(MIToken::Eof)) { 622 if (consumeIfPresent(MIToken::Newline)) 623 continue; 624 if (consumeIfPresent(MIToken::rbrace)) { 625 // The first parsing pass should verify that all closing '}' have an 626 // opening '{'. 627 assert(IsInBundle); 628 IsInBundle = false; 629 continue; 630 } 631 MachineInstr *MI = nullptr; 632 if (parse(MI)) 633 return true; 634 MBB.insert(MBB.end(), MI); 635 if (IsInBundle) { 636 PrevMI->setFlag(MachineInstr::BundledSucc); 637 MI->setFlag(MachineInstr::BundledPred); 638 } 639 PrevMI = MI; 640 if (Token.is(MIToken::lbrace)) { 641 if (IsInBundle) 642 return error("nested instruction bundles are not allowed"); 643 lex(); 644 // This instruction is the start of the bundle. 645 MI->setFlag(MachineInstr::BundledSucc); 646 IsInBundle = true; 647 if (!Token.is(MIToken::Newline)) 648 // The next instruction can be on the same line. 649 continue; 650 } 651 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 652 lex(); 653 } 654 655 // Construct successor list by searching for basic block machine operands. 656 if (!ExplicitSuccessors) { 657 SmallVector<MachineBasicBlock*,4> Successors; 658 bool IsFallthrough; 659 guessSuccessors(MBB, Successors, IsFallthrough); 660 for (MachineBasicBlock *Succ : Successors) 661 MBB.addSuccessor(Succ); 662 663 if (IsFallthrough) { 664 AddFalthroughFrom = &MBB; 665 } else { 666 MBB.normalizeSuccProbs(); 667 } 668 } 669 670 return false; 671 } 672 673 bool MIParser::parseBasicBlocks() { 674 lex(); 675 // Skip until the first machine basic block. 676 while (Token.is(MIToken::Newline)) 677 lex(); 678 if (Token.isErrorOrEOF()) 679 return Token.isError(); 680 // The first parsing pass should have verified that this token is a MBB label 681 // in the 'parseBasicBlockDefinitions' method. 682 assert(Token.is(MIToken::MachineBasicBlockLabel)); 683 MachineBasicBlock *AddFalthroughFrom = nullptr; 684 do { 685 MachineBasicBlock *MBB = nullptr; 686 if (parseMBBReference(MBB)) 687 return true; 688 if (AddFalthroughFrom) { 689 if (!AddFalthroughFrom->isSuccessor(MBB)) 690 AddFalthroughFrom->addSuccessor(MBB); 691 AddFalthroughFrom->normalizeSuccProbs(); 692 AddFalthroughFrom = nullptr; 693 } 694 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 695 return true; 696 // The method 'parseBasicBlock' should parse the whole block until the next 697 // block or the end of file. 698 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 699 } while (Token.isNot(MIToken::Eof)); 700 return false; 701 } 702 703 bool MIParser::parse(MachineInstr *&MI) { 704 // Parse any register operands before '=' 705 MachineOperand MO = MachineOperand::CreateImm(0); 706 SmallVector<ParsedMachineOperand, 8> Operands; 707 while (Token.isRegister() || Token.isRegisterFlag()) { 708 auto Loc = Token.location(); 709 Optional<unsigned> TiedDefIdx; 710 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 711 return true; 712 Operands.push_back( 713 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 714 if (Token.isNot(MIToken::comma)) 715 break; 716 lex(); 717 } 718 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 719 return true; 720 721 unsigned OpCode, Flags = 0; 722 if (Token.isError() || parseInstruction(OpCode, Flags)) 723 return true; 724 725 // Parse the remaining machine operands. 726 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 727 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 728 auto Loc = Token.location(); 729 Optional<unsigned> TiedDefIdx; 730 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 731 return true; 732 Operands.push_back( 733 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 734 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 735 Token.is(MIToken::lbrace)) 736 break; 737 if (Token.isNot(MIToken::comma)) 738 return error("expected ',' before the next machine operand"); 739 lex(); 740 } 741 742 DebugLoc DebugLocation; 743 if (Token.is(MIToken::kw_debug_location)) { 744 lex(); 745 if (Token.isNot(MIToken::exclaim)) 746 return error("expected a metadata node after 'debug-location'"); 747 MDNode *Node = nullptr; 748 if (parseMDNode(Node)) 749 return true; 750 DebugLocation = DebugLoc(Node); 751 } 752 753 // Parse the machine memory operands. 754 SmallVector<MachineMemOperand *, 2> MemOperands; 755 if (Token.is(MIToken::coloncolon)) { 756 lex(); 757 while (!Token.isNewlineOrEOF()) { 758 MachineMemOperand *MemOp = nullptr; 759 if (parseMachineMemoryOperand(MemOp)) 760 return true; 761 MemOperands.push_back(MemOp); 762 if (Token.isNewlineOrEOF()) 763 break; 764 if (Token.isNot(MIToken::comma)) 765 return error("expected ',' before the next machine memory operand"); 766 lex(); 767 } 768 } 769 770 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 771 if (!MCID.isVariadic()) { 772 // FIXME: Move the implicit operand verification to the machine verifier. 773 if (verifyImplicitOperands(Operands, MCID)) 774 return true; 775 } 776 777 // TODO: Check for extraneous machine operands. 778 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 779 MI->setFlags(Flags); 780 for (const auto &Operand : Operands) 781 MI->addOperand(MF, Operand.Operand); 782 if (assignRegisterTies(*MI, Operands)) 783 return true; 784 if (MemOperands.empty()) 785 return false; 786 MachineInstr::mmo_iterator MemRefs = 787 MF.allocateMemRefsArray(MemOperands.size()); 788 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 789 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 790 return false; 791 } 792 793 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 794 lex(); 795 if (Token.isNot(MIToken::MachineBasicBlock)) 796 return error("expected a machine basic block reference"); 797 if (parseMBBReference(MBB)) 798 return true; 799 lex(); 800 if (Token.isNot(MIToken::Eof)) 801 return error( 802 "expected end of string after the machine basic block reference"); 803 return false; 804 } 805 806 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 807 lex(); 808 if (Token.isNot(MIToken::NamedRegister)) 809 return error("expected a named register"); 810 if (parseNamedRegister(Reg)) 811 return true; 812 lex(); 813 if (Token.isNot(MIToken::Eof)) 814 return error("expected end of string after the register reference"); 815 return false; 816 } 817 818 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 819 lex(); 820 if (Token.isNot(MIToken::VirtualRegister)) 821 return error("expected a virtual register"); 822 if (parseVirtualRegister(Info)) 823 return true; 824 lex(); 825 if (Token.isNot(MIToken::Eof)) 826 return error("expected end of string after the register reference"); 827 return false; 828 } 829 830 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 831 lex(); 832 if (Token.isNot(MIToken::NamedRegister) && 833 Token.isNot(MIToken::VirtualRegister)) 834 return error("expected either a named or virtual register"); 835 836 VRegInfo *Info; 837 if (parseRegister(Reg, Info)) 838 return true; 839 840 lex(); 841 if (Token.isNot(MIToken::Eof)) 842 return error("expected end of string after the register reference"); 843 return false; 844 } 845 846 bool MIParser::parseStandaloneStackObject(int &FI) { 847 lex(); 848 if (Token.isNot(MIToken::StackObject)) 849 return error("expected a stack object"); 850 if (parseStackFrameIndex(FI)) 851 return true; 852 if (Token.isNot(MIToken::Eof)) 853 return error("expected end of string after the stack object reference"); 854 return false; 855 } 856 857 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 858 lex(); 859 if (Token.is(MIToken::exclaim)) { 860 if (parseMDNode(Node)) 861 return true; 862 } else if (Token.is(MIToken::md_diexpr)) { 863 if (parseDIExpression(Node)) 864 return true; 865 } else 866 return error("expected a metadata node"); 867 if (Token.isNot(MIToken::Eof)) 868 return error("expected end of string after the metadata node"); 869 return false; 870 } 871 872 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 873 assert(MO.isImplicit()); 874 return MO.isDef() ? "implicit-def" : "implicit"; 875 } 876 877 static std::string getRegisterName(const TargetRegisterInfo *TRI, 878 unsigned Reg) { 879 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 880 return StringRef(TRI->getName(Reg)).lower(); 881 } 882 883 /// Return true if the parsed machine operands contain a given machine operand. 884 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 885 ArrayRef<ParsedMachineOperand> Operands) { 886 for (const auto &I : Operands) { 887 if (ImplicitOperand.isIdenticalTo(I.Operand)) 888 return true; 889 } 890 return false; 891 } 892 893 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 894 const MCInstrDesc &MCID) { 895 if (MCID.isCall()) 896 // We can't verify call instructions as they can contain arbitrary implicit 897 // register and register mask operands. 898 return false; 899 900 // Gather all the expected implicit operands. 901 SmallVector<MachineOperand, 4> ImplicitOperands; 902 if (MCID.ImplicitDefs) 903 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 904 ImplicitOperands.push_back( 905 MachineOperand::CreateReg(*ImpDefs, true, true)); 906 if (MCID.ImplicitUses) 907 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 908 ImplicitOperands.push_back( 909 MachineOperand::CreateReg(*ImpUses, false, true)); 910 911 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 912 assert(TRI && "Expected target register info"); 913 for (const auto &I : ImplicitOperands) { 914 if (isImplicitOperandIn(I, Operands)) 915 continue; 916 return error(Operands.empty() ? Token.location() : Operands.back().End, 917 Twine("missing implicit register operand '") + 918 printImplicitRegisterFlag(I) + " %" + 919 getRegisterName(TRI, I.getReg()) + "'"); 920 } 921 return false; 922 } 923 924 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 925 if (Token.is(MIToken::kw_frame_setup)) { 926 Flags |= MachineInstr::FrameSetup; 927 lex(); 928 } else if (Token.is(MIToken::kw_frame_destroy)) { 929 Flags |= MachineInstr::FrameDestroy; 930 lex(); 931 } 932 if (Token.isNot(MIToken::Identifier)) 933 return error("expected a machine instruction"); 934 StringRef InstrName = Token.stringValue(); 935 if (parseInstrName(InstrName, OpCode)) 936 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 937 lex(); 938 return false; 939 } 940 941 bool MIParser::parseNamedRegister(unsigned &Reg) { 942 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 943 StringRef Name = Token.stringValue(); 944 if (getRegisterByName(Name, Reg)) 945 return error(Twine("unknown register name '") + Name + "'"); 946 return false; 947 } 948 949 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 950 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 951 unsigned ID; 952 if (getUnsigned(ID)) 953 return true; 954 Info = &PFS.getVRegInfo(ID); 955 return false; 956 } 957 958 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 959 switch (Token.kind()) { 960 case MIToken::underscore: 961 Reg = 0; 962 return false; 963 case MIToken::NamedRegister: 964 return parseNamedRegister(Reg); 965 case MIToken::VirtualRegister: 966 if (parseVirtualRegister(Info)) 967 return true; 968 Reg = Info->VReg; 969 return false; 970 // TODO: Parse other register kinds. 971 default: 972 llvm_unreachable("The current token should be a register"); 973 } 974 } 975 976 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 977 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 978 return error("expected '_', register class, or register bank name"); 979 StringRef::iterator Loc = Token.location(); 980 StringRef Name = Token.stringValue(); 981 982 // Was it a register class? 983 auto RCNameI = PFS.Names2RegClasses.find(Name); 984 if (RCNameI != PFS.Names2RegClasses.end()) { 985 lex(); 986 const TargetRegisterClass &RC = *RCNameI->getValue(); 987 988 switch (RegInfo.Kind) { 989 case VRegInfo::UNKNOWN: 990 case VRegInfo::NORMAL: 991 RegInfo.Kind = VRegInfo::NORMAL; 992 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 993 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 994 return error(Loc, Twine("conflicting register classes, previously: ") + 995 Twine(TRI.getRegClassName(RegInfo.D.RC))); 996 } 997 RegInfo.D.RC = &RC; 998 RegInfo.Explicit = true; 999 return false; 1000 1001 case VRegInfo::GENERIC: 1002 case VRegInfo::REGBANK: 1003 return error(Loc, "register class specification on generic register"); 1004 } 1005 llvm_unreachable("Unexpected register kind"); 1006 } 1007 1008 // Should be a register bank or a generic register. 1009 const RegisterBank *RegBank = nullptr; 1010 if (Name != "_") { 1011 auto RBNameI = PFS.Names2RegBanks.find(Name); 1012 if (RBNameI == PFS.Names2RegBanks.end()) 1013 return error(Loc, "expected '_', register class, or register bank name"); 1014 RegBank = RBNameI->getValue(); 1015 } 1016 1017 lex(); 1018 1019 switch (RegInfo.Kind) { 1020 case VRegInfo::UNKNOWN: 1021 case VRegInfo::GENERIC: 1022 case VRegInfo::REGBANK: 1023 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1024 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1025 return error(Loc, "conflicting generic register banks"); 1026 RegInfo.D.RegBank = RegBank; 1027 RegInfo.Explicit = true; 1028 return false; 1029 1030 case VRegInfo::NORMAL: 1031 return error(Loc, "register bank specification on normal register"); 1032 } 1033 llvm_unreachable("Unexpected register kind"); 1034 } 1035 1036 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1037 const unsigned OldFlags = Flags; 1038 switch (Token.kind()) { 1039 case MIToken::kw_implicit: 1040 Flags |= RegState::Implicit; 1041 break; 1042 case MIToken::kw_implicit_define: 1043 Flags |= RegState::ImplicitDefine; 1044 break; 1045 case MIToken::kw_def: 1046 Flags |= RegState::Define; 1047 break; 1048 case MIToken::kw_dead: 1049 Flags |= RegState::Dead; 1050 break; 1051 case MIToken::kw_killed: 1052 Flags |= RegState::Kill; 1053 break; 1054 case MIToken::kw_undef: 1055 Flags |= RegState::Undef; 1056 break; 1057 case MIToken::kw_internal: 1058 Flags |= RegState::InternalRead; 1059 break; 1060 case MIToken::kw_early_clobber: 1061 Flags |= RegState::EarlyClobber; 1062 break; 1063 case MIToken::kw_debug_use: 1064 Flags |= RegState::Debug; 1065 break; 1066 case MIToken::kw_renamable: 1067 Flags |= RegState::Renamable; 1068 break; 1069 default: 1070 llvm_unreachable("The current token should be a register flag"); 1071 } 1072 if (OldFlags == Flags) 1073 // We know that the same flag is specified more than once when the flags 1074 // weren't modified. 1075 return error("duplicate '" + Token.stringValue() + "' register flag"); 1076 lex(); 1077 return false; 1078 } 1079 1080 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1081 assert(Token.is(MIToken::dot)); 1082 lex(); 1083 if (Token.isNot(MIToken::Identifier)) 1084 return error("expected a subregister index after '.'"); 1085 auto Name = Token.stringValue(); 1086 SubReg = getSubRegIndex(Name); 1087 if (!SubReg) 1088 return error(Twine("use of unknown subregister index '") + Name + "'"); 1089 lex(); 1090 return false; 1091 } 1092 1093 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1094 if (!consumeIfPresent(MIToken::kw_tied_def)) 1095 return true; 1096 if (Token.isNot(MIToken::IntegerLiteral)) 1097 return error("expected an integer literal after 'tied-def'"); 1098 if (getUnsigned(TiedDefIdx)) 1099 return true; 1100 lex(); 1101 if (expectAndConsume(MIToken::rparen)) 1102 return true; 1103 return false; 1104 } 1105 1106 bool MIParser::assignRegisterTies(MachineInstr &MI, 1107 ArrayRef<ParsedMachineOperand> Operands) { 1108 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1109 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1110 if (!Operands[I].TiedDefIdx) 1111 continue; 1112 // The parser ensures that this operand is a register use, so we just have 1113 // to check the tied-def operand. 1114 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1115 if (DefIdx >= E) 1116 return error(Operands[I].Begin, 1117 Twine("use of invalid tied-def operand index '" + 1118 Twine(DefIdx) + "'; instruction has only ") + 1119 Twine(E) + " operands"); 1120 const auto &DefOperand = Operands[DefIdx].Operand; 1121 if (!DefOperand.isReg() || !DefOperand.isDef()) 1122 // FIXME: add note with the def operand. 1123 return error(Operands[I].Begin, 1124 Twine("use of invalid tied-def operand index '") + 1125 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1126 " isn't a defined register"); 1127 // Check that the tied-def operand wasn't tied elsewhere. 1128 for (const auto &TiedPair : TiedRegisterPairs) { 1129 if (TiedPair.first == DefIdx) 1130 return error(Operands[I].Begin, 1131 Twine("the tied-def operand #") + Twine(DefIdx) + 1132 " is already tied with another register operand"); 1133 } 1134 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1135 } 1136 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1137 // indices must be less than tied max. 1138 for (const auto &TiedPair : TiedRegisterPairs) 1139 MI.tieOperands(TiedPair.first, TiedPair.second); 1140 return false; 1141 } 1142 1143 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1144 Optional<unsigned> &TiedDefIdx, 1145 bool IsDef) { 1146 unsigned Flags = IsDef ? RegState::Define : 0; 1147 while (Token.isRegisterFlag()) { 1148 if (parseRegisterFlag(Flags)) 1149 return true; 1150 } 1151 if (!Token.isRegister()) 1152 return error("expected a register after register flags"); 1153 unsigned Reg; 1154 VRegInfo *RegInfo; 1155 if (parseRegister(Reg, RegInfo)) 1156 return true; 1157 lex(); 1158 unsigned SubReg = 0; 1159 if (Token.is(MIToken::dot)) { 1160 if (parseSubRegisterIndex(SubReg)) 1161 return true; 1162 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1163 return error("subregister index expects a virtual register"); 1164 } 1165 if (Token.is(MIToken::colon)) { 1166 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1167 return error("register class specification expects a virtual register"); 1168 lex(); 1169 if (parseRegisterClassOrBank(*RegInfo)) 1170 return true; 1171 } 1172 MachineRegisterInfo &MRI = MF.getRegInfo(); 1173 if ((Flags & RegState::Define) == 0) { 1174 if (consumeIfPresent(MIToken::lparen)) { 1175 unsigned Idx; 1176 if (!parseRegisterTiedDefIndex(Idx)) 1177 TiedDefIdx = Idx; 1178 else { 1179 // Try a redundant low-level type. 1180 LLT Ty; 1181 if (parseLowLevelType(Token.location(), Ty)) 1182 return error("expected tied-def or low-level type after '('"); 1183 1184 if (expectAndConsume(MIToken::rparen)) 1185 return true; 1186 1187 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1188 return error("inconsistent type for generic virtual register"); 1189 1190 MRI.setType(Reg, Ty); 1191 } 1192 } 1193 } else if (consumeIfPresent(MIToken::lparen)) { 1194 // Virtual registers may have a tpe with GlobalISel. 1195 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1196 return error("unexpected type on physical register"); 1197 1198 LLT Ty; 1199 if (parseLowLevelType(Token.location(), Ty)) 1200 return true; 1201 1202 if (expectAndConsume(MIToken::rparen)) 1203 return true; 1204 1205 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1206 return error("inconsistent type for generic virtual register"); 1207 1208 MRI.setType(Reg, Ty); 1209 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1210 // Generic virtual registers must have a type. 1211 // If we end up here this means the type hasn't been specified and 1212 // this is bad! 1213 if (RegInfo->Kind == VRegInfo::GENERIC || 1214 RegInfo->Kind == VRegInfo::REGBANK) 1215 return error("generic virtual registers must have a type"); 1216 } 1217 Dest = MachineOperand::CreateReg( 1218 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1219 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1220 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1221 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1222 1223 return false; 1224 } 1225 1226 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1227 assert(Token.is(MIToken::IntegerLiteral)); 1228 const APSInt &Int = Token.integerValue(); 1229 if (Int.getMinSignedBits() > 64) 1230 return error("integer literal is too large to be an immediate operand"); 1231 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1232 lex(); 1233 return false; 1234 } 1235 1236 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1237 const Constant *&C) { 1238 auto Source = StringValue.str(); // The source has to be null terminated. 1239 SMDiagnostic Err; 1240 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1241 &PFS.IRSlots); 1242 if (!C) 1243 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1244 return false; 1245 } 1246 1247 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1248 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1249 return true; 1250 lex(); 1251 return false; 1252 } 1253 1254 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1255 if (Token.is(MIToken::ScalarType)) { 1256 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1257 lex(); 1258 return false; 1259 } else if (Token.is(MIToken::PointerType)) { 1260 const DataLayout &DL = MF.getDataLayout(); 1261 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1262 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1263 lex(); 1264 return false; 1265 } 1266 1267 // Now we're looking for a vector. 1268 if (Token.isNot(MIToken::less)) 1269 return error(Loc, 1270 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1271 1272 lex(); 1273 1274 if (Token.isNot(MIToken::IntegerLiteral)) 1275 return error(Loc, "expected <N x sM> for vctor type"); 1276 uint64_t NumElements = Token.integerValue().getZExtValue(); 1277 lex(); 1278 1279 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1280 return error(Loc, "expected '<N x sM>' for vector type"); 1281 lex(); 1282 1283 if (Token.isNot(MIToken::ScalarType)) 1284 return error(Loc, "expected '<N x sM>' for vector type"); 1285 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1286 lex(); 1287 1288 if (Token.isNot(MIToken::greater)) 1289 return error(Loc, "expected '<N x sM>' for vector type"); 1290 lex(); 1291 1292 Ty = LLT::vector(NumElements, ScalarSize); 1293 return false; 1294 } 1295 1296 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1297 assert(Token.is(MIToken::IntegerType)); 1298 auto Loc = Token.location(); 1299 lex(); 1300 if (Token.isNot(MIToken::IntegerLiteral)) 1301 return error("expected an integer literal"); 1302 const Constant *C = nullptr; 1303 if (parseIRConstant(Loc, C)) 1304 return true; 1305 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1306 return false; 1307 } 1308 1309 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1310 auto Loc = Token.location(); 1311 lex(); 1312 if (Token.isNot(MIToken::FloatingPointLiteral) && 1313 Token.isNot(MIToken::HexLiteral)) 1314 return error("expected a floating point literal"); 1315 const Constant *C = nullptr; 1316 if (parseIRConstant(Loc, C)) 1317 return true; 1318 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1319 return false; 1320 } 1321 1322 bool MIParser::getUnsigned(unsigned &Result) { 1323 if (Token.hasIntegerValue()) { 1324 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1325 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1326 if (Val64 == Limit) 1327 return error("expected 32-bit integer (too large)"); 1328 Result = Val64; 1329 return false; 1330 } 1331 if (Token.is(MIToken::HexLiteral)) { 1332 APInt A; 1333 if (getHexUint(A)) 1334 return true; 1335 if (A.getBitWidth() > 32) 1336 return error("expected 32-bit integer (too large)"); 1337 Result = A.getZExtValue(); 1338 return false; 1339 } 1340 return true; 1341 } 1342 1343 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1344 assert(Token.is(MIToken::MachineBasicBlock) || 1345 Token.is(MIToken::MachineBasicBlockLabel)); 1346 unsigned Number; 1347 if (getUnsigned(Number)) 1348 return true; 1349 auto MBBInfo = PFS.MBBSlots.find(Number); 1350 if (MBBInfo == PFS.MBBSlots.end()) 1351 return error(Twine("use of undefined machine basic block #") + 1352 Twine(Number)); 1353 MBB = MBBInfo->second; 1354 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1355 // we drop the <irname> from the bb.<id>.<irname> format. 1356 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1357 return error(Twine("the name of machine basic block #") + Twine(Number) + 1358 " isn't '" + Token.stringValue() + "'"); 1359 return false; 1360 } 1361 1362 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1363 MachineBasicBlock *MBB; 1364 if (parseMBBReference(MBB)) 1365 return true; 1366 Dest = MachineOperand::CreateMBB(MBB); 1367 lex(); 1368 return false; 1369 } 1370 1371 bool MIParser::parseStackFrameIndex(int &FI) { 1372 assert(Token.is(MIToken::StackObject)); 1373 unsigned ID; 1374 if (getUnsigned(ID)) 1375 return true; 1376 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1377 if (ObjectInfo == PFS.StackObjectSlots.end()) 1378 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1379 "'"); 1380 StringRef Name; 1381 if (const auto *Alloca = 1382 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1383 Name = Alloca->getName(); 1384 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1385 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1386 "' isn't '" + Token.stringValue() + "'"); 1387 lex(); 1388 FI = ObjectInfo->second; 1389 return false; 1390 } 1391 1392 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1393 int FI; 1394 if (parseStackFrameIndex(FI)) 1395 return true; 1396 Dest = MachineOperand::CreateFI(FI); 1397 return false; 1398 } 1399 1400 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1401 assert(Token.is(MIToken::FixedStackObject)); 1402 unsigned ID; 1403 if (getUnsigned(ID)) 1404 return true; 1405 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1406 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1407 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1408 Twine(ID) + "'"); 1409 lex(); 1410 FI = ObjectInfo->second; 1411 return false; 1412 } 1413 1414 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1415 int FI; 1416 if (parseFixedStackFrameIndex(FI)) 1417 return true; 1418 Dest = MachineOperand::CreateFI(FI); 1419 return false; 1420 } 1421 1422 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1423 switch (Token.kind()) { 1424 case MIToken::NamedGlobalValue: { 1425 const Module *M = MF.getFunction().getParent(); 1426 GV = M->getNamedValue(Token.stringValue()); 1427 if (!GV) 1428 return error(Twine("use of undefined global value '") + Token.range() + 1429 "'"); 1430 break; 1431 } 1432 case MIToken::GlobalValue: { 1433 unsigned GVIdx; 1434 if (getUnsigned(GVIdx)) 1435 return true; 1436 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1437 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1438 "'"); 1439 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1440 break; 1441 } 1442 default: 1443 llvm_unreachable("The current token should be a global value"); 1444 } 1445 return false; 1446 } 1447 1448 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1449 GlobalValue *GV = nullptr; 1450 if (parseGlobalValue(GV)) 1451 return true; 1452 lex(); 1453 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1454 if (parseOperandsOffset(Dest)) 1455 return true; 1456 return false; 1457 } 1458 1459 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1460 assert(Token.is(MIToken::ConstantPoolItem)); 1461 unsigned ID; 1462 if (getUnsigned(ID)) 1463 return true; 1464 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1465 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1466 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1467 lex(); 1468 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1469 if (parseOperandsOffset(Dest)) 1470 return true; 1471 return false; 1472 } 1473 1474 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1475 assert(Token.is(MIToken::JumpTableIndex)); 1476 unsigned ID; 1477 if (getUnsigned(ID)) 1478 return true; 1479 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1480 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1481 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1482 lex(); 1483 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1484 return false; 1485 } 1486 1487 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1488 assert(Token.is(MIToken::ExternalSymbol)); 1489 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1490 lex(); 1491 Dest = MachineOperand::CreateES(Symbol); 1492 if (parseOperandsOffset(Dest)) 1493 return true; 1494 return false; 1495 } 1496 1497 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1498 assert(Token.is(MIToken::SubRegisterIndex)); 1499 StringRef Name = Token.stringValue(); 1500 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1501 if (SubRegIndex == 0) 1502 return error(Twine("unknown subregister index '") + Name + "'"); 1503 lex(); 1504 Dest = MachineOperand::CreateImm(SubRegIndex); 1505 return false; 1506 } 1507 1508 bool MIParser::parseMDNode(MDNode *&Node) { 1509 assert(Token.is(MIToken::exclaim)); 1510 1511 auto Loc = Token.location(); 1512 lex(); 1513 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1514 return error("expected metadata id after '!'"); 1515 unsigned ID; 1516 if (getUnsigned(ID)) 1517 return true; 1518 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1519 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1520 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1521 lex(); 1522 Node = NodeInfo->second.get(); 1523 return false; 1524 } 1525 1526 bool MIParser::parseDIExpression(MDNode *&Expr) { 1527 assert(Token.is(MIToken::md_diexpr)); 1528 lex(); 1529 1530 // FIXME: Share this parsing with the IL parser. 1531 SmallVector<uint64_t, 8> Elements; 1532 1533 if (expectAndConsume(MIToken::lparen)) 1534 return true; 1535 1536 if (Token.isNot(MIToken::rparen)) { 1537 do { 1538 if (Token.is(MIToken::Identifier)) { 1539 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1540 lex(); 1541 Elements.push_back(Op); 1542 continue; 1543 } 1544 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1545 } 1546 1547 if (Token.isNot(MIToken::IntegerLiteral) || 1548 Token.integerValue().isSigned()) 1549 return error("expected unsigned integer"); 1550 1551 auto &U = Token.integerValue(); 1552 if (U.ugt(UINT64_MAX)) 1553 return error("element too large, limit is " + Twine(UINT64_MAX)); 1554 Elements.push_back(U.getZExtValue()); 1555 lex(); 1556 1557 } while (consumeIfPresent(MIToken::comma)); 1558 } 1559 1560 if (expectAndConsume(MIToken::rparen)) 1561 return true; 1562 1563 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1564 return false; 1565 } 1566 1567 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1568 MDNode *Node = nullptr; 1569 if (Token.is(MIToken::exclaim)) { 1570 if (parseMDNode(Node)) 1571 return true; 1572 } else if (Token.is(MIToken::md_diexpr)) { 1573 if (parseDIExpression(Node)) 1574 return true; 1575 } 1576 Dest = MachineOperand::CreateMetadata(Node); 1577 return false; 1578 } 1579 1580 bool MIParser::parseCFIOffset(int &Offset) { 1581 if (Token.isNot(MIToken::IntegerLiteral)) 1582 return error("expected a cfi offset"); 1583 if (Token.integerValue().getMinSignedBits() > 32) 1584 return error("expected a 32 bit integer (the cfi offset is too large)"); 1585 Offset = (int)Token.integerValue().getExtValue(); 1586 lex(); 1587 return false; 1588 } 1589 1590 bool MIParser::parseCFIRegister(unsigned &Reg) { 1591 if (Token.isNot(MIToken::NamedRegister)) 1592 return error("expected a cfi register"); 1593 unsigned LLVMReg; 1594 if (parseNamedRegister(LLVMReg)) 1595 return true; 1596 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1597 assert(TRI && "Expected target register info"); 1598 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1599 if (DwarfReg < 0) 1600 return error("invalid DWARF register"); 1601 Reg = (unsigned)DwarfReg; 1602 lex(); 1603 return false; 1604 } 1605 1606 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1607 do { 1608 if (Token.isNot(MIToken::HexLiteral)) 1609 return error("expected a hexadecimal literal"); 1610 unsigned Value; 1611 if (getUnsigned(Value)) 1612 return true; 1613 if (Value > UINT8_MAX) 1614 return error("expected a 8-bit integer (too large)"); 1615 Values.push_back(static_cast<uint8_t>(Value)); 1616 lex(); 1617 } while (consumeIfPresent(MIToken::comma)); 1618 return false; 1619 } 1620 1621 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1622 auto Kind = Token.kind(); 1623 lex(); 1624 int Offset; 1625 unsigned Reg; 1626 unsigned CFIIndex; 1627 switch (Kind) { 1628 case MIToken::kw_cfi_same_value: 1629 if (parseCFIRegister(Reg)) 1630 return true; 1631 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1632 break; 1633 case MIToken::kw_cfi_offset: 1634 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1635 parseCFIOffset(Offset)) 1636 return true; 1637 CFIIndex = 1638 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1639 break; 1640 case MIToken::kw_cfi_rel_offset: 1641 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1642 parseCFIOffset(Offset)) 1643 return true; 1644 CFIIndex = MF.addFrameInst( 1645 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1646 break; 1647 case MIToken::kw_cfi_def_cfa_register: 1648 if (parseCFIRegister(Reg)) 1649 return true; 1650 CFIIndex = 1651 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1652 break; 1653 case MIToken::kw_cfi_def_cfa_offset: 1654 if (parseCFIOffset(Offset)) 1655 return true; 1656 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1657 CFIIndex = MF.addFrameInst( 1658 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1659 break; 1660 case MIToken::kw_cfi_adjust_cfa_offset: 1661 if (parseCFIOffset(Offset)) 1662 return true; 1663 CFIIndex = MF.addFrameInst( 1664 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1665 break; 1666 case MIToken::kw_cfi_def_cfa: 1667 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1668 parseCFIOffset(Offset)) 1669 return true; 1670 // NB: MCCFIInstruction::createDefCfa negates the offset. 1671 CFIIndex = 1672 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1673 break; 1674 case MIToken::kw_cfi_remember_state: 1675 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1676 break; 1677 case MIToken::kw_cfi_restore: 1678 if (parseCFIRegister(Reg)) 1679 return true; 1680 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1681 break; 1682 case MIToken::kw_cfi_restore_state: 1683 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1684 break; 1685 case MIToken::kw_cfi_undefined: 1686 if (parseCFIRegister(Reg)) 1687 return true; 1688 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1689 break; 1690 case MIToken::kw_cfi_register: { 1691 unsigned Reg2; 1692 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1693 parseCFIRegister(Reg2)) 1694 return true; 1695 1696 CFIIndex = 1697 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1698 break; 1699 } 1700 case MIToken::kw_cfi_window_save: 1701 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1702 break; 1703 case MIToken::kw_cfi_escape: { 1704 std::string Values; 1705 if (parseCFIEscapeValues(Values)) 1706 return true; 1707 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1708 break; 1709 } 1710 default: 1711 // TODO: Parse the other CFI operands. 1712 llvm_unreachable("The current token should be a cfi operand"); 1713 } 1714 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1715 return false; 1716 } 1717 1718 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1719 switch (Token.kind()) { 1720 case MIToken::NamedIRBlock: { 1721 BB = dyn_cast_or_null<BasicBlock>( 1722 F.getValueSymbolTable()->lookup(Token.stringValue())); 1723 if (!BB) 1724 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1725 break; 1726 } 1727 case MIToken::IRBlock: { 1728 unsigned SlotNumber = 0; 1729 if (getUnsigned(SlotNumber)) 1730 return true; 1731 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1732 if (!BB) 1733 return error(Twine("use of undefined IR block '%ir-block.") + 1734 Twine(SlotNumber) + "'"); 1735 break; 1736 } 1737 default: 1738 llvm_unreachable("The current token should be an IR block reference"); 1739 } 1740 return false; 1741 } 1742 1743 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1744 assert(Token.is(MIToken::kw_blockaddress)); 1745 lex(); 1746 if (expectAndConsume(MIToken::lparen)) 1747 return true; 1748 if (Token.isNot(MIToken::GlobalValue) && 1749 Token.isNot(MIToken::NamedGlobalValue)) 1750 return error("expected a global value"); 1751 GlobalValue *GV = nullptr; 1752 if (parseGlobalValue(GV)) 1753 return true; 1754 auto *F = dyn_cast<Function>(GV); 1755 if (!F) 1756 return error("expected an IR function reference"); 1757 lex(); 1758 if (expectAndConsume(MIToken::comma)) 1759 return true; 1760 BasicBlock *BB = nullptr; 1761 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1762 return error("expected an IR block reference"); 1763 if (parseIRBlock(BB, *F)) 1764 return true; 1765 lex(); 1766 if (expectAndConsume(MIToken::rparen)) 1767 return true; 1768 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1769 if (parseOperandsOffset(Dest)) 1770 return true; 1771 return false; 1772 } 1773 1774 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1775 assert(Token.is(MIToken::kw_intrinsic)); 1776 lex(); 1777 if (expectAndConsume(MIToken::lparen)) 1778 return error("expected syntax intrinsic(@llvm.whatever)"); 1779 1780 if (Token.isNot(MIToken::NamedGlobalValue)) 1781 return error("expected syntax intrinsic(@llvm.whatever)"); 1782 1783 std::string Name = Token.stringValue(); 1784 lex(); 1785 1786 if (expectAndConsume(MIToken::rparen)) 1787 return error("expected ')' to terminate intrinsic name"); 1788 1789 // Find out what intrinsic we're dealing with, first try the global namespace 1790 // and then the target's private intrinsics if that fails. 1791 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1792 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1793 if (ID == Intrinsic::not_intrinsic && TII) 1794 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1795 1796 if (ID == Intrinsic::not_intrinsic) 1797 return error("unknown intrinsic name"); 1798 Dest = MachineOperand::CreateIntrinsicID(ID); 1799 1800 return false; 1801 } 1802 1803 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1804 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1805 bool IsFloat = Token.is(MIToken::kw_floatpred); 1806 lex(); 1807 1808 if (expectAndConsume(MIToken::lparen)) 1809 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1810 1811 if (Token.isNot(MIToken::Identifier)) 1812 return error("whatever"); 1813 1814 CmpInst::Predicate Pred; 1815 if (IsFloat) { 1816 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1817 .Case("false", CmpInst::FCMP_FALSE) 1818 .Case("oeq", CmpInst::FCMP_OEQ) 1819 .Case("ogt", CmpInst::FCMP_OGT) 1820 .Case("oge", CmpInst::FCMP_OGE) 1821 .Case("olt", CmpInst::FCMP_OLT) 1822 .Case("ole", CmpInst::FCMP_OLE) 1823 .Case("one", CmpInst::FCMP_ONE) 1824 .Case("ord", CmpInst::FCMP_ORD) 1825 .Case("uno", CmpInst::FCMP_UNO) 1826 .Case("ueq", CmpInst::FCMP_UEQ) 1827 .Case("ugt", CmpInst::FCMP_UGT) 1828 .Case("uge", CmpInst::FCMP_UGE) 1829 .Case("ult", CmpInst::FCMP_ULT) 1830 .Case("ule", CmpInst::FCMP_ULE) 1831 .Case("une", CmpInst::FCMP_UNE) 1832 .Case("true", CmpInst::FCMP_TRUE) 1833 .Default(CmpInst::BAD_FCMP_PREDICATE); 1834 if (!CmpInst::isFPPredicate(Pred)) 1835 return error("invalid floating-point predicate"); 1836 } else { 1837 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1838 .Case("eq", CmpInst::ICMP_EQ) 1839 .Case("ne", CmpInst::ICMP_NE) 1840 .Case("sgt", CmpInst::ICMP_SGT) 1841 .Case("sge", CmpInst::ICMP_SGE) 1842 .Case("slt", CmpInst::ICMP_SLT) 1843 .Case("sle", CmpInst::ICMP_SLE) 1844 .Case("ugt", CmpInst::ICMP_UGT) 1845 .Case("uge", CmpInst::ICMP_UGE) 1846 .Case("ult", CmpInst::ICMP_ULT) 1847 .Case("ule", CmpInst::ICMP_ULE) 1848 .Default(CmpInst::BAD_ICMP_PREDICATE); 1849 if (!CmpInst::isIntPredicate(Pred)) 1850 return error("invalid integer predicate"); 1851 } 1852 1853 lex(); 1854 Dest = MachineOperand::CreatePredicate(Pred); 1855 if (expectAndConsume(MIToken::rparen)) 1856 return error("predicate should be terminated by ')'."); 1857 1858 return false; 1859 } 1860 1861 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1862 assert(Token.is(MIToken::kw_target_index)); 1863 lex(); 1864 if (expectAndConsume(MIToken::lparen)) 1865 return true; 1866 if (Token.isNot(MIToken::Identifier)) 1867 return error("expected the name of the target index"); 1868 int Index = 0; 1869 if (getTargetIndex(Token.stringValue(), Index)) 1870 return error("use of undefined target index '" + Token.stringValue() + "'"); 1871 lex(); 1872 if (expectAndConsume(MIToken::rparen)) 1873 return true; 1874 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1875 if (parseOperandsOffset(Dest)) 1876 return true; 1877 return false; 1878 } 1879 1880 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1881 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1882 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1883 assert(TRI && "Expected target register info"); 1884 lex(); 1885 if (expectAndConsume(MIToken::lparen)) 1886 return true; 1887 1888 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1889 while (true) { 1890 if (Token.isNot(MIToken::NamedRegister)) 1891 return error("expected a named register"); 1892 unsigned Reg; 1893 if (parseNamedRegister(Reg)) 1894 return true; 1895 lex(); 1896 Mask[Reg / 32] |= 1U << (Reg % 32); 1897 // TODO: Report an error if the same register is used more than once. 1898 if (Token.isNot(MIToken::comma)) 1899 break; 1900 lex(); 1901 } 1902 1903 if (expectAndConsume(MIToken::rparen)) 1904 return true; 1905 Dest = MachineOperand::CreateRegMask(Mask); 1906 return false; 1907 } 1908 1909 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1910 assert(Token.is(MIToken::kw_liveout)); 1911 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1912 assert(TRI && "Expected target register info"); 1913 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1914 lex(); 1915 if (expectAndConsume(MIToken::lparen)) 1916 return true; 1917 while (true) { 1918 if (Token.isNot(MIToken::NamedRegister)) 1919 return error("expected a named register"); 1920 unsigned Reg; 1921 if (parseNamedRegister(Reg)) 1922 return true; 1923 lex(); 1924 Mask[Reg / 32] |= 1U << (Reg % 32); 1925 // TODO: Report an error if the same register is used more than once. 1926 if (Token.isNot(MIToken::comma)) 1927 break; 1928 lex(); 1929 } 1930 if (expectAndConsume(MIToken::rparen)) 1931 return true; 1932 Dest = MachineOperand::CreateRegLiveOut(Mask); 1933 return false; 1934 } 1935 1936 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1937 Optional<unsigned> &TiedDefIdx) { 1938 switch (Token.kind()) { 1939 case MIToken::kw_implicit: 1940 case MIToken::kw_implicit_define: 1941 case MIToken::kw_def: 1942 case MIToken::kw_dead: 1943 case MIToken::kw_killed: 1944 case MIToken::kw_undef: 1945 case MIToken::kw_internal: 1946 case MIToken::kw_early_clobber: 1947 case MIToken::kw_debug_use: 1948 case MIToken::kw_renamable: 1949 case MIToken::underscore: 1950 case MIToken::NamedRegister: 1951 case MIToken::VirtualRegister: 1952 return parseRegisterOperand(Dest, TiedDefIdx); 1953 case MIToken::IntegerLiteral: 1954 return parseImmediateOperand(Dest); 1955 case MIToken::IntegerType: 1956 return parseTypedImmediateOperand(Dest); 1957 case MIToken::kw_half: 1958 case MIToken::kw_float: 1959 case MIToken::kw_double: 1960 case MIToken::kw_x86_fp80: 1961 case MIToken::kw_fp128: 1962 case MIToken::kw_ppc_fp128: 1963 return parseFPImmediateOperand(Dest); 1964 case MIToken::MachineBasicBlock: 1965 return parseMBBOperand(Dest); 1966 case MIToken::StackObject: 1967 return parseStackObjectOperand(Dest); 1968 case MIToken::FixedStackObject: 1969 return parseFixedStackObjectOperand(Dest); 1970 case MIToken::GlobalValue: 1971 case MIToken::NamedGlobalValue: 1972 return parseGlobalAddressOperand(Dest); 1973 case MIToken::ConstantPoolItem: 1974 return parseConstantPoolIndexOperand(Dest); 1975 case MIToken::JumpTableIndex: 1976 return parseJumpTableIndexOperand(Dest); 1977 case MIToken::ExternalSymbol: 1978 return parseExternalSymbolOperand(Dest); 1979 case MIToken::SubRegisterIndex: 1980 return parseSubRegisterIndexOperand(Dest); 1981 case MIToken::md_diexpr: 1982 case MIToken::exclaim: 1983 return parseMetadataOperand(Dest); 1984 case MIToken::kw_cfi_same_value: 1985 case MIToken::kw_cfi_offset: 1986 case MIToken::kw_cfi_rel_offset: 1987 case MIToken::kw_cfi_def_cfa_register: 1988 case MIToken::kw_cfi_def_cfa_offset: 1989 case MIToken::kw_cfi_adjust_cfa_offset: 1990 case MIToken::kw_cfi_escape: 1991 case MIToken::kw_cfi_def_cfa: 1992 case MIToken::kw_cfi_register: 1993 case MIToken::kw_cfi_remember_state: 1994 case MIToken::kw_cfi_restore: 1995 case MIToken::kw_cfi_restore_state: 1996 case MIToken::kw_cfi_undefined: 1997 case MIToken::kw_cfi_window_save: 1998 return parseCFIOperand(Dest); 1999 case MIToken::kw_blockaddress: 2000 return parseBlockAddressOperand(Dest); 2001 case MIToken::kw_intrinsic: 2002 return parseIntrinsicOperand(Dest); 2003 case MIToken::kw_target_index: 2004 return parseTargetIndexOperand(Dest); 2005 case MIToken::kw_liveout: 2006 return parseLiveoutRegisterMaskOperand(Dest); 2007 case MIToken::kw_floatpred: 2008 case MIToken::kw_intpred: 2009 return parsePredicateOperand(Dest); 2010 case MIToken::Error: 2011 return true; 2012 case MIToken::Identifier: 2013 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2014 Dest = MachineOperand::CreateRegMask(RegMask); 2015 lex(); 2016 break; 2017 } else 2018 return parseCustomRegisterMaskOperand(Dest); 2019 default: 2020 // FIXME: Parse the MCSymbol machine operand. 2021 return error("expected a machine operand"); 2022 } 2023 return false; 2024 } 2025 2026 bool MIParser::parseMachineOperandAndTargetFlags( 2027 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2028 unsigned TF = 0; 2029 bool HasTargetFlags = false; 2030 if (Token.is(MIToken::kw_target_flags)) { 2031 HasTargetFlags = true; 2032 lex(); 2033 if (expectAndConsume(MIToken::lparen)) 2034 return true; 2035 if (Token.isNot(MIToken::Identifier)) 2036 return error("expected the name of the target flag"); 2037 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2038 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2039 return error("use of undefined target flag '" + Token.stringValue() + 2040 "'"); 2041 } 2042 lex(); 2043 while (Token.is(MIToken::comma)) { 2044 lex(); 2045 if (Token.isNot(MIToken::Identifier)) 2046 return error("expected the name of the target flag"); 2047 unsigned BitFlag = 0; 2048 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2049 return error("use of undefined target flag '" + Token.stringValue() + 2050 "'"); 2051 // TODO: Report an error when using a duplicate bit target flag. 2052 TF |= BitFlag; 2053 lex(); 2054 } 2055 if (expectAndConsume(MIToken::rparen)) 2056 return true; 2057 } 2058 auto Loc = Token.location(); 2059 if (parseMachineOperand(Dest, TiedDefIdx)) 2060 return true; 2061 if (!HasTargetFlags) 2062 return false; 2063 if (Dest.isReg()) 2064 return error(Loc, "register operands can't have target flags"); 2065 Dest.setTargetFlags(TF); 2066 return false; 2067 } 2068 2069 bool MIParser::parseOffset(int64_t &Offset) { 2070 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2071 return false; 2072 StringRef Sign = Token.range(); 2073 bool IsNegative = Token.is(MIToken::minus); 2074 lex(); 2075 if (Token.isNot(MIToken::IntegerLiteral)) 2076 return error("expected an integer literal after '" + Sign + "'"); 2077 if (Token.integerValue().getMinSignedBits() > 64) 2078 return error("expected 64-bit integer (too large)"); 2079 Offset = Token.integerValue().getExtValue(); 2080 if (IsNegative) 2081 Offset = -Offset; 2082 lex(); 2083 return false; 2084 } 2085 2086 bool MIParser::parseAlignment(unsigned &Alignment) { 2087 assert(Token.is(MIToken::kw_align)); 2088 lex(); 2089 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2090 return error("expected an integer literal after 'align'"); 2091 if (getUnsigned(Alignment)) 2092 return true; 2093 lex(); 2094 return false; 2095 } 2096 2097 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2098 int64_t Offset = 0; 2099 if (parseOffset(Offset)) 2100 return true; 2101 Op.setOffset(Offset); 2102 return false; 2103 } 2104 2105 bool MIParser::parseIRValue(const Value *&V) { 2106 switch (Token.kind()) { 2107 case MIToken::NamedIRValue: { 2108 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2109 break; 2110 } 2111 case MIToken::IRValue: { 2112 unsigned SlotNumber = 0; 2113 if (getUnsigned(SlotNumber)) 2114 return true; 2115 V = getIRValue(SlotNumber); 2116 break; 2117 } 2118 case MIToken::NamedGlobalValue: 2119 case MIToken::GlobalValue: { 2120 GlobalValue *GV = nullptr; 2121 if (parseGlobalValue(GV)) 2122 return true; 2123 V = GV; 2124 break; 2125 } 2126 case MIToken::QuotedIRValue: { 2127 const Constant *C = nullptr; 2128 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2129 return true; 2130 V = C; 2131 break; 2132 } 2133 default: 2134 llvm_unreachable("The current token should be an IR block reference"); 2135 } 2136 if (!V) 2137 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2138 return false; 2139 } 2140 2141 bool MIParser::getUint64(uint64_t &Result) { 2142 if (Token.hasIntegerValue()) { 2143 if (Token.integerValue().getActiveBits() > 64) 2144 return error("expected 64-bit integer (too large)"); 2145 Result = Token.integerValue().getZExtValue(); 2146 return false; 2147 } 2148 if (Token.is(MIToken::HexLiteral)) { 2149 APInt A; 2150 if (getHexUint(A)) 2151 return true; 2152 if (A.getBitWidth() > 64) 2153 return error("expected 64-bit integer (too large)"); 2154 Result = A.getZExtValue(); 2155 return false; 2156 } 2157 return true; 2158 } 2159 2160 bool MIParser::getHexUint(APInt &Result) { 2161 assert(Token.is(MIToken::HexLiteral)); 2162 StringRef S = Token.range(); 2163 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2164 // This could be a floating point literal with a special prefix. 2165 if (!isxdigit(S[2])) 2166 return true; 2167 StringRef V = S.substr(2); 2168 APInt A(V.size()*4, V, 16); 2169 2170 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2171 // sure it isn't the case before constructing result. 2172 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2173 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2174 return false; 2175 } 2176 2177 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2178 const auto OldFlags = Flags; 2179 switch (Token.kind()) { 2180 case MIToken::kw_volatile: 2181 Flags |= MachineMemOperand::MOVolatile; 2182 break; 2183 case MIToken::kw_non_temporal: 2184 Flags |= MachineMemOperand::MONonTemporal; 2185 break; 2186 case MIToken::kw_dereferenceable: 2187 Flags |= MachineMemOperand::MODereferenceable; 2188 break; 2189 case MIToken::kw_invariant: 2190 Flags |= MachineMemOperand::MOInvariant; 2191 break; 2192 case MIToken::StringConstant: { 2193 MachineMemOperand::Flags TF; 2194 if (getMMOTargetFlag(Token.stringValue(), TF)) 2195 return error("use of undefined target MMO flag '" + Token.stringValue() + 2196 "'"); 2197 Flags |= TF; 2198 break; 2199 } 2200 default: 2201 llvm_unreachable("The current token should be a memory operand flag"); 2202 } 2203 if (OldFlags == Flags) 2204 // We know that the same flag is specified more than once when the flags 2205 // weren't modified. 2206 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2207 lex(); 2208 return false; 2209 } 2210 2211 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2212 switch (Token.kind()) { 2213 case MIToken::kw_stack: 2214 PSV = MF.getPSVManager().getStack(); 2215 break; 2216 case MIToken::kw_got: 2217 PSV = MF.getPSVManager().getGOT(); 2218 break; 2219 case MIToken::kw_jump_table: 2220 PSV = MF.getPSVManager().getJumpTable(); 2221 break; 2222 case MIToken::kw_constant_pool: 2223 PSV = MF.getPSVManager().getConstantPool(); 2224 break; 2225 case MIToken::FixedStackObject: { 2226 int FI; 2227 if (parseFixedStackFrameIndex(FI)) 2228 return true; 2229 PSV = MF.getPSVManager().getFixedStack(FI); 2230 // The token was already consumed, so use return here instead of break. 2231 return false; 2232 } 2233 case MIToken::StackObject: { 2234 int FI; 2235 if (parseStackFrameIndex(FI)) 2236 return true; 2237 PSV = MF.getPSVManager().getFixedStack(FI); 2238 // The token was already consumed, so use return here instead of break. 2239 return false; 2240 } 2241 case MIToken::kw_call_entry: 2242 lex(); 2243 switch (Token.kind()) { 2244 case MIToken::GlobalValue: 2245 case MIToken::NamedGlobalValue: { 2246 GlobalValue *GV = nullptr; 2247 if (parseGlobalValue(GV)) 2248 return true; 2249 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2250 break; 2251 } 2252 case MIToken::ExternalSymbol: 2253 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2254 MF.createExternalSymbolName(Token.stringValue())); 2255 break; 2256 default: 2257 return error( 2258 "expected a global value or an external symbol after 'call-entry'"); 2259 } 2260 break; 2261 default: 2262 llvm_unreachable("The current token should be pseudo source value"); 2263 } 2264 lex(); 2265 return false; 2266 } 2267 2268 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2269 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2270 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2271 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2272 Token.is(MIToken::kw_call_entry)) { 2273 const PseudoSourceValue *PSV = nullptr; 2274 if (parseMemoryPseudoSourceValue(PSV)) 2275 return true; 2276 int64_t Offset = 0; 2277 if (parseOffset(Offset)) 2278 return true; 2279 Dest = MachinePointerInfo(PSV, Offset); 2280 return false; 2281 } 2282 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2283 Token.isNot(MIToken::GlobalValue) && 2284 Token.isNot(MIToken::NamedGlobalValue) && 2285 Token.isNot(MIToken::QuotedIRValue)) 2286 return error("expected an IR value reference"); 2287 const Value *V = nullptr; 2288 if (parseIRValue(V)) 2289 return true; 2290 if (!V->getType()->isPointerTy()) 2291 return error("expected a pointer IR value"); 2292 lex(); 2293 int64_t Offset = 0; 2294 if (parseOffset(Offset)) 2295 return true; 2296 Dest = MachinePointerInfo(V, Offset); 2297 return false; 2298 } 2299 2300 bool MIParser::parseOptionalScope(LLVMContext &Context, 2301 SyncScope::ID &SSID) { 2302 SSID = SyncScope::System; 2303 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2304 lex(); 2305 if (expectAndConsume(MIToken::lparen)) 2306 return error("expected '(' in syncscope"); 2307 2308 std::string SSN; 2309 if (parseStringConstant(SSN)) 2310 return true; 2311 2312 SSID = Context.getOrInsertSyncScopeID(SSN); 2313 if (expectAndConsume(MIToken::rparen)) 2314 return error("expected ')' in syncscope"); 2315 } 2316 2317 return false; 2318 } 2319 2320 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2321 Order = AtomicOrdering::NotAtomic; 2322 if (Token.isNot(MIToken::Identifier)) 2323 return false; 2324 2325 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2326 .Case("unordered", AtomicOrdering::Unordered) 2327 .Case("monotonic", AtomicOrdering::Monotonic) 2328 .Case("acquire", AtomicOrdering::Acquire) 2329 .Case("release", AtomicOrdering::Release) 2330 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2331 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2332 .Default(AtomicOrdering::NotAtomic); 2333 2334 if (Order != AtomicOrdering::NotAtomic) { 2335 lex(); 2336 return false; 2337 } 2338 2339 return error("expected an atomic scope, ordering or a size integer literal"); 2340 } 2341 2342 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2343 if (expectAndConsume(MIToken::lparen)) 2344 return true; 2345 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2346 while (Token.isMemoryOperandFlag()) { 2347 if (parseMemoryOperandFlag(Flags)) 2348 return true; 2349 } 2350 if (Token.isNot(MIToken::Identifier) || 2351 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2352 return error("expected 'load' or 'store' memory operation"); 2353 if (Token.stringValue() == "load") 2354 Flags |= MachineMemOperand::MOLoad; 2355 else 2356 Flags |= MachineMemOperand::MOStore; 2357 lex(); 2358 2359 // Optional 'store' for operands that both load and store. 2360 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2361 Flags |= MachineMemOperand::MOStore; 2362 lex(); 2363 } 2364 2365 // Optional synchronization scope. 2366 SyncScope::ID SSID; 2367 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2368 return true; 2369 2370 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2371 AtomicOrdering Order, FailureOrder; 2372 if (parseOptionalAtomicOrdering(Order)) 2373 return true; 2374 2375 if (parseOptionalAtomicOrdering(FailureOrder)) 2376 return true; 2377 2378 if (Token.isNot(MIToken::IntegerLiteral)) 2379 return error("expected the size integer literal after memory operation"); 2380 uint64_t Size; 2381 if (getUint64(Size)) 2382 return true; 2383 lex(); 2384 2385 MachinePointerInfo Ptr = MachinePointerInfo(); 2386 if (Token.is(MIToken::Identifier)) { 2387 const char *Word = 2388 ((Flags & MachineMemOperand::MOLoad) && 2389 (Flags & MachineMemOperand::MOStore)) 2390 ? "on" 2391 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2392 if (Token.stringValue() != Word) 2393 return error(Twine("expected '") + Word + "'"); 2394 lex(); 2395 2396 if (parseMachinePointerInfo(Ptr)) 2397 return true; 2398 } 2399 unsigned BaseAlignment = Size; 2400 AAMDNodes AAInfo; 2401 MDNode *Range = nullptr; 2402 while (consumeIfPresent(MIToken::comma)) { 2403 switch (Token.kind()) { 2404 case MIToken::kw_align: 2405 if (parseAlignment(BaseAlignment)) 2406 return true; 2407 break; 2408 case MIToken::md_tbaa: 2409 lex(); 2410 if (parseMDNode(AAInfo.TBAA)) 2411 return true; 2412 break; 2413 case MIToken::md_alias_scope: 2414 lex(); 2415 if (parseMDNode(AAInfo.Scope)) 2416 return true; 2417 break; 2418 case MIToken::md_noalias: 2419 lex(); 2420 if (parseMDNode(AAInfo.NoAlias)) 2421 return true; 2422 break; 2423 case MIToken::md_range: 2424 lex(); 2425 if (parseMDNode(Range)) 2426 return true; 2427 break; 2428 // TODO: Report an error on duplicate metadata nodes. 2429 default: 2430 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2431 "'!noalias' or '!range'"); 2432 } 2433 } 2434 if (expectAndConsume(MIToken::rparen)) 2435 return true; 2436 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2437 SSID, Order, FailureOrder); 2438 return false; 2439 } 2440 2441 void MIParser::initNames2InstrOpCodes() { 2442 if (!Names2InstrOpCodes.empty()) 2443 return; 2444 const auto *TII = MF.getSubtarget().getInstrInfo(); 2445 assert(TII && "Expected target instruction info"); 2446 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2447 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2448 } 2449 2450 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2451 initNames2InstrOpCodes(); 2452 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2453 if (InstrInfo == Names2InstrOpCodes.end()) 2454 return true; 2455 OpCode = InstrInfo->getValue(); 2456 return false; 2457 } 2458 2459 void MIParser::initNames2Regs() { 2460 if (!Names2Regs.empty()) 2461 return; 2462 // The '%noreg' register is the register 0. 2463 Names2Regs.insert(std::make_pair("noreg", 0)); 2464 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2465 assert(TRI && "Expected target register info"); 2466 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2467 bool WasInserted = 2468 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2469 .second; 2470 (void)WasInserted; 2471 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2472 } 2473 } 2474 2475 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2476 initNames2Regs(); 2477 auto RegInfo = Names2Regs.find(RegName); 2478 if (RegInfo == Names2Regs.end()) 2479 return true; 2480 Reg = RegInfo->getValue(); 2481 return false; 2482 } 2483 2484 void MIParser::initNames2RegMasks() { 2485 if (!Names2RegMasks.empty()) 2486 return; 2487 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2488 assert(TRI && "Expected target register info"); 2489 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2490 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2491 assert(RegMasks.size() == RegMaskNames.size()); 2492 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2493 Names2RegMasks.insert( 2494 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2495 } 2496 2497 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2498 initNames2RegMasks(); 2499 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2500 if (RegMaskInfo == Names2RegMasks.end()) 2501 return nullptr; 2502 return RegMaskInfo->getValue(); 2503 } 2504 2505 void MIParser::initNames2SubRegIndices() { 2506 if (!Names2SubRegIndices.empty()) 2507 return; 2508 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2509 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2510 Names2SubRegIndices.insert( 2511 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2512 } 2513 2514 unsigned MIParser::getSubRegIndex(StringRef Name) { 2515 initNames2SubRegIndices(); 2516 auto SubRegInfo = Names2SubRegIndices.find(Name); 2517 if (SubRegInfo == Names2SubRegIndices.end()) 2518 return 0; 2519 return SubRegInfo->getValue(); 2520 } 2521 2522 static void initSlots2BasicBlocks( 2523 const Function &F, 2524 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2525 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2526 MST.incorporateFunction(F); 2527 for (auto &BB : F) { 2528 if (BB.hasName()) 2529 continue; 2530 int Slot = MST.getLocalSlot(&BB); 2531 if (Slot == -1) 2532 continue; 2533 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2534 } 2535 } 2536 2537 static const BasicBlock *getIRBlockFromSlot( 2538 unsigned Slot, 2539 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2540 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2541 if (BlockInfo == Slots2BasicBlocks.end()) 2542 return nullptr; 2543 return BlockInfo->second; 2544 } 2545 2546 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2547 if (Slots2BasicBlocks.empty()) 2548 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2549 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2550 } 2551 2552 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2553 if (&F == &MF.getFunction()) 2554 return getIRBlock(Slot); 2555 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2556 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2557 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2558 } 2559 2560 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2561 DenseMap<unsigned, const Value *> &Slots2Values) { 2562 int Slot = MST.getLocalSlot(V); 2563 if (Slot == -1) 2564 return; 2565 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2566 } 2567 2568 /// Creates the mapping from slot numbers to function's unnamed IR values. 2569 static void initSlots2Values(const Function &F, 2570 DenseMap<unsigned, const Value *> &Slots2Values) { 2571 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2572 MST.incorporateFunction(F); 2573 for (const auto &Arg : F.args()) 2574 mapValueToSlot(&Arg, MST, Slots2Values); 2575 for (const auto &BB : F) { 2576 mapValueToSlot(&BB, MST, Slots2Values); 2577 for (const auto &I : BB) 2578 mapValueToSlot(&I, MST, Slots2Values); 2579 } 2580 } 2581 2582 const Value *MIParser::getIRValue(unsigned Slot) { 2583 if (Slots2Values.empty()) 2584 initSlots2Values(MF.getFunction(), Slots2Values); 2585 auto ValueInfo = Slots2Values.find(Slot); 2586 if (ValueInfo == Slots2Values.end()) 2587 return nullptr; 2588 return ValueInfo->second; 2589 } 2590 2591 void MIParser::initNames2TargetIndices() { 2592 if (!Names2TargetIndices.empty()) 2593 return; 2594 const auto *TII = MF.getSubtarget().getInstrInfo(); 2595 assert(TII && "Expected target instruction info"); 2596 auto Indices = TII->getSerializableTargetIndices(); 2597 for (const auto &I : Indices) 2598 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2599 } 2600 2601 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2602 initNames2TargetIndices(); 2603 auto IndexInfo = Names2TargetIndices.find(Name); 2604 if (IndexInfo == Names2TargetIndices.end()) 2605 return true; 2606 Index = IndexInfo->second; 2607 return false; 2608 } 2609 2610 void MIParser::initNames2DirectTargetFlags() { 2611 if (!Names2DirectTargetFlags.empty()) 2612 return; 2613 const auto *TII = MF.getSubtarget().getInstrInfo(); 2614 assert(TII && "Expected target instruction info"); 2615 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2616 for (const auto &I : Flags) 2617 Names2DirectTargetFlags.insert( 2618 std::make_pair(StringRef(I.second), I.first)); 2619 } 2620 2621 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2622 initNames2DirectTargetFlags(); 2623 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2624 if (FlagInfo == Names2DirectTargetFlags.end()) 2625 return true; 2626 Flag = FlagInfo->second; 2627 return false; 2628 } 2629 2630 void MIParser::initNames2BitmaskTargetFlags() { 2631 if (!Names2BitmaskTargetFlags.empty()) 2632 return; 2633 const auto *TII = MF.getSubtarget().getInstrInfo(); 2634 assert(TII && "Expected target instruction info"); 2635 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2636 for (const auto &I : Flags) 2637 Names2BitmaskTargetFlags.insert( 2638 std::make_pair(StringRef(I.second), I.first)); 2639 } 2640 2641 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2642 initNames2BitmaskTargetFlags(); 2643 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2644 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2645 return true; 2646 Flag = FlagInfo->second; 2647 return false; 2648 } 2649 2650 void MIParser::initNames2MMOTargetFlags() { 2651 if (!Names2MMOTargetFlags.empty()) 2652 return; 2653 const auto *TII = MF.getSubtarget().getInstrInfo(); 2654 assert(TII && "Expected target instruction info"); 2655 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2656 for (const auto &I : Flags) 2657 Names2MMOTargetFlags.insert( 2658 std::make_pair(StringRef(I.second), I.first)); 2659 } 2660 2661 bool MIParser::getMMOTargetFlag(StringRef Name, 2662 MachineMemOperand::Flags &Flag) { 2663 initNames2MMOTargetFlags(); 2664 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2665 if (FlagInfo == Names2MMOTargetFlags.end()) 2666 return true; 2667 Flag = FlagInfo->second; 2668 return false; 2669 } 2670 2671 bool MIParser::parseStringConstant(std::string &Result) { 2672 if (Token.isNot(MIToken::StringConstant)) 2673 return error("expected string constant"); 2674 Result = Token.stringValue(); 2675 lex(); 2676 return false; 2677 } 2678 2679 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2680 StringRef Src, 2681 SMDiagnostic &Error) { 2682 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2683 } 2684 2685 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2686 StringRef Src, SMDiagnostic &Error) { 2687 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2688 } 2689 2690 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2691 MachineBasicBlock *&MBB, StringRef Src, 2692 SMDiagnostic &Error) { 2693 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2694 } 2695 2696 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2697 unsigned &Reg, StringRef Src, 2698 SMDiagnostic &Error) { 2699 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2700 } 2701 2702 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2703 unsigned &Reg, StringRef Src, 2704 SMDiagnostic &Error) { 2705 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2706 } 2707 2708 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2709 VRegInfo *&Info, StringRef Src, 2710 SMDiagnostic &Error) { 2711 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2712 } 2713 2714 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2715 int &FI, StringRef Src, 2716 SMDiagnostic &Error) { 2717 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2718 } 2719 2720 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2721 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2722 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2723 } 2724