1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueSymbolTable.h"
56 #include "llvm/MC/LaneBitmask.h"
57 #include "llvm/MC/MCDwarf.h"
58 #include "llvm/MC/MCInstrDesc.h"
59 #include "llvm/MC/MCRegisterInfo.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MemoryBuffer.h"
66 #include "llvm/Support/SMLoc.h"
67 #include "llvm/Support/SourceMgr.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cctype>
74 #include <cstddef>
75 #include <cstdint>
76 #include <limits>
77 #include <string>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
83     SourceMgr &SM, const SlotMapping &IRSlots,
84     const Name2RegClassMap &Names2RegClasses,
85     const Name2RegBankMap &Names2RegBanks)
86   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
87     Names2RegBanks(Names2RegBanks) {
88 }
89 
90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
91   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
92   if (I.second) {
93     MachineRegisterInfo &MRI = MF.getRegInfo();
94     VRegInfo *Info = new (Allocator) VRegInfo;
95     Info->VReg = MRI.createIncompleteVirtualRegister();
96     I.first->second = Info;
97   }
98   return *I.first->second;
99 }
100 
101 namespace {
102 
103 /// A wrapper struct around the 'MachineOperand' struct that includes a source
104 /// range and other attributes.
105 struct ParsedMachineOperand {
106   MachineOperand Operand;
107   StringRef::iterator Begin;
108   StringRef::iterator End;
109   Optional<unsigned> TiedDefIdx;
110 
111   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
112                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
113       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
114     if (TiedDefIdx)
115       assert(Operand.isReg() && Operand.isUse() &&
116              "Only used register operands can be tied");
117   }
118 };
119 
120 class MIParser {
121   MachineFunction &MF;
122   SMDiagnostic &Error;
123   StringRef Source, CurrentSource;
124   MIToken Token;
125   PerFunctionMIParsingState &PFS;
126   /// Maps from instruction names to op codes.
127   StringMap<unsigned> Names2InstrOpCodes;
128   /// Maps from register names to registers.
129   StringMap<unsigned> Names2Regs;
130   /// Maps from register mask names to register masks.
131   StringMap<const uint32_t *> Names2RegMasks;
132   /// Maps from subregister names to subregister indices.
133   StringMap<unsigned> Names2SubRegIndices;
134   /// Maps from slot numbers to function's unnamed basic blocks.
135   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
136   /// Maps from slot numbers to function's unnamed values.
137   DenseMap<unsigned, const Value *> Slots2Values;
138   /// Maps from target index names to target indices.
139   StringMap<int> Names2TargetIndices;
140   /// Maps from direct target flag names to the direct target flag values.
141   StringMap<unsigned> Names2DirectTargetFlags;
142   /// Maps from direct target flag names to the bitmask target flag values.
143   StringMap<unsigned> Names2BitmaskTargetFlags;
144   /// Maps from MMO target flag names to MMO target flag values.
145   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
146 
147 public:
148   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
149            StringRef Source);
150 
151   /// \p SkipChar gives the number of characters to skip before looking
152   /// for the next token.
153   void lex(unsigned SkipChar = 0);
154 
155   /// Report an error at the current location with the given message.
156   ///
157   /// This function always return true.
158   bool error(const Twine &Msg);
159 
160   /// Report an error at the given location with the given message.
161   ///
162   /// This function always return true.
163   bool error(StringRef::iterator Loc, const Twine &Msg);
164 
165   bool
166   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
167   bool parseBasicBlocks();
168   bool parse(MachineInstr *&MI);
169   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
170   bool parseStandaloneNamedRegister(unsigned &Reg);
171   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
172   bool parseStandaloneRegister(unsigned &Reg);
173   bool parseStandaloneStackObject(int &FI);
174   bool parseStandaloneMDNode(MDNode *&Node);
175 
176   bool
177   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
178   bool parseBasicBlock(MachineBasicBlock &MBB,
179                        MachineBasicBlock *&AddFalthroughFrom);
180   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
181   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
182 
183   bool parseNamedRegister(unsigned &Reg);
184   bool parseVirtualRegister(VRegInfo *&Info);
185   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
186   bool parseRegisterFlag(unsigned &Flags);
187   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
188   bool parseSubRegisterIndex(unsigned &SubReg);
189   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
190   bool parseRegisterOperand(MachineOperand &Dest,
191                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
192   bool parseImmediateOperand(MachineOperand &Dest);
193   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
194                        const Constant *&C);
195   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
196   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
197   bool parseTypedImmediateOperand(MachineOperand &Dest);
198   bool parseFPImmediateOperand(MachineOperand &Dest);
199   bool parseMBBReference(MachineBasicBlock *&MBB);
200   bool parseMBBOperand(MachineOperand &Dest);
201   bool parseStackFrameIndex(int &FI);
202   bool parseStackObjectOperand(MachineOperand &Dest);
203   bool parseFixedStackFrameIndex(int &FI);
204   bool parseFixedStackObjectOperand(MachineOperand &Dest);
205   bool parseGlobalValue(GlobalValue *&GV);
206   bool parseGlobalAddressOperand(MachineOperand &Dest);
207   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
208   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
209   bool parseJumpTableIndexOperand(MachineOperand &Dest);
210   bool parseExternalSymbolOperand(MachineOperand &Dest);
211   bool parseMDNode(MDNode *&Node);
212   bool parseDIExpression(MDNode *&Node);
213   bool parseMetadataOperand(MachineOperand &Dest);
214   bool parseCFIOffset(int &Offset);
215   bool parseCFIRegister(unsigned &Reg);
216   bool parseCFIEscapeValues(std::string& Values);
217   bool parseCFIOperand(MachineOperand &Dest);
218   bool parseIRBlock(BasicBlock *&BB, const Function &F);
219   bool parseBlockAddressOperand(MachineOperand &Dest);
220   bool parseIntrinsicOperand(MachineOperand &Dest);
221   bool parsePredicateOperand(MachineOperand &Dest);
222   bool parseTargetIndexOperand(MachineOperand &Dest);
223   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
224   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
225   bool parseMachineOperand(MachineOperand &Dest,
226                            Optional<unsigned> &TiedDefIdx);
227   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
228                                          Optional<unsigned> &TiedDefIdx);
229   bool parseOffset(int64_t &Offset);
230   bool parseAlignment(unsigned &Alignment);
231   bool parseOperandsOffset(MachineOperand &Op);
232   bool parseIRValue(const Value *&V);
233   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
234   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
235   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
236   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
237   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
238   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
239 
240 private:
241   /// Convert the integer literal in the current token into an unsigned integer.
242   ///
243   /// Return true if an error occurred.
244   bool getUnsigned(unsigned &Result);
245 
246   /// Convert the integer literal in the current token into an uint64.
247   ///
248   /// Return true if an error occurred.
249   bool getUint64(uint64_t &Result);
250 
251   /// Convert the hexadecimal literal in the current token into an unsigned
252   ///  APInt with a minimum bitwidth required to represent the value.
253   ///
254   /// Return true if the literal does not represent an integer value.
255   bool getHexUint(APInt &Result);
256 
257   /// If the current token is of the given kind, consume it and return false.
258   /// Otherwise report an error and return true.
259   bool expectAndConsume(MIToken::TokenKind TokenKind);
260 
261   /// If the current token is of the given kind, consume it and return true.
262   /// Otherwise return false.
263   bool consumeIfPresent(MIToken::TokenKind TokenKind);
264 
265   void initNames2InstrOpCodes();
266 
267   /// Try to convert an instruction name to an opcode. Return true if the
268   /// instruction name is invalid.
269   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
270 
271   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
272 
273   bool assignRegisterTies(MachineInstr &MI,
274                           ArrayRef<ParsedMachineOperand> Operands);
275 
276   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
277                               const MCInstrDesc &MCID);
278 
279   void initNames2Regs();
280 
281   /// Try to convert a register name to a register number. Return true if the
282   /// register name is invalid.
283   bool getRegisterByName(StringRef RegName, unsigned &Reg);
284 
285   void initNames2RegMasks();
286 
287   /// Check if the given identifier is a name of a register mask.
288   ///
289   /// Return null if the identifier isn't a register mask.
290   const uint32_t *getRegMask(StringRef Identifier);
291 
292   void initNames2SubRegIndices();
293 
294   /// Check if the given identifier is a name of a subregister index.
295   ///
296   /// Return 0 if the name isn't a subregister index class.
297   unsigned getSubRegIndex(StringRef Name);
298 
299   const BasicBlock *getIRBlock(unsigned Slot);
300   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
301 
302   const Value *getIRValue(unsigned Slot);
303 
304   void initNames2TargetIndices();
305 
306   /// Try to convert a name of target index to the corresponding target index.
307   ///
308   /// Return true if the name isn't a name of a target index.
309   bool getTargetIndex(StringRef Name, int &Index);
310 
311   void initNames2DirectTargetFlags();
312 
313   /// Try to convert a name of a direct target flag to the corresponding
314   /// target flag.
315   ///
316   /// Return true if the name isn't a name of a direct flag.
317   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
318 
319   void initNames2BitmaskTargetFlags();
320 
321   /// Try to convert a name of a bitmask target flag to the corresponding
322   /// target flag.
323   ///
324   /// Return true if the name isn't a name of a bitmask target flag.
325   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
326 
327   void initNames2MMOTargetFlags();
328 
329   /// Try to convert a name of a MachineMemOperand target flag to the
330   /// corresponding target flag.
331   ///
332   /// Return true if the name isn't a name of a target MMO flag.
333   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
334 
335   /// parseStringConstant
336   ///   ::= StringConstant
337   bool parseStringConstant(std::string &Result);
338 };
339 
340 } // end anonymous namespace
341 
342 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
343                    StringRef Source)
344     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
345 {}
346 
347 void MIParser::lex(unsigned SkipChar) {
348   CurrentSource = lexMIToken(
349       CurrentSource.data() + SkipChar, Token,
350       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
351 }
352 
353 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
354 
355 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
356   const SourceMgr &SM = *PFS.SM;
357   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
358   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
359   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
360     // Create an ordinary diagnostic when the source manager's buffer is the
361     // source string.
362     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
363     return true;
364   }
365   // Create a diagnostic for a YAML string literal.
366   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
367                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
368                        Source, None, None);
369   return true;
370 }
371 
372 static const char *toString(MIToken::TokenKind TokenKind) {
373   switch (TokenKind) {
374   case MIToken::comma:
375     return "','";
376   case MIToken::equal:
377     return "'='";
378   case MIToken::colon:
379     return "':'";
380   case MIToken::lparen:
381     return "'('";
382   case MIToken::rparen:
383     return "')'";
384   default:
385     return "<unknown token>";
386   }
387 }
388 
389 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
390   if (Token.isNot(TokenKind))
391     return error(Twine("expected ") + toString(TokenKind));
392   lex();
393   return false;
394 }
395 
396 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
397   if (Token.isNot(TokenKind))
398     return false;
399   lex();
400   return true;
401 }
402 
403 bool MIParser::parseBasicBlockDefinition(
404     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
405   assert(Token.is(MIToken::MachineBasicBlockLabel));
406   unsigned ID = 0;
407   if (getUnsigned(ID))
408     return true;
409   auto Loc = Token.location();
410   auto Name = Token.stringValue();
411   lex();
412   bool HasAddressTaken = false;
413   bool IsLandingPad = false;
414   unsigned Alignment = 0;
415   BasicBlock *BB = nullptr;
416   if (consumeIfPresent(MIToken::lparen)) {
417     do {
418       // TODO: Report an error when multiple same attributes are specified.
419       switch (Token.kind()) {
420       case MIToken::kw_address_taken:
421         HasAddressTaken = true;
422         lex();
423         break;
424       case MIToken::kw_landing_pad:
425         IsLandingPad = true;
426         lex();
427         break;
428       case MIToken::kw_align:
429         if (parseAlignment(Alignment))
430           return true;
431         break;
432       case MIToken::IRBlock:
433         // TODO: Report an error when both name and ir block are specified.
434         if (parseIRBlock(BB, MF.getFunction()))
435           return true;
436         lex();
437         break;
438       default:
439         break;
440       }
441     } while (consumeIfPresent(MIToken::comma));
442     if (expectAndConsume(MIToken::rparen))
443       return true;
444   }
445   if (expectAndConsume(MIToken::colon))
446     return true;
447 
448   if (!Name.empty()) {
449     BB = dyn_cast_or_null<BasicBlock>(
450         MF.getFunction().getValueSymbolTable()->lookup(Name));
451     if (!BB)
452       return error(Loc, Twine("basic block '") + Name +
453                             "' is not defined in the function '" +
454                             MF.getName() + "'");
455   }
456   auto *MBB = MF.CreateMachineBasicBlock(BB);
457   MF.insert(MF.end(), MBB);
458   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
459   if (!WasInserted)
460     return error(Loc, Twine("redefinition of machine basic block with id #") +
461                           Twine(ID));
462   if (Alignment)
463     MBB->setAlignment(Alignment);
464   if (HasAddressTaken)
465     MBB->setHasAddressTaken();
466   MBB->setIsEHPad(IsLandingPad);
467   return false;
468 }
469 
470 bool MIParser::parseBasicBlockDefinitions(
471     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
472   lex();
473   // Skip until the first machine basic block.
474   while (Token.is(MIToken::Newline))
475     lex();
476   if (Token.isErrorOrEOF())
477     return Token.isError();
478   if (Token.isNot(MIToken::MachineBasicBlockLabel))
479     return error("expected a basic block definition before instructions");
480   unsigned BraceDepth = 0;
481   do {
482     if (parseBasicBlockDefinition(MBBSlots))
483       return true;
484     bool IsAfterNewline = false;
485     // Skip until the next machine basic block.
486     while (true) {
487       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
488           Token.isErrorOrEOF())
489         break;
490       else if (Token.is(MIToken::MachineBasicBlockLabel))
491         return error("basic block definition should be located at the start of "
492                      "the line");
493       else if (consumeIfPresent(MIToken::Newline)) {
494         IsAfterNewline = true;
495         continue;
496       }
497       IsAfterNewline = false;
498       if (Token.is(MIToken::lbrace))
499         ++BraceDepth;
500       if (Token.is(MIToken::rbrace)) {
501         if (!BraceDepth)
502           return error("extraneous closing brace ('}')");
503         --BraceDepth;
504       }
505       lex();
506     }
507     // Verify that we closed all of the '{' at the end of a file or a block.
508     if (!Token.isError() && BraceDepth)
509       return error("expected '}'"); // FIXME: Report a note that shows '{'.
510   } while (!Token.isErrorOrEOF());
511   return Token.isError();
512 }
513 
514 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
515   assert(Token.is(MIToken::kw_liveins));
516   lex();
517   if (expectAndConsume(MIToken::colon))
518     return true;
519   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
520     return false;
521   do {
522     if (Token.isNot(MIToken::NamedRegister))
523       return error("expected a named register");
524     unsigned Reg = 0;
525     if (parseNamedRegister(Reg))
526       return true;
527     lex();
528     LaneBitmask Mask = LaneBitmask::getAll();
529     if (consumeIfPresent(MIToken::colon)) {
530       // Parse lane mask.
531       if (Token.isNot(MIToken::IntegerLiteral) &&
532           Token.isNot(MIToken::HexLiteral))
533         return error("expected a lane mask");
534       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
535                     "Use correct get-function for lane mask");
536       LaneBitmask::Type V;
537       if (getUnsigned(V))
538         return error("invalid lane mask value");
539       Mask = LaneBitmask(V);
540       lex();
541     }
542     MBB.addLiveIn(Reg, Mask);
543   } while (consumeIfPresent(MIToken::comma));
544   return false;
545 }
546 
547 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
548   assert(Token.is(MIToken::kw_successors));
549   lex();
550   if (expectAndConsume(MIToken::colon))
551     return true;
552   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
553     return false;
554   do {
555     if (Token.isNot(MIToken::MachineBasicBlock))
556       return error("expected a machine basic block reference");
557     MachineBasicBlock *SuccMBB = nullptr;
558     if (parseMBBReference(SuccMBB))
559       return true;
560     lex();
561     unsigned Weight = 0;
562     if (consumeIfPresent(MIToken::lparen)) {
563       if (Token.isNot(MIToken::IntegerLiteral) &&
564           Token.isNot(MIToken::HexLiteral))
565         return error("expected an integer literal after '('");
566       if (getUnsigned(Weight))
567         return true;
568       lex();
569       if (expectAndConsume(MIToken::rparen))
570         return true;
571     }
572     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
573   } while (consumeIfPresent(MIToken::comma));
574   MBB.normalizeSuccProbs();
575   return false;
576 }
577 
578 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
579                                MachineBasicBlock *&AddFalthroughFrom) {
580   // Skip the definition.
581   assert(Token.is(MIToken::MachineBasicBlockLabel));
582   lex();
583   if (consumeIfPresent(MIToken::lparen)) {
584     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
585       lex();
586     consumeIfPresent(MIToken::rparen);
587   }
588   consumeIfPresent(MIToken::colon);
589 
590   // Parse the liveins and successors.
591   // N.B: Multiple lists of successors and liveins are allowed and they're
592   // merged into one.
593   // Example:
594   //   liveins: %edi
595   //   liveins: %esi
596   //
597   // is equivalent to
598   //   liveins: %edi, %esi
599   bool ExplicitSuccessors = false;
600   while (true) {
601     if (Token.is(MIToken::kw_successors)) {
602       if (parseBasicBlockSuccessors(MBB))
603         return true;
604       ExplicitSuccessors = true;
605     } else if (Token.is(MIToken::kw_liveins)) {
606       if (parseBasicBlockLiveins(MBB))
607         return true;
608     } else if (consumeIfPresent(MIToken::Newline)) {
609       continue;
610     } else
611       break;
612     if (!Token.isNewlineOrEOF())
613       return error("expected line break at the end of a list");
614     lex();
615   }
616 
617   // Parse the instructions.
618   bool IsInBundle = false;
619   MachineInstr *PrevMI = nullptr;
620   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
621          !Token.is(MIToken::Eof)) {
622     if (consumeIfPresent(MIToken::Newline))
623       continue;
624     if (consumeIfPresent(MIToken::rbrace)) {
625       // The first parsing pass should verify that all closing '}' have an
626       // opening '{'.
627       assert(IsInBundle);
628       IsInBundle = false;
629       continue;
630     }
631     MachineInstr *MI = nullptr;
632     if (parse(MI))
633       return true;
634     MBB.insert(MBB.end(), MI);
635     if (IsInBundle) {
636       PrevMI->setFlag(MachineInstr::BundledSucc);
637       MI->setFlag(MachineInstr::BundledPred);
638     }
639     PrevMI = MI;
640     if (Token.is(MIToken::lbrace)) {
641       if (IsInBundle)
642         return error("nested instruction bundles are not allowed");
643       lex();
644       // This instruction is the start of the bundle.
645       MI->setFlag(MachineInstr::BundledSucc);
646       IsInBundle = true;
647       if (!Token.is(MIToken::Newline))
648         // The next instruction can be on the same line.
649         continue;
650     }
651     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
652     lex();
653   }
654 
655   // Construct successor list by searching for basic block machine operands.
656   if (!ExplicitSuccessors) {
657     SmallVector<MachineBasicBlock*,4> Successors;
658     bool IsFallthrough;
659     guessSuccessors(MBB, Successors, IsFallthrough);
660     for (MachineBasicBlock *Succ : Successors)
661       MBB.addSuccessor(Succ);
662 
663     if (IsFallthrough) {
664       AddFalthroughFrom = &MBB;
665     } else {
666       MBB.normalizeSuccProbs();
667     }
668   }
669 
670   return false;
671 }
672 
673 bool MIParser::parseBasicBlocks() {
674   lex();
675   // Skip until the first machine basic block.
676   while (Token.is(MIToken::Newline))
677     lex();
678   if (Token.isErrorOrEOF())
679     return Token.isError();
680   // The first parsing pass should have verified that this token is a MBB label
681   // in the 'parseBasicBlockDefinitions' method.
682   assert(Token.is(MIToken::MachineBasicBlockLabel));
683   MachineBasicBlock *AddFalthroughFrom = nullptr;
684   do {
685     MachineBasicBlock *MBB = nullptr;
686     if (parseMBBReference(MBB))
687       return true;
688     if (AddFalthroughFrom) {
689       if (!AddFalthroughFrom->isSuccessor(MBB))
690         AddFalthroughFrom->addSuccessor(MBB);
691       AddFalthroughFrom->normalizeSuccProbs();
692       AddFalthroughFrom = nullptr;
693     }
694     if (parseBasicBlock(*MBB, AddFalthroughFrom))
695       return true;
696     // The method 'parseBasicBlock' should parse the whole block until the next
697     // block or the end of file.
698     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
699   } while (Token.isNot(MIToken::Eof));
700   return false;
701 }
702 
703 bool MIParser::parse(MachineInstr *&MI) {
704   // Parse any register operands before '='
705   MachineOperand MO = MachineOperand::CreateImm(0);
706   SmallVector<ParsedMachineOperand, 8> Operands;
707   while (Token.isRegister() || Token.isRegisterFlag()) {
708     auto Loc = Token.location();
709     Optional<unsigned> TiedDefIdx;
710     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
711       return true;
712     Operands.push_back(
713         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
714     if (Token.isNot(MIToken::comma))
715       break;
716     lex();
717   }
718   if (!Operands.empty() && expectAndConsume(MIToken::equal))
719     return true;
720 
721   unsigned OpCode, Flags = 0;
722   if (Token.isError() || parseInstruction(OpCode, Flags))
723     return true;
724 
725   // Parse the remaining machine operands.
726   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
727          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
728     auto Loc = Token.location();
729     Optional<unsigned> TiedDefIdx;
730     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
731       return true;
732     Operands.push_back(
733         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
734     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
735         Token.is(MIToken::lbrace))
736       break;
737     if (Token.isNot(MIToken::comma))
738       return error("expected ',' before the next machine operand");
739     lex();
740   }
741 
742   DebugLoc DebugLocation;
743   if (Token.is(MIToken::kw_debug_location)) {
744     lex();
745     if (Token.isNot(MIToken::exclaim))
746       return error("expected a metadata node after 'debug-location'");
747     MDNode *Node = nullptr;
748     if (parseMDNode(Node))
749       return true;
750     DebugLocation = DebugLoc(Node);
751   }
752 
753   // Parse the machine memory operands.
754   SmallVector<MachineMemOperand *, 2> MemOperands;
755   if (Token.is(MIToken::coloncolon)) {
756     lex();
757     while (!Token.isNewlineOrEOF()) {
758       MachineMemOperand *MemOp = nullptr;
759       if (parseMachineMemoryOperand(MemOp))
760         return true;
761       MemOperands.push_back(MemOp);
762       if (Token.isNewlineOrEOF())
763         break;
764       if (Token.isNot(MIToken::comma))
765         return error("expected ',' before the next machine memory operand");
766       lex();
767     }
768   }
769 
770   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
771   if (!MCID.isVariadic()) {
772     // FIXME: Move the implicit operand verification to the machine verifier.
773     if (verifyImplicitOperands(Operands, MCID))
774       return true;
775   }
776 
777   // TODO: Check for extraneous machine operands.
778   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
779   MI->setFlags(Flags);
780   for (const auto &Operand : Operands)
781     MI->addOperand(MF, Operand.Operand);
782   if (assignRegisterTies(*MI, Operands))
783     return true;
784   if (MemOperands.empty())
785     return false;
786   MachineInstr::mmo_iterator MemRefs =
787       MF.allocateMemRefsArray(MemOperands.size());
788   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
789   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
790   return false;
791 }
792 
793 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
794   lex();
795   if (Token.isNot(MIToken::MachineBasicBlock))
796     return error("expected a machine basic block reference");
797   if (parseMBBReference(MBB))
798     return true;
799   lex();
800   if (Token.isNot(MIToken::Eof))
801     return error(
802         "expected end of string after the machine basic block reference");
803   return false;
804 }
805 
806 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
807   lex();
808   if (Token.isNot(MIToken::NamedRegister))
809     return error("expected a named register");
810   if (parseNamedRegister(Reg))
811     return true;
812   lex();
813   if (Token.isNot(MIToken::Eof))
814     return error("expected end of string after the register reference");
815   return false;
816 }
817 
818 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
819   lex();
820   if (Token.isNot(MIToken::VirtualRegister))
821     return error("expected a virtual register");
822   if (parseVirtualRegister(Info))
823     return true;
824   lex();
825   if (Token.isNot(MIToken::Eof))
826     return error("expected end of string after the register reference");
827   return false;
828 }
829 
830 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
831   lex();
832   if (Token.isNot(MIToken::NamedRegister) &&
833       Token.isNot(MIToken::VirtualRegister))
834     return error("expected either a named or virtual register");
835 
836   VRegInfo *Info;
837   if (parseRegister(Reg, Info))
838     return true;
839 
840   lex();
841   if (Token.isNot(MIToken::Eof))
842     return error("expected end of string after the register reference");
843   return false;
844 }
845 
846 bool MIParser::parseStandaloneStackObject(int &FI) {
847   lex();
848   if (Token.isNot(MIToken::StackObject))
849     return error("expected a stack object");
850   if (parseStackFrameIndex(FI))
851     return true;
852   if (Token.isNot(MIToken::Eof))
853     return error("expected end of string after the stack object reference");
854   return false;
855 }
856 
857 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
858   lex();
859   if (Token.is(MIToken::exclaim)) {
860     if (parseMDNode(Node))
861       return true;
862   } else if (Token.is(MIToken::md_diexpr)) {
863     if (parseDIExpression(Node))
864       return true;
865   } else
866     return error("expected a metadata node");
867   if (Token.isNot(MIToken::Eof))
868     return error("expected end of string after the metadata node");
869   return false;
870 }
871 
872 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
873   assert(MO.isImplicit());
874   return MO.isDef() ? "implicit-def" : "implicit";
875 }
876 
877 static std::string getRegisterName(const TargetRegisterInfo *TRI,
878                                    unsigned Reg) {
879   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
880   return StringRef(TRI->getName(Reg)).lower();
881 }
882 
883 /// Return true if the parsed machine operands contain a given machine operand.
884 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
885                                 ArrayRef<ParsedMachineOperand> Operands) {
886   for (const auto &I : Operands) {
887     if (ImplicitOperand.isIdenticalTo(I.Operand))
888       return true;
889   }
890   return false;
891 }
892 
893 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
894                                       const MCInstrDesc &MCID) {
895   if (MCID.isCall())
896     // We can't verify call instructions as they can contain arbitrary implicit
897     // register and register mask operands.
898     return false;
899 
900   // Gather all the expected implicit operands.
901   SmallVector<MachineOperand, 4> ImplicitOperands;
902   if (MCID.ImplicitDefs)
903     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
904       ImplicitOperands.push_back(
905           MachineOperand::CreateReg(*ImpDefs, true, true));
906   if (MCID.ImplicitUses)
907     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
908       ImplicitOperands.push_back(
909           MachineOperand::CreateReg(*ImpUses, false, true));
910 
911   const auto *TRI = MF.getSubtarget().getRegisterInfo();
912   assert(TRI && "Expected target register info");
913   for (const auto &I : ImplicitOperands) {
914     if (isImplicitOperandIn(I, Operands))
915       continue;
916     return error(Operands.empty() ? Token.location() : Operands.back().End,
917                  Twine("missing implicit register operand '") +
918                      printImplicitRegisterFlag(I) + " %" +
919                      getRegisterName(TRI, I.getReg()) + "'");
920   }
921   return false;
922 }
923 
924 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
925   if (Token.is(MIToken::kw_frame_setup)) {
926     Flags |= MachineInstr::FrameSetup;
927     lex();
928   } else if (Token.is(MIToken::kw_frame_destroy)) {
929     Flags |= MachineInstr::FrameDestroy;
930     lex();
931   }
932   if (Token.isNot(MIToken::Identifier))
933     return error("expected a machine instruction");
934   StringRef InstrName = Token.stringValue();
935   if (parseInstrName(InstrName, OpCode))
936     return error(Twine("unknown machine instruction name '") + InstrName + "'");
937   lex();
938   return false;
939 }
940 
941 bool MIParser::parseNamedRegister(unsigned &Reg) {
942   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
943   StringRef Name = Token.stringValue();
944   if (getRegisterByName(Name, Reg))
945     return error(Twine("unknown register name '") + Name + "'");
946   return false;
947 }
948 
949 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
950   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
951   unsigned ID;
952   if (getUnsigned(ID))
953     return true;
954   Info = &PFS.getVRegInfo(ID);
955   return false;
956 }
957 
958 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
959   switch (Token.kind()) {
960   case MIToken::underscore:
961     Reg = 0;
962     return false;
963   case MIToken::NamedRegister:
964     return parseNamedRegister(Reg);
965   case MIToken::VirtualRegister:
966     if (parseVirtualRegister(Info))
967       return true;
968     Reg = Info->VReg;
969     return false;
970   // TODO: Parse other register kinds.
971   default:
972     llvm_unreachable("The current token should be a register");
973   }
974 }
975 
976 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
977   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
978     return error("expected '_', register class, or register bank name");
979   StringRef::iterator Loc = Token.location();
980   StringRef Name = Token.stringValue();
981 
982   // Was it a register class?
983   auto RCNameI = PFS.Names2RegClasses.find(Name);
984   if (RCNameI != PFS.Names2RegClasses.end()) {
985     lex();
986     const TargetRegisterClass &RC = *RCNameI->getValue();
987 
988     switch (RegInfo.Kind) {
989     case VRegInfo::UNKNOWN:
990     case VRegInfo::NORMAL:
991       RegInfo.Kind = VRegInfo::NORMAL;
992       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
993         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
994         return error(Loc, Twine("conflicting register classes, previously: ") +
995                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
996       }
997       RegInfo.D.RC = &RC;
998       RegInfo.Explicit = true;
999       return false;
1000 
1001     case VRegInfo::GENERIC:
1002     case VRegInfo::REGBANK:
1003       return error(Loc, "register class specification on generic register");
1004     }
1005     llvm_unreachable("Unexpected register kind");
1006   }
1007 
1008   // Should be a register bank or a generic register.
1009   const RegisterBank *RegBank = nullptr;
1010   if (Name != "_") {
1011     auto RBNameI = PFS.Names2RegBanks.find(Name);
1012     if (RBNameI == PFS.Names2RegBanks.end())
1013       return error(Loc, "expected '_', register class, or register bank name");
1014     RegBank = RBNameI->getValue();
1015   }
1016 
1017   lex();
1018 
1019   switch (RegInfo.Kind) {
1020   case VRegInfo::UNKNOWN:
1021   case VRegInfo::GENERIC:
1022   case VRegInfo::REGBANK:
1023     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1024     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1025       return error(Loc, "conflicting generic register banks");
1026     RegInfo.D.RegBank = RegBank;
1027     RegInfo.Explicit = true;
1028     return false;
1029 
1030   case VRegInfo::NORMAL:
1031     return error(Loc, "register bank specification on normal register");
1032   }
1033   llvm_unreachable("Unexpected register kind");
1034 }
1035 
1036 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1037   const unsigned OldFlags = Flags;
1038   switch (Token.kind()) {
1039   case MIToken::kw_implicit:
1040     Flags |= RegState::Implicit;
1041     break;
1042   case MIToken::kw_implicit_define:
1043     Flags |= RegState::ImplicitDefine;
1044     break;
1045   case MIToken::kw_def:
1046     Flags |= RegState::Define;
1047     break;
1048   case MIToken::kw_dead:
1049     Flags |= RegState::Dead;
1050     break;
1051   case MIToken::kw_killed:
1052     Flags |= RegState::Kill;
1053     break;
1054   case MIToken::kw_undef:
1055     Flags |= RegState::Undef;
1056     break;
1057   case MIToken::kw_internal:
1058     Flags |= RegState::InternalRead;
1059     break;
1060   case MIToken::kw_early_clobber:
1061     Flags |= RegState::EarlyClobber;
1062     break;
1063   case MIToken::kw_debug_use:
1064     Flags |= RegState::Debug;
1065     break;
1066   case MIToken::kw_renamable:
1067     Flags |= RegState::Renamable;
1068     break;
1069   default:
1070     llvm_unreachable("The current token should be a register flag");
1071   }
1072   if (OldFlags == Flags)
1073     // We know that the same flag is specified more than once when the flags
1074     // weren't modified.
1075     return error("duplicate '" + Token.stringValue() + "' register flag");
1076   lex();
1077   return false;
1078 }
1079 
1080 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1081   assert(Token.is(MIToken::dot));
1082   lex();
1083   if (Token.isNot(MIToken::Identifier))
1084     return error("expected a subregister index after '.'");
1085   auto Name = Token.stringValue();
1086   SubReg = getSubRegIndex(Name);
1087   if (!SubReg)
1088     return error(Twine("use of unknown subregister index '") + Name + "'");
1089   lex();
1090   return false;
1091 }
1092 
1093 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1094   if (!consumeIfPresent(MIToken::kw_tied_def))
1095     return true;
1096   if (Token.isNot(MIToken::IntegerLiteral))
1097     return error("expected an integer literal after 'tied-def'");
1098   if (getUnsigned(TiedDefIdx))
1099     return true;
1100   lex();
1101   if (expectAndConsume(MIToken::rparen))
1102     return true;
1103   return false;
1104 }
1105 
1106 bool MIParser::assignRegisterTies(MachineInstr &MI,
1107                                   ArrayRef<ParsedMachineOperand> Operands) {
1108   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1109   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1110     if (!Operands[I].TiedDefIdx)
1111       continue;
1112     // The parser ensures that this operand is a register use, so we just have
1113     // to check the tied-def operand.
1114     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1115     if (DefIdx >= E)
1116       return error(Operands[I].Begin,
1117                    Twine("use of invalid tied-def operand index '" +
1118                          Twine(DefIdx) + "'; instruction has only ") +
1119                        Twine(E) + " operands");
1120     const auto &DefOperand = Operands[DefIdx].Operand;
1121     if (!DefOperand.isReg() || !DefOperand.isDef())
1122       // FIXME: add note with the def operand.
1123       return error(Operands[I].Begin,
1124                    Twine("use of invalid tied-def operand index '") +
1125                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1126                        " isn't a defined register");
1127     // Check that the tied-def operand wasn't tied elsewhere.
1128     for (const auto &TiedPair : TiedRegisterPairs) {
1129       if (TiedPair.first == DefIdx)
1130         return error(Operands[I].Begin,
1131                      Twine("the tied-def operand #") + Twine(DefIdx) +
1132                          " is already tied with another register operand");
1133     }
1134     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1135   }
1136   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1137   // indices must be less than tied max.
1138   for (const auto &TiedPair : TiedRegisterPairs)
1139     MI.tieOperands(TiedPair.first, TiedPair.second);
1140   return false;
1141 }
1142 
1143 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1144                                     Optional<unsigned> &TiedDefIdx,
1145                                     bool IsDef) {
1146   unsigned Flags = IsDef ? RegState::Define : 0;
1147   while (Token.isRegisterFlag()) {
1148     if (parseRegisterFlag(Flags))
1149       return true;
1150   }
1151   if (!Token.isRegister())
1152     return error("expected a register after register flags");
1153   unsigned Reg;
1154   VRegInfo *RegInfo;
1155   if (parseRegister(Reg, RegInfo))
1156     return true;
1157   lex();
1158   unsigned SubReg = 0;
1159   if (Token.is(MIToken::dot)) {
1160     if (parseSubRegisterIndex(SubReg))
1161       return true;
1162     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1163       return error("subregister index expects a virtual register");
1164   }
1165   if (Token.is(MIToken::colon)) {
1166     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1167       return error("register class specification expects a virtual register");
1168     lex();
1169     if (parseRegisterClassOrBank(*RegInfo))
1170         return true;
1171   }
1172   MachineRegisterInfo &MRI = MF.getRegInfo();
1173   if ((Flags & RegState::Define) == 0) {
1174     if (consumeIfPresent(MIToken::lparen)) {
1175       unsigned Idx;
1176       if (!parseRegisterTiedDefIndex(Idx))
1177         TiedDefIdx = Idx;
1178       else {
1179         // Try a redundant low-level type.
1180         LLT Ty;
1181         if (parseLowLevelType(Token.location(), Ty))
1182           return error("expected tied-def or low-level type after '('");
1183 
1184         if (expectAndConsume(MIToken::rparen))
1185           return true;
1186 
1187         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1188           return error("inconsistent type for generic virtual register");
1189 
1190         MRI.setType(Reg, Ty);
1191       }
1192     }
1193   } else if (consumeIfPresent(MIToken::lparen)) {
1194     // Virtual registers may have a tpe with GlobalISel.
1195     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1196       return error("unexpected type on physical register");
1197 
1198     LLT Ty;
1199     if (parseLowLevelType(Token.location(), Ty))
1200       return true;
1201 
1202     if (expectAndConsume(MIToken::rparen))
1203       return true;
1204 
1205     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1206       return error("inconsistent type for generic virtual register");
1207 
1208     MRI.setType(Reg, Ty);
1209   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1210     // Generic virtual registers must have a type.
1211     // If we end up here this means the type hasn't been specified and
1212     // this is bad!
1213     if (RegInfo->Kind == VRegInfo::GENERIC ||
1214         RegInfo->Kind == VRegInfo::REGBANK)
1215       return error("generic virtual registers must have a type");
1216   }
1217   Dest = MachineOperand::CreateReg(
1218       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1219       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1220       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1221       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1222 
1223   return false;
1224 }
1225 
1226 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1227   assert(Token.is(MIToken::IntegerLiteral));
1228   const APSInt &Int = Token.integerValue();
1229   if (Int.getMinSignedBits() > 64)
1230     return error("integer literal is too large to be an immediate operand");
1231   Dest = MachineOperand::CreateImm(Int.getExtValue());
1232   lex();
1233   return false;
1234 }
1235 
1236 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1237                                const Constant *&C) {
1238   auto Source = StringValue.str(); // The source has to be null terminated.
1239   SMDiagnostic Err;
1240   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1241                          &PFS.IRSlots);
1242   if (!C)
1243     return error(Loc + Err.getColumnNo(), Err.getMessage());
1244   return false;
1245 }
1246 
1247 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1248   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1249     return true;
1250   lex();
1251   return false;
1252 }
1253 
1254 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1255   if (Token.is(MIToken::ScalarType)) {
1256     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1257     lex();
1258     return false;
1259   } else if (Token.is(MIToken::PointerType)) {
1260     const DataLayout &DL = MF.getDataLayout();
1261     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1262     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1263     lex();
1264     return false;
1265   }
1266 
1267   // Now we're looking for a vector.
1268   if (Token.isNot(MIToken::less))
1269     return error(Loc,
1270                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1271 
1272   lex();
1273 
1274   if (Token.isNot(MIToken::IntegerLiteral))
1275     return error(Loc, "expected <N x sM> for vctor type");
1276   uint64_t NumElements = Token.integerValue().getZExtValue();
1277   lex();
1278 
1279   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1280     return error(Loc, "expected '<N x sM>' for vector type");
1281   lex();
1282 
1283   if (Token.isNot(MIToken::ScalarType))
1284     return error(Loc, "expected '<N x sM>' for vector type");
1285   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1286   lex();
1287 
1288   if (Token.isNot(MIToken::greater))
1289     return error(Loc, "expected '<N x sM>' for vector type");
1290   lex();
1291 
1292   Ty = LLT::vector(NumElements, ScalarSize);
1293   return false;
1294 }
1295 
1296 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1297   assert(Token.is(MIToken::IntegerType));
1298   auto Loc = Token.location();
1299   lex();
1300   if (Token.isNot(MIToken::IntegerLiteral))
1301     return error("expected an integer literal");
1302   const Constant *C = nullptr;
1303   if (parseIRConstant(Loc, C))
1304     return true;
1305   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1306   return false;
1307 }
1308 
1309 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1310   auto Loc = Token.location();
1311   lex();
1312   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1313       Token.isNot(MIToken::HexLiteral))
1314     return error("expected a floating point literal");
1315   const Constant *C = nullptr;
1316   if (parseIRConstant(Loc, C))
1317     return true;
1318   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1319   return false;
1320 }
1321 
1322 bool MIParser::getUnsigned(unsigned &Result) {
1323   if (Token.hasIntegerValue()) {
1324     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1325     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1326     if (Val64 == Limit)
1327       return error("expected 32-bit integer (too large)");
1328     Result = Val64;
1329     return false;
1330   }
1331   if (Token.is(MIToken::HexLiteral)) {
1332     APInt A;
1333     if (getHexUint(A))
1334       return true;
1335     if (A.getBitWidth() > 32)
1336       return error("expected 32-bit integer (too large)");
1337     Result = A.getZExtValue();
1338     return false;
1339   }
1340   return true;
1341 }
1342 
1343 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1344   assert(Token.is(MIToken::MachineBasicBlock) ||
1345          Token.is(MIToken::MachineBasicBlockLabel));
1346   unsigned Number;
1347   if (getUnsigned(Number))
1348     return true;
1349   auto MBBInfo = PFS.MBBSlots.find(Number);
1350   if (MBBInfo == PFS.MBBSlots.end())
1351     return error(Twine("use of undefined machine basic block #") +
1352                  Twine(Number));
1353   MBB = MBBInfo->second;
1354   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1355   // we drop the <irname> from the bb.<id>.<irname> format.
1356   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1357     return error(Twine("the name of machine basic block #") + Twine(Number) +
1358                  " isn't '" + Token.stringValue() + "'");
1359   return false;
1360 }
1361 
1362 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1363   MachineBasicBlock *MBB;
1364   if (parseMBBReference(MBB))
1365     return true;
1366   Dest = MachineOperand::CreateMBB(MBB);
1367   lex();
1368   return false;
1369 }
1370 
1371 bool MIParser::parseStackFrameIndex(int &FI) {
1372   assert(Token.is(MIToken::StackObject));
1373   unsigned ID;
1374   if (getUnsigned(ID))
1375     return true;
1376   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1377   if (ObjectInfo == PFS.StackObjectSlots.end())
1378     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1379                  "'");
1380   StringRef Name;
1381   if (const auto *Alloca =
1382           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1383     Name = Alloca->getName();
1384   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1385     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1386                  "' isn't '" + Token.stringValue() + "'");
1387   lex();
1388   FI = ObjectInfo->second;
1389   return false;
1390 }
1391 
1392 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1393   int FI;
1394   if (parseStackFrameIndex(FI))
1395     return true;
1396   Dest = MachineOperand::CreateFI(FI);
1397   return false;
1398 }
1399 
1400 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1401   assert(Token.is(MIToken::FixedStackObject));
1402   unsigned ID;
1403   if (getUnsigned(ID))
1404     return true;
1405   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1406   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1407     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1408                  Twine(ID) + "'");
1409   lex();
1410   FI = ObjectInfo->second;
1411   return false;
1412 }
1413 
1414 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1415   int FI;
1416   if (parseFixedStackFrameIndex(FI))
1417     return true;
1418   Dest = MachineOperand::CreateFI(FI);
1419   return false;
1420 }
1421 
1422 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1423   switch (Token.kind()) {
1424   case MIToken::NamedGlobalValue: {
1425     const Module *M = MF.getFunction().getParent();
1426     GV = M->getNamedValue(Token.stringValue());
1427     if (!GV)
1428       return error(Twine("use of undefined global value '") + Token.range() +
1429                    "'");
1430     break;
1431   }
1432   case MIToken::GlobalValue: {
1433     unsigned GVIdx;
1434     if (getUnsigned(GVIdx))
1435       return true;
1436     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1437       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1438                    "'");
1439     GV = PFS.IRSlots.GlobalValues[GVIdx];
1440     break;
1441   }
1442   default:
1443     llvm_unreachable("The current token should be a global value");
1444   }
1445   return false;
1446 }
1447 
1448 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1449   GlobalValue *GV = nullptr;
1450   if (parseGlobalValue(GV))
1451     return true;
1452   lex();
1453   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1454   if (parseOperandsOffset(Dest))
1455     return true;
1456   return false;
1457 }
1458 
1459 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1460   assert(Token.is(MIToken::ConstantPoolItem));
1461   unsigned ID;
1462   if (getUnsigned(ID))
1463     return true;
1464   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1465   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1466     return error("use of undefined constant '%const." + Twine(ID) + "'");
1467   lex();
1468   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1469   if (parseOperandsOffset(Dest))
1470     return true;
1471   return false;
1472 }
1473 
1474 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1475   assert(Token.is(MIToken::JumpTableIndex));
1476   unsigned ID;
1477   if (getUnsigned(ID))
1478     return true;
1479   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1480   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1481     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1482   lex();
1483   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1484   return false;
1485 }
1486 
1487 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1488   assert(Token.is(MIToken::ExternalSymbol));
1489   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1490   lex();
1491   Dest = MachineOperand::CreateES(Symbol);
1492   if (parseOperandsOffset(Dest))
1493     return true;
1494   return false;
1495 }
1496 
1497 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1498   assert(Token.is(MIToken::SubRegisterIndex));
1499   StringRef Name = Token.stringValue();
1500   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1501   if (SubRegIndex == 0)
1502     return error(Twine("unknown subregister index '") + Name + "'");
1503   lex();
1504   Dest = MachineOperand::CreateImm(SubRegIndex);
1505   return false;
1506 }
1507 
1508 bool MIParser::parseMDNode(MDNode *&Node) {
1509   assert(Token.is(MIToken::exclaim));
1510 
1511   auto Loc = Token.location();
1512   lex();
1513   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1514     return error("expected metadata id after '!'");
1515   unsigned ID;
1516   if (getUnsigned(ID))
1517     return true;
1518   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1519   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1520     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1521   lex();
1522   Node = NodeInfo->second.get();
1523   return false;
1524 }
1525 
1526 bool MIParser::parseDIExpression(MDNode *&Expr) {
1527   assert(Token.is(MIToken::md_diexpr));
1528   lex();
1529 
1530   // FIXME: Share this parsing with the IL parser.
1531   SmallVector<uint64_t, 8> Elements;
1532 
1533   if (expectAndConsume(MIToken::lparen))
1534     return true;
1535 
1536   if (Token.isNot(MIToken::rparen)) {
1537     do {
1538       if (Token.is(MIToken::Identifier)) {
1539         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1540           lex();
1541           Elements.push_back(Op);
1542           continue;
1543         }
1544         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1545       }
1546 
1547       if (Token.isNot(MIToken::IntegerLiteral) ||
1548           Token.integerValue().isSigned())
1549         return error("expected unsigned integer");
1550 
1551       auto &U = Token.integerValue();
1552       if (U.ugt(UINT64_MAX))
1553         return error("element too large, limit is " + Twine(UINT64_MAX));
1554       Elements.push_back(U.getZExtValue());
1555       lex();
1556 
1557     } while (consumeIfPresent(MIToken::comma));
1558   }
1559 
1560   if (expectAndConsume(MIToken::rparen))
1561     return true;
1562 
1563   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1564   return false;
1565 }
1566 
1567 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1568   MDNode *Node = nullptr;
1569   if (Token.is(MIToken::exclaim)) {
1570     if (parseMDNode(Node))
1571       return true;
1572   } else if (Token.is(MIToken::md_diexpr)) {
1573     if (parseDIExpression(Node))
1574       return true;
1575   }
1576   Dest = MachineOperand::CreateMetadata(Node);
1577   return false;
1578 }
1579 
1580 bool MIParser::parseCFIOffset(int &Offset) {
1581   if (Token.isNot(MIToken::IntegerLiteral))
1582     return error("expected a cfi offset");
1583   if (Token.integerValue().getMinSignedBits() > 32)
1584     return error("expected a 32 bit integer (the cfi offset is too large)");
1585   Offset = (int)Token.integerValue().getExtValue();
1586   lex();
1587   return false;
1588 }
1589 
1590 bool MIParser::parseCFIRegister(unsigned &Reg) {
1591   if (Token.isNot(MIToken::NamedRegister))
1592     return error("expected a cfi register");
1593   unsigned LLVMReg;
1594   if (parseNamedRegister(LLVMReg))
1595     return true;
1596   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1597   assert(TRI && "Expected target register info");
1598   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1599   if (DwarfReg < 0)
1600     return error("invalid DWARF register");
1601   Reg = (unsigned)DwarfReg;
1602   lex();
1603   return false;
1604 }
1605 
1606 bool MIParser::parseCFIEscapeValues(std::string &Values) {
1607   do {
1608     if (Token.isNot(MIToken::HexLiteral))
1609       return error("expected a hexadecimal literal");
1610     unsigned Value;
1611     if (getUnsigned(Value))
1612       return true;
1613     if (Value > UINT8_MAX)
1614       return error("expected a 8-bit integer (too large)");
1615     Values.push_back(static_cast<uint8_t>(Value));
1616     lex();
1617   } while (consumeIfPresent(MIToken::comma));
1618   return false;
1619 }
1620 
1621 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1622   auto Kind = Token.kind();
1623   lex();
1624   int Offset;
1625   unsigned Reg;
1626   unsigned CFIIndex;
1627   switch (Kind) {
1628   case MIToken::kw_cfi_same_value:
1629     if (parseCFIRegister(Reg))
1630       return true;
1631     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1632     break;
1633   case MIToken::kw_cfi_offset:
1634     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1635         parseCFIOffset(Offset))
1636       return true;
1637     CFIIndex =
1638         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1639     break;
1640   case MIToken::kw_cfi_rel_offset:
1641     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1642         parseCFIOffset(Offset))
1643       return true;
1644     CFIIndex = MF.addFrameInst(
1645         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1646     break;
1647   case MIToken::kw_cfi_def_cfa_register:
1648     if (parseCFIRegister(Reg))
1649       return true;
1650     CFIIndex =
1651         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1652     break;
1653   case MIToken::kw_cfi_def_cfa_offset:
1654     if (parseCFIOffset(Offset))
1655       return true;
1656     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1657     CFIIndex = MF.addFrameInst(
1658         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1659     break;
1660   case MIToken::kw_cfi_adjust_cfa_offset:
1661     if (parseCFIOffset(Offset))
1662       return true;
1663     CFIIndex = MF.addFrameInst(
1664         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1665     break;
1666   case MIToken::kw_cfi_def_cfa:
1667     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1668         parseCFIOffset(Offset))
1669       return true;
1670     // NB: MCCFIInstruction::createDefCfa negates the offset.
1671     CFIIndex =
1672         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1673     break;
1674   case MIToken::kw_cfi_remember_state:
1675     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1676     break;
1677   case MIToken::kw_cfi_restore:
1678     if (parseCFIRegister(Reg))
1679       return true;
1680     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1681     break;
1682   case MIToken::kw_cfi_restore_state:
1683     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1684     break;
1685   case MIToken::kw_cfi_undefined:
1686     if (parseCFIRegister(Reg))
1687       return true;
1688     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1689     break;
1690   case MIToken::kw_cfi_register: {
1691     unsigned Reg2;
1692     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1693         parseCFIRegister(Reg2))
1694       return true;
1695 
1696     CFIIndex =
1697         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1698     break;
1699   }
1700   case MIToken::kw_cfi_window_save:
1701     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1702     break;
1703   case MIToken::kw_cfi_escape: {
1704     std::string Values;
1705     if (parseCFIEscapeValues(Values))
1706       return true;
1707     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1708     break;
1709   }
1710   default:
1711     // TODO: Parse the other CFI operands.
1712     llvm_unreachable("The current token should be a cfi operand");
1713   }
1714   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1715   return false;
1716 }
1717 
1718 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1719   switch (Token.kind()) {
1720   case MIToken::NamedIRBlock: {
1721     BB = dyn_cast_or_null<BasicBlock>(
1722         F.getValueSymbolTable()->lookup(Token.stringValue()));
1723     if (!BB)
1724       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1725     break;
1726   }
1727   case MIToken::IRBlock: {
1728     unsigned SlotNumber = 0;
1729     if (getUnsigned(SlotNumber))
1730       return true;
1731     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1732     if (!BB)
1733       return error(Twine("use of undefined IR block '%ir-block.") +
1734                    Twine(SlotNumber) + "'");
1735     break;
1736   }
1737   default:
1738     llvm_unreachable("The current token should be an IR block reference");
1739   }
1740   return false;
1741 }
1742 
1743 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1744   assert(Token.is(MIToken::kw_blockaddress));
1745   lex();
1746   if (expectAndConsume(MIToken::lparen))
1747     return true;
1748   if (Token.isNot(MIToken::GlobalValue) &&
1749       Token.isNot(MIToken::NamedGlobalValue))
1750     return error("expected a global value");
1751   GlobalValue *GV = nullptr;
1752   if (parseGlobalValue(GV))
1753     return true;
1754   auto *F = dyn_cast<Function>(GV);
1755   if (!F)
1756     return error("expected an IR function reference");
1757   lex();
1758   if (expectAndConsume(MIToken::comma))
1759     return true;
1760   BasicBlock *BB = nullptr;
1761   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1762     return error("expected an IR block reference");
1763   if (parseIRBlock(BB, *F))
1764     return true;
1765   lex();
1766   if (expectAndConsume(MIToken::rparen))
1767     return true;
1768   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1769   if (parseOperandsOffset(Dest))
1770     return true;
1771   return false;
1772 }
1773 
1774 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1775   assert(Token.is(MIToken::kw_intrinsic));
1776   lex();
1777   if (expectAndConsume(MIToken::lparen))
1778     return error("expected syntax intrinsic(@llvm.whatever)");
1779 
1780   if (Token.isNot(MIToken::NamedGlobalValue))
1781     return error("expected syntax intrinsic(@llvm.whatever)");
1782 
1783   std::string Name = Token.stringValue();
1784   lex();
1785 
1786   if (expectAndConsume(MIToken::rparen))
1787     return error("expected ')' to terminate intrinsic name");
1788 
1789   // Find out what intrinsic we're dealing with, first try the global namespace
1790   // and then the target's private intrinsics if that fails.
1791   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1792   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1793   if (ID == Intrinsic::not_intrinsic && TII)
1794     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1795 
1796   if (ID == Intrinsic::not_intrinsic)
1797     return error("unknown intrinsic name");
1798   Dest = MachineOperand::CreateIntrinsicID(ID);
1799 
1800   return false;
1801 }
1802 
1803 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1804   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1805   bool IsFloat = Token.is(MIToken::kw_floatpred);
1806   lex();
1807 
1808   if (expectAndConsume(MIToken::lparen))
1809     return error("expected syntax intpred(whatever) or floatpred(whatever");
1810 
1811   if (Token.isNot(MIToken::Identifier))
1812     return error("whatever");
1813 
1814   CmpInst::Predicate Pred;
1815   if (IsFloat) {
1816     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1817                .Case("false", CmpInst::FCMP_FALSE)
1818                .Case("oeq", CmpInst::FCMP_OEQ)
1819                .Case("ogt", CmpInst::FCMP_OGT)
1820                .Case("oge", CmpInst::FCMP_OGE)
1821                .Case("olt", CmpInst::FCMP_OLT)
1822                .Case("ole", CmpInst::FCMP_OLE)
1823                .Case("one", CmpInst::FCMP_ONE)
1824                .Case("ord", CmpInst::FCMP_ORD)
1825                .Case("uno", CmpInst::FCMP_UNO)
1826                .Case("ueq", CmpInst::FCMP_UEQ)
1827                .Case("ugt", CmpInst::FCMP_UGT)
1828                .Case("uge", CmpInst::FCMP_UGE)
1829                .Case("ult", CmpInst::FCMP_ULT)
1830                .Case("ule", CmpInst::FCMP_ULE)
1831                .Case("une", CmpInst::FCMP_UNE)
1832                .Case("true", CmpInst::FCMP_TRUE)
1833                .Default(CmpInst::BAD_FCMP_PREDICATE);
1834     if (!CmpInst::isFPPredicate(Pred))
1835       return error("invalid floating-point predicate");
1836   } else {
1837     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1838                .Case("eq", CmpInst::ICMP_EQ)
1839                .Case("ne", CmpInst::ICMP_NE)
1840                .Case("sgt", CmpInst::ICMP_SGT)
1841                .Case("sge", CmpInst::ICMP_SGE)
1842                .Case("slt", CmpInst::ICMP_SLT)
1843                .Case("sle", CmpInst::ICMP_SLE)
1844                .Case("ugt", CmpInst::ICMP_UGT)
1845                .Case("uge", CmpInst::ICMP_UGE)
1846                .Case("ult", CmpInst::ICMP_ULT)
1847                .Case("ule", CmpInst::ICMP_ULE)
1848                .Default(CmpInst::BAD_ICMP_PREDICATE);
1849     if (!CmpInst::isIntPredicate(Pred))
1850       return error("invalid integer predicate");
1851   }
1852 
1853   lex();
1854   Dest = MachineOperand::CreatePredicate(Pred);
1855   if (expectAndConsume(MIToken::rparen))
1856     return error("predicate should be terminated by ')'.");
1857 
1858   return false;
1859 }
1860 
1861 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1862   assert(Token.is(MIToken::kw_target_index));
1863   lex();
1864   if (expectAndConsume(MIToken::lparen))
1865     return true;
1866   if (Token.isNot(MIToken::Identifier))
1867     return error("expected the name of the target index");
1868   int Index = 0;
1869   if (getTargetIndex(Token.stringValue(), Index))
1870     return error("use of undefined target index '" + Token.stringValue() + "'");
1871   lex();
1872   if (expectAndConsume(MIToken::rparen))
1873     return true;
1874   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1875   if (parseOperandsOffset(Dest))
1876     return true;
1877   return false;
1878 }
1879 
1880 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1881   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1882   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1883   assert(TRI && "Expected target register info");
1884   lex();
1885   if (expectAndConsume(MIToken::lparen))
1886     return true;
1887 
1888   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1889   while (true) {
1890     if (Token.isNot(MIToken::NamedRegister))
1891       return error("expected a named register");
1892     unsigned Reg;
1893     if (parseNamedRegister(Reg))
1894       return true;
1895     lex();
1896     Mask[Reg / 32] |= 1U << (Reg % 32);
1897     // TODO: Report an error if the same register is used more than once.
1898     if (Token.isNot(MIToken::comma))
1899       break;
1900     lex();
1901   }
1902 
1903   if (expectAndConsume(MIToken::rparen))
1904     return true;
1905   Dest = MachineOperand::CreateRegMask(Mask);
1906   return false;
1907 }
1908 
1909 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1910   assert(Token.is(MIToken::kw_liveout));
1911   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1912   assert(TRI && "Expected target register info");
1913   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1914   lex();
1915   if (expectAndConsume(MIToken::lparen))
1916     return true;
1917   while (true) {
1918     if (Token.isNot(MIToken::NamedRegister))
1919       return error("expected a named register");
1920     unsigned Reg;
1921     if (parseNamedRegister(Reg))
1922       return true;
1923     lex();
1924     Mask[Reg / 32] |= 1U << (Reg % 32);
1925     // TODO: Report an error if the same register is used more than once.
1926     if (Token.isNot(MIToken::comma))
1927       break;
1928     lex();
1929   }
1930   if (expectAndConsume(MIToken::rparen))
1931     return true;
1932   Dest = MachineOperand::CreateRegLiveOut(Mask);
1933   return false;
1934 }
1935 
1936 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1937                                    Optional<unsigned> &TiedDefIdx) {
1938   switch (Token.kind()) {
1939   case MIToken::kw_implicit:
1940   case MIToken::kw_implicit_define:
1941   case MIToken::kw_def:
1942   case MIToken::kw_dead:
1943   case MIToken::kw_killed:
1944   case MIToken::kw_undef:
1945   case MIToken::kw_internal:
1946   case MIToken::kw_early_clobber:
1947   case MIToken::kw_debug_use:
1948   case MIToken::kw_renamable:
1949   case MIToken::underscore:
1950   case MIToken::NamedRegister:
1951   case MIToken::VirtualRegister:
1952     return parseRegisterOperand(Dest, TiedDefIdx);
1953   case MIToken::IntegerLiteral:
1954     return parseImmediateOperand(Dest);
1955   case MIToken::IntegerType:
1956     return parseTypedImmediateOperand(Dest);
1957   case MIToken::kw_half:
1958   case MIToken::kw_float:
1959   case MIToken::kw_double:
1960   case MIToken::kw_x86_fp80:
1961   case MIToken::kw_fp128:
1962   case MIToken::kw_ppc_fp128:
1963     return parseFPImmediateOperand(Dest);
1964   case MIToken::MachineBasicBlock:
1965     return parseMBBOperand(Dest);
1966   case MIToken::StackObject:
1967     return parseStackObjectOperand(Dest);
1968   case MIToken::FixedStackObject:
1969     return parseFixedStackObjectOperand(Dest);
1970   case MIToken::GlobalValue:
1971   case MIToken::NamedGlobalValue:
1972     return parseGlobalAddressOperand(Dest);
1973   case MIToken::ConstantPoolItem:
1974     return parseConstantPoolIndexOperand(Dest);
1975   case MIToken::JumpTableIndex:
1976     return parseJumpTableIndexOperand(Dest);
1977   case MIToken::ExternalSymbol:
1978     return parseExternalSymbolOperand(Dest);
1979   case MIToken::SubRegisterIndex:
1980     return parseSubRegisterIndexOperand(Dest);
1981   case MIToken::md_diexpr:
1982   case MIToken::exclaim:
1983     return parseMetadataOperand(Dest);
1984   case MIToken::kw_cfi_same_value:
1985   case MIToken::kw_cfi_offset:
1986   case MIToken::kw_cfi_rel_offset:
1987   case MIToken::kw_cfi_def_cfa_register:
1988   case MIToken::kw_cfi_def_cfa_offset:
1989   case MIToken::kw_cfi_adjust_cfa_offset:
1990   case MIToken::kw_cfi_escape:
1991   case MIToken::kw_cfi_def_cfa:
1992   case MIToken::kw_cfi_register:
1993   case MIToken::kw_cfi_remember_state:
1994   case MIToken::kw_cfi_restore:
1995   case MIToken::kw_cfi_restore_state:
1996   case MIToken::kw_cfi_undefined:
1997   case MIToken::kw_cfi_window_save:
1998     return parseCFIOperand(Dest);
1999   case MIToken::kw_blockaddress:
2000     return parseBlockAddressOperand(Dest);
2001   case MIToken::kw_intrinsic:
2002     return parseIntrinsicOperand(Dest);
2003   case MIToken::kw_target_index:
2004     return parseTargetIndexOperand(Dest);
2005   case MIToken::kw_liveout:
2006     return parseLiveoutRegisterMaskOperand(Dest);
2007   case MIToken::kw_floatpred:
2008   case MIToken::kw_intpred:
2009     return parsePredicateOperand(Dest);
2010   case MIToken::Error:
2011     return true;
2012   case MIToken::Identifier:
2013     if (const auto *RegMask = getRegMask(Token.stringValue())) {
2014       Dest = MachineOperand::CreateRegMask(RegMask);
2015       lex();
2016       break;
2017     } else
2018       return parseCustomRegisterMaskOperand(Dest);
2019   default:
2020     // FIXME: Parse the MCSymbol machine operand.
2021     return error("expected a machine operand");
2022   }
2023   return false;
2024 }
2025 
2026 bool MIParser::parseMachineOperandAndTargetFlags(
2027     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2028   unsigned TF = 0;
2029   bool HasTargetFlags = false;
2030   if (Token.is(MIToken::kw_target_flags)) {
2031     HasTargetFlags = true;
2032     lex();
2033     if (expectAndConsume(MIToken::lparen))
2034       return true;
2035     if (Token.isNot(MIToken::Identifier))
2036       return error("expected the name of the target flag");
2037     if (getDirectTargetFlag(Token.stringValue(), TF)) {
2038       if (getBitmaskTargetFlag(Token.stringValue(), TF))
2039         return error("use of undefined target flag '" + Token.stringValue() +
2040                      "'");
2041     }
2042     lex();
2043     while (Token.is(MIToken::comma)) {
2044       lex();
2045       if (Token.isNot(MIToken::Identifier))
2046         return error("expected the name of the target flag");
2047       unsigned BitFlag = 0;
2048       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2049         return error("use of undefined target flag '" + Token.stringValue() +
2050                      "'");
2051       // TODO: Report an error when using a duplicate bit target flag.
2052       TF |= BitFlag;
2053       lex();
2054     }
2055     if (expectAndConsume(MIToken::rparen))
2056       return true;
2057   }
2058   auto Loc = Token.location();
2059   if (parseMachineOperand(Dest, TiedDefIdx))
2060     return true;
2061   if (!HasTargetFlags)
2062     return false;
2063   if (Dest.isReg())
2064     return error(Loc, "register operands can't have target flags");
2065   Dest.setTargetFlags(TF);
2066   return false;
2067 }
2068 
2069 bool MIParser::parseOffset(int64_t &Offset) {
2070   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2071     return false;
2072   StringRef Sign = Token.range();
2073   bool IsNegative = Token.is(MIToken::minus);
2074   lex();
2075   if (Token.isNot(MIToken::IntegerLiteral))
2076     return error("expected an integer literal after '" + Sign + "'");
2077   if (Token.integerValue().getMinSignedBits() > 64)
2078     return error("expected 64-bit integer (too large)");
2079   Offset = Token.integerValue().getExtValue();
2080   if (IsNegative)
2081     Offset = -Offset;
2082   lex();
2083   return false;
2084 }
2085 
2086 bool MIParser::parseAlignment(unsigned &Alignment) {
2087   assert(Token.is(MIToken::kw_align));
2088   lex();
2089   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2090     return error("expected an integer literal after 'align'");
2091   if (getUnsigned(Alignment))
2092     return true;
2093   lex();
2094   return false;
2095 }
2096 
2097 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2098   int64_t Offset = 0;
2099   if (parseOffset(Offset))
2100     return true;
2101   Op.setOffset(Offset);
2102   return false;
2103 }
2104 
2105 bool MIParser::parseIRValue(const Value *&V) {
2106   switch (Token.kind()) {
2107   case MIToken::NamedIRValue: {
2108     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2109     break;
2110   }
2111   case MIToken::IRValue: {
2112     unsigned SlotNumber = 0;
2113     if (getUnsigned(SlotNumber))
2114       return true;
2115     V = getIRValue(SlotNumber);
2116     break;
2117   }
2118   case MIToken::NamedGlobalValue:
2119   case MIToken::GlobalValue: {
2120     GlobalValue *GV = nullptr;
2121     if (parseGlobalValue(GV))
2122       return true;
2123     V = GV;
2124     break;
2125   }
2126   case MIToken::QuotedIRValue: {
2127     const Constant *C = nullptr;
2128     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2129       return true;
2130     V = C;
2131     break;
2132   }
2133   default:
2134     llvm_unreachable("The current token should be an IR block reference");
2135   }
2136   if (!V)
2137     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2138   return false;
2139 }
2140 
2141 bool MIParser::getUint64(uint64_t &Result) {
2142   if (Token.hasIntegerValue()) {
2143     if (Token.integerValue().getActiveBits() > 64)
2144       return error("expected 64-bit integer (too large)");
2145     Result = Token.integerValue().getZExtValue();
2146     return false;
2147   }
2148   if (Token.is(MIToken::HexLiteral)) {
2149     APInt A;
2150     if (getHexUint(A))
2151       return true;
2152     if (A.getBitWidth() > 64)
2153       return error("expected 64-bit integer (too large)");
2154     Result = A.getZExtValue();
2155     return false;
2156   }
2157   return true;
2158 }
2159 
2160 bool MIParser::getHexUint(APInt &Result) {
2161   assert(Token.is(MIToken::HexLiteral));
2162   StringRef S = Token.range();
2163   assert(S[0] == '0' && tolower(S[1]) == 'x');
2164   // This could be a floating point literal with a special prefix.
2165   if (!isxdigit(S[2]))
2166     return true;
2167   StringRef V = S.substr(2);
2168   APInt A(V.size()*4, V, 16);
2169 
2170   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2171   // sure it isn't the case before constructing result.
2172   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2173   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2174   return false;
2175 }
2176 
2177 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2178   const auto OldFlags = Flags;
2179   switch (Token.kind()) {
2180   case MIToken::kw_volatile:
2181     Flags |= MachineMemOperand::MOVolatile;
2182     break;
2183   case MIToken::kw_non_temporal:
2184     Flags |= MachineMemOperand::MONonTemporal;
2185     break;
2186   case MIToken::kw_dereferenceable:
2187     Flags |= MachineMemOperand::MODereferenceable;
2188     break;
2189   case MIToken::kw_invariant:
2190     Flags |= MachineMemOperand::MOInvariant;
2191     break;
2192   case MIToken::StringConstant: {
2193     MachineMemOperand::Flags TF;
2194     if (getMMOTargetFlag(Token.stringValue(), TF))
2195       return error("use of undefined target MMO flag '" + Token.stringValue() +
2196                    "'");
2197     Flags |= TF;
2198     break;
2199   }
2200   default:
2201     llvm_unreachable("The current token should be a memory operand flag");
2202   }
2203   if (OldFlags == Flags)
2204     // We know that the same flag is specified more than once when the flags
2205     // weren't modified.
2206     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2207   lex();
2208   return false;
2209 }
2210 
2211 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2212   switch (Token.kind()) {
2213   case MIToken::kw_stack:
2214     PSV = MF.getPSVManager().getStack();
2215     break;
2216   case MIToken::kw_got:
2217     PSV = MF.getPSVManager().getGOT();
2218     break;
2219   case MIToken::kw_jump_table:
2220     PSV = MF.getPSVManager().getJumpTable();
2221     break;
2222   case MIToken::kw_constant_pool:
2223     PSV = MF.getPSVManager().getConstantPool();
2224     break;
2225   case MIToken::FixedStackObject: {
2226     int FI;
2227     if (parseFixedStackFrameIndex(FI))
2228       return true;
2229     PSV = MF.getPSVManager().getFixedStack(FI);
2230     // The token was already consumed, so use return here instead of break.
2231     return false;
2232   }
2233   case MIToken::StackObject: {
2234     int FI;
2235     if (parseStackFrameIndex(FI))
2236       return true;
2237     PSV = MF.getPSVManager().getFixedStack(FI);
2238     // The token was already consumed, so use return here instead of break.
2239     return false;
2240   }
2241   case MIToken::kw_call_entry:
2242     lex();
2243     switch (Token.kind()) {
2244     case MIToken::GlobalValue:
2245     case MIToken::NamedGlobalValue: {
2246       GlobalValue *GV = nullptr;
2247       if (parseGlobalValue(GV))
2248         return true;
2249       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2250       break;
2251     }
2252     case MIToken::ExternalSymbol:
2253       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2254           MF.createExternalSymbolName(Token.stringValue()));
2255       break;
2256     default:
2257       return error(
2258           "expected a global value or an external symbol after 'call-entry'");
2259     }
2260     break;
2261   default:
2262     llvm_unreachable("The current token should be pseudo source value");
2263   }
2264   lex();
2265   return false;
2266 }
2267 
2268 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2269   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2270       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2271       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2272       Token.is(MIToken::kw_call_entry)) {
2273     const PseudoSourceValue *PSV = nullptr;
2274     if (parseMemoryPseudoSourceValue(PSV))
2275       return true;
2276     int64_t Offset = 0;
2277     if (parseOffset(Offset))
2278       return true;
2279     Dest = MachinePointerInfo(PSV, Offset);
2280     return false;
2281   }
2282   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2283       Token.isNot(MIToken::GlobalValue) &&
2284       Token.isNot(MIToken::NamedGlobalValue) &&
2285       Token.isNot(MIToken::QuotedIRValue))
2286     return error("expected an IR value reference");
2287   const Value *V = nullptr;
2288   if (parseIRValue(V))
2289     return true;
2290   if (!V->getType()->isPointerTy())
2291     return error("expected a pointer IR value");
2292   lex();
2293   int64_t Offset = 0;
2294   if (parseOffset(Offset))
2295     return true;
2296   Dest = MachinePointerInfo(V, Offset);
2297   return false;
2298 }
2299 
2300 bool MIParser::parseOptionalScope(LLVMContext &Context,
2301                                   SyncScope::ID &SSID) {
2302   SSID = SyncScope::System;
2303   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2304     lex();
2305     if (expectAndConsume(MIToken::lparen))
2306       return error("expected '(' in syncscope");
2307 
2308     std::string SSN;
2309     if (parseStringConstant(SSN))
2310       return true;
2311 
2312     SSID = Context.getOrInsertSyncScopeID(SSN);
2313     if (expectAndConsume(MIToken::rparen))
2314       return error("expected ')' in syncscope");
2315   }
2316 
2317   return false;
2318 }
2319 
2320 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2321   Order = AtomicOrdering::NotAtomic;
2322   if (Token.isNot(MIToken::Identifier))
2323     return false;
2324 
2325   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2326               .Case("unordered", AtomicOrdering::Unordered)
2327               .Case("monotonic", AtomicOrdering::Monotonic)
2328               .Case("acquire", AtomicOrdering::Acquire)
2329               .Case("release", AtomicOrdering::Release)
2330               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2331               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2332               .Default(AtomicOrdering::NotAtomic);
2333 
2334   if (Order != AtomicOrdering::NotAtomic) {
2335     lex();
2336     return false;
2337   }
2338 
2339   return error("expected an atomic scope, ordering or a size integer literal");
2340 }
2341 
2342 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2343   if (expectAndConsume(MIToken::lparen))
2344     return true;
2345   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2346   while (Token.isMemoryOperandFlag()) {
2347     if (parseMemoryOperandFlag(Flags))
2348       return true;
2349   }
2350   if (Token.isNot(MIToken::Identifier) ||
2351       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2352     return error("expected 'load' or 'store' memory operation");
2353   if (Token.stringValue() == "load")
2354     Flags |= MachineMemOperand::MOLoad;
2355   else
2356     Flags |= MachineMemOperand::MOStore;
2357   lex();
2358 
2359   // Optional 'store' for operands that both load and store.
2360   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2361     Flags |= MachineMemOperand::MOStore;
2362     lex();
2363   }
2364 
2365   // Optional synchronization scope.
2366   SyncScope::ID SSID;
2367   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2368     return true;
2369 
2370   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2371   AtomicOrdering Order, FailureOrder;
2372   if (parseOptionalAtomicOrdering(Order))
2373     return true;
2374 
2375   if (parseOptionalAtomicOrdering(FailureOrder))
2376     return true;
2377 
2378   if (Token.isNot(MIToken::IntegerLiteral))
2379     return error("expected the size integer literal after memory operation");
2380   uint64_t Size;
2381   if (getUint64(Size))
2382     return true;
2383   lex();
2384 
2385   MachinePointerInfo Ptr = MachinePointerInfo();
2386   if (Token.is(MIToken::Identifier)) {
2387     const char *Word =
2388         ((Flags & MachineMemOperand::MOLoad) &&
2389          (Flags & MachineMemOperand::MOStore))
2390             ? "on"
2391             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2392     if (Token.stringValue() != Word)
2393       return error(Twine("expected '") + Word + "'");
2394     lex();
2395 
2396     if (parseMachinePointerInfo(Ptr))
2397       return true;
2398   }
2399   unsigned BaseAlignment = Size;
2400   AAMDNodes AAInfo;
2401   MDNode *Range = nullptr;
2402   while (consumeIfPresent(MIToken::comma)) {
2403     switch (Token.kind()) {
2404     case MIToken::kw_align:
2405       if (parseAlignment(BaseAlignment))
2406         return true;
2407       break;
2408     case MIToken::md_tbaa:
2409       lex();
2410       if (parseMDNode(AAInfo.TBAA))
2411         return true;
2412       break;
2413     case MIToken::md_alias_scope:
2414       lex();
2415       if (parseMDNode(AAInfo.Scope))
2416         return true;
2417       break;
2418     case MIToken::md_noalias:
2419       lex();
2420       if (parseMDNode(AAInfo.NoAlias))
2421         return true;
2422       break;
2423     case MIToken::md_range:
2424       lex();
2425       if (parseMDNode(Range))
2426         return true;
2427       break;
2428     // TODO: Report an error on duplicate metadata nodes.
2429     default:
2430       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2431                    "'!noalias' or '!range'");
2432     }
2433   }
2434   if (expectAndConsume(MIToken::rparen))
2435     return true;
2436   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2437                                  SSID, Order, FailureOrder);
2438   return false;
2439 }
2440 
2441 void MIParser::initNames2InstrOpCodes() {
2442   if (!Names2InstrOpCodes.empty())
2443     return;
2444   const auto *TII = MF.getSubtarget().getInstrInfo();
2445   assert(TII && "Expected target instruction info");
2446   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2447     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2448 }
2449 
2450 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2451   initNames2InstrOpCodes();
2452   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2453   if (InstrInfo == Names2InstrOpCodes.end())
2454     return true;
2455   OpCode = InstrInfo->getValue();
2456   return false;
2457 }
2458 
2459 void MIParser::initNames2Regs() {
2460   if (!Names2Regs.empty())
2461     return;
2462   // The '%noreg' register is the register 0.
2463   Names2Regs.insert(std::make_pair("noreg", 0));
2464   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2465   assert(TRI && "Expected target register info");
2466   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2467     bool WasInserted =
2468         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2469             .second;
2470     (void)WasInserted;
2471     assert(WasInserted && "Expected registers to be unique case-insensitively");
2472   }
2473 }
2474 
2475 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2476   initNames2Regs();
2477   auto RegInfo = Names2Regs.find(RegName);
2478   if (RegInfo == Names2Regs.end())
2479     return true;
2480   Reg = RegInfo->getValue();
2481   return false;
2482 }
2483 
2484 void MIParser::initNames2RegMasks() {
2485   if (!Names2RegMasks.empty())
2486     return;
2487   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2488   assert(TRI && "Expected target register info");
2489   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2490   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2491   assert(RegMasks.size() == RegMaskNames.size());
2492   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2493     Names2RegMasks.insert(
2494         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2495 }
2496 
2497 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2498   initNames2RegMasks();
2499   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2500   if (RegMaskInfo == Names2RegMasks.end())
2501     return nullptr;
2502   return RegMaskInfo->getValue();
2503 }
2504 
2505 void MIParser::initNames2SubRegIndices() {
2506   if (!Names2SubRegIndices.empty())
2507     return;
2508   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2509   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2510     Names2SubRegIndices.insert(
2511         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2512 }
2513 
2514 unsigned MIParser::getSubRegIndex(StringRef Name) {
2515   initNames2SubRegIndices();
2516   auto SubRegInfo = Names2SubRegIndices.find(Name);
2517   if (SubRegInfo == Names2SubRegIndices.end())
2518     return 0;
2519   return SubRegInfo->getValue();
2520 }
2521 
2522 static void initSlots2BasicBlocks(
2523     const Function &F,
2524     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2525   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2526   MST.incorporateFunction(F);
2527   for (auto &BB : F) {
2528     if (BB.hasName())
2529       continue;
2530     int Slot = MST.getLocalSlot(&BB);
2531     if (Slot == -1)
2532       continue;
2533     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2534   }
2535 }
2536 
2537 static const BasicBlock *getIRBlockFromSlot(
2538     unsigned Slot,
2539     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2540   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2541   if (BlockInfo == Slots2BasicBlocks.end())
2542     return nullptr;
2543   return BlockInfo->second;
2544 }
2545 
2546 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2547   if (Slots2BasicBlocks.empty())
2548     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2549   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2550 }
2551 
2552 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2553   if (&F == &MF.getFunction())
2554     return getIRBlock(Slot);
2555   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2556   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2557   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2558 }
2559 
2560 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2561                            DenseMap<unsigned, const Value *> &Slots2Values) {
2562   int Slot = MST.getLocalSlot(V);
2563   if (Slot == -1)
2564     return;
2565   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2566 }
2567 
2568 /// Creates the mapping from slot numbers to function's unnamed IR values.
2569 static void initSlots2Values(const Function &F,
2570                              DenseMap<unsigned, const Value *> &Slots2Values) {
2571   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2572   MST.incorporateFunction(F);
2573   for (const auto &Arg : F.args())
2574     mapValueToSlot(&Arg, MST, Slots2Values);
2575   for (const auto &BB : F) {
2576     mapValueToSlot(&BB, MST, Slots2Values);
2577     for (const auto &I : BB)
2578       mapValueToSlot(&I, MST, Slots2Values);
2579   }
2580 }
2581 
2582 const Value *MIParser::getIRValue(unsigned Slot) {
2583   if (Slots2Values.empty())
2584     initSlots2Values(MF.getFunction(), Slots2Values);
2585   auto ValueInfo = Slots2Values.find(Slot);
2586   if (ValueInfo == Slots2Values.end())
2587     return nullptr;
2588   return ValueInfo->second;
2589 }
2590 
2591 void MIParser::initNames2TargetIndices() {
2592   if (!Names2TargetIndices.empty())
2593     return;
2594   const auto *TII = MF.getSubtarget().getInstrInfo();
2595   assert(TII && "Expected target instruction info");
2596   auto Indices = TII->getSerializableTargetIndices();
2597   for (const auto &I : Indices)
2598     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2599 }
2600 
2601 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2602   initNames2TargetIndices();
2603   auto IndexInfo = Names2TargetIndices.find(Name);
2604   if (IndexInfo == Names2TargetIndices.end())
2605     return true;
2606   Index = IndexInfo->second;
2607   return false;
2608 }
2609 
2610 void MIParser::initNames2DirectTargetFlags() {
2611   if (!Names2DirectTargetFlags.empty())
2612     return;
2613   const auto *TII = MF.getSubtarget().getInstrInfo();
2614   assert(TII && "Expected target instruction info");
2615   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2616   for (const auto &I : Flags)
2617     Names2DirectTargetFlags.insert(
2618         std::make_pair(StringRef(I.second), I.first));
2619 }
2620 
2621 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2622   initNames2DirectTargetFlags();
2623   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2624   if (FlagInfo == Names2DirectTargetFlags.end())
2625     return true;
2626   Flag = FlagInfo->second;
2627   return false;
2628 }
2629 
2630 void MIParser::initNames2BitmaskTargetFlags() {
2631   if (!Names2BitmaskTargetFlags.empty())
2632     return;
2633   const auto *TII = MF.getSubtarget().getInstrInfo();
2634   assert(TII && "Expected target instruction info");
2635   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2636   for (const auto &I : Flags)
2637     Names2BitmaskTargetFlags.insert(
2638         std::make_pair(StringRef(I.second), I.first));
2639 }
2640 
2641 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2642   initNames2BitmaskTargetFlags();
2643   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2644   if (FlagInfo == Names2BitmaskTargetFlags.end())
2645     return true;
2646   Flag = FlagInfo->second;
2647   return false;
2648 }
2649 
2650 void MIParser::initNames2MMOTargetFlags() {
2651   if (!Names2MMOTargetFlags.empty())
2652     return;
2653   const auto *TII = MF.getSubtarget().getInstrInfo();
2654   assert(TII && "Expected target instruction info");
2655   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2656   for (const auto &I : Flags)
2657     Names2MMOTargetFlags.insert(
2658         std::make_pair(StringRef(I.second), I.first));
2659 }
2660 
2661 bool MIParser::getMMOTargetFlag(StringRef Name,
2662                                 MachineMemOperand::Flags &Flag) {
2663   initNames2MMOTargetFlags();
2664   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2665   if (FlagInfo == Names2MMOTargetFlags.end())
2666     return true;
2667   Flag = FlagInfo->second;
2668   return false;
2669 }
2670 
2671 bool MIParser::parseStringConstant(std::string &Result) {
2672   if (Token.isNot(MIToken::StringConstant))
2673     return error("expected string constant");
2674   Result = Token.stringValue();
2675   lex();
2676   return false;
2677 }
2678 
2679 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2680                                              StringRef Src,
2681                                              SMDiagnostic &Error) {
2682   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2683 }
2684 
2685 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2686                                     StringRef Src, SMDiagnostic &Error) {
2687   return MIParser(PFS, Error, Src).parseBasicBlocks();
2688 }
2689 
2690 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2691                              MachineBasicBlock *&MBB, StringRef Src,
2692                              SMDiagnostic &Error) {
2693   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2694 }
2695 
2696 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2697                                   unsigned &Reg, StringRef Src,
2698                                   SMDiagnostic &Error) {
2699   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2700 }
2701 
2702 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2703                                        unsigned &Reg, StringRef Src,
2704                                        SMDiagnostic &Error) {
2705   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2706 }
2707 
2708 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2709                                          VRegInfo *&Info, StringRef Src,
2710                                          SMDiagnostic &Error) {
2711   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2712 }
2713 
2714 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2715                                      int &FI, StringRef Src,
2716                                      SMDiagnostic &Error) {
2717   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2718 }
2719 
2720 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2721                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2722   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2723 }
2724