1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRFormatter.h" 30 #include "llvm/CodeGen/MIRPrinter.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/RegisterBank.h" 40 #include "llvm/CodeGen/RegisterBankInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/BranchProbability.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/SMLoc.h" 70 #include "llvm/Support/SourceMgr.h" 71 #include "llvm/Target/TargetIntrinsicInfo.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <cassert> 74 #include <cctype> 75 #include <cstddef> 76 #include <cstdint> 77 #include <limits> 78 #include <string> 79 #include <utility> 80 81 using namespace llvm; 82 83 void PerTargetMIParsingState::setTarget( 84 const TargetSubtargetInfo &NewSubtarget) { 85 86 // If the subtarget changed, over conservatively assume everything is invalid. 87 if (&Subtarget == &NewSubtarget) 88 return; 89 90 Names2InstrOpCodes.clear(); 91 Names2Regs.clear(); 92 Names2RegMasks.clear(); 93 Names2SubRegIndices.clear(); 94 Names2TargetIndices.clear(); 95 Names2DirectTargetFlags.clear(); 96 Names2BitmaskTargetFlags.clear(); 97 Names2MMOTargetFlags.clear(); 98 99 initNames2RegClasses(); 100 initNames2RegBanks(); 101 } 102 103 void PerTargetMIParsingState::initNames2Regs() { 104 if (!Names2Regs.empty()) 105 return; 106 107 // The '%noreg' register is the register 0. 108 Names2Regs.insert(std::make_pair("noreg", 0)); 109 const auto *TRI = Subtarget.getRegisterInfo(); 110 assert(TRI && "Expected target register info"); 111 112 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 113 bool WasInserted = 114 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 115 .second; 116 (void)WasInserted; 117 assert(WasInserted && "Expected registers to be unique case-insensitively"); 118 } 119 } 120 121 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 122 Register &Reg) { 123 initNames2Regs(); 124 auto RegInfo = Names2Regs.find(RegName); 125 if (RegInfo == Names2Regs.end()) 126 return true; 127 Reg = RegInfo->getValue(); 128 return false; 129 } 130 131 void PerTargetMIParsingState::initNames2InstrOpCodes() { 132 if (!Names2InstrOpCodes.empty()) 133 return; 134 const auto *TII = Subtarget.getInstrInfo(); 135 assert(TII && "Expected target instruction info"); 136 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 137 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 138 } 139 140 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 141 unsigned &OpCode) { 142 initNames2InstrOpCodes(); 143 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 144 if (InstrInfo == Names2InstrOpCodes.end()) 145 return true; 146 OpCode = InstrInfo->getValue(); 147 return false; 148 } 149 150 void PerTargetMIParsingState::initNames2RegMasks() { 151 if (!Names2RegMasks.empty()) 152 return; 153 const auto *TRI = Subtarget.getRegisterInfo(); 154 assert(TRI && "Expected target register info"); 155 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 156 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 157 assert(RegMasks.size() == RegMaskNames.size()); 158 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 159 Names2RegMasks.insert( 160 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 161 } 162 163 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 164 initNames2RegMasks(); 165 auto RegMaskInfo = Names2RegMasks.find(Identifier); 166 if (RegMaskInfo == Names2RegMasks.end()) 167 return nullptr; 168 return RegMaskInfo->getValue(); 169 } 170 171 void PerTargetMIParsingState::initNames2SubRegIndices() { 172 if (!Names2SubRegIndices.empty()) 173 return; 174 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 175 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 176 Names2SubRegIndices.insert( 177 std::make_pair(TRI->getSubRegIndexName(I), I)); 178 } 179 180 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 181 initNames2SubRegIndices(); 182 auto SubRegInfo = Names2SubRegIndices.find(Name); 183 if (SubRegInfo == Names2SubRegIndices.end()) 184 return 0; 185 return SubRegInfo->getValue(); 186 } 187 188 void PerTargetMIParsingState::initNames2TargetIndices() { 189 if (!Names2TargetIndices.empty()) 190 return; 191 const auto *TII = Subtarget.getInstrInfo(); 192 assert(TII && "Expected target instruction info"); 193 auto Indices = TII->getSerializableTargetIndices(); 194 for (const auto &I : Indices) 195 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 196 } 197 198 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 199 initNames2TargetIndices(); 200 auto IndexInfo = Names2TargetIndices.find(Name); 201 if (IndexInfo == Names2TargetIndices.end()) 202 return true; 203 Index = IndexInfo->second; 204 return false; 205 } 206 207 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 208 if (!Names2DirectTargetFlags.empty()) 209 return; 210 211 const auto *TII = Subtarget.getInstrInfo(); 212 assert(TII && "Expected target instruction info"); 213 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 214 for (const auto &I : Flags) 215 Names2DirectTargetFlags.insert( 216 std::make_pair(StringRef(I.second), I.first)); 217 } 218 219 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 220 unsigned &Flag) { 221 initNames2DirectTargetFlags(); 222 auto FlagInfo = Names2DirectTargetFlags.find(Name); 223 if (FlagInfo == Names2DirectTargetFlags.end()) 224 return true; 225 Flag = FlagInfo->second; 226 return false; 227 } 228 229 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 230 if (!Names2BitmaskTargetFlags.empty()) 231 return; 232 233 const auto *TII = Subtarget.getInstrInfo(); 234 assert(TII && "Expected target instruction info"); 235 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 236 for (const auto &I : Flags) 237 Names2BitmaskTargetFlags.insert( 238 std::make_pair(StringRef(I.second), I.first)); 239 } 240 241 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 242 unsigned &Flag) { 243 initNames2BitmaskTargetFlags(); 244 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 245 if (FlagInfo == Names2BitmaskTargetFlags.end()) 246 return true; 247 Flag = FlagInfo->second; 248 return false; 249 } 250 251 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 252 if (!Names2MMOTargetFlags.empty()) 253 return; 254 255 const auto *TII = Subtarget.getInstrInfo(); 256 assert(TII && "Expected target instruction info"); 257 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 258 for (const auto &I : Flags) 259 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 260 } 261 262 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 263 MachineMemOperand::Flags &Flag) { 264 initNames2MMOTargetFlags(); 265 auto FlagInfo = Names2MMOTargetFlags.find(Name); 266 if (FlagInfo == Names2MMOTargetFlags.end()) 267 return true; 268 Flag = FlagInfo->second; 269 return false; 270 } 271 272 void PerTargetMIParsingState::initNames2RegClasses() { 273 if (!Names2RegClasses.empty()) 274 return; 275 276 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 277 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 278 const auto *RC = TRI->getRegClass(I); 279 Names2RegClasses.insert( 280 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 281 } 282 } 283 284 void PerTargetMIParsingState::initNames2RegBanks() { 285 if (!Names2RegBanks.empty()) 286 return; 287 288 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 289 // If the target does not support GlobalISel, we may not have a 290 // register bank info. 291 if (!RBI) 292 return; 293 294 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 295 const auto &RegBank = RBI->getRegBank(I); 296 Names2RegBanks.insert( 297 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 298 } 299 } 300 301 const TargetRegisterClass * 302 PerTargetMIParsingState::getRegClass(StringRef Name) { 303 auto RegClassInfo = Names2RegClasses.find(Name); 304 if (RegClassInfo == Names2RegClasses.end()) 305 return nullptr; 306 return RegClassInfo->getValue(); 307 } 308 309 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 310 auto RegBankInfo = Names2RegBanks.find(Name); 311 if (RegBankInfo == Names2RegBanks.end()) 312 return nullptr; 313 return RegBankInfo->getValue(); 314 } 315 316 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 317 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 318 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 319 } 320 321 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 322 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 323 if (I.second) { 324 MachineRegisterInfo &MRI = MF.getRegInfo(); 325 VRegInfo *Info = new (Allocator) VRegInfo; 326 Info->VReg = MRI.createIncompleteVirtualRegister(); 327 I.first->second = Info; 328 } 329 return *I.first->second; 330 } 331 332 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 333 assert(RegName != "" && "Expected named reg."); 334 335 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 336 if (I.second) { 337 VRegInfo *Info = new (Allocator) VRegInfo; 338 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 339 I.first->second = Info; 340 } 341 return *I.first->second; 342 } 343 344 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 345 DenseMap<unsigned, const Value *> &Slots2Values) { 346 int Slot = MST.getLocalSlot(V); 347 if (Slot == -1) 348 return; 349 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 350 } 351 352 /// Creates the mapping from slot numbers to function's unnamed IR values. 353 static void initSlots2Values(const Function &F, 354 DenseMap<unsigned, const Value *> &Slots2Values) { 355 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 356 MST.incorporateFunction(F); 357 for (const auto &Arg : F.args()) 358 mapValueToSlot(&Arg, MST, Slots2Values); 359 for (const auto &BB : F) { 360 mapValueToSlot(&BB, MST, Slots2Values); 361 for (const auto &I : BB) 362 mapValueToSlot(&I, MST, Slots2Values); 363 } 364 } 365 366 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 367 if (Slots2Values.empty()) 368 initSlots2Values(MF.getFunction(), Slots2Values); 369 return Slots2Values.lookup(Slot); 370 } 371 372 namespace { 373 374 /// A wrapper struct around the 'MachineOperand' struct that includes a source 375 /// range and other attributes. 376 struct ParsedMachineOperand { 377 MachineOperand Operand; 378 StringRef::iterator Begin; 379 StringRef::iterator End; 380 Optional<unsigned> TiedDefIdx; 381 382 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 383 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 384 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 385 if (TiedDefIdx) 386 assert(Operand.isReg() && Operand.isUse() && 387 "Only used register operands can be tied"); 388 } 389 }; 390 391 class MIParser { 392 MachineFunction &MF; 393 SMDiagnostic &Error; 394 StringRef Source, CurrentSource; 395 SMRange SourceRange; 396 MIToken Token; 397 PerFunctionMIParsingState &PFS; 398 /// Maps from slot numbers to function's unnamed basic blocks. 399 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 400 401 public: 402 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 403 StringRef Source); 404 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 405 StringRef Source, SMRange SourceRange); 406 407 /// \p SkipChar gives the number of characters to skip before looking 408 /// for the next token. 409 void lex(unsigned SkipChar = 0); 410 411 /// Report an error at the current location with the given message. 412 /// 413 /// This function always return true. 414 bool error(const Twine &Msg); 415 416 /// Report an error at the given location with the given message. 417 /// 418 /// This function always return true. 419 bool error(StringRef::iterator Loc, const Twine &Msg); 420 421 bool 422 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 423 bool parseBasicBlocks(); 424 bool parse(MachineInstr *&MI); 425 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 426 bool parseStandaloneNamedRegister(Register &Reg); 427 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 428 bool parseStandaloneRegister(Register &Reg); 429 bool parseStandaloneStackObject(int &FI); 430 bool parseStandaloneMDNode(MDNode *&Node); 431 bool parseMachineMetadata(); 432 bool parseMDTuple(MDNode *&MD, bool IsDistinct); 433 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts); 434 bool parseMetadata(Metadata *&MD); 435 436 bool 437 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 438 bool parseBasicBlock(MachineBasicBlock &MBB, 439 MachineBasicBlock *&AddFalthroughFrom); 440 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 441 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 442 443 bool parseNamedRegister(Register &Reg); 444 bool parseVirtualRegister(VRegInfo *&Info); 445 bool parseNamedVirtualRegister(VRegInfo *&Info); 446 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 447 bool parseRegisterFlag(unsigned &Flags); 448 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 449 bool parseSubRegisterIndex(unsigned &SubReg); 450 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 451 bool parseRegisterOperand(MachineOperand &Dest, 452 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 453 bool parseImmediateOperand(MachineOperand &Dest); 454 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 455 const Constant *&C); 456 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 457 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 458 bool parseTypedImmediateOperand(MachineOperand &Dest); 459 bool parseFPImmediateOperand(MachineOperand &Dest); 460 bool parseMBBReference(MachineBasicBlock *&MBB); 461 bool parseMBBOperand(MachineOperand &Dest); 462 bool parseStackFrameIndex(int &FI); 463 bool parseStackObjectOperand(MachineOperand &Dest); 464 bool parseFixedStackFrameIndex(int &FI); 465 bool parseFixedStackObjectOperand(MachineOperand &Dest); 466 bool parseGlobalValue(GlobalValue *&GV); 467 bool parseGlobalAddressOperand(MachineOperand &Dest); 468 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 469 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 470 bool parseJumpTableIndexOperand(MachineOperand &Dest); 471 bool parseExternalSymbolOperand(MachineOperand &Dest); 472 bool parseMCSymbolOperand(MachineOperand &Dest); 473 bool parseMDNode(MDNode *&Node); 474 bool parseDIExpression(MDNode *&Expr); 475 bool parseDILocation(MDNode *&Expr); 476 bool parseMetadataOperand(MachineOperand &Dest); 477 bool parseCFIOffset(int &Offset); 478 bool parseCFIRegister(Register &Reg); 479 bool parseCFIAddressSpace(unsigned &AddressSpace); 480 bool parseCFIEscapeValues(std::string& Values); 481 bool parseCFIOperand(MachineOperand &Dest); 482 bool parseIRBlock(BasicBlock *&BB, const Function &F); 483 bool parseBlockAddressOperand(MachineOperand &Dest); 484 bool parseIntrinsicOperand(MachineOperand &Dest); 485 bool parsePredicateOperand(MachineOperand &Dest); 486 bool parseShuffleMaskOperand(MachineOperand &Dest); 487 bool parseTargetIndexOperand(MachineOperand &Dest); 488 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 489 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 490 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 491 MachineOperand &Dest, 492 Optional<unsigned> &TiedDefIdx); 493 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 494 const unsigned OpIdx, 495 MachineOperand &Dest, 496 Optional<unsigned> &TiedDefIdx); 497 bool parseOffset(int64_t &Offset); 498 bool parseAlignment(uint64_t &Alignment); 499 bool parseAddrspace(unsigned &Addrspace); 500 bool parseSectionID(Optional<MBBSectionID> &SID); 501 bool parseOperandsOffset(MachineOperand &Op); 502 bool parseIRValue(const Value *&V); 503 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 504 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 505 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 506 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 507 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 508 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 509 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 510 bool parseHeapAllocMarker(MDNode *&Node); 511 512 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 513 MachineOperand &Dest, const MIRFormatter &MF); 514 515 private: 516 /// Convert the integer literal in the current token into an unsigned integer. 517 /// 518 /// Return true if an error occurred. 519 bool getUnsigned(unsigned &Result); 520 521 /// Convert the integer literal in the current token into an uint64. 522 /// 523 /// Return true if an error occurred. 524 bool getUint64(uint64_t &Result); 525 526 /// Convert the hexadecimal literal in the current token into an unsigned 527 /// APInt with a minimum bitwidth required to represent the value. 528 /// 529 /// Return true if the literal does not represent an integer value. 530 bool getHexUint(APInt &Result); 531 532 /// If the current token is of the given kind, consume it and return false. 533 /// Otherwise report an error and return true. 534 bool expectAndConsume(MIToken::TokenKind TokenKind); 535 536 /// If the current token is of the given kind, consume it and return true. 537 /// Otherwise return false. 538 bool consumeIfPresent(MIToken::TokenKind TokenKind); 539 540 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 541 542 bool assignRegisterTies(MachineInstr &MI, 543 ArrayRef<ParsedMachineOperand> Operands); 544 545 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 546 const MCInstrDesc &MCID); 547 548 const BasicBlock *getIRBlock(unsigned Slot); 549 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 550 551 /// Get or create an MCSymbol for a given name. 552 MCSymbol *getOrCreateMCSymbol(StringRef Name); 553 554 /// parseStringConstant 555 /// ::= StringConstant 556 bool parseStringConstant(std::string &Result); 557 558 /// Map the location in the MI string to the corresponding location specified 559 /// in `SourceRange`. 560 SMLoc mapSMLoc(StringRef::iterator Loc); 561 }; 562 563 } // end anonymous namespace 564 565 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 566 StringRef Source) 567 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 568 {} 569 570 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 571 StringRef Source, SMRange SourceRange) 572 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), 573 SourceRange(SourceRange), PFS(PFS) {} 574 575 void MIParser::lex(unsigned SkipChar) { 576 CurrentSource = lexMIToken( 577 CurrentSource.slice(SkipChar, StringRef::npos), Token, 578 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 579 } 580 581 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 582 583 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 584 const SourceMgr &SM = *PFS.SM; 585 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 586 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 587 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 588 // Create an ordinary diagnostic when the source manager's buffer is the 589 // source string. 590 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 591 return true; 592 } 593 // Create a diagnostic for a YAML string literal. 594 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 595 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 596 Source, None, None); 597 return true; 598 } 599 600 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) { 601 assert(SourceRange.isValid() && "Invalid source range"); 602 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 603 return SMLoc::getFromPointer(SourceRange.Start.getPointer() + 604 (Loc - Source.data())); 605 } 606 607 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 608 ErrorCallbackType; 609 610 static const char *toString(MIToken::TokenKind TokenKind) { 611 switch (TokenKind) { 612 case MIToken::comma: 613 return "','"; 614 case MIToken::equal: 615 return "'='"; 616 case MIToken::colon: 617 return "':'"; 618 case MIToken::lparen: 619 return "'('"; 620 case MIToken::rparen: 621 return "')'"; 622 default: 623 return "<unknown token>"; 624 } 625 } 626 627 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 628 if (Token.isNot(TokenKind)) 629 return error(Twine("expected ") + toString(TokenKind)); 630 lex(); 631 return false; 632 } 633 634 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 635 if (Token.isNot(TokenKind)) 636 return false; 637 lex(); 638 return true; 639 } 640 641 // Parse Machine Basic Block Section ID. 642 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) { 643 assert(Token.is(MIToken::kw_bbsections)); 644 lex(); 645 if (Token.is(MIToken::IntegerLiteral)) { 646 unsigned Value = 0; 647 if (getUnsigned(Value)) 648 return error("Unknown Section ID"); 649 SID = MBBSectionID{Value}; 650 } else { 651 const StringRef &S = Token.stringValue(); 652 if (S == "Exception") 653 SID = MBBSectionID::ExceptionSectionID; 654 else if (S == "Cold") 655 SID = MBBSectionID::ColdSectionID; 656 else 657 return error("Unknown Section ID"); 658 } 659 lex(); 660 return false; 661 } 662 663 bool MIParser::parseBasicBlockDefinition( 664 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 665 assert(Token.is(MIToken::MachineBasicBlockLabel)); 666 unsigned ID = 0; 667 if (getUnsigned(ID)) 668 return true; 669 auto Loc = Token.location(); 670 auto Name = Token.stringValue(); 671 lex(); 672 bool HasAddressTaken = false; 673 bool IsLandingPad = false; 674 bool IsInlineAsmBrIndirectTarget = false; 675 bool IsEHFuncletEntry = false; 676 Optional<MBBSectionID> SectionID; 677 uint64_t Alignment = 0; 678 BasicBlock *BB = nullptr; 679 if (consumeIfPresent(MIToken::lparen)) { 680 do { 681 // TODO: Report an error when multiple same attributes are specified. 682 switch (Token.kind()) { 683 case MIToken::kw_address_taken: 684 HasAddressTaken = true; 685 lex(); 686 break; 687 case MIToken::kw_landing_pad: 688 IsLandingPad = true; 689 lex(); 690 break; 691 case MIToken::kw_inlineasm_br_indirect_target: 692 IsInlineAsmBrIndirectTarget = true; 693 lex(); 694 break; 695 case MIToken::kw_ehfunclet_entry: 696 IsEHFuncletEntry = true; 697 lex(); 698 break; 699 case MIToken::kw_align: 700 if (parseAlignment(Alignment)) 701 return true; 702 break; 703 case MIToken::IRBlock: 704 // TODO: Report an error when both name and ir block are specified. 705 if (parseIRBlock(BB, MF.getFunction())) 706 return true; 707 lex(); 708 break; 709 case MIToken::kw_bbsections: 710 if (parseSectionID(SectionID)) 711 return true; 712 break; 713 default: 714 break; 715 } 716 } while (consumeIfPresent(MIToken::comma)); 717 if (expectAndConsume(MIToken::rparen)) 718 return true; 719 } 720 if (expectAndConsume(MIToken::colon)) 721 return true; 722 723 if (!Name.empty()) { 724 BB = dyn_cast_or_null<BasicBlock>( 725 MF.getFunction().getValueSymbolTable()->lookup(Name)); 726 if (!BB) 727 return error(Loc, Twine("basic block '") + Name + 728 "' is not defined in the function '" + 729 MF.getName() + "'"); 730 } 731 auto *MBB = MF.CreateMachineBasicBlock(BB); 732 MF.insert(MF.end(), MBB); 733 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 734 if (!WasInserted) 735 return error(Loc, Twine("redefinition of machine basic block with id #") + 736 Twine(ID)); 737 if (Alignment) 738 MBB->setAlignment(Align(Alignment)); 739 if (HasAddressTaken) 740 MBB->setHasAddressTaken(); 741 MBB->setIsEHPad(IsLandingPad); 742 MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget); 743 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 744 if (SectionID.hasValue()) { 745 MBB->setSectionID(SectionID.getValue()); 746 MF.setBBSectionsType(BasicBlockSection::List); 747 } 748 return false; 749 } 750 751 bool MIParser::parseBasicBlockDefinitions( 752 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 753 lex(); 754 // Skip until the first machine basic block. 755 while (Token.is(MIToken::Newline)) 756 lex(); 757 if (Token.isErrorOrEOF()) 758 return Token.isError(); 759 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 760 return error("expected a basic block definition before instructions"); 761 unsigned BraceDepth = 0; 762 do { 763 if (parseBasicBlockDefinition(MBBSlots)) 764 return true; 765 bool IsAfterNewline = false; 766 // Skip until the next machine basic block. 767 while (true) { 768 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 769 Token.isErrorOrEOF()) 770 break; 771 else if (Token.is(MIToken::MachineBasicBlockLabel)) 772 return error("basic block definition should be located at the start of " 773 "the line"); 774 else if (consumeIfPresent(MIToken::Newline)) { 775 IsAfterNewline = true; 776 continue; 777 } 778 IsAfterNewline = false; 779 if (Token.is(MIToken::lbrace)) 780 ++BraceDepth; 781 if (Token.is(MIToken::rbrace)) { 782 if (!BraceDepth) 783 return error("extraneous closing brace ('}')"); 784 --BraceDepth; 785 } 786 lex(); 787 } 788 // Verify that we closed all of the '{' at the end of a file or a block. 789 if (!Token.isError() && BraceDepth) 790 return error("expected '}'"); // FIXME: Report a note that shows '{'. 791 } while (!Token.isErrorOrEOF()); 792 return Token.isError(); 793 } 794 795 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 796 assert(Token.is(MIToken::kw_liveins)); 797 lex(); 798 if (expectAndConsume(MIToken::colon)) 799 return true; 800 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 801 return false; 802 do { 803 if (Token.isNot(MIToken::NamedRegister)) 804 return error("expected a named register"); 805 Register Reg; 806 if (parseNamedRegister(Reg)) 807 return true; 808 lex(); 809 LaneBitmask Mask = LaneBitmask::getAll(); 810 if (consumeIfPresent(MIToken::colon)) { 811 // Parse lane mask. 812 if (Token.isNot(MIToken::IntegerLiteral) && 813 Token.isNot(MIToken::HexLiteral)) 814 return error("expected a lane mask"); 815 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 816 "Use correct get-function for lane mask"); 817 LaneBitmask::Type V; 818 if (getUint64(V)) 819 return error("invalid lane mask value"); 820 Mask = LaneBitmask(V); 821 lex(); 822 } 823 MBB.addLiveIn(Reg, Mask); 824 } while (consumeIfPresent(MIToken::comma)); 825 return false; 826 } 827 828 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 829 assert(Token.is(MIToken::kw_successors)); 830 lex(); 831 if (expectAndConsume(MIToken::colon)) 832 return true; 833 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 834 return false; 835 do { 836 if (Token.isNot(MIToken::MachineBasicBlock)) 837 return error("expected a machine basic block reference"); 838 MachineBasicBlock *SuccMBB = nullptr; 839 if (parseMBBReference(SuccMBB)) 840 return true; 841 lex(); 842 unsigned Weight = 0; 843 if (consumeIfPresent(MIToken::lparen)) { 844 if (Token.isNot(MIToken::IntegerLiteral) && 845 Token.isNot(MIToken::HexLiteral)) 846 return error("expected an integer literal after '('"); 847 if (getUnsigned(Weight)) 848 return true; 849 lex(); 850 if (expectAndConsume(MIToken::rparen)) 851 return true; 852 } 853 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 854 } while (consumeIfPresent(MIToken::comma)); 855 MBB.normalizeSuccProbs(); 856 return false; 857 } 858 859 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 860 MachineBasicBlock *&AddFalthroughFrom) { 861 // Skip the definition. 862 assert(Token.is(MIToken::MachineBasicBlockLabel)); 863 lex(); 864 if (consumeIfPresent(MIToken::lparen)) { 865 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 866 lex(); 867 consumeIfPresent(MIToken::rparen); 868 } 869 consumeIfPresent(MIToken::colon); 870 871 // Parse the liveins and successors. 872 // N.B: Multiple lists of successors and liveins are allowed and they're 873 // merged into one. 874 // Example: 875 // liveins: $edi 876 // liveins: $esi 877 // 878 // is equivalent to 879 // liveins: $edi, $esi 880 bool ExplicitSuccessors = false; 881 while (true) { 882 if (Token.is(MIToken::kw_successors)) { 883 if (parseBasicBlockSuccessors(MBB)) 884 return true; 885 ExplicitSuccessors = true; 886 } else if (Token.is(MIToken::kw_liveins)) { 887 if (parseBasicBlockLiveins(MBB)) 888 return true; 889 } else if (consumeIfPresent(MIToken::Newline)) { 890 continue; 891 } else 892 break; 893 if (!Token.isNewlineOrEOF()) 894 return error("expected line break at the end of a list"); 895 lex(); 896 } 897 898 // Parse the instructions. 899 bool IsInBundle = false; 900 MachineInstr *PrevMI = nullptr; 901 while (!Token.is(MIToken::MachineBasicBlockLabel) && 902 !Token.is(MIToken::Eof)) { 903 if (consumeIfPresent(MIToken::Newline)) 904 continue; 905 if (consumeIfPresent(MIToken::rbrace)) { 906 // The first parsing pass should verify that all closing '}' have an 907 // opening '{'. 908 assert(IsInBundle); 909 IsInBundle = false; 910 continue; 911 } 912 MachineInstr *MI = nullptr; 913 if (parse(MI)) 914 return true; 915 MBB.insert(MBB.end(), MI); 916 if (IsInBundle) { 917 PrevMI->setFlag(MachineInstr::BundledSucc); 918 MI->setFlag(MachineInstr::BundledPred); 919 } 920 PrevMI = MI; 921 if (Token.is(MIToken::lbrace)) { 922 if (IsInBundle) 923 return error("nested instruction bundles are not allowed"); 924 lex(); 925 // This instruction is the start of the bundle. 926 MI->setFlag(MachineInstr::BundledSucc); 927 IsInBundle = true; 928 if (!Token.is(MIToken::Newline)) 929 // The next instruction can be on the same line. 930 continue; 931 } 932 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 933 lex(); 934 } 935 936 // Construct successor list by searching for basic block machine operands. 937 if (!ExplicitSuccessors) { 938 SmallVector<MachineBasicBlock*,4> Successors; 939 bool IsFallthrough; 940 guessSuccessors(MBB, Successors, IsFallthrough); 941 for (MachineBasicBlock *Succ : Successors) 942 MBB.addSuccessor(Succ); 943 944 if (IsFallthrough) { 945 AddFalthroughFrom = &MBB; 946 } else { 947 MBB.normalizeSuccProbs(); 948 } 949 } 950 951 return false; 952 } 953 954 bool MIParser::parseBasicBlocks() { 955 lex(); 956 // Skip until the first machine basic block. 957 while (Token.is(MIToken::Newline)) 958 lex(); 959 if (Token.isErrorOrEOF()) 960 return Token.isError(); 961 // The first parsing pass should have verified that this token is a MBB label 962 // in the 'parseBasicBlockDefinitions' method. 963 assert(Token.is(MIToken::MachineBasicBlockLabel)); 964 MachineBasicBlock *AddFalthroughFrom = nullptr; 965 do { 966 MachineBasicBlock *MBB = nullptr; 967 if (parseMBBReference(MBB)) 968 return true; 969 if (AddFalthroughFrom) { 970 if (!AddFalthroughFrom->isSuccessor(MBB)) 971 AddFalthroughFrom->addSuccessor(MBB); 972 AddFalthroughFrom->normalizeSuccProbs(); 973 AddFalthroughFrom = nullptr; 974 } 975 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 976 return true; 977 // The method 'parseBasicBlock' should parse the whole block until the next 978 // block or the end of file. 979 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 980 } while (Token.isNot(MIToken::Eof)); 981 return false; 982 } 983 984 bool MIParser::parse(MachineInstr *&MI) { 985 // Parse any register operands before '=' 986 MachineOperand MO = MachineOperand::CreateImm(0); 987 SmallVector<ParsedMachineOperand, 8> Operands; 988 while (Token.isRegister() || Token.isRegisterFlag()) { 989 auto Loc = Token.location(); 990 Optional<unsigned> TiedDefIdx; 991 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 992 return true; 993 Operands.push_back( 994 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 995 if (Token.isNot(MIToken::comma)) 996 break; 997 lex(); 998 } 999 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 1000 return true; 1001 1002 unsigned OpCode, Flags = 0; 1003 if (Token.isError() || parseInstruction(OpCode, Flags)) 1004 return true; 1005 1006 // Parse the remaining machine operands. 1007 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 1008 Token.isNot(MIToken::kw_post_instr_symbol) && 1009 Token.isNot(MIToken::kw_heap_alloc_marker) && 1010 Token.isNot(MIToken::kw_debug_location) && 1011 Token.isNot(MIToken::kw_debug_instr_number) && 1012 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 1013 auto Loc = Token.location(); 1014 Optional<unsigned> TiedDefIdx; 1015 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 1016 return true; 1017 Operands.push_back( 1018 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 1019 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 1020 Token.is(MIToken::lbrace)) 1021 break; 1022 if (Token.isNot(MIToken::comma)) 1023 return error("expected ',' before the next machine operand"); 1024 lex(); 1025 } 1026 1027 MCSymbol *PreInstrSymbol = nullptr; 1028 if (Token.is(MIToken::kw_pre_instr_symbol)) 1029 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1030 return true; 1031 MCSymbol *PostInstrSymbol = nullptr; 1032 if (Token.is(MIToken::kw_post_instr_symbol)) 1033 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1034 return true; 1035 MDNode *HeapAllocMarker = nullptr; 1036 if (Token.is(MIToken::kw_heap_alloc_marker)) 1037 if (parseHeapAllocMarker(HeapAllocMarker)) 1038 return true; 1039 1040 unsigned InstrNum = 0; 1041 if (Token.is(MIToken::kw_debug_instr_number)) { 1042 lex(); 1043 if (Token.isNot(MIToken::IntegerLiteral)) 1044 return error("expected an integer literal after 'debug-instr-number'"); 1045 if (getUnsigned(InstrNum)) 1046 return true; 1047 lex(); 1048 // Lex past trailing comma if present. 1049 if (Token.is(MIToken::comma)) 1050 lex(); 1051 } 1052 1053 DebugLoc DebugLocation; 1054 if (Token.is(MIToken::kw_debug_location)) { 1055 lex(); 1056 MDNode *Node = nullptr; 1057 if (Token.is(MIToken::exclaim)) { 1058 if (parseMDNode(Node)) 1059 return true; 1060 } else if (Token.is(MIToken::md_dilocation)) { 1061 if (parseDILocation(Node)) 1062 return true; 1063 } else 1064 return error("expected a metadata node after 'debug-location'"); 1065 if (!isa<DILocation>(Node)) 1066 return error("referenced metadata is not a DILocation"); 1067 DebugLocation = DebugLoc(Node); 1068 } 1069 1070 // Parse the machine memory operands. 1071 SmallVector<MachineMemOperand *, 2> MemOperands; 1072 if (Token.is(MIToken::coloncolon)) { 1073 lex(); 1074 while (!Token.isNewlineOrEOF()) { 1075 MachineMemOperand *MemOp = nullptr; 1076 if (parseMachineMemoryOperand(MemOp)) 1077 return true; 1078 MemOperands.push_back(MemOp); 1079 if (Token.isNewlineOrEOF()) 1080 break; 1081 if (Token.isNot(MIToken::comma)) 1082 return error("expected ',' before the next machine memory operand"); 1083 lex(); 1084 } 1085 } 1086 1087 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1088 if (!MCID.isVariadic()) { 1089 // FIXME: Move the implicit operand verification to the machine verifier. 1090 if (verifyImplicitOperands(Operands, MCID)) 1091 return true; 1092 } 1093 1094 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1095 MI->setFlags(Flags); 1096 1097 unsigned NumExplicitOps = 0; 1098 for (const auto &Operand : Operands) { 1099 bool IsImplicitOp = Operand.Operand.isReg() && Operand.Operand.isImplicit(); 1100 if (!IsImplicitOp) { 1101 if (!MCID.isVariadic() && NumExplicitOps >= MCID.getNumOperands() && 1102 !Operand.Operand.isValidExcessOperand()) 1103 return error("too many operands for instruction"); 1104 1105 ++NumExplicitOps; 1106 } 1107 1108 MI->addOperand(MF, Operand.Operand); 1109 } 1110 1111 if (assignRegisterTies(*MI, Operands)) 1112 return true; 1113 if (PreInstrSymbol) 1114 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1115 if (PostInstrSymbol) 1116 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1117 if (HeapAllocMarker) 1118 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1119 if (!MemOperands.empty()) 1120 MI->setMemRefs(MF, MemOperands); 1121 if (InstrNum) 1122 MI->setDebugInstrNum(InstrNum); 1123 return false; 1124 } 1125 1126 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1127 lex(); 1128 if (Token.isNot(MIToken::MachineBasicBlock)) 1129 return error("expected a machine basic block reference"); 1130 if (parseMBBReference(MBB)) 1131 return true; 1132 lex(); 1133 if (Token.isNot(MIToken::Eof)) 1134 return error( 1135 "expected end of string after the machine basic block reference"); 1136 return false; 1137 } 1138 1139 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1140 lex(); 1141 if (Token.isNot(MIToken::NamedRegister)) 1142 return error("expected a named register"); 1143 if (parseNamedRegister(Reg)) 1144 return true; 1145 lex(); 1146 if (Token.isNot(MIToken::Eof)) 1147 return error("expected end of string after the register reference"); 1148 return false; 1149 } 1150 1151 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1152 lex(); 1153 if (Token.isNot(MIToken::VirtualRegister)) 1154 return error("expected a virtual register"); 1155 if (parseVirtualRegister(Info)) 1156 return true; 1157 lex(); 1158 if (Token.isNot(MIToken::Eof)) 1159 return error("expected end of string after the register reference"); 1160 return false; 1161 } 1162 1163 bool MIParser::parseStandaloneRegister(Register &Reg) { 1164 lex(); 1165 if (Token.isNot(MIToken::NamedRegister) && 1166 Token.isNot(MIToken::VirtualRegister)) 1167 return error("expected either a named or virtual register"); 1168 1169 VRegInfo *Info; 1170 if (parseRegister(Reg, Info)) 1171 return true; 1172 1173 lex(); 1174 if (Token.isNot(MIToken::Eof)) 1175 return error("expected end of string after the register reference"); 1176 return false; 1177 } 1178 1179 bool MIParser::parseStandaloneStackObject(int &FI) { 1180 lex(); 1181 if (Token.isNot(MIToken::StackObject)) 1182 return error("expected a stack object"); 1183 if (parseStackFrameIndex(FI)) 1184 return true; 1185 if (Token.isNot(MIToken::Eof)) 1186 return error("expected end of string after the stack object reference"); 1187 return false; 1188 } 1189 1190 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1191 lex(); 1192 if (Token.is(MIToken::exclaim)) { 1193 if (parseMDNode(Node)) 1194 return true; 1195 } else if (Token.is(MIToken::md_diexpr)) { 1196 if (parseDIExpression(Node)) 1197 return true; 1198 } else if (Token.is(MIToken::md_dilocation)) { 1199 if (parseDILocation(Node)) 1200 return true; 1201 } else 1202 return error("expected a metadata node"); 1203 if (Token.isNot(MIToken::Eof)) 1204 return error("expected end of string after the metadata node"); 1205 return false; 1206 } 1207 1208 bool MIParser::parseMachineMetadata() { 1209 lex(); 1210 if (Token.isNot(MIToken::exclaim)) 1211 return error("expected a metadata node"); 1212 1213 lex(); 1214 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1215 return error("expected metadata id after '!'"); 1216 unsigned ID = 0; 1217 if (getUnsigned(ID)) 1218 return true; 1219 lex(); 1220 if (expectAndConsume(MIToken::equal)) 1221 return true; 1222 bool IsDistinct = Token.is(MIToken::kw_distinct); 1223 if (IsDistinct) 1224 lex(); 1225 if (Token.isNot(MIToken::exclaim)) 1226 return error("expected a metadata node"); 1227 lex(); 1228 1229 MDNode *MD; 1230 if (parseMDTuple(MD, IsDistinct)) 1231 return true; 1232 1233 auto FI = PFS.MachineForwardRefMDNodes.find(ID); 1234 if (FI != PFS.MachineForwardRefMDNodes.end()) { 1235 FI->second.first->replaceAllUsesWith(MD); 1236 PFS.MachineForwardRefMDNodes.erase(FI); 1237 1238 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work"); 1239 } else { 1240 if (PFS.MachineMetadataNodes.count(ID)) 1241 return error("Metadata id is already used"); 1242 PFS.MachineMetadataNodes[ID].reset(MD); 1243 } 1244 1245 return false; 1246 } 1247 1248 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 1249 SmallVector<Metadata *, 16> Elts; 1250 if (parseMDNodeVector(Elts)) 1251 return true; 1252 MD = (IsDistinct ? MDTuple::getDistinct 1253 : MDTuple::get)(MF.getFunction().getContext(), Elts); 1254 return false; 1255 } 1256 1257 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 1258 if (Token.isNot(MIToken::lbrace)) 1259 return error("expected '{' here"); 1260 lex(); 1261 1262 if (Token.is(MIToken::rbrace)) { 1263 lex(); 1264 return false; 1265 } 1266 1267 do { 1268 Metadata *MD; 1269 if (parseMetadata(MD)) 1270 return true; 1271 1272 Elts.push_back(MD); 1273 1274 if (Token.isNot(MIToken::comma)) 1275 break; 1276 lex(); 1277 } while (true); 1278 1279 if (Token.isNot(MIToken::rbrace)) 1280 return error("expected end of metadata node"); 1281 lex(); 1282 1283 return false; 1284 } 1285 1286 // ::= !42 1287 // ::= !"string" 1288 bool MIParser::parseMetadata(Metadata *&MD) { 1289 if (Token.isNot(MIToken::exclaim)) 1290 return error("expected '!' here"); 1291 lex(); 1292 1293 if (Token.is(MIToken::StringConstant)) { 1294 std::string Str; 1295 if (parseStringConstant(Str)) 1296 return true; 1297 MD = MDString::get(MF.getFunction().getContext(), Str); 1298 return false; 1299 } 1300 1301 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1302 return error("expected metadata id after '!'"); 1303 1304 SMLoc Loc = mapSMLoc(Token.location()); 1305 1306 unsigned ID = 0; 1307 if (getUnsigned(ID)) 1308 return true; 1309 lex(); 1310 1311 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1312 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) { 1313 MD = NodeInfo->second.get(); 1314 return false; 1315 } 1316 // Check machine metadata. 1317 NodeInfo = PFS.MachineMetadataNodes.find(ID); 1318 if (NodeInfo != PFS.MachineMetadataNodes.end()) { 1319 MD = NodeInfo->second.get(); 1320 return false; 1321 } 1322 // Forward reference. 1323 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID]; 1324 FwdRef = std::make_pair( 1325 MDTuple::getTemporary(MF.getFunction().getContext(), None), Loc); 1326 PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get()); 1327 MD = FwdRef.first.get(); 1328 1329 return false; 1330 } 1331 1332 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1333 assert(MO.isImplicit()); 1334 return MO.isDef() ? "implicit-def" : "implicit"; 1335 } 1336 1337 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1338 Register Reg) { 1339 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1340 return StringRef(TRI->getName(Reg)).lower(); 1341 } 1342 1343 /// Return true if the parsed machine operands contain a given machine operand. 1344 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1345 ArrayRef<ParsedMachineOperand> Operands) { 1346 for (const auto &I : Operands) { 1347 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1348 return true; 1349 } 1350 return false; 1351 } 1352 1353 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1354 const MCInstrDesc &MCID) { 1355 if (MCID.isCall()) 1356 // We can't verify call instructions as they can contain arbitrary implicit 1357 // register and register mask operands. 1358 return false; 1359 1360 // Gather all the expected implicit operands. 1361 SmallVector<MachineOperand, 4> ImplicitOperands; 1362 if (MCID.ImplicitDefs) 1363 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1364 ImplicitOperands.push_back( 1365 MachineOperand::CreateReg(*ImpDefs, true, true)); 1366 if (MCID.ImplicitUses) 1367 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1368 ImplicitOperands.push_back( 1369 MachineOperand::CreateReg(*ImpUses, false, true)); 1370 1371 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1372 assert(TRI && "Expected target register info"); 1373 for (const auto &I : ImplicitOperands) { 1374 if (isImplicitOperandIn(I, Operands)) 1375 continue; 1376 return error(Operands.empty() ? Token.location() : Operands.back().End, 1377 Twine("missing implicit register operand '") + 1378 printImplicitRegisterFlag(I) + " $" + 1379 getRegisterName(TRI, I.getReg()) + "'"); 1380 } 1381 return false; 1382 } 1383 1384 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1385 // Allow frame and fast math flags for OPCODE 1386 while (Token.is(MIToken::kw_frame_setup) || 1387 Token.is(MIToken::kw_frame_destroy) || 1388 Token.is(MIToken::kw_nnan) || 1389 Token.is(MIToken::kw_ninf) || 1390 Token.is(MIToken::kw_nsz) || 1391 Token.is(MIToken::kw_arcp) || 1392 Token.is(MIToken::kw_contract) || 1393 Token.is(MIToken::kw_afn) || 1394 Token.is(MIToken::kw_reassoc) || 1395 Token.is(MIToken::kw_nuw) || 1396 Token.is(MIToken::kw_nsw) || 1397 Token.is(MIToken::kw_exact) || 1398 Token.is(MIToken::kw_nofpexcept)) { 1399 // Mine frame and fast math flags 1400 if (Token.is(MIToken::kw_frame_setup)) 1401 Flags |= MachineInstr::FrameSetup; 1402 if (Token.is(MIToken::kw_frame_destroy)) 1403 Flags |= MachineInstr::FrameDestroy; 1404 if (Token.is(MIToken::kw_nnan)) 1405 Flags |= MachineInstr::FmNoNans; 1406 if (Token.is(MIToken::kw_ninf)) 1407 Flags |= MachineInstr::FmNoInfs; 1408 if (Token.is(MIToken::kw_nsz)) 1409 Flags |= MachineInstr::FmNsz; 1410 if (Token.is(MIToken::kw_arcp)) 1411 Flags |= MachineInstr::FmArcp; 1412 if (Token.is(MIToken::kw_contract)) 1413 Flags |= MachineInstr::FmContract; 1414 if (Token.is(MIToken::kw_afn)) 1415 Flags |= MachineInstr::FmAfn; 1416 if (Token.is(MIToken::kw_reassoc)) 1417 Flags |= MachineInstr::FmReassoc; 1418 if (Token.is(MIToken::kw_nuw)) 1419 Flags |= MachineInstr::NoUWrap; 1420 if (Token.is(MIToken::kw_nsw)) 1421 Flags |= MachineInstr::NoSWrap; 1422 if (Token.is(MIToken::kw_exact)) 1423 Flags |= MachineInstr::IsExact; 1424 if (Token.is(MIToken::kw_nofpexcept)) 1425 Flags |= MachineInstr::NoFPExcept; 1426 1427 lex(); 1428 } 1429 if (Token.isNot(MIToken::Identifier)) 1430 return error("expected a machine instruction"); 1431 StringRef InstrName = Token.stringValue(); 1432 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1433 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1434 lex(); 1435 return false; 1436 } 1437 1438 bool MIParser::parseNamedRegister(Register &Reg) { 1439 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1440 StringRef Name = Token.stringValue(); 1441 if (PFS.Target.getRegisterByName(Name, Reg)) 1442 return error(Twine("unknown register name '") + Name + "'"); 1443 return false; 1444 } 1445 1446 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1447 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1448 StringRef Name = Token.stringValue(); 1449 // TODO: Check that the VReg name is not the same as a physical register name. 1450 // If it is, then print a warning (when warnings are implemented). 1451 Info = &PFS.getVRegInfoNamed(Name); 1452 return false; 1453 } 1454 1455 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1456 if (Token.is(MIToken::NamedVirtualRegister)) 1457 return parseNamedVirtualRegister(Info); 1458 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1459 unsigned ID; 1460 if (getUnsigned(ID)) 1461 return true; 1462 Info = &PFS.getVRegInfo(ID); 1463 return false; 1464 } 1465 1466 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1467 switch (Token.kind()) { 1468 case MIToken::underscore: 1469 Reg = 0; 1470 return false; 1471 case MIToken::NamedRegister: 1472 return parseNamedRegister(Reg); 1473 case MIToken::NamedVirtualRegister: 1474 case MIToken::VirtualRegister: 1475 if (parseVirtualRegister(Info)) 1476 return true; 1477 Reg = Info->VReg; 1478 return false; 1479 // TODO: Parse other register kinds. 1480 default: 1481 llvm_unreachable("The current token should be a register"); 1482 } 1483 } 1484 1485 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1486 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1487 return error("expected '_', register class, or register bank name"); 1488 StringRef::iterator Loc = Token.location(); 1489 StringRef Name = Token.stringValue(); 1490 1491 // Was it a register class? 1492 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1493 if (RC) { 1494 lex(); 1495 1496 switch (RegInfo.Kind) { 1497 case VRegInfo::UNKNOWN: 1498 case VRegInfo::NORMAL: 1499 RegInfo.Kind = VRegInfo::NORMAL; 1500 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1501 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1502 return error(Loc, Twine("conflicting register classes, previously: ") + 1503 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1504 } 1505 RegInfo.D.RC = RC; 1506 RegInfo.Explicit = true; 1507 return false; 1508 1509 case VRegInfo::GENERIC: 1510 case VRegInfo::REGBANK: 1511 return error(Loc, "register class specification on generic register"); 1512 } 1513 llvm_unreachable("Unexpected register kind"); 1514 } 1515 1516 // Should be a register bank or a generic register. 1517 const RegisterBank *RegBank = nullptr; 1518 if (Name != "_") { 1519 RegBank = PFS.Target.getRegBank(Name); 1520 if (!RegBank) 1521 return error(Loc, "expected '_', register class, or register bank name"); 1522 } 1523 1524 lex(); 1525 1526 switch (RegInfo.Kind) { 1527 case VRegInfo::UNKNOWN: 1528 case VRegInfo::GENERIC: 1529 case VRegInfo::REGBANK: 1530 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1531 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1532 return error(Loc, "conflicting generic register banks"); 1533 RegInfo.D.RegBank = RegBank; 1534 RegInfo.Explicit = true; 1535 return false; 1536 1537 case VRegInfo::NORMAL: 1538 return error(Loc, "register bank specification on normal register"); 1539 } 1540 llvm_unreachable("Unexpected register kind"); 1541 } 1542 1543 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1544 const unsigned OldFlags = Flags; 1545 switch (Token.kind()) { 1546 case MIToken::kw_implicit: 1547 Flags |= RegState::Implicit; 1548 break; 1549 case MIToken::kw_implicit_define: 1550 Flags |= RegState::ImplicitDefine; 1551 break; 1552 case MIToken::kw_def: 1553 Flags |= RegState::Define; 1554 break; 1555 case MIToken::kw_dead: 1556 Flags |= RegState::Dead; 1557 break; 1558 case MIToken::kw_killed: 1559 Flags |= RegState::Kill; 1560 break; 1561 case MIToken::kw_undef: 1562 Flags |= RegState::Undef; 1563 break; 1564 case MIToken::kw_internal: 1565 Flags |= RegState::InternalRead; 1566 break; 1567 case MIToken::kw_early_clobber: 1568 Flags |= RegState::EarlyClobber; 1569 break; 1570 case MIToken::kw_debug_use: 1571 Flags |= RegState::Debug; 1572 break; 1573 case MIToken::kw_renamable: 1574 Flags |= RegState::Renamable; 1575 break; 1576 default: 1577 llvm_unreachable("The current token should be a register flag"); 1578 } 1579 if (OldFlags == Flags) 1580 // We know that the same flag is specified more than once when the flags 1581 // weren't modified. 1582 return error("duplicate '" + Token.stringValue() + "' register flag"); 1583 lex(); 1584 return false; 1585 } 1586 1587 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1588 assert(Token.is(MIToken::dot)); 1589 lex(); 1590 if (Token.isNot(MIToken::Identifier)) 1591 return error("expected a subregister index after '.'"); 1592 auto Name = Token.stringValue(); 1593 SubReg = PFS.Target.getSubRegIndex(Name); 1594 if (!SubReg) 1595 return error(Twine("use of unknown subregister index '") + Name + "'"); 1596 lex(); 1597 return false; 1598 } 1599 1600 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1601 if (!consumeIfPresent(MIToken::kw_tied_def)) 1602 return true; 1603 if (Token.isNot(MIToken::IntegerLiteral)) 1604 return error("expected an integer literal after 'tied-def'"); 1605 if (getUnsigned(TiedDefIdx)) 1606 return true; 1607 lex(); 1608 if (expectAndConsume(MIToken::rparen)) 1609 return true; 1610 return false; 1611 } 1612 1613 bool MIParser::assignRegisterTies(MachineInstr &MI, 1614 ArrayRef<ParsedMachineOperand> Operands) { 1615 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1616 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1617 if (!Operands[I].TiedDefIdx) 1618 continue; 1619 // The parser ensures that this operand is a register use, so we just have 1620 // to check the tied-def operand. 1621 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1622 if (DefIdx >= E) 1623 return error(Operands[I].Begin, 1624 Twine("use of invalid tied-def operand index '" + 1625 Twine(DefIdx) + "'; instruction has only ") + 1626 Twine(E) + " operands"); 1627 const auto &DefOperand = Operands[DefIdx].Operand; 1628 if (!DefOperand.isReg() || !DefOperand.isDef()) 1629 // FIXME: add note with the def operand. 1630 return error(Operands[I].Begin, 1631 Twine("use of invalid tied-def operand index '") + 1632 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1633 " isn't a defined register"); 1634 // Check that the tied-def operand wasn't tied elsewhere. 1635 for (const auto &TiedPair : TiedRegisterPairs) { 1636 if (TiedPair.first == DefIdx) 1637 return error(Operands[I].Begin, 1638 Twine("the tied-def operand #") + Twine(DefIdx) + 1639 " is already tied with another register operand"); 1640 } 1641 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1642 } 1643 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1644 // indices must be less than tied max. 1645 for (const auto &TiedPair : TiedRegisterPairs) 1646 MI.tieOperands(TiedPair.first, TiedPair.second); 1647 return false; 1648 } 1649 1650 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1651 Optional<unsigned> &TiedDefIdx, 1652 bool IsDef) { 1653 unsigned Flags = IsDef ? RegState::Define : 0; 1654 while (Token.isRegisterFlag()) { 1655 if (parseRegisterFlag(Flags)) 1656 return true; 1657 } 1658 if (!Token.isRegister()) 1659 return error("expected a register after register flags"); 1660 Register Reg; 1661 VRegInfo *RegInfo; 1662 if (parseRegister(Reg, RegInfo)) 1663 return true; 1664 lex(); 1665 unsigned SubReg = 0; 1666 if (Token.is(MIToken::dot)) { 1667 if (parseSubRegisterIndex(SubReg)) 1668 return true; 1669 if (!Register::isVirtualRegister(Reg)) 1670 return error("subregister index expects a virtual register"); 1671 } 1672 if (Token.is(MIToken::colon)) { 1673 if (!Register::isVirtualRegister(Reg)) 1674 return error("register class specification expects a virtual register"); 1675 lex(); 1676 if (parseRegisterClassOrBank(*RegInfo)) 1677 return true; 1678 } 1679 MachineRegisterInfo &MRI = MF.getRegInfo(); 1680 if ((Flags & RegState::Define) == 0) { 1681 if (consumeIfPresent(MIToken::lparen)) { 1682 unsigned Idx; 1683 if (!parseRegisterTiedDefIndex(Idx)) 1684 TiedDefIdx = Idx; 1685 else { 1686 // Try a redundant low-level type. 1687 LLT Ty; 1688 if (parseLowLevelType(Token.location(), Ty)) 1689 return error("expected tied-def or low-level type after '('"); 1690 1691 if (expectAndConsume(MIToken::rparen)) 1692 return true; 1693 1694 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1695 return error("inconsistent type for generic virtual register"); 1696 1697 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1698 MRI.setType(Reg, Ty); 1699 } 1700 } 1701 } else if (consumeIfPresent(MIToken::lparen)) { 1702 // Virtual registers may have a tpe with GlobalISel. 1703 if (!Register::isVirtualRegister(Reg)) 1704 return error("unexpected type on physical register"); 1705 1706 LLT Ty; 1707 if (parseLowLevelType(Token.location(), Ty)) 1708 return true; 1709 1710 if (expectAndConsume(MIToken::rparen)) 1711 return true; 1712 1713 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1714 return error("inconsistent type for generic virtual register"); 1715 1716 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1717 MRI.setType(Reg, Ty); 1718 } else if (Register::isVirtualRegister(Reg)) { 1719 // Generic virtual registers must have a type. 1720 // If we end up here this means the type hasn't been specified and 1721 // this is bad! 1722 if (RegInfo->Kind == VRegInfo::GENERIC || 1723 RegInfo->Kind == VRegInfo::REGBANK) 1724 return error("generic virtual registers must have a type"); 1725 } 1726 Dest = MachineOperand::CreateReg( 1727 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1728 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1729 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1730 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1731 1732 return false; 1733 } 1734 1735 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1736 assert(Token.is(MIToken::IntegerLiteral)); 1737 const APSInt &Int = Token.integerValue(); 1738 if (Int.getMinSignedBits() > 64) 1739 return error("integer literal is too large to be an immediate operand"); 1740 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1741 lex(); 1742 return false; 1743 } 1744 1745 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1746 const unsigned OpIdx, 1747 MachineOperand &Dest, 1748 const MIRFormatter &MF) { 1749 assert(Token.is(MIToken::dot)); 1750 auto Loc = Token.location(); // record start position 1751 size_t Len = 1; // for "." 1752 lex(); 1753 1754 // Handle the case that mnemonic starts with number. 1755 if (Token.is(MIToken::IntegerLiteral)) { 1756 Len += Token.range().size(); 1757 lex(); 1758 } 1759 1760 StringRef Src; 1761 if (Token.is(MIToken::comma)) 1762 Src = StringRef(Loc, Len); 1763 else { 1764 assert(Token.is(MIToken::Identifier)); 1765 Src = StringRef(Loc, Len + Token.stringValue().size()); 1766 } 1767 int64_t Val; 1768 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1769 [this](StringRef::iterator Loc, const Twine &Msg) 1770 -> bool { return error(Loc, Msg); })) 1771 return true; 1772 1773 Dest = MachineOperand::CreateImm(Val); 1774 if (!Token.is(MIToken::comma)) 1775 lex(); 1776 return false; 1777 } 1778 1779 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1780 PerFunctionMIParsingState &PFS, const Constant *&C, 1781 ErrorCallbackType ErrCB) { 1782 auto Source = StringValue.str(); // The source has to be null terminated. 1783 SMDiagnostic Err; 1784 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1785 &PFS.IRSlots); 1786 if (!C) 1787 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1788 return false; 1789 } 1790 1791 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1792 const Constant *&C) { 1793 return ::parseIRConstant( 1794 Loc, StringValue, PFS, C, 1795 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1796 return error(Loc, Msg); 1797 }); 1798 } 1799 1800 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1801 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1802 return true; 1803 lex(); 1804 return false; 1805 } 1806 1807 // See LLT implemntation for bit size limits. 1808 static bool verifyScalarSize(uint64_t Size) { 1809 return Size != 0 && isUInt<16>(Size); 1810 } 1811 1812 static bool verifyVectorElementCount(uint64_t NumElts) { 1813 return NumElts != 0 && isUInt<16>(NumElts); 1814 } 1815 1816 static bool verifyAddrSpace(uint64_t AddrSpace) { 1817 return isUInt<24>(AddrSpace); 1818 } 1819 1820 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1821 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1822 StringRef SizeStr = Token.range().drop_front(); 1823 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1824 return error("expected integers after 's'/'p' type character"); 1825 } 1826 1827 if (Token.range().front() == 's') { 1828 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1829 if (!verifyScalarSize(ScalarSize)) 1830 return error("invalid size for scalar type"); 1831 1832 Ty = LLT::scalar(ScalarSize); 1833 lex(); 1834 return false; 1835 } else if (Token.range().front() == 'p') { 1836 const DataLayout &DL = MF.getDataLayout(); 1837 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1838 if (!verifyAddrSpace(AS)) 1839 return error("invalid address space number"); 1840 1841 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1842 lex(); 1843 return false; 1844 } 1845 1846 // Now we're looking for a vector. 1847 if (Token.isNot(MIToken::less)) 1848 return error(Loc, 1849 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1850 lex(); 1851 1852 if (Token.isNot(MIToken::IntegerLiteral)) 1853 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1854 uint64_t NumElements = Token.integerValue().getZExtValue(); 1855 if (!verifyVectorElementCount(NumElements)) 1856 return error("invalid number of vector elements"); 1857 1858 lex(); 1859 1860 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1861 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1862 lex(); 1863 1864 if (Token.range().front() != 's' && Token.range().front() != 'p') 1865 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1866 StringRef SizeStr = Token.range().drop_front(); 1867 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1868 return error("expected integers after 's'/'p' type character"); 1869 1870 if (Token.range().front() == 's') { 1871 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1872 if (!verifyScalarSize(ScalarSize)) 1873 return error("invalid size for scalar type"); 1874 Ty = LLT::scalar(ScalarSize); 1875 } else if (Token.range().front() == 'p') { 1876 const DataLayout &DL = MF.getDataLayout(); 1877 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1878 if (!verifyAddrSpace(AS)) 1879 return error("invalid address space number"); 1880 1881 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1882 } else 1883 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1884 lex(); 1885 1886 if (Token.isNot(MIToken::greater)) 1887 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1888 lex(); 1889 1890 Ty = LLT::fixed_vector(NumElements, Ty); 1891 return false; 1892 } 1893 1894 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1895 assert(Token.is(MIToken::Identifier)); 1896 StringRef TypeStr = Token.range(); 1897 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1898 TypeStr.front() != 'p') 1899 return error( 1900 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1901 StringRef SizeStr = Token.range().drop_front(); 1902 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1903 return error("expected integers after 'i'/'s'/'p' type character"); 1904 1905 auto Loc = Token.location(); 1906 lex(); 1907 if (Token.isNot(MIToken::IntegerLiteral)) { 1908 if (Token.isNot(MIToken::Identifier) || 1909 !(Token.range() == "true" || Token.range() == "false")) 1910 return error("expected an integer literal"); 1911 } 1912 const Constant *C = nullptr; 1913 if (parseIRConstant(Loc, C)) 1914 return true; 1915 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1916 return false; 1917 } 1918 1919 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1920 auto Loc = Token.location(); 1921 lex(); 1922 if (Token.isNot(MIToken::FloatingPointLiteral) && 1923 Token.isNot(MIToken::HexLiteral)) 1924 return error("expected a floating point literal"); 1925 const Constant *C = nullptr; 1926 if (parseIRConstant(Loc, C)) 1927 return true; 1928 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1929 return false; 1930 } 1931 1932 static bool getHexUint(const MIToken &Token, APInt &Result) { 1933 assert(Token.is(MIToken::HexLiteral)); 1934 StringRef S = Token.range(); 1935 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1936 // This could be a floating point literal with a special prefix. 1937 if (!isxdigit(S[2])) 1938 return true; 1939 StringRef V = S.substr(2); 1940 APInt A(V.size()*4, V, 16); 1941 1942 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1943 // sure it isn't the case before constructing result. 1944 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1945 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1946 return false; 1947 } 1948 1949 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1950 ErrorCallbackType ErrCB) { 1951 if (Token.hasIntegerValue()) { 1952 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1953 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1954 if (Val64 == Limit) 1955 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1956 Result = Val64; 1957 return false; 1958 } 1959 if (Token.is(MIToken::HexLiteral)) { 1960 APInt A; 1961 if (getHexUint(Token, A)) 1962 return true; 1963 if (A.getBitWidth() > 32) 1964 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1965 Result = A.getZExtValue(); 1966 return false; 1967 } 1968 return true; 1969 } 1970 1971 bool MIParser::getUnsigned(unsigned &Result) { 1972 return ::getUnsigned( 1973 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1974 return error(Loc, Msg); 1975 }); 1976 } 1977 1978 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1979 assert(Token.is(MIToken::MachineBasicBlock) || 1980 Token.is(MIToken::MachineBasicBlockLabel)); 1981 unsigned Number; 1982 if (getUnsigned(Number)) 1983 return true; 1984 auto MBBInfo = PFS.MBBSlots.find(Number); 1985 if (MBBInfo == PFS.MBBSlots.end()) 1986 return error(Twine("use of undefined machine basic block #") + 1987 Twine(Number)); 1988 MBB = MBBInfo->second; 1989 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1990 // we drop the <irname> from the bb.<id>.<irname> format. 1991 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1992 return error(Twine("the name of machine basic block #") + Twine(Number) + 1993 " isn't '" + Token.stringValue() + "'"); 1994 return false; 1995 } 1996 1997 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1998 MachineBasicBlock *MBB; 1999 if (parseMBBReference(MBB)) 2000 return true; 2001 Dest = MachineOperand::CreateMBB(MBB); 2002 lex(); 2003 return false; 2004 } 2005 2006 bool MIParser::parseStackFrameIndex(int &FI) { 2007 assert(Token.is(MIToken::StackObject)); 2008 unsigned ID; 2009 if (getUnsigned(ID)) 2010 return true; 2011 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 2012 if (ObjectInfo == PFS.StackObjectSlots.end()) 2013 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 2014 "'"); 2015 StringRef Name; 2016 if (const auto *Alloca = 2017 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 2018 Name = Alloca->getName(); 2019 if (!Token.stringValue().empty() && Token.stringValue() != Name) 2020 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 2021 "' isn't '" + Token.stringValue() + "'"); 2022 lex(); 2023 FI = ObjectInfo->second; 2024 return false; 2025 } 2026 2027 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 2028 int FI; 2029 if (parseStackFrameIndex(FI)) 2030 return true; 2031 Dest = MachineOperand::CreateFI(FI); 2032 return false; 2033 } 2034 2035 bool MIParser::parseFixedStackFrameIndex(int &FI) { 2036 assert(Token.is(MIToken::FixedStackObject)); 2037 unsigned ID; 2038 if (getUnsigned(ID)) 2039 return true; 2040 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 2041 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 2042 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 2043 Twine(ID) + "'"); 2044 lex(); 2045 FI = ObjectInfo->second; 2046 return false; 2047 } 2048 2049 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 2050 int FI; 2051 if (parseFixedStackFrameIndex(FI)) 2052 return true; 2053 Dest = MachineOperand::CreateFI(FI); 2054 return false; 2055 } 2056 2057 static bool parseGlobalValue(const MIToken &Token, 2058 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 2059 ErrorCallbackType ErrCB) { 2060 switch (Token.kind()) { 2061 case MIToken::NamedGlobalValue: { 2062 const Module *M = PFS.MF.getFunction().getParent(); 2063 GV = M->getNamedValue(Token.stringValue()); 2064 if (!GV) 2065 return ErrCB(Token.location(), Twine("use of undefined global value '") + 2066 Token.range() + "'"); 2067 break; 2068 } 2069 case MIToken::GlobalValue: { 2070 unsigned GVIdx; 2071 if (getUnsigned(Token, GVIdx, ErrCB)) 2072 return true; 2073 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 2074 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 2075 Twine(GVIdx) + "'"); 2076 GV = PFS.IRSlots.GlobalValues[GVIdx]; 2077 break; 2078 } 2079 default: 2080 llvm_unreachable("The current token should be a global value"); 2081 } 2082 return false; 2083 } 2084 2085 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 2086 return ::parseGlobalValue( 2087 Token, PFS, GV, 2088 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2089 return error(Loc, Msg); 2090 }); 2091 } 2092 2093 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 2094 GlobalValue *GV = nullptr; 2095 if (parseGlobalValue(GV)) 2096 return true; 2097 lex(); 2098 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 2099 if (parseOperandsOffset(Dest)) 2100 return true; 2101 return false; 2102 } 2103 2104 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 2105 assert(Token.is(MIToken::ConstantPoolItem)); 2106 unsigned ID; 2107 if (getUnsigned(ID)) 2108 return true; 2109 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 2110 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 2111 return error("use of undefined constant '%const." + Twine(ID) + "'"); 2112 lex(); 2113 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 2114 if (parseOperandsOffset(Dest)) 2115 return true; 2116 return false; 2117 } 2118 2119 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 2120 assert(Token.is(MIToken::JumpTableIndex)); 2121 unsigned ID; 2122 if (getUnsigned(ID)) 2123 return true; 2124 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 2125 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 2126 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 2127 lex(); 2128 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 2129 return false; 2130 } 2131 2132 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 2133 assert(Token.is(MIToken::ExternalSymbol)); 2134 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 2135 lex(); 2136 Dest = MachineOperand::CreateES(Symbol); 2137 if (parseOperandsOffset(Dest)) 2138 return true; 2139 return false; 2140 } 2141 2142 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 2143 assert(Token.is(MIToken::MCSymbol)); 2144 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 2145 lex(); 2146 Dest = MachineOperand::CreateMCSymbol(Symbol); 2147 if (parseOperandsOffset(Dest)) 2148 return true; 2149 return false; 2150 } 2151 2152 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 2153 assert(Token.is(MIToken::SubRegisterIndex)); 2154 StringRef Name = Token.stringValue(); 2155 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 2156 if (SubRegIndex == 0) 2157 return error(Twine("unknown subregister index '") + Name + "'"); 2158 lex(); 2159 Dest = MachineOperand::CreateImm(SubRegIndex); 2160 return false; 2161 } 2162 2163 bool MIParser::parseMDNode(MDNode *&Node) { 2164 assert(Token.is(MIToken::exclaim)); 2165 2166 auto Loc = Token.location(); 2167 lex(); 2168 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2169 return error("expected metadata id after '!'"); 2170 unsigned ID; 2171 if (getUnsigned(ID)) 2172 return true; 2173 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 2174 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) { 2175 NodeInfo = PFS.MachineMetadataNodes.find(ID); 2176 if (NodeInfo == PFS.MachineMetadataNodes.end()) 2177 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 2178 } 2179 lex(); 2180 Node = NodeInfo->second.get(); 2181 return false; 2182 } 2183 2184 bool MIParser::parseDIExpression(MDNode *&Expr) { 2185 assert(Token.is(MIToken::md_diexpr)); 2186 lex(); 2187 2188 // FIXME: Share this parsing with the IL parser. 2189 SmallVector<uint64_t, 8> Elements; 2190 2191 if (expectAndConsume(MIToken::lparen)) 2192 return true; 2193 2194 if (Token.isNot(MIToken::rparen)) { 2195 do { 2196 if (Token.is(MIToken::Identifier)) { 2197 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2198 lex(); 2199 Elements.push_back(Op); 2200 continue; 2201 } 2202 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2203 lex(); 2204 Elements.push_back(Enc); 2205 continue; 2206 } 2207 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2208 } 2209 2210 if (Token.isNot(MIToken::IntegerLiteral) || 2211 Token.integerValue().isSigned()) 2212 return error("expected unsigned integer"); 2213 2214 auto &U = Token.integerValue(); 2215 if (U.ugt(UINT64_MAX)) 2216 return error("element too large, limit is " + Twine(UINT64_MAX)); 2217 Elements.push_back(U.getZExtValue()); 2218 lex(); 2219 2220 } while (consumeIfPresent(MIToken::comma)); 2221 } 2222 2223 if (expectAndConsume(MIToken::rparen)) 2224 return true; 2225 2226 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2227 return false; 2228 } 2229 2230 bool MIParser::parseDILocation(MDNode *&Loc) { 2231 assert(Token.is(MIToken::md_dilocation)); 2232 lex(); 2233 2234 bool HaveLine = false; 2235 unsigned Line = 0; 2236 unsigned Column = 0; 2237 MDNode *Scope = nullptr; 2238 MDNode *InlinedAt = nullptr; 2239 bool ImplicitCode = false; 2240 2241 if (expectAndConsume(MIToken::lparen)) 2242 return true; 2243 2244 if (Token.isNot(MIToken::rparen)) { 2245 do { 2246 if (Token.is(MIToken::Identifier)) { 2247 if (Token.stringValue() == "line") { 2248 lex(); 2249 if (expectAndConsume(MIToken::colon)) 2250 return true; 2251 if (Token.isNot(MIToken::IntegerLiteral) || 2252 Token.integerValue().isSigned()) 2253 return error("expected unsigned integer"); 2254 Line = Token.integerValue().getZExtValue(); 2255 HaveLine = true; 2256 lex(); 2257 continue; 2258 } 2259 if (Token.stringValue() == "column") { 2260 lex(); 2261 if (expectAndConsume(MIToken::colon)) 2262 return true; 2263 if (Token.isNot(MIToken::IntegerLiteral) || 2264 Token.integerValue().isSigned()) 2265 return error("expected unsigned integer"); 2266 Column = Token.integerValue().getZExtValue(); 2267 lex(); 2268 continue; 2269 } 2270 if (Token.stringValue() == "scope") { 2271 lex(); 2272 if (expectAndConsume(MIToken::colon)) 2273 return true; 2274 if (parseMDNode(Scope)) 2275 return error("expected metadata node"); 2276 if (!isa<DIScope>(Scope)) 2277 return error("expected DIScope node"); 2278 continue; 2279 } 2280 if (Token.stringValue() == "inlinedAt") { 2281 lex(); 2282 if (expectAndConsume(MIToken::colon)) 2283 return true; 2284 if (Token.is(MIToken::exclaim)) { 2285 if (parseMDNode(InlinedAt)) 2286 return true; 2287 } else if (Token.is(MIToken::md_dilocation)) { 2288 if (parseDILocation(InlinedAt)) 2289 return true; 2290 } else 2291 return error("expected metadata node"); 2292 if (!isa<DILocation>(InlinedAt)) 2293 return error("expected DILocation node"); 2294 continue; 2295 } 2296 if (Token.stringValue() == "isImplicitCode") { 2297 lex(); 2298 if (expectAndConsume(MIToken::colon)) 2299 return true; 2300 if (!Token.is(MIToken::Identifier)) 2301 return error("expected true/false"); 2302 // As far as I can see, we don't have any existing need for parsing 2303 // true/false in MIR yet. Do it ad-hoc until there's something else 2304 // that needs it. 2305 if (Token.stringValue() == "true") 2306 ImplicitCode = true; 2307 else if (Token.stringValue() == "false") 2308 ImplicitCode = false; 2309 else 2310 return error("expected true/false"); 2311 lex(); 2312 continue; 2313 } 2314 } 2315 return error(Twine("invalid DILocation argument '") + 2316 Token.stringValue() + "'"); 2317 } while (consumeIfPresent(MIToken::comma)); 2318 } 2319 2320 if (expectAndConsume(MIToken::rparen)) 2321 return true; 2322 2323 if (!HaveLine) 2324 return error("DILocation requires line number"); 2325 if (!Scope) 2326 return error("DILocation requires a scope"); 2327 2328 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2329 InlinedAt, ImplicitCode); 2330 return false; 2331 } 2332 2333 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2334 MDNode *Node = nullptr; 2335 if (Token.is(MIToken::exclaim)) { 2336 if (parseMDNode(Node)) 2337 return true; 2338 } else if (Token.is(MIToken::md_diexpr)) { 2339 if (parseDIExpression(Node)) 2340 return true; 2341 } 2342 Dest = MachineOperand::CreateMetadata(Node); 2343 return false; 2344 } 2345 2346 bool MIParser::parseCFIOffset(int &Offset) { 2347 if (Token.isNot(MIToken::IntegerLiteral)) 2348 return error("expected a cfi offset"); 2349 if (Token.integerValue().getMinSignedBits() > 32) 2350 return error("expected a 32 bit integer (the cfi offset is too large)"); 2351 Offset = (int)Token.integerValue().getExtValue(); 2352 lex(); 2353 return false; 2354 } 2355 2356 bool MIParser::parseCFIRegister(Register &Reg) { 2357 if (Token.isNot(MIToken::NamedRegister)) 2358 return error("expected a cfi register"); 2359 Register LLVMReg; 2360 if (parseNamedRegister(LLVMReg)) 2361 return true; 2362 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2363 assert(TRI && "Expected target register info"); 2364 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2365 if (DwarfReg < 0) 2366 return error("invalid DWARF register"); 2367 Reg = (unsigned)DwarfReg; 2368 lex(); 2369 return false; 2370 } 2371 2372 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) { 2373 if (Token.isNot(MIToken::IntegerLiteral)) 2374 return error("expected a cfi address space literal"); 2375 if (Token.integerValue().isSigned()) 2376 return error("expected an unsigned integer (cfi address space)"); 2377 AddressSpace = Token.integerValue().getZExtValue(); 2378 lex(); 2379 return false; 2380 } 2381 2382 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2383 do { 2384 if (Token.isNot(MIToken::HexLiteral)) 2385 return error("expected a hexadecimal literal"); 2386 unsigned Value; 2387 if (getUnsigned(Value)) 2388 return true; 2389 if (Value > UINT8_MAX) 2390 return error("expected a 8-bit integer (too large)"); 2391 Values.push_back(static_cast<uint8_t>(Value)); 2392 lex(); 2393 } while (consumeIfPresent(MIToken::comma)); 2394 return false; 2395 } 2396 2397 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2398 auto Kind = Token.kind(); 2399 lex(); 2400 int Offset; 2401 Register Reg; 2402 unsigned AddressSpace; 2403 unsigned CFIIndex; 2404 switch (Kind) { 2405 case MIToken::kw_cfi_same_value: 2406 if (parseCFIRegister(Reg)) 2407 return true; 2408 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2409 break; 2410 case MIToken::kw_cfi_offset: 2411 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2412 parseCFIOffset(Offset)) 2413 return true; 2414 CFIIndex = 2415 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2416 break; 2417 case MIToken::kw_cfi_rel_offset: 2418 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2419 parseCFIOffset(Offset)) 2420 return true; 2421 CFIIndex = MF.addFrameInst( 2422 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2423 break; 2424 case MIToken::kw_cfi_def_cfa_register: 2425 if (parseCFIRegister(Reg)) 2426 return true; 2427 CFIIndex = 2428 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2429 break; 2430 case MIToken::kw_cfi_def_cfa_offset: 2431 if (parseCFIOffset(Offset)) 2432 return true; 2433 CFIIndex = 2434 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); 2435 break; 2436 case MIToken::kw_cfi_adjust_cfa_offset: 2437 if (parseCFIOffset(Offset)) 2438 return true; 2439 CFIIndex = MF.addFrameInst( 2440 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2441 break; 2442 case MIToken::kw_cfi_def_cfa: 2443 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2444 parseCFIOffset(Offset)) 2445 return true; 2446 CFIIndex = 2447 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); 2448 break; 2449 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2450 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2451 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) || 2452 parseCFIAddressSpace(AddressSpace)) 2453 return true; 2454 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa( 2455 nullptr, Reg, Offset, AddressSpace)); 2456 break; 2457 case MIToken::kw_cfi_remember_state: 2458 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2459 break; 2460 case MIToken::kw_cfi_restore: 2461 if (parseCFIRegister(Reg)) 2462 return true; 2463 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2464 break; 2465 case MIToken::kw_cfi_restore_state: 2466 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2467 break; 2468 case MIToken::kw_cfi_undefined: 2469 if (parseCFIRegister(Reg)) 2470 return true; 2471 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2472 break; 2473 case MIToken::kw_cfi_register: { 2474 Register Reg2; 2475 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2476 parseCFIRegister(Reg2)) 2477 return true; 2478 2479 CFIIndex = 2480 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2481 break; 2482 } 2483 case MIToken::kw_cfi_window_save: 2484 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2485 break; 2486 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2487 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2488 break; 2489 case MIToken::kw_cfi_escape: { 2490 std::string Values; 2491 if (parseCFIEscapeValues(Values)) 2492 return true; 2493 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2494 break; 2495 } 2496 default: 2497 // TODO: Parse the other CFI operands. 2498 llvm_unreachable("The current token should be a cfi operand"); 2499 } 2500 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2501 return false; 2502 } 2503 2504 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2505 switch (Token.kind()) { 2506 case MIToken::NamedIRBlock: { 2507 BB = dyn_cast_or_null<BasicBlock>( 2508 F.getValueSymbolTable()->lookup(Token.stringValue())); 2509 if (!BB) 2510 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2511 break; 2512 } 2513 case MIToken::IRBlock: { 2514 unsigned SlotNumber = 0; 2515 if (getUnsigned(SlotNumber)) 2516 return true; 2517 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2518 if (!BB) 2519 return error(Twine("use of undefined IR block '%ir-block.") + 2520 Twine(SlotNumber) + "'"); 2521 break; 2522 } 2523 default: 2524 llvm_unreachable("The current token should be an IR block reference"); 2525 } 2526 return false; 2527 } 2528 2529 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2530 assert(Token.is(MIToken::kw_blockaddress)); 2531 lex(); 2532 if (expectAndConsume(MIToken::lparen)) 2533 return true; 2534 if (Token.isNot(MIToken::GlobalValue) && 2535 Token.isNot(MIToken::NamedGlobalValue)) 2536 return error("expected a global value"); 2537 GlobalValue *GV = nullptr; 2538 if (parseGlobalValue(GV)) 2539 return true; 2540 auto *F = dyn_cast<Function>(GV); 2541 if (!F) 2542 return error("expected an IR function reference"); 2543 lex(); 2544 if (expectAndConsume(MIToken::comma)) 2545 return true; 2546 BasicBlock *BB = nullptr; 2547 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2548 return error("expected an IR block reference"); 2549 if (parseIRBlock(BB, *F)) 2550 return true; 2551 lex(); 2552 if (expectAndConsume(MIToken::rparen)) 2553 return true; 2554 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2555 if (parseOperandsOffset(Dest)) 2556 return true; 2557 return false; 2558 } 2559 2560 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2561 assert(Token.is(MIToken::kw_intrinsic)); 2562 lex(); 2563 if (expectAndConsume(MIToken::lparen)) 2564 return error("expected syntax intrinsic(@llvm.whatever)"); 2565 2566 if (Token.isNot(MIToken::NamedGlobalValue)) 2567 return error("expected syntax intrinsic(@llvm.whatever)"); 2568 2569 std::string Name = std::string(Token.stringValue()); 2570 lex(); 2571 2572 if (expectAndConsume(MIToken::rparen)) 2573 return error("expected ')' to terminate intrinsic name"); 2574 2575 // Find out what intrinsic we're dealing with, first try the global namespace 2576 // and then the target's private intrinsics if that fails. 2577 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2578 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2579 if (ID == Intrinsic::not_intrinsic && TII) 2580 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2581 2582 if (ID == Intrinsic::not_intrinsic) 2583 return error("unknown intrinsic name"); 2584 Dest = MachineOperand::CreateIntrinsicID(ID); 2585 2586 return false; 2587 } 2588 2589 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2590 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2591 bool IsFloat = Token.is(MIToken::kw_floatpred); 2592 lex(); 2593 2594 if (expectAndConsume(MIToken::lparen)) 2595 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2596 2597 if (Token.isNot(MIToken::Identifier)) 2598 return error("whatever"); 2599 2600 CmpInst::Predicate Pred; 2601 if (IsFloat) { 2602 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2603 .Case("false", CmpInst::FCMP_FALSE) 2604 .Case("oeq", CmpInst::FCMP_OEQ) 2605 .Case("ogt", CmpInst::FCMP_OGT) 2606 .Case("oge", CmpInst::FCMP_OGE) 2607 .Case("olt", CmpInst::FCMP_OLT) 2608 .Case("ole", CmpInst::FCMP_OLE) 2609 .Case("one", CmpInst::FCMP_ONE) 2610 .Case("ord", CmpInst::FCMP_ORD) 2611 .Case("uno", CmpInst::FCMP_UNO) 2612 .Case("ueq", CmpInst::FCMP_UEQ) 2613 .Case("ugt", CmpInst::FCMP_UGT) 2614 .Case("uge", CmpInst::FCMP_UGE) 2615 .Case("ult", CmpInst::FCMP_ULT) 2616 .Case("ule", CmpInst::FCMP_ULE) 2617 .Case("une", CmpInst::FCMP_UNE) 2618 .Case("true", CmpInst::FCMP_TRUE) 2619 .Default(CmpInst::BAD_FCMP_PREDICATE); 2620 if (!CmpInst::isFPPredicate(Pred)) 2621 return error("invalid floating-point predicate"); 2622 } else { 2623 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2624 .Case("eq", CmpInst::ICMP_EQ) 2625 .Case("ne", CmpInst::ICMP_NE) 2626 .Case("sgt", CmpInst::ICMP_SGT) 2627 .Case("sge", CmpInst::ICMP_SGE) 2628 .Case("slt", CmpInst::ICMP_SLT) 2629 .Case("sle", CmpInst::ICMP_SLE) 2630 .Case("ugt", CmpInst::ICMP_UGT) 2631 .Case("uge", CmpInst::ICMP_UGE) 2632 .Case("ult", CmpInst::ICMP_ULT) 2633 .Case("ule", CmpInst::ICMP_ULE) 2634 .Default(CmpInst::BAD_ICMP_PREDICATE); 2635 if (!CmpInst::isIntPredicate(Pred)) 2636 return error("invalid integer predicate"); 2637 } 2638 2639 lex(); 2640 Dest = MachineOperand::CreatePredicate(Pred); 2641 if (expectAndConsume(MIToken::rparen)) 2642 return error("predicate should be terminated by ')'."); 2643 2644 return false; 2645 } 2646 2647 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2648 assert(Token.is(MIToken::kw_shufflemask)); 2649 2650 lex(); 2651 if (expectAndConsume(MIToken::lparen)) 2652 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2653 2654 SmallVector<int, 32> ShufMask; 2655 do { 2656 if (Token.is(MIToken::kw_undef)) { 2657 ShufMask.push_back(-1); 2658 } else if (Token.is(MIToken::IntegerLiteral)) { 2659 const APSInt &Int = Token.integerValue(); 2660 ShufMask.push_back(Int.getExtValue()); 2661 } else 2662 return error("expected integer constant"); 2663 2664 lex(); 2665 } while (consumeIfPresent(MIToken::comma)); 2666 2667 if (expectAndConsume(MIToken::rparen)) 2668 return error("shufflemask should be terminated by ')'."); 2669 2670 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2671 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2672 return false; 2673 } 2674 2675 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2676 assert(Token.is(MIToken::kw_target_index)); 2677 lex(); 2678 if (expectAndConsume(MIToken::lparen)) 2679 return true; 2680 if (Token.isNot(MIToken::Identifier)) 2681 return error("expected the name of the target index"); 2682 int Index = 0; 2683 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2684 return error("use of undefined target index '" + Token.stringValue() + "'"); 2685 lex(); 2686 if (expectAndConsume(MIToken::rparen)) 2687 return true; 2688 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2689 if (parseOperandsOffset(Dest)) 2690 return true; 2691 return false; 2692 } 2693 2694 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2695 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2696 lex(); 2697 if (expectAndConsume(MIToken::lparen)) 2698 return true; 2699 2700 uint32_t *Mask = MF.allocateRegMask(); 2701 while (true) { 2702 if (Token.isNot(MIToken::NamedRegister)) 2703 return error("expected a named register"); 2704 Register Reg; 2705 if (parseNamedRegister(Reg)) 2706 return true; 2707 lex(); 2708 Mask[Reg / 32] |= 1U << (Reg % 32); 2709 // TODO: Report an error if the same register is used more than once. 2710 if (Token.isNot(MIToken::comma)) 2711 break; 2712 lex(); 2713 } 2714 2715 if (expectAndConsume(MIToken::rparen)) 2716 return true; 2717 Dest = MachineOperand::CreateRegMask(Mask); 2718 return false; 2719 } 2720 2721 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2722 assert(Token.is(MIToken::kw_liveout)); 2723 uint32_t *Mask = MF.allocateRegMask(); 2724 lex(); 2725 if (expectAndConsume(MIToken::lparen)) 2726 return true; 2727 while (true) { 2728 if (Token.isNot(MIToken::NamedRegister)) 2729 return error("expected a named register"); 2730 Register Reg; 2731 if (parseNamedRegister(Reg)) 2732 return true; 2733 lex(); 2734 Mask[Reg / 32] |= 1U << (Reg % 32); 2735 // TODO: Report an error if the same register is used more than once. 2736 if (Token.isNot(MIToken::comma)) 2737 break; 2738 lex(); 2739 } 2740 if (expectAndConsume(MIToken::rparen)) 2741 return true; 2742 Dest = MachineOperand::CreateRegLiveOut(Mask); 2743 return false; 2744 } 2745 2746 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2747 MachineOperand &Dest, 2748 Optional<unsigned> &TiedDefIdx) { 2749 switch (Token.kind()) { 2750 case MIToken::kw_implicit: 2751 case MIToken::kw_implicit_define: 2752 case MIToken::kw_def: 2753 case MIToken::kw_dead: 2754 case MIToken::kw_killed: 2755 case MIToken::kw_undef: 2756 case MIToken::kw_internal: 2757 case MIToken::kw_early_clobber: 2758 case MIToken::kw_debug_use: 2759 case MIToken::kw_renamable: 2760 case MIToken::underscore: 2761 case MIToken::NamedRegister: 2762 case MIToken::VirtualRegister: 2763 case MIToken::NamedVirtualRegister: 2764 return parseRegisterOperand(Dest, TiedDefIdx); 2765 case MIToken::IntegerLiteral: 2766 return parseImmediateOperand(Dest); 2767 case MIToken::kw_half: 2768 case MIToken::kw_float: 2769 case MIToken::kw_double: 2770 case MIToken::kw_x86_fp80: 2771 case MIToken::kw_fp128: 2772 case MIToken::kw_ppc_fp128: 2773 return parseFPImmediateOperand(Dest); 2774 case MIToken::MachineBasicBlock: 2775 return parseMBBOperand(Dest); 2776 case MIToken::StackObject: 2777 return parseStackObjectOperand(Dest); 2778 case MIToken::FixedStackObject: 2779 return parseFixedStackObjectOperand(Dest); 2780 case MIToken::GlobalValue: 2781 case MIToken::NamedGlobalValue: 2782 return parseGlobalAddressOperand(Dest); 2783 case MIToken::ConstantPoolItem: 2784 return parseConstantPoolIndexOperand(Dest); 2785 case MIToken::JumpTableIndex: 2786 return parseJumpTableIndexOperand(Dest); 2787 case MIToken::ExternalSymbol: 2788 return parseExternalSymbolOperand(Dest); 2789 case MIToken::MCSymbol: 2790 return parseMCSymbolOperand(Dest); 2791 case MIToken::SubRegisterIndex: 2792 return parseSubRegisterIndexOperand(Dest); 2793 case MIToken::md_diexpr: 2794 case MIToken::exclaim: 2795 return parseMetadataOperand(Dest); 2796 case MIToken::kw_cfi_same_value: 2797 case MIToken::kw_cfi_offset: 2798 case MIToken::kw_cfi_rel_offset: 2799 case MIToken::kw_cfi_def_cfa_register: 2800 case MIToken::kw_cfi_def_cfa_offset: 2801 case MIToken::kw_cfi_adjust_cfa_offset: 2802 case MIToken::kw_cfi_escape: 2803 case MIToken::kw_cfi_def_cfa: 2804 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2805 case MIToken::kw_cfi_register: 2806 case MIToken::kw_cfi_remember_state: 2807 case MIToken::kw_cfi_restore: 2808 case MIToken::kw_cfi_restore_state: 2809 case MIToken::kw_cfi_undefined: 2810 case MIToken::kw_cfi_window_save: 2811 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2812 return parseCFIOperand(Dest); 2813 case MIToken::kw_blockaddress: 2814 return parseBlockAddressOperand(Dest); 2815 case MIToken::kw_intrinsic: 2816 return parseIntrinsicOperand(Dest); 2817 case MIToken::kw_target_index: 2818 return parseTargetIndexOperand(Dest); 2819 case MIToken::kw_liveout: 2820 return parseLiveoutRegisterMaskOperand(Dest); 2821 case MIToken::kw_floatpred: 2822 case MIToken::kw_intpred: 2823 return parsePredicateOperand(Dest); 2824 case MIToken::kw_shufflemask: 2825 return parseShuffleMaskOperand(Dest); 2826 case MIToken::Error: 2827 return true; 2828 case MIToken::Identifier: 2829 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2830 Dest = MachineOperand::CreateRegMask(RegMask); 2831 lex(); 2832 break; 2833 } else if (Token.stringValue() == "CustomRegMask") { 2834 return parseCustomRegisterMaskOperand(Dest); 2835 } else 2836 return parseTypedImmediateOperand(Dest); 2837 case MIToken::dot: { 2838 const auto *TII = MF.getSubtarget().getInstrInfo(); 2839 if (const auto *Formatter = TII->getMIRFormatter()) { 2840 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2841 } 2842 LLVM_FALLTHROUGH; 2843 } 2844 default: 2845 // FIXME: Parse the MCSymbol machine operand. 2846 return error("expected a machine operand"); 2847 } 2848 return false; 2849 } 2850 2851 bool MIParser::parseMachineOperandAndTargetFlags( 2852 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2853 Optional<unsigned> &TiedDefIdx) { 2854 unsigned TF = 0; 2855 bool HasTargetFlags = false; 2856 if (Token.is(MIToken::kw_target_flags)) { 2857 HasTargetFlags = true; 2858 lex(); 2859 if (expectAndConsume(MIToken::lparen)) 2860 return true; 2861 if (Token.isNot(MIToken::Identifier)) 2862 return error("expected the name of the target flag"); 2863 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2864 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2865 return error("use of undefined target flag '" + Token.stringValue() + 2866 "'"); 2867 } 2868 lex(); 2869 while (Token.is(MIToken::comma)) { 2870 lex(); 2871 if (Token.isNot(MIToken::Identifier)) 2872 return error("expected the name of the target flag"); 2873 unsigned BitFlag = 0; 2874 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2875 return error("use of undefined target flag '" + Token.stringValue() + 2876 "'"); 2877 // TODO: Report an error when using a duplicate bit target flag. 2878 TF |= BitFlag; 2879 lex(); 2880 } 2881 if (expectAndConsume(MIToken::rparen)) 2882 return true; 2883 } 2884 auto Loc = Token.location(); 2885 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2886 return true; 2887 if (!HasTargetFlags) 2888 return false; 2889 if (Dest.isReg()) 2890 return error(Loc, "register operands can't have target flags"); 2891 Dest.setTargetFlags(TF); 2892 return false; 2893 } 2894 2895 bool MIParser::parseOffset(int64_t &Offset) { 2896 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2897 return false; 2898 StringRef Sign = Token.range(); 2899 bool IsNegative = Token.is(MIToken::minus); 2900 lex(); 2901 if (Token.isNot(MIToken::IntegerLiteral)) 2902 return error("expected an integer literal after '" + Sign + "'"); 2903 if (Token.integerValue().getMinSignedBits() > 64) 2904 return error("expected 64-bit integer (too large)"); 2905 Offset = Token.integerValue().getExtValue(); 2906 if (IsNegative) 2907 Offset = -Offset; 2908 lex(); 2909 return false; 2910 } 2911 2912 bool MIParser::parseAlignment(uint64_t &Alignment) { 2913 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign)); 2914 lex(); 2915 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2916 return error("expected an integer literal after 'align'"); 2917 if (getUint64(Alignment)) 2918 return true; 2919 lex(); 2920 2921 if (!isPowerOf2_64(Alignment)) 2922 return error("expected a power-of-2 literal after 'align'"); 2923 2924 return false; 2925 } 2926 2927 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2928 assert(Token.is(MIToken::kw_addrspace)); 2929 lex(); 2930 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2931 return error("expected an integer literal after 'addrspace'"); 2932 if (getUnsigned(Addrspace)) 2933 return true; 2934 lex(); 2935 return false; 2936 } 2937 2938 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2939 int64_t Offset = 0; 2940 if (parseOffset(Offset)) 2941 return true; 2942 Op.setOffset(Offset); 2943 return false; 2944 } 2945 2946 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2947 const Value *&V, ErrorCallbackType ErrCB) { 2948 switch (Token.kind()) { 2949 case MIToken::NamedIRValue: { 2950 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2951 break; 2952 } 2953 case MIToken::IRValue: { 2954 unsigned SlotNumber = 0; 2955 if (getUnsigned(Token, SlotNumber, ErrCB)) 2956 return true; 2957 V = PFS.getIRValue(SlotNumber); 2958 break; 2959 } 2960 case MIToken::NamedGlobalValue: 2961 case MIToken::GlobalValue: { 2962 GlobalValue *GV = nullptr; 2963 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2964 return true; 2965 V = GV; 2966 break; 2967 } 2968 case MIToken::QuotedIRValue: { 2969 const Constant *C = nullptr; 2970 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2971 return true; 2972 V = C; 2973 break; 2974 } 2975 case MIToken::kw_unknown_address: 2976 V = nullptr; 2977 return false; 2978 default: 2979 llvm_unreachable("The current token should be an IR block reference"); 2980 } 2981 if (!V) 2982 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2983 return false; 2984 } 2985 2986 bool MIParser::parseIRValue(const Value *&V) { 2987 return ::parseIRValue( 2988 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2989 return error(Loc, Msg); 2990 }); 2991 } 2992 2993 bool MIParser::getUint64(uint64_t &Result) { 2994 if (Token.hasIntegerValue()) { 2995 if (Token.integerValue().getActiveBits() > 64) 2996 return error("expected 64-bit integer (too large)"); 2997 Result = Token.integerValue().getZExtValue(); 2998 return false; 2999 } 3000 if (Token.is(MIToken::HexLiteral)) { 3001 APInt A; 3002 if (getHexUint(A)) 3003 return true; 3004 if (A.getBitWidth() > 64) 3005 return error("expected 64-bit integer (too large)"); 3006 Result = A.getZExtValue(); 3007 return false; 3008 } 3009 return true; 3010 } 3011 3012 bool MIParser::getHexUint(APInt &Result) { 3013 return ::getHexUint(Token, Result); 3014 } 3015 3016 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 3017 const auto OldFlags = Flags; 3018 switch (Token.kind()) { 3019 case MIToken::kw_volatile: 3020 Flags |= MachineMemOperand::MOVolatile; 3021 break; 3022 case MIToken::kw_non_temporal: 3023 Flags |= MachineMemOperand::MONonTemporal; 3024 break; 3025 case MIToken::kw_dereferenceable: 3026 Flags |= MachineMemOperand::MODereferenceable; 3027 break; 3028 case MIToken::kw_invariant: 3029 Flags |= MachineMemOperand::MOInvariant; 3030 break; 3031 case MIToken::StringConstant: { 3032 MachineMemOperand::Flags TF; 3033 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 3034 return error("use of undefined target MMO flag '" + Token.stringValue() + 3035 "'"); 3036 Flags |= TF; 3037 break; 3038 } 3039 default: 3040 llvm_unreachable("The current token should be a memory operand flag"); 3041 } 3042 if (OldFlags == Flags) 3043 // We know that the same flag is specified more than once when the flags 3044 // weren't modified. 3045 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 3046 lex(); 3047 return false; 3048 } 3049 3050 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 3051 switch (Token.kind()) { 3052 case MIToken::kw_stack: 3053 PSV = MF.getPSVManager().getStack(); 3054 break; 3055 case MIToken::kw_got: 3056 PSV = MF.getPSVManager().getGOT(); 3057 break; 3058 case MIToken::kw_jump_table: 3059 PSV = MF.getPSVManager().getJumpTable(); 3060 break; 3061 case MIToken::kw_constant_pool: 3062 PSV = MF.getPSVManager().getConstantPool(); 3063 break; 3064 case MIToken::FixedStackObject: { 3065 int FI; 3066 if (parseFixedStackFrameIndex(FI)) 3067 return true; 3068 PSV = MF.getPSVManager().getFixedStack(FI); 3069 // The token was already consumed, so use return here instead of break. 3070 return false; 3071 } 3072 case MIToken::StackObject: { 3073 int FI; 3074 if (parseStackFrameIndex(FI)) 3075 return true; 3076 PSV = MF.getPSVManager().getFixedStack(FI); 3077 // The token was already consumed, so use return here instead of break. 3078 return false; 3079 } 3080 case MIToken::kw_call_entry: 3081 lex(); 3082 switch (Token.kind()) { 3083 case MIToken::GlobalValue: 3084 case MIToken::NamedGlobalValue: { 3085 GlobalValue *GV = nullptr; 3086 if (parseGlobalValue(GV)) 3087 return true; 3088 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 3089 break; 3090 } 3091 case MIToken::ExternalSymbol: 3092 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 3093 MF.createExternalSymbolName(Token.stringValue())); 3094 break; 3095 default: 3096 return error( 3097 "expected a global value or an external symbol after 'call-entry'"); 3098 } 3099 break; 3100 case MIToken::kw_custom: { 3101 lex(); 3102 const auto *TII = MF.getSubtarget().getInstrInfo(); 3103 if (const auto *Formatter = TII->getMIRFormatter()) { 3104 if (Formatter->parseCustomPseudoSourceValue( 3105 Token.stringValue(), MF, PFS, PSV, 3106 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 3107 return error(Loc, Msg); 3108 })) 3109 return true; 3110 } else 3111 return error("unable to parse target custom pseudo source value"); 3112 break; 3113 } 3114 default: 3115 llvm_unreachable("The current token should be pseudo source value"); 3116 } 3117 lex(); 3118 return false; 3119 } 3120 3121 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 3122 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 3123 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 3124 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 3125 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 3126 const PseudoSourceValue *PSV = nullptr; 3127 if (parseMemoryPseudoSourceValue(PSV)) 3128 return true; 3129 int64_t Offset = 0; 3130 if (parseOffset(Offset)) 3131 return true; 3132 Dest = MachinePointerInfo(PSV, Offset); 3133 return false; 3134 } 3135 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 3136 Token.isNot(MIToken::GlobalValue) && 3137 Token.isNot(MIToken::NamedGlobalValue) && 3138 Token.isNot(MIToken::QuotedIRValue) && 3139 Token.isNot(MIToken::kw_unknown_address)) 3140 return error("expected an IR value reference"); 3141 const Value *V = nullptr; 3142 if (parseIRValue(V)) 3143 return true; 3144 if (V && !V->getType()->isPointerTy()) 3145 return error("expected a pointer IR value"); 3146 lex(); 3147 int64_t Offset = 0; 3148 if (parseOffset(Offset)) 3149 return true; 3150 Dest = MachinePointerInfo(V, Offset); 3151 return false; 3152 } 3153 3154 bool MIParser::parseOptionalScope(LLVMContext &Context, 3155 SyncScope::ID &SSID) { 3156 SSID = SyncScope::System; 3157 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 3158 lex(); 3159 if (expectAndConsume(MIToken::lparen)) 3160 return error("expected '(' in syncscope"); 3161 3162 std::string SSN; 3163 if (parseStringConstant(SSN)) 3164 return true; 3165 3166 SSID = Context.getOrInsertSyncScopeID(SSN); 3167 if (expectAndConsume(MIToken::rparen)) 3168 return error("expected ')' in syncscope"); 3169 } 3170 3171 return false; 3172 } 3173 3174 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 3175 Order = AtomicOrdering::NotAtomic; 3176 if (Token.isNot(MIToken::Identifier)) 3177 return false; 3178 3179 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 3180 .Case("unordered", AtomicOrdering::Unordered) 3181 .Case("monotonic", AtomicOrdering::Monotonic) 3182 .Case("acquire", AtomicOrdering::Acquire) 3183 .Case("release", AtomicOrdering::Release) 3184 .Case("acq_rel", AtomicOrdering::AcquireRelease) 3185 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 3186 .Default(AtomicOrdering::NotAtomic); 3187 3188 if (Order != AtomicOrdering::NotAtomic) { 3189 lex(); 3190 return false; 3191 } 3192 3193 return error("expected an atomic scope, ordering or a size specification"); 3194 } 3195 3196 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 3197 if (expectAndConsume(MIToken::lparen)) 3198 return true; 3199 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 3200 while (Token.isMemoryOperandFlag()) { 3201 if (parseMemoryOperandFlag(Flags)) 3202 return true; 3203 } 3204 if (Token.isNot(MIToken::Identifier) || 3205 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3206 return error("expected 'load' or 'store' memory operation"); 3207 if (Token.stringValue() == "load") 3208 Flags |= MachineMemOperand::MOLoad; 3209 else 3210 Flags |= MachineMemOperand::MOStore; 3211 lex(); 3212 3213 // Optional 'store' for operands that both load and store. 3214 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3215 Flags |= MachineMemOperand::MOStore; 3216 lex(); 3217 } 3218 3219 // Optional synchronization scope. 3220 SyncScope::ID SSID; 3221 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3222 return true; 3223 3224 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3225 AtomicOrdering Order, FailureOrder; 3226 if (parseOptionalAtomicOrdering(Order)) 3227 return true; 3228 3229 if (parseOptionalAtomicOrdering(FailureOrder)) 3230 return true; 3231 3232 LLT MemoryType; 3233 if (Token.isNot(MIToken::IntegerLiteral) && 3234 Token.isNot(MIToken::kw_unknown_size) && 3235 Token.isNot(MIToken::lparen)) 3236 return error("expected memory LLT, the size integer literal or 'unknown-size' after " 3237 "memory operation"); 3238 3239 uint64_t Size = MemoryLocation::UnknownSize; 3240 if (Token.is(MIToken::IntegerLiteral)) { 3241 if (getUint64(Size)) 3242 return true; 3243 3244 // Convert from bytes to bits for storage. 3245 MemoryType = LLT::scalar(8 * Size); 3246 lex(); 3247 } else if (Token.is(MIToken::kw_unknown_size)) { 3248 Size = MemoryLocation::UnknownSize; 3249 lex(); 3250 } else { 3251 if (expectAndConsume(MIToken::lparen)) 3252 return true; 3253 if (parseLowLevelType(Token.location(), MemoryType)) 3254 return true; 3255 if (expectAndConsume(MIToken::rparen)) 3256 return true; 3257 3258 Size = MemoryType.getSizeInBytes(); 3259 } 3260 3261 MachinePointerInfo Ptr = MachinePointerInfo(); 3262 if (Token.is(MIToken::Identifier)) { 3263 const char *Word = 3264 ((Flags & MachineMemOperand::MOLoad) && 3265 (Flags & MachineMemOperand::MOStore)) 3266 ? "on" 3267 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3268 if (Token.stringValue() != Word) 3269 return error(Twine("expected '") + Word + "'"); 3270 lex(); 3271 3272 if (parseMachinePointerInfo(Ptr)) 3273 return true; 3274 } 3275 uint64_t BaseAlignment = 3276 (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1); 3277 AAMDNodes AAInfo; 3278 MDNode *Range = nullptr; 3279 while (consumeIfPresent(MIToken::comma)) { 3280 switch (Token.kind()) { 3281 case MIToken::kw_align: { 3282 // align is printed if it is different than size. 3283 uint64_t Alignment; 3284 if (parseAlignment(Alignment)) 3285 return true; 3286 if (Ptr.Offset & (Alignment - 1)) { 3287 // MachineMemOperand::getAlign never returns a value greater than the 3288 // alignment of offset, so this just guards against hand-written MIR 3289 // that specifies a large "align" value when it should probably use 3290 // "basealign" instead. 3291 return error("specified alignment is more aligned than offset"); 3292 } 3293 BaseAlignment = Alignment; 3294 break; 3295 } 3296 case MIToken::kw_basealign: 3297 // basealign is printed if it is different than align. 3298 if (parseAlignment(BaseAlignment)) 3299 return true; 3300 break; 3301 case MIToken::kw_addrspace: 3302 if (parseAddrspace(Ptr.AddrSpace)) 3303 return true; 3304 break; 3305 case MIToken::md_tbaa: 3306 lex(); 3307 if (parseMDNode(AAInfo.TBAA)) 3308 return true; 3309 break; 3310 case MIToken::md_alias_scope: 3311 lex(); 3312 if (parseMDNode(AAInfo.Scope)) 3313 return true; 3314 break; 3315 case MIToken::md_noalias: 3316 lex(); 3317 if (parseMDNode(AAInfo.NoAlias)) 3318 return true; 3319 break; 3320 case MIToken::md_range: 3321 lex(); 3322 if (parseMDNode(Range)) 3323 return true; 3324 break; 3325 // TODO: Report an error on duplicate metadata nodes. 3326 default: 3327 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3328 "'!noalias' or '!range'"); 3329 } 3330 } 3331 if (expectAndConsume(MIToken::rparen)) 3332 return true; 3333 Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment), 3334 AAInfo, Range, SSID, Order, FailureOrder); 3335 return false; 3336 } 3337 3338 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3339 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3340 Token.is(MIToken::kw_post_instr_symbol)) && 3341 "Invalid token for a pre- post-instruction symbol!"); 3342 lex(); 3343 if (Token.isNot(MIToken::MCSymbol)) 3344 return error("expected a symbol after 'pre-instr-symbol'"); 3345 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3346 lex(); 3347 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3348 Token.is(MIToken::lbrace)) 3349 return false; 3350 if (Token.isNot(MIToken::comma)) 3351 return error("expected ',' before the next machine operand"); 3352 lex(); 3353 return false; 3354 } 3355 3356 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3357 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3358 "Invalid token for a heap alloc marker!"); 3359 lex(); 3360 parseMDNode(Node); 3361 if (!Node) 3362 return error("expected a MDNode after 'heap-alloc-marker'"); 3363 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3364 Token.is(MIToken::lbrace)) 3365 return false; 3366 if (Token.isNot(MIToken::comma)) 3367 return error("expected ',' before the next machine operand"); 3368 lex(); 3369 return false; 3370 } 3371 3372 static void initSlots2BasicBlocks( 3373 const Function &F, 3374 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3375 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3376 MST.incorporateFunction(F); 3377 for (auto &BB : F) { 3378 if (BB.hasName()) 3379 continue; 3380 int Slot = MST.getLocalSlot(&BB); 3381 if (Slot == -1) 3382 continue; 3383 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3384 } 3385 } 3386 3387 static const BasicBlock *getIRBlockFromSlot( 3388 unsigned Slot, 3389 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3390 return Slots2BasicBlocks.lookup(Slot); 3391 } 3392 3393 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3394 if (Slots2BasicBlocks.empty()) 3395 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3396 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3397 } 3398 3399 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3400 if (&F == &MF.getFunction()) 3401 return getIRBlock(Slot); 3402 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3403 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3404 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3405 } 3406 3407 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3408 // FIXME: Currently we can't recognize temporary or local symbols and call all 3409 // of the appropriate forms to create them. However, this handles basic cases 3410 // well as most of the special aspects are recognized by a prefix on their 3411 // name, and the input names should already be unique. For test cases, keeping 3412 // the symbol name out of the symbol table isn't terribly important. 3413 return MF.getContext().getOrCreateSymbol(Name); 3414 } 3415 3416 bool MIParser::parseStringConstant(std::string &Result) { 3417 if (Token.isNot(MIToken::StringConstant)) 3418 return error("expected string constant"); 3419 Result = std::string(Token.stringValue()); 3420 lex(); 3421 return false; 3422 } 3423 3424 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3425 StringRef Src, 3426 SMDiagnostic &Error) { 3427 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3428 } 3429 3430 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3431 StringRef Src, SMDiagnostic &Error) { 3432 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3433 } 3434 3435 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3436 MachineBasicBlock *&MBB, StringRef Src, 3437 SMDiagnostic &Error) { 3438 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3439 } 3440 3441 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3442 Register &Reg, StringRef Src, 3443 SMDiagnostic &Error) { 3444 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3445 } 3446 3447 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3448 Register &Reg, StringRef Src, 3449 SMDiagnostic &Error) { 3450 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3451 } 3452 3453 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3454 VRegInfo *&Info, StringRef Src, 3455 SMDiagnostic &Error) { 3456 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3457 } 3458 3459 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3460 int &FI, StringRef Src, 3461 SMDiagnostic &Error) { 3462 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3463 } 3464 3465 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3466 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3467 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3468 } 3469 3470 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src, 3471 SMRange SrcRange, SMDiagnostic &Error) { 3472 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata(); 3473 } 3474 3475 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3476 PerFunctionMIParsingState &PFS, const Value *&V, 3477 ErrorCallbackType ErrorCallback) { 3478 MIToken Token; 3479 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3480 ErrorCallback(Loc, Msg); 3481 }); 3482 V = nullptr; 3483 3484 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3485 } 3486