1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRPrinter.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueSymbolTable.h"
58 #include "llvm/MC/LaneBitmask.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCDwarf.h"
61 #include "llvm/MC/MCInstrDesc.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/LowLevelTypeImpl.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/SMLoc.h"
70 #include "llvm/Support/SourceMgr.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetIntrinsicInfo.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cctype>
77 #include <cstddef>
78 #include <cstdint>
79 #include <limits>
80 #include <string>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 void PerTargetMIParsingState::setTarget(
86   const TargetSubtargetInfo &NewSubtarget) {
87 
88   // If the subtarget changed, over conservatively assume everything is invalid.
89   if (&Subtarget == &NewSubtarget)
90     return;
91 
92   Names2InstrOpCodes.clear();
93   Names2Regs.clear();
94   Names2RegMasks.clear();
95   Names2SubRegIndices.clear();
96   Names2TargetIndices.clear();
97   Names2DirectTargetFlags.clear();
98   Names2BitmaskTargetFlags.clear();
99   Names2MMOTargetFlags.clear();
100 
101   initNames2RegClasses();
102   initNames2RegBanks();
103 }
104 
105 void PerTargetMIParsingState::initNames2Regs() {
106   if (!Names2Regs.empty())
107     return;
108 
109   // The '%noreg' register is the register 0.
110   Names2Regs.insert(std::make_pair("noreg", 0));
111   const auto *TRI = Subtarget.getRegisterInfo();
112   assert(TRI && "Expected target register info");
113 
114   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
115     bool WasInserted =
116         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
117             .second;
118     (void)WasInserted;
119     assert(WasInserted && "Expected registers to be unique case-insensitively");
120   }
121 }
122 
123 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
124                                                 unsigned &Reg) {
125   initNames2Regs();
126   auto RegInfo = Names2Regs.find(RegName);
127   if (RegInfo == Names2Regs.end())
128     return true;
129   Reg = RegInfo->getValue();
130   return false;
131 }
132 
133 void PerTargetMIParsingState::initNames2InstrOpCodes() {
134   if (!Names2InstrOpCodes.empty())
135     return;
136   const auto *TII = Subtarget.getInstrInfo();
137   assert(TII && "Expected target instruction info");
138   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
139     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
140 }
141 
142 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
143                                              unsigned &OpCode) {
144   initNames2InstrOpCodes();
145   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
146   if (InstrInfo == Names2InstrOpCodes.end())
147     return true;
148   OpCode = InstrInfo->getValue();
149   return false;
150 }
151 
152 void PerTargetMIParsingState::initNames2RegMasks() {
153   if (!Names2RegMasks.empty())
154     return;
155   const auto *TRI = Subtarget.getRegisterInfo();
156   assert(TRI && "Expected target register info");
157   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
158   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
159   assert(RegMasks.size() == RegMaskNames.size());
160   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
161     Names2RegMasks.insert(
162         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
163 }
164 
165 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
166   initNames2RegMasks();
167   auto RegMaskInfo = Names2RegMasks.find(Identifier);
168   if (RegMaskInfo == Names2RegMasks.end())
169     return nullptr;
170   return RegMaskInfo->getValue();
171 }
172 
173 void PerTargetMIParsingState::initNames2SubRegIndices() {
174   if (!Names2SubRegIndices.empty())
175     return;
176   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
177   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
178     Names2SubRegIndices.insert(
179         std::make_pair(TRI->getSubRegIndexName(I), I));
180 }
181 
182 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
183   initNames2SubRegIndices();
184   auto SubRegInfo = Names2SubRegIndices.find(Name);
185   if (SubRegInfo == Names2SubRegIndices.end())
186     return 0;
187   return SubRegInfo->getValue();
188 }
189 
190 void PerTargetMIParsingState::initNames2TargetIndices() {
191   if (!Names2TargetIndices.empty())
192     return;
193   const auto *TII = Subtarget.getInstrInfo();
194   assert(TII && "Expected target instruction info");
195   auto Indices = TII->getSerializableTargetIndices();
196   for (const auto &I : Indices)
197     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
198 }
199 
200 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
201   initNames2TargetIndices();
202   auto IndexInfo = Names2TargetIndices.find(Name);
203   if (IndexInfo == Names2TargetIndices.end())
204     return true;
205   Index = IndexInfo->second;
206   return false;
207 }
208 
209 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
210   if (!Names2DirectTargetFlags.empty())
211     return;
212 
213   const auto *TII = Subtarget.getInstrInfo();
214   assert(TII && "Expected target instruction info");
215   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
216   for (const auto &I : Flags)
217     Names2DirectTargetFlags.insert(
218         std::make_pair(StringRef(I.second), I.first));
219 }
220 
221 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
222                                                   unsigned &Flag) {
223   initNames2DirectTargetFlags();
224   auto FlagInfo = Names2DirectTargetFlags.find(Name);
225   if (FlagInfo == Names2DirectTargetFlags.end())
226     return true;
227   Flag = FlagInfo->second;
228   return false;
229 }
230 
231 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
232   if (!Names2BitmaskTargetFlags.empty())
233     return;
234 
235   const auto *TII = Subtarget.getInstrInfo();
236   assert(TII && "Expected target instruction info");
237   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
238   for (const auto &I : Flags)
239     Names2BitmaskTargetFlags.insert(
240         std::make_pair(StringRef(I.second), I.first));
241 }
242 
243 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
244                                                    unsigned &Flag) {
245   initNames2BitmaskTargetFlags();
246   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
247   if (FlagInfo == Names2BitmaskTargetFlags.end())
248     return true;
249   Flag = FlagInfo->second;
250   return false;
251 }
252 
253 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
254   if (!Names2MMOTargetFlags.empty())
255     return;
256 
257   const auto *TII = Subtarget.getInstrInfo();
258   assert(TII && "Expected target instruction info");
259   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
260   for (const auto &I : Flags)
261     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
262 }
263 
264 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
265                                                MachineMemOperand::Flags &Flag) {
266   initNames2MMOTargetFlags();
267   auto FlagInfo = Names2MMOTargetFlags.find(Name);
268   if (FlagInfo == Names2MMOTargetFlags.end())
269     return true;
270   Flag = FlagInfo->second;
271   return false;
272 }
273 
274 void PerTargetMIParsingState::initNames2RegClasses() {
275   if (!Names2RegClasses.empty())
276     return;
277 
278   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
279   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
280     const auto *RC = TRI->getRegClass(I);
281     Names2RegClasses.insert(
282         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
283   }
284 }
285 
286 void PerTargetMIParsingState::initNames2RegBanks() {
287   if (!Names2RegBanks.empty())
288     return;
289 
290   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
291   // If the target does not support GlobalISel, we may not have a
292   // register bank info.
293   if (!RBI)
294     return;
295 
296   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
297     const auto &RegBank = RBI->getRegBank(I);
298     Names2RegBanks.insert(
299         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
300   }
301 }
302 
303 const TargetRegisterClass *
304 PerTargetMIParsingState::getRegClass(StringRef Name) {
305   auto RegClassInfo = Names2RegClasses.find(Name);
306   if (RegClassInfo == Names2RegClasses.end())
307     return nullptr;
308   return RegClassInfo->getValue();
309 }
310 
311 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
312   auto RegBankInfo = Names2RegBanks.find(Name);
313   if (RegBankInfo == Names2RegBanks.end())
314     return nullptr;
315   return RegBankInfo->getValue();
316 }
317 
318 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
319     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
320   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
321 }
322 
323 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
324   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
325   if (I.second) {
326     MachineRegisterInfo &MRI = MF.getRegInfo();
327     VRegInfo *Info = new (Allocator) VRegInfo;
328     Info->VReg = MRI.createIncompleteVirtualRegister();
329     I.first->second = Info;
330   }
331   return *I.first->second;
332 }
333 
334 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
335   assert(RegName != "" && "Expected named reg.");
336 
337   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
338   if (I.second) {
339     VRegInfo *Info = new (Allocator) VRegInfo;
340     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
341     I.first->second = Info;
342   }
343   return *I.first->second;
344 }
345 
346 namespace {
347 
348 /// A wrapper struct around the 'MachineOperand' struct that includes a source
349 /// range and other attributes.
350 struct ParsedMachineOperand {
351   MachineOperand Operand;
352   StringRef::iterator Begin;
353   StringRef::iterator End;
354   Optional<unsigned> TiedDefIdx;
355 
356   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
357                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
358       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
359     if (TiedDefIdx)
360       assert(Operand.isReg() && Operand.isUse() &&
361              "Only used register operands can be tied");
362   }
363 };
364 
365 class MIParser {
366   MachineFunction &MF;
367   SMDiagnostic &Error;
368   StringRef Source, CurrentSource;
369   MIToken Token;
370   PerFunctionMIParsingState &PFS;
371   /// Maps from slot numbers to function's unnamed basic blocks.
372   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
373   /// Maps from slot numbers to function's unnamed values.
374   DenseMap<unsigned, const Value *> Slots2Values;
375 
376 public:
377   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
378            StringRef Source);
379 
380   /// \p SkipChar gives the number of characters to skip before looking
381   /// for the next token.
382   void lex(unsigned SkipChar = 0);
383 
384   /// Report an error at the current location with the given message.
385   ///
386   /// This function always return true.
387   bool error(const Twine &Msg);
388 
389   /// Report an error at the given location with the given message.
390   ///
391   /// This function always return true.
392   bool error(StringRef::iterator Loc, const Twine &Msg);
393 
394   bool
395   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
396   bool parseBasicBlocks();
397   bool parse(MachineInstr *&MI);
398   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
399   bool parseStandaloneNamedRegister(unsigned &Reg);
400   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
401   bool parseStandaloneRegister(unsigned &Reg);
402   bool parseStandaloneStackObject(int &FI);
403   bool parseStandaloneMDNode(MDNode *&Node);
404 
405   bool
406   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
407   bool parseBasicBlock(MachineBasicBlock &MBB,
408                        MachineBasicBlock *&AddFalthroughFrom);
409   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
410   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
411 
412   bool parseNamedRegister(unsigned &Reg);
413   bool parseVirtualRegister(VRegInfo *&Info);
414   bool parseNamedVirtualRegister(VRegInfo *&Info);
415   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
416   bool parseRegisterFlag(unsigned &Flags);
417   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
418   bool parseSubRegisterIndex(unsigned &SubReg);
419   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
420   bool parseRegisterOperand(MachineOperand &Dest,
421                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
422   bool parseImmediateOperand(MachineOperand &Dest);
423   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
424                        const Constant *&C);
425   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
426   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
427   bool parseTypedImmediateOperand(MachineOperand &Dest);
428   bool parseFPImmediateOperand(MachineOperand &Dest);
429   bool parseMBBReference(MachineBasicBlock *&MBB);
430   bool parseMBBOperand(MachineOperand &Dest);
431   bool parseStackFrameIndex(int &FI);
432   bool parseStackObjectOperand(MachineOperand &Dest);
433   bool parseFixedStackFrameIndex(int &FI);
434   bool parseFixedStackObjectOperand(MachineOperand &Dest);
435   bool parseGlobalValue(GlobalValue *&GV);
436   bool parseGlobalAddressOperand(MachineOperand &Dest);
437   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
438   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
439   bool parseJumpTableIndexOperand(MachineOperand &Dest);
440   bool parseExternalSymbolOperand(MachineOperand &Dest);
441   bool parseMCSymbolOperand(MachineOperand &Dest);
442   bool parseMDNode(MDNode *&Node);
443   bool parseDIExpression(MDNode *&Expr);
444   bool parseDILocation(MDNode *&Expr);
445   bool parseMetadataOperand(MachineOperand &Dest);
446   bool parseCFIOffset(int &Offset);
447   bool parseCFIRegister(unsigned &Reg);
448   bool parseCFIEscapeValues(std::string& Values);
449   bool parseCFIOperand(MachineOperand &Dest);
450   bool parseIRBlock(BasicBlock *&BB, const Function &F);
451   bool parseBlockAddressOperand(MachineOperand &Dest);
452   bool parseIntrinsicOperand(MachineOperand &Dest);
453   bool parsePredicateOperand(MachineOperand &Dest);
454   bool parseShuffleMaskOperand(MachineOperand &Dest);
455   bool parseTargetIndexOperand(MachineOperand &Dest);
456   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
457   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
458   bool parseMachineOperand(MachineOperand &Dest,
459                            Optional<unsigned> &TiedDefIdx);
460   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
461                                          Optional<unsigned> &TiedDefIdx);
462   bool parseOffset(int64_t &Offset);
463   bool parseAlignment(unsigned &Alignment);
464   bool parseAddrspace(unsigned &Addrspace);
465   bool parseOperandsOffset(MachineOperand &Op);
466   bool parseIRValue(const Value *&V);
467   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
468   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
469   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
470   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
471   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
472   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
473   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
474   bool parseHeapAllocMarker(MDNode *&Node);
475 
476 private:
477   /// Convert the integer literal in the current token into an unsigned integer.
478   ///
479   /// Return true if an error occurred.
480   bool getUnsigned(unsigned &Result);
481 
482   /// Convert the integer literal in the current token into an uint64.
483   ///
484   /// Return true if an error occurred.
485   bool getUint64(uint64_t &Result);
486 
487   /// Convert the hexadecimal literal in the current token into an unsigned
488   ///  APInt with a minimum bitwidth required to represent the value.
489   ///
490   /// Return true if the literal does not represent an integer value.
491   bool getHexUint(APInt &Result);
492 
493   /// If the current token is of the given kind, consume it and return false.
494   /// Otherwise report an error and return true.
495   bool expectAndConsume(MIToken::TokenKind TokenKind);
496 
497   /// If the current token is of the given kind, consume it and return true.
498   /// Otherwise return false.
499   bool consumeIfPresent(MIToken::TokenKind TokenKind);
500 
501   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
502 
503   bool assignRegisterTies(MachineInstr &MI,
504                           ArrayRef<ParsedMachineOperand> Operands);
505 
506   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
507                               const MCInstrDesc &MCID);
508 
509   const BasicBlock *getIRBlock(unsigned Slot);
510   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
511 
512   const Value *getIRValue(unsigned Slot);
513 
514   /// Get or create an MCSymbol for a given name.
515   MCSymbol *getOrCreateMCSymbol(StringRef Name);
516 
517   /// parseStringConstant
518   ///   ::= StringConstant
519   bool parseStringConstant(std::string &Result);
520 };
521 
522 } // end anonymous namespace
523 
524 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
525                    StringRef Source)
526     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
527 {}
528 
529 void MIParser::lex(unsigned SkipChar) {
530   CurrentSource = lexMIToken(
531       CurrentSource.data() + SkipChar, Token,
532       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
533 }
534 
535 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
536 
537 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
538   const SourceMgr &SM = *PFS.SM;
539   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
540   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
541   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
542     // Create an ordinary diagnostic when the source manager's buffer is the
543     // source string.
544     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
545     return true;
546   }
547   // Create a diagnostic for a YAML string literal.
548   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
549                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
550                        Source, None, None);
551   return true;
552 }
553 
554 static const char *toString(MIToken::TokenKind TokenKind) {
555   switch (TokenKind) {
556   case MIToken::comma:
557     return "','";
558   case MIToken::equal:
559     return "'='";
560   case MIToken::colon:
561     return "':'";
562   case MIToken::lparen:
563     return "'('";
564   case MIToken::rparen:
565     return "')'";
566   default:
567     return "<unknown token>";
568   }
569 }
570 
571 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
572   if (Token.isNot(TokenKind))
573     return error(Twine("expected ") + toString(TokenKind));
574   lex();
575   return false;
576 }
577 
578 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
579   if (Token.isNot(TokenKind))
580     return false;
581   lex();
582   return true;
583 }
584 
585 bool MIParser::parseBasicBlockDefinition(
586     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
587   assert(Token.is(MIToken::MachineBasicBlockLabel));
588   unsigned ID = 0;
589   if (getUnsigned(ID))
590     return true;
591   auto Loc = Token.location();
592   auto Name = Token.stringValue();
593   lex();
594   bool HasAddressTaken = false;
595   bool IsLandingPad = false;
596   unsigned Alignment = 0;
597   BasicBlock *BB = nullptr;
598   if (consumeIfPresent(MIToken::lparen)) {
599     do {
600       // TODO: Report an error when multiple same attributes are specified.
601       switch (Token.kind()) {
602       case MIToken::kw_address_taken:
603         HasAddressTaken = true;
604         lex();
605         break;
606       case MIToken::kw_landing_pad:
607         IsLandingPad = true;
608         lex();
609         break;
610       case MIToken::kw_align:
611         if (parseAlignment(Alignment))
612           return true;
613         break;
614       case MIToken::IRBlock:
615         // TODO: Report an error when both name and ir block are specified.
616         if (parseIRBlock(BB, MF.getFunction()))
617           return true;
618         lex();
619         break;
620       default:
621         break;
622       }
623     } while (consumeIfPresent(MIToken::comma));
624     if (expectAndConsume(MIToken::rparen))
625       return true;
626   }
627   if (expectAndConsume(MIToken::colon))
628     return true;
629 
630   if (!Name.empty()) {
631     BB = dyn_cast_or_null<BasicBlock>(
632         MF.getFunction().getValueSymbolTable()->lookup(Name));
633     if (!BB)
634       return error(Loc, Twine("basic block '") + Name +
635                             "' is not defined in the function '" +
636                             MF.getName() + "'");
637   }
638   auto *MBB = MF.CreateMachineBasicBlock(BB);
639   MF.insert(MF.end(), MBB);
640   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
641   if (!WasInserted)
642     return error(Loc, Twine("redefinition of machine basic block with id #") +
643                           Twine(ID));
644   if (Alignment)
645     MBB->setAlignment(Align(Alignment));
646   if (HasAddressTaken)
647     MBB->setHasAddressTaken();
648   MBB->setIsEHPad(IsLandingPad);
649   return false;
650 }
651 
652 bool MIParser::parseBasicBlockDefinitions(
653     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
654   lex();
655   // Skip until the first machine basic block.
656   while (Token.is(MIToken::Newline))
657     lex();
658   if (Token.isErrorOrEOF())
659     return Token.isError();
660   if (Token.isNot(MIToken::MachineBasicBlockLabel))
661     return error("expected a basic block definition before instructions");
662   unsigned BraceDepth = 0;
663   do {
664     if (parseBasicBlockDefinition(MBBSlots))
665       return true;
666     bool IsAfterNewline = false;
667     // Skip until the next machine basic block.
668     while (true) {
669       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
670           Token.isErrorOrEOF())
671         break;
672       else if (Token.is(MIToken::MachineBasicBlockLabel))
673         return error("basic block definition should be located at the start of "
674                      "the line");
675       else if (consumeIfPresent(MIToken::Newline)) {
676         IsAfterNewline = true;
677         continue;
678       }
679       IsAfterNewline = false;
680       if (Token.is(MIToken::lbrace))
681         ++BraceDepth;
682       if (Token.is(MIToken::rbrace)) {
683         if (!BraceDepth)
684           return error("extraneous closing brace ('}')");
685         --BraceDepth;
686       }
687       lex();
688     }
689     // Verify that we closed all of the '{' at the end of a file or a block.
690     if (!Token.isError() && BraceDepth)
691       return error("expected '}'"); // FIXME: Report a note that shows '{'.
692   } while (!Token.isErrorOrEOF());
693   return Token.isError();
694 }
695 
696 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
697   assert(Token.is(MIToken::kw_liveins));
698   lex();
699   if (expectAndConsume(MIToken::colon))
700     return true;
701   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
702     return false;
703   do {
704     if (Token.isNot(MIToken::NamedRegister))
705       return error("expected a named register");
706     unsigned Reg = 0;
707     if (parseNamedRegister(Reg))
708       return true;
709     lex();
710     LaneBitmask Mask = LaneBitmask::getAll();
711     if (consumeIfPresent(MIToken::colon)) {
712       // Parse lane mask.
713       if (Token.isNot(MIToken::IntegerLiteral) &&
714           Token.isNot(MIToken::HexLiteral))
715         return error("expected a lane mask");
716       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
717                     "Use correct get-function for lane mask");
718       LaneBitmask::Type V;
719       if (getUnsigned(V))
720         return error("invalid lane mask value");
721       Mask = LaneBitmask(V);
722       lex();
723     }
724     MBB.addLiveIn(Reg, Mask);
725   } while (consumeIfPresent(MIToken::comma));
726   return false;
727 }
728 
729 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
730   assert(Token.is(MIToken::kw_successors));
731   lex();
732   if (expectAndConsume(MIToken::colon))
733     return true;
734   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
735     return false;
736   do {
737     if (Token.isNot(MIToken::MachineBasicBlock))
738       return error("expected a machine basic block reference");
739     MachineBasicBlock *SuccMBB = nullptr;
740     if (parseMBBReference(SuccMBB))
741       return true;
742     lex();
743     unsigned Weight = 0;
744     if (consumeIfPresent(MIToken::lparen)) {
745       if (Token.isNot(MIToken::IntegerLiteral) &&
746           Token.isNot(MIToken::HexLiteral))
747         return error("expected an integer literal after '('");
748       if (getUnsigned(Weight))
749         return true;
750       lex();
751       if (expectAndConsume(MIToken::rparen))
752         return true;
753     }
754     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
755   } while (consumeIfPresent(MIToken::comma));
756   MBB.normalizeSuccProbs();
757   return false;
758 }
759 
760 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
761                                MachineBasicBlock *&AddFalthroughFrom) {
762   // Skip the definition.
763   assert(Token.is(MIToken::MachineBasicBlockLabel));
764   lex();
765   if (consumeIfPresent(MIToken::lparen)) {
766     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
767       lex();
768     consumeIfPresent(MIToken::rparen);
769   }
770   consumeIfPresent(MIToken::colon);
771 
772   // Parse the liveins and successors.
773   // N.B: Multiple lists of successors and liveins are allowed and they're
774   // merged into one.
775   // Example:
776   //   liveins: %edi
777   //   liveins: %esi
778   //
779   // is equivalent to
780   //   liveins: %edi, %esi
781   bool ExplicitSuccessors = false;
782   while (true) {
783     if (Token.is(MIToken::kw_successors)) {
784       if (parseBasicBlockSuccessors(MBB))
785         return true;
786       ExplicitSuccessors = true;
787     } else if (Token.is(MIToken::kw_liveins)) {
788       if (parseBasicBlockLiveins(MBB))
789         return true;
790     } else if (consumeIfPresent(MIToken::Newline)) {
791       continue;
792     } else
793       break;
794     if (!Token.isNewlineOrEOF())
795       return error("expected line break at the end of a list");
796     lex();
797   }
798 
799   // Parse the instructions.
800   bool IsInBundle = false;
801   MachineInstr *PrevMI = nullptr;
802   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
803          !Token.is(MIToken::Eof)) {
804     if (consumeIfPresent(MIToken::Newline))
805       continue;
806     if (consumeIfPresent(MIToken::rbrace)) {
807       // The first parsing pass should verify that all closing '}' have an
808       // opening '{'.
809       assert(IsInBundle);
810       IsInBundle = false;
811       continue;
812     }
813     MachineInstr *MI = nullptr;
814     if (parse(MI))
815       return true;
816     MBB.insert(MBB.end(), MI);
817     if (IsInBundle) {
818       PrevMI->setFlag(MachineInstr::BundledSucc);
819       MI->setFlag(MachineInstr::BundledPred);
820     }
821     PrevMI = MI;
822     if (Token.is(MIToken::lbrace)) {
823       if (IsInBundle)
824         return error("nested instruction bundles are not allowed");
825       lex();
826       // This instruction is the start of the bundle.
827       MI->setFlag(MachineInstr::BundledSucc);
828       IsInBundle = true;
829       if (!Token.is(MIToken::Newline))
830         // The next instruction can be on the same line.
831         continue;
832     }
833     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
834     lex();
835   }
836 
837   // Construct successor list by searching for basic block machine operands.
838   if (!ExplicitSuccessors) {
839     SmallVector<MachineBasicBlock*,4> Successors;
840     bool IsFallthrough;
841     guessSuccessors(MBB, Successors, IsFallthrough);
842     for (MachineBasicBlock *Succ : Successors)
843       MBB.addSuccessor(Succ);
844 
845     if (IsFallthrough) {
846       AddFalthroughFrom = &MBB;
847     } else {
848       MBB.normalizeSuccProbs();
849     }
850   }
851 
852   return false;
853 }
854 
855 bool MIParser::parseBasicBlocks() {
856   lex();
857   // Skip until the first machine basic block.
858   while (Token.is(MIToken::Newline))
859     lex();
860   if (Token.isErrorOrEOF())
861     return Token.isError();
862   // The first parsing pass should have verified that this token is a MBB label
863   // in the 'parseBasicBlockDefinitions' method.
864   assert(Token.is(MIToken::MachineBasicBlockLabel));
865   MachineBasicBlock *AddFalthroughFrom = nullptr;
866   do {
867     MachineBasicBlock *MBB = nullptr;
868     if (parseMBBReference(MBB))
869       return true;
870     if (AddFalthroughFrom) {
871       if (!AddFalthroughFrom->isSuccessor(MBB))
872         AddFalthroughFrom->addSuccessor(MBB);
873       AddFalthroughFrom->normalizeSuccProbs();
874       AddFalthroughFrom = nullptr;
875     }
876     if (parseBasicBlock(*MBB, AddFalthroughFrom))
877       return true;
878     // The method 'parseBasicBlock' should parse the whole block until the next
879     // block or the end of file.
880     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
881   } while (Token.isNot(MIToken::Eof));
882   return false;
883 }
884 
885 bool MIParser::parse(MachineInstr *&MI) {
886   // Parse any register operands before '='
887   MachineOperand MO = MachineOperand::CreateImm(0);
888   SmallVector<ParsedMachineOperand, 8> Operands;
889   while (Token.isRegister() || Token.isRegisterFlag()) {
890     auto Loc = Token.location();
891     Optional<unsigned> TiedDefIdx;
892     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
893       return true;
894     Operands.push_back(
895         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
896     if (Token.isNot(MIToken::comma))
897       break;
898     lex();
899   }
900   if (!Operands.empty() && expectAndConsume(MIToken::equal))
901     return true;
902 
903   unsigned OpCode, Flags = 0;
904   if (Token.isError() || parseInstruction(OpCode, Flags))
905     return true;
906 
907   // Parse the remaining machine operands.
908   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
909          Token.isNot(MIToken::kw_post_instr_symbol) &&
910          Token.isNot(MIToken::kw_heap_alloc_marker) &&
911          Token.isNot(MIToken::kw_debug_location) &&
912          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
913     auto Loc = Token.location();
914     Optional<unsigned> TiedDefIdx;
915     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
916       return true;
917     if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
918       MO.setIsDebug();
919     Operands.push_back(
920         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
921     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
922         Token.is(MIToken::lbrace))
923       break;
924     if (Token.isNot(MIToken::comma))
925       return error("expected ',' before the next machine operand");
926     lex();
927   }
928 
929   MCSymbol *PreInstrSymbol = nullptr;
930   if (Token.is(MIToken::kw_pre_instr_symbol))
931     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
932       return true;
933   MCSymbol *PostInstrSymbol = nullptr;
934   if (Token.is(MIToken::kw_post_instr_symbol))
935     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
936       return true;
937   MDNode *HeapAllocMarker = nullptr;
938   if (Token.is(MIToken::kw_heap_alloc_marker))
939     if (parseHeapAllocMarker(HeapAllocMarker))
940       return true;
941 
942   DebugLoc DebugLocation;
943   if (Token.is(MIToken::kw_debug_location)) {
944     lex();
945     MDNode *Node = nullptr;
946     if (Token.is(MIToken::exclaim)) {
947       if (parseMDNode(Node))
948         return true;
949     } else if (Token.is(MIToken::md_dilocation)) {
950       if (parseDILocation(Node))
951         return true;
952     } else
953       return error("expected a metadata node after 'debug-location'");
954     if (!isa<DILocation>(Node))
955       return error("referenced metadata is not a DILocation");
956     DebugLocation = DebugLoc(Node);
957   }
958 
959   // Parse the machine memory operands.
960   SmallVector<MachineMemOperand *, 2> MemOperands;
961   if (Token.is(MIToken::coloncolon)) {
962     lex();
963     while (!Token.isNewlineOrEOF()) {
964       MachineMemOperand *MemOp = nullptr;
965       if (parseMachineMemoryOperand(MemOp))
966         return true;
967       MemOperands.push_back(MemOp);
968       if (Token.isNewlineOrEOF())
969         break;
970       if (Token.isNot(MIToken::comma))
971         return error("expected ',' before the next machine memory operand");
972       lex();
973     }
974   }
975 
976   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
977   if (!MCID.isVariadic()) {
978     // FIXME: Move the implicit operand verification to the machine verifier.
979     if (verifyImplicitOperands(Operands, MCID))
980       return true;
981   }
982 
983   // TODO: Check for extraneous machine operands.
984   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
985   MI->setFlags(Flags);
986   for (const auto &Operand : Operands)
987     MI->addOperand(MF, Operand.Operand);
988   if (assignRegisterTies(*MI, Operands))
989     return true;
990   if (PreInstrSymbol)
991     MI->setPreInstrSymbol(MF, PreInstrSymbol);
992   if (PostInstrSymbol)
993     MI->setPostInstrSymbol(MF, PostInstrSymbol);
994   if (HeapAllocMarker)
995     MI->setHeapAllocMarker(MF, HeapAllocMarker);
996   if (!MemOperands.empty())
997     MI->setMemRefs(MF, MemOperands);
998   return false;
999 }
1000 
1001 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1002   lex();
1003   if (Token.isNot(MIToken::MachineBasicBlock))
1004     return error("expected a machine basic block reference");
1005   if (parseMBBReference(MBB))
1006     return true;
1007   lex();
1008   if (Token.isNot(MIToken::Eof))
1009     return error(
1010         "expected end of string after the machine basic block reference");
1011   return false;
1012 }
1013 
1014 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
1015   lex();
1016   if (Token.isNot(MIToken::NamedRegister))
1017     return error("expected a named register");
1018   if (parseNamedRegister(Reg))
1019     return true;
1020   lex();
1021   if (Token.isNot(MIToken::Eof))
1022     return error("expected end of string after the register reference");
1023   return false;
1024 }
1025 
1026 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1027   lex();
1028   if (Token.isNot(MIToken::VirtualRegister))
1029     return error("expected a virtual register");
1030   if (parseVirtualRegister(Info))
1031     return true;
1032   lex();
1033   if (Token.isNot(MIToken::Eof))
1034     return error("expected end of string after the register reference");
1035   return false;
1036 }
1037 
1038 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
1039   lex();
1040   if (Token.isNot(MIToken::NamedRegister) &&
1041       Token.isNot(MIToken::VirtualRegister))
1042     return error("expected either a named or virtual register");
1043 
1044   VRegInfo *Info;
1045   if (parseRegister(Reg, Info))
1046     return true;
1047 
1048   lex();
1049   if (Token.isNot(MIToken::Eof))
1050     return error("expected end of string after the register reference");
1051   return false;
1052 }
1053 
1054 bool MIParser::parseStandaloneStackObject(int &FI) {
1055   lex();
1056   if (Token.isNot(MIToken::StackObject))
1057     return error("expected a stack object");
1058   if (parseStackFrameIndex(FI))
1059     return true;
1060   if (Token.isNot(MIToken::Eof))
1061     return error("expected end of string after the stack object reference");
1062   return false;
1063 }
1064 
1065 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1066   lex();
1067   if (Token.is(MIToken::exclaim)) {
1068     if (parseMDNode(Node))
1069       return true;
1070   } else if (Token.is(MIToken::md_diexpr)) {
1071     if (parseDIExpression(Node))
1072       return true;
1073   } else if (Token.is(MIToken::md_dilocation)) {
1074     if (parseDILocation(Node))
1075       return true;
1076   } else
1077     return error("expected a metadata node");
1078   if (Token.isNot(MIToken::Eof))
1079     return error("expected end of string after the metadata node");
1080   return false;
1081 }
1082 
1083 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1084   assert(MO.isImplicit());
1085   return MO.isDef() ? "implicit-def" : "implicit";
1086 }
1087 
1088 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1089                                    unsigned Reg) {
1090   assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1091   return StringRef(TRI->getName(Reg)).lower();
1092 }
1093 
1094 /// Return true if the parsed machine operands contain a given machine operand.
1095 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1096                                 ArrayRef<ParsedMachineOperand> Operands) {
1097   for (const auto &I : Operands) {
1098     if (ImplicitOperand.isIdenticalTo(I.Operand))
1099       return true;
1100   }
1101   return false;
1102 }
1103 
1104 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1105                                       const MCInstrDesc &MCID) {
1106   if (MCID.isCall())
1107     // We can't verify call instructions as they can contain arbitrary implicit
1108     // register and register mask operands.
1109     return false;
1110 
1111   // Gather all the expected implicit operands.
1112   SmallVector<MachineOperand, 4> ImplicitOperands;
1113   if (MCID.ImplicitDefs)
1114     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1115       ImplicitOperands.push_back(
1116           MachineOperand::CreateReg(*ImpDefs, true, true));
1117   if (MCID.ImplicitUses)
1118     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1119       ImplicitOperands.push_back(
1120           MachineOperand::CreateReg(*ImpUses, false, true));
1121 
1122   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1123   assert(TRI && "Expected target register info");
1124   for (const auto &I : ImplicitOperands) {
1125     if (isImplicitOperandIn(I, Operands))
1126       continue;
1127     return error(Operands.empty() ? Token.location() : Operands.back().End,
1128                  Twine("missing implicit register operand '") +
1129                      printImplicitRegisterFlag(I) + " $" +
1130                      getRegisterName(TRI, I.getReg()) + "'");
1131   }
1132   return false;
1133 }
1134 
1135 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1136   // Allow frame and fast math flags for OPCODE
1137   while (Token.is(MIToken::kw_frame_setup) ||
1138          Token.is(MIToken::kw_frame_destroy) ||
1139          Token.is(MIToken::kw_nnan) ||
1140          Token.is(MIToken::kw_ninf) ||
1141          Token.is(MIToken::kw_nsz) ||
1142          Token.is(MIToken::kw_arcp) ||
1143          Token.is(MIToken::kw_contract) ||
1144          Token.is(MIToken::kw_afn) ||
1145          Token.is(MIToken::kw_reassoc) ||
1146          Token.is(MIToken::kw_nuw) ||
1147          Token.is(MIToken::kw_nsw) ||
1148          Token.is(MIToken::kw_exact) ||
1149          Token.is(MIToken::kw_fpexcept)) {
1150     // Mine frame and fast math flags
1151     if (Token.is(MIToken::kw_frame_setup))
1152       Flags |= MachineInstr::FrameSetup;
1153     if (Token.is(MIToken::kw_frame_destroy))
1154       Flags |= MachineInstr::FrameDestroy;
1155     if (Token.is(MIToken::kw_nnan))
1156       Flags |= MachineInstr::FmNoNans;
1157     if (Token.is(MIToken::kw_ninf))
1158       Flags |= MachineInstr::FmNoInfs;
1159     if (Token.is(MIToken::kw_nsz))
1160       Flags |= MachineInstr::FmNsz;
1161     if (Token.is(MIToken::kw_arcp))
1162       Flags |= MachineInstr::FmArcp;
1163     if (Token.is(MIToken::kw_contract))
1164       Flags |= MachineInstr::FmContract;
1165     if (Token.is(MIToken::kw_afn))
1166       Flags |= MachineInstr::FmAfn;
1167     if (Token.is(MIToken::kw_reassoc))
1168       Flags |= MachineInstr::FmReassoc;
1169     if (Token.is(MIToken::kw_nuw))
1170       Flags |= MachineInstr::NoUWrap;
1171     if (Token.is(MIToken::kw_nsw))
1172       Flags |= MachineInstr::NoSWrap;
1173     if (Token.is(MIToken::kw_exact))
1174       Flags |= MachineInstr::IsExact;
1175     if (Token.is(MIToken::kw_fpexcept))
1176       Flags |= MachineInstr::FPExcept;
1177 
1178     lex();
1179   }
1180   if (Token.isNot(MIToken::Identifier))
1181     return error("expected a machine instruction");
1182   StringRef InstrName = Token.stringValue();
1183   if (PFS.Target.parseInstrName(InstrName, OpCode))
1184     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1185   lex();
1186   return false;
1187 }
1188 
1189 bool MIParser::parseNamedRegister(unsigned &Reg) {
1190   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1191   StringRef Name = Token.stringValue();
1192   if (PFS.Target.getRegisterByName(Name, Reg))
1193     return error(Twine("unknown register name '") + Name + "'");
1194   return false;
1195 }
1196 
1197 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1198   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1199   StringRef Name = Token.stringValue();
1200   // TODO: Check that the VReg name is not the same as a physical register name.
1201   //       If it is, then print a warning (when warnings are implemented).
1202   Info = &PFS.getVRegInfoNamed(Name);
1203   return false;
1204 }
1205 
1206 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1207   if (Token.is(MIToken::NamedVirtualRegister))
1208     return parseNamedVirtualRegister(Info);
1209   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1210   unsigned ID;
1211   if (getUnsigned(ID))
1212     return true;
1213   Info = &PFS.getVRegInfo(ID);
1214   return false;
1215 }
1216 
1217 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1218   switch (Token.kind()) {
1219   case MIToken::underscore:
1220     Reg = 0;
1221     return false;
1222   case MIToken::NamedRegister:
1223     return parseNamedRegister(Reg);
1224   case MIToken::NamedVirtualRegister:
1225   case MIToken::VirtualRegister:
1226     if (parseVirtualRegister(Info))
1227       return true;
1228     Reg = Info->VReg;
1229     return false;
1230   // TODO: Parse other register kinds.
1231   default:
1232     llvm_unreachable("The current token should be a register");
1233   }
1234 }
1235 
1236 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1237   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1238     return error("expected '_', register class, or register bank name");
1239   StringRef::iterator Loc = Token.location();
1240   StringRef Name = Token.stringValue();
1241 
1242   // Was it a register class?
1243   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1244   if (RC) {
1245     lex();
1246 
1247     switch (RegInfo.Kind) {
1248     case VRegInfo::UNKNOWN:
1249     case VRegInfo::NORMAL:
1250       RegInfo.Kind = VRegInfo::NORMAL;
1251       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1252         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1253         return error(Loc, Twine("conflicting register classes, previously: ") +
1254                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1255       }
1256       RegInfo.D.RC = RC;
1257       RegInfo.Explicit = true;
1258       return false;
1259 
1260     case VRegInfo::GENERIC:
1261     case VRegInfo::REGBANK:
1262       return error(Loc, "register class specification on generic register");
1263     }
1264     llvm_unreachable("Unexpected register kind");
1265   }
1266 
1267   // Should be a register bank or a generic register.
1268   const RegisterBank *RegBank = nullptr;
1269   if (Name != "_") {
1270     RegBank = PFS.Target.getRegBank(Name);
1271     if (!RegBank)
1272       return error(Loc, "expected '_', register class, or register bank name");
1273   }
1274 
1275   lex();
1276 
1277   switch (RegInfo.Kind) {
1278   case VRegInfo::UNKNOWN:
1279   case VRegInfo::GENERIC:
1280   case VRegInfo::REGBANK:
1281     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1282     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1283       return error(Loc, "conflicting generic register banks");
1284     RegInfo.D.RegBank = RegBank;
1285     RegInfo.Explicit = true;
1286     return false;
1287 
1288   case VRegInfo::NORMAL:
1289     return error(Loc, "register bank specification on normal register");
1290   }
1291   llvm_unreachable("Unexpected register kind");
1292 }
1293 
1294 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1295   const unsigned OldFlags = Flags;
1296   switch (Token.kind()) {
1297   case MIToken::kw_implicit:
1298     Flags |= RegState::Implicit;
1299     break;
1300   case MIToken::kw_implicit_define:
1301     Flags |= RegState::ImplicitDefine;
1302     break;
1303   case MIToken::kw_def:
1304     Flags |= RegState::Define;
1305     break;
1306   case MIToken::kw_dead:
1307     Flags |= RegState::Dead;
1308     break;
1309   case MIToken::kw_killed:
1310     Flags |= RegState::Kill;
1311     break;
1312   case MIToken::kw_undef:
1313     Flags |= RegState::Undef;
1314     break;
1315   case MIToken::kw_internal:
1316     Flags |= RegState::InternalRead;
1317     break;
1318   case MIToken::kw_early_clobber:
1319     Flags |= RegState::EarlyClobber;
1320     break;
1321   case MIToken::kw_debug_use:
1322     Flags |= RegState::Debug;
1323     break;
1324   case MIToken::kw_renamable:
1325     Flags |= RegState::Renamable;
1326     break;
1327   default:
1328     llvm_unreachable("The current token should be a register flag");
1329   }
1330   if (OldFlags == Flags)
1331     // We know that the same flag is specified more than once when the flags
1332     // weren't modified.
1333     return error("duplicate '" + Token.stringValue() + "' register flag");
1334   lex();
1335   return false;
1336 }
1337 
1338 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1339   assert(Token.is(MIToken::dot));
1340   lex();
1341   if (Token.isNot(MIToken::Identifier))
1342     return error("expected a subregister index after '.'");
1343   auto Name = Token.stringValue();
1344   SubReg = PFS.Target.getSubRegIndex(Name);
1345   if (!SubReg)
1346     return error(Twine("use of unknown subregister index '") + Name + "'");
1347   lex();
1348   return false;
1349 }
1350 
1351 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1352   if (!consumeIfPresent(MIToken::kw_tied_def))
1353     return true;
1354   if (Token.isNot(MIToken::IntegerLiteral))
1355     return error("expected an integer literal after 'tied-def'");
1356   if (getUnsigned(TiedDefIdx))
1357     return true;
1358   lex();
1359   if (expectAndConsume(MIToken::rparen))
1360     return true;
1361   return false;
1362 }
1363 
1364 bool MIParser::assignRegisterTies(MachineInstr &MI,
1365                                   ArrayRef<ParsedMachineOperand> Operands) {
1366   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1367   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1368     if (!Operands[I].TiedDefIdx)
1369       continue;
1370     // The parser ensures that this operand is a register use, so we just have
1371     // to check the tied-def operand.
1372     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1373     if (DefIdx >= E)
1374       return error(Operands[I].Begin,
1375                    Twine("use of invalid tied-def operand index '" +
1376                          Twine(DefIdx) + "'; instruction has only ") +
1377                        Twine(E) + " operands");
1378     const auto &DefOperand = Operands[DefIdx].Operand;
1379     if (!DefOperand.isReg() || !DefOperand.isDef())
1380       // FIXME: add note with the def operand.
1381       return error(Operands[I].Begin,
1382                    Twine("use of invalid tied-def operand index '") +
1383                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1384                        " isn't a defined register");
1385     // Check that the tied-def operand wasn't tied elsewhere.
1386     for (const auto &TiedPair : TiedRegisterPairs) {
1387       if (TiedPair.first == DefIdx)
1388         return error(Operands[I].Begin,
1389                      Twine("the tied-def operand #") + Twine(DefIdx) +
1390                          " is already tied with another register operand");
1391     }
1392     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1393   }
1394   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1395   // indices must be less than tied max.
1396   for (const auto &TiedPair : TiedRegisterPairs)
1397     MI.tieOperands(TiedPair.first, TiedPair.second);
1398   return false;
1399 }
1400 
1401 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1402                                     Optional<unsigned> &TiedDefIdx,
1403                                     bool IsDef) {
1404   unsigned Flags = IsDef ? RegState::Define : 0;
1405   while (Token.isRegisterFlag()) {
1406     if (parseRegisterFlag(Flags))
1407       return true;
1408   }
1409   if (!Token.isRegister())
1410     return error("expected a register after register flags");
1411   unsigned Reg;
1412   VRegInfo *RegInfo;
1413   if (parseRegister(Reg, RegInfo))
1414     return true;
1415   lex();
1416   unsigned SubReg = 0;
1417   if (Token.is(MIToken::dot)) {
1418     if (parseSubRegisterIndex(SubReg))
1419       return true;
1420     if (!Register::isVirtualRegister(Reg))
1421       return error("subregister index expects a virtual register");
1422   }
1423   if (Token.is(MIToken::colon)) {
1424     if (!Register::isVirtualRegister(Reg))
1425       return error("register class specification expects a virtual register");
1426     lex();
1427     if (parseRegisterClassOrBank(*RegInfo))
1428         return true;
1429   }
1430   MachineRegisterInfo &MRI = MF.getRegInfo();
1431   if ((Flags & RegState::Define) == 0) {
1432     if (consumeIfPresent(MIToken::lparen)) {
1433       unsigned Idx;
1434       if (!parseRegisterTiedDefIndex(Idx))
1435         TiedDefIdx = Idx;
1436       else {
1437         // Try a redundant low-level type.
1438         LLT Ty;
1439         if (parseLowLevelType(Token.location(), Ty))
1440           return error("expected tied-def or low-level type after '('");
1441 
1442         if (expectAndConsume(MIToken::rparen))
1443           return true;
1444 
1445         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1446           return error("inconsistent type for generic virtual register");
1447 
1448         MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1449         MRI.setType(Reg, Ty);
1450       }
1451     }
1452   } else if (consumeIfPresent(MIToken::lparen)) {
1453     // Virtual registers may have a tpe with GlobalISel.
1454     if (!Register::isVirtualRegister(Reg))
1455       return error("unexpected type on physical register");
1456 
1457     LLT Ty;
1458     if (parseLowLevelType(Token.location(), Ty))
1459       return true;
1460 
1461     if (expectAndConsume(MIToken::rparen))
1462       return true;
1463 
1464     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1465       return error("inconsistent type for generic virtual register");
1466 
1467     MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1468     MRI.setType(Reg, Ty);
1469   } else if (Register::isVirtualRegister(Reg)) {
1470     // Generic virtual registers must have a type.
1471     // If we end up here this means the type hasn't been specified and
1472     // this is bad!
1473     if (RegInfo->Kind == VRegInfo::GENERIC ||
1474         RegInfo->Kind == VRegInfo::REGBANK)
1475       return error("generic virtual registers must have a type");
1476   }
1477   Dest = MachineOperand::CreateReg(
1478       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1479       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1480       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1481       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1482 
1483   return false;
1484 }
1485 
1486 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1487   assert(Token.is(MIToken::IntegerLiteral));
1488   const APSInt &Int = Token.integerValue();
1489   if (Int.getMinSignedBits() > 64)
1490     return error("integer literal is too large to be an immediate operand");
1491   Dest = MachineOperand::CreateImm(Int.getExtValue());
1492   lex();
1493   return false;
1494 }
1495 
1496 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1497                                const Constant *&C) {
1498   auto Source = StringValue.str(); // The source has to be null terminated.
1499   SMDiagnostic Err;
1500   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1501                          &PFS.IRSlots);
1502   if (!C)
1503     return error(Loc + Err.getColumnNo(), Err.getMessage());
1504   return false;
1505 }
1506 
1507 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1508   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1509     return true;
1510   lex();
1511   return false;
1512 }
1513 
1514 // See LLT implemntation for bit size limits.
1515 static bool verifyScalarSize(uint64_t Size) {
1516   return Size != 0 && isUInt<16>(Size);
1517 }
1518 
1519 static bool verifyVectorElementCount(uint64_t NumElts) {
1520   return NumElts != 0 && isUInt<16>(NumElts);
1521 }
1522 
1523 static bool verifyAddrSpace(uint64_t AddrSpace) {
1524   return isUInt<24>(AddrSpace);
1525 }
1526 
1527 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1528   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1529     StringRef SizeStr = Token.range().drop_front();
1530     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1531       return error("expected integers after 's'/'p' type character");
1532   }
1533 
1534   if (Token.range().front() == 's') {
1535     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1536     if (!verifyScalarSize(ScalarSize))
1537       return error("invalid size for scalar type");
1538 
1539     Ty = LLT::scalar(ScalarSize);
1540     lex();
1541     return false;
1542   } else if (Token.range().front() == 'p') {
1543     const DataLayout &DL = MF.getDataLayout();
1544     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1545     if (!verifyAddrSpace(AS))
1546       return error("invalid address space number");
1547 
1548     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1549     lex();
1550     return false;
1551   }
1552 
1553   // Now we're looking for a vector.
1554   if (Token.isNot(MIToken::less))
1555     return error(Loc,
1556                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1557   lex();
1558 
1559   if (Token.isNot(MIToken::IntegerLiteral))
1560     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1561   uint64_t NumElements = Token.integerValue().getZExtValue();
1562   if (!verifyVectorElementCount(NumElements))
1563     return error("invalid number of vector elements");
1564 
1565   lex();
1566 
1567   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1568     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1569   lex();
1570 
1571   if (Token.range().front() != 's' && Token.range().front() != 'p')
1572     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1573   StringRef SizeStr = Token.range().drop_front();
1574   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1575     return error("expected integers after 's'/'p' type character");
1576 
1577   if (Token.range().front() == 's') {
1578     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1579     if (!verifyScalarSize(ScalarSize))
1580       return error("invalid size for scalar type");
1581     Ty = LLT::scalar(ScalarSize);
1582   } else if (Token.range().front() == 'p') {
1583     const DataLayout &DL = MF.getDataLayout();
1584     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1585     if (!verifyAddrSpace(AS))
1586       return error("invalid address space number");
1587 
1588     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1589   } else
1590     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1591   lex();
1592 
1593   if (Token.isNot(MIToken::greater))
1594     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1595   lex();
1596 
1597   Ty = LLT::vector(NumElements, Ty);
1598   return false;
1599 }
1600 
1601 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1602   assert(Token.is(MIToken::Identifier));
1603   StringRef TypeStr = Token.range();
1604   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1605       TypeStr.front() != 'p')
1606     return error(
1607         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1608   StringRef SizeStr = Token.range().drop_front();
1609   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1610     return error("expected integers after 'i'/'s'/'p' type character");
1611 
1612   auto Loc = Token.location();
1613   lex();
1614   if (Token.isNot(MIToken::IntegerLiteral)) {
1615     if (Token.isNot(MIToken::Identifier) ||
1616         !(Token.range() == "true" || Token.range() == "false"))
1617       return error("expected an integer literal");
1618   }
1619   const Constant *C = nullptr;
1620   if (parseIRConstant(Loc, C))
1621     return true;
1622   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1623   return false;
1624 }
1625 
1626 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1627   auto Loc = Token.location();
1628   lex();
1629   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1630       Token.isNot(MIToken::HexLiteral))
1631     return error("expected a floating point literal");
1632   const Constant *C = nullptr;
1633   if (parseIRConstant(Loc, C))
1634     return true;
1635   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1636   return false;
1637 }
1638 
1639 bool MIParser::getUnsigned(unsigned &Result) {
1640   if (Token.hasIntegerValue()) {
1641     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1642     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1643     if (Val64 == Limit)
1644       return error("expected 32-bit integer (too large)");
1645     Result = Val64;
1646     return false;
1647   }
1648   if (Token.is(MIToken::HexLiteral)) {
1649     APInt A;
1650     if (getHexUint(A))
1651       return true;
1652     if (A.getBitWidth() > 32)
1653       return error("expected 32-bit integer (too large)");
1654     Result = A.getZExtValue();
1655     return false;
1656   }
1657   return true;
1658 }
1659 
1660 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1661   assert(Token.is(MIToken::MachineBasicBlock) ||
1662          Token.is(MIToken::MachineBasicBlockLabel));
1663   unsigned Number;
1664   if (getUnsigned(Number))
1665     return true;
1666   auto MBBInfo = PFS.MBBSlots.find(Number);
1667   if (MBBInfo == PFS.MBBSlots.end())
1668     return error(Twine("use of undefined machine basic block #") +
1669                  Twine(Number));
1670   MBB = MBBInfo->second;
1671   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1672   // we drop the <irname> from the bb.<id>.<irname> format.
1673   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1674     return error(Twine("the name of machine basic block #") + Twine(Number) +
1675                  " isn't '" + Token.stringValue() + "'");
1676   return false;
1677 }
1678 
1679 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1680   MachineBasicBlock *MBB;
1681   if (parseMBBReference(MBB))
1682     return true;
1683   Dest = MachineOperand::CreateMBB(MBB);
1684   lex();
1685   return false;
1686 }
1687 
1688 bool MIParser::parseStackFrameIndex(int &FI) {
1689   assert(Token.is(MIToken::StackObject));
1690   unsigned ID;
1691   if (getUnsigned(ID))
1692     return true;
1693   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1694   if (ObjectInfo == PFS.StackObjectSlots.end())
1695     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1696                  "'");
1697   StringRef Name;
1698   if (const auto *Alloca =
1699           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1700     Name = Alloca->getName();
1701   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1702     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1703                  "' isn't '" + Token.stringValue() + "'");
1704   lex();
1705   FI = ObjectInfo->second;
1706   return false;
1707 }
1708 
1709 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1710   int FI;
1711   if (parseStackFrameIndex(FI))
1712     return true;
1713   Dest = MachineOperand::CreateFI(FI);
1714   return false;
1715 }
1716 
1717 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1718   assert(Token.is(MIToken::FixedStackObject));
1719   unsigned ID;
1720   if (getUnsigned(ID))
1721     return true;
1722   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1723   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1724     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1725                  Twine(ID) + "'");
1726   lex();
1727   FI = ObjectInfo->second;
1728   return false;
1729 }
1730 
1731 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1732   int FI;
1733   if (parseFixedStackFrameIndex(FI))
1734     return true;
1735   Dest = MachineOperand::CreateFI(FI);
1736   return false;
1737 }
1738 
1739 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1740   switch (Token.kind()) {
1741   case MIToken::NamedGlobalValue: {
1742     const Module *M = MF.getFunction().getParent();
1743     GV = M->getNamedValue(Token.stringValue());
1744     if (!GV)
1745       return error(Twine("use of undefined global value '") + Token.range() +
1746                    "'");
1747     break;
1748   }
1749   case MIToken::GlobalValue: {
1750     unsigned GVIdx;
1751     if (getUnsigned(GVIdx))
1752       return true;
1753     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1754       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1755                    "'");
1756     GV = PFS.IRSlots.GlobalValues[GVIdx];
1757     break;
1758   }
1759   default:
1760     llvm_unreachable("The current token should be a global value");
1761   }
1762   return false;
1763 }
1764 
1765 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1766   GlobalValue *GV = nullptr;
1767   if (parseGlobalValue(GV))
1768     return true;
1769   lex();
1770   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1771   if (parseOperandsOffset(Dest))
1772     return true;
1773   return false;
1774 }
1775 
1776 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1777   assert(Token.is(MIToken::ConstantPoolItem));
1778   unsigned ID;
1779   if (getUnsigned(ID))
1780     return true;
1781   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1782   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1783     return error("use of undefined constant '%const." + Twine(ID) + "'");
1784   lex();
1785   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1786   if (parseOperandsOffset(Dest))
1787     return true;
1788   return false;
1789 }
1790 
1791 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1792   assert(Token.is(MIToken::JumpTableIndex));
1793   unsigned ID;
1794   if (getUnsigned(ID))
1795     return true;
1796   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1797   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1798     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1799   lex();
1800   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1801   return false;
1802 }
1803 
1804 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1805   assert(Token.is(MIToken::ExternalSymbol));
1806   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1807   lex();
1808   Dest = MachineOperand::CreateES(Symbol);
1809   if (parseOperandsOffset(Dest))
1810     return true;
1811   return false;
1812 }
1813 
1814 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1815   assert(Token.is(MIToken::MCSymbol));
1816   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1817   lex();
1818   Dest = MachineOperand::CreateMCSymbol(Symbol);
1819   if (parseOperandsOffset(Dest))
1820     return true;
1821   return false;
1822 }
1823 
1824 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1825   assert(Token.is(MIToken::SubRegisterIndex));
1826   StringRef Name = Token.stringValue();
1827   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
1828   if (SubRegIndex == 0)
1829     return error(Twine("unknown subregister index '") + Name + "'");
1830   lex();
1831   Dest = MachineOperand::CreateImm(SubRegIndex);
1832   return false;
1833 }
1834 
1835 bool MIParser::parseMDNode(MDNode *&Node) {
1836   assert(Token.is(MIToken::exclaim));
1837 
1838   auto Loc = Token.location();
1839   lex();
1840   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1841     return error("expected metadata id after '!'");
1842   unsigned ID;
1843   if (getUnsigned(ID))
1844     return true;
1845   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1846   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1847     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1848   lex();
1849   Node = NodeInfo->second.get();
1850   return false;
1851 }
1852 
1853 bool MIParser::parseDIExpression(MDNode *&Expr) {
1854   assert(Token.is(MIToken::md_diexpr));
1855   lex();
1856 
1857   // FIXME: Share this parsing with the IL parser.
1858   SmallVector<uint64_t, 8> Elements;
1859 
1860   if (expectAndConsume(MIToken::lparen))
1861     return true;
1862 
1863   if (Token.isNot(MIToken::rparen)) {
1864     do {
1865       if (Token.is(MIToken::Identifier)) {
1866         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1867           lex();
1868           Elements.push_back(Op);
1869           continue;
1870         }
1871         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
1872           lex();
1873           Elements.push_back(Enc);
1874           continue;
1875         }
1876         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1877       }
1878 
1879       if (Token.isNot(MIToken::IntegerLiteral) ||
1880           Token.integerValue().isSigned())
1881         return error("expected unsigned integer");
1882 
1883       auto &U = Token.integerValue();
1884       if (U.ugt(UINT64_MAX))
1885         return error("element too large, limit is " + Twine(UINT64_MAX));
1886       Elements.push_back(U.getZExtValue());
1887       lex();
1888 
1889     } while (consumeIfPresent(MIToken::comma));
1890   }
1891 
1892   if (expectAndConsume(MIToken::rparen))
1893     return true;
1894 
1895   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1896   return false;
1897 }
1898 
1899 bool MIParser::parseDILocation(MDNode *&Loc) {
1900   assert(Token.is(MIToken::md_dilocation));
1901   lex();
1902 
1903   bool HaveLine = false;
1904   unsigned Line = 0;
1905   unsigned Column = 0;
1906   MDNode *Scope = nullptr;
1907   MDNode *InlinedAt = nullptr;
1908   bool ImplicitCode = false;
1909 
1910   if (expectAndConsume(MIToken::lparen))
1911     return true;
1912 
1913   if (Token.isNot(MIToken::rparen)) {
1914     do {
1915       if (Token.is(MIToken::Identifier)) {
1916         if (Token.stringValue() == "line") {
1917           lex();
1918           if (expectAndConsume(MIToken::colon))
1919             return true;
1920           if (Token.isNot(MIToken::IntegerLiteral) ||
1921               Token.integerValue().isSigned())
1922             return error("expected unsigned integer");
1923           Line = Token.integerValue().getZExtValue();
1924           HaveLine = true;
1925           lex();
1926           continue;
1927         }
1928         if (Token.stringValue() == "column") {
1929           lex();
1930           if (expectAndConsume(MIToken::colon))
1931             return true;
1932           if (Token.isNot(MIToken::IntegerLiteral) ||
1933               Token.integerValue().isSigned())
1934             return error("expected unsigned integer");
1935           Column = Token.integerValue().getZExtValue();
1936           lex();
1937           continue;
1938         }
1939         if (Token.stringValue() == "scope") {
1940           lex();
1941           if (expectAndConsume(MIToken::colon))
1942             return true;
1943           if (parseMDNode(Scope))
1944             return error("expected metadata node");
1945           if (!isa<DIScope>(Scope))
1946             return error("expected DIScope node");
1947           continue;
1948         }
1949         if (Token.stringValue() == "inlinedAt") {
1950           lex();
1951           if (expectAndConsume(MIToken::colon))
1952             return true;
1953           if (Token.is(MIToken::exclaim)) {
1954             if (parseMDNode(InlinedAt))
1955               return true;
1956           } else if (Token.is(MIToken::md_dilocation)) {
1957             if (parseDILocation(InlinedAt))
1958               return true;
1959           } else
1960             return error("expected metadata node");
1961           if (!isa<DILocation>(InlinedAt))
1962             return error("expected DILocation node");
1963           continue;
1964         }
1965         if (Token.stringValue() == "isImplicitCode") {
1966           lex();
1967           if (expectAndConsume(MIToken::colon))
1968             return true;
1969           if (!Token.is(MIToken::Identifier))
1970             return error("expected true/false");
1971           // As far as I can see, we don't have any existing need for parsing
1972           // true/false in MIR yet. Do it ad-hoc until there's something else
1973           // that needs it.
1974           if (Token.stringValue() == "true")
1975             ImplicitCode = true;
1976           else if (Token.stringValue() == "false")
1977             ImplicitCode = false;
1978           else
1979             return error("expected true/false");
1980           lex();
1981           continue;
1982         }
1983       }
1984       return error(Twine("invalid DILocation argument '") +
1985                    Token.stringValue() + "'");
1986     } while (consumeIfPresent(MIToken::comma));
1987   }
1988 
1989   if (expectAndConsume(MIToken::rparen))
1990     return true;
1991 
1992   if (!HaveLine)
1993     return error("DILocation requires line number");
1994   if (!Scope)
1995     return error("DILocation requires a scope");
1996 
1997   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
1998                         InlinedAt, ImplicitCode);
1999   return false;
2000 }
2001 
2002 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2003   MDNode *Node = nullptr;
2004   if (Token.is(MIToken::exclaim)) {
2005     if (parseMDNode(Node))
2006       return true;
2007   } else if (Token.is(MIToken::md_diexpr)) {
2008     if (parseDIExpression(Node))
2009       return true;
2010   }
2011   Dest = MachineOperand::CreateMetadata(Node);
2012   return false;
2013 }
2014 
2015 bool MIParser::parseCFIOffset(int &Offset) {
2016   if (Token.isNot(MIToken::IntegerLiteral))
2017     return error("expected a cfi offset");
2018   if (Token.integerValue().getMinSignedBits() > 32)
2019     return error("expected a 32 bit integer (the cfi offset is too large)");
2020   Offset = (int)Token.integerValue().getExtValue();
2021   lex();
2022   return false;
2023 }
2024 
2025 bool MIParser::parseCFIRegister(unsigned &Reg) {
2026   if (Token.isNot(MIToken::NamedRegister))
2027     return error("expected a cfi register");
2028   unsigned LLVMReg;
2029   if (parseNamedRegister(LLVMReg))
2030     return true;
2031   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2032   assert(TRI && "Expected target register info");
2033   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2034   if (DwarfReg < 0)
2035     return error("invalid DWARF register");
2036   Reg = (unsigned)DwarfReg;
2037   lex();
2038   return false;
2039 }
2040 
2041 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2042   do {
2043     if (Token.isNot(MIToken::HexLiteral))
2044       return error("expected a hexadecimal literal");
2045     unsigned Value;
2046     if (getUnsigned(Value))
2047       return true;
2048     if (Value > UINT8_MAX)
2049       return error("expected a 8-bit integer (too large)");
2050     Values.push_back(static_cast<uint8_t>(Value));
2051     lex();
2052   } while (consumeIfPresent(MIToken::comma));
2053   return false;
2054 }
2055 
2056 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2057   auto Kind = Token.kind();
2058   lex();
2059   int Offset;
2060   unsigned Reg;
2061   unsigned CFIIndex;
2062   switch (Kind) {
2063   case MIToken::kw_cfi_same_value:
2064     if (parseCFIRegister(Reg))
2065       return true;
2066     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2067     break;
2068   case MIToken::kw_cfi_offset:
2069     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2070         parseCFIOffset(Offset))
2071       return true;
2072     CFIIndex =
2073         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2074     break;
2075   case MIToken::kw_cfi_rel_offset:
2076     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2077         parseCFIOffset(Offset))
2078       return true;
2079     CFIIndex = MF.addFrameInst(
2080         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2081     break;
2082   case MIToken::kw_cfi_def_cfa_register:
2083     if (parseCFIRegister(Reg))
2084       return true;
2085     CFIIndex =
2086         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2087     break;
2088   case MIToken::kw_cfi_def_cfa_offset:
2089     if (parseCFIOffset(Offset))
2090       return true;
2091     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
2092     CFIIndex = MF.addFrameInst(
2093         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
2094     break;
2095   case MIToken::kw_cfi_adjust_cfa_offset:
2096     if (parseCFIOffset(Offset))
2097       return true;
2098     CFIIndex = MF.addFrameInst(
2099         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2100     break;
2101   case MIToken::kw_cfi_def_cfa:
2102     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2103         parseCFIOffset(Offset))
2104       return true;
2105     // NB: MCCFIInstruction::createDefCfa negates the offset.
2106     CFIIndex =
2107         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
2108     break;
2109   case MIToken::kw_cfi_remember_state:
2110     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2111     break;
2112   case MIToken::kw_cfi_restore:
2113     if (parseCFIRegister(Reg))
2114       return true;
2115     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2116     break;
2117   case MIToken::kw_cfi_restore_state:
2118     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2119     break;
2120   case MIToken::kw_cfi_undefined:
2121     if (parseCFIRegister(Reg))
2122       return true;
2123     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2124     break;
2125   case MIToken::kw_cfi_register: {
2126     unsigned Reg2;
2127     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2128         parseCFIRegister(Reg2))
2129       return true;
2130 
2131     CFIIndex =
2132         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2133     break;
2134   }
2135   case MIToken::kw_cfi_window_save:
2136     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2137     break;
2138   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2139     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2140     break;
2141   case MIToken::kw_cfi_escape: {
2142     std::string Values;
2143     if (parseCFIEscapeValues(Values))
2144       return true;
2145     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2146     break;
2147   }
2148   default:
2149     // TODO: Parse the other CFI operands.
2150     llvm_unreachable("The current token should be a cfi operand");
2151   }
2152   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2153   return false;
2154 }
2155 
2156 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2157   switch (Token.kind()) {
2158   case MIToken::NamedIRBlock: {
2159     BB = dyn_cast_or_null<BasicBlock>(
2160         F.getValueSymbolTable()->lookup(Token.stringValue()));
2161     if (!BB)
2162       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2163     break;
2164   }
2165   case MIToken::IRBlock: {
2166     unsigned SlotNumber = 0;
2167     if (getUnsigned(SlotNumber))
2168       return true;
2169     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2170     if (!BB)
2171       return error(Twine("use of undefined IR block '%ir-block.") +
2172                    Twine(SlotNumber) + "'");
2173     break;
2174   }
2175   default:
2176     llvm_unreachable("The current token should be an IR block reference");
2177   }
2178   return false;
2179 }
2180 
2181 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2182   assert(Token.is(MIToken::kw_blockaddress));
2183   lex();
2184   if (expectAndConsume(MIToken::lparen))
2185     return true;
2186   if (Token.isNot(MIToken::GlobalValue) &&
2187       Token.isNot(MIToken::NamedGlobalValue))
2188     return error("expected a global value");
2189   GlobalValue *GV = nullptr;
2190   if (parseGlobalValue(GV))
2191     return true;
2192   auto *F = dyn_cast<Function>(GV);
2193   if (!F)
2194     return error("expected an IR function reference");
2195   lex();
2196   if (expectAndConsume(MIToken::comma))
2197     return true;
2198   BasicBlock *BB = nullptr;
2199   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2200     return error("expected an IR block reference");
2201   if (parseIRBlock(BB, *F))
2202     return true;
2203   lex();
2204   if (expectAndConsume(MIToken::rparen))
2205     return true;
2206   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2207   if (parseOperandsOffset(Dest))
2208     return true;
2209   return false;
2210 }
2211 
2212 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2213   assert(Token.is(MIToken::kw_intrinsic));
2214   lex();
2215   if (expectAndConsume(MIToken::lparen))
2216     return error("expected syntax intrinsic(@llvm.whatever)");
2217 
2218   if (Token.isNot(MIToken::NamedGlobalValue))
2219     return error("expected syntax intrinsic(@llvm.whatever)");
2220 
2221   std::string Name = Token.stringValue();
2222   lex();
2223 
2224   if (expectAndConsume(MIToken::rparen))
2225     return error("expected ')' to terminate intrinsic name");
2226 
2227   // Find out what intrinsic we're dealing with, first try the global namespace
2228   // and then the target's private intrinsics if that fails.
2229   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2230   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2231   if (ID == Intrinsic::not_intrinsic && TII)
2232     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2233 
2234   if (ID == Intrinsic::not_intrinsic)
2235     return error("unknown intrinsic name");
2236   Dest = MachineOperand::CreateIntrinsicID(ID);
2237 
2238   return false;
2239 }
2240 
2241 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2242   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2243   bool IsFloat = Token.is(MIToken::kw_floatpred);
2244   lex();
2245 
2246   if (expectAndConsume(MIToken::lparen))
2247     return error("expected syntax intpred(whatever) or floatpred(whatever");
2248 
2249   if (Token.isNot(MIToken::Identifier))
2250     return error("whatever");
2251 
2252   CmpInst::Predicate Pred;
2253   if (IsFloat) {
2254     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2255                .Case("false", CmpInst::FCMP_FALSE)
2256                .Case("oeq", CmpInst::FCMP_OEQ)
2257                .Case("ogt", CmpInst::FCMP_OGT)
2258                .Case("oge", CmpInst::FCMP_OGE)
2259                .Case("olt", CmpInst::FCMP_OLT)
2260                .Case("ole", CmpInst::FCMP_OLE)
2261                .Case("one", CmpInst::FCMP_ONE)
2262                .Case("ord", CmpInst::FCMP_ORD)
2263                .Case("uno", CmpInst::FCMP_UNO)
2264                .Case("ueq", CmpInst::FCMP_UEQ)
2265                .Case("ugt", CmpInst::FCMP_UGT)
2266                .Case("uge", CmpInst::FCMP_UGE)
2267                .Case("ult", CmpInst::FCMP_ULT)
2268                .Case("ule", CmpInst::FCMP_ULE)
2269                .Case("une", CmpInst::FCMP_UNE)
2270                .Case("true", CmpInst::FCMP_TRUE)
2271                .Default(CmpInst::BAD_FCMP_PREDICATE);
2272     if (!CmpInst::isFPPredicate(Pred))
2273       return error("invalid floating-point predicate");
2274   } else {
2275     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2276                .Case("eq", CmpInst::ICMP_EQ)
2277                .Case("ne", CmpInst::ICMP_NE)
2278                .Case("sgt", CmpInst::ICMP_SGT)
2279                .Case("sge", CmpInst::ICMP_SGE)
2280                .Case("slt", CmpInst::ICMP_SLT)
2281                .Case("sle", CmpInst::ICMP_SLE)
2282                .Case("ugt", CmpInst::ICMP_UGT)
2283                .Case("uge", CmpInst::ICMP_UGE)
2284                .Case("ult", CmpInst::ICMP_ULT)
2285                .Case("ule", CmpInst::ICMP_ULE)
2286                .Default(CmpInst::BAD_ICMP_PREDICATE);
2287     if (!CmpInst::isIntPredicate(Pred))
2288       return error("invalid integer predicate");
2289   }
2290 
2291   lex();
2292   Dest = MachineOperand::CreatePredicate(Pred);
2293   if (expectAndConsume(MIToken::rparen))
2294     return error("predicate should be terminated by ')'.");
2295 
2296   return false;
2297 }
2298 
2299 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2300   assert(Token.is(MIToken::kw_shufflemask));
2301 
2302   lex();
2303   if (expectAndConsume(MIToken::lparen))
2304     return error("expected syntax shufflemask(<integer or undef>, ...)");
2305 
2306   SmallVector<Constant *, 32> ShufMask;
2307   LLVMContext &Ctx = MF.getFunction().getContext();
2308   Type *I32Ty = Type::getInt32Ty(Ctx);
2309 
2310   bool AllZero = true;
2311   bool AllUndef = true;
2312 
2313   do {
2314     if (Token.is(MIToken::kw_undef)) {
2315       ShufMask.push_back(UndefValue::get(I32Ty));
2316       AllZero = false;
2317     } else if (Token.is(MIToken::IntegerLiteral)) {
2318       AllUndef = false;
2319       const APSInt &Int = Token.integerValue();
2320       if (!Int.isNullValue())
2321         AllZero = false;
2322       ShufMask.push_back(ConstantInt::get(I32Ty, Int.getExtValue()));
2323     } else
2324       return error("expected integer constant");
2325 
2326     lex();
2327   } while (consumeIfPresent(MIToken::comma));
2328 
2329   if (expectAndConsume(MIToken::rparen))
2330     return error("shufflemask should be terminated by ')'.");
2331 
2332   if (AllZero || AllUndef) {
2333     VectorType *VT = VectorType::get(I32Ty, ShufMask.size());
2334     Constant *C = AllZero ? Constant::getNullValue(VT) : UndefValue::get(VT);
2335     Dest = MachineOperand::CreateShuffleMask(C);
2336   } else
2337     Dest = MachineOperand::CreateShuffleMask(ConstantVector::get(ShufMask));
2338 
2339   return false;
2340 }
2341 
2342 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2343   assert(Token.is(MIToken::kw_target_index));
2344   lex();
2345   if (expectAndConsume(MIToken::lparen))
2346     return true;
2347   if (Token.isNot(MIToken::Identifier))
2348     return error("expected the name of the target index");
2349   int Index = 0;
2350   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2351     return error("use of undefined target index '" + Token.stringValue() + "'");
2352   lex();
2353   if (expectAndConsume(MIToken::rparen))
2354     return true;
2355   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2356   if (parseOperandsOffset(Dest))
2357     return true;
2358   return false;
2359 }
2360 
2361 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2362   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2363   lex();
2364   if (expectAndConsume(MIToken::lparen))
2365     return true;
2366 
2367   uint32_t *Mask = MF.allocateRegMask();
2368   while (true) {
2369     if (Token.isNot(MIToken::NamedRegister))
2370       return error("expected a named register");
2371     unsigned Reg;
2372     if (parseNamedRegister(Reg))
2373       return true;
2374     lex();
2375     Mask[Reg / 32] |= 1U << (Reg % 32);
2376     // TODO: Report an error if the same register is used more than once.
2377     if (Token.isNot(MIToken::comma))
2378       break;
2379     lex();
2380   }
2381 
2382   if (expectAndConsume(MIToken::rparen))
2383     return true;
2384   Dest = MachineOperand::CreateRegMask(Mask);
2385   return false;
2386 }
2387 
2388 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2389   assert(Token.is(MIToken::kw_liveout));
2390   uint32_t *Mask = MF.allocateRegMask();
2391   lex();
2392   if (expectAndConsume(MIToken::lparen))
2393     return true;
2394   while (true) {
2395     if (Token.isNot(MIToken::NamedRegister))
2396       return error("expected a named register");
2397     unsigned Reg;
2398     if (parseNamedRegister(Reg))
2399       return true;
2400     lex();
2401     Mask[Reg / 32] |= 1U << (Reg % 32);
2402     // TODO: Report an error if the same register is used more than once.
2403     if (Token.isNot(MIToken::comma))
2404       break;
2405     lex();
2406   }
2407   if (expectAndConsume(MIToken::rparen))
2408     return true;
2409   Dest = MachineOperand::CreateRegLiveOut(Mask);
2410   return false;
2411 }
2412 
2413 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2414                                    Optional<unsigned> &TiedDefIdx) {
2415   switch (Token.kind()) {
2416   case MIToken::kw_implicit:
2417   case MIToken::kw_implicit_define:
2418   case MIToken::kw_def:
2419   case MIToken::kw_dead:
2420   case MIToken::kw_killed:
2421   case MIToken::kw_undef:
2422   case MIToken::kw_internal:
2423   case MIToken::kw_early_clobber:
2424   case MIToken::kw_debug_use:
2425   case MIToken::kw_renamable:
2426   case MIToken::underscore:
2427   case MIToken::NamedRegister:
2428   case MIToken::VirtualRegister:
2429   case MIToken::NamedVirtualRegister:
2430     return parseRegisterOperand(Dest, TiedDefIdx);
2431   case MIToken::IntegerLiteral:
2432     return parseImmediateOperand(Dest);
2433   case MIToken::kw_half:
2434   case MIToken::kw_float:
2435   case MIToken::kw_double:
2436   case MIToken::kw_x86_fp80:
2437   case MIToken::kw_fp128:
2438   case MIToken::kw_ppc_fp128:
2439     return parseFPImmediateOperand(Dest);
2440   case MIToken::MachineBasicBlock:
2441     return parseMBBOperand(Dest);
2442   case MIToken::StackObject:
2443     return parseStackObjectOperand(Dest);
2444   case MIToken::FixedStackObject:
2445     return parseFixedStackObjectOperand(Dest);
2446   case MIToken::GlobalValue:
2447   case MIToken::NamedGlobalValue:
2448     return parseGlobalAddressOperand(Dest);
2449   case MIToken::ConstantPoolItem:
2450     return parseConstantPoolIndexOperand(Dest);
2451   case MIToken::JumpTableIndex:
2452     return parseJumpTableIndexOperand(Dest);
2453   case MIToken::ExternalSymbol:
2454     return parseExternalSymbolOperand(Dest);
2455   case MIToken::MCSymbol:
2456     return parseMCSymbolOperand(Dest);
2457   case MIToken::SubRegisterIndex:
2458     return parseSubRegisterIndexOperand(Dest);
2459   case MIToken::md_diexpr:
2460   case MIToken::exclaim:
2461     return parseMetadataOperand(Dest);
2462   case MIToken::kw_cfi_same_value:
2463   case MIToken::kw_cfi_offset:
2464   case MIToken::kw_cfi_rel_offset:
2465   case MIToken::kw_cfi_def_cfa_register:
2466   case MIToken::kw_cfi_def_cfa_offset:
2467   case MIToken::kw_cfi_adjust_cfa_offset:
2468   case MIToken::kw_cfi_escape:
2469   case MIToken::kw_cfi_def_cfa:
2470   case MIToken::kw_cfi_register:
2471   case MIToken::kw_cfi_remember_state:
2472   case MIToken::kw_cfi_restore:
2473   case MIToken::kw_cfi_restore_state:
2474   case MIToken::kw_cfi_undefined:
2475   case MIToken::kw_cfi_window_save:
2476   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2477     return parseCFIOperand(Dest);
2478   case MIToken::kw_blockaddress:
2479     return parseBlockAddressOperand(Dest);
2480   case MIToken::kw_intrinsic:
2481     return parseIntrinsicOperand(Dest);
2482   case MIToken::kw_target_index:
2483     return parseTargetIndexOperand(Dest);
2484   case MIToken::kw_liveout:
2485     return parseLiveoutRegisterMaskOperand(Dest);
2486   case MIToken::kw_floatpred:
2487   case MIToken::kw_intpred:
2488     return parsePredicateOperand(Dest);
2489   case MIToken::kw_shufflemask:
2490     return parseShuffleMaskOperand(Dest);
2491   case MIToken::Error:
2492     return true;
2493   case MIToken::Identifier:
2494     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2495       Dest = MachineOperand::CreateRegMask(RegMask);
2496       lex();
2497       break;
2498     } else if (Token.stringValue() == "CustomRegMask") {
2499       return parseCustomRegisterMaskOperand(Dest);
2500     } else
2501       return parseTypedImmediateOperand(Dest);
2502   default:
2503     // FIXME: Parse the MCSymbol machine operand.
2504     return error("expected a machine operand");
2505   }
2506   return false;
2507 }
2508 
2509 bool MIParser::parseMachineOperandAndTargetFlags(
2510     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2511   unsigned TF = 0;
2512   bool HasTargetFlags = false;
2513   if (Token.is(MIToken::kw_target_flags)) {
2514     HasTargetFlags = true;
2515     lex();
2516     if (expectAndConsume(MIToken::lparen))
2517       return true;
2518     if (Token.isNot(MIToken::Identifier))
2519       return error("expected the name of the target flag");
2520     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2521       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2522         return error("use of undefined target flag '" + Token.stringValue() +
2523                      "'");
2524     }
2525     lex();
2526     while (Token.is(MIToken::comma)) {
2527       lex();
2528       if (Token.isNot(MIToken::Identifier))
2529         return error("expected the name of the target flag");
2530       unsigned BitFlag = 0;
2531       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2532         return error("use of undefined target flag '" + Token.stringValue() +
2533                      "'");
2534       // TODO: Report an error when using a duplicate bit target flag.
2535       TF |= BitFlag;
2536       lex();
2537     }
2538     if (expectAndConsume(MIToken::rparen))
2539       return true;
2540   }
2541   auto Loc = Token.location();
2542   if (parseMachineOperand(Dest, TiedDefIdx))
2543     return true;
2544   if (!HasTargetFlags)
2545     return false;
2546   if (Dest.isReg())
2547     return error(Loc, "register operands can't have target flags");
2548   Dest.setTargetFlags(TF);
2549   return false;
2550 }
2551 
2552 bool MIParser::parseOffset(int64_t &Offset) {
2553   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2554     return false;
2555   StringRef Sign = Token.range();
2556   bool IsNegative = Token.is(MIToken::minus);
2557   lex();
2558   if (Token.isNot(MIToken::IntegerLiteral))
2559     return error("expected an integer literal after '" + Sign + "'");
2560   if (Token.integerValue().getMinSignedBits() > 64)
2561     return error("expected 64-bit integer (too large)");
2562   Offset = Token.integerValue().getExtValue();
2563   if (IsNegative)
2564     Offset = -Offset;
2565   lex();
2566   return false;
2567 }
2568 
2569 bool MIParser::parseAlignment(unsigned &Alignment) {
2570   assert(Token.is(MIToken::kw_align));
2571   lex();
2572   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2573     return error("expected an integer literal after 'align'");
2574   if (getUnsigned(Alignment))
2575     return true;
2576   lex();
2577 
2578   if (!isPowerOf2_32(Alignment))
2579     return error("expected a power-of-2 literal after 'align'");
2580 
2581   return false;
2582 }
2583 
2584 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2585   assert(Token.is(MIToken::kw_addrspace));
2586   lex();
2587   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2588     return error("expected an integer literal after 'addrspace'");
2589   if (getUnsigned(Addrspace))
2590     return true;
2591   lex();
2592   return false;
2593 }
2594 
2595 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2596   int64_t Offset = 0;
2597   if (parseOffset(Offset))
2598     return true;
2599   Op.setOffset(Offset);
2600   return false;
2601 }
2602 
2603 bool MIParser::parseIRValue(const Value *&V) {
2604   switch (Token.kind()) {
2605   case MIToken::NamedIRValue: {
2606     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2607     break;
2608   }
2609   case MIToken::IRValue: {
2610     unsigned SlotNumber = 0;
2611     if (getUnsigned(SlotNumber))
2612       return true;
2613     V = getIRValue(SlotNumber);
2614     break;
2615   }
2616   case MIToken::NamedGlobalValue:
2617   case MIToken::GlobalValue: {
2618     GlobalValue *GV = nullptr;
2619     if (parseGlobalValue(GV))
2620       return true;
2621     V = GV;
2622     break;
2623   }
2624   case MIToken::QuotedIRValue: {
2625     const Constant *C = nullptr;
2626     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2627       return true;
2628     V = C;
2629     break;
2630   }
2631   default:
2632     llvm_unreachable("The current token should be an IR block reference");
2633   }
2634   if (!V)
2635     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2636   return false;
2637 }
2638 
2639 bool MIParser::getUint64(uint64_t &Result) {
2640   if (Token.hasIntegerValue()) {
2641     if (Token.integerValue().getActiveBits() > 64)
2642       return error("expected 64-bit integer (too large)");
2643     Result = Token.integerValue().getZExtValue();
2644     return false;
2645   }
2646   if (Token.is(MIToken::HexLiteral)) {
2647     APInt A;
2648     if (getHexUint(A))
2649       return true;
2650     if (A.getBitWidth() > 64)
2651       return error("expected 64-bit integer (too large)");
2652     Result = A.getZExtValue();
2653     return false;
2654   }
2655   return true;
2656 }
2657 
2658 bool MIParser::getHexUint(APInt &Result) {
2659   assert(Token.is(MIToken::HexLiteral));
2660   StringRef S = Token.range();
2661   assert(S[0] == '0' && tolower(S[1]) == 'x');
2662   // This could be a floating point literal with a special prefix.
2663   if (!isxdigit(S[2]))
2664     return true;
2665   StringRef V = S.substr(2);
2666   APInt A(V.size()*4, V, 16);
2667 
2668   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2669   // sure it isn't the case before constructing result.
2670   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2671   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2672   return false;
2673 }
2674 
2675 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2676   const auto OldFlags = Flags;
2677   switch (Token.kind()) {
2678   case MIToken::kw_volatile:
2679     Flags |= MachineMemOperand::MOVolatile;
2680     break;
2681   case MIToken::kw_non_temporal:
2682     Flags |= MachineMemOperand::MONonTemporal;
2683     break;
2684   case MIToken::kw_dereferenceable:
2685     Flags |= MachineMemOperand::MODereferenceable;
2686     break;
2687   case MIToken::kw_invariant:
2688     Flags |= MachineMemOperand::MOInvariant;
2689     break;
2690   case MIToken::StringConstant: {
2691     MachineMemOperand::Flags TF;
2692     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
2693       return error("use of undefined target MMO flag '" + Token.stringValue() +
2694                    "'");
2695     Flags |= TF;
2696     break;
2697   }
2698   default:
2699     llvm_unreachable("The current token should be a memory operand flag");
2700   }
2701   if (OldFlags == Flags)
2702     // We know that the same flag is specified more than once when the flags
2703     // weren't modified.
2704     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2705   lex();
2706   return false;
2707 }
2708 
2709 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2710   switch (Token.kind()) {
2711   case MIToken::kw_stack:
2712     PSV = MF.getPSVManager().getStack();
2713     break;
2714   case MIToken::kw_got:
2715     PSV = MF.getPSVManager().getGOT();
2716     break;
2717   case MIToken::kw_jump_table:
2718     PSV = MF.getPSVManager().getJumpTable();
2719     break;
2720   case MIToken::kw_constant_pool:
2721     PSV = MF.getPSVManager().getConstantPool();
2722     break;
2723   case MIToken::FixedStackObject: {
2724     int FI;
2725     if (parseFixedStackFrameIndex(FI))
2726       return true;
2727     PSV = MF.getPSVManager().getFixedStack(FI);
2728     // The token was already consumed, so use return here instead of break.
2729     return false;
2730   }
2731   case MIToken::StackObject: {
2732     int FI;
2733     if (parseStackFrameIndex(FI))
2734       return true;
2735     PSV = MF.getPSVManager().getFixedStack(FI);
2736     // The token was already consumed, so use return here instead of break.
2737     return false;
2738   }
2739   case MIToken::kw_call_entry:
2740     lex();
2741     switch (Token.kind()) {
2742     case MIToken::GlobalValue:
2743     case MIToken::NamedGlobalValue: {
2744       GlobalValue *GV = nullptr;
2745       if (parseGlobalValue(GV))
2746         return true;
2747       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2748       break;
2749     }
2750     case MIToken::ExternalSymbol:
2751       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2752           MF.createExternalSymbolName(Token.stringValue()));
2753       break;
2754     default:
2755       return error(
2756           "expected a global value or an external symbol after 'call-entry'");
2757     }
2758     break;
2759   default:
2760     llvm_unreachable("The current token should be pseudo source value");
2761   }
2762   lex();
2763   return false;
2764 }
2765 
2766 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2767   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2768       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2769       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2770       Token.is(MIToken::kw_call_entry)) {
2771     const PseudoSourceValue *PSV = nullptr;
2772     if (parseMemoryPseudoSourceValue(PSV))
2773       return true;
2774     int64_t Offset = 0;
2775     if (parseOffset(Offset))
2776       return true;
2777     Dest = MachinePointerInfo(PSV, Offset);
2778     return false;
2779   }
2780   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2781       Token.isNot(MIToken::GlobalValue) &&
2782       Token.isNot(MIToken::NamedGlobalValue) &&
2783       Token.isNot(MIToken::QuotedIRValue))
2784     return error("expected an IR value reference");
2785   const Value *V = nullptr;
2786   if (parseIRValue(V))
2787     return true;
2788   if (!V->getType()->isPointerTy())
2789     return error("expected a pointer IR value");
2790   lex();
2791   int64_t Offset = 0;
2792   if (parseOffset(Offset))
2793     return true;
2794   Dest = MachinePointerInfo(V, Offset);
2795   return false;
2796 }
2797 
2798 bool MIParser::parseOptionalScope(LLVMContext &Context,
2799                                   SyncScope::ID &SSID) {
2800   SSID = SyncScope::System;
2801   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2802     lex();
2803     if (expectAndConsume(MIToken::lparen))
2804       return error("expected '(' in syncscope");
2805 
2806     std::string SSN;
2807     if (parseStringConstant(SSN))
2808       return true;
2809 
2810     SSID = Context.getOrInsertSyncScopeID(SSN);
2811     if (expectAndConsume(MIToken::rparen))
2812       return error("expected ')' in syncscope");
2813   }
2814 
2815   return false;
2816 }
2817 
2818 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2819   Order = AtomicOrdering::NotAtomic;
2820   if (Token.isNot(MIToken::Identifier))
2821     return false;
2822 
2823   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2824               .Case("unordered", AtomicOrdering::Unordered)
2825               .Case("monotonic", AtomicOrdering::Monotonic)
2826               .Case("acquire", AtomicOrdering::Acquire)
2827               .Case("release", AtomicOrdering::Release)
2828               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2829               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2830               .Default(AtomicOrdering::NotAtomic);
2831 
2832   if (Order != AtomicOrdering::NotAtomic) {
2833     lex();
2834     return false;
2835   }
2836 
2837   return error("expected an atomic scope, ordering or a size specification");
2838 }
2839 
2840 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2841   if (expectAndConsume(MIToken::lparen))
2842     return true;
2843   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2844   while (Token.isMemoryOperandFlag()) {
2845     if (parseMemoryOperandFlag(Flags))
2846       return true;
2847   }
2848   if (Token.isNot(MIToken::Identifier) ||
2849       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2850     return error("expected 'load' or 'store' memory operation");
2851   if (Token.stringValue() == "load")
2852     Flags |= MachineMemOperand::MOLoad;
2853   else
2854     Flags |= MachineMemOperand::MOStore;
2855   lex();
2856 
2857   // Optional 'store' for operands that both load and store.
2858   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2859     Flags |= MachineMemOperand::MOStore;
2860     lex();
2861   }
2862 
2863   // Optional synchronization scope.
2864   SyncScope::ID SSID;
2865   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2866     return true;
2867 
2868   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2869   AtomicOrdering Order, FailureOrder;
2870   if (parseOptionalAtomicOrdering(Order))
2871     return true;
2872 
2873   if (parseOptionalAtomicOrdering(FailureOrder))
2874     return true;
2875 
2876   if (Token.isNot(MIToken::IntegerLiteral) &&
2877       Token.isNot(MIToken::kw_unknown_size))
2878     return error("expected the size integer literal or 'unknown-size' after "
2879                  "memory operation");
2880   uint64_t Size;
2881   if (Token.is(MIToken::IntegerLiteral)) {
2882     if (getUint64(Size))
2883       return true;
2884   } else if (Token.is(MIToken::kw_unknown_size)) {
2885     Size = MemoryLocation::UnknownSize;
2886   }
2887   lex();
2888 
2889   MachinePointerInfo Ptr = MachinePointerInfo();
2890   if (Token.is(MIToken::Identifier)) {
2891     const char *Word =
2892         ((Flags & MachineMemOperand::MOLoad) &&
2893          (Flags & MachineMemOperand::MOStore))
2894             ? "on"
2895             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2896     if (Token.stringValue() != Word)
2897       return error(Twine("expected '") + Word + "'");
2898     lex();
2899 
2900     if (parseMachinePointerInfo(Ptr))
2901       return true;
2902   }
2903   unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
2904   AAMDNodes AAInfo;
2905   MDNode *Range = nullptr;
2906   while (consumeIfPresent(MIToken::comma)) {
2907     switch (Token.kind()) {
2908     case MIToken::kw_align:
2909       if (parseAlignment(BaseAlignment))
2910         return true;
2911       break;
2912     case MIToken::kw_addrspace:
2913       if (parseAddrspace(Ptr.AddrSpace))
2914         return true;
2915       break;
2916     case MIToken::md_tbaa:
2917       lex();
2918       if (parseMDNode(AAInfo.TBAA))
2919         return true;
2920       break;
2921     case MIToken::md_alias_scope:
2922       lex();
2923       if (parseMDNode(AAInfo.Scope))
2924         return true;
2925       break;
2926     case MIToken::md_noalias:
2927       lex();
2928       if (parseMDNode(AAInfo.NoAlias))
2929         return true;
2930       break;
2931     case MIToken::md_range:
2932       lex();
2933       if (parseMDNode(Range))
2934         return true;
2935       break;
2936     // TODO: Report an error on duplicate metadata nodes.
2937     default:
2938       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2939                    "'!noalias' or '!range'");
2940     }
2941   }
2942   if (expectAndConsume(MIToken::rparen))
2943     return true;
2944   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2945                                  SSID, Order, FailureOrder);
2946   return false;
2947 }
2948 
2949 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
2950   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
2951           Token.is(MIToken::kw_post_instr_symbol)) &&
2952          "Invalid token for a pre- post-instruction symbol!");
2953   lex();
2954   if (Token.isNot(MIToken::MCSymbol))
2955     return error("expected a symbol after 'pre-instr-symbol'");
2956   Symbol = getOrCreateMCSymbol(Token.stringValue());
2957   lex();
2958   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
2959       Token.is(MIToken::lbrace))
2960     return false;
2961   if (Token.isNot(MIToken::comma))
2962     return error("expected ',' before the next machine operand");
2963   lex();
2964   return false;
2965 }
2966 
2967 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
2968   assert(Token.is(MIToken::kw_heap_alloc_marker) &&
2969          "Invalid token for a heap alloc marker!");
2970   lex();
2971   parseMDNode(Node);
2972   if (!Node)
2973     return error("expected a MDNode after 'heap-alloc-marker'");
2974   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
2975       Token.is(MIToken::lbrace))
2976     return false;
2977   if (Token.isNot(MIToken::comma))
2978     return error("expected ',' before the next machine operand");
2979   lex();
2980   return false;
2981 }
2982 
2983 static void initSlots2BasicBlocks(
2984     const Function &F,
2985     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2986   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2987   MST.incorporateFunction(F);
2988   for (auto &BB : F) {
2989     if (BB.hasName())
2990       continue;
2991     int Slot = MST.getLocalSlot(&BB);
2992     if (Slot == -1)
2993       continue;
2994     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2995   }
2996 }
2997 
2998 static const BasicBlock *getIRBlockFromSlot(
2999     unsigned Slot,
3000     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3001   auto BlockInfo = Slots2BasicBlocks.find(Slot);
3002   if (BlockInfo == Slots2BasicBlocks.end())
3003     return nullptr;
3004   return BlockInfo->second;
3005 }
3006 
3007 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3008   if (Slots2BasicBlocks.empty())
3009     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3010   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3011 }
3012 
3013 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3014   if (&F == &MF.getFunction())
3015     return getIRBlock(Slot);
3016   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3017   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3018   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3019 }
3020 
3021 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
3022                            DenseMap<unsigned, const Value *> &Slots2Values) {
3023   int Slot = MST.getLocalSlot(V);
3024   if (Slot == -1)
3025     return;
3026   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
3027 }
3028 
3029 /// Creates the mapping from slot numbers to function's unnamed IR values.
3030 static void initSlots2Values(const Function &F,
3031                              DenseMap<unsigned, const Value *> &Slots2Values) {
3032   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3033   MST.incorporateFunction(F);
3034   for (const auto &Arg : F.args())
3035     mapValueToSlot(&Arg, MST, Slots2Values);
3036   for (const auto &BB : F) {
3037     mapValueToSlot(&BB, MST, Slots2Values);
3038     for (const auto &I : BB)
3039       mapValueToSlot(&I, MST, Slots2Values);
3040   }
3041 }
3042 
3043 const Value *MIParser::getIRValue(unsigned Slot) {
3044   if (Slots2Values.empty())
3045     initSlots2Values(MF.getFunction(), Slots2Values);
3046   auto ValueInfo = Slots2Values.find(Slot);
3047   if (ValueInfo == Slots2Values.end())
3048     return nullptr;
3049   return ValueInfo->second;
3050 }
3051 
3052 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3053   // FIXME: Currently we can't recognize temporary or local symbols and call all
3054   // of the appropriate forms to create them. However, this handles basic cases
3055   // well as most of the special aspects are recognized by a prefix on their
3056   // name, and the input names should already be unique. For test cases, keeping
3057   // the symbol name out of the symbol table isn't terribly important.
3058   return MF.getContext().getOrCreateSymbol(Name);
3059 }
3060 
3061 bool MIParser::parseStringConstant(std::string &Result) {
3062   if (Token.isNot(MIToken::StringConstant))
3063     return error("expected string constant");
3064   Result = Token.stringValue();
3065   lex();
3066   return false;
3067 }
3068 
3069 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3070                                              StringRef Src,
3071                                              SMDiagnostic &Error) {
3072   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3073 }
3074 
3075 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3076                                     StringRef Src, SMDiagnostic &Error) {
3077   return MIParser(PFS, Error, Src).parseBasicBlocks();
3078 }
3079 
3080 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3081                              MachineBasicBlock *&MBB, StringRef Src,
3082                              SMDiagnostic &Error) {
3083   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3084 }
3085 
3086 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3087                                   unsigned &Reg, StringRef Src,
3088                                   SMDiagnostic &Error) {
3089   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3090 }
3091 
3092 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3093                                        unsigned &Reg, StringRef Src,
3094                                        SMDiagnostic &Error) {
3095   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3096 }
3097 
3098 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3099                                          VRegInfo *&Info, StringRef Src,
3100                                          SMDiagnostic &Error) {
3101   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3102 }
3103 
3104 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3105                                      int &FI, StringRef Src,
3106                                      SMDiagnostic &Error) {
3107   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3108 }
3109 
3110 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3111                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3112   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3113 }
3114