1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRFormatter.h"
32 #include "llvm/CodeGen/MIRPrinter.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/LaneBitmask.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/MC/MCDwarf.h"
62 #include "llvm/MC/MCInstrDesc.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Support/SourceMgr.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <limits>
81 #include <string>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 void PerTargetMIParsingState::setTarget(
87   const TargetSubtargetInfo &NewSubtarget) {
88 
89   // If the subtarget changed, over conservatively assume everything is invalid.
90   if (&Subtarget == &NewSubtarget)
91     return;
92 
93   Names2InstrOpCodes.clear();
94   Names2Regs.clear();
95   Names2RegMasks.clear();
96   Names2SubRegIndices.clear();
97   Names2TargetIndices.clear();
98   Names2DirectTargetFlags.clear();
99   Names2BitmaskTargetFlags.clear();
100   Names2MMOTargetFlags.clear();
101 
102   initNames2RegClasses();
103   initNames2RegBanks();
104 }
105 
106 void PerTargetMIParsingState::initNames2Regs() {
107   if (!Names2Regs.empty())
108     return;
109 
110   // The '%noreg' register is the register 0.
111   Names2Regs.insert(std::make_pair("noreg", 0));
112   const auto *TRI = Subtarget.getRegisterInfo();
113   assert(TRI && "Expected target register info");
114 
115   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
116     bool WasInserted =
117         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
118             .second;
119     (void)WasInserted;
120     assert(WasInserted && "Expected registers to be unique case-insensitively");
121   }
122 }
123 
124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
125                                                 unsigned &Reg) {
126   initNames2Regs();
127   auto RegInfo = Names2Regs.find(RegName);
128   if (RegInfo == Names2Regs.end())
129     return true;
130   Reg = RegInfo->getValue();
131   return false;
132 }
133 
134 void PerTargetMIParsingState::initNames2InstrOpCodes() {
135   if (!Names2InstrOpCodes.empty())
136     return;
137   const auto *TII = Subtarget.getInstrInfo();
138   assert(TII && "Expected target instruction info");
139   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
140     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
141 }
142 
143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
144                                              unsigned &OpCode) {
145   initNames2InstrOpCodes();
146   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
147   if (InstrInfo == Names2InstrOpCodes.end())
148     return true;
149   OpCode = InstrInfo->getValue();
150   return false;
151 }
152 
153 void PerTargetMIParsingState::initNames2RegMasks() {
154   if (!Names2RegMasks.empty())
155     return;
156   const auto *TRI = Subtarget.getRegisterInfo();
157   assert(TRI && "Expected target register info");
158   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
159   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
160   assert(RegMasks.size() == RegMaskNames.size());
161   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
162     Names2RegMasks.insert(
163         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
164 }
165 
166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
167   initNames2RegMasks();
168   auto RegMaskInfo = Names2RegMasks.find(Identifier);
169   if (RegMaskInfo == Names2RegMasks.end())
170     return nullptr;
171   return RegMaskInfo->getValue();
172 }
173 
174 void PerTargetMIParsingState::initNames2SubRegIndices() {
175   if (!Names2SubRegIndices.empty())
176     return;
177   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
178   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
179     Names2SubRegIndices.insert(
180         std::make_pair(TRI->getSubRegIndexName(I), I));
181 }
182 
183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
184   initNames2SubRegIndices();
185   auto SubRegInfo = Names2SubRegIndices.find(Name);
186   if (SubRegInfo == Names2SubRegIndices.end())
187     return 0;
188   return SubRegInfo->getValue();
189 }
190 
191 void PerTargetMIParsingState::initNames2TargetIndices() {
192   if (!Names2TargetIndices.empty())
193     return;
194   const auto *TII = Subtarget.getInstrInfo();
195   assert(TII && "Expected target instruction info");
196   auto Indices = TII->getSerializableTargetIndices();
197   for (const auto &I : Indices)
198     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
199 }
200 
201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
202   initNames2TargetIndices();
203   auto IndexInfo = Names2TargetIndices.find(Name);
204   if (IndexInfo == Names2TargetIndices.end())
205     return true;
206   Index = IndexInfo->second;
207   return false;
208 }
209 
210 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
211   if (!Names2DirectTargetFlags.empty())
212     return;
213 
214   const auto *TII = Subtarget.getInstrInfo();
215   assert(TII && "Expected target instruction info");
216   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
217   for (const auto &I : Flags)
218     Names2DirectTargetFlags.insert(
219         std::make_pair(StringRef(I.second), I.first));
220 }
221 
222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
223                                                   unsigned &Flag) {
224   initNames2DirectTargetFlags();
225   auto FlagInfo = Names2DirectTargetFlags.find(Name);
226   if (FlagInfo == Names2DirectTargetFlags.end())
227     return true;
228   Flag = FlagInfo->second;
229   return false;
230 }
231 
232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
233   if (!Names2BitmaskTargetFlags.empty())
234     return;
235 
236   const auto *TII = Subtarget.getInstrInfo();
237   assert(TII && "Expected target instruction info");
238   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
239   for (const auto &I : Flags)
240     Names2BitmaskTargetFlags.insert(
241         std::make_pair(StringRef(I.second), I.first));
242 }
243 
244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
245                                                    unsigned &Flag) {
246   initNames2BitmaskTargetFlags();
247   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
248   if (FlagInfo == Names2BitmaskTargetFlags.end())
249     return true;
250   Flag = FlagInfo->second;
251   return false;
252 }
253 
254 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
255   if (!Names2MMOTargetFlags.empty())
256     return;
257 
258   const auto *TII = Subtarget.getInstrInfo();
259   assert(TII && "Expected target instruction info");
260   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
261   for (const auto &I : Flags)
262     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
263 }
264 
265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
266                                                MachineMemOperand::Flags &Flag) {
267   initNames2MMOTargetFlags();
268   auto FlagInfo = Names2MMOTargetFlags.find(Name);
269   if (FlagInfo == Names2MMOTargetFlags.end())
270     return true;
271   Flag = FlagInfo->second;
272   return false;
273 }
274 
275 void PerTargetMIParsingState::initNames2RegClasses() {
276   if (!Names2RegClasses.empty())
277     return;
278 
279   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
280   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
281     const auto *RC = TRI->getRegClass(I);
282     Names2RegClasses.insert(
283         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
284   }
285 }
286 
287 void PerTargetMIParsingState::initNames2RegBanks() {
288   if (!Names2RegBanks.empty())
289     return;
290 
291   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
292   // If the target does not support GlobalISel, we may not have a
293   // register bank info.
294   if (!RBI)
295     return;
296 
297   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
298     const auto &RegBank = RBI->getRegBank(I);
299     Names2RegBanks.insert(
300         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
301   }
302 }
303 
304 const TargetRegisterClass *
305 PerTargetMIParsingState::getRegClass(StringRef Name) {
306   auto RegClassInfo = Names2RegClasses.find(Name);
307   if (RegClassInfo == Names2RegClasses.end())
308     return nullptr;
309   return RegClassInfo->getValue();
310 }
311 
312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
313   auto RegBankInfo = Names2RegBanks.find(Name);
314   if (RegBankInfo == Names2RegBanks.end())
315     return nullptr;
316   return RegBankInfo->getValue();
317 }
318 
319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
320     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
321   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
322 }
323 
324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
325   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
326   if (I.second) {
327     MachineRegisterInfo &MRI = MF.getRegInfo();
328     VRegInfo *Info = new (Allocator) VRegInfo;
329     Info->VReg = MRI.createIncompleteVirtualRegister();
330     I.first->second = Info;
331   }
332   return *I.first->second;
333 }
334 
335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
336   assert(RegName != "" && "Expected named reg.");
337 
338   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
339   if (I.second) {
340     VRegInfo *Info = new (Allocator) VRegInfo;
341     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
342     I.first->second = Info;
343   }
344   return *I.first->second;
345 }
346 
347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
348                            DenseMap<unsigned, const Value *> &Slots2Values) {
349   int Slot = MST.getLocalSlot(V);
350   if (Slot == -1)
351     return;
352   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
353 }
354 
355 /// Creates the mapping from slot numbers to function's unnamed IR values.
356 static void initSlots2Values(const Function &F,
357                              DenseMap<unsigned, const Value *> &Slots2Values) {
358   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
359   MST.incorporateFunction(F);
360   for (const auto &Arg : F.args())
361     mapValueToSlot(&Arg, MST, Slots2Values);
362   for (const auto &BB : F) {
363     mapValueToSlot(&BB, MST, Slots2Values);
364     for (const auto &I : BB)
365       mapValueToSlot(&I, MST, Slots2Values);
366   }
367 }
368 
369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
370   if (Slots2Values.empty())
371     initSlots2Values(MF.getFunction(), Slots2Values);
372   auto ValueInfo = Slots2Values.find(Slot);
373   if (ValueInfo == Slots2Values.end())
374     return nullptr;
375   return ValueInfo->second;
376 }
377 
378 namespace {
379 
380 /// A wrapper struct around the 'MachineOperand' struct that includes a source
381 /// range and other attributes.
382 struct ParsedMachineOperand {
383   MachineOperand Operand;
384   StringRef::iterator Begin;
385   StringRef::iterator End;
386   Optional<unsigned> TiedDefIdx;
387 
388   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
389                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
390       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
391     if (TiedDefIdx)
392       assert(Operand.isReg() && Operand.isUse() &&
393              "Only used register operands can be tied");
394   }
395 };
396 
397 class MIParser {
398   MachineFunction &MF;
399   SMDiagnostic &Error;
400   StringRef Source, CurrentSource;
401   MIToken Token;
402   PerFunctionMIParsingState &PFS;
403   /// Maps from slot numbers to function's unnamed basic blocks.
404   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
405 
406 public:
407   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
408            StringRef Source);
409 
410   /// \p SkipChar gives the number of characters to skip before looking
411   /// for the next token.
412   void lex(unsigned SkipChar = 0);
413 
414   /// Report an error at the current location with the given message.
415   ///
416   /// This function always return true.
417   bool error(const Twine &Msg);
418 
419   /// Report an error at the given location with the given message.
420   ///
421   /// This function always return true.
422   bool error(StringRef::iterator Loc, const Twine &Msg);
423 
424   bool
425   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
426   bool parseBasicBlocks();
427   bool parse(MachineInstr *&MI);
428   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
429   bool parseStandaloneNamedRegister(unsigned &Reg);
430   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
431   bool parseStandaloneRegister(unsigned &Reg);
432   bool parseStandaloneStackObject(int &FI);
433   bool parseStandaloneMDNode(MDNode *&Node);
434 
435   bool
436   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
437   bool parseBasicBlock(MachineBasicBlock &MBB,
438                        MachineBasicBlock *&AddFalthroughFrom);
439   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
440   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
441 
442   bool parseNamedRegister(unsigned &Reg);
443   bool parseVirtualRegister(VRegInfo *&Info);
444   bool parseNamedVirtualRegister(VRegInfo *&Info);
445   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
446   bool parseRegisterFlag(unsigned &Flags);
447   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
448   bool parseSubRegisterIndex(unsigned &SubReg);
449   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
450   bool parseRegisterOperand(MachineOperand &Dest,
451                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
452   bool parseImmediateOperand(MachineOperand &Dest);
453   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
454                        const Constant *&C);
455   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
456   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
457   bool parseTypedImmediateOperand(MachineOperand &Dest);
458   bool parseFPImmediateOperand(MachineOperand &Dest);
459   bool parseMBBReference(MachineBasicBlock *&MBB);
460   bool parseMBBOperand(MachineOperand &Dest);
461   bool parseStackFrameIndex(int &FI);
462   bool parseStackObjectOperand(MachineOperand &Dest);
463   bool parseFixedStackFrameIndex(int &FI);
464   bool parseFixedStackObjectOperand(MachineOperand &Dest);
465   bool parseGlobalValue(GlobalValue *&GV);
466   bool parseGlobalAddressOperand(MachineOperand &Dest);
467   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
468   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
469   bool parseJumpTableIndexOperand(MachineOperand &Dest);
470   bool parseExternalSymbolOperand(MachineOperand &Dest);
471   bool parseMCSymbolOperand(MachineOperand &Dest);
472   bool parseMDNode(MDNode *&Node);
473   bool parseDIExpression(MDNode *&Expr);
474   bool parseDILocation(MDNode *&Expr);
475   bool parseMetadataOperand(MachineOperand &Dest);
476   bool parseCFIOffset(int &Offset);
477   bool parseCFIRegister(unsigned &Reg);
478   bool parseCFIEscapeValues(std::string& Values);
479   bool parseCFIOperand(MachineOperand &Dest);
480   bool parseIRBlock(BasicBlock *&BB, const Function &F);
481   bool parseBlockAddressOperand(MachineOperand &Dest);
482   bool parseIntrinsicOperand(MachineOperand &Dest);
483   bool parsePredicateOperand(MachineOperand &Dest);
484   bool parseShuffleMaskOperand(MachineOperand &Dest);
485   bool parseTargetIndexOperand(MachineOperand &Dest);
486   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
487   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
488   bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
489                            MachineOperand &Dest,
490                            Optional<unsigned> &TiedDefIdx);
491   bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
492                                          const unsigned OpIdx,
493                                          MachineOperand &Dest,
494                                          Optional<unsigned> &TiedDefIdx);
495   bool parseOffset(int64_t &Offset);
496   bool parseAlignment(unsigned &Alignment);
497   bool parseAddrspace(unsigned &Addrspace);
498   bool parseOperandsOffset(MachineOperand &Op);
499   bool parseIRValue(const Value *&V);
500   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
501   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
502   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
503   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
504   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
505   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
506   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
507   bool parseHeapAllocMarker(MDNode *&Node);
508 
509   bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
510                               MachineOperand &Dest, const MIRFormatter &MF);
511 
512 private:
513   /// Convert the integer literal in the current token into an unsigned integer.
514   ///
515   /// Return true if an error occurred.
516   bool getUnsigned(unsigned &Result);
517 
518   /// Convert the integer literal in the current token into an uint64.
519   ///
520   /// Return true if an error occurred.
521   bool getUint64(uint64_t &Result);
522 
523   /// Convert the hexadecimal literal in the current token into an unsigned
524   ///  APInt with a minimum bitwidth required to represent the value.
525   ///
526   /// Return true if the literal does not represent an integer value.
527   bool getHexUint(APInt &Result);
528 
529   /// If the current token is of the given kind, consume it and return false.
530   /// Otherwise report an error and return true.
531   bool expectAndConsume(MIToken::TokenKind TokenKind);
532 
533   /// If the current token is of the given kind, consume it and return true.
534   /// Otherwise return false.
535   bool consumeIfPresent(MIToken::TokenKind TokenKind);
536 
537   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
538 
539   bool assignRegisterTies(MachineInstr &MI,
540                           ArrayRef<ParsedMachineOperand> Operands);
541 
542   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
543                               const MCInstrDesc &MCID);
544 
545   const BasicBlock *getIRBlock(unsigned Slot);
546   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
547 
548   const Value *getIRValue(unsigned Slot);
549 
550   /// Get or create an MCSymbol for a given name.
551   MCSymbol *getOrCreateMCSymbol(StringRef Name);
552 
553   /// parseStringConstant
554   ///   ::= StringConstant
555   bool parseStringConstant(std::string &Result);
556 };
557 
558 } // end anonymous namespace
559 
560 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
561                    StringRef Source)
562     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
563 {}
564 
565 void MIParser::lex(unsigned SkipChar) {
566   CurrentSource = lexMIToken(
567       CurrentSource.data() + SkipChar, Token,
568       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
569 }
570 
571 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
572 
573 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
574   const SourceMgr &SM = *PFS.SM;
575   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
576   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
577   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
578     // Create an ordinary diagnostic when the source manager's buffer is the
579     // source string.
580     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
581     return true;
582   }
583   // Create a diagnostic for a YAML string literal.
584   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
585                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
586                        Source, None, None);
587   return true;
588 }
589 
590 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
591     ErrorCallbackType;
592 
593 static const char *toString(MIToken::TokenKind TokenKind) {
594   switch (TokenKind) {
595   case MIToken::comma:
596     return "','";
597   case MIToken::equal:
598     return "'='";
599   case MIToken::colon:
600     return "':'";
601   case MIToken::lparen:
602     return "'('";
603   case MIToken::rparen:
604     return "')'";
605   default:
606     return "<unknown token>";
607   }
608 }
609 
610 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
611   if (Token.isNot(TokenKind))
612     return error(Twine("expected ") + toString(TokenKind));
613   lex();
614   return false;
615 }
616 
617 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
618   if (Token.isNot(TokenKind))
619     return false;
620   lex();
621   return true;
622 }
623 
624 bool MIParser::parseBasicBlockDefinition(
625     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
626   assert(Token.is(MIToken::MachineBasicBlockLabel));
627   unsigned ID = 0;
628   if (getUnsigned(ID))
629     return true;
630   auto Loc = Token.location();
631   auto Name = Token.stringValue();
632   lex();
633   bool HasAddressTaken = false;
634   bool IsLandingPad = false;
635   unsigned Alignment = 0;
636   BasicBlock *BB = nullptr;
637   if (consumeIfPresent(MIToken::lparen)) {
638     do {
639       // TODO: Report an error when multiple same attributes are specified.
640       switch (Token.kind()) {
641       case MIToken::kw_address_taken:
642         HasAddressTaken = true;
643         lex();
644         break;
645       case MIToken::kw_landing_pad:
646         IsLandingPad = true;
647         lex();
648         break;
649       case MIToken::kw_align:
650         if (parseAlignment(Alignment))
651           return true;
652         break;
653       case MIToken::IRBlock:
654         // TODO: Report an error when both name and ir block are specified.
655         if (parseIRBlock(BB, MF.getFunction()))
656           return true;
657         lex();
658         break;
659       default:
660         break;
661       }
662     } while (consumeIfPresent(MIToken::comma));
663     if (expectAndConsume(MIToken::rparen))
664       return true;
665   }
666   if (expectAndConsume(MIToken::colon))
667     return true;
668 
669   if (!Name.empty()) {
670     BB = dyn_cast_or_null<BasicBlock>(
671         MF.getFunction().getValueSymbolTable()->lookup(Name));
672     if (!BB)
673       return error(Loc, Twine("basic block '") + Name +
674                             "' is not defined in the function '" +
675                             MF.getName() + "'");
676   }
677   auto *MBB = MF.CreateMachineBasicBlock(BB);
678   MF.insert(MF.end(), MBB);
679   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
680   if (!WasInserted)
681     return error(Loc, Twine("redefinition of machine basic block with id #") +
682                           Twine(ID));
683   if (Alignment)
684     MBB->setAlignment(Align(Alignment));
685   if (HasAddressTaken)
686     MBB->setHasAddressTaken();
687   MBB->setIsEHPad(IsLandingPad);
688   return false;
689 }
690 
691 bool MIParser::parseBasicBlockDefinitions(
692     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
693   lex();
694   // Skip until the first machine basic block.
695   while (Token.is(MIToken::Newline))
696     lex();
697   if (Token.isErrorOrEOF())
698     return Token.isError();
699   if (Token.isNot(MIToken::MachineBasicBlockLabel))
700     return error("expected a basic block definition before instructions");
701   unsigned BraceDepth = 0;
702   do {
703     if (parseBasicBlockDefinition(MBBSlots))
704       return true;
705     bool IsAfterNewline = false;
706     // Skip until the next machine basic block.
707     while (true) {
708       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
709           Token.isErrorOrEOF())
710         break;
711       else if (Token.is(MIToken::MachineBasicBlockLabel))
712         return error("basic block definition should be located at the start of "
713                      "the line");
714       else if (consumeIfPresent(MIToken::Newline)) {
715         IsAfterNewline = true;
716         continue;
717       }
718       IsAfterNewline = false;
719       if (Token.is(MIToken::lbrace))
720         ++BraceDepth;
721       if (Token.is(MIToken::rbrace)) {
722         if (!BraceDepth)
723           return error("extraneous closing brace ('}')");
724         --BraceDepth;
725       }
726       lex();
727     }
728     // Verify that we closed all of the '{' at the end of a file or a block.
729     if (!Token.isError() && BraceDepth)
730       return error("expected '}'"); // FIXME: Report a note that shows '{'.
731   } while (!Token.isErrorOrEOF());
732   return Token.isError();
733 }
734 
735 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
736   assert(Token.is(MIToken::kw_liveins));
737   lex();
738   if (expectAndConsume(MIToken::colon))
739     return true;
740   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
741     return false;
742   do {
743     if (Token.isNot(MIToken::NamedRegister))
744       return error("expected a named register");
745     unsigned Reg = 0;
746     if (parseNamedRegister(Reg))
747       return true;
748     lex();
749     LaneBitmask Mask = LaneBitmask::getAll();
750     if (consumeIfPresent(MIToken::colon)) {
751       // Parse lane mask.
752       if (Token.isNot(MIToken::IntegerLiteral) &&
753           Token.isNot(MIToken::HexLiteral))
754         return error("expected a lane mask");
755       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
756                     "Use correct get-function for lane mask");
757       LaneBitmask::Type V;
758       if (getUnsigned(V))
759         return error("invalid lane mask value");
760       Mask = LaneBitmask(V);
761       lex();
762     }
763     MBB.addLiveIn(Reg, Mask);
764   } while (consumeIfPresent(MIToken::comma));
765   return false;
766 }
767 
768 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
769   assert(Token.is(MIToken::kw_successors));
770   lex();
771   if (expectAndConsume(MIToken::colon))
772     return true;
773   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
774     return false;
775   do {
776     if (Token.isNot(MIToken::MachineBasicBlock))
777       return error("expected a machine basic block reference");
778     MachineBasicBlock *SuccMBB = nullptr;
779     if (parseMBBReference(SuccMBB))
780       return true;
781     lex();
782     unsigned Weight = 0;
783     if (consumeIfPresent(MIToken::lparen)) {
784       if (Token.isNot(MIToken::IntegerLiteral) &&
785           Token.isNot(MIToken::HexLiteral))
786         return error("expected an integer literal after '('");
787       if (getUnsigned(Weight))
788         return true;
789       lex();
790       if (expectAndConsume(MIToken::rparen))
791         return true;
792     }
793     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
794   } while (consumeIfPresent(MIToken::comma));
795   MBB.normalizeSuccProbs();
796   return false;
797 }
798 
799 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
800                                MachineBasicBlock *&AddFalthroughFrom) {
801   // Skip the definition.
802   assert(Token.is(MIToken::MachineBasicBlockLabel));
803   lex();
804   if (consumeIfPresent(MIToken::lparen)) {
805     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
806       lex();
807     consumeIfPresent(MIToken::rparen);
808   }
809   consumeIfPresent(MIToken::colon);
810 
811   // Parse the liveins and successors.
812   // N.B: Multiple lists of successors and liveins are allowed and they're
813   // merged into one.
814   // Example:
815   //   liveins: %edi
816   //   liveins: %esi
817   //
818   // is equivalent to
819   //   liveins: %edi, %esi
820   bool ExplicitSuccessors = false;
821   while (true) {
822     if (Token.is(MIToken::kw_successors)) {
823       if (parseBasicBlockSuccessors(MBB))
824         return true;
825       ExplicitSuccessors = true;
826     } else if (Token.is(MIToken::kw_liveins)) {
827       if (parseBasicBlockLiveins(MBB))
828         return true;
829     } else if (consumeIfPresent(MIToken::Newline)) {
830       continue;
831     } else
832       break;
833     if (!Token.isNewlineOrEOF())
834       return error("expected line break at the end of a list");
835     lex();
836   }
837 
838   // Parse the instructions.
839   bool IsInBundle = false;
840   MachineInstr *PrevMI = nullptr;
841   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
842          !Token.is(MIToken::Eof)) {
843     if (consumeIfPresent(MIToken::Newline))
844       continue;
845     if (consumeIfPresent(MIToken::rbrace)) {
846       // The first parsing pass should verify that all closing '}' have an
847       // opening '{'.
848       assert(IsInBundle);
849       IsInBundle = false;
850       continue;
851     }
852     MachineInstr *MI = nullptr;
853     if (parse(MI))
854       return true;
855     MBB.insert(MBB.end(), MI);
856     if (IsInBundle) {
857       PrevMI->setFlag(MachineInstr::BundledSucc);
858       MI->setFlag(MachineInstr::BundledPred);
859     }
860     PrevMI = MI;
861     if (Token.is(MIToken::lbrace)) {
862       if (IsInBundle)
863         return error("nested instruction bundles are not allowed");
864       lex();
865       // This instruction is the start of the bundle.
866       MI->setFlag(MachineInstr::BundledSucc);
867       IsInBundle = true;
868       if (!Token.is(MIToken::Newline))
869         // The next instruction can be on the same line.
870         continue;
871     }
872     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
873     lex();
874   }
875 
876   // Construct successor list by searching for basic block machine operands.
877   if (!ExplicitSuccessors) {
878     SmallVector<MachineBasicBlock*,4> Successors;
879     bool IsFallthrough;
880     guessSuccessors(MBB, Successors, IsFallthrough);
881     for (MachineBasicBlock *Succ : Successors)
882       MBB.addSuccessor(Succ);
883 
884     if (IsFallthrough) {
885       AddFalthroughFrom = &MBB;
886     } else {
887       MBB.normalizeSuccProbs();
888     }
889   }
890 
891   return false;
892 }
893 
894 bool MIParser::parseBasicBlocks() {
895   lex();
896   // Skip until the first machine basic block.
897   while (Token.is(MIToken::Newline))
898     lex();
899   if (Token.isErrorOrEOF())
900     return Token.isError();
901   // The first parsing pass should have verified that this token is a MBB label
902   // in the 'parseBasicBlockDefinitions' method.
903   assert(Token.is(MIToken::MachineBasicBlockLabel));
904   MachineBasicBlock *AddFalthroughFrom = nullptr;
905   do {
906     MachineBasicBlock *MBB = nullptr;
907     if (parseMBBReference(MBB))
908       return true;
909     if (AddFalthroughFrom) {
910       if (!AddFalthroughFrom->isSuccessor(MBB))
911         AddFalthroughFrom->addSuccessor(MBB);
912       AddFalthroughFrom->normalizeSuccProbs();
913       AddFalthroughFrom = nullptr;
914     }
915     if (parseBasicBlock(*MBB, AddFalthroughFrom))
916       return true;
917     // The method 'parseBasicBlock' should parse the whole block until the next
918     // block or the end of file.
919     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
920   } while (Token.isNot(MIToken::Eof));
921   return false;
922 }
923 
924 bool MIParser::parse(MachineInstr *&MI) {
925   // Parse any register operands before '='
926   MachineOperand MO = MachineOperand::CreateImm(0);
927   SmallVector<ParsedMachineOperand, 8> Operands;
928   while (Token.isRegister() || Token.isRegisterFlag()) {
929     auto Loc = Token.location();
930     Optional<unsigned> TiedDefIdx;
931     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
932       return true;
933     Operands.push_back(
934         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
935     if (Token.isNot(MIToken::comma))
936       break;
937     lex();
938   }
939   if (!Operands.empty() && expectAndConsume(MIToken::equal))
940     return true;
941 
942   unsigned OpCode, Flags = 0;
943   if (Token.isError() || parseInstruction(OpCode, Flags))
944     return true;
945 
946   // Parse the remaining machine operands.
947   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
948          Token.isNot(MIToken::kw_post_instr_symbol) &&
949          Token.isNot(MIToken::kw_heap_alloc_marker) &&
950          Token.isNot(MIToken::kw_debug_location) &&
951          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
952     auto Loc = Token.location();
953     Optional<unsigned> TiedDefIdx;
954     if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
955       return true;
956     if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
957       MO.setIsDebug();
958     Operands.push_back(
959         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
960     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
961         Token.is(MIToken::lbrace))
962       break;
963     if (Token.isNot(MIToken::comma))
964       return error("expected ',' before the next machine operand");
965     lex();
966   }
967 
968   MCSymbol *PreInstrSymbol = nullptr;
969   if (Token.is(MIToken::kw_pre_instr_symbol))
970     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
971       return true;
972   MCSymbol *PostInstrSymbol = nullptr;
973   if (Token.is(MIToken::kw_post_instr_symbol))
974     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
975       return true;
976   MDNode *HeapAllocMarker = nullptr;
977   if (Token.is(MIToken::kw_heap_alloc_marker))
978     if (parseHeapAllocMarker(HeapAllocMarker))
979       return true;
980 
981   DebugLoc DebugLocation;
982   if (Token.is(MIToken::kw_debug_location)) {
983     lex();
984     MDNode *Node = nullptr;
985     if (Token.is(MIToken::exclaim)) {
986       if (parseMDNode(Node))
987         return true;
988     } else if (Token.is(MIToken::md_dilocation)) {
989       if (parseDILocation(Node))
990         return true;
991     } else
992       return error("expected a metadata node after 'debug-location'");
993     if (!isa<DILocation>(Node))
994       return error("referenced metadata is not a DILocation");
995     DebugLocation = DebugLoc(Node);
996   }
997 
998   // Parse the machine memory operands.
999   SmallVector<MachineMemOperand *, 2> MemOperands;
1000   if (Token.is(MIToken::coloncolon)) {
1001     lex();
1002     while (!Token.isNewlineOrEOF()) {
1003       MachineMemOperand *MemOp = nullptr;
1004       if (parseMachineMemoryOperand(MemOp))
1005         return true;
1006       MemOperands.push_back(MemOp);
1007       if (Token.isNewlineOrEOF())
1008         break;
1009       if (Token.isNot(MIToken::comma))
1010         return error("expected ',' before the next machine memory operand");
1011       lex();
1012     }
1013   }
1014 
1015   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1016   if (!MCID.isVariadic()) {
1017     // FIXME: Move the implicit operand verification to the machine verifier.
1018     if (verifyImplicitOperands(Operands, MCID))
1019       return true;
1020   }
1021 
1022   // TODO: Check for extraneous machine operands.
1023   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1024   MI->setFlags(Flags);
1025   for (const auto &Operand : Operands)
1026     MI->addOperand(MF, Operand.Operand);
1027   if (assignRegisterTies(*MI, Operands))
1028     return true;
1029   if (PreInstrSymbol)
1030     MI->setPreInstrSymbol(MF, PreInstrSymbol);
1031   if (PostInstrSymbol)
1032     MI->setPostInstrSymbol(MF, PostInstrSymbol);
1033   if (HeapAllocMarker)
1034     MI->setHeapAllocMarker(MF, HeapAllocMarker);
1035   if (!MemOperands.empty())
1036     MI->setMemRefs(MF, MemOperands);
1037   return false;
1038 }
1039 
1040 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1041   lex();
1042   if (Token.isNot(MIToken::MachineBasicBlock))
1043     return error("expected a machine basic block reference");
1044   if (parseMBBReference(MBB))
1045     return true;
1046   lex();
1047   if (Token.isNot(MIToken::Eof))
1048     return error(
1049         "expected end of string after the machine basic block reference");
1050   return false;
1051 }
1052 
1053 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
1054   lex();
1055   if (Token.isNot(MIToken::NamedRegister))
1056     return error("expected a named register");
1057   if (parseNamedRegister(Reg))
1058     return true;
1059   lex();
1060   if (Token.isNot(MIToken::Eof))
1061     return error("expected end of string after the register reference");
1062   return false;
1063 }
1064 
1065 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1066   lex();
1067   if (Token.isNot(MIToken::VirtualRegister))
1068     return error("expected a virtual register");
1069   if (parseVirtualRegister(Info))
1070     return true;
1071   lex();
1072   if (Token.isNot(MIToken::Eof))
1073     return error("expected end of string after the register reference");
1074   return false;
1075 }
1076 
1077 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
1078   lex();
1079   if (Token.isNot(MIToken::NamedRegister) &&
1080       Token.isNot(MIToken::VirtualRegister))
1081     return error("expected either a named or virtual register");
1082 
1083   VRegInfo *Info;
1084   if (parseRegister(Reg, Info))
1085     return true;
1086 
1087   lex();
1088   if (Token.isNot(MIToken::Eof))
1089     return error("expected end of string after the register reference");
1090   return false;
1091 }
1092 
1093 bool MIParser::parseStandaloneStackObject(int &FI) {
1094   lex();
1095   if (Token.isNot(MIToken::StackObject))
1096     return error("expected a stack object");
1097   if (parseStackFrameIndex(FI))
1098     return true;
1099   if (Token.isNot(MIToken::Eof))
1100     return error("expected end of string after the stack object reference");
1101   return false;
1102 }
1103 
1104 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1105   lex();
1106   if (Token.is(MIToken::exclaim)) {
1107     if (parseMDNode(Node))
1108       return true;
1109   } else if (Token.is(MIToken::md_diexpr)) {
1110     if (parseDIExpression(Node))
1111       return true;
1112   } else if (Token.is(MIToken::md_dilocation)) {
1113     if (parseDILocation(Node))
1114       return true;
1115   } else
1116     return error("expected a metadata node");
1117   if (Token.isNot(MIToken::Eof))
1118     return error("expected end of string after the metadata node");
1119   return false;
1120 }
1121 
1122 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1123   assert(MO.isImplicit());
1124   return MO.isDef() ? "implicit-def" : "implicit";
1125 }
1126 
1127 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1128                                    unsigned Reg) {
1129   assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1130   return StringRef(TRI->getName(Reg)).lower();
1131 }
1132 
1133 /// Return true if the parsed machine operands contain a given machine operand.
1134 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1135                                 ArrayRef<ParsedMachineOperand> Operands) {
1136   for (const auto &I : Operands) {
1137     if (ImplicitOperand.isIdenticalTo(I.Operand))
1138       return true;
1139   }
1140   return false;
1141 }
1142 
1143 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1144                                       const MCInstrDesc &MCID) {
1145   if (MCID.isCall())
1146     // We can't verify call instructions as they can contain arbitrary implicit
1147     // register and register mask operands.
1148     return false;
1149 
1150   // Gather all the expected implicit operands.
1151   SmallVector<MachineOperand, 4> ImplicitOperands;
1152   if (MCID.ImplicitDefs)
1153     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1154       ImplicitOperands.push_back(
1155           MachineOperand::CreateReg(*ImpDefs, true, true));
1156   if (MCID.ImplicitUses)
1157     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1158       ImplicitOperands.push_back(
1159           MachineOperand::CreateReg(*ImpUses, false, true));
1160 
1161   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1162   assert(TRI && "Expected target register info");
1163   for (const auto &I : ImplicitOperands) {
1164     if (isImplicitOperandIn(I, Operands))
1165       continue;
1166     return error(Operands.empty() ? Token.location() : Operands.back().End,
1167                  Twine("missing implicit register operand '") +
1168                      printImplicitRegisterFlag(I) + " $" +
1169                      getRegisterName(TRI, I.getReg()) + "'");
1170   }
1171   return false;
1172 }
1173 
1174 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1175   // Allow frame and fast math flags for OPCODE
1176   while (Token.is(MIToken::kw_frame_setup) ||
1177          Token.is(MIToken::kw_frame_destroy) ||
1178          Token.is(MIToken::kw_nnan) ||
1179          Token.is(MIToken::kw_ninf) ||
1180          Token.is(MIToken::kw_nsz) ||
1181          Token.is(MIToken::kw_arcp) ||
1182          Token.is(MIToken::kw_contract) ||
1183          Token.is(MIToken::kw_afn) ||
1184          Token.is(MIToken::kw_reassoc) ||
1185          Token.is(MIToken::kw_nuw) ||
1186          Token.is(MIToken::kw_nsw) ||
1187          Token.is(MIToken::kw_exact) ||
1188          Token.is(MIToken::kw_nofpexcept)) {
1189     // Mine frame and fast math flags
1190     if (Token.is(MIToken::kw_frame_setup))
1191       Flags |= MachineInstr::FrameSetup;
1192     if (Token.is(MIToken::kw_frame_destroy))
1193       Flags |= MachineInstr::FrameDestroy;
1194     if (Token.is(MIToken::kw_nnan))
1195       Flags |= MachineInstr::FmNoNans;
1196     if (Token.is(MIToken::kw_ninf))
1197       Flags |= MachineInstr::FmNoInfs;
1198     if (Token.is(MIToken::kw_nsz))
1199       Flags |= MachineInstr::FmNsz;
1200     if (Token.is(MIToken::kw_arcp))
1201       Flags |= MachineInstr::FmArcp;
1202     if (Token.is(MIToken::kw_contract))
1203       Flags |= MachineInstr::FmContract;
1204     if (Token.is(MIToken::kw_afn))
1205       Flags |= MachineInstr::FmAfn;
1206     if (Token.is(MIToken::kw_reassoc))
1207       Flags |= MachineInstr::FmReassoc;
1208     if (Token.is(MIToken::kw_nuw))
1209       Flags |= MachineInstr::NoUWrap;
1210     if (Token.is(MIToken::kw_nsw))
1211       Flags |= MachineInstr::NoSWrap;
1212     if (Token.is(MIToken::kw_exact))
1213       Flags |= MachineInstr::IsExact;
1214     if (Token.is(MIToken::kw_nofpexcept))
1215       Flags |= MachineInstr::NoFPExcept;
1216 
1217     lex();
1218   }
1219   if (Token.isNot(MIToken::Identifier))
1220     return error("expected a machine instruction");
1221   StringRef InstrName = Token.stringValue();
1222   if (PFS.Target.parseInstrName(InstrName, OpCode))
1223     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1224   lex();
1225   return false;
1226 }
1227 
1228 bool MIParser::parseNamedRegister(unsigned &Reg) {
1229   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1230   StringRef Name = Token.stringValue();
1231   if (PFS.Target.getRegisterByName(Name, Reg))
1232     return error(Twine("unknown register name '") + Name + "'");
1233   return false;
1234 }
1235 
1236 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1237   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1238   StringRef Name = Token.stringValue();
1239   // TODO: Check that the VReg name is not the same as a physical register name.
1240   //       If it is, then print a warning (when warnings are implemented).
1241   Info = &PFS.getVRegInfoNamed(Name);
1242   return false;
1243 }
1244 
1245 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1246   if (Token.is(MIToken::NamedVirtualRegister))
1247     return parseNamedVirtualRegister(Info);
1248   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1249   unsigned ID;
1250   if (getUnsigned(ID))
1251     return true;
1252   Info = &PFS.getVRegInfo(ID);
1253   return false;
1254 }
1255 
1256 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1257   switch (Token.kind()) {
1258   case MIToken::underscore:
1259     Reg = 0;
1260     return false;
1261   case MIToken::NamedRegister:
1262     return parseNamedRegister(Reg);
1263   case MIToken::NamedVirtualRegister:
1264   case MIToken::VirtualRegister:
1265     if (parseVirtualRegister(Info))
1266       return true;
1267     Reg = Info->VReg;
1268     return false;
1269   // TODO: Parse other register kinds.
1270   default:
1271     llvm_unreachable("The current token should be a register");
1272   }
1273 }
1274 
1275 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1276   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1277     return error("expected '_', register class, or register bank name");
1278   StringRef::iterator Loc = Token.location();
1279   StringRef Name = Token.stringValue();
1280 
1281   // Was it a register class?
1282   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1283   if (RC) {
1284     lex();
1285 
1286     switch (RegInfo.Kind) {
1287     case VRegInfo::UNKNOWN:
1288     case VRegInfo::NORMAL:
1289       RegInfo.Kind = VRegInfo::NORMAL;
1290       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1291         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1292         return error(Loc, Twine("conflicting register classes, previously: ") +
1293                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1294       }
1295       RegInfo.D.RC = RC;
1296       RegInfo.Explicit = true;
1297       return false;
1298 
1299     case VRegInfo::GENERIC:
1300     case VRegInfo::REGBANK:
1301       return error(Loc, "register class specification on generic register");
1302     }
1303     llvm_unreachable("Unexpected register kind");
1304   }
1305 
1306   // Should be a register bank or a generic register.
1307   const RegisterBank *RegBank = nullptr;
1308   if (Name != "_") {
1309     RegBank = PFS.Target.getRegBank(Name);
1310     if (!RegBank)
1311       return error(Loc, "expected '_', register class, or register bank name");
1312   }
1313 
1314   lex();
1315 
1316   switch (RegInfo.Kind) {
1317   case VRegInfo::UNKNOWN:
1318   case VRegInfo::GENERIC:
1319   case VRegInfo::REGBANK:
1320     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1321     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1322       return error(Loc, "conflicting generic register banks");
1323     RegInfo.D.RegBank = RegBank;
1324     RegInfo.Explicit = true;
1325     return false;
1326 
1327   case VRegInfo::NORMAL:
1328     return error(Loc, "register bank specification on normal register");
1329   }
1330   llvm_unreachable("Unexpected register kind");
1331 }
1332 
1333 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1334   const unsigned OldFlags = Flags;
1335   switch (Token.kind()) {
1336   case MIToken::kw_implicit:
1337     Flags |= RegState::Implicit;
1338     break;
1339   case MIToken::kw_implicit_define:
1340     Flags |= RegState::ImplicitDefine;
1341     break;
1342   case MIToken::kw_def:
1343     Flags |= RegState::Define;
1344     break;
1345   case MIToken::kw_dead:
1346     Flags |= RegState::Dead;
1347     break;
1348   case MIToken::kw_killed:
1349     Flags |= RegState::Kill;
1350     break;
1351   case MIToken::kw_undef:
1352     Flags |= RegState::Undef;
1353     break;
1354   case MIToken::kw_internal:
1355     Flags |= RegState::InternalRead;
1356     break;
1357   case MIToken::kw_early_clobber:
1358     Flags |= RegState::EarlyClobber;
1359     break;
1360   case MIToken::kw_debug_use:
1361     Flags |= RegState::Debug;
1362     break;
1363   case MIToken::kw_renamable:
1364     Flags |= RegState::Renamable;
1365     break;
1366   default:
1367     llvm_unreachable("The current token should be a register flag");
1368   }
1369   if (OldFlags == Flags)
1370     // We know that the same flag is specified more than once when the flags
1371     // weren't modified.
1372     return error("duplicate '" + Token.stringValue() + "' register flag");
1373   lex();
1374   return false;
1375 }
1376 
1377 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1378   assert(Token.is(MIToken::dot));
1379   lex();
1380   if (Token.isNot(MIToken::Identifier))
1381     return error("expected a subregister index after '.'");
1382   auto Name = Token.stringValue();
1383   SubReg = PFS.Target.getSubRegIndex(Name);
1384   if (!SubReg)
1385     return error(Twine("use of unknown subregister index '") + Name + "'");
1386   lex();
1387   return false;
1388 }
1389 
1390 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1391   if (!consumeIfPresent(MIToken::kw_tied_def))
1392     return true;
1393   if (Token.isNot(MIToken::IntegerLiteral))
1394     return error("expected an integer literal after 'tied-def'");
1395   if (getUnsigned(TiedDefIdx))
1396     return true;
1397   lex();
1398   if (expectAndConsume(MIToken::rparen))
1399     return true;
1400   return false;
1401 }
1402 
1403 bool MIParser::assignRegisterTies(MachineInstr &MI,
1404                                   ArrayRef<ParsedMachineOperand> Operands) {
1405   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1406   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1407     if (!Operands[I].TiedDefIdx)
1408       continue;
1409     // The parser ensures that this operand is a register use, so we just have
1410     // to check the tied-def operand.
1411     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1412     if (DefIdx >= E)
1413       return error(Operands[I].Begin,
1414                    Twine("use of invalid tied-def operand index '" +
1415                          Twine(DefIdx) + "'; instruction has only ") +
1416                        Twine(E) + " operands");
1417     const auto &DefOperand = Operands[DefIdx].Operand;
1418     if (!DefOperand.isReg() || !DefOperand.isDef())
1419       // FIXME: add note with the def operand.
1420       return error(Operands[I].Begin,
1421                    Twine("use of invalid tied-def operand index '") +
1422                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1423                        " isn't a defined register");
1424     // Check that the tied-def operand wasn't tied elsewhere.
1425     for (const auto &TiedPair : TiedRegisterPairs) {
1426       if (TiedPair.first == DefIdx)
1427         return error(Operands[I].Begin,
1428                      Twine("the tied-def operand #") + Twine(DefIdx) +
1429                          " is already tied with another register operand");
1430     }
1431     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1432   }
1433   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1434   // indices must be less than tied max.
1435   for (const auto &TiedPair : TiedRegisterPairs)
1436     MI.tieOperands(TiedPair.first, TiedPair.second);
1437   return false;
1438 }
1439 
1440 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1441                                     Optional<unsigned> &TiedDefIdx,
1442                                     bool IsDef) {
1443   unsigned Flags = IsDef ? RegState::Define : 0;
1444   while (Token.isRegisterFlag()) {
1445     if (parseRegisterFlag(Flags))
1446       return true;
1447   }
1448   if (!Token.isRegister())
1449     return error("expected a register after register flags");
1450   unsigned Reg;
1451   VRegInfo *RegInfo;
1452   if (parseRegister(Reg, RegInfo))
1453     return true;
1454   lex();
1455   unsigned SubReg = 0;
1456   if (Token.is(MIToken::dot)) {
1457     if (parseSubRegisterIndex(SubReg))
1458       return true;
1459     if (!Register::isVirtualRegister(Reg))
1460       return error("subregister index expects a virtual register");
1461   }
1462   if (Token.is(MIToken::colon)) {
1463     if (!Register::isVirtualRegister(Reg))
1464       return error("register class specification expects a virtual register");
1465     lex();
1466     if (parseRegisterClassOrBank(*RegInfo))
1467         return true;
1468   }
1469   MachineRegisterInfo &MRI = MF.getRegInfo();
1470   if ((Flags & RegState::Define) == 0) {
1471     if (consumeIfPresent(MIToken::lparen)) {
1472       unsigned Idx;
1473       if (!parseRegisterTiedDefIndex(Idx))
1474         TiedDefIdx = Idx;
1475       else {
1476         // Try a redundant low-level type.
1477         LLT Ty;
1478         if (parseLowLevelType(Token.location(), Ty))
1479           return error("expected tied-def or low-level type after '('");
1480 
1481         if (expectAndConsume(MIToken::rparen))
1482           return true;
1483 
1484         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1485           return error("inconsistent type for generic virtual register");
1486 
1487         MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1488         MRI.setType(Reg, Ty);
1489       }
1490     }
1491   } else if (consumeIfPresent(MIToken::lparen)) {
1492     // Virtual registers may have a tpe with GlobalISel.
1493     if (!Register::isVirtualRegister(Reg))
1494       return error("unexpected type on physical register");
1495 
1496     LLT Ty;
1497     if (parseLowLevelType(Token.location(), Ty))
1498       return true;
1499 
1500     if (expectAndConsume(MIToken::rparen))
1501       return true;
1502 
1503     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1504       return error("inconsistent type for generic virtual register");
1505 
1506     MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1507     MRI.setType(Reg, Ty);
1508   } else if (Register::isVirtualRegister(Reg)) {
1509     // Generic virtual registers must have a type.
1510     // If we end up here this means the type hasn't been specified and
1511     // this is bad!
1512     if (RegInfo->Kind == VRegInfo::GENERIC ||
1513         RegInfo->Kind == VRegInfo::REGBANK)
1514       return error("generic virtual registers must have a type");
1515   }
1516   Dest = MachineOperand::CreateReg(
1517       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1518       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1519       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1520       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1521 
1522   return false;
1523 }
1524 
1525 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1526   assert(Token.is(MIToken::IntegerLiteral));
1527   const APSInt &Int = Token.integerValue();
1528   if (Int.getMinSignedBits() > 64)
1529     return error("integer literal is too large to be an immediate operand");
1530   Dest = MachineOperand::CreateImm(Int.getExtValue());
1531   lex();
1532   return false;
1533 }
1534 
1535 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1536                                       const unsigned OpIdx,
1537                                       MachineOperand &Dest,
1538                                       const MIRFormatter &MF) {
1539   assert(Token.is(MIToken::dot));
1540   auto Loc = Token.location(); // record start position
1541   size_t Len = 1;              // for "."
1542   lex();
1543 
1544   // Handle the case that mnemonic starts with number.
1545   if (Token.is(MIToken::IntegerLiteral)) {
1546     Len += Token.range().size();
1547     lex();
1548   }
1549 
1550   StringRef Src;
1551   if (Token.is(MIToken::comma))
1552     Src = StringRef(Loc, Len);
1553   else {
1554     assert(Token.is(MIToken::Identifier));
1555     Src = StringRef(Loc, Len + Token.stringValue().size());
1556   }
1557   int64_t Val;
1558   if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1559                           [this](StringRef::iterator Loc, const Twine &Msg)
1560                               -> bool { return error(Loc, Msg); }))
1561     return true;
1562 
1563   Dest = MachineOperand::CreateImm(Val);
1564   if (!Token.is(MIToken::comma))
1565     lex();
1566   return false;
1567 }
1568 
1569 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1570                             PerFunctionMIParsingState &PFS, const Constant *&C,
1571                             ErrorCallbackType ErrCB) {
1572   auto Source = StringValue.str(); // The source has to be null terminated.
1573   SMDiagnostic Err;
1574   C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1575                          &PFS.IRSlots);
1576   if (!C)
1577     return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1578   return false;
1579 }
1580 
1581 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1582                                const Constant *&C) {
1583   return ::parseIRConstant(
1584       Loc, StringValue, PFS, C,
1585       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1586         return error(Loc, Msg);
1587       });
1588 }
1589 
1590 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1591   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1592     return true;
1593   lex();
1594   return false;
1595 }
1596 
1597 // See LLT implemntation for bit size limits.
1598 static bool verifyScalarSize(uint64_t Size) {
1599   return Size != 0 && isUInt<16>(Size);
1600 }
1601 
1602 static bool verifyVectorElementCount(uint64_t NumElts) {
1603   return NumElts != 0 && isUInt<16>(NumElts);
1604 }
1605 
1606 static bool verifyAddrSpace(uint64_t AddrSpace) {
1607   return isUInt<24>(AddrSpace);
1608 }
1609 
1610 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1611   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1612     StringRef SizeStr = Token.range().drop_front();
1613     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1614       return error("expected integers after 's'/'p' type character");
1615   }
1616 
1617   if (Token.range().front() == 's') {
1618     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1619     if (!verifyScalarSize(ScalarSize))
1620       return error("invalid size for scalar type");
1621 
1622     Ty = LLT::scalar(ScalarSize);
1623     lex();
1624     return false;
1625   } else if (Token.range().front() == 'p') {
1626     const DataLayout &DL = MF.getDataLayout();
1627     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1628     if (!verifyAddrSpace(AS))
1629       return error("invalid address space number");
1630 
1631     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1632     lex();
1633     return false;
1634   }
1635 
1636   // Now we're looking for a vector.
1637   if (Token.isNot(MIToken::less))
1638     return error(Loc,
1639                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1640   lex();
1641 
1642   if (Token.isNot(MIToken::IntegerLiteral))
1643     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1644   uint64_t NumElements = Token.integerValue().getZExtValue();
1645   if (!verifyVectorElementCount(NumElements))
1646     return error("invalid number of vector elements");
1647 
1648   lex();
1649 
1650   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1651     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1652   lex();
1653 
1654   if (Token.range().front() != 's' && Token.range().front() != 'p')
1655     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1656   StringRef SizeStr = Token.range().drop_front();
1657   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1658     return error("expected integers after 's'/'p' type character");
1659 
1660   if (Token.range().front() == 's') {
1661     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1662     if (!verifyScalarSize(ScalarSize))
1663       return error("invalid size for scalar type");
1664     Ty = LLT::scalar(ScalarSize);
1665   } else if (Token.range().front() == 'p') {
1666     const DataLayout &DL = MF.getDataLayout();
1667     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1668     if (!verifyAddrSpace(AS))
1669       return error("invalid address space number");
1670 
1671     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1672   } else
1673     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1674   lex();
1675 
1676   if (Token.isNot(MIToken::greater))
1677     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1678   lex();
1679 
1680   Ty = LLT::vector(NumElements, Ty);
1681   return false;
1682 }
1683 
1684 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1685   assert(Token.is(MIToken::Identifier));
1686   StringRef TypeStr = Token.range();
1687   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1688       TypeStr.front() != 'p')
1689     return error(
1690         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1691   StringRef SizeStr = Token.range().drop_front();
1692   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1693     return error("expected integers after 'i'/'s'/'p' type character");
1694 
1695   auto Loc = Token.location();
1696   lex();
1697   if (Token.isNot(MIToken::IntegerLiteral)) {
1698     if (Token.isNot(MIToken::Identifier) ||
1699         !(Token.range() == "true" || Token.range() == "false"))
1700       return error("expected an integer literal");
1701   }
1702   const Constant *C = nullptr;
1703   if (parseIRConstant(Loc, C))
1704     return true;
1705   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1706   return false;
1707 }
1708 
1709 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1710   auto Loc = Token.location();
1711   lex();
1712   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1713       Token.isNot(MIToken::HexLiteral))
1714     return error("expected a floating point literal");
1715   const Constant *C = nullptr;
1716   if (parseIRConstant(Loc, C))
1717     return true;
1718   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1719   return false;
1720 }
1721 
1722 static bool getHexUint(const MIToken &Token, APInt &Result) {
1723   assert(Token.is(MIToken::HexLiteral));
1724   StringRef S = Token.range();
1725   assert(S[0] == '0' && tolower(S[1]) == 'x');
1726   // This could be a floating point literal with a special prefix.
1727   if (!isxdigit(S[2]))
1728     return true;
1729   StringRef V = S.substr(2);
1730   APInt A(V.size()*4, V, 16);
1731 
1732   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
1733   // sure it isn't the case before constructing result.
1734   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
1735   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1736   return false;
1737 }
1738 
1739 bool getUnsigned(const MIToken &Token, unsigned &Result,
1740                  ErrorCallbackType ErrCB) {
1741   if (Token.hasIntegerValue()) {
1742     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1743     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1744     if (Val64 == Limit)
1745       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1746     Result = Val64;
1747     return false;
1748   }
1749   if (Token.is(MIToken::HexLiteral)) {
1750     APInt A;
1751     if (getHexUint(Token, A))
1752       return true;
1753     if (A.getBitWidth() > 32)
1754       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1755     Result = A.getZExtValue();
1756     return false;
1757   }
1758   return true;
1759 }
1760 
1761 bool MIParser::getUnsigned(unsigned &Result) {
1762   return ::getUnsigned(
1763       Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1764         return error(Loc, Msg);
1765       });
1766 }
1767 
1768 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1769   assert(Token.is(MIToken::MachineBasicBlock) ||
1770          Token.is(MIToken::MachineBasicBlockLabel));
1771   unsigned Number;
1772   if (getUnsigned(Number))
1773     return true;
1774   auto MBBInfo = PFS.MBBSlots.find(Number);
1775   if (MBBInfo == PFS.MBBSlots.end())
1776     return error(Twine("use of undefined machine basic block #") +
1777                  Twine(Number));
1778   MBB = MBBInfo->second;
1779   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1780   // we drop the <irname> from the bb.<id>.<irname> format.
1781   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1782     return error(Twine("the name of machine basic block #") + Twine(Number) +
1783                  " isn't '" + Token.stringValue() + "'");
1784   return false;
1785 }
1786 
1787 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1788   MachineBasicBlock *MBB;
1789   if (parseMBBReference(MBB))
1790     return true;
1791   Dest = MachineOperand::CreateMBB(MBB);
1792   lex();
1793   return false;
1794 }
1795 
1796 bool MIParser::parseStackFrameIndex(int &FI) {
1797   assert(Token.is(MIToken::StackObject));
1798   unsigned ID;
1799   if (getUnsigned(ID))
1800     return true;
1801   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1802   if (ObjectInfo == PFS.StackObjectSlots.end())
1803     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1804                  "'");
1805   StringRef Name;
1806   if (const auto *Alloca =
1807           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1808     Name = Alloca->getName();
1809   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1810     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1811                  "' isn't '" + Token.stringValue() + "'");
1812   lex();
1813   FI = ObjectInfo->second;
1814   return false;
1815 }
1816 
1817 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1818   int FI;
1819   if (parseStackFrameIndex(FI))
1820     return true;
1821   Dest = MachineOperand::CreateFI(FI);
1822   return false;
1823 }
1824 
1825 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1826   assert(Token.is(MIToken::FixedStackObject));
1827   unsigned ID;
1828   if (getUnsigned(ID))
1829     return true;
1830   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1831   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1832     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1833                  Twine(ID) + "'");
1834   lex();
1835   FI = ObjectInfo->second;
1836   return false;
1837 }
1838 
1839 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1840   int FI;
1841   if (parseFixedStackFrameIndex(FI))
1842     return true;
1843   Dest = MachineOperand::CreateFI(FI);
1844   return false;
1845 }
1846 
1847 static bool parseGlobalValue(const MIToken &Token,
1848                              PerFunctionMIParsingState &PFS, GlobalValue *&GV,
1849                              ErrorCallbackType ErrCB) {
1850   switch (Token.kind()) {
1851   case MIToken::NamedGlobalValue: {
1852     const Module *M = PFS.MF.getFunction().getParent();
1853     GV = M->getNamedValue(Token.stringValue());
1854     if (!GV)
1855       return ErrCB(Token.location(), Twine("use of undefined global value '") +
1856                                          Token.range() + "'");
1857     break;
1858   }
1859   case MIToken::GlobalValue: {
1860     unsigned GVIdx;
1861     if (getUnsigned(Token, GVIdx, ErrCB))
1862       return true;
1863     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1864       return ErrCB(Token.location(), Twine("use of undefined global value '@") +
1865                                          Twine(GVIdx) + "'");
1866     GV = PFS.IRSlots.GlobalValues[GVIdx];
1867     break;
1868   }
1869   default:
1870     llvm_unreachable("The current token should be a global value");
1871   }
1872   return false;
1873 }
1874 
1875 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1876   return ::parseGlobalValue(
1877       Token, PFS, GV,
1878       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1879         return error(Loc, Msg);
1880       });
1881 }
1882 
1883 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1884   GlobalValue *GV = nullptr;
1885   if (parseGlobalValue(GV))
1886     return true;
1887   lex();
1888   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1889   if (parseOperandsOffset(Dest))
1890     return true;
1891   return false;
1892 }
1893 
1894 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1895   assert(Token.is(MIToken::ConstantPoolItem));
1896   unsigned ID;
1897   if (getUnsigned(ID))
1898     return true;
1899   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1900   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1901     return error("use of undefined constant '%const." + Twine(ID) + "'");
1902   lex();
1903   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1904   if (parseOperandsOffset(Dest))
1905     return true;
1906   return false;
1907 }
1908 
1909 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1910   assert(Token.is(MIToken::JumpTableIndex));
1911   unsigned ID;
1912   if (getUnsigned(ID))
1913     return true;
1914   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1915   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1916     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1917   lex();
1918   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1919   return false;
1920 }
1921 
1922 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1923   assert(Token.is(MIToken::ExternalSymbol));
1924   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1925   lex();
1926   Dest = MachineOperand::CreateES(Symbol);
1927   if (parseOperandsOffset(Dest))
1928     return true;
1929   return false;
1930 }
1931 
1932 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1933   assert(Token.is(MIToken::MCSymbol));
1934   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1935   lex();
1936   Dest = MachineOperand::CreateMCSymbol(Symbol);
1937   if (parseOperandsOffset(Dest))
1938     return true;
1939   return false;
1940 }
1941 
1942 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1943   assert(Token.is(MIToken::SubRegisterIndex));
1944   StringRef Name = Token.stringValue();
1945   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
1946   if (SubRegIndex == 0)
1947     return error(Twine("unknown subregister index '") + Name + "'");
1948   lex();
1949   Dest = MachineOperand::CreateImm(SubRegIndex);
1950   return false;
1951 }
1952 
1953 bool MIParser::parseMDNode(MDNode *&Node) {
1954   assert(Token.is(MIToken::exclaim));
1955 
1956   auto Loc = Token.location();
1957   lex();
1958   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1959     return error("expected metadata id after '!'");
1960   unsigned ID;
1961   if (getUnsigned(ID))
1962     return true;
1963   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1964   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1965     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1966   lex();
1967   Node = NodeInfo->second.get();
1968   return false;
1969 }
1970 
1971 bool MIParser::parseDIExpression(MDNode *&Expr) {
1972   assert(Token.is(MIToken::md_diexpr));
1973   lex();
1974 
1975   // FIXME: Share this parsing with the IL parser.
1976   SmallVector<uint64_t, 8> Elements;
1977 
1978   if (expectAndConsume(MIToken::lparen))
1979     return true;
1980 
1981   if (Token.isNot(MIToken::rparen)) {
1982     do {
1983       if (Token.is(MIToken::Identifier)) {
1984         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1985           lex();
1986           Elements.push_back(Op);
1987           continue;
1988         }
1989         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
1990           lex();
1991           Elements.push_back(Enc);
1992           continue;
1993         }
1994         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1995       }
1996 
1997       if (Token.isNot(MIToken::IntegerLiteral) ||
1998           Token.integerValue().isSigned())
1999         return error("expected unsigned integer");
2000 
2001       auto &U = Token.integerValue();
2002       if (U.ugt(UINT64_MAX))
2003         return error("element too large, limit is " + Twine(UINT64_MAX));
2004       Elements.push_back(U.getZExtValue());
2005       lex();
2006 
2007     } while (consumeIfPresent(MIToken::comma));
2008   }
2009 
2010   if (expectAndConsume(MIToken::rparen))
2011     return true;
2012 
2013   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2014   return false;
2015 }
2016 
2017 bool MIParser::parseDILocation(MDNode *&Loc) {
2018   assert(Token.is(MIToken::md_dilocation));
2019   lex();
2020 
2021   bool HaveLine = false;
2022   unsigned Line = 0;
2023   unsigned Column = 0;
2024   MDNode *Scope = nullptr;
2025   MDNode *InlinedAt = nullptr;
2026   bool ImplicitCode = false;
2027 
2028   if (expectAndConsume(MIToken::lparen))
2029     return true;
2030 
2031   if (Token.isNot(MIToken::rparen)) {
2032     do {
2033       if (Token.is(MIToken::Identifier)) {
2034         if (Token.stringValue() == "line") {
2035           lex();
2036           if (expectAndConsume(MIToken::colon))
2037             return true;
2038           if (Token.isNot(MIToken::IntegerLiteral) ||
2039               Token.integerValue().isSigned())
2040             return error("expected unsigned integer");
2041           Line = Token.integerValue().getZExtValue();
2042           HaveLine = true;
2043           lex();
2044           continue;
2045         }
2046         if (Token.stringValue() == "column") {
2047           lex();
2048           if (expectAndConsume(MIToken::colon))
2049             return true;
2050           if (Token.isNot(MIToken::IntegerLiteral) ||
2051               Token.integerValue().isSigned())
2052             return error("expected unsigned integer");
2053           Column = Token.integerValue().getZExtValue();
2054           lex();
2055           continue;
2056         }
2057         if (Token.stringValue() == "scope") {
2058           lex();
2059           if (expectAndConsume(MIToken::colon))
2060             return true;
2061           if (parseMDNode(Scope))
2062             return error("expected metadata node");
2063           if (!isa<DIScope>(Scope))
2064             return error("expected DIScope node");
2065           continue;
2066         }
2067         if (Token.stringValue() == "inlinedAt") {
2068           lex();
2069           if (expectAndConsume(MIToken::colon))
2070             return true;
2071           if (Token.is(MIToken::exclaim)) {
2072             if (parseMDNode(InlinedAt))
2073               return true;
2074           } else if (Token.is(MIToken::md_dilocation)) {
2075             if (parseDILocation(InlinedAt))
2076               return true;
2077           } else
2078             return error("expected metadata node");
2079           if (!isa<DILocation>(InlinedAt))
2080             return error("expected DILocation node");
2081           continue;
2082         }
2083         if (Token.stringValue() == "isImplicitCode") {
2084           lex();
2085           if (expectAndConsume(MIToken::colon))
2086             return true;
2087           if (!Token.is(MIToken::Identifier))
2088             return error("expected true/false");
2089           // As far as I can see, we don't have any existing need for parsing
2090           // true/false in MIR yet. Do it ad-hoc until there's something else
2091           // that needs it.
2092           if (Token.stringValue() == "true")
2093             ImplicitCode = true;
2094           else if (Token.stringValue() == "false")
2095             ImplicitCode = false;
2096           else
2097             return error("expected true/false");
2098           lex();
2099           continue;
2100         }
2101       }
2102       return error(Twine("invalid DILocation argument '") +
2103                    Token.stringValue() + "'");
2104     } while (consumeIfPresent(MIToken::comma));
2105   }
2106 
2107   if (expectAndConsume(MIToken::rparen))
2108     return true;
2109 
2110   if (!HaveLine)
2111     return error("DILocation requires line number");
2112   if (!Scope)
2113     return error("DILocation requires a scope");
2114 
2115   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2116                         InlinedAt, ImplicitCode);
2117   return false;
2118 }
2119 
2120 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2121   MDNode *Node = nullptr;
2122   if (Token.is(MIToken::exclaim)) {
2123     if (parseMDNode(Node))
2124       return true;
2125   } else if (Token.is(MIToken::md_diexpr)) {
2126     if (parseDIExpression(Node))
2127       return true;
2128   }
2129   Dest = MachineOperand::CreateMetadata(Node);
2130   return false;
2131 }
2132 
2133 bool MIParser::parseCFIOffset(int &Offset) {
2134   if (Token.isNot(MIToken::IntegerLiteral))
2135     return error("expected a cfi offset");
2136   if (Token.integerValue().getMinSignedBits() > 32)
2137     return error("expected a 32 bit integer (the cfi offset is too large)");
2138   Offset = (int)Token.integerValue().getExtValue();
2139   lex();
2140   return false;
2141 }
2142 
2143 bool MIParser::parseCFIRegister(unsigned &Reg) {
2144   if (Token.isNot(MIToken::NamedRegister))
2145     return error("expected a cfi register");
2146   unsigned LLVMReg;
2147   if (parseNamedRegister(LLVMReg))
2148     return true;
2149   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2150   assert(TRI && "Expected target register info");
2151   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2152   if (DwarfReg < 0)
2153     return error("invalid DWARF register");
2154   Reg = (unsigned)DwarfReg;
2155   lex();
2156   return false;
2157 }
2158 
2159 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2160   do {
2161     if (Token.isNot(MIToken::HexLiteral))
2162       return error("expected a hexadecimal literal");
2163     unsigned Value;
2164     if (getUnsigned(Value))
2165       return true;
2166     if (Value > UINT8_MAX)
2167       return error("expected a 8-bit integer (too large)");
2168     Values.push_back(static_cast<uint8_t>(Value));
2169     lex();
2170   } while (consumeIfPresent(MIToken::comma));
2171   return false;
2172 }
2173 
2174 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2175   auto Kind = Token.kind();
2176   lex();
2177   int Offset;
2178   unsigned Reg;
2179   unsigned CFIIndex;
2180   switch (Kind) {
2181   case MIToken::kw_cfi_same_value:
2182     if (parseCFIRegister(Reg))
2183       return true;
2184     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2185     break;
2186   case MIToken::kw_cfi_offset:
2187     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2188         parseCFIOffset(Offset))
2189       return true;
2190     CFIIndex =
2191         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2192     break;
2193   case MIToken::kw_cfi_rel_offset:
2194     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2195         parseCFIOffset(Offset))
2196       return true;
2197     CFIIndex = MF.addFrameInst(
2198         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2199     break;
2200   case MIToken::kw_cfi_def_cfa_register:
2201     if (parseCFIRegister(Reg))
2202       return true;
2203     CFIIndex =
2204         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2205     break;
2206   case MIToken::kw_cfi_def_cfa_offset:
2207     if (parseCFIOffset(Offset))
2208       return true;
2209     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
2210     CFIIndex = MF.addFrameInst(
2211         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
2212     break;
2213   case MIToken::kw_cfi_adjust_cfa_offset:
2214     if (parseCFIOffset(Offset))
2215       return true;
2216     CFIIndex = MF.addFrameInst(
2217         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2218     break;
2219   case MIToken::kw_cfi_def_cfa:
2220     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2221         parseCFIOffset(Offset))
2222       return true;
2223     // NB: MCCFIInstruction::createDefCfa negates the offset.
2224     CFIIndex =
2225         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
2226     break;
2227   case MIToken::kw_cfi_remember_state:
2228     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2229     break;
2230   case MIToken::kw_cfi_restore:
2231     if (parseCFIRegister(Reg))
2232       return true;
2233     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2234     break;
2235   case MIToken::kw_cfi_restore_state:
2236     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2237     break;
2238   case MIToken::kw_cfi_undefined:
2239     if (parseCFIRegister(Reg))
2240       return true;
2241     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2242     break;
2243   case MIToken::kw_cfi_register: {
2244     unsigned Reg2;
2245     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2246         parseCFIRegister(Reg2))
2247       return true;
2248 
2249     CFIIndex =
2250         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2251     break;
2252   }
2253   case MIToken::kw_cfi_window_save:
2254     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2255     break;
2256   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2257     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2258     break;
2259   case MIToken::kw_cfi_escape: {
2260     std::string Values;
2261     if (parseCFIEscapeValues(Values))
2262       return true;
2263     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2264     break;
2265   }
2266   default:
2267     // TODO: Parse the other CFI operands.
2268     llvm_unreachable("The current token should be a cfi operand");
2269   }
2270   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2271   return false;
2272 }
2273 
2274 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2275   switch (Token.kind()) {
2276   case MIToken::NamedIRBlock: {
2277     BB = dyn_cast_or_null<BasicBlock>(
2278         F.getValueSymbolTable()->lookup(Token.stringValue()));
2279     if (!BB)
2280       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2281     break;
2282   }
2283   case MIToken::IRBlock: {
2284     unsigned SlotNumber = 0;
2285     if (getUnsigned(SlotNumber))
2286       return true;
2287     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2288     if (!BB)
2289       return error(Twine("use of undefined IR block '%ir-block.") +
2290                    Twine(SlotNumber) + "'");
2291     break;
2292   }
2293   default:
2294     llvm_unreachable("The current token should be an IR block reference");
2295   }
2296   return false;
2297 }
2298 
2299 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2300   assert(Token.is(MIToken::kw_blockaddress));
2301   lex();
2302   if (expectAndConsume(MIToken::lparen))
2303     return true;
2304   if (Token.isNot(MIToken::GlobalValue) &&
2305       Token.isNot(MIToken::NamedGlobalValue))
2306     return error("expected a global value");
2307   GlobalValue *GV = nullptr;
2308   if (parseGlobalValue(GV))
2309     return true;
2310   auto *F = dyn_cast<Function>(GV);
2311   if (!F)
2312     return error("expected an IR function reference");
2313   lex();
2314   if (expectAndConsume(MIToken::comma))
2315     return true;
2316   BasicBlock *BB = nullptr;
2317   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2318     return error("expected an IR block reference");
2319   if (parseIRBlock(BB, *F))
2320     return true;
2321   lex();
2322   if (expectAndConsume(MIToken::rparen))
2323     return true;
2324   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2325   if (parseOperandsOffset(Dest))
2326     return true;
2327   return false;
2328 }
2329 
2330 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2331   assert(Token.is(MIToken::kw_intrinsic));
2332   lex();
2333   if (expectAndConsume(MIToken::lparen))
2334     return error("expected syntax intrinsic(@llvm.whatever)");
2335 
2336   if (Token.isNot(MIToken::NamedGlobalValue))
2337     return error("expected syntax intrinsic(@llvm.whatever)");
2338 
2339   std::string Name = Token.stringValue();
2340   lex();
2341 
2342   if (expectAndConsume(MIToken::rparen))
2343     return error("expected ')' to terminate intrinsic name");
2344 
2345   // Find out what intrinsic we're dealing with, first try the global namespace
2346   // and then the target's private intrinsics if that fails.
2347   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2348   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2349   if (ID == Intrinsic::not_intrinsic && TII)
2350     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2351 
2352   if (ID == Intrinsic::not_intrinsic)
2353     return error("unknown intrinsic name");
2354   Dest = MachineOperand::CreateIntrinsicID(ID);
2355 
2356   return false;
2357 }
2358 
2359 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2360   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2361   bool IsFloat = Token.is(MIToken::kw_floatpred);
2362   lex();
2363 
2364   if (expectAndConsume(MIToken::lparen))
2365     return error("expected syntax intpred(whatever) or floatpred(whatever");
2366 
2367   if (Token.isNot(MIToken::Identifier))
2368     return error("whatever");
2369 
2370   CmpInst::Predicate Pred;
2371   if (IsFloat) {
2372     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2373                .Case("false", CmpInst::FCMP_FALSE)
2374                .Case("oeq", CmpInst::FCMP_OEQ)
2375                .Case("ogt", CmpInst::FCMP_OGT)
2376                .Case("oge", CmpInst::FCMP_OGE)
2377                .Case("olt", CmpInst::FCMP_OLT)
2378                .Case("ole", CmpInst::FCMP_OLE)
2379                .Case("one", CmpInst::FCMP_ONE)
2380                .Case("ord", CmpInst::FCMP_ORD)
2381                .Case("uno", CmpInst::FCMP_UNO)
2382                .Case("ueq", CmpInst::FCMP_UEQ)
2383                .Case("ugt", CmpInst::FCMP_UGT)
2384                .Case("uge", CmpInst::FCMP_UGE)
2385                .Case("ult", CmpInst::FCMP_ULT)
2386                .Case("ule", CmpInst::FCMP_ULE)
2387                .Case("une", CmpInst::FCMP_UNE)
2388                .Case("true", CmpInst::FCMP_TRUE)
2389                .Default(CmpInst::BAD_FCMP_PREDICATE);
2390     if (!CmpInst::isFPPredicate(Pred))
2391       return error("invalid floating-point predicate");
2392   } else {
2393     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2394                .Case("eq", CmpInst::ICMP_EQ)
2395                .Case("ne", CmpInst::ICMP_NE)
2396                .Case("sgt", CmpInst::ICMP_SGT)
2397                .Case("sge", CmpInst::ICMP_SGE)
2398                .Case("slt", CmpInst::ICMP_SLT)
2399                .Case("sle", CmpInst::ICMP_SLE)
2400                .Case("ugt", CmpInst::ICMP_UGT)
2401                .Case("uge", CmpInst::ICMP_UGE)
2402                .Case("ult", CmpInst::ICMP_ULT)
2403                .Case("ule", CmpInst::ICMP_ULE)
2404                .Default(CmpInst::BAD_ICMP_PREDICATE);
2405     if (!CmpInst::isIntPredicate(Pred))
2406       return error("invalid integer predicate");
2407   }
2408 
2409   lex();
2410   Dest = MachineOperand::CreatePredicate(Pred);
2411   if (expectAndConsume(MIToken::rparen))
2412     return error("predicate should be terminated by ')'.");
2413 
2414   return false;
2415 }
2416 
2417 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2418   assert(Token.is(MIToken::kw_shufflemask));
2419 
2420   lex();
2421   if (expectAndConsume(MIToken::lparen))
2422     return error("expected syntax shufflemask(<integer or undef>, ...)");
2423 
2424   SmallVector<Constant *, 32> ShufMask;
2425   LLVMContext &Ctx = MF.getFunction().getContext();
2426   Type *I32Ty = Type::getInt32Ty(Ctx);
2427 
2428   bool AllZero = true;
2429   bool AllUndef = true;
2430 
2431   do {
2432     if (Token.is(MIToken::kw_undef)) {
2433       ShufMask.push_back(UndefValue::get(I32Ty));
2434       AllZero = false;
2435     } else if (Token.is(MIToken::IntegerLiteral)) {
2436       AllUndef = false;
2437       const APSInt &Int = Token.integerValue();
2438       if (!Int.isNullValue())
2439         AllZero = false;
2440       ShufMask.push_back(ConstantInt::get(I32Ty, Int.getExtValue()));
2441     } else
2442       return error("expected integer constant");
2443 
2444     lex();
2445   } while (consumeIfPresent(MIToken::comma));
2446 
2447   if (expectAndConsume(MIToken::rparen))
2448     return error("shufflemask should be terminated by ')'.");
2449 
2450   if (AllZero || AllUndef) {
2451     VectorType *VT = VectorType::get(I32Ty, ShufMask.size());
2452     Constant *C = AllZero ? Constant::getNullValue(VT) : UndefValue::get(VT);
2453     Dest = MachineOperand::CreateShuffleMask(C);
2454   } else
2455     Dest = MachineOperand::CreateShuffleMask(ConstantVector::get(ShufMask));
2456 
2457   return false;
2458 }
2459 
2460 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2461   assert(Token.is(MIToken::kw_target_index));
2462   lex();
2463   if (expectAndConsume(MIToken::lparen))
2464     return true;
2465   if (Token.isNot(MIToken::Identifier))
2466     return error("expected the name of the target index");
2467   int Index = 0;
2468   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2469     return error("use of undefined target index '" + Token.stringValue() + "'");
2470   lex();
2471   if (expectAndConsume(MIToken::rparen))
2472     return true;
2473   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2474   if (parseOperandsOffset(Dest))
2475     return true;
2476   return false;
2477 }
2478 
2479 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2480   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2481   lex();
2482   if (expectAndConsume(MIToken::lparen))
2483     return true;
2484 
2485   uint32_t *Mask = MF.allocateRegMask();
2486   while (true) {
2487     if (Token.isNot(MIToken::NamedRegister))
2488       return error("expected a named register");
2489     unsigned Reg;
2490     if (parseNamedRegister(Reg))
2491       return true;
2492     lex();
2493     Mask[Reg / 32] |= 1U << (Reg % 32);
2494     // TODO: Report an error if the same register is used more than once.
2495     if (Token.isNot(MIToken::comma))
2496       break;
2497     lex();
2498   }
2499 
2500   if (expectAndConsume(MIToken::rparen))
2501     return true;
2502   Dest = MachineOperand::CreateRegMask(Mask);
2503   return false;
2504 }
2505 
2506 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2507   assert(Token.is(MIToken::kw_liveout));
2508   uint32_t *Mask = MF.allocateRegMask();
2509   lex();
2510   if (expectAndConsume(MIToken::lparen))
2511     return true;
2512   while (true) {
2513     if (Token.isNot(MIToken::NamedRegister))
2514       return error("expected a named register");
2515     unsigned Reg;
2516     if (parseNamedRegister(Reg))
2517       return true;
2518     lex();
2519     Mask[Reg / 32] |= 1U << (Reg % 32);
2520     // TODO: Report an error if the same register is used more than once.
2521     if (Token.isNot(MIToken::comma))
2522       break;
2523     lex();
2524   }
2525   if (expectAndConsume(MIToken::rparen))
2526     return true;
2527   Dest = MachineOperand::CreateRegLiveOut(Mask);
2528   return false;
2529 }
2530 
2531 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2532                                    MachineOperand &Dest,
2533                                    Optional<unsigned> &TiedDefIdx) {
2534   switch (Token.kind()) {
2535   case MIToken::kw_implicit:
2536   case MIToken::kw_implicit_define:
2537   case MIToken::kw_def:
2538   case MIToken::kw_dead:
2539   case MIToken::kw_killed:
2540   case MIToken::kw_undef:
2541   case MIToken::kw_internal:
2542   case MIToken::kw_early_clobber:
2543   case MIToken::kw_debug_use:
2544   case MIToken::kw_renamable:
2545   case MIToken::underscore:
2546   case MIToken::NamedRegister:
2547   case MIToken::VirtualRegister:
2548   case MIToken::NamedVirtualRegister:
2549     return parseRegisterOperand(Dest, TiedDefIdx);
2550   case MIToken::IntegerLiteral:
2551     return parseImmediateOperand(Dest);
2552   case MIToken::kw_half:
2553   case MIToken::kw_float:
2554   case MIToken::kw_double:
2555   case MIToken::kw_x86_fp80:
2556   case MIToken::kw_fp128:
2557   case MIToken::kw_ppc_fp128:
2558     return parseFPImmediateOperand(Dest);
2559   case MIToken::MachineBasicBlock:
2560     return parseMBBOperand(Dest);
2561   case MIToken::StackObject:
2562     return parseStackObjectOperand(Dest);
2563   case MIToken::FixedStackObject:
2564     return parseFixedStackObjectOperand(Dest);
2565   case MIToken::GlobalValue:
2566   case MIToken::NamedGlobalValue:
2567     return parseGlobalAddressOperand(Dest);
2568   case MIToken::ConstantPoolItem:
2569     return parseConstantPoolIndexOperand(Dest);
2570   case MIToken::JumpTableIndex:
2571     return parseJumpTableIndexOperand(Dest);
2572   case MIToken::ExternalSymbol:
2573     return parseExternalSymbolOperand(Dest);
2574   case MIToken::MCSymbol:
2575     return parseMCSymbolOperand(Dest);
2576   case MIToken::SubRegisterIndex:
2577     return parseSubRegisterIndexOperand(Dest);
2578   case MIToken::md_diexpr:
2579   case MIToken::exclaim:
2580     return parseMetadataOperand(Dest);
2581   case MIToken::kw_cfi_same_value:
2582   case MIToken::kw_cfi_offset:
2583   case MIToken::kw_cfi_rel_offset:
2584   case MIToken::kw_cfi_def_cfa_register:
2585   case MIToken::kw_cfi_def_cfa_offset:
2586   case MIToken::kw_cfi_adjust_cfa_offset:
2587   case MIToken::kw_cfi_escape:
2588   case MIToken::kw_cfi_def_cfa:
2589   case MIToken::kw_cfi_register:
2590   case MIToken::kw_cfi_remember_state:
2591   case MIToken::kw_cfi_restore:
2592   case MIToken::kw_cfi_restore_state:
2593   case MIToken::kw_cfi_undefined:
2594   case MIToken::kw_cfi_window_save:
2595   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2596     return parseCFIOperand(Dest);
2597   case MIToken::kw_blockaddress:
2598     return parseBlockAddressOperand(Dest);
2599   case MIToken::kw_intrinsic:
2600     return parseIntrinsicOperand(Dest);
2601   case MIToken::kw_target_index:
2602     return parseTargetIndexOperand(Dest);
2603   case MIToken::kw_liveout:
2604     return parseLiveoutRegisterMaskOperand(Dest);
2605   case MIToken::kw_floatpred:
2606   case MIToken::kw_intpred:
2607     return parsePredicateOperand(Dest);
2608   case MIToken::kw_shufflemask:
2609     return parseShuffleMaskOperand(Dest);
2610   case MIToken::Error:
2611     return true;
2612   case MIToken::Identifier:
2613     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2614       Dest = MachineOperand::CreateRegMask(RegMask);
2615       lex();
2616       break;
2617     } else if (Token.stringValue() == "CustomRegMask") {
2618       return parseCustomRegisterMaskOperand(Dest);
2619     } else
2620       return parseTypedImmediateOperand(Dest);
2621   case MIToken::dot: {
2622     const auto *TII = MF.getSubtarget().getInstrInfo();
2623     if (const auto *Formatter = TII->getMIRFormatter()) {
2624       return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2625     }
2626     LLVM_FALLTHROUGH;
2627   }
2628   default:
2629     // FIXME: Parse the MCSymbol machine operand.
2630     return error("expected a machine operand");
2631   }
2632   return false;
2633 }
2634 
2635 bool MIParser::parseMachineOperandAndTargetFlags(
2636     const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2637     Optional<unsigned> &TiedDefIdx) {
2638   unsigned TF = 0;
2639   bool HasTargetFlags = false;
2640   if (Token.is(MIToken::kw_target_flags)) {
2641     HasTargetFlags = true;
2642     lex();
2643     if (expectAndConsume(MIToken::lparen))
2644       return true;
2645     if (Token.isNot(MIToken::Identifier))
2646       return error("expected the name of the target flag");
2647     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2648       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2649         return error("use of undefined target flag '" + Token.stringValue() +
2650                      "'");
2651     }
2652     lex();
2653     while (Token.is(MIToken::comma)) {
2654       lex();
2655       if (Token.isNot(MIToken::Identifier))
2656         return error("expected the name of the target flag");
2657       unsigned BitFlag = 0;
2658       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2659         return error("use of undefined target flag '" + Token.stringValue() +
2660                      "'");
2661       // TODO: Report an error when using a duplicate bit target flag.
2662       TF |= BitFlag;
2663       lex();
2664     }
2665     if (expectAndConsume(MIToken::rparen))
2666       return true;
2667   }
2668   auto Loc = Token.location();
2669   if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2670     return true;
2671   if (!HasTargetFlags)
2672     return false;
2673   if (Dest.isReg())
2674     return error(Loc, "register operands can't have target flags");
2675   Dest.setTargetFlags(TF);
2676   return false;
2677 }
2678 
2679 bool MIParser::parseOffset(int64_t &Offset) {
2680   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2681     return false;
2682   StringRef Sign = Token.range();
2683   bool IsNegative = Token.is(MIToken::minus);
2684   lex();
2685   if (Token.isNot(MIToken::IntegerLiteral))
2686     return error("expected an integer literal after '" + Sign + "'");
2687   if (Token.integerValue().getMinSignedBits() > 64)
2688     return error("expected 64-bit integer (too large)");
2689   Offset = Token.integerValue().getExtValue();
2690   if (IsNegative)
2691     Offset = -Offset;
2692   lex();
2693   return false;
2694 }
2695 
2696 bool MIParser::parseAlignment(unsigned &Alignment) {
2697   assert(Token.is(MIToken::kw_align));
2698   lex();
2699   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2700     return error("expected an integer literal after 'align'");
2701   if (getUnsigned(Alignment))
2702     return true;
2703   lex();
2704 
2705   if (!isPowerOf2_32(Alignment))
2706     return error("expected a power-of-2 literal after 'align'");
2707 
2708   return false;
2709 }
2710 
2711 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2712   assert(Token.is(MIToken::kw_addrspace));
2713   lex();
2714   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2715     return error("expected an integer literal after 'addrspace'");
2716   if (getUnsigned(Addrspace))
2717     return true;
2718   lex();
2719   return false;
2720 }
2721 
2722 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2723   int64_t Offset = 0;
2724   if (parseOffset(Offset))
2725     return true;
2726   Op.setOffset(Offset);
2727   return false;
2728 }
2729 
2730 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
2731                          const Value *&V, ErrorCallbackType ErrCB) {
2732   switch (Token.kind()) {
2733   case MIToken::NamedIRValue: {
2734     V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2735     break;
2736   }
2737   case MIToken::IRValue: {
2738     unsigned SlotNumber = 0;
2739     if (getUnsigned(Token, SlotNumber, ErrCB))
2740       return true;
2741     V = PFS.getIRValue(SlotNumber);
2742     break;
2743   }
2744   case MIToken::NamedGlobalValue:
2745   case MIToken::GlobalValue: {
2746     GlobalValue *GV = nullptr;
2747     if (parseGlobalValue(Token, PFS, GV, ErrCB))
2748       return true;
2749     V = GV;
2750     break;
2751   }
2752   case MIToken::QuotedIRValue: {
2753     const Constant *C = nullptr;
2754     if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
2755       return true;
2756     V = C;
2757     break;
2758   }
2759   default:
2760     llvm_unreachable("The current token should be an IR block reference");
2761   }
2762   if (!V)
2763     return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
2764   return false;
2765 }
2766 
2767 bool MIParser::parseIRValue(const Value *&V) {
2768   return ::parseIRValue(
2769       Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2770         return error(Loc, Msg);
2771       });
2772 }
2773 
2774 bool MIParser::getUint64(uint64_t &Result) {
2775   if (Token.hasIntegerValue()) {
2776     if (Token.integerValue().getActiveBits() > 64)
2777       return error("expected 64-bit integer (too large)");
2778     Result = Token.integerValue().getZExtValue();
2779     return false;
2780   }
2781   if (Token.is(MIToken::HexLiteral)) {
2782     APInt A;
2783     if (getHexUint(A))
2784       return true;
2785     if (A.getBitWidth() > 64)
2786       return error("expected 64-bit integer (too large)");
2787     Result = A.getZExtValue();
2788     return false;
2789   }
2790   return true;
2791 }
2792 
2793 bool MIParser::getHexUint(APInt &Result) {
2794   return ::getHexUint(Token, Result);
2795 }
2796 
2797 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2798   const auto OldFlags = Flags;
2799   switch (Token.kind()) {
2800   case MIToken::kw_volatile:
2801     Flags |= MachineMemOperand::MOVolatile;
2802     break;
2803   case MIToken::kw_non_temporal:
2804     Flags |= MachineMemOperand::MONonTemporal;
2805     break;
2806   case MIToken::kw_dereferenceable:
2807     Flags |= MachineMemOperand::MODereferenceable;
2808     break;
2809   case MIToken::kw_invariant:
2810     Flags |= MachineMemOperand::MOInvariant;
2811     break;
2812   case MIToken::StringConstant: {
2813     MachineMemOperand::Flags TF;
2814     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
2815       return error("use of undefined target MMO flag '" + Token.stringValue() +
2816                    "'");
2817     Flags |= TF;
2818     break;
2819   }
2820   default:
2821     llvm_unreachable("The current token should be a memory operand flag");
2822   }
2823   if (OldFlags == Flags)
2824     // We know that the same flag is specified more than once when the flags
2825     // weren't modified.
2826     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2827   lex();
2828   return false;
2829 }
2830 
2831 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2832   switch (Token.kind()) {
2833   case MIToken::kw_stack:
2834     PSV = MF.getPSVManager().getStack();
2835     break;
2836   case MIToken::kw_got:
2837     PSV = MF.getPSVManager().getGOT();
2838     break;
2839   case MIToken::kw_jump_table:
2840     PSV = MF.getPSVManager().getJumpTable();
2841     break;
2842   case MIToken::kw_constant_pool:
2843     PSV = MF.getPSVManager().getConstantPool();
2844     break;
2845   case MIToken::FixedStackObject: {
2846     int FI;
2847     if (parseFixedStackFrameIndex(FI))
2848       return true;
2849     PSV = MF.getPSVManager().getFixedStack(FI);
2850     // The token was already consumed, so use return here instead of break.
2851     return false;
2852   }
2853   case MIToken::StackObject: {
2854     int FI;
2855     if (parseStackFrameIndex(FI))
2856       return true;
2857     PSV = MF.getPSVManager().getFixedStack(FI);
2858     // The token was already consumed, so use return here instead of break.
2859     return false;
2860   }
2861   case MIToken::kw_call_entry:
2862     lex();
2863     switch (Token.kind()) {
2864     case MIToken::GlobalValue:
2865     case MIToken::NamedGlobalValue: {
2866       GlobalValue *GV = nullptr;
2867       if (parseGlobalValue(GV))
2868         return true;
2869       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2870       break;
2871     }
2872     case MIToken::ExternalSymbol:
2873       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2874           MF.createExternalSymbolName(Token.stringValue()));
2875       break;
2876     default:
2877       return error(
2878           "expected a global value or an external symbol after 'call-entry'");
2879     }
2880     break;
2881   case MIToken::kw_custom: {
2882     lex();
2883     const auto *TII = MF.getSubtarget().getInstrInfo();
2884     if (const auto *Formatter = TII->getMIRFormatter()) {
2885       if (Formatter->parseCustomPseudoSourceValue(
2886               Token.stringValue(), MF, PFS, PSV,
2887               [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2888                 return error(Loc, Msg);
2889               }))
2890         return true;
2891     } else
2892       return error("unable to parse target custom pseudo source value");
2893     break;
2894   }
2895   default:
2896     llvm_unreachable("The current token should be pseudo source value");
2897   }
2898   lex();
2899   return false;
2900 }
2901 
2902 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2903   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2904       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2905       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2906       Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
2907     const PseudoSourceValue *PSV = nullptr;
2908     if (parseMemoryPseudoSourceValue(PSV))
2909       return true;
2910     int64_t Offset = 0;
2911     if (parseOffset(Offset))
2912       return true;
2913     Dest = MachinePointerInfo(PSV, Offset);
2914     return false;
2915   }
2916   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2917       Token.isNot(MIToken::GlobalValue) &&
2918       Token.isNot(MIToken::NamedGlobalValue) &&
2919       Token.isNot(MIToken::QuotedIRValue))
2920     return error("expected an IR value reference");
2921   const Value *V = nullptr;
2922   if (parseIRValue(V))
2923     return true;
2924   if (!V->getType()->isPointerTy())
2925     return error("expected a pointer IR value");
2926   lex();
2927   int64_t Offset = 0;
2928   if (parseOffset(Offset))
2929     return true;
2930   Dest = MachinePointerInfo(V, Offset);
2931   return false;
2932 }
2933 
2934 bool MIParser::parseOptionalScope(LLVMContext &Context,
2935                                   SyncScope::ID &SSID) {
2936   SSID = SyncScope::System;
2937   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2938     lex();
2939     if (expectAndConsume(MIToken::lparen))
2940       return error("expected '(' in syncscope");
2941 
2942     std::string SSN;
2943     if (parseStringConstant(SSN))
2944       return true;
2945 
2946     SSID = Context.getOrInsertSyncScopeID(SSN);
2947     if (expectAndConsume(MIToken::rparen))
2948       return error("expected ')' in syncscope");
2949   }
2950 
2951   return false;
2952 }
2953 
2954 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2955   Order = AtomicOrdering::NotAtomic;
2956   if (Token.isNot(MIToken::Identifier))
2957     return false;
2958 
2959   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2960               .Case("unordered", AtomicOrdering::Unordered)
2961               .Case("monotonic", AtomicOrdering::Monotonic)
2962               .Case("acquire", AtomicOrdering::Acquire)
2963               .Case("release", AtomicOrdering::Release)
2964               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2965               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2966               .Default(AtomicOrdering::NotAtomic);
2967 
2968   if (Order != AtomicOrdering::NotAtomic) {
2969     lex();
2970     return false;
2971   }
2972 
2973   return error("expected an atomic scope, ordering or a size specification");
2974 }
2975 
2976 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2977   if (expectAndConsume(MIToken::lparen))
2978     return true;
2979   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2980   while (Token.isMemoryOperandFlag()) {
2981     if (parseMemoryOperandFlag(Flags))
2982       return true;
2983   }
2984   if (Token.isNot(MIToken::Identifier) ||
2985       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2986     return error("expected 'load' or 'store' memory operation");
2987   if (Token.stringValue() == "load")
2988     Flags |= MachineMemOperand::MOLoad;
2989   else
2990     Flags |= MachineMemOperand::MOStore;
2991   lex();
2992 
2993   // Optional 'store' for operands that both load and store.
2994   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2995     Flags |= MachineMemOperand::MOStore;
2996     lex();
2997   }
2998 
2999   // Optional synchronization scope.
3000   SyncScope::ID SSID;
3001   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3002     return true;
3003 
3004   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3005   AtomicOrdering Order, FailureOrder;
3006   if (parseOptionalAtomicOrdering(Order))
3007     return true;
3008 
3009   if (parseOptionalAtomicOrdering(FailureOrder))
3010     return true;
3011 
3012   if (Token.isNot(MIToken::IntegerLiteral) &&
3013       Token.isNot(MIToken::kw_unknown_size))
3014     return error("expected the size integer literal or 'unknown-size' after "
3015                  "memory operation");
3016   uint64_t Size;
3017   if (Token.is(MIToken::IntegerLiteral)) {
3018     if (getUint64(Size))
3019       return true;
3020   } else if (Token.is(MIToken::kw_unknown_size)) {
3021     Size = MemoryLocation::UnknownSize;
3022   }
3023   lex();
3024 
3025   MachinePointerInfo Ptr = MachinePointerInfo();
3026   if (Token.is(MIToken::Identifier)) {
3027     const char *Word =
3028         ((Flags & MachineMemOperand::MOLoad) &&
3029          (Flags & MachineMemOperand::MOStore))
3030             ? "on"
3031             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3032     if (Token.stringValue() != Word)
3033       return error(Twine("expected '") + Word + "'");
3034     lex();
3035 
3036     if (parseMachinePointerInfo(Ptr))
3037       return true;
3038   }
3039   unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
3040   AAMDNodes AAInfo;
3041   MDNode *Range = nullptr;
3042   while (consumeIfPresent(MIToken::comma)) {
3043     switch (Token.kind()) {
3044     case MIToken::kw_align:
3045       if (parseAlignment(BaseAlignment))
3046         return true;
3047       break;
3048     case MIToken::kw_addrspace:
3049       if (parseAddrspace(Ptr.AddrSpace))
3050         return true;
3051       break;
3052     case MIToken::md_tbaa:
3053       lex();
3054       if (parseMDNode(AAInfo.TBAA))
3055         return true;
3056       break;
3057     case MIToken::md_alias_scope:
3058       lex();
3059       if (parseMDNode(AAInfo.Scope))
3060         return true;
3061       break;
3062     case MIToken::md_noalias:
3063       lex();
3064       if (parseMDNode(AAInfo.NoAlias))
3065         return true;
3066       break;
3067     case MIToken::md_range:
3068       lex();
3069       if (parseMDNode(Range))
3070         return true;
3071       break;
3072     // TODO: Report an error on duplicate metadata nodes.
3073     default:
3074       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3075                    "'!noalias' or '!range'");
3076     }
3077   }
3078   if (expectAndConsume(MIToken::rparen))
3079     return true;
3080   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
3081                                  SSID, Order, FailureOrder);
3082   return false;
3083 }
3084 
3085 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3086   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3087           Token.is(MIToken::kw_post_instr_symbol)) &&
3088          "Invalid token for a pre- post-instruction symbol!");
3089   lex();
3090   if (Token.isNot(MIToken::MCSymbol))
3091     return error("expected a symbol after 'pre-instr-symbol'");
3092   Symbol = getOrCreateMCSymbol(Token.stringValue());
3093   lex();
3094   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3095       Token.is(MIToken::lbrace))
3096     return false;
3097   if (Token.isNot(MIToken::comma))
3098     return error("expected ',' before the next machine operand");
3099   lex();
3100   return false;
3101 }
3102 
3103 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3104   assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3105          "Invalid token for a heap alloc marker!");
3106   lex();
3107   parseMDNode(Node);
3108   if (!Node)
3109     return error("expected a MDNode after 'heap-alloc-marker'");
3110   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3111       Token.is(MIToken::lbrace))
3112     return false;
3113   if (Token.isNot(MIToken::comma))
3114     return error("expected ',' before the next machine operand");
3115   lex();
3116   return false;
3117 }
3118 
3119 static void initSlots2BasicBlocks(
3120     const Function &F,
3121     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3122   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3123   MST.incorporateFunction(F);
3124   for (auto &BB : F) {
3125     if (BB.hasName())
3126       continue;
3127     int Slot = MST.getLocalSlot(&BB);
3128     if (Slot == -1)
3129       continue;
3130     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3131   }
3132 }
3133 
3134 static const BasicBlock *getIRBlockFromSlot(
3135     unsigned Slot,
3136     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3137   auto BlockInfo = Slots2BasicBlocks.find(Slot);
3138   if (BlockInfo == Slots2BasicBlocks.end())
3139     return nullptr;
3140   return BlockInfo->second;
3141 }
3142 
3143 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3144   if (Slots2BasicBlocks.empty())
3145     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3146   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3147 }
3148 
3149 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3150   if (&F == &MF.getFunction())
3151     return getIRBlock(Slot);
3152   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3153   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3154   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3155 }
3156 
3157 const Value *MIParser::getIRValue(unsigned Slot) {
3158   return PFS.getIRValue(Slot);
3159 }
3160 
3161 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3162   // FIXME: Currently we can't recognize temporary or local symbols and call all
3163   // of the appropriate forms to create them. However, this handles basic cases
3164   // well as most of the special aspects are recognized by a prefix on their
3165   // name, and the input names should already be unique. For test cases, keeping
3166   // the symbol name out of the symbol table isn't terribly important.
3167   return MF.getContext().getOrCreateSymbol(Name);
3168 }
3169 
3170 bool MIParser::parseStringConstant(std::string &Result) {
3171   if (Token.isNot(MIToken::StringConstant))
3172     return error("expected string constant");
3173   Result = Token.stringValue();
3174   lex();
3175   return false;
3176 }
3177 
3178 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3179                                              StringRef Src,
3180                                              SMDiagnostic &Error) {
3181   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3182 }
3183 
3184 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3185                                     StringRef Src, SMDiagnostic &Error) {
3186   return MIParser(PFS, Error, Src).parseBasicBlocks();
3187 }
3188 
3189 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3190                              MachineBasicBlock *&MBB, StringRef Src,
3191                              SMDiagnostic &Error) {
3192   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3193 }
3194 
3195 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3196                                   unsigned &Reg, StringRef Src,
3197                                   SMDiagnostic &Error) {
3198   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3199 }
3200 
3201 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3202                                        unsigned &Reg, StringRef Src,
3203                                        SMDiagnostic &Error) {
3204   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3205 }
3206 
3207 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3208                                          VRegInfo *&Info, StringRef Src,
3209                                          SMDiagnostic &Error) {
3210   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3211 }
3212 
3213 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3214                                      int &FI, StringRef Src,
3215                                      SMDiagnostic &Error) {
3216   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3217 }
3218 
3219 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3220                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3221   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3222 }
3223 
3224 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3225                                 PerFunctionMIParsingState &PFS, const Value *&V,
3226                                 ErrorCallbackType ErrorCallback) {
3227   MIToken Token;
3228   Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3229     ErrorCallback(Loc, Msg);
3230   });
3231   V = nullptr;
3232 
3233   return ::parseIRValue(Token, PFS, V, ErrorCallback);
3234 }
3235