1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRFormatter.h" 32 #include "llvm/CodeGen/MIRPrinter.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 Register &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 return Slots2Values.lookup(Slot); 373 } 374 375 namespace { 376 377 /// A wrapper struct around the 'MachineOperand' struct that includes a source 378 /// range and other attributes. 379 struct ParsedMachineOperand { 380 MachineOperand Operand; 381 StringRef::iterator Begin; 382 StringRef::iterator End; 383 Optional<unsigned> TiedDefIdx; 384 385 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 386 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 387 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 388 if (TiedDefIdx) 389 assert(Operand.isReg() && Operand.isUse() && 390 "Only used register operands can be tied"); 391 } 392 }; 393 394 class MIParser { 395 MachineFunction &MF; 396 SMDiagnostic &Error; 397 StringRef Source, CurrentSource; 398 SMRange SourceRange; 399 MIToken Token; 400 PerFunctionMIParsingState &PFS; 401 /// Maps from slot numbers to function's unnamed basic blocks. 402 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 403 404 public: 405 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 406 StringRef Source); 407 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 408 StringRef Source, SMRange SourceRange); 409 410 /// \p SkipChar gives the number of characters to skip before looking 411 /// for the next token. 412 void lex(unsigned SkipChar = 0); 413 414 /// Report an error at the current location with the given message. 415 /// 416 /// This function always return true. 417 bool error(const Twine &Msg); 418 419 /// Report an error at the given location with the given message. 420 /// 421 /// This function always return true. 422 bool error(StringRef::iterator Loc, const Twine &Msg); 423 424 bool 425 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 426 bool parseBasicBlocks(); 427 bool parse(MachineInstr *&MI); 428 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 429 bool parseStandaloneNamedRegister(Register &Reg); 430 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 431 bool parseStandaloneRegister(Register &Reg); 432 bool parseStandaloneStackObject(int &FI); 433 bool parseStandaloneMDNode(MDNode *&Node); 434 bool parseMachineMetadata(); 435 bool parseMDTuple(MDNode *&MD, bool IsDistinct); 436 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts); 437 bool parseMetadata(Metadata *&MD); 438 439 bool 440 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 441 bool parseBasicBlock(MachineBasicBlock &MBB, 442 MachineBasicBlock *&AddFalthroughFrom); 443 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 444 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 445 446 bool parseNamedRegister(Register &Reg); 447 bool parseVirtualRegister(VRegInfo *&Info); 448 bool parseNamedVirtualRegister(VRegInfo *&Info); 449 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 450 bool parseRegisterFlag(unsigned &Flags); 451 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 452 bool parseSubRegisterIndex(unsigned &SubReg); 453 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 454 bool parseRegisterOperand(MachineOperand &Dest, 455 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 456 bool parseImmediateOperand(MachineOperand &Dest); 457 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 458 const Constant *&C); 459 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 460 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 461 bool parseTypedImmediateOperand(MachineOperand &Dest); 462 bool parseFPImmediateOperand(MachineOperand &Dest); 463 bool parseMBBReference(MachineBasicBlock *&MBB); 464 bool parseMBBOperand(MachineOperand &Dest); 465 bool parseStackFrameIndex(int &FI); 466 bool parseStackObjectOperand(MachineOperand &Dest); 467 bool parseFixedStackFrameIndex(int &FI); 468 bool parseFixedStackObjectOperand(MachineOperand &Dest); 469 bool parseGlobalValue(GlobalValue *&GV); 470 bool parseGlobalAddressOperand(MachineOperand &Dest); 471 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 472 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 473 bool parseJumpTableIndexOperand(MachineOperand &Dest); 474 bool parseExternalSymbolOperand(MachineOperand &Dest); 475 bool parseMCSymbolOperand(MachineOperand &Dest); 476 bool parseMDNode(MDNode *&Node); 477 bool parseDIExpression(MDNode *&Expr); 478 bool parseDILocation(MDNode *&Expr); 479 bool parseMetadataOperand(MachineOperand &Dest); 480 bool parseCFIOffset(int &Offset); 481 bool parseCFIRegister(Register &Reg); 482 bool parseCFIAddressSpace(unsigned &AddressSpace); 483 bool parseCFIEscapeValues(std::string& Values); 484 bool parseCFIOperand(MachineOperand &Dest); 485 bool parseIRBlock(BasicBlock *&BB, const Function &F); 486 bool parseBlockAddressOperand(MachineOperand &Dest); 487 bool parseIntrinsicOperand(MachineOperand &Dest); 488 bool parsePredicateOperand(MachineOperand &Dest); 489 bool parseShuffleMaskOperand(MachineOperand &Dest); 490 bool parseTargetIndexOperand(MachineOperand &Dest); 491 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 492 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 493 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 494 MachineOperand &Dest, 495 Optional<unsigned> &TiedDefIdx); 496 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 497 const unsigned OpIdx, 498 MachineOperand &Dest, 499 Optional<unsigned> &TiedDefIdx); 500 bool parseOffset(int64_t &Offset); 501 bool parseAlignment(uint64_t &Alignment); 502 bool parseAddrspace(unsigned &Addrspace); 503 bool parseSectionID(Optional<MBBSectionID> &SID); 504 bool parseOperandsOffset(MachineOperand &Op); 505 bool parseIRValue(const Value *&V); 506 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 507 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 508 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 509 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 510 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 511 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 512 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 513 bool parseHeapAllocMarker(MDNode *&Node); 514 515 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 516 MachineOperand &Dest, const MIRFormatter &MF); 517 518 private: 519 /// Convert the integer literal in the current token into an unsigned integer. 520 /// 521 /// Return true if an error occurred. 522 bool getUnsigned(unsigned &Result); 523 524 /// Convert the integer literal in the current token into an uint64. 525 /// 526 /// Return true if an error occurred. 527 bool getUint64(uint64_t &Result); 528 529 /// Convert the hexadecimal literal in the current token into an unsigned 530 /// APInt with a minimum bitwidth required to represent the value. 531 /// 532 /// Return true if the literal does not represent an integer value. 533 bool getHexUint(APInt &Result); 534 535 /// If the current token is of the given kind, consume it and return false. 536 /// Otherwise report an error and return true. 537 bool expectAndConsume(MIToken::TokenKind TokenKind); 538 539 /// If the current token is of the given kind, consume it and return true. 540 /// Otherwise return false. 541 bool consumeIfPresent(MIToken::TokenKind TokenKind); 542 543 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 544 545 bool assignRegisterTies(MachineInstr &MI, 546 ArrayRef<ParsedMachineOperand> Operands); 547 548 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 549 const MCInstrDesc &MCID); 550 551 const BasicBlock *getIRBlock(unsigned Slot); 552 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 553 554 /// Get or create an MCSymbol for a given name. 555 MCSymbol *getOrCreateMCSymbol(StringRef Name); 556 557 /// parseStringConstant 558 /// ::= StringConstant 559 bool parseStringConstant(std::string &Result); 560 561 /// Map the location in the MI string to the corresponding location specified 562 /// in `SourceRange`. 563 SMLoc mapSMLoc(StringRef::iterator Loc); 564 }; 565 566 } // end anonymous namespace 567 568 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 569 StringRef Source) 570 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 571 {} 572 573 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 574 StringRef Source, SMRange SourceRange) 575 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), 576 SourceRange(SourceRange), PFS(PFS) {} 577 578 void MIParser::lex(unsigned SkipChar) { 579 CurrentSource = lexMIToken( 580 CurrentSource.slice(SkipChar, StringRef::npos), Token, 581 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 582 } 583 584 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 585 586 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 587 const SourceMgr &SM = *PFS.SM; 588 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 589 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 590 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 591 // Create an ordinary diagnostic when the source manager's buffer is the 592 // source string. 593 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 594 return true; 595 } 596 // Create a diagnostic for a YAML string literal. 597 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 598 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 599 Source, None, None); 600 return true; 601 } 602 603 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) { 604 assert(SourceRange.isValid() && "Invalid source range"); 605 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 606 return SMLoc::getFromPointer(SourceRange.Start.getPointer() + 607 (Loc - Source.data())); 608 } 609 610 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 611 ErrorCallbackType; 612 613 static const char *toString(MIToken::TokenKind TokenKind) { 614 switch (TokenKind) { 615 case MIToken::comma: 616 return "','"; 617 case MIToken::equal: 618 return "'='"; 619 case MIToken::colon: 620 return "':'"; 621 case MIToken::lparen: 622 return "'('"; 623 case MIToken::rparen: 624 return "')'"; 625 default: 626 return "<unknown token>"; 627 } 628 } 629 630 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 631 if (Token.isNot(TokenKind)) 632 return error(Twine("expected ") + toString(TokenKind)); 633 lex(); 634 return false; 635 } 636 637 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 638 if (Token.isNot(TokenKind)) 639 return false; 640 lex(); 641 return true; 642 } 643 644 // Parse Machine Basic Block Section ID. 645 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) { 646 assert(Token.is(MIToken::kw_bbsections)); 647 lex(); 648 if (Token.is(MIToken::IntegerLiteral)) { 649 unsigned Value = 0; 650 if (getUnsigned(Value)) 651 return error("Unknown Section ID"); 652 SID = MBBSectionID{Value}; 653 } else { 654 const StringRef &S = Token.stringValue(); 655 if (S == "Exception") 656 SID = MBBSectionID::ExceptionSectionID; 657 else if (S == "Cold") 658 SID = MBBSectionID::ColdSectionID; 659 else 660 return error("Unknown Section ID"); 661 } 662 lex(); 663 return false; 664 } 665 666 bool MIParser::parseBasicBlockDefinition( 667 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 668 assert(Token.is(MIToken::MachineBasicBlockLabel)); 669 unsigned ID = 0; 670 if (getUnsigned(ID)) 671 return true; 672 auto Loc = Token.location(); 673 auto Name = Token.stringValue(); 674 lex(); 675 bool HasAddressTaken = false; 676 bool IsLandingPad = false; 677 bool IsEHFuncletEntry = false; 678 Optional<MBBSectionID> SectionID; 679 uint64_t Alignment = 0; 680 BasicBlock *BB = nullptr; 681 if (consumeIfPresent(MIToken::lparen)) { 682 do { 683 // TODO: Report an error when multiple same attributes are specified. 684 switch (Token.kind()) { 685 case MIToken::kw_address_taken: 686 HasAddressTaken = true; 687 lex(); 688 break; 689 case MIToken::kw_landing_pad: 690 IsLandingPad = true; 691 lex(); 692 break; 693 case MIToken::kw_ehfunclet_entry: 694 IsEHFuncletEntry = true; 695 lex(); 696 break; 697 case MIToken::kw_align: 698 if (parseAlignment(Alignment)) 699 return true; 700 break; 701 case MIToken::IRBlock: 702 // TODO: Report an error when both name and ir block are specified. 703 if (parseIRBlock(BB, MF.getFunction())) 704 return true; 705 lex(); 706 break; 707 case MIToken::kw_bbsections: 708 if (parseSectionID(SectionID)) 709 return true; 710 break; 711 default: 712 break; 713 } 714 } while (consumeIfPresent(MIToken::comma)); 715 if (expectAndConsume(MIToken::rparen)) 716 return true; 717 } 718 if (expectAndConsume(MIToken::colon)) 719 return true; 720 721 if (!Name.empty()) { 722 BB = dyn_cast_or_null<BasicBlock>( 723 MF.getFunction().getValueSymbolTable()->lookup(Name)); 724 if (!BB) 725 return error(Loc, Twine("basic block '") + Name + 726 "' is not defined in the function '" + 727 MF.getName() + "'"); 728 } 729 auto *MBB = MF.CreateMachineBasicBlock(BB); 730 MF.insert(MF.end(), MBB); 731 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 732 if (!WasInserted) 733 return error(Loc, Twine("redefinition of machine basic block with id #") + 734 Twine(ID)); 735 if (Alignment) 736 MBB->setAlignment(Align(Alignment)); 737 if (HasAddressTaken) 738 MBB->setHasAddressTaken(); 739 MBB->setIsEHPad(IsLandingPad); 740 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 741 if (SectionID.hasValue()) { 742 MBB->setSectionID(SectionID.getValue()); 743 MF.setBBSectionsType(BasicBlockSection::List); 744 } 745 return false; 746 } 747 748 bool MIParser::parseBasicBlockDefinitions( 749 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 750 lex(); 751 // Skip until the first machine basic block. 752 while (Token.is(MIToken::Newline)) 753 lex(); 754 if (Token.isErrorOrEOF()) 755 return Token.isError(); 756 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 757 return error("expected a basic block definition before instructions"); 758 unsigned BraceDepth = 0; 759 do { 760 if (parseBasicBlockDefinition(MBBSlots)) 761 return true; 762 bool IsAfterNewline = false; 763 // Skip until the next machine basic block. 764 while (true) { 765 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 766 Token.isErrorOrEOF()) 767 break; 768 else if (Token.is(MIToken::MachineBasicBlockLabel)) 769 return error("basic block definition should be located at the start of " 770 "the line"); 771 else if (consumeIfPresent(MIToken::Newline)) { 772 IsAfterNewline = true; 773 continue; 774 } 775 IsAfterNewline = false; 776 if (Token.is(MIToken::lbrace)) 777 ++BraceDepth; 778 if (Token.is(MIToken::rbrace)) { 779 if (!BraceDepth) 780 return error("extraneous closing brace ('}')"); 781 --BraceDepth; 782 } 783 lex(); 784 } 785 // Verify that we closed all of the '{' at the end of a file or a block. 786 if (!Token.isError() && BraceDepth) 787 return error("expected '}'"); // FIXME: Report a note that shows '{'. 788 } while (!Token.isErrorOrEOF()); 789 return Token.isError(); 790 } 791 792 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 793 assert(Token.is(MIToken::kw_liveins)); 794 lex(); 795 if (expectAndConsume(MIToken::colon)) 796 return true; 797 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 798 return false; 799 do { 800 if (Token.isNot(MIToken::NamedRegister)) 801 return error("expected a named register"); 802 Register Reg; 803 if (parseNamedRegister(Reg)) 804 return true; 805 lex(); 806 LaneBitmask Mask = LaneBitmask::getAll(); 807 if (consumeIfPresent(MIToken::colon)) { 808 // Parse lane mask. 809 if (Token.isNot(MIToken::IntegerLiteral) && 810 Token.isNot(MIToken::HexLiteral)) 811 return error("expected a lane mask"); 812 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 813 "Use correct get-function for lane mask"); 814 LaneBitmask::Type V; 815 if (getUint64(V)) 816 return error("invalid lane mask value"); 817 Mask = LaneBitmask(V); 818 lex(); 819 } 820 MBB.addLiveIn(Reg, Mask); 821 } while (consumeIfPresent(MIToken::comma)); 822 return false; 823 } 824 825 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 826 assert(Token.is(MIToken::kw_successors)); 827 lex(); 828 if (expectAndConsume(MIToken::colon)) 829 return true; 830 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 831 return false; 832 do { 833 if (Token.isNot(MIToken::MachineBasicBlock)) 834 return error("expected a machine basic block reference"); 835 MachineBasicBlock *SuccMBB = nullptr; 836 if (parseMBBReference(SuccMBB)) 837 return true; 838 lex(); 839 unsigned Weight = 0; 840 if (consumeIfPresent(MIToken::lparen)) { 841 if (Token.isNot(MIToken::IntegerLiteral) && 842 Token.isNot(MIToken::HexLiteral)) 843 return error("expected an integer literal after '('"); 844 if (getUnsigned(Weight)) 845 return true; 846 lex(); 847 if (expectAndConsume(MIToken::rparen)) 848 return true; 849 } 850 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 851 } while (consumeIfPresent(MIToken::comma)); 852 MBB.normalizeSuccProbs(); 853 return false; 854 } 855 856 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 857 MachineBasicBlock *&AddFalthroughFrom) { 858 // Skip the definition. 859 assert(Token.is(MIToken::MachineBasicBlockLabel)); 860 lex(); 861 if (consumeIfPresent(MIToken::lparen)) { 862 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 863 lex(); 864 consumeIfPresent(MIToken::rparen); 865 } 866 consumeIfPresent(MIToken::colon); 867 868 // Parse the liveins and successors. 869 // N.B: Multiple lists of successors and liveins are allowed and they're 870 // merged into one. 871 // Example: 872 // liveins: %edi 873 // liveins: %esi 874 // 875 // is equivalent to 876 // liveins: %edi, %esi 877 bool ExplicitSuccessors = false; 878 while (true) { 879 if (Token.is(MIToken::kw_successors)) { 880 if (parseBasicBlockSuccessors(MBB)) 881 return true; 882 ExplicitSuccessors = true; 883 } else if (Token.is(MIToken::kw_liveins)) { 884 if (parseBasicBlockLiveins(MBB)) 885 return true; 886 } else if (consumeIfPresent(MIToken::Newline)) { 887 continue; 888 } else 889 break; 890 if (!Token.isNewlineOrEOF()) 891 return error("expected line break at the end of a list"); 892 lex(); 893 } 894 895 // Parse the instructions. 896 bool IsInBundle = false; 897 MachineInstr *PrevMI = nullptr; 898 while (!Token.is(MIToken::MachineBasicBlockLabel) && 899 !Token.is(MIToken::Eof)) { 900 if (consumeIfPresent(MIToken::Newline)) 901 continue; 902 if (consumeIfPresent(MIToken::rbrace)) { 903 // The first parsing pass should verify that all closing '}' have an 904 // opening '{'. 905 assert(IsInBundle); 906 IsInBundle = false; 907 continue; 908 } 909 MachineInstr *MI = nullptr; 910 if (parse(MI)) 911 return true; 912 MBB.insert(MBB.end(), MI); 913 if (IsInBundle) { 914 PrevMI->setFlag(MachineInstr::BundledSucc); 915 MI->setFlag(MachineInstr::BundledPred); 916 } 917 PrevMI = MI; 918 if (Token.is(MIToken::lbrace)) { 919 if (IsInBundle) 920 return error("nested instruction bundles are not allowed"); 921 lex(); 922 // This instruction is the start of the bundle. 923 MI->setFlag(MachineInstr::BundledSucc); 924 IsInBundle = true; 925 if (!Token.is(MIToken::Newline)) 926 // The next instruction can be on the same line. 927 continue; 928 } 929 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 930 lex(); 931 } 932 933 // Construct successor list by searching for basic block machine operands. 934 if (!ExplicitSuccessors) { 935 SmallVector<MachineBasicBlock*,4> Successors; 936 bool IsFallthrough; 937 guessSuccessors(MBB, Successors, IsFallthrough); 938 for (MachineBasicBlock *Succ : Successors) 939 MBB.addSuccessor(Succ); 940 941 if (IsFallthrough) { 942 AddFalthroughFrom = &MBB; 943 } else { 944 MBB.normalizeSuccProbs(); 945 } 946 } 947 948 return false; 949 } 950 951 bool MIParser::parseBasicBlocks() { 952 lex(); 953 // Skip until the first machine basic block. 954 while (Token.is(MIToken::Newline)) 955 lex(); 956 if (Token.isErrorOrEOF()) 957 return Token.isError(); 958 // The first parsing pass should have verified that this token is a MBB label 959 // in the 'parseBasicBlockDefinitions' method. 960 assert(Token.is(MIToken::MachineBasicBlockLabel)); 961 MachineBasicBlock *AddFalthroughFrom = nullptr; 962 do { 963 MachineBasicBlock *MBB = nullptr; 964 if (parseMBBReference(MBB)) 965 return true; 966 if (AddFalthroughFrom) { 967 if (!AddFalthroughFrom->isSuccessor(MBB)) 968 AddFalthroughFrom->addSuccessor(MBB); 969 AddFalthroughFrom->normalizeSuccProbs(); 970 AddFalthroughFrom = nullptr; 971 } 972 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 973 return true; 974 // The method 'parseBasicBlock' should parse the whole block until the next 975 // block or the end of file. 976 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 977 } while (Token.isNot(MIToken::Eof)); 978 return false; 979 } 980 981 bool MIParser::parse(MachineInstr *&MI) { 982 // Parse any register operands before '=' 983 MachineOperand MO = MachineOperand::CreateImm(0); 984 SmallVector<ParsedMachineOperand, 8> Operands; 985 while (Token.isRegister() || Token.isRegisterFlag()) { 986 auto Loc = Token.location(); 987 Optional<unsigned> TiedDefIdx; 988 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 989 return true; 990 Operands.push_back( 991 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 992 if (Token.isNot(MIToken::comma)) 993 break; 994 lex(); 995 } 996 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 997 return true; 998 999 unsigned OpCode, Flags = 0; 1000 if (Token.isError() || parseInstruction(OpCode, Flags)) 1001 return true; 1002 1003 // Parse the remaining machine operands. 1004 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 1005 Token.isNot(MIToken::kw_post_instr_symbol) && 1006 Token.isNot(MIToken::kw_heap_alloc_marker) && 1007 Token.isNot(MIToken::kw_debug_location) && 1008 Token.isNot(MIToken::kw_debug_instr_number) && 1009 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 1010 auto Loc = Token.location(); 1011 Optional<unsigned> TiedDefIdx; 1012 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 1013 return true; 1014 Operands.push_back( 1015 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 1016 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 1017 Token.is(MIToken::lbrace)) 1018 break; 1019 if (Token.isNot(MIToken::comma)) 1020 return error("expected ',' before the next machine operand"); 1021 lex(); 1022 } 1023 1024 MCSymbol *PreInstrSymbol = nullptr; 1025 if (Token.is(MIToken::kw_pre_instr_symbol)) 1026 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1027 return true; 1028 MCSymbol *PostInstrSymbol = nullptr; 1029 if (Token.is(MIToken::kw_post_instr_symbol)) 1030 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1031 return true; 1032 MDNode *HeapAllocMarker = nullptr; 1033 if (Token.is(MIToken::kw_heap_alloc_marker)) 1034 if (parseHeapAllocMarker(HeapAllocMarker)) 1035 return true; 1036 1037 unsigned InstrNum = 0; 1038 if (Token.is(MIToken::kw_debug_instr_number)) { 1039 lex(); 1040 if (Token.isNot(MIToken::IntegerLiteral)) 1041 return error("expected an integer literal after 'debug-instr-number'"); 1042 if (getUnsigned(InstrNum)) 1043 return true; 1044 lex(); 1045 // Lex past trailing comma if present. 1046 if (Token.is(MIToken::comma)) 1047 lex(); 1048 } 1049 1050 DebugLoc DebugLocation; 1051 if (Token.is(MIToken::kw_debug_location)) { 1052 lex(); 1053 MDNode *Node = nullptr; 1054 if (Token.is(MIToken::exclaim)) { 1055 if (parseMDNode(Node)) 1056 return true; 1057 } else if (Token.is(MIToken::md_dilocation)) { 1058 if (parseDILocation(Node)) 1059 return true; 1060 } else 1061 return error("expected a metadata node after 'debug-location'"); 1062 if (!isa<DILocation>(Node)) 1063 return error("referenced metadata is not a DILocation"); 1064 DebugLocation = DebugLoc(Node); 1065 } 1066 1067 // Parse the machine memory operands. 1068 SmallVector<MachineMemOperand *, 2> MemOperands; 1069 if (Token.is(MIToken::coloncolon)) { 1070 lex(); 1071 while (!Token.isNewlineOrEOF()) { 1072 MachineMemOperand *MemOp = nullptr; 1073 if (parseMachineMemoryOperand(MemOp)) 1074 return true; 1075 MemOperands.push_back(MemOp); 1076 if (Token.isNewlineOrEOF()) 1077 break; 1078 if (Token.isNot(MIToken::comma)) 1079 return error("expected ',' before the next machine memory operand"); 1080 lex(); 1081 } 1082 } 1083 1084 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1085 if (!MCID.isVariadic()) { 1086 // FIXME: Move the implicit operand verification to the machine verifier. 1087 if (verifyImplicitOperands(Operands, MCID)) 1088 return true; 1089 } 1090 1091 // TODO: Check for extraneous machine operands. 1092 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1093 MI->setFlags(Flags); 1094 for (const auto &Operand : Operands) 1095 MI->addOperand(MF, Operand.Operand); 1096 if (assignRegisterTies(*MI, Operands)) 1097 return true; 1098 if (PreInstrSymbol) 1099 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1100 if (PostInstrSymbol) 1101 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1102 if (HeapAllocMarker) 1103 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1104 if (!MemOperands.empty()) 1105 MI->setMemRefs(MF, MemOperands); 1106 if (InstrNum) 1107 MI->setDebugInstrNum(InstrNum); 1108 return false; 1109 } 1110 1111 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1112 lex(); 1113 if (Token.isNot(MIToken::MachineBasicBlock)) 1114 return error("expected a machine basic block reference"); 1115 if (parseMBBReference(MBB)) 1116 return true; 1117 lex(); 1118 if (Token.isNot(MIToken::Eof)) 1119 return error( 1120 "expected end of string after the machine basic block reference"); 1121 return false; 1122 } 1123 1124 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1125 lex(); 1126 if (Token.isNot(MIToken::NamedRegister)) 1127 return error("expected a named register"); 1128 if (parseNamedRegister(Reg)) 1129 return true; 1130 lex(); 1131 if (Token.isNot(MIToken::Eof)) 1132 return error("expected end of string after the register reference"); 1133 return false; 1134 } 1135 1136 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1137 lex(); 1138 if (Token.isNot(MIToken::VirtualRegister)) 1139 return error("expected a virtual register"); 1140 if (parseVirtualRegister(Info)) 1141 return true; 1142 lex(); 1143 if (Token.isNot(MIToken::Eof)) 1144 return error("expected end of string after the register reference"); 1145 return false; 1146 } 1147 1148 bool MIParser::parseStandaloneRegister(Register &Reg) { 1149 lex(); 1150 if (Token.isNot(MIToken::NamedRegister) && 1151 Token.isNot(MIToken::VirtualRegister)) 1152 return error("expected either a named or virtual register"); 1153 1154 VRegInfo *Info; 1155 if (parseRegister(Reg, Info)) 1156 return true; 1157 1158 lex(); 1159 if (Token.isNot(MIToken::Eof)) 1160 return error("expected end of string after the register reference"); 1161 return false; 1162 } 1163 1164 bool MIParser::parseStandaloneStackObject(int &FI) { 1165 lex(); 1166 if (Token.isNot(MIToken::StackObject)) 1167 return error("expected a stack object"); 1168 if (parseStackFrameIndex(FI)) 1169 return true; 1170 if (Token.isNot(MIToken::Eof)) 1171 return error("expected end of string after the stack object reference"); 1172 return false; 1173 } 1174 1175 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1176 lex(); 1177 if (Token.is(MIToken::exclaim)) { 1178 if (parseMDNode(Node)) 1179 return true; 1180 } else if (Token.is(MIToken::md_diexpr)) { 1181 if (parseDIExpression(Node)) 1182 return true; 1183 } else if (Token.is(MIToken::md_dilocation)) { 1184 if (parseDILocation(Node)) 1185 return true; 1186 } else 1187 return error("expected a metadata node"); 1188 if (Token.isNot(MIToken::Eof)) 1189 return error("expected end of string after the metadata node"); 1190 return false; 1191 } 1192 1193 bool MIParser::parseMachineMetadata() { 1194 lex(); 1195 if (Token.isNot(MIToken::exclaim)) 1196 return error("expected a metadata node"); 1197 1198 lex(); 1199 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1200 return error("expected metadata id after '!'"); 1201 unsigned ID = 0; 1202 if (getUnsigned(ID)) 1203 return true; 1204 lex(); 1205 if (expectAndConsume(MIToken::equal)) 1206 return true; 1207 bool IsDistinct = Token.is(MIToken::kw_distinct); 1208 if (IsDistinct) 1209 lex(); 1210 if (Token.isNot(MIToken::exclaim)) 1211 return error("expected a metadata node"); 1212 lex(); 1213 1214 MDNode *MD; 1215 if (parseMDTuple(MD, IsDistinct)) 1216 return true; 1217 1218 auto FI = PFS.MachineForwardRefMDNodes.find(ID); 1219 if (FI != PFS.MachineForwardRefMDNodes.end()) { 1220 FI->second.first->replaceAllUsesWith(MD); 1221 PFS.MachineForwardRefMDNodes.erase(FI); 1222 1223 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work"); 1224 } else { 1225 if (PFS.MachineMetadataNodes.count(ID)) 1226 return error("Metadata id is already used"); 1227 PFS.MachineMetadataNodes[ID].reset(MD); 1228 } 1229 1230 return false; 1231 } 1232 1233 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 1234 SmallVector<Metadata *, 16> Elts; 1235 if (parseMDNodeVector(Elts)) 1236 return true; 1237 MD = (IsDistinct ? MDTuple::getDistinct 1238 : MDTuple::get)(MF.getFunction().getContext(), Elts); 1239 return false; 1240 } 1241 1242 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 1243 if (Token.isNot(MIToken::lbrace)) 1244 return error("expected '{' here"); 1245 lex(); 1246 1247 if (Token.is(MIToken::rbrace)) { 1248 lex(); 1249 return false; 1250 } 1251 1252 do { 1253 Metadata *MD; 1254 if (parseMetadata(MD)) 1255 return true; 1256 1257 Elts.push_back(MD); 1258 1259 if (Token.isNot(MIToken::comma)) 1260 break; 1261 lex(); 1262 } while (true); 1263 1264 if (Token.isNot(MIToken::rbrace)) 1265 return error("expected end of metadata node"); 1266 lex(); 1267 1268 return false; 1269 } 1270 1271 // ::= !42 1272 // ::= !"string" 1273 bool MIParser::parseMetadata(Metadata *&MD) { 1274 if (Token.isNot(MIToken::exclaim)) 1275 return error("expected '!' here"); 1276 lex(); 1277 1278 if (Token.is(MIToken::StringConstant)) { 1279 std::string Str; 1280 if (parseStringConstant(Str)) 1281 return true; 1282 MD = MDString::get(MF.getFunction().getContext(), Str); 1283 return false; 1284 } 1285 1286 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1287 return error("expected metadata id after '!'"); 1288 1289 SMLoc Loc = mapSMLoc(Token.location()); 1290 1291 unsigned ID = 0; 1292 if (getUnsigned(ID)) 1293 return true; 1294 lex(); 1295 1296 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1297 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) { 1298 MD = NodeInfo->second.get(); 1299 return false; 1300 } 1301 // Check machine metadata. 1302 NodeInfo = PFS.MachineMetadataNodes.find(ID); 1303 if (NodeInfo != PFS.MachineMetadataNodes.end()) { 1304 MD = NodeInfo->second.get(); 1305 return false; 1306 } 1307 // Forward reference. 1308 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID]; 1309 FwdRef = std::make_pair( 1310 MDTuple::getTemporary(MF.getFunction().getContext(), None), Loc); 1311 PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get()); 1312 MD = FwdRef.first.get(); 1313 1314 return false; 1315 } 1316 1317 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1318 assert(MO.isImplicit()); 1319 return MO.isDef() ? "implicit-def" : "implicit"; 1320 } 1321 1322 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1323 Register Reg) { 1324 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1325 return StringRef(TRI->getName(Reg)).lower(); 1326 } 1327 1328 /// Return true if the parsed machine operands contain a given machine operand. 1329 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1330 ArrayRef<ParsedMachineOperand> Operands) { 1331 for (const auto &I : Operands) { 1332 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1333 return true; 1334 } 1335 return false; 1336 } 1337 1338 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1339 const MCInstrDesc &MCID) { 1340 if (MCID.isCall()) 1341 // We can't verify call instructions as they can contain arbitrary implicit 1342 // register and register mask operands. 1343 return false; 1344 1345 // Gather all the expected implicit operands. 1346 SmallVector<MachineOperand, 4> ImplicitOperands; 1347 if (MCID.ImplicitDefs) 1348 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1349 ImplicitOperands.push_back( 1350 MachineOperand::CreateReg(*ImpDefs, true, true)); 1351 if (MCID.ImplicitUses) 1352 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1353 ImplicitOperands.push_back( 1354 MachineOperand::CreateReg(*ImpUses, false, true)); 1355 1356 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1357 assert(TRI && "Expected target register info"); 1358 for (const auto &I : ImplicitOperands) { 1359 if (isImplicitOperandIn(I, Operands)) 1360 continue; 1361 return error(Operands.empty() ? Token.location() : Operands.back().End, 1362 Twine("missing implicit register operand '") + 1363 printImplicitRegisterFlag(I) + " $" + 1364 getRegisterName(TRI, I.getReg()) + "'"); 1365 } 1366 return false; 1367 } 1368 1369 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1370 // Allow frame and fast math flags for OPCODE 1371 while (Token.is(MIToken::kw_frame_setup) || 1372 Token.is(MIToken::kw_frame_destroy) || 1373 Token.is(MIToken::kw_nnan) || 1374 Token.is(MIToken::kw_ninf) || 1375 Token.is(MIToken::kw_nsz) || 1376 Token.is(MIToken::kw_arcp) || 1377 Token.is(MIToken::kw_contract) || 1378 Token.is(MIToken::kw_afn) || 1379 Token.is(MIToken::kw_reassoc) || 1380 Token.is(MIToken::kw_nuw) || 1381 Token.is(MIToken::kw_nsw) || 1382 Token.is(MIToken::kw_exact) || 1383 Token.is(MIToken::kw_nofpexcept)) { 1384 // Mine frame and fast math flags 1385 if (Token.is(MIToken::kw_frame_setup)) 1386 Flags |= MachineInstr::FrameSetup; 1387 if (Token.is(MIToken::kw_frame_destroy)) 1388 Flags |= MachineInstr::FrameDestroy; 1389 if (Token.is(MIToken::kw_nnan)) 1390 Flags |= MachineInstr::FmNoNans; 1391 if (Token.is(MIToken::kw_ninf)) 1392 Flags |= MachineInstr::FmNoInfs; 1393 if (Token.is(MIToken::kw_nsz)) 1394 Flags |= MachineInstr::FmNsz; 1395 if (Token.is(MIToken::kw_arcp)) 1396 Flags |= MachineInstr::FmArcp; 1397 if (Token.is(MIToken::kw_contract)) 1398 Flags |= MachineInstr::FmContract; 1399 if (Token.is(MIToken::kw_afn)) 1400 Flags |= MachineInstr::FmAfn; 1401 if (Token.is(MIToken::kw_reassoc)) 1402 Flags |= MachineInstr::FmReassoc; 1403 if (Token.is(MIToken::kw_nuw)) 1404 Flags |= MachineInstr::NoUWrap; 1405 if (Token.is(MIToken::kw_nsw)) 1406 Flags |= MachineInstr::NoSWrap; 1407 if (Token.is(MIToken::kw_exact)) 1408 Flags |= MachineInstr::IsExact; 1409 if (Token.is(MIToken::kw_nofpexcept)) 1410 Flags |= MachineInstr::NoFPExcept; 1411 1412 lex(); 1413 } 1414 if (Token.isNot(MIToken::Identifier)) 1415 return error("expected a machine instruction"); 1416 StringRef InstrName = Token.stringValue(); 1417 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1418 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1419 lex(); 1420 return false; 1421 } 1422 1423 bool MIParser::parseNamedRegister(Register &Reg) { 1424 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1425 StringRef Name = Token.stringValue(); 1426 if (PFS.Target.getRegisterByName(Name, Reg)) 1427 return error(Twine("unknown register name '") + Name + "'"); 1428 return false; 1429 } 1430 1431 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1432 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1433 StringRef Name = Token.stringValue(); 1434 // TODO: Check that the VReg name is not the same as a physical register name. 1435 // If it is, then print a warning (when warnings are implemented). 1436 Info = &PFS.getVRegInfoNamed(Name); 1437 return false; 1438 } 1439 1440 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1441 if (Token.is(MIToken::NamedVirtualRegister)) 1442 return parseNamedVirtualRegister(Info); 1443 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1444 unsigned ID; 1445 if (getUnsigned(ID)) 1446 return true; 1447 Info = &PFS.getVRegInfo(ID); 1448 return false; 1449 } 1450 1451 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1452 switch (Token.kind()) { 1453 case MIToken::underscore: 1454 Reg = 0; 1455 return false; 1456 case MIToken::NamedRegister: 1457 return parseNamedRegister(Reg); 1458 case MIToken::NamedVirtualRegister: 1459 case MIToken::VirtualRegister: 1460 if (parseVirtualRegister(Info)) 1461 return true; 1462 Reg = Info->VReg; 1463 return false; 1464 // TODO: Parse other register kinds. 1465 default: 1466 llvm_unreachable("The current token should be a register"); 1467 } 1468 } 1469 1470 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1471 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1472 return error("expected '_', register class, or register bank name"); 1473 StringRef::iterator Loc = Token.location(); 1474 StringRef Name = Token.stringValue(); 1475 1476 // Was it a register class? 1477 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1478 if (RC) { 1479 lex(); 1480 1481 switch (RegInfo.Kind) { 1482 case VRegInfo::UNKNOWN: 1483 case VRegInfo::NORMAL: 1484 RegInfo.Kind = VRegInfo::NORMAL; 1485 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1486 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1487 return error(Loc, Twine("conflicting register classes, previously: ") + 1488 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1489 } 1490 RegInfo.D.RC = RC; 1491 RegInfo.Explicit = true; 1492 return false; 1493 1494 case VRegInfo::GENERIC: 1495 case VRegInfo::REGBANK: 1496 return error(Loc, "register class specification on generic register"); 1497 } 1498 llvm_unreachable("Unexpected register kind"); 1499 } 1500 1501 // Should be a register bank or a generic register. 1502 const RegisterBank *RegBank = nullptr; 1503 if (Name != "_") { 1504 RegBank = PFS.Target.getRegBank(Name); 1505 if (!RegBank) 1506 return error(Loc, "expected '_', register class, or register bank name"); 1507 } 1508 1509 lex(); 1510 1511 switch (RegInfo.Kind) { 1512 case VRegInfo::UNKNOWN: 1513 case VRegInfo::GENERIC: 1514 case VRegInfo::REGBANK: 1515 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1516 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1517 return error(Loc, "conflicting generic register banks"); 1518 RegInfo.D.RegBank = RegBank; 1519 RegInfo.Explicit = true; 1520 return false; 1521 1522 case VRegInfo::NORMAL: 1523 return error(Loc, "register bank specification on normal register"); 1524 } 1525 llvm_unreachable("Unexpected register kind"); 1526 } 1527 1528 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1529 const unsigned OldFlags = Flags; 1530 switch (Token.kind()) { 1531 case MIToken::kw_implicit: 1532 Flags |= RegState::Implicit; 1533 break; 1534 case MIToken::kw_implicit_define: 1535 Flags |= RegState::ImplicitDefine; 1536 break; 1537 case MIToken::kw_def: 1538 Flags |= RegState::Define; 1539 break; 1540 case MIToken::kw_dead: 1541 Flags |= RegState::Dead; 1542 break; 1543 case MIToken::kw_killed: 1544 Flags |= RegState::Kill; 1545 break; 1546 case MIToken::kw_undef: 1547 Flags |= RegState::Undef; 1548 break; 1549 case MIToken::kw_internal: 1550 Flags |= RegState::InternalRead; 1551 break; 1552 case MIToken::kw_early_clobber: 1553 Flags |= RegState::EarlyClobber; 1554 break; 1555 case MIToken::kw_debug_use: 1556 Flags |= RegState::Debug; 1557 break; 1558 case MIToken::kw_renamable: 1559 Flags |= RegState::Renamable; 1560 break; 1561 default: 1562 llvm_unreachable("The current token should be a register flag"); 1563 } 1564 if (OldFlags == Flags) 1565 // We know that the same flag is specified more than once when the flags 1566 // weren't modified. 1567 return error("duplicate '" + Token.stringValue() + "' register flag"); 1568 lex(); 1569 return false; 1570 } 1571 1572 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1573 assert(Token.is(MIToken::dot)); 1574 lex(); 1575 if (Token.isNot(MIToken::Identifier)) 1576 return error("expected a subregister index after '.'"); 1577 auto Name = Token.stringValue(); 1578 SubReg = PFS.Target.getSubRegIndex(Name); 1579 if (!SubReg) 1580 return error(Twine("use of unknown subregister index '") + Name + "'"); 1581 lex(); 1582 return false; 1583 } 1584 1585 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1586 if (!consumeIfPresent(MIToken::kw_tied_def)) 1587 return true; 1588 if (Token.isNot(MIToken::IntegerLiteral)) 1589 return error("expected an integer literal after 'tied-def'"); 1590 if (getUnsigned(TiedDefIdx)) 1591 return true; 1592 lex(); 1593 if (expectAndConsume(MIToken::rparen)) 1594 return true; 1595 return false; 1596 } 1597 1598 bool MIParser::assignRegisterTies(MachineInstr &MI, 1599 ArrayRef<ParsedMachineOperand> Operands) { 1600 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1601 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1602 if (!Operands[I].TiedDefIdx) 1603 continue; 1604 // The parser ensures that this operand is a register use, so we just have 1605 // to check the tied-def operand. 1606 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1607 if (DefIdx >= E) 1608 return error(Operands[I].Begin, 1609 Twine("use of invalid tied-def operand index '" + 1610 Twine(DefIdx) + "'; instruction has only ") + 1611 Twine(E) + " operands"); 1612 const auto &DefOperand = Operands[DefIdx].Operand; 1613 if (!DefOperand.isReg() || !DefOperand.isDef()) 1614 // FIXME: add note with the def operand. 1615 return error(Operands[I].Begin, 1616 Twine("use of invalid tied-def operand index '") + 1617 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1618 " isn't a defined register"); 1619 // Check that the tied-def operand wasn't tied elsewhere. 1620 for (const auto &TiedPair : TiedRegisterPairs) { 1621 if (TiedPair.first == DefIdx) 1622 return error(Operands[I].Begin, 1623 Twine("the tied-def operand #") + Twine(DefIdx) + 1624 " is already tied with another register operand"); 1625 } 1626 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1627 } 1628 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1629 // indices must be less than tied max. 1630 for (const auto &TiedPair : TiedRegisterPairs) 1631 MI.tieOperands(TiedPair.first, TiedPair.second); 1632 return false; 1633 } 1634 1635 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1636 Optional<unsigned> &TiedDefIdx, 1637 bool IsDef) { 1638 unsigned Flags = IsDef ? RegState::Define : 0; 1639 while (Token.isRegisterFlag()) { 1640 if (parseRegisterFlag(Flags)) 1641 return true; 1642 } 1643 if (!Token.isRegister()) 1644 return error("expected a register after register flags"); 1645 Register Reg; 1646 VRegInfo *RegInfo; 1647 if (parseRegister(Reg, RegInfo)) 1648 return true; 1649 lex(); 1650 unsigned SubReg = 0; 1651 if (Token.is(MIToken::dot)) { 1652 if (parseSubRegisterIndex(SubReg)) 1653 return true; 1654 if (!Register::isVirtualRegister(Reg)) 1655 return error("subregister index expects a virtual register"); 1656 } 1657 if (Token.is(MIToken::colon)) { 1658 if (!Register::isVirtualRegister(Reg)) 1659 return error("register class specification expects a virtual register"); 1660 lex(); 1661 if (parseRegisterClassOrBank(*RegInfo)) 1662 return true; 1663 } 1664 MachineRegisterInfo &MRI = MF.getRegInfo(); 1665 if ((Flags & RegState::Define) == 0) { 1666 if (consumeIfPresent(MIToken::lparen)) { 1667 unsigned Idx; 1668 if (!parseRegisterTiedDefIndex(Idx)) 1669 TiedDefIdx = Idx; 1670 else { 1671 // Try a redundant low-level type. 1672 LLT Ty; 1673 if (parseLowLevelType(Token.location(), Ty)) 1674 return error("expected tied-def or low-level type after '('"); 1675 1676 if (expectAndConsume(MIToken::rparen)) 1677 return true; 1678 1679 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1680 return error("inconsistent type for generic virtual register"); 1681 1682 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1683 MRI.setType(Reg, Ty); 1684 } 1685 } 1686 } else if (consumeIfPresent(MIToken::lparen)) { 1687 // Virtual registers may have a tpe with GlobalISel. 1688 if (!Register::isVirtualRegister(Reg)) 1689 return error("unexpected type on physical register"); 1690 1691 LLT Ty; 1692 if (parseLowLevelType(Token.location(), Ty)) 1693 return true; 1694 1695 if (expectAndConsume(MIToken::rparen)) 1696 return true; 1697 1698 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1699 return error("inconsistent type for generic virtual register"); 1700 1701 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1702 MRI.setType(Reg, Ty); 1703 } else if (Register::isVirtualRegister(Reg)) { 1704 // Generic virtual registers must have a type. 1705 // If we end up here this means the type hasn't been specified and 1706 // this is bad! 1707 if (RegInfo->Kind == VRegInfo::GENERIC || 1708 RegInfo->Kind == VRegInfo::REGBANK) 1709 return error("generic virtual registers must have a type"); 1710 } 1711 Dest = MachineOperand::CreateReg( 1712 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1713 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1714 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1715 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1716 1717 return false; 1718 } 1719 1720 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1721 assert(Token.is(MIToken::IntegerLiteral)); 1722 const APSInt &Int = Token.integerValue(); 1723 if (Int.getMinSignedBits() > 64) 1724 return error("integer literal is too large to be an immediate operand"); 1725 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1726 lex(); 1727 return false; 1728 } 1729 1730 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1731 const unsigned OpIdx, 1732 MachineOperand &Dest, 1733 const MIRFormatter &MF) { 1734 assert(Token.is(MIToken::dot)); 1735 auto Loc = Token.location(); // record start position 1736 size_t Len = 1; // for "." 1737 lex(); 1738 1739 // Handle the case that mnemonic starts with number. 1740 if (Token.is(MIToken::IntegerLiteral)) { 1741 Len += Token.range().size(); 1742 lex(); 1743 } 1744 1745 StringRef Src; 1746 if (Token.is(MIToken::comma)) 1747 Src = StringRef(Loc, Len); 1748 else { 1749 assert(Token.is(MIToken::Identifier)); 1750 Src = StringRef(Loc, Len + Token.stringValue().size()); 1751 } 1752 int64_t Val; 1753 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1754 [this](StringRef::iterator Loc, const Twine &Msg) 1755 -> bool { return error(Loc, Msg); })) 1756 return true; 1757 1758 Dest = MachineOperand::CreateImm(Val); 1759 if (!Token.is(MIToken::comma)) 1760 lex(); 1761 return false; 1762 } 1763 1764 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1765 PerFunctionMIParsingState &PFS, const Constant *&C, 1766 ErrorCallbackType ErrCB) { 1767 auto Source = StringValue.str(); // The source has to be null terminated. 1768 SMDiagnostic Err; 1769 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1770 &PFS.IRSlots); 1771 if (!C) 1772 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1773 return false; 1774 } 1775 1776 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1777 const Constant *&C) { 1778 return ::parseIRConstant( 1779 Loc, StringValue, PFS, C, 1780 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1781 return error(Loc, Msg); 1782 }); 1783 } 1784 1785 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1786 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1787 return true; 1788 lex(); 1789 return false; 1790 } 1791 1792 // See LLT implemntation for bit size limits. 1793 static bool verifyScalarSize(uint64_t Size) { 1794 return Size != 0 && isUInt<16>(Size); 1795 } 1796 1797 static bool verifyVectorElementCount(uint64_t NumElts) { 1798 return NumElts != 0 && isUInt<16>(NumElts); 1799 } 1800 1801 static bool verifyAddrSpace(uint64_t AddrSpace) { 1802 return isUInt<24>(AddrSpace); 1803 } 1804 1805 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1806 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1807 StringRef SizeStr = Token.range().drop_front(); 1808 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1809 return error("expected integers after 's'/'p' type character"); 1810 } 1811 1812 if (Token.range().front() == 's') { 1813 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1814 if (!verifyScalarSize(ScalarSize)) 1815 return error("invalid size for scalar type"); 1816 1817 Ty = LLT::scalar(ScalarSize); 1818 lex(); 1819 return false; 1820 } else if (Token.range().front() == 'p') { 1821 const DataLayout &DL = MF.getDataLayout(); 1822 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1823 if (!verifyAddrSpace(AS)) 1824 return error("invalid address space number"); 1825 1826 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1827 lex(); 1828 return false; 1829 } 1830 1831 // Now we're looking for a vector. 1832 if (Token.isNot(MIToken::less)) 1833 return error(Loc, 1834 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1835 lex(); 1836 1837 if (Token.isNot(MIToken::IntegerLiteral)) 1838 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1839 uint64_t NumElements = Token.integerValue().getZExtValue(); 1840 if (!verifyVectorElementCount(NumElements)) 1841 return error("invalid number of vector elements"); 1842 1843 lex(); 1844 1845 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1846 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1847 lex(); 1848 1849 if (Token.range().front() != 's' && Token.range().front() != 'p') 1850 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1851 StringRef SizeStr = Token.range().drop_front(); 1852 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1853 return error("expected integers after 's'/'p' type character"); 1854 1855 if (Token.range().front() == 's') { 1856 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1857 if (!verifyScalarSize(ScalarSize)) 1858 return error("invalid size for scalar type"); 1859 Ty = LLT::scalar(ScalarSize); 1860 } else if (Token.range().front() == 'p') { 1861 const DataLayout &DL = MF.getDataLayout(); 1862 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1863 if (!verifyAddrSpace(AS)) 1864 return error("invalid address space number"); 1865 1866 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1867 } else 1868 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1869 lex(); 1870 1871 if (Token.isNot(MIToken::greater)) 1872 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1873 lex(); 1874 1875 Ty = LLT::fixed_vector(NumElements, Ty); 1876 return false; 1877 } 1878 1879 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1880 assert(Token.is(MIToken::Identifier)); 1881 StringRef TypeStr = Token.range(); 1882 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1883 TypeStr.front() != 'p') 1884 return error( 1885 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1886 StringRef SizeStr = Token.range().drop_front(); 1887 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1888 return error("expected integers after 'i'/'s'/'p' type character"); 1889 1890 auto Loc = Token.location(); 1891 lex(); 1892 if (Token.isNot(MIToken::IntegerLiteral)) { 1893 if (Token.isNot(MIToken::Identifier) || 1894 !(Token.range() == "true" || Token.range() == "false")) 1895 return error("expected an integer literal"); 1896 } 1897 const Constant *C = nullptr; 1898 if (parseIRConstant(Loc, C)) 1899 return true; 1900 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1901 return false; 1902 } 1903 1904 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1905 auto Loc = Token.location(); 1906 lex(); 1907 if (Token.isNot(MIToken::FloatingPointLiteral) && 1908 Token.isNot(MIToken::HexLiteral)) 1909 return error("expected a floating point literal"); 1910 const Constant *C = nullptr; 1911 if (parseIRConstant(Loc, C)) 1912 return true; 1913 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1914 return false; 1915 } 1916 1917 static bool getHexUint(const MIToken &Token, APInt &Result) { 1918 assert(Token.is(MIToken::HexLiteral)); 1919 StringRef S = Token.range(); 1920 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1921 // This could be a floating point literal with a special prefix. 1922 if (!isxdigit(S[2])) 1923 return true; 1924 StringRef V = S.substr(2); 1925 APInt A(V.size()*4, V, 16); 1926 1927 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1928 // sure it isn't the case before constructing result. 1929 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1930 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1931 return false; 1932 } 1933 1934 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1935 ErrorCallbackType ErrCB) { 1936 if (Token.hasIntegerValue()) { 1937 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1938 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1939 if (Val64 == Limit) 1940 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1941 Result = Val64; 1942 return false; 1943 } 1944 if (Token.is(MIToken::HexLiteral)) { 1945 APInt A; 1946 if (getHexUint(Token, A)) 1947 return true; 1948 if (A.getBitWidth() > 32) 1949 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1950 Result = A.getZExtValue(); 1951 return false; 1952 } 1953 return true; 1954 } 1955 1956 bool MIParser::getUnsigned(unsigned &Result) { 1957 return ::getUnsigned( 1958 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1959 return error(Loc, Msg); 1960 }); 1961 } 1962 1963 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1964 assert(Token.is(MIToken::MachineBasicBlock) || 1965 Token.is(MIToken::MachineBasicBlockLabel)); 1966 unsigned Number; 1967 if (getUnsigned(Number)) 1968 return true; 1969 auto MBBInfo = PFS.MBBSlots.find(Number); 1970 if (MBBInfo == PFS.MBBSlots.end()) 1971 return error(Twine("use of undefined machine basic block #") + 1972 Twine(Number)); 1973 MBB = MBBInfo->second; 1974 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1975 // we drop the <irname> from the bb.<id>.<irname> format. 1976 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1977 return error(Twine("the name of machine basic block #") + Twine(Number) + 1978 " isn't '" + Token.stringValue() + "'"); 1979 return false; 1980 } 1981 1982 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1983 MachineBasicBlock *MBB; 1984 if (parseMBBReference(MBB)) 1985 return true; 1986 Dest = MachineOperand::CreateMBB(MBB); 1987 lex(); 1988 return false; 1989 } 1990 1991 bool MIParser::parseStackFrameIndex(int &FI) { 1992 assert(Token.is(MIToken::StackObject)); 1993 unsigned ID; 1994 if (getUnsigned(ID)) 1995 return true; 1996 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1997 if (ObjectInfo == PFS.StackObjectSlots.end()) 1998 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1999 "'"); 2000 StringRef Name; 2001 if (const auto *Alloca = 2002 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 2003 Name = Alloca->getName(); 2004 if (!Token.stringValue().empty() && Token.stringValue() != Name) 2005 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 2006 "' isn't '" + Token.stringValue() + "'"); 2007 lex(); 2008 FI = ObjectInfo->second; 2009 return false; 2010 } 2011 2012 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 2013 int FI; 2014 if (parseStackFrameIndex(FI)) 2015 return true; 2016 Dest = MachineOperand::CreateFI(FI); 2017 return false; 2018 } 2019 2020 bool MIParser::parseFixedStackFrameIndex(int &FI) { 2021 assert(Token.is(MIToken::FixedStackObject)); 2022 unsigned ID; 2023 if (getUnsigned(ID)) 2024 return true; 2025 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 2026 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 2027 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 2028 Twine(ID) + "'"); 2029 lex(); 2030 FI = ObjectInfo->second; 2031 return false; 2032 } 2033 2034 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 2035 int FI; 2036 if (parseFixedStackFrameIndex(FI)) 2037 return true; 2038 Dest = MachineOperand::CreateFI(FI); 2039 return false; 2040 } 2041 2042 static bool parseGlobalValue(const MIToken &Token, 2043 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 2044 ErrorCallbackType ErrCB) { 2045 switch (Token.kind()) { 2046 case MIToken::NamedGlobalValue: { 2047 const Module *M = PFS.MF.getFunction().getParent(); 2048 GV = M->getNamedValue(Token.stringValue()); 2049 if (!GV) 2050 return ErrCB(Token.location(), Twine("use of undefined global value '") + 2051 Token.range() + "'"); 2052 break; 2053 } 2054 case MIToken::GlobalValue: { 2055 unsigned GVIdx; 2056 if (getUnsigned(Token, GVIdx, ErrCB)) 2057 return true; 2058 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 2059 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 2060 Twine(GVIdx) + "'"); 2061 GV = PFS.IRSlots.GlobalValues[GVIdx]; 2062 break; 2063 } 2064 default: 2065 llvm_unreachable("The current token should be a global value"); 2066 } 2067 return false; 2068 } 2069 2070 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 2071 return ::parseGlobalValue( 2072 Token, PFS, GV, 2073 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2074 return error(Loc, Msg); 2075 }); 2076 } 2077 2078 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 2079 GlobalValue *GV = nullptr; 2080 if (parseGlobalValue(GV)) 2081 return true; 2082 lex(); 2083 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 2084 if (parseOperandsOffset(Dest)) 2085 return true; 2086 return false; 2087 } 2088 2089 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 2090 assert(Token.is(MIToken::ConstantPoolItem)); 2091 unsigned ID; 2092 if (getUnsigned(ID)) 2093 return true; 2094 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 2095 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 2096 return error("use of undefined constant '%const." + Twine(ID) + "'"); 2097 lex(); 2098 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 2099 if (parseOperandsOffset(Dest)) 2100 return true; 2101 return false; 2102 } 2103 2104 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 2105 assert(Token.is(MIToken::JumpTableIndex)); 2106 unsigned ID; 2107 if (getUnsigned(ID)) 2108 return true; 2109 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 2110 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 2111 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 2112 lex(); 2113 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 2114 return false; 2115 } 2116 2117 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 2118 assert(Token.is(MIToken::ExternalSymbol)); 2119 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 2120 lex(); 2121 Dest = MachineOperand::CreateES(Symbol); 2122 if (parseOperandsOffset(Dest)) 2123 return true; 2124 return false; 2125 } 2126 2127 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 2128 assert(Token.is(MIToken::MCSymbol)); 2129 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 2130 lex(); 2131 Dest = MachineOperand::CreateMCSymbol(Symbol); 2132 if (parseOperandsOffset(Dest)) 2133 return true; 2134 return false; 2135 } 2136 2137 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 2138 assert(Token.is(MIToken::SubRegisterIndex)); 2139 StringRef Name = Token.stringValue(); 2140 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 2141 if (SubRegIndex == 0) 2142 return error(Twine("unknown subregister index '") + Name + "'"); 2143 lex(); 2144 Dest = MachineOperand::CreateImm(SubRegIndex); 2145 return false; 2146 } 2147 2148 bool MIParser::parseMDNode(MDNode *&Node) { 2149 assert(Token.is(MIToken::exclaim)); 2150 2151 auto Loc = Token.location(); 2152 lex(); 2153 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2154 return error("expected metadata id after '!'"); 2155 unsigned ID; 2156 if (getUnsigned(ID)) 2157 return true; 2158 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 2159 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) { 2160 NodeInfo = PFS.MachineMetadataNodes.find(ID); 2161 if (NodeInfo == PFS.MachineMetadataNodes.end()) 2162 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 2163 } 2164 lex(); 2165 Node = NodeInfo->second.get(); 2166 return false; 2167 } 2168 2169 bool MIParser::parseDIExpression(MDNode *&Expr) { 2170 assert(Token.is(MIToken::md_diexpr)); 2171 lex(); 2172 2173 // FIXME: Share this parsing with the IL parser. 2174 SmallVector<uint64_t, 8> Elements; 2175 2176 if (expectAndConsume(MIToken::lparen)) 2177 return true; 2178 2179 if (Token.isNot(MIToken::rparen)) { 2180 do { 2181 if (Token.is(MIToken::Identifier)) { 2182 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2183 lex(); 2184 Elements.push_back(Op); 2185 continue; 2186 } 2187 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2188 lex(); 2189 Elements.push_back(Enc); 2190 continue; 2191 } 2192 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2193 } 2194 2195 if (Token.isNot(MIToken::IntegerLiteral) || 2196 Token.integerValue().isSigned()) 2197 return error("expected unsigned integer"); 2198 2199 auto &U = Token.integerValue(); 2200 if (U.ugt(UINT64_MAX)) 2201 return error("element too large, limit is " + Twine(UINT64_MAX)); 2202 Elements.push_back(U.getZExtValue()); 2203 lex(); 2204 2205 } while (consumeIfPresent(MIToken::comma)); 2206 } 2207 2208 if (expectAndConsume(MIToken::rparen)) 2209 return true; 2210 2211 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2212 return false; 2213 } 2214 2215 bool MIParser::parseDILocation(MDNode *&Loc) { 2216 assert(Token.is(MIToken::md_dilocation)); 2217 lex(); 2218 2219 bool HaveLine = false; 2220 unsigned Line = 0; 2221 unsigned Column = 0; 2222 MDNode *Scope = nullptr; 2223 MDNode *InlinedAt = nullptr; 2224 bool ImplicitCode = false; 2225 2226 if (expectAndConsume(MIToken::lparen)) 2227 return true; 2228 2229 if (Token.isNot(MIToken::rparen)) { 2230 do { 2231 if (Token.is(MIToken::Identifier)) { 2232 if (Token.stringValue() == "line") { 2233 lex(); 2234 if (expectAndConsume(MIToken::colon)) 2235 return true; 2236 if (Token.isNot(MIToken::IntegerLiteral) || 2237 Token.integerValue().isSigned()) 2238 return error("expected unsigned integer"); 2239 Line = Token.integerValue().getZExtValue(); 2240 HaveLine = true; 2241 lex(); 2242 continue; 2243 } 2244 if (Token.stringValue() == "column") { 2245 lex(); 2246 if (expectAndConsume(MIToken::colon)) 2247 return true; 2248 if (Token.isNot(MIToken::IntegerLiteral) || 2249 Token.integerValue().isSigned()) 2250 return error("expected unsigned integer"); 2251 Column = Token.integerValue().getZExtValue(); 2252 lex(); 2253 continue; 2254 } 2255 if (Token.stringValue() == "scope") { 2256 lex(); 2257 if (expectAndConsume(MIToken::colon)) 2258 return true; 2259 if (parseMDNode(Scope)) 2260 return error("expected metadata node"); 2261 if (!isa<DIScope>(Scope)) 2262 return error("expected DIScope node"); 2263 continue; 2264 } 2265 if (Token.stringValue() == "inlinedAt") { 2266 lex(); 2267 if (expectAndConsume(MIToken::colon)) 2268 return true; 2269 if (Token.is(MIToken::exclaim)) { 2270 if (parseMDNode(InlinedAt)) 2271 return true; 2272 } else if (Token.is(MIToken::md_dilocation)) { 2273 if (parseDILocation(InlinedAt)) 2274 return true; 2275 } else 2276 return error("expected metadata node"); 2277 if (!isa<DILocation>(InlinedAt)) 2278 return error("expected DILocation node"); 2279 continue; 2280 } 2281 if (Token.stringValue() == "isImplicitCode") { 2282 lex(); 2283 if (expectAndConsume(MIToken::colon)) 2284 return true; 2285 if (!Token.is(MIToken::Identifier)) 2286 return error("expected true/false"); 2287 // As far as I can see, we don't have any existing need for parsing 2288 // true/false in MIR yet. Do it ad-hoc until there's something else 2289 // that needs it. 2290 if (Token.stringValue() == "true") 2291 ImplicitCode = true; 2292 else if (Token.stringValue() == "false") 2293 ImplicitCode = false; 2294 else 2295 return error("expected true/false"); 2296 lex(); 2297 continue; 2298 } 2299 } 2300 return error(Twine("invalid DILocation argument '") + 2301 Token.stringValue() + "'"); 2302 } while (consumeIfPresent(MIToken::comma)); 2303 } 2304 2305 if (expectAndConsume(MIToken::rparen)) 2306 return true; 2307 2308 if (!HaveLine) 2309 return error("DILocation requires line number"); 2310 if (!Scope) 2311 return error("DILocation requires a scope"); 2312 2313 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2314 InlinedAt, ImplicitCode); 2315 return false; 2316 } 2317 2318 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2319 MDNode *Node = nullptr; 2320 if (Token.is(MIToken::exclaim)) { 2321 if (parseMDNode(Node)) 2322 return true; 2323 } else if (Token.is(MIToken::md_diexpr)) { 2324 if (parseDIExpression(Node)) 2325 return true; 2326 } 2327 Dest = MachineOperand::CreateMetadata(Node); 2328 return false; 2329 } 2330 2331 bool MIParser::parseCFIOffset(int &Offset) { 2332 if (Token.isNot(MIToken::IntegerLiteral)) 2333 return error("expected a cfi offset"); 2334 if (Token.integerValue().getMinSignedBits() > 32) 2335 return error("expected a 32 bit integer (the cfi offset is too large)"); 2336 Offset = (int)Token.integerValue().getExtValue(); 2337 lex(); 2338 return false; 2339 } 2340 2341 bool MIParser::parseCFIRegister(Register &Reg) { 2342 if (Token.isNot(MIToken::NamedRegister)) 2343 return error("expected a cfi register"); 2344 Register LLVMReg; 2345 if (parseNamedRegister(LLVMReg)) 2346 return true; 2347 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2348 assert(TRI && "Expected target register info"); 2349 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2350 if (DwarfReg < 0) 2351 return error("invalid DWARF register"); 2352 Reg = (unsigned)DwarfReg; 2353 lex(); 2354 return false; 2355 } 2356 2357 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) { 2358 if (Token.isNot(MIToken::IntegerLiteral)) 2359 return error("expected a cfi address space literal"); 2360 if (Token.integerValue().isSigned()) 2361 return error("expected an unsigned integer (cfi address space)"); 2362 AddressSpace = Token.integerValue().getZExtValue(); 2363 lex(); 2364 return false; 2365 } 2366 2367 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2368 do { 2369 if (Token.isNot(MIToken::HexLiteral)) 2370 return error("expected a hexadecimal literal"); 2371 unsigned Value; 2372 if (getUnsigned(Value)) 2373 return true; 2374 if (Value > UINT8_MAX) 2375 return error("expected a 8-bit integer (too large)"); 2376 Values.push_back(static_cast<uint8_t>(Value)); 2377 lex(); 2378 } while (consumeIfPresent(MIToken::comma)); 2379 return false; 2380 } 2381 2382 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2383 auto Kind = Token.kind(); 2384 lex(); 2385 int Offset; 2386 Register Reg; 2387 unsigned AddressSpace; 2388 unsigned CFIIndex; 2389 switch (Kind) { 2390 case MIToken::kw_cfi_same_value: 2391 if (parseCFIRegister(Reg)) 2392 return true; 2393 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2394 break; 2395 case MIToken::kw_cfi_offset: 2396 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2397 parseCFIOffset(Offset)) 2398 return true; 2399 CFIIndex = 2400 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2401 break; 2402 case MIToken::kw_cfi_rel_offset: 2403 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2404 parseCFIOffset(Offset)) 2405 return true; 2406 CFIIndex = MF.addFrameInst( 2407 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2408 break; 2409 case MIToken::kw_cfi_def_cfa_register: 2410 if (parseCFIRegister(Reg)) 2411 return true; 2412 CFIIndex = 2413 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2414 break; 2415 case MIToken::kw_cfi_def_cfa_offset: 2416 if (parseCFIOffset(Offset)) 2417 return true; 2418 CFIIndex = 2419 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); 2420 break; 2421 case MIToken::kw_cfi_adjust_cfa_offset: 2422 if (parseCFIOffset(Offset)) 2423 return true; 2424 CFIIndex = MF.addFrameInst( 2425 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2426 break; 2427 case MIToken::kw_cfi_def_cfa: 2428 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2429 parseCFIOffset(Offset)) 2430 return true; 2431 CFIIndex = 2432 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); 2433 break; 2434 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2435 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2436 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) || 2437 parseCFIAddressSpace(AddressSpace)) 2438 return true; 2439 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa( 2440 nullptr, Reg, Offset, AddressSpace)); 2441 break; 2442 case MIToken::kw_cfi_remember_state: 2443 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2444 break; 2445 case MIToken::kw_cfi_restore: 2446 if (parseCFIRegister(Reg)) 2447 return true; 2448 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2449 break; 2450 case MIToken::kw_cfi_restore_state: 2451 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2452 break; 2453 case MIToken::kw_cfi_undefined: 2454 if (parseCFIRegister(Reg)) 2455 return true; 2456 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2457 break; 2458 case MIToken::kw_cfi_register: { 2459 Register Reg2; 2460 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2461 parseCFIRegister(Reg2)) 2462 return true; 2463 2464 CFIIndex = 2465 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2466 break; 2467 } 2468 case MIToken::kw_cfi_window_save: 2469 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2470 break; 2471 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2472 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2473 break; 2474 case MIToken::kw_cfi_escape: { 2475 std::string Values; 2476 if (parseCFIEscapeValues(Values)) 2477 return true; 2478 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2479 break; 2480 } 2481 default: 2482 // TODO: Parse the other CFI operands. 2483 llvm_unreachable("The current token should be a cfi operand"); 2484 } 2485 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2486 return false; 2487 } 2488 2489 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2490 switch (Token.kind()) { 2491 case MIToken::NamedIRBlock: { 2492 BB = dyn_cast_or_null<BasicBlock>( 2493 F.getValueSymbolTable()->lookup(Token.stringValue())); 2494 if (!BB) 2495 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2496 break; 2497 } 2498 case MIToken::IRBlock: { 2499 unsigned SlotNumber = 0; 2500 if (getUnsigned(SlotNumber)) 2501 return true; 2502 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2503 if (!BB) 2504 return error(Twine("use of undefined IR block '%ir-block.") + 2505 Twine(SlotNumber) + "'"); 2506 break; 2507 } 2508 default: 2509 llvm_unreachable("The current token should be an IR block reference"); 2510 } 2511 return false; 2512 } 2513 2514 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2515 assert(Token.is(MIToken::kw_blockaddress)); 2516 lex(); 2517 if (expectAndConsume(MIToken::lparen)) 2518 return true; 2519 if (Token.isNot(MIToken::GlobalValue) && 2520 Token.isNot(MIToken::NamedGlobalValue)) 2521 return error("expected a global value"); 2522 GlobalValue *GV = nullptr; 2523 if (parseGlobalValue(GV)) 2524 return true; 2525 auto *F = dyn_cast<Function>(GV); 2526 if (!F) 2527 return error("expected an IR function reference"); 2528 lex(); 2529 if (expectAndConsume(MIToken::comma)) 2530 return true; 2531 BasicBlock *BB = nullptr; 2532 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2533 return error("expected an IR block reference"); 2534 if (parseIRBlock(BB, *F)) 2535 return true; 2536 lex(); 2537 if (expectAndConsume(MIToken::rparen)) 2538 return true; 2539 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2540 if (parseOperandsOffset(Dest)) 2541 return true; 2542 return false; 2543 } 2544 2545 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2546 assert(Token.is(MIToken::kw_intrinsic)); 2547 lex(); 2548 if (expectAndConsume(MIToken::lparen)) 2549 return error("expected syntax intrinsic(@llvm.whatever)"); 2550 2551 if (Token.isNot(MIToken::NamedGlobalValue)) 2552 return error("expected syntax intrinsic(@llvm.whatever)"); 2553 2554 std::string Name = std::string(Token.stringValue()); 2555 lex(); 2556 2557 if (expectAndConsume(MIToken::rparen)) 2558 return error("expected ')' to terminate intrinsic name"); 2559 2560 // Find out what intrinsic we're dealing with, first try the global namespace 2561 // and then the target's private intrinsics if that fails. 2562 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2563 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2564 if (ID == Intrinsic::not_intrinsic && TII) 2565 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2566 2567 if (ID == Intrinsic::not_intrinsic) 2568 return error("unknown intrinsic name"); 2569 Dest = MachineOperand::CreateIntrinsicID(ID); 2570 2571 return false; 2572 } 2573 2574 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2575 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2576 bool IsFloat = Token.is(MIToken::kw_floatpred); 2577 lex(); 2578 2579 if (expectAndConsume(MIToken::lparen)) 2580 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2581 2582 if (Token.isNot(MIToken::Identifier)) 2583 return error("whatever"); 2584 2585 CmpInst::Predicate Pred; 2586 if (IsFloat) { 2587 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2588 .Case("false", CmpInst::FCMP_FALSE) 2589 .Case("oeq", CmpInst::FCMP_OEQ) 2590 .Case("ogt", CmpInst::FCMP_OGT) 2591 .Case("oge", CmpInst::FCMP_OGE) 2592 .Case("olt", CmpInst::FCMP_OLT) 2593 .Case("ole", CmpInst::FCMP_OLE) 2594 .Case("one", CmpInst::FCMP_ONE) 2595 .Case("ord", CmpInst::FCMP_ORD) 2596 .Case("uno", CmpInst::FCMP_UNO) 2597 .Case("ueq", CmpInst::FCMP_UEQ) 2598 .Case("ugt", CmpInst::FCMP_UGT) 2599 .Case("uge", CmpInst::FCMP_UGE) 2600 .Case("ult", CmpInst::FCMP_ULT) 2601 .Case("ule", CmpInst::FCMP_ULE) 2602 .Case("une", CmpInst::FCMP_UNE) 2603 .Case("true", CmpInst::FCMP_TRUE) 2604 .Default(CmpInst::BAD_FCMP_PREDICATE); 2605 if (!CmpInst::isFPPredicate(Pred)) 2606 return error("invalid floating-point predicate"); 2607 } else { 2608 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2609 .Case("eq", CmpInst::ICMP_EQ) 2610 .Case("ne", CmpInst::ICMP_NE) 2611 .Case("sgt", CmpInst::ICMP_SGT) 2612 .Case("sge", CmpInst::ICMP_SGE) 2613 .Case("slt", CmpInst::ICMP_SLT) 2614 .Case("sle", CmpInst::ICMP_SLE) 2615 .Case("ugt", CmpInst::ICMP_UGT) 2616 .Case("uge", CmpInst::ICMP_UGE) 2617 .Case("ult", CmpInst::ICMP_ULT) 2618 .Case("ule", CmpInst::ICMP_ULE) 2619 .Default(CmpInst::BAD_ICMP_PREDICATE); 2620 if (!CmpInst::isIntPredicate(Pred)) 2621 return error("invalid integer predicate"); 2622 } 2623 2624 lex(); 2625 Dest = MachineOperand::CreatePredicate(Pred); 2626 if (expectAndConsume(MIToken::rparen)) 2627 return error("predicate should be terminated by ')'."); 2628 2629 return false; 2630 } 2631 2632 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2633 assert(Token.is(MIToken::kw_shufflemask)); 2634 2635 lex(); 2636 if (expectAndConsume(MIToken::lparen)) 2637 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2638 2639 SmallVector<int, 32> ShufMask; 2640 do { 2641 if (Token.is(MIToken::kw_undef)) { 2642 ShufMask.push_back(-1); 2643 } else if (Token.is(MIToken::IntegerLiteral)) { 2644 const APSInt &Int = Token.integerValue(); 2645 ShufMask.push_back(Int.getExtValue()); 2646 } else 2647 return error("expected integer constant"); 2648 2649 lex(); 2650 } while (consumeIfPresent(MIToken::comma)); 2651 2652 if (expectAndConsume(MIToken::rparen)) 2653 return error("shufflemask should be terminated by ')'."); 2654 2655 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2656 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2657 return false; 2658 } 2659 2660 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2661 assert(Token.is(MIToken::kw_target_index)); 2662 lex(); 2663 if (expectAndConsume(MIToken::lparen)) 2664 return true; 2665 if (Token.isNot(MIToken::Identifier)) 2666 return error("expected the name of the target index"); 2667 int Index = 0; 2668 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2669 return error("use of undefined target index '" + Token.stringValue() + "'"); 2670 lex(); 2671 if (expectAndConsume(MIToken::rparen)) 2672 return true; 2673 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2674 if (parseOperandsOffset(Dest)) 2675 return true; 2676 return false; 2677 } 2678 2679 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2680 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2681 lex(); 2682 if (expectAndConsume(MIToken::lparen)) 2683 return true; 2684 2685 uint32_t *Mask = MF.allocateRegMask(); 2686 while (true) { 2687 if (Token.isNot(MIToken::NamedRegister)) 2688 return error("expected a named register"); 2689 Register Reg; 2690 if (parseNamedRegister(Reg)) 2691 return true; 2692 lex(); 2693 Mask[Reg / 32] |= 1U << (Reg % 32); 2694 // TODO: Report an error if the same register is used more than once. 2695 if (Token.isNot(MIToken::comma)) 2696 break; 2697 lex(); 2698 } 2699 2700 if (expectAndConsume(MIToken::rparen)) 2701 return true; 2702 Dest = MachineOperand::CreateRegMask(Mask); 2703 return false; 2704 } 2705 2706 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2707 assert(Token.is(MIToken::kw_liveout)); 2708 uint32_t *Mask = MF.allocateRegMask(); 2709 lex(); 2710 if (expectAndConsume(MIToken::lparen)) 2711 return true; 2712 while (true) { 2713 if (Token.isNot(MIToken::NamedRegister)) 2714 return error("expected a named register"); 2715 Register Reg; 2716 if (parseNamedRegister(Reg)) 2717 return true; 2718 lex(); 2719 Mask[Reg / 32] |= 1U << (Reg % 32); 2720 // TODO: Report an error if the same register is used more than once. 2721 if (Token.isNot(MIToken::comma)) 2722 break; 2723 lex(); 2724 } 2725 if (expectAndConsume(MIToken::rparen)) 2726 return true; 2727 Dest = MachineOperand::CreateRegLiveOut(Mask); 2728 return false; 2729 } 2730 2731 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2732 MachineOperand &Dest, 2733 Optional<unsigned> &TiedDefIdx) { 2734 switch (Token.kind()) { 2735 case MIToken::kw_implicit: 2736 case MIToken::kw_implicit_define: 2737 case MIToken::kw_def: 2738 case MIToken::kw_dead: 2739 case MIToken::kw_killed: 2740 case MIToken::kw_undef: 2741 case MIToken::kw_internal: 2742 case MIToken::kw_early_clobber: 2743 case MIToken::kw_debug_use: 2744 case MIToken::kw_renamable: 2745 case MIToken::underscore: 2746 case MIToken::NamedRegister: 2747 case MIToken::VirtualRegister: 2748 case MIToken::NamedVirtualRegister: 2749 return parseRegisterOperand(Dest, TiedDefIdx); 2750 case MIToken::IntegerLiteral: 2751 return parseImmediateOperand(Dest); 2752 case MIToken::kw_half: 2753 case MIToken::kw_float: 2754 case MIToken::kw_double: 2755 case MIToken::kw_x86_fp80: 2756 case MIToken::kw_fp128: 2757 case MIToken::kw_ppc_fp128: 2758 return parseFPImmediateOperand(Dest); 2759 case MIToken::MachineBasicBlock: 2760 return parseMBBOperand(Dest); 2761 case MIToken::StackObject: 2762 return parseStackObjectOperand(Dest); 2763 case MIToken::FixedStackObject: 2764 return parseFixedStackObjectOperand(Dest); 2765 case MIToken::GlobalValue: 2766 case MIToken::NamedGlobalValue: 2767 return parseGlobalAddressOperand(Dest); 2768 case MIToken::ConstantPoolItem: 2769 return parseConstantPoolIndexOperand(Dest); 2770 case MIToken::JumpTableIndex: 2771 return parseJumpTableIndexOperand(Dest); 2772 case MIToken::ExternalSymbol: 2773 return parseExternalSymbolOperand(Dest); 2774 case MIToken::MCSymbol: 2775 return parseMCSymbolOperand(Dest); 2776 case MIToken::SubRegisterIndex: 2777 return parseSubRegisterIndexOperand(Dest); 2778 case MIToken::md_diexpr: 2779 case MIToken::exclaim: 2780 return parseMetadataOperand(Dest); 2781 case MIToken::kw_cfi_same_value: 2782 case MIToken::kw_cfi_offset: 2783 case MIToken::kw_cfi_rel_offset: 2784 case MIToken::kw_cfi_def_cfa_register: 2785 case MIToken::kw_cfi_def_cfa_offset: 2786 case MIToken::kw_cfi_adjust_cfa_offset: 2787 case MIToken::kw_cfi_escape: 2788 case MIToken::kw_cfi_def_cfa: 2789 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2790 case MIToken::kw_cfi_register: 2791 case MIToken::kw_cfi_remember_state: 2792 case MIToken::kw_cfi_restore: 2793 case MIToken::kw_cfi_restore_state: 2794 case MIToken::kw_cfi_undefined: 2795 case MIToken::kw_cfi_window_save: 2796 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2797 return parseCFIOperand(Dest); 2798 case MIToken::kw_blockaddress: 2799 return parseBlockAddressOperand(Dest); 2800 case MIToken::kw_intrinsic: 2801 return parseIntrinsicOperand(Dest); 2802 case MIToken::kw_target_index: 2803 return parseTargetIndexOperand(Dest); 2804 case MIToken::kw_liveout: 2805 return parseLiveoutRegisterMaskOperand(Dest); 2806 case MIToken::kw_floatpred: 2807 case MIToken::kw_intpred: 2808 return parsePredicateOperand(Dest); 2809 case MIToken::kw_shufflemask: 2810 return parseShuffleMaskOperand(Dest); 2811 case MIToken::Error: 2812 return true; 2813 case MIToken::Identifier: 2814 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2815 Dest = MachineOperand::CreateRegMask(RegMask); 2816 lex(); 2817 break; 2818 } else if (Token.stringValue() == "CustomRegMask") { 2819 return parseCustomRegisterMaskOperand(Dest); 2820 } else 2821 return parseTypedImmediateOperand(Dest); 2822 case MIToken::dot: { 2823 const auto *TII = MF.getSubtarget().getInstrInfo(); 2824 if (const auto *Formatter = TII->getMIRFormatter()) { 2825 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2826 } 2827 LLVM_FALLTHROUGH; 2828 } 2829 default: 2830 // FIXME: Parse the MCSymbol machine operand. 2831 return error("expected a machine operand"); 2832 } 2833 return false; 2834 } 2835 2836 bool MIParser::parseMachineOperandAndTargetFlags( 2837 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2838 Optional<unsigned> &TiedDefIdx) { 2839 unsigned TF = 0; 2840 bool HasTargetFlags = false; 2841 if (Token.is(MIToken::kw_target_flags)) { 2842 HasTargetFlags = true; 2843 lex(); 2844 if (expectAndConsume(MIToken::lparen)) 2845 return true; 2846 if (Token.isNot(MIToken::Identifier)) 2847 return error("expected the name of the target flag"); 2848 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2849 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2850 return error("use of undefined target flag '" + Token.stringValue() + 2851 "'"); 2852 } 2853 lex(); 2854 while (Token.is(MIToken::comma)) { 2855 lex(); 2856 if (Token.isNot(MIToken::Identifier)) 2857 return error("expected the name of the target flag"); 2858 unsigned BitFlag = 0; 2859 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2860 return error("use of undefined target flag '" + Token.stringValue() + 2861 "'"); 2862 // TODO: Report an error when using a duplicate bit target flag. 2863 TF |= BitFlag; 2864 lex(); 2865 } 2866 if (expectAndConsume(MIToken::rparen)) 2867 return true; 2868 } 2869 auto Loc = Token.location(); 2870 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2871 return true; 2872 if (!HasTargetFlags) 2873 return false; 2874 if (Dest.isReg()) 2875 return error(Loc, "register operands can't have target flags"); 2876 Dest.setTargetFlags(TF); 2877 return false; 2878 } 2879 2880 bool MIParser::parseOffset(int64_t &Offset) { 2881 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2882 return false; 2883 StringRef Sign = Token.range(); 2884 bool IsNegative = Token.is(MIToken::minus); 2885 lex(); 2886 if (Token.isNot(MIToken::IntegerLiteral)) 2887 return error("expected an integer literal after '" + Sign + "'"); 2888 if (Token.integerValue().getMinSignedBits() > 64) 2889 return error("expected 64-bit integer (too large)"); 2890 Offset = Token.integerValue().getExtValue(); 2891 if (IsNegative) 2892 Offset = -Offset; 2893 lex(); 2894 return false; 2895 } 2896 2897 bool MIParser::parseAlignment(uint64_t &Alignment) { 2898 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign)); 2899 lex(); 2900 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2901 return error("expected an integer literal after 'align'"); 2902 if (getUint64(Alignment)) 2903 return true; 2904 lex(); 2905 2906 if (!isPowerOf2_64(Alignment)) 2907 return error("expected a power-of-2 literal after 'align'"); 2908 2909 return false; 2910 } 2911 2912 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2913 assert(Token.is(MIToken::kw_addrspace)); 2914 lex(); 2915 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2916 return error("expected an integer literal after 'addrspace'"); 2917 if (getUnsigned(Addrspace)) 2918 return true; 2919 lex(); 2920 return false; 2921 } 2922 2923 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2924 int64_t Offset = 0; 2925 if (parseOffset(Offset)) 2926 return true; 2927 Op.setOffset(Offset); 2928 return false; 2929 } 2930 2931 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2932 const Value *&V, ErrorCallbackType ErrCB) { 2933 switch (Token.kind()) { 2934 case MIToken::NamedIRValue: { 2935 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2936 break; 2937 } 2938 case MIToken::IRValue: { 2939 unsigned SlotNumber = 0; 2940 if (getUnsigned(Token, SlotNumber, ErrCB)) 2941 return true; 2942 V = PFS.getIRValue(SlotNumber); 2943 break; 2944 } 2945 case MIToken::NamedGlobalValue: 2946 case MIToken::GlobalValue: { 2947 GlobalValue *GV = nullptr; 2948 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2949 return true; 2950 V = GV; 2951 break; 2952 } 2953 case MIToken::QuotedIRValue: { 2954 const Constant *C = nullptr; 2955 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2956 return true; 2957 V = C; 2958 break; 2959 } 2960 case MIToken::kw_unknown_address: 2961 V = nullptr; 2962 return false; 2963 default: 2964 llvm_unreachable("The current token should be an IR block reference"); 2965 } 2966 if (!V) 2967 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2968 return false; 2969 } 2970 2971 bool MIParser::parseIRValue(const Value *&V) { 2972 return ::parseIRValue( 2973 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2974 return error(Loc, Msg); 2975 }); 2976 } 2977 2978 bool MIParser::getUint64(uint64_t &Result) { 2979 if (Token.hasIntegerValue()) { 2980 if (Token.integerValue().getActiveBits() > 64) 2981 return error("expected 64-bit integer (too large)"); 2982 Result = Token.integerValue().getZExtValue(); 2983 return false; 2984 } 2985 if (Token.is(MIToken::HexLiteral)) { 2986 APInt A; 2987 if (getHexUint(A)) 2988 return true; 2989 if (A.getBitWidth() > 64) 2990 return error("expected 64-bit integer (too large)"); 2991 Result = A.getZExtValue(); 2992 return false; 2993 } 2994 return true; 2995 } 2996 2997 bool MIParser::getHexUint(APInt &Result) { 2998 return ::getHexUint(Token, Result); 2999 } 3000 3001 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 3002 const auto OldFlags = Flags; 3003 switch (Token.kind()) { 3004 case MIToken::kw_volatile: 3005 Flags |= MachineMemOperand::MOVolatile; 3006 break; 3007 case MIToken::kw_non_temporal: 3008 Flags |= MachineMemOperand::MONonTemporal; 3009 break; 3010 case MIToken::kw_dereferenceable: 3011 Flags |= MachineMemOperand::MODereferenceable; 3012 break; 3013 case MIToken::kw_invariant: 3014 Flags |= MachineMemOperand::MOInvariant; 3015 break; 3016 case MIToken::StringConstant: { 3017 MachineMemOperand::Flags TF; 3018 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 3019 return error("use of undefined target MMO flag '" + Token.stringValue() + 3020 "'"); 3021 Flags |= TF; 3022 break; 3023 } 3024 default: 3025 llvm_unreachable("The current token should be a memory operand flag"); 3026 } 3027 if (OldFlags == Flags) 3028 // We know that the same flag is specified more than once when the flags 3029 // weren't modified. 3030 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 3031 lex(); 3032 return false; 3033 } 3034 3035 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 3036 switch (Token.kind()) { 3037 case MIToken::kw_stack: 3038 PSV = MF.getPSVManager().getStack(); 3039 break; 3040 case MIToken::kw_got: 3041 PSV = MF.getPSVManager().getGOT(); 3042 break; 3043 case MIToken::kw_jump_table: 3044 PSV = MF.getPSVManager().getJumpTable(); 3045 break; 3046 case MIToken::kw_constant_pool: 3047 PSV = MF.getPSVManager().getConstantPool(); 3048 break; 3049 case MIToken::FixedStackObject: { 3050 int FI; 3051 if (parseFixedStackFrameIndex(FI)) 3052 return true; 3053 PSV = MF.getPSVManager().getFixedStack(FI); 3054 // The token was already consumed, so use return here instead of break. 3055 return false; 3056 } 3057 case MIToken::StackObject: { 3058 int FI; 3059 if (parseStackFrameIndex(FI)) 3060 return true; 3061 PSV = MF.getPSVManager().getFixedStack(FI); 3062 // The token was already consumed, so use return here instead of break. 3063 return false; 3064 } 3065 case MIToken::kw_call_entry: 3066 lex(); 3067 switch (Token.kind()) { 3068 case MIToken::GlobalValue: 3069 case MIToken::NamedGlobalValue: { 3070 GlobalValue *GV = nullptr; 3071 if (parseGlobalValue(GV)) 3072 return true; 3073 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 3074 break; 3075 } 3076 case MIToken::ExternalSymbol: 3077 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 3078 MF.createExternalSymbolName(Token.stringValue())); 3079 break; 3080 default: 3081 return error( 3082 "expected a global value or an external symbol after 'call-entry'"); 3083 } 3084 break; 3085 case MIToken::kw_custom: { 3086 lex(); 3087 const auto *TII = MF.getSubtarget().getInstrInfo(); 3088 if (const auto *Formatter = TII->getMIRFormatter()) { 3089 if (Formatter->parseCustomPseudoSourceValue( 3090 Token.stringValue(), MF, PFS, PSV, 3091 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 3092 return error(Loc, Msg); 3093 })) 3094 return true; 3095 } else 3096 return error("unable to parse target custom pseudo source value"); 3097 break; 3098 } 3099 default: 3100 llvm_unreachable("The current token should be pseudo source value"); 3101 } 3102 lex(); 3103 return false; 3104 } 3105 3106 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 3107 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 3108 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 3109 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 3110 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 3111 const PseudoSourceValue *PSV = nullptr; 3112 if (parseMemoryPseudoSourceValue(PSV)) 3113 return true; 3114 int64_t Offset = 0; 3115 if (parseOffset(Offset)) 3116 return true; 3117 Dest = MachinePointerInfo(PSV, Offset); 3118 return false; 3119 } 3120 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 3121 Token.isNot(MIToken::GlobalValue) && 3122 Token.isNot(MIToken::NamedGlobalValue) && 3123 Token.isNot(MIToken::QuotedIRValue) && 3124 Token.isNot(MIToken::kw_unknown_address)) 3125 return error("expected an IR value reference"); 3126 const Value *V = nullptr; 3127 if (parseIRValue(V)) 3128 return true; 3129 if (V && !V->getType()->isPointerTy()) 3130 return error("expected a pointer IR value"); 3131 lex(); 3132 int64_t Offset = 0; 3133 if (parseOffset(Offset)) 3134 return true; 3135 Dest = MachinePointerInfo(V, Offset); 3136 return false; 3137 } 3138 3139 bool MIParser::parseOptionalScope(LLVMContext &Context, 3140 SyncScope::ID &SSID) { 3141 SSID = SyncScope::System; 3142 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 3143 lex(); 3144 if (expectAndConsume(MIToken::lparen)) 3145 return error("expected '(' in syncscope"); 3146 3147 std::string SSN; 3148 if (parseStringConstant(SSN)) 3149 return true; 3150 3151 SSID = Context.getOrInsertSyncScopeID(SSN); 3152 if (expectAndConsume(MIToken::rparen)) 3153 return error("expected ')' in syncscope"); 3154 } 3155 3156 return false; 3157 } 3158 3159 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 3160 Order = AtomicOrdering::NotAtomic; 3161 if (Token.isNot(MIToken::Identifier)) 3162 return false; 3163 3164 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 3165 .Case("unordered", AtomicOrdering::Unordered) 3166 .Case("monotonic", AtomicOrdering::Monotonic) 3167 .Case("acquire", AtomicOrdering::Acquire) 3168 .Case("release", AtomicOrdering::Release) 3169 .Case("acq_rel", AtomicOrdering::AcquireRelease) 3170 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 3171 .Default(AtomicOrdering::NotAtomic); 3172 3173 if (Order != AtomicOrdering::NotAtomic) { 3174 lex(); 3175 return false; 3176 } 3177 3178 return error("expected an atomic scope, ordering or a size specification"); 3179 } 3180 3181 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 3182 if (expectAndConsume(MIToken::lparen)) 3183 return true; 3184 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 3185 while (Token.isMemoryOperandFlag()) { 3186 if (parseMemoryOperandFlag(Flags)) 3187 return true; 3188 } 3189 if (Token.isNot(MIToken::Identifier) || 3190 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3191 return error("expected 'load' or 'store' memory operation"); 3192 if (Token.stringValue() == "load") 3193 Flags |= MachineMemOperand::MOLoad; 3194 else 3195 Flags |= MachineMemOperand::MOStore; 3196 lex(); 3197 3198 // Optional 'store' for operands that both load and store. 3199 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3200 Flags |= MachineMemOperand::MOStore; 3201 lex(); 3202 } 3203 3204 // Optional synchronization scope. 3205 SyncScope::ID SSID; 3206 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3207 return true; 3208 3209 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3210 AtomicOrdering Order, FailureOrder; 3211 if (parseOptionalAtomicOrdering(Order)) 3212 return true; 3213 3214 if (parseOptionalAtomicOrdering(FailureOrder)) 3215 return true; 3216 3217 LLT MemoryType; 3218 if (Token.isNot(MIToken::IntegerLiteral) && 3219 Token.isNot(MIToken::kw_unknown_size) && 3220 Token.isNot(MIToken::lparen)) 3221 return error("expected memory LLT, the size integer literal or 'unknown-size' after " 3222 "memory operation"); 3223 3224 uint64_t Size = MemoryLocation::UnknownSize; 3225 if (Token.is(MIToken::IntegerLiteral)) { 3226 if (getUint64(Size)) 3227 return true; 3228 3229 // Convert from bytes to bits for storage. 3230 MemoryType = LLT::scalar(8 * Size); 3231 lex(); 3232 } else if (Token.is(MIToken::kw_unknown_size)) { 3233 Size = MemoryLocation::UnknownSize; 3234 lex(); 3235 } else { 3236 if (expectAndConsume(MIToken::lparen)) 3237 return true; 3238 if (parseLowLevelType(Token.location(), MemoryType)) 3239 return true; 3240 if (expectAndConsume(MIToken::rparen)) 3241 return true; 3242 3243 Size = MemoryType.getSizeInBytes(); 3244 } 3245 3246 MachinePointerInfo Ptr = MachinePointerInfo(); 3247 if (Token.is(MIToken::Identifier)) { 3248 const char *Word = 3249 ((Flags & MachineMemOperand::MOLoad) && 3250 (Flags & MachineMemOperand::MOStore)) 3251 ? "on" 3252 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3253 if (Token.stringValue() != Word) 3254 return error(Twine("expected '") + Word + "'"); 3255 lex(); 3256 3257 if (parseMachinePointerInfo(Ptr)) 3258 return true; 3259 } 3260 uint64_t BaseAlignment = 3261 (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1); 3262 AAMDNodes AAInfo; 3263 MDNode *Range = nullptr; 3264 while (consumeIfPresent(MIToken::comma)) { 3265 switch (Token.kind()) { 3266 case MIToken::kw_align: 3267 // align is printed if it is different than size. 3268 if (parseAlignment(BaseAlignment)) 3269 return true; 3270 break; 3271 case MIToken::kw_basealign: 3272 // basealign is printed if it is different than align. 3273 if (parseAlignment(BaseAlignment)) 3274 return true; 3275 break; 3276 case MIToken::kw_addrspace: 3277 if (parseAddrspace(Ptr.AddrSpace)) 3278 return true; 3279 break; 3280 case MIToken::md_tbaa: 3281 lex(); 3282 if (parseMDNode(AAInfo.TBAA)) 3283 return true; 3284 break; 3285 case MIToken::md_alias_scope: 3286 lex(); 3287 if (parseMDNode(AAInfo.Scope)) 3288 return true; 3289 break; 3290 case MIToken::md_noalias: 3291 lex(); 3292 if (parseMDNode(AAInfo.NoAlias)) 3293 return true; 3294 break; 3295 case MIToken::md_range: 3296 lex(); 3297 if (parseMDNode(Range)) 3298 return true; 3299 break; 3300 // TODO: Report an error on duplicate metadata nodes. 3301 default: 3302 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3303 "'!noalias' or '!range'"); 3304 } 3305 } 3306 if (expectAndConsume(MIToken::rparen)) 3307 return true; 3308 Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment), 3309 AAInfo, Range, SSID, Order, FailureOrder); 3310 return false; 3311 } 3312 3313 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3314 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3315 Token.is(MIToken::kw_post_instr_symbol)) && 3316 "Invalid token for a pre- post-instruction symbol!"); 3317 lex(); 3318 if (Token.isNot(MIToken::MCSymbol)) 3319 return error("expected a symbol after 'pre-instr-symbol'"); 3320 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3321 lex(); 3322 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3323 Token.is(MIToken::lbrace)) 3324 return false; 3325 if (Token.isNot(MIToken::comma)) 3326 return error("expected ',' before the next machine operand"); 3327 lex(); 3328 return false; 3329 } 3330 3331 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3332 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3333 "Invalid token for a heap alloc marker!"); 3334 lex(); 3335 parseMDNode(Node); 3336 if (!Node) 3337 return error("expected a MDNode after 'heap-alloc-marker'"); 3338 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3339 Token.is(MIToken::lbrace)) 3340 return false; 3341 if (Token.isNot(MIToken::comma)) 3342 return error("expected ',' before the next machine operand"); 3343 lex(); 3344 return false; 3345 } 3346 3347 static void initSlots2BasicBlocks( 3348 const Function &F, 3349 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3350 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3351 MST.incorporateFunction(F); 3352 for (auto &BB : F) { 3353 if (BB.hasName()) 3354 continue; 3355 int Slot = MST.getLocalSlot(&BB); 3356 if (Slot == -1) 3357 continue; 3358 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3359 } 3360 } 3361 3362 static const BasicBlock *getIRBlockFromSlot( 3363 unsigned Slot, 3364 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3365 return Slots2BasicBlocks.lookup(Slot); 3366 } 3367 3368 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3369 if (Slots2BasicBlocks.empty()) 3370 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3371 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3372 } 3373 3374 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3375 if (&F == &MF.getFunction()) 3376 return getIRBlock(Slot); 3377 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3378 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3379 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3380 } 3381 3382 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3383 // FIXME: Currently we can't recognize temporary or local symbols and call all 3384 // of the appropriate forms to create them. However, this handles basic cases 3385 // well as most of the special aspects are recognized by a prefix on their 3386 // name, and the input names should already be unique. For test cases, keeping 3387 // the symbol name out of the symbol table isn't terribly important. 3388 return MF.getContext().getOrCreateSymbol(Name); 3389 } 3390 3391 bool MIParser::parseStringConstant(std::string &Result) { 3392 if (Token.isNot(MIToken::StringConstant)) 3393 return error("expected string constant"); 3394 Result = std::string(Token.stringValue()); 3395 lex(); 3396 return false; 3397 } 3398 3399 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3400 StringRef Src, 3401 SMDiagnostic &Error) { 3402 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3403 } 3404 3405 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3406 StringRef Src, SMDiagnostic &Error) { 3407 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3408 } 3409 3410 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3411 MachineBasicBlock *&MBB, StringRef Src, 3412 SMDiagnostic &Error) { 3413 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3414 } 3415 3416 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3417 Register &Reg, StringRef Src, 3418 SMDiagnostic &Error) { 3419 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3420 } 3421 3422 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3423 Register &Reg, StringRef Src, 3424 SMDiagnostic &Error) { 3425 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3426 } 3427 3428 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3429 VRegInfo *&Info, StringRef Src, 3430 SMDiagnostic &Error) { 3431 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3432 } 3433 3434 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3435 int &FI, StringRef Src, 3436 SMDiagnostic &Error) { 3437 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3438 } 3439 3440 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3441 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3442 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3443 } 3444 3445 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src, 3446 SMRange SrcRange, SMDiagnostic &Error) { 3447 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata(); 3448 } 3449 3450 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3451 PerFunctionMIParsingState &PFS, const Value *&V, 3452 ErrorCallbackType ErrorCallback) { 3453 MIToken Token; 3454 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3455 ErrorCallback(Loc, Msg); 3456 }); 3457 V = nullptr; 3458 3459 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3460 } 3461