1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRFormatter.h"
32 #include "llvm/CodeGen/MIRPrinter.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/LaneBitmask.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/MC/MCDwarf.h"
62 #include "llvm/MC/MCInstrDesc.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Support/SourceMgr.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <limits>
81 #include <string>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 void PerTargetMIParsingState::setTarget(
87   const TargetSubtargetInfo &NewSubtarget) {
88 
89   // If the subtarget changed, over conservatively assume everything is invalid.
90   if (&Subtarget == &NewSubtarget)
91     return;
92 
93   Names2InstrOpCodes.clear();
94   Names2Regs.clear();
95   Names2RegMasks.clear();
96   Names2SubRegIndices.clear();
97   Names2TargetIndices.clear();
98   Names2DirectTargetFlags.clear();
99   Names2BitmaskTargetFlags.clear();
100   Names2MMOTargetFlags.clear();
101 
102   initNames2RegClasses();
103   initNames2RegBanks();
104 }
105 
106 void PerTargetMIParsingState::initNames2Regs() {
107   if (!Names2Regs.empty())
108     return;
109 
110   // The '%noreg' register is the register 0.
111   Names2Regs.insert(std::make_pair("noreg", 0));
112   const auto *TRI = Subtarget.getRegisterInfo();
113   assert(TRI && "Expected target register info");
114 
115   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
116     bool WasInserted =
117         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
118             .second;
119     (void)WasInserted;
120     assert(WasInserted && "Expected registers to be unique case-insensitively");
121   }
122 }
123 
124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
125                                                 Register &Reg) {
126   initNames2Regs();
127   auto RegInfo = Names2Regs.find(RegName);
128   if (RegInfo == Names2Regs.end())
129     return true;
130   Reg = RegInfo->getValue();
131   return false;
132 }
133 
134 void PerTargetMIParsingState::initNames2InstrOpCodes() {
135   if (!Names2InstrOpCodes.empty())
136     return;
137   const auto *TII = Subtarget.getInstrInfo();
138   assert(TII && "Expected target instruction info");
139   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
140     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
141 }
142 
143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
144                                              unsigned &OpCode) {
145   initNames2InstrOpCodes();
146   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
147   if (InstrInfo == Names2InstrOpCodes.end())
148     return true;
149   OpCode = InstrInfo->getValue();
150   return false;
151 }
152 
153 void PerTargetMIParsingState::initNames2RegMasks() {
154   if (!Names2RegMasks.empty())
155     return;
156   const auto *TRI = Subtarget.getRegisterInfo();
157   assert(TRI && "Expected target register info");
158   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
159   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
160   assert(RegMasks.size() == RegMaskNames.size());
161   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
162     Names2RegMasks.insert(
163         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
164 }
165 
166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
167   initNames2RegMasks();
168   auto RegMaskInfo = Names2RegMasks.find(Identifier);
169   if (RegMaskInfo == Names2RegMasks.end())
170     return nullptr;
171   return RegMaskInfo->getValue();
172 }
173 
174 void PerTargetMIParsingState::initNames2SubRegIndices() {
175   if (!Names2SubRegIndices.empty())
176     return;
177   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
178   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
179     Names2SubRegIndices.insert(
180         std::make_pair(TRI->getSubRegIndexName(I), I));
181 }
182 
183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
184   initNames2SubRegIndices();
185   auto SubRegInfo = Names2SubRegIndices.find(Name);
186   if (SubRegInfo == Names2SubRegIndices.end())
187     return 0;
188   return SubRegInfo->getValue();
189 }
190 
191 void PerTargetMIParsingState::initNames2TargetIndices() {
192   if (!Names2TargetIndices.empty())
193     return;
194   const auto *TII = Subtarget.getInstrInfo();
195   assert(TII && "Expected target instruction info");
196   auto Indices = TII->getSerializableTargetIndices();
197   for (const auto &I : Indices)
198     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
199 }
200 
201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
202   initNames2TargetIndices();
203   auto IndexInfo = Names2TargetIndices.find(Name);
204   if (IndexInfo == Names2TargetIndices.end())
205     return true;
206   Index = IndexInfo->second;
207   return false;
208 }
209 
210 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
211   if (!Names2DirectTargetFlags.empty())
212     return;
213 
214   const auto *TII = Subtarget.getInstrInfo();
215   assert(TII && "Expected target instruction info");
216   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
217   for (const auto &I : Flags)
218     Names2DirectTargetFlags.insert(
219         std::make_pair(StringRef(I.second), I.first));
220 }
221 
222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
223                                                   unsigned &Flag) {
224   initNames2DirectTargetFlags();
225   auto FlagInfo = Names2DirectTargetFlags.find(Name);
226   if (FlagInfo == Names2DirectTargetFlags.end())
227     return true;
228   Flag = FlagInfo->second;
229   return false;
230 }
231 
232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
233   if (!Names2BitmaskTargetFlags.empty())
234     return;
235 
236   const auto *TII = Subtarget.getInstrInfo();
237   assert(TII && "Expected target instruction info");
238   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
239   for (const auto &I : Flags)
240     Names2BitmaskTargetFlags.insert(
241         std::make_pair(StringRef(I.second), I.first));
242 }
243 
244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
245                                                    unsigned &Flag) {
246   initNames2BitmaskTargetFlags();
247   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
248   if (FlagInfo == Names2BitmaskTargetFlags.end())
249     return true;
250   Flag = FlagInfo->second;
251   return false;
252 }
253 
254 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
255   if (!Names2MMOTargetFlags.empty())
256     return;
257 
258   const auto *TII = Subtarget.getInstrInfo();
259   assert(TII && "Expected target instruction info");
260   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
261   for (const auto &I : Flags)
262     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
263 }
264 
265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
266                                                MachineMemOperand::Flags &Flag) {
267   initNames2MMOTargetFlags();
268   auto FlagInfo = Names2MMOTargetFlags.find(Name);
269   if (FlagInfo == Names2MMOTargetFlags.end())
270     return true;
271   Flag = FlagInfo->second;
272   return false;
273 }
274 
275 void PerTargetMIParsingState::initNames2RegClasses() {
276   if (!Names2RegClasses.empty())
277     return;
278 
279   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
280   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
281     const auto *RC = TRI->getRegClass(I);
282     Names2RegClasses.insert(
283         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
284   }
285 }
286 
287 void PerTargetMIParsingState::initNames2RegBanks() {
288   if (!Names2RegBanks.empty())
289     return;
290 
291   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
292   // If the target does not support GlobalISel, we may not have a
293   // register bank info.
294   if (!RBI)
295     return;
296 
297   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
298     const auto &RegBank = RBI->getRegBank(I);
299     Names2RegBanks.insert(
300         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
301   }
302 }
303 
304 const TargetRegisterClass *
305 PerTargetMIParsingState::getRegClass(StringRef Name) {
306   auto RegClassInfo = Names2RegClasses.find(Name);
307   if (RegClassInfo == Names2RegClasses.end())
308     return nullptr;
309   return RegClassInfo->getValue();
310 }
311 
312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
313   auto RegBankInfo = Names2RegBanks.find(Name);
314   if (RegBankInfo == Names2RegBanks.end())
315     return nullptr;
316   return RegBankInfo->getValue();
317 }
318 
319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
320     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
321   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
322 }
323 
324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
325   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
326   if (I.second) {
327     MachineRegisterInfo &MRI = MF.getRegInfo();
328     VRegInfo *Info = new (Allocator) VRegInfo;
329     Info->VReg = MRI.createIncompleteVirtualRegister();
330     I.first->second = Info;
331   }
332   return *I.first->second;
333 }
334 
335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
336   assert(RegName != "" && "Expected named reg.");
337 
338   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
339   if (I.second) {
340     VRegInfo *Info = new (Allocator) VRegInfo;
341     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
342     I.first->second = Info;
343   }
344   return *I.first->second;
345 }
346 
347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
348                            DenseMap<unsigned, const Value *> &Slots2Values) {
349   int Slot = MST.getLocalSlot(V);
350   if (Slot == -1)
351     return;
352   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
353 }
354 
355 /// Creates the mapping from slot numbers to function's unnamed IR values.
356 static void initSlots2Values(const Function &F,
357                              DenseMap<unsigned, const Value *> &Slots2Values) {
358   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
359   MST.incorporateFunction(F);
360   for (const auto &Arg : F.args())
361     mapValueToSlot(&Arg, MST, Slots2Values);
362   for (const auto &BB : F) {
363     mapValueToSlot(&BB, MST, Slots2Values);
364     for (const auto &I : BB)
365       mapValueToSlot(&I, MST, Slots2Values);
366   }
367 }
368 
369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
370   if (Slots2Values.empty())
371     initSlots2Values(MF.getFunction(), Slots2Values);
372   return Slots2Values.lookup(Slot);
373 }
374 
375 namespace {
376 
377 /// A wrapper struct around the 'MachineOperand' struct that includes a source
378 /// range and other attributes.
379 struct ParsedMachineOperand {
380   MachineOperand Operand;
381   StringRef::iterator Begin;
382   StringRef::iterator End;
383   Optional<unsigned> TiedDefIdx;
384 
385   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
386                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
387       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
388     if (TiedDefIdx)
389       assert(Operand.isReg() && Operand.isUse() &&
390              "Only used register operands can be tied");
391   }
392 };
393 
394 class MIParser {
395   MachineFunction &MF;
396   SMDiagnostic &Error;
397   StringRef Source, CurrentSource;
398   SMRange SourceRange;
399   MIToken Token;
400   PerFunctionMIParsingState &PFS;
401   /// Maps from slot numbers to function's unnamed basic blocks.
402   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
403 
404 public:
405   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
406            StringRef Source);
407   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
408            StringRef Source, SMRange SourceRange);
409 
410   /// \p SkipChar gives the number of characters to skip before looking
411   /// for the next token.
412   void lex(unsigned SkipChar = 0);
413 
414   /// Report an error at the current location with the given message.
415   ///
416   /// This function always return true.
417   bool error(const Twine &Msg);
418 
419   /// Report an error at the given location with the given message.
420   ///
421   /// This function always return true.
422   bool error(StringRef::iterator Loc, const Twine &Msg);
423 
424   bool
425   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
426   bool parseBasicBlocks();
427   bool parse(MachineInstr *&MI);
428   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
429   bool parseStandaloneNamedRegister(Register &Reg);
430   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
431   bool parseStandaloneRegister(Register &Reg);
432   bool parseStandaloneStackObject(int &FI);
433   bool parseStandaloneMDNode(MDNode *&Node);
434   bool parseMachineMetadata();
435   bool parseMDTuple(MDNode *&MD, bool IsDistinct);
436   bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
437   bool parseMetadata(Metadata *&MD);
438 
439   bool
440   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
441   bool parseBasicBlock(MachineBasicBlock &MBB,
442                        MachineBasicBlock *&AddFalthroughFrom);
443   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
444   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
445 
446   bool parseNamedRegister(Register &Reg);
447   bool parseVirtualRegister(VRegInfo *&Info);
448   bool parseNamedVirtualRegister(VRegInfo *&Info);
449   bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
450   bool parseRegisterFlag(unsigned &Flags);
451   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
452   bool parseSubRegisterIndex(unsigned &SubReg);
453   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
454   bool parseRegisterOperand(MachineOperand &Dest,
455                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
456   bool parseImmediateOperand(MachineOperand &Dest);
457   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
458                        const Constant *&C);
459   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
460   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
461   bool parseTypedImmediateOperand(MachineOperand &Dest);
462   bool parseFPImmediateOperand(MachineOperand &Dest);
463   bool parseMBBReference(MachineBasicBlock *&MBB);
464   bool parseMBBOperand(MachineOperand &Dest);
465   bool parseStackFrameIndex(int &FI);
466   bool parseStackObjectOperand(MachineOperand &Dest);
467   bool parseFixedStackFrameIndex(int &FI);
468   bool parseFixedStackObjectOperand(MachineOperand &Dest);
469   bool parseGlobalValue(GlobalValue *&GV);
470   bool parseGlobalAddressOperand(MachineOperand &Dest);
471   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
472   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
473   bool parseJumpTableIndexOperand(MachineOperand &Dest);
474   bool parseExternalSymbolOperand(MachineOperand &Dest);
475   bool parseMCSymbolOperand(MachineOperand &Dest);
476   bool parseMDNode(MDNode *&Node);
477   bool parseDIExpression(MDNode *&Expr);
478   bool parseDILocation(MDNode *&Expr);
479   bool parseMetadataOperand(MachineOperand &Dest);
480   bool parseCFIOffset(int &Offset);
481   bool parseCFIRegister(Register &Reg);
482   bool parseCFIAddressSpace(unsigned &AddressSpace);
483   bool parseCFIEscapeValues(std::string& Values);
484   bool parseCFIOperand(MachineOperand &Dest);
485   bool parseIRBlock(BasicBlock *&BB, const Function &F);
486   bool parseBlockAddressOperand(MachineOperand &Dest);
487   bool parseIntrinsicOperand(MachineOperand &Dest);
488   bool parsePredicateOperand(MachineOperand &Dest);
489   bool parseShuffleMaskOperand(MachineOperand &Dest);
490   bool parseTargetIndexOperand(MachineOperand &Dest);
491   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
492   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
493   bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
494                            MachineOperand &Dest,
495                            Optional<unsigned> &TiedDefIdx);
496   bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
497                                          const unsigned OpIdx,
498                                          MachineOperand &Dest,
499                                          Optional<unsigned> &TiedDefIdx);
500   bool parseOffset(int64_t &Offset);
501   bool parseAlignment(uint64_t &Alignment);
502   bool parseAddrspace(unsigned &Addrspace);
503   bool parseSectionID(Optional<MBBSectionID> &SID);
504   bool parseOperandsOffset(MachineOperand &Op);
505   bool parseIRValue(const Value *&V);
506   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
507   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
508   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
509   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
510   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
511   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
512   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
513   bool parseHeapAllocMarker(MDNode *&Node);
514 
515   bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
516                               MachineOperand &Dest, const MIRFormatter &MF);
517 
518 private:
519   /// Convert the integer literal in the current token into an unsigned integer.
520   ///
521   /// Return true if an error occurred.
522   bool getUnsigned(unsigned &Result);
523 
524   /// Convert the integer literal in the current token into an uint64.
525   ///
526   /// Return true if an error occurred.
527   bool getUint64(uint64_t &Result);
528 
529   /// Convert the hexadecimal literal in the current token into an unsigned
530   ///  APInt with a minimum bitwidth required to represent the value.
531   ///
532   /// Return true if the literal does not represent an integer value.
533   bool getHexUint(APInt &Result);
534 
535   /// If the current token is of the given kind, consume it and return false.
536   /// Otherwise report an error and return true.
537   bool expectAndConsume(MIToken::TokenKind TokenKind);
538 
539   /// If the current token is of the given kind, consume it and return true.
540   /// Otherwise return false.
541   bool consumeIfPresent(MIToken::TokenKind TokenKind);
542 
543   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
544 
545   bool assignRegisterTies(MachineInstr &MI,
546                           ArrayRef<ParsedMachineOperand> Operands);
547 
548   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
549                               const MCInstrDesc &MCID);
550 
551   const BasicBlock *getIRBlock(unsigned Slot);
552   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
553 
554   /// Get or create an MCSymbol for a given name.
555   MCSymbol *getOrCreateMCSymbol(StringRef Name);
556 
557   /// parseStringConstant
558   ///   ::= StringConstant
559   bool parseStringConstant(std::string &Result);
560 
561   /// Map the location in the MI string to the corresponding location specified
562   /// in `SourceRange`.
563   SMLoc mapSMLoc(StringRef::iterator Loc);
564 };
565 
566 } // end anonymous namespace
567 
568 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
569                    StringRef Source)
570     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
571 {}
572 
573 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
574                    StringRef Source, SMRange SourceRange)
575     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source),
576       SourceRange(SourceRange), PFS(PFS) {}
577 
578 void MIParser::lex(unsigned SkipChar) {
579   CurrentSource = lexMIToken(
580       CurrentSource.slice(SkipChar, StringRef::npos), Token,
581       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
582 }
583 
584 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
585 
586 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
587   const SourceMgr &SM = *PFS.SM;
588   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
589   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
590   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
591     // Create an ordinary diagnostic when the source manager's buffer is the
592     // source string.
593     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
594     return true;
595   }
596   // Create a diagnostic for a YAML string literal.
597   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
598                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
599                        Source, None, None);
600   return true;
601 }
602 
603 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) {
604   assert(SourceRange.isValid() && "Invalid source range");
605   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
606   return SMLoc::getFromPointer(SourceRange.Start.getPointer() +
607                                (Loc - Source.data()));
608 }
609 
610 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
611     ErrorCallbackType;
612 
613 static const char *toString(MIToken::TokenKind TokenKind) {
614   switch (TokenKind) {
615   case MIToken::comma:
616     return "','";
617   case MIToken::equal:
618     return "'='";
619   case MIToken::colon:
620     return "':'";
621   case MIToken::lparen:
622     return "'('";
623   case MIToken::rparen:
624     return "')'";
625   default:
626     return "<unknown token>";
627   }
628 }
629 
630 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
631   if (Token.isNot(TokenKind))
632     return error(Twine("expected ") + toString(TokenKind));
633   lex();
634   return false;
635 }
636 
637 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
638   if (Token.isNot(TokenKind))
639     return false;
640   lex();
641   return true;
642 }
643 
644 // Parse Machine Basic Block Section ID.
645 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) {
646   assert(Token.is(MIToken::kw_bbsections));
647   lex();
648   if (Token.is(MIToken::IntegerLiteral)) {
649     unsigned Value = 0;
650     if (getUnsigned(Value))
651       return error("Unknown Section ID");
652     SID = MBBSectionID{Value};
653   } else {
654     const StringRef &S = Token.stringValue();
655     if (S == "Exception")
656       SID = MBBSectionID::ExceptionSectionID;
657     else if (S == "Cold")
658       SID = MBBSectionID::ColdSectionID;
659     else
660       return error("Unknown Section ID");
661   }
662   lex();
663   return false;
664 }
665 
666 bool MIParser::parseBasicBlockDefinition(
667     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
668   assert(Token.is(MIToken::MachineBasicBlockLabel));
669   unsigned ID = 0;
670   if (getUnsigned(ID))
671     return true;
672   auto Loc = Token.location();
673   auto Name = Token.stringValue();
674   lex();
675   bool HasAddressTaken = false;
676   bool IsLandingPad = false;
677   bool IsEHFuncletEntry = false;
678   Optional<MBBSectionID> SectionID;
679   uint64_t Alignment = 0;
680   BasicBlock *BB = nullptr;
681   if (consumeIfPresent(MIToken::lparen)) {
682     do {
683       // TODO: Report an error when multiple same attributes are specified.
684       switch (Token.kind()) {
685       case MIToken::kw_address_taken:
686         HasAddressTaken = true;
687         lex();
688         break;
689       case MIToken::kw_landing_pad:
690         IsLandingPad = true;
691         lex();
692         break;
693       case MIToken::kw_ehfunclet_entry:
694         IsEHFuncletEntry = true;
695         lex();
696         break;
697       case MIToken::kw_align:
698         if (parseAlignment(Alignment))
699           return true;
700         break;
701       case MIToken::IRBlock:
702         // TODO: Report an error when both name and ir block are specified.
703         if (parseIRBlock(BB, MF.getFunction()))
704           return true;
705         lex();
706         break;
707       case MIToken::kw_bbsections:
708         if (parseSectionID(SectionID))
709           return true;
710         break;
711       default:
712         break;
713       }
714     } while (consumeIfPresent(MIToken::comma));
715     if (expectAndConsume(MIToken::rparen))
716       return true;
717   }
718   if (expectAndConsume(MIToken::colon))
719     return true;
720 
721   if (!Name.empty()) {
722     BB = dyn_cast_or_null<BasicBlock>(
723         MF.getFunction().getValueSymbolTable()->lookup(Name));
724     if (!BB)
725       return error(Loc, Twine("basic block '") + Name +
726                             "' is not defined in the function '" +
727                             MF.getName() + "'");
728   }
729   auto *MBB = MF.CreateMachineBasicBlock(BB);
730   MF.insert(MF.end(), MBB);
731   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
732   if (!WasInserted)
733     return error(Loc, Twine("redefinition of machine basic block with id #") +
734                           Twine(ID));
735   if (Alignment)
736     MBB->setAlignment(Align(Alignment));
737   if (HasAddressTaken)
738     MBB->setHasAddressTaken();
739   MBB->setIsEHPad(IsLandingPad);
740   MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
741   if (SectionID.hasValue()) {
742     MBB->setSectionID(SectionID.getValue());
743     MF.setBBSectionsType(BasicBlockSection::List);
744   }
745   return false;
746 }
747 
748 bool MIParser::parseBasicBlockDefinitions(
749     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
750   lex();
751   // Skip until the first machine basic block.
752   while (Token.is(MIToken::Newline))
753     lex();
754   if (Token.isErrorOrEOF())
755     return Token.isError();
756   if (Token.isNot(MIToken::MachineBasicBlockLabel))
757     return error("expected a basic block definition before instructions");
758   unsigned BraceDepth = 0;
759   do {
760     if (parseBasicBlockDefinition(MBBSlots))
761       return true;
762     bool IsAfterNewline = false;
763     // Skip until the next machine basic block.
764     while (true) {
765       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
766           Token.isErrorOrEOF())
767         break;
768       else if (Token.is(MIToken::MachineBasicBlockLabel))
769         return error("basic block definition should be located at the start of "
770                      "the line");
771       else if (consumeIfPresent(MIToken::Newline)) {
772         IsAfterNewline = true;
773         continue;
774       }
775       IsAfterNewline = false;
776       if (Token.is(MIToken::lbrace))
777         ++BraceDepth;
778       if (Token.is(MIToken::rbrace)) {
779         if (!BraceDepth)
780           return error("extraneous closing brace ('}')");
781         --BraceDepth;
782       }
783       lex();
784     }
785     // Verify that we closed all of the '{' at the end of a file or a block.
786     if (!Token.isError() && BraceDepth)
787       return error("expected '}'"); // FIXME: Report a note that shows '{'.
788   } while (!Token.isErrorOrEOF());
789   return Token.isError();
790 }
791 
792 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
793   assert(Token.is(MIToken::kw_liveins));
794   lex();
795   if (expectAndConsume(MIToken::colon))
796     return true;
797   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
798     return false;
799   do {
800     if (Token.isNot(MIToken::NamedRegister))
801       return error("expected a named register");
802     Register Reg;
803     if (parseNamedRegister(Reg))
804       return true;
805     lex();
806     LaneBitmask Mask = LaneBitmask::getAll();
807     if (consumeIfPresent(MIToken::colon)) {
808       // Parse lane mask.
809       if (Token.isNot(MIToken::IntegerLiteral) &&
810           Token.isNot(MIToken::HexLiteral))
811         return error("expected a lane mask");
812       static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
813                     "Use correct get-function for lane mask");
814       LaneBitmask::Type V;
815       if (getUint64(V))
816         return error("invalid lane mask value");
817       Mask = LaneBitmask(V);
818       lex();
819     }
820     MBB.addLiveIn(Reg, Mask);
821   } while (consumeIfPresent(MIToken::comma));
822   return false;
823 }
824 
825 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
826   assert(Token.is(MIToken::kw_successors));
827   lex();
828   if (expectAndConsume(MIToken::colon))
829     return true;
830   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
831     return false;
832   do {
833     if (Token.isNot(MIToken::MachineBasicBlock))
834       return error("expected a machine basic block reference");
835     MachineBasicBlock *SuccMBB = nullptr;
836     if (parseMBBReference(SuccMBB))
837       return true;
838     lex();
839     unsigned Weight = 0;
840     if (consumeIfPresent(MIToken::lparen)) {
841       if (Token.isNot(MIToken::IntegerLiteral) &&
842           Token.isNot(MIToken::HexLiteral))
843         return error("expected an integer literal after '('");
844       if (getUnsigned(Weight))
845         return true;
846       lex();
847       if (expectAndConsume(MIToken::rparen))
848         return true;
849     }
850     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
851   } while (consumeIfPresent(MIToken::comma));
852   MBB.normalizeSuccProbs();
853   return false;
854 }
855 
856 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
857                                MachineBasicBlock *&AddFalthroughFrom) {
858   // Skip the definition.
859   assert(Token.is(MIToken::MachineBasicBlockLabel));
860   lex();
861   if (consumeIfPresent(MIToken::lparen)) {
862     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
863       lex();
864     consumeIfPresent(MIToken::rparen);
865   }
866   consumeIfPresent(MIToken::colon);
867 
868   // Parse the liveins and successors.
869   // N.B: Multiple lists of successors and liveins are allowed and they're
870   // merged into one.
871   // Example:
872   //   liveins: %edi
873   //   liveins: %esi
874   //
875   // is equivalent to
876   //   liveins: %edi, %esi
877   bool ExplicitSuccessors = false;
878   while (true) {
879     if (Token.is(MIToken::kw_successors)) {
880       if (parseBasicBlockSuccessors(MBB))
881         return true;
882       ExplicitSuccessors = true;
883     } else if (Token.is(MIToken::kw_liveins)) {
884       if (parseBasicBlockLiveins(MBB))
885         return true;
886     } else if (consumeIfPresent(MIToken::Newline)) {
887       continue;
888     } else
889       break;
890     if (!Token.isNewlineOrEOF())
891       return error("expected line break at the end of a list");
892     lex();
893   }
894 
895   // Parse the instructions.
896   bool IsInBundle = false;
897   MachineInstr *PrevMI = nullptr;
898   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
899          !Token.is(MIToken::Eof)) {
900     if (consumeIfPresent(MIToken::Newline))
901       continue;
902     if (consumeIfPresent(MIToken::rbrace)) {
903       // The first parsing pass should verify that all closing '}' have an
904       // opening '{'.
905       assert(IsInBundle);
906       IsInBundle = false;
907       continue;
908     }
909     MachineInstr *MI = nullptr;
910     if (parse(MI))
911       return true;
912     MBB.insert(MBB.end(), MI);
913     if (IsInBundle) {
914       PrevMI->setFlag(MachineInstr::BundledSucc);
915       MI->setFlag(MachineInstr::BundledPred);
916     }
917     PrevMI = MI;
918     if (Token.is(MIToken::lbrace)) {
919       if (IsInBundle)
920         return error("nested instruction bundles are not allowed");
921       lex();
922       // This instruction is the start of the bundle.
923       MI->setFlag(MachineInstr::BundledSucc);
924       IsInBundle = true;
925       if (!Token.is(MIToken::Newline))
926         // The next instruction can be on the same line.
927         continue;
928     }
929     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
930     lex();
931   }
932 
933   // Construct successor list by searching for basic block machine operands.
934   if (!ExplicitSuccessors) {
935     SmallVector<MachineBasicBlock*,4> Successors;
936     bool IsFallthrough;
937     guessSuccessors(MBB, Successors, IsFallthrough);
938     for (MachineBasicBlock *Succ : Successors)
939       MBB.addSuccessor(Succ);
940 
941     if (IsFallthrough) {
942       AddFalthroughFrom = &MBB;
943     } else {
944       MBB.normalizeSuccProbs();
945     }
946   }
947 
948   return false;
949 }
950 
951 bool MIParser::parseBasicBlocks() {
952   lex();
953   // Skip until the first machine basic block.
954   while (Token.is(MIToken::Newline))
955     lex();
956   if (Token.isErrorOrEOF())
957     return Token.isError();
958   // The first parsing pass should have verified that this token is a MBB label
959   // in the 'parseBasicBlockDefinitions' method.
960   assert(Token.is(MIToken::MachineBasicBlockLabel));
961   MachineBasicBlock *AddFalthroughFrom = nullptr;
962   do {
963     MachineBasicBlock *MBB = nullptr;
964     if (parseMBBReference(MBB))
965       return true;
966     if (AddFalthroughFrom) {
967       if (!AddFalthroughFrom->isSuccessor(MBB))
968         AddFalthroughFrom->addSuccessor(MBB);
969       AddFalthroughFrom->normalizeSuccProbs();
970       AddFalthroughFrom = nullptr;
971     }
972     if (parseBasicBlock(*MBB, AddFalthroughFrom))
973       return true;
974     // The method 'parseBasicBlock' should parse the whole block until the next
975     // block or the end of file.
976     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
977   } while (Token.isNot(MIToken::Eof));
978   return false;
979 }
980 
981 bool MIParser::parse(MachineInstr *&MI) {
982   // Parse any register operands before '='
983   MachineOperand MO = MachineOperand::CreateImm(0);
984   SmallVector<ParsedMachineOperand, 8> Operands;
985   while (Token.isRegister() || Token.isRegisterFlag()) {
986     auto Loc = Token.location();
987     Optional<unsigned> TiedDefIdx;
988     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
989       return true;
990     Operands.push_back(
991         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
992     if (Token.isNot(MIToken::comma))
993       break;
994     lex();
995   }
996   if (!Operands.empty() && expectAndConsume(MIToken::equal))
997     return true;
998 
999   unsigned OpCode, Flags = 0;
1000   if (Token.isError() || parseInstruction(OpCode, Flags))
1001     return true;
1002 
1003   // Parse the remaining machine operands.
1004   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
1005          Token.isNot(MIToken::kw_post_instr_symbol) &&
1006          Token.isNot(MIToken::kw_heap_alloc_marker) &&
1007          Token.isNot(MIToken::kw_debug_location) &&
1008          Token.isNot(MIToken::kw_debug_instr_number) &&
1009          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
1010     auto Loc = Token.location();
1011     Optional<unsigned> TiedDefIdx;
1012     if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
1013       return true;
1014     Operands.push_back(
1015         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1016     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
1017         Token.is(MIToken::lbrace))
1018       break;
1019     if (Token.isNot(MIToken::comma))
1020       return error("expected ',' before the next machine operand");
1021     lex();
1022   }
1023 
1024   MCSymbol *PreInstrSymbol = nullptr;
1025   if (Token.is(MIToken::kw_pre_instr_symbol))
1026     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1027       return true;
1028   MCSymbol *PostInstrSymbol = nullptr;
1029   if (Token.is(MIToken::kw_post_instr_symbol))
1030     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1031       return true;
1032   MDNode *HeapAllocMarker = nullptr;
1033   if (Token.is(MIToken::kw_heap_alloc_marker))
1034     if (parseHeapAllocMarker(HeapAllocMarker))
1035       return true;
1036 
1037   unsigned InstrNum = 0;
1038   if (Token.is(MIToken::kw_debug_instr_number)) {
1039     lex();
1040     if (Token.isNot(MIToken::IntegerLiteral))
1041       return error("expected an integer literal after 'debug-instr-number'");
1042     if (getUnsigned(InstrNum))
1043       return true;
1044     lex();
1045     // Lex past trailing comma if present.
1046     if (Token.is(MIToken::comma))
1047       lex();
1048   }
1049 
1050   DebugLoc DebugLocation;
1051   if (Token.is(MIToken::kw_debug_location)) {
1052     lex();
1053     MDNode *Node = nullptr;
1054     if (Token.is(MIToken::exclaim)) {
1055       if (parseMDNode(Node))
1056         return true;
1057     } else if (Token.is(MIToken::md_dilocation)) {
1058       if (parseDILocation(Node))
1059         return true;
1060     } else
1061       return error("expected a metadata node after 'debug-location'");
1062     if (!isa<DILocation>(Node))
1063       return error("referenced metadata is not a DILocation");
1064     DebugLocation = DebugLoc(Node);
1065   }
1066 
1067   // Parse the machine memory operands.
1068   SmallVector<MachineMemOperand *, 2> MemOperands;
1069   if (Token.is(MIToken::coloncolon)) {
1070     lex();
1071     while (!Token.isNewlineOrEOF()) {
1072       MachineMemOperand *MemOp = nullptr;
1073       if (parseMachineMemoryOperand(MemOp))
1074         return true;
1075       MemOperands.push_back(MemOp);
1076       if (Token.isNewlineOrEOF())
1077         break;
1078       if (Token.isNot(MIToken::comma))
1079         return error("expected ',' before the next machine memory operand");
1080       lex();
1081     }
1082   }
1083 
1084   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1085   if (!MCID.isVariadic()) {
1086     // FIXME: Move the implicit operand verification to the machine verifier.
1087     if (verifyImplicitOperands(Operands, MCID))
1088       return true;
1089   }
1090 
1091   // TODO: Check for extraneous machine operands.
1092   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1093   MI->setFlags(Flags);
1094   for (const auto &Operand : Operands)
1095     MI->addOperand(MF, Operand.Operand);
1096   if (assignRegisterTies(*MI, Operands))
1097     return true;
1098   if (PreInstrSymbol)
1099     MI->setPreInstrSymbol(MF, PreInstrSymbol);
1100   if (PostInstrSymbol)
1101     MI->setPostInstrSymbol(MF, PostInstrSymbol);
1102   if (HeapAllocMarker)
1103     MI->setHeapAllocMarker(MF, HeapAllocMarker);
1104   if (!MemOperands.empty())
1105     MI->setMemRefs(MF, MemOperands);
1106   if (InstrNum)
1107     MI->setDebugInstrNum(InstrNum);
1108   return false;
1109 }
1110 
1111 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1112   lex();
1113   if (Token.isNot(MIToken::MachineBasicBlock))
1114     return error("expected a machine basic block reference");
1115   if (parseMBBReference(MBB))
1116     return true;
1117   lex();
1118   if (Token.isNot(MIToken::Eof))
1119     return error(
1120         "expected end of string after the machine basic block reference");
1121   return false;
1122 }
1123 
1124 bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1125   lex();
1126   if (Token.isNot(MIToken::NamedRegister))
1127     return error("expected a named register");
1128   if (parseNamedRegister(Reg))
1129     return true;
1130   lex();
1131   if (Token.isNot(MIToken::Eof))
1132     return error("expected end of string after the register reference");
1133   return false;
1134 }
1135 
1136 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1137   lex();
1138   if (Token.isNot(MIToken::VirtualRegister))
1139     return error("expected a virtual register");
1140   if (parseVirtualRegister(Info))
1141     return true;
1142   lex();
1143   if (Token.isNot(MIToken::Eof))
1144     return error("expected end of string after the register reference");
1145   return false;
1146 }
1147 
1148 bool MIParser::parseStandaloneRegister(Register &Reg) {
1149   lex();
1150   if (Token.isNot(MIToken::NamedRegister) &&
1151       Token.isNot(MIToken::VirtualRegister))
1152     return error("expected either a named or virtual register");
1153 
1154   VRegInfo *Info;
1155   if (parseRegister(Reg, Info))
1156     return true;
1157 
1158   lex();
1159   if (Token.isNot(MIToken::Eof))
1160     return error("expected end of string after the register reference");
1161   return false;
1162 }
1163 
1164 bool MIParser::parseStandaloneStackObject(int &FI) {
1165   lex();
1166   if (Token.isNot(MIToken::StackObject))
1167     return error("expected a stack object");
1168   if (parseStackFrameIndex(FI))
1169     return true;
1170   if (Token.isNot(MIToken::Eof))
1171     return error("expected end of string after the stack object reference");
1172   return false;
1173 }
1174 
1175 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1176   lex();
1177   if (Token.is(MIToken::exclaim)) {
1178     if (parseMDNode(Node))
1179       return true;
1180   } else if (Token.is(MIToken::md_diexpr)) {
1181     if (parseDIExpression(Node))
1182       return true;
1183   } else if (Token.is(MIToken::md_dilocation)) {
1184     if (parseDILocation(Node))
1185       return true;
1186   } else
1187     return error("expected a metadata node");
1188   if (Token.isNot(MIToken::Eof))
1189     return error("expected end of string after the metadata node");
1190   return false;
1191 }
1192 
1193 bool MIParser::parseMachineMetadata() {
1194   lex();
1195   if (Token.isNot(MIToken::exclaim))
1196     return error("expected a metadata node");
1197 
1198   lex();
1199   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1200     return error("expected metadata id after '!'");
1201   unsigned ID = 0;
1202   if (getUnsigned(ID))
1203     return true;
1204   lex();
1205   if (expectAndConsume(MIToken::equal))
1206     return true;
1207   bool IsDistinct = Token.is(MIToken::kw_distinct);
1208   if (IsDistinct)
1209     lex();
1210   if (Token.isNot(MIToken::exclaim))
1211     return error("expected a metadata node");
1212   lex();
1213 
1214   MDNode *MD;
1215   if (parseMDTuple(MD, IsDistinct))
1216     return true;
1217 
1218   auto FI = PFS.MachineForwardRefMDNodes.find(ID);
1219   if (FI != PFS.MachineForwardRefMDNodes.end()) {
1220     FI->second.first->replaceAllUsesWith(MD);
1221     PFS.MachineForwardRefMDNodes.erase(FI);
1222 
1223     assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work");
1224   } else {
1225     if (PFS.MachineMetadataNodes.count(ID))
1226       return error("Metadata id is already used");
1227     PFS.MachineMetadataNodes[ID].reset(MD);
1228   }
1229 
1230   return false;
1231 }
1232 
1233 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
1234   SmallVector<Metadata *, 16> Elts;
1235   if (parseMDNodeVector(Elts))
1236     return true;
1237   MD = (IsDistinct ? MDTuple::getDistinct
1238                    : MDTuple::get)(MF.getFunction().getContext(), Elts);
1239   return false;
1240 }
1241 
1242 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
1243   if (Token.isNot(MIToken::lbrace))
1244     return error("expected '{' here");
1245   lex();
1246 
1247   if (Token.is(MIToken::rbrace)) {
1248     lex();
1249     return false;
1250   }
1251 
1252   do {
1253     Metadata *MD;
1254     if (parseMetadata(MD))
1255       return true;
1256 
1257     Elts.push_back(MD);
1258 
1259     if (Token.isNot(MIToken::comma))
1260       break;
1261     lex();
1262   } while (true);
1263 
1264   if (Token.isNot(MIToken::rbrace))
1265     return error("expected end of metadata node");
1266   lex();
1267 
1268   return false;
1269 }
1270 
1271 // ::= !42
1272 // ::= !"string"
1273 bool MIParser::parseMetadata(Metadata *&MD) {
1274   if (Token.isNot(MIToken::exclaim))
1275     return error("expected '!' here");
1276   lex();
1277 
1278   if (Token.is(MIToken::StringConstant)) {
1279     std::string Str;
1280     if (parseStringConstant(Str))
1281       return true;
1282     MD = MDString::get(MF.getFunction().getContext(), Str);
1283     return false;
1284   }
1285 
1286   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1287     return error("expected metadata id after '!'");
1288 
1289   SMLoc Loc = mapSMLoc(Token.location());
1290 
1291   unsigned ID = 0;
1292   if (getUnsigned(ID))
1293     return true;
1294   lex();
1295 
1296   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1297   if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) {
1298     MD = NodeInfo->second.get();
1299     return false;
1300   }
1301   // Check machine metadata.
1302   NodeInfo = PFS.MachineMetadataNodes.find(ID);
1303   if (NodeInfo != PFS.MachineMetadataNodes.end()) {
1304     MD = NodeInfo->second.get();
1305     return false;
1306   }
1307   // Forward reference.
1308   auto &FwdRef = PFS.MachineForwardRefMDNodes[ID];
1309   FwdRef = std::make_pair(
1310       MDTuple::getTemporary(MF.getFunction().getContext(), None), Loc);
1311   PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get());
1312   MD = FwdRef.first.get();
1313 
1314   return false;
1315 }
1316 
1317 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1318   assert(MO.isImplicit());
1319   return MO.isDef() ? "implicit-def" : "implicit";
1320 }
1321 
1322 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1323                                    Register Reg) {
1324   assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1325   return StringRef(TRI->getName(Reg)).lower();
1326 }
1327 
1328 /// Return true if the parsed machine operands contain a given machine operand.
1329 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1330                                 ArrayRef<ParsedMachineOperand> Operands) {
1331   for (const auto &I : Operands) {
1332     if (ImplicitOperand.isIdenticalTo(I.Operand))
1333       return true;
1334   }
1335   return false;
1336 }
1337 
1338 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1339                                       const MCInstrDesc &MCID) {
1340   if (MCID.isCall())
1341     // We can't verify call instructions as they can contain arbitrary implicit
1342     // register and register mask operands.
1343     return false;
1344 
1345   // Gather all the expected implicit operands.
1346   SmallVector<MachineOperand, 4> ImplicitOperands;
1347   if (MCID.ImplicitDefs)
1348     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1349       ImplicitOperands.push_back(
1350           MachineOperand::CreateReg(*ImpDefs, true, true));
1351   if (MCID.ImplicitUses)
1352     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1353       ImplicitOperands.push_back(
1354           MachineOperand::CreateReg(*ImpUses, false, true));
1355 
1356   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1357   assert(TRI && "Expected target register info");
1358   for (const auto &I : ImplicitOperands) {
1359     if (isImplicitOperandIn(I, Operands))
1360       continue;
1361     return error(Operands.empty() ? Token.location() : Operands.back().End,
1362                  Twine("missing implicit register operand '") +
1363                      printImplicitRegisterFlag(I) + " $" +
1364                      getRegisterName(TRI, I.getReg()) + "'");
1365   }
1366   return false;
1367 }
1368 
1369 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1370   // Allow frame and fast math flags for OPCODE
1371   while (Token.is(MIToken::kw_frame_setup) ||
1372          Token.is(MIToken::kw_frame_destroy) ||
1373          Token.is(MIToken::kw_nnan) ||
1374          Token.is(MIToken::kw_ninf) ||
1375          Token.is(MIToken::kw_nsz) ||
1376          Token.is(MIToken::kw_arcp) ||
1377          Token.is(MIToken::kw_contract) ||
1378          Token.is(MIToken::kw_afn) ||
1379          Token.is(MIToken::kw_reassoc) ||
1380          Token.is(MIToken::kw_nuw) ||
1381          Token.is(MIToken::kw_nsw) ||
1382          Token.is(MIToken::kw_exact) ||
1383          Token.is(MIToken::kw_nofpexcept)) {
1384     // Mine frame and fast math flags
1385     if (Token.is(MIToken::kw_frame_setup))
1386       Flags |= MachineInstr::FrameSetup;
1387     if (Token.is(MIToken::kw_frame_destroy))
1388       Flags |= MachineInstr::FrameDestroy;
1389     if (Token.is(MIToken::kw_nnan))
1390       Flags |= MachineInstr::FmNoNans;
1391     if (Token.is(MIToken::kw_ninf))
1392       Flags |= MachineInstr::FmNoInfs;
1393     if (Token.is(MIToken::kw_nsz))
1394       Flags |= MachineInstr::FmNsz;
1395     if (Token.is(MIToken::kw_arcp))
1396       Flags |= MachineInstr::FmArcp;
1397     if (Token.is(MIToken::kw_contract))
1398       Flags |= MachineInstr::FmContract;
1399     if (Token.is(MIToken::kw_afn))
1400       Flags |= MachineInstr::FmAfn;
1401     if (Token.is(MIToken::kw_reassoc))
1402       Flags |= MachineInstr::FmReassoc;
1403     if (Token.is(MIToken::kw_nuw))
1404       Flags |= MachineInstr::NoUWrap;
1405     if (Token.is(MIToken::kw_nsw))
1406       Flags |= MachineInstr::NoSWrap;
1407     if (Token.is(MIToken::kw_exact))
1408       Flags |= MachineInstr::IsExact;
1409     if (Token.is(MIToken::kw_nofpexcept))
1410       Flags |= MachineInstr::NoFPExcept;
1411 
1412     lex();
1413   }
1414   if (Token.isNot(MIToken::Identifier))
1415     return error("expected a machine instruction");
1416   StringRef InstrName = Token.stringValue();
1417   if (PFS.Target.parseInstrName(InstrName, OpCode))
1418     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1419   lex();
1420   return false;
1421 }
1422 
1423 bool MIParser::parseNamedRegister(Register &Reg) {
1424   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1425   StringRef Name = Token.stringValue();
1426   if (PFS.Target.getRegisterByName(Name, Reg))
1427     return error(Twine("unknown register name '") + Name + "'");
1428   return false;
1429 }
1430 
1431 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1432   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1433   StringRef Name = Token.stringValue();
1434   // TODO: Check that the VReg name is not the same as a physical register name.
1435   //       If it is, then print a warning (when warnings are implemented).
1436   Info = &PFS.getVRegInfoNamed(Name);
1437   return false;
1438 }
1439 
1440 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1441   if (Token.is(MIToken::NamedVirtualRegister))
1442     return parseNamedVirtualRegister(Info);
1443   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1444   unsigned ID;
1445   if (getUnsigned(ID))
1446     return true;
1447   Info = &PFS.getVRegInfo(ID);
1448   return false;
1449 }
1450 
1451 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1452   switch (Token.kind()) {
1453   case MIToken::underscore:
1454     Reg = 0;
1455     return false;
1456   case MIToken::NamedRegister:
1457     return parseNamedRegister(Reg);
1458   case MIToken::NamedVirtualRegister:
1459   case MIToken::VirtualRegister:
1460     if (parseVirtualRegister(Info))
1461       return true;
1462     Reg = Info->VReg;
1463     return false;
1464   // TODO: Parse other register kinds.
1465   default:
1466     llvm_unreachable("The current token should be a register");
1467   }
1468 }
1469 
1470 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1471   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1472     return error("expected '_', register class, or register bank name");
1473   StringRef::iterator Loc = Token.location();
1474   StringRef Name = Token.stringValue();
1475 
1476   // Was it a register class?
1477   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1478   if (RC) {
1479     lex();
1480 
1481     switch (RegInfo.Kind) {
1482     case VRegInfo::UNKNOWN:
1483     case VRegInfo::NORMAL:
1484       RegInfo.Kind = VRegInfo::NORMAL;
1485       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1486         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1487         return error(Loc, Twine("conflicting register classes, previously: ") +
1488                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1489       }
1490       RegInfo.D.RC = RC;
1491       RegInfo.Explicit = true;
1492       return false;
1493 
1494     case VRegInfo::GENERIC:
1495     case VRegInfo::REGBANK:
1496       return error(Loc, "register class specification on generic register");
1497     }
1498     llvm_unreachable("Unexpected register kind");
1499   }
1500 
1501   // Should be a register bank or a generic register.
1502   const RegisterBank *RegBank = nullptr;
1503   if (Name != "_") {
1504     RegBank = PFS.Target.getRegBank(Name);
1505     if (!RegBank)
1506       return error(Loc, "expected '_', register class, or register bank name");
1507   }
1508 
1509   lex();
1510 
1511   switch (RegInfo.Kind) {
1512   case VRegInfo::UNKNOWN:
1513   case VRegInfo::GENERIC:
1514   case VRegInfo::REGBANK:
1515     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1516     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1517       return error(Loc, "conflicting generic register banks");
1518     RegInfo.D.RegBank = RegBank;
1519     RegInfo.Explicit = true;
1520     return false;
1521 
1522   case VRegInfo::NORMAL:
1523     return error(Loc, "register bank specification on normal register");
1524   }
1525   llvm_unreachable("Unexpected register kind");
1526 }
1527 
1528 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1529   const unsigned OldFlags = Flags;
1530   switch (Token.kind()) {
1531   case MIToken::kw_implicit:
1532     Flags |= RegState::Implicit;
1533     break;
1534   case MIToken::kw_implicit_define:
1535     Flags |= RegState::ImplicitDefine;
1536     break;
1537   case MIToken::kw_def:
1538     Flags |= RegState::Define;
1539     break;
1540   case MIToken::kw_dead:
1541     Flags |= RegState::Dead;
1542     break;
1543   case MIToken::kw_killed:
1544     Flags |= RegState::Kill;
1545     break;
1546   case MIToken::kw_undef:
1547     Flags |= RegState::Undef;
1548     break;
1549   case MIToken::kw_internal:
1550     Flags |= RegState::InternalRead;
1551     break;
1552   case MIToken::kw_early_clobber:
1553     Flags |= RegState::EarlyClobber;
1554     break;
1555   case MIToken::kw_debug_use:
1556     Flags |= RegState::Debug;
1557     break;
1558   case MIToken::kw_renamable:
1559     Flags |= RegState::Renamable;
1560     break;
1561   default:
1562     llvm_unreachable("The current token should be a register flag");
1563   }
1564   if (OldFlags == Flags)
1565     // We know that the same flag is specified more than once when the flags
1566     // weren't modified.
1567     return error("duplicate '" + Token.stringValue() + "' register flag");
1568   lex();
1569   return false;
1570 }
1571 
1572 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1573   assert(Token.is(MIToken::dot));
1574   lex();
1575   if (Token.isNot(MIToken::Identifier))
1576     return error("expected a subregister index after '.'");
1577   auto Name = Token.stringValue();
1578   SubReg = PFS.Target.getSubRegIndex(Name);
1579   if (!SubReg)
1580     return error(Twine("use of unknown subregister index '") + Name + "'");
1581   lex();
1582   return false;
1583 }
1584 
1585 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1586   if (!consumeIfPresent(MIToken::kw_tied_def))
1587     return true;
1588   if (Token.isNot(MIToken::IntegerLiteral))
1589     return error("expected an integer literal after 'tied-def'");
1590   if (getUnsigned(TiedDefIdx))
1591     return true;
1592   lex();
1593   if (expectAndConsume(MIToken::rparen))
1594     return true;
1595   return false;
1596 }
1597 
1598 bool MIParser::assignRegisterTies(MachineInstr &MI,
1599                                   ArrayRef<ParsedMachineOperand> Operands) {
1600   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1601   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1602     if (!Operands[I].TiedDefIdx)
1603       continue;
1604     // The parser ensures that this operand is a register use, so we just have
1605     // to check the tied-def operand.
1606     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1607     if (DefIdx >= E)
1608       return error(Operands[I].Begin,
1609                    Twine("use of invalid tied-def operand index '" +
1610                          Twine(DefIdx) + "'; instruction has only ") +
1611                        Twine(E) + " operands");
1612     const auto &DefOperand = Operands[DefIdx].Operand;
1613     if (!DefOperand.isReg() || !DefOperand.isDef())
1614       // FIXME: add note with the def operand.
1615       return error(Operands[I].Begin,
1616                    Twine("use of invalid tied-def operand index '") +
1617                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1618                        " isn't a defined register");
1619     // Check that the tied-def operand wasn't tied elsewhere.
1620     for (const auto &TiedPair : TiedRegisterPairs) {
1621       if (TiedPair.first == DefIdx)
1622         return error(Operands[I].Begin,
1623                      Twine("the tied-def operand #") + Twine(DefIdx) +
1624                          " is already tied with another register operand");
1625     }
1626     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1627   }
1628   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1629   // indices must be less than tied max.
1630   for (const auto &TiedPair : TiedRegisterPairs)
1631     MI.tieOperands(TiedPair.first, TiedPair.second);
1632   return false;
1633 }
1634 
1635 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1636                                     Optional<unsigned> &TiedDefIdx,
1637                                     bool IsDef) {
1638   unsigned Flags = IsDef ? RegState::Define : 0;
1639   while (Token.isRegisterFlag()) {
1640     if (parseRegisterFlag(Flags))
1641       return true;
1642   }
1643   if (!Token.isRegister())
1644     return error("expected a register after register flags");
1645   Register Reg;
1646   VRegInfo *RegInfo;
1647   if (parseRegister(Reg, RegInfo))
1648     return true;
1649   lex();
1650   unsigned SubReg = 0;
1651   if (Token.is(MIToken::dot)) {
1652     if (parseSubRegisterIndex(SubReg))
1653       return true;
1654     if (!Register::isVirtualRegister(Reg))
1655       return error("subregister index expects a virtual register");
1656   }
1657   if (Token.is(MIToken::colon)) {
1658     if (!Register::isVirtualRegister(Reg))
1659       return error("register class specification expects a virtual register");
1660     lex();
1661     if (parseRegisterClassOrBank(*RegInfo))
1662         return true;
1663   }
1664   MachineRegisterInfo &MRI = MF.getRegInfo();
1665   if ((Flags & RegState::Define) == 0) {
1666     if (consumeIfPresent(MIToken::lparen)) {
1667       unsigned Idx;
1668       if (!parseRegisterTiedDefIndex(Idx))
1669         TiedDefIdx = Idx;
1670       else {
1671         // Try a redundant low-level type.
1672         LLT Ty;
1673         if (parseLowLevelType(Token.location(), Ty))
1674           return error("expected tied-def or low-level type after '('");
1675 
1676         if (expectAndConsume(MIToken::rparen))
1677           return true;
1678 
1679         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1680           return error("inconsistent type for generic virtual register");
1681 
1682         MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1683         MRI.setType(Reg, Ty);
1684       }
1685     }
1686   } else if (consumeIfPresent(MIToken::lparen)) {
1687     // Virtual registers may have a tpe with GlobalISel.
1688     if (!Register::isVirtualRegister(Reg))
1689       return error("unexpected type on physical register");
1690 
1691     LLT Ty;
1692     if (parseLowLevelType(Token.location(), Ty))
1693       return true;
1694 
1695     if (expectAndConsume(MIToken::rparen))
1696       return true;
1697 
1698     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1699       return error("inconsistent type for generic virtual register");
1700 
1701     MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1702     MRI.setType(Reg, Ty);
1703   } else if (Register::isVirtualRegister(Reg)) {
1704     // Generic virtual registers must have a type.
1705     // If we end up here this means the type hasn't been specified and
1706     // this is bad!
1707     if (RegInfo->Kind == VRegInfo::GENERIC ||
1708         RegInfo->Kind == VRegInfo::REGBANK)
1709       return error("generic virtual registers must have a type");
1710   }
1711   Dest = MachineOperand::CreateReg(
1712       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1713       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1714       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1715       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1716 
1717   return false;
1718 }
1719 
1720 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1721   assert(Token.is(MIToken::IntegerLiteral));
1722   const APSInt &Int = Token.integerValue();
1723   if (Int.getMinSignedBits() > 64)
1724     return error("integer literal is too large to be an immediate operand");
1725   Dest = MachineOperand::CreateImm(Int.getExtValue());
1726   lex();
1727   return false;
1728 }
1729 
1730 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1731                                       const unsigned OpIdx,
1732                                       MachineOperand &Dest,
1733                                       const MIRFormatter &MF) {
1734   assert(Token.is(MIToken::dot));
1735   auto Loc = Token.location(); // record start position
1736   size_t Len = 1;              // for "."
1737   lex();
1738 
1739   // Handle the case that mnemonic starts with number.
1740   if (Token.is(MIToken::IntegerLiteral)) {
1741     Len += Token.range().size();
1742     lex();
1743   }
1744 
1745   StringRef Src;
1746   if (Token.is(MIToken::comma))
1747     Src = StringRef(Loc, Len);
1748   else {
1749     assert(Token.is(MIToken::Identifier));
1750     Src = StringRef(Loc, Len + Token.stringValue().size());
1751   }
1752   int64_t Val;
1753   if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1754                           [this](StringRef::iterator Loc, const Twine &Msg)
1755                               -> bool { return error(Loc, Msg); }))
1756     return true;
1757 
1758   Dest = MachineOperand::CreateImm(Val);
1759   if (!Token.is(MIToken::comma))
1760     lex();
1761   return false;
1762 }
1763 
1764 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1765                             PerFunctionMIParsingState &PFS, const Constant *&C,
1766                             ErrorCallbackType ErrCB) {
1767   auto Source = StringValue.str(); // The source has to be null terminated.
1768   SMDiagnostic Err;
1769   C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1770                          &PFS.IRSlots);
1771   if (!C)
1772     return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1773   return false;
1774 }
1775 
1776 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1777                                const Constant *&C) {
1778   return ::parseIRConstant(
1779       Loc, StringValue, PFS, C,
1780       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1781         return error(Loc, Msg);
1782       });
1783 }
1784 
1785 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1786   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1787     return true;
1788   lex();
1789   return false;
1790 }
1791 
1792 // See LLT implemntation for bit size limits.
1793 static bool verifyScalarSize(uint64_t Size) {
1794   return Size != 0 && isUInt<16>(Size);
1795 }
1796 
1797 static bool verifyVectorElementCount(uint64_t NumElts) {
1798   return NumElts != 0 && isUInt<16>(NumElts);
1799 }
1800 
1801 static bool verifyAddrSpace(uint64_t AddrSpace) {
1802   return isUInt<24>(AddrSpace);
1803 }
1804 
1805 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1806   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1807     StringRef SizeStr = Token.range().drop_front();
1808     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1809       return error("expected integers after 's'/'p' type character");
1810   }
1811 
1812   if (Token.range().front() == 's') {
1813     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1814     if (!verifyScalarSize(ScalarSize))
1815       return error("invalid size for scalar type");
1816 
1817     Ty = LLT::scalar(ScalarSize);
1818     lex();
1819     return false;
1820   } else if (Token.range().front() == 'p') {
1821     const DataLayout &DL = MF.getDataLayout();
1822     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1823     if (!verifyAddrSpace(AS))
1824       return error("invalid address space number");
1825 
1826     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1827     lex();
1828     return false;
1829   }
1830 
1831   // Now we're looking for a vector.
1832   if (Token.isNot(MIToken::less))
1833     return error(Loc,
1834                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1835   lex();
1836 
1837   if (Token.isNot(MIToken::IntegerLiteral))
1838     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1839   uint64_t NumElements = Token.integerValue().getZExtValue();
1840   if (!verifyVectorElementCount(NumElements))
1841     return error("invalid number of vector elements");
1842 
1843   lex();
1844 
1845   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1846     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1847   lex();
1848 
1849   if (Token.range().front() != 's' && Token.range().front() != 'p')
1850     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1851   StringRef SizeStr = Token.range().drop_front();
1852   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1853     return error("expected integers after 's'/'p' type character");
1854 
1855   if (Token.range().front() == 's') {
1856     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1857     if (!verifyScalarSize(ScalarSize))
1858       return error("invalid size for scalar type");
1859     Ty = LLT::scalar(ScalarSize);
1860   } else if (Token.range().front() == 'p') {
1861     const DataLayout &DL = MF.getDataLayout();
1862     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1863     if (!verifyAddrSpace(AS))
1864       return error("invalid address space number");
1865 
1866     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1867   } else
1868     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1869   lex();
1870 
1871   if (Token.isNot(MIToken::greater))
1872     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1873   lex();
1874 
1875   Ty = LLT::fixed_vector(NumElements, Ty);
1876   return false;
1877 }
1878 
1879 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1880   assert(Token.is(MIToken::Identifier));
1881   StringRef TypeStr = Token.range();
1882   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1883       TypeStr.front() != 'p')
1884     return error(
1885         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1886   StringRef SizeStr = Token.range().drop_front();
1887   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1888     return error("expected integers after 'i'/'s'/'p' type character");
1889 
1890   auto Loc = Token.location();
1891   lex();
1892   if (Token.isNot(MIToken::IntegerLiteral)) {
1893     if (Token.isNot(MIToken::Identifier) ||
1894         !(Token.range() == "true" || Token.range() == "false"))
1895       return error("expected an integer literal");
1896   }
1897   const Constant *C = nullptr;
1898   if (parseIRConstant(Loc, C))
1899     return true;
1900   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1901   return false;
1902 }
1903 
1904 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1905   auto Loc = Token.location();
1906   lex();
1907   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1908       Token.isNot(MIToken::HexLiteral))
1909     return error("expected a floating point literal");
1910   const Constant *C = nullptr;
1911   if (parseIRConstant(Loc, C))
1912     return true;
1913   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1914   return false;
1915 }
1916 
1917 static bool getHexUint(const MIToken &Token, APInt &Result) {
1918   assert(Token.is(MIToken::HexLiteral));
1919   StringRef S = Token.range();
1920   assert(S[0] == '0' && tolower(S[1]) == 'x');
1921   // This could be a floating point literal with a special prefix.
1922   if (!isxdigit(S[2]))
1923     return true;
1924   StringRef V = S.substr(2);
1925   APInt A(V.size()*4, V, 16);
1926 
1927   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
1928   // sure it isn't the case before constructing result.
1929   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
1930   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1931   return false;
1932 }
1933 
1934 static bool getUnsigned(const MIToken &Token, unsigned &Result,
1935                         ErrorCallbackType ErrCB) {
1936   if (Token.hasIntegerValue()) {
1937     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1938     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1939     if (Val64 == Limit)
1940       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1941     Result = Val64;
1942     return false;
1943   }
1944   if (Token.is(MIToken::HexLiteral)) {
1945     APInt A;
1946     if (getHexUint(Token, A))
1947       return true;
1948     if (A.getBitWidth() > 32)
1949       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1950     Result = A.getZExtValue();
1951     return false;
1952   }
1953   return true;
1954 }
1955 
1956 bool MIParser::getUnsigned(unsigned &Result) {
1957   return ::getUnsigned(
1958       Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1959         return error(Loc, Msg);
1960       });
1961 }
1962 
1963 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1964   assert(Token.is(MIToken::MachineBasicBlock) ||
1965          Token.is(MIToken::MachineBasicBlockLabel));
1966   unsigned Number;
1967   if (getUnsigned(Number))
1968     return true;
1969   auto MBBInfo = PFS.MBBSlots.find(Number);
1970   if (MBBInfo == PFS.MBBSlots.end())
1971     return error(Twine("use of undefined machine basic block #") +
1972                  Twine(Number));
1973   MBB = MBBInfo->second;
1974   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1975   // we drop the <irname> from the bb.<id>.<irname> format.
1976   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1977     return error(Twine("the name of machine basic block #") + Twine(Number) +
1978                  " isn't '" + Token.stringValue() + "'");
1979   return false;
1980 }
1981 
1982 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1983   MachineBasicBlock *MBB;
1984   if (parseMBBReference(MBB))
1985     return true;
1986   Dest = MachineOperand::CreateMBB(MBB);
1987   lex();
1988   return false;
1989 }
1990 
1991 bool MIParser::parseStackFrameIndex(int &FI) {
1992   assert(Token.is(MIToken::StackObject));
1993   unsigned ID;
1994   if (getUnsigned(ID))
1995     return true;
1996   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1997   if (ObjectInfo == PFS.StackObjectSlots.end())
1998     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1999                  "'");
2000   StringRef Name;
2001   if (const auto *Alloca =
2002           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
2003     Name = Alloca->getName();
2004   if (!Token.stringValue().empty() && Token.stringValue() != Name)
2005     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
2006                  "' isn't '" + Token.stringValue() + "'");
2007   lex();
2008   FI = ObjectInfo->second;
2009   return false;
2010 }
2011 
2012 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
2013   int FI;
2014   if (parseStackFrameIndex(FI))
2015     return true;
2016   Dest = MachineOperand::CreateFI(FI);
2017   return false;
2018 }
2019 
2020 bool MIParser::parseFixedStackFrameIndex(int &FI) {
2021   assert(Token.is(MIToken::FixedStackObject));
2022   unsigned ID;
2023   if (getUnsigned(ID))
2024     return true;
2025   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
2026   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
2027     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
2028                  Twine(ID) + "'");
2029   lex();
2030   FI = ObjectInfo->second;
2031   return false;
2032 }
2033 
2034 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
2035   int FI;
2036   if (parseFixedStackFrameIndex(FI))
2037     return true;
2038   Dest = MachineOperand::CreateFI(FI);
2039   return false;
2040 }
2041 
2042 static bool parseGlobalValue(const MIToken &Token,
2043                              PerFunctionMIParsingState &PFS, GlobalValue *&GV,
2044                              ErrorCallbackType ErrCB) {
2045   switch (Token.kind()) {
2046   case MIToken::NamedGlobalValue: {
2047     const Module *M = PFS.MF.getFunction().getParent();
2048     GV = M->getNamedValue(Token.stringValue());
2049     if (!GV)
2050       return ErrCB(Token.location(), Twine("use of undefined global value '") +
2051                                          Token.range() + "'");
2052     break;
2053   }
2054   case MIToken::GlobalValue: {
2055     unsigned GVIdx;
2056     if (getUnsigned(Token, GVIdx, ErrCB))
2057       return true;
2058     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
2059       return ErrCB(Token.location(), Twine("use of undefined global value '@") +
2060                                          Twine(GVIdx) + "'");
2061     GV = PFS.IRSlots.GlobalValues[GVIdx];
2062     break;
2063   }
2064   default:
2065     llvm_unreachable("The current token should be a global value");
2066   }
2067   return false;
2068 }
2069 
2070 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
2071   return ::parseGlobalValue(
2072       Token, PFS, GV,
2073       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2074         return error(Loc, Msg);
2075       });
2076 }
2077 
2078 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
2079   GlobalValue *GV = nullptr;
2080   if (parseGlobalValue(GV))
2081     return true;
2082   lex();
2083   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
2084   if (parseOperandsOffset(Dest))
2085     return true;
2086   return false;
2087 }
2088 
2089 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
2090   assert(Token.is(MIToken::ConstantPoolItem));
2091   unsigned ID;
2092   if (getUnsigned(ID))
2093     return true;
2094   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
2095   if (ConstantInfo == PFS.ConstantPoolSlots.end())
2096     return error("use of undefined constant '%const." + Twine(ID) + "'");
2097   lex();
2098   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
2099   if (parseOperandsOffset(Dest))
2100     return true;
2101   return false;
2102 }
2103 
2104 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
2105   assert(Token.is(MIToken::JumpTableIndex));
2106   unsigned ID;
2107   if (getUnsigned(ID))
2108     return true;
2109   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
2110   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
2111     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
2112   lex();
2113   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
2114   return false;
2115 }
2116 
2117 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
2118   assert(Token.is(MIToken::ExternalSymbol));
2119   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
2120   lex();
2121   Dest = MachineOperand::CreateES(Symbol);
2122   if (parseOperandsOffset(Dest))
2123     return true;
2124   return false;
2125 }
2126 
2127 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
2128   assert(Token.is(MIToken::MCSymbol));
2129   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
2130   lex();
2131   Dest = MachineOperand::CreateMCSymbol(Symbol);
2132   if (parseOperandsOffset(Dest))
2133     return true;
2134   return false;
2135 }
2136 
2137 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
2138   assert(Token.is(MIToken::SubRegisterIndex));
2139   StringRef Name = Token.stringValue();
2140   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
2141   if (SubRegIndex == 0)
2142     return error(Twine("unknown subregister index '") + Name + "'");
2143   lex();
2144   Dest = MachineOperand::CreateImm(SubRegIndex);
2145   return false;
2146 }
2147 
2148 bool MIParser::parseMDNode(MDNode *&Node) {
2149   assert(Token.is(MIToken::exclaim));
2150 
2151   auto Loc = Token.location();
2152   lex();
2153   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2154     return error("expected metadata id after '!'");
2155   unsigned ID;
2156   if (getUnsigned(ID))
2157     return true;
2158   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2159   if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) {
2160     NodeInfo = PFS.MachineMetadataNodes.find(ID);
2161     if (NodeInfo == PFS.MachineMetadataNodes.end())
2162       return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2163   }
2164   lex();
2165   Node = NodeInfo->second.get();
2166   return false;
2167 }
2168 
2169 bool MIParser::parseDIExpression(MDNode *&Expr) {
2170   assert(Token.is(MIToken::md_diexpr));
2171   lex();
2172 
2173   // FIXME: Share this parsing with the IL parser.
2174   SmallVector<uint64_t, 8> Elements;
2175 
2176   if (expectAndConsume(MIToken::lparen))
2177     return true;
2178 
2179   if (Token.isNot(MIToken::rparen)) {
2180     do {
2181       if (Token.is(MIToken::Identifier)) {
2182         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2183           lex();
2184           Elements.push_back(Op);
2185           continue;
2186         }
2187         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2188           lex();
2189           Elements.push_back(Enc);
2190           continue;
2191         }
2192         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2193       }
2194 
2195       if (Token.isNot(MIToken::IntegerLiteral) ||
2196           Token.integerValue().isSigned())
2197         return error("expected unsigned integer");
2198 
2199       auto &U = Token.integerValue();
2200       if (U.ugt(UINT64_MAX))
2201         return error("element too large, limit is " + Twine(UINT64_MAX));
2202       Elements.push_back(U.getZExtValue());
2203       lex();
2204 
2205     } while (consumeIfPresent(MIToken::comma));
2206   }
2207 
2208   if (expectAndConsume(MIToken::rparen))
2209     return true;
2210 
2211   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2212   return false;
2213 }
2214 
2215 bool MIParser::parseDILocation(MDNode *&Loc) {
2216   assert(Token.is(MIToken::md_dilocation));
2217   lex();
2218 
2219   bool HaveLine = false;
2220   unsigned Line = 0;
2221   unsigned Column = 0;
2222   MDNode *Scope = nullptr;
2223   MDNode *InlinedAt = nullptr;
2224   bool ImplicitCode = false;
2225 
2226   if (expectAndConsume(MIToken::lparen))
2227     return true;
2228 
2229   if (Token.isNot(MIToken::rparen)) {
2230     do {
2231       if (Token.is(MIToken::Identifier)) {
2232         if (Token.stringValue() == "line") {
2233           lex();
2234           if (expectAndConsume(MIToken::colon))
2235             return true;
2236           if (Token.isNot(MIToken::IntegerLiteral) ||
2237               Token.integerValue().isSigned())
2238             return error("expected unsigned integer");
2239           Line = Token.integerValue().getZExtValue();
2240           HaveLine = true;
2241           lex();
2242           continue;
2243         }
2244         if (Token.stringValue() == "column") {
2245           lex();
2246           if (expectAndConsume(MIToken::colon))
2247             return true;
2248           if (Token.isNot(MIToken::IntegerLiteral) ||
2249               Token.integerValue().isSigned())
2250             return error("expected unsigned integer");
2251           Column = Token.integerValue().getZExtValue();
2252           lex();
2253           continue;
2254         }
2255         if (Token.stringValue() == "scope") {
2256           lex();
2257           if (expectAndConsume(MIToken::colon))
2258             return true;
2259           if (parseMDNode(Scope))
2260             return error("expected metadata node");
2261           if (!isa<DIScope>(Scope))
2262             return error("expected DIScope node");
2263           continue;
2264         }
2265         if (Token.stringValue() == "inlinedAt") {
2266           lex();
2267           if (expectAndConsume(MIToken::colon))
2268             return true;
2269           if (Token.is(MIToken::exclaim)) {
2270             if (parseMDNode(InlinedAt))
2271               return true;
2272           } else if (Token.is(MIToken::md_dilocation)) {
2273             if (parseDILocation(InlinedAt))
2274               return true;
2275           } else
2276             return error("expected metadata node");
2277           if (!isa<DILocation>(InlinedAt))
2278             return error("expected DILocation node");
2279           continue;
2280         }
2281         if (Token.stringValue() == "isImplicitCode") {
2282           lex();
2283           if (expectAndConsume(MIToken::colon))
2284             return true;
2285           if (!Token.is(MIToken::Identifier))
2286             return error("expected true/false");
2287           // As far as I can see, we don't have any existing need for parsing
2288           // true/false in MIR yet. Do it ad-hoc until there's something else
2289           // that needs it.
2290           if (Token.stringValue() == "true")
2291             ImplicitCode = true;
2292           else if (Token.stringValue() == "false")
2293             ImplicitCode = false;
2294           else
2295             return error("expected true/false");
2296           lex();
2297           continue;
2298         }
2299       }
2300       return error(Twine("invalid DILocation argument '") +
2301                    Token.stringValue() + "'");
2302     } while (consumeIfPresent(MIToken::comma));
2303   }
2304 
2305   if (expectAndConsume(MIToken::rparen))
2306     return true;
2307 
2308   if (!HaveLine)
2309     return error("DILocation requires line number");
2310   if (!Scope)
2311     return error("DILocation requires a scope");
2312 
2313   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2314                         InlinedAt, ImplicitCode);
2315   return false;
2316 }
2317 
2318 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2319   MDNode *Node = nullptr;
2320   if (Token.is(MIToken::exclaim)) {
2321     if (parseMDNode(Node))
2322       return true;
2323   } else if (Token.is(MIToken::md_diexpr)) {
2324     if (parseDIExpression(Node))
2325       return true;
2326   }
2327   Dest = MachineOperand::CreateMetadata(Node);
2328   return false;
2329 }
2330 
2331 bool MIParser::parseCFIOffset(int &Offset) {
2332   if (Token.isNot(MIToken::IntegerLiteral))
2333     return error("expected a cfi offset");
2334   if (Token.integerValue().getMinSignedBits() > 32)
2335     return error("expected a 32 bit integer (the cfi offset is too large)");
2336   Offset = (int)Token.integerValue().getExtValue();
2337   lex();
2338   return false;
2339 }
2340 
2341 bool MIParser::parseCFIRegister(Register &Reg) {
2342   if (Token.isNot(MIToken::NamedRegister))
2343     return error("expected a cfi register");
2344   Register LLVMReg;
2345   if (parseNamedRegister(LLVMReg))
2346     return true;
2347   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2348   assert(TRI && "Expected target register info");
2349   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2350   if (DwarfReg < 0)
2351     return error("invalid DWARF register");
2352   Reg = (unsigned)DwarfReg;
2353   lex();
2354   return false;
2355 }
2356 
2357 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) {
2358   if (Token.isNot(MIToken::IntegerLiteral))
2359     return error("expected a cfi address space literal");
2360   if (Token.integerValue().isSigned())
2361     return error("expected an unsigned integer (cfi address space)");
2362   AddressSpace = Token.integerValue().getZExtValue();
2363   lex();
2364   return false;
2365 }
2366 
2367 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2368   do {
2369     if (Token.isNot(MIToken::HexLiteral))
2370       return error("expected a hexadecimal literal");
2371     unsigned Value;
2372     if (getUnsigned(Value))
2373       return true;
2374     if (Value > UINT8_MAX)
2375       return error("expected a 8-bit integer (too large)");
2376     Values.push_back(static_cast<uint8_t>(Value));
2377     lex();
2378   } while (consumeIfPresent(MIToken::comma));
2379   return false;
2380 }
2381 
2382 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2383   auto Kind = Token.kind();
2384   lex();
2385   int Offset;
2386   Register Reg;
2387   unsigned AddressSpace;
2388   unsigned CFIIndex;
2389   switch (Kind) {
2390   case MIToken::kw_cfi_same_value:
2391     if (parseCFIRegister(Reg))
2392       return true;
2393     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2394     break;
2395   case MIToken::kw_cfi_offset:
2396     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2397         parseCFIOffset(Offset))
2398       return true;
2399     CFIIndex =
2400         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2401     break;
2402   case MIToken::kw_cfi_rel_offset:
2403     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2404         parseCFIOffset(Offset))
2405       return true;
2406     CFIIndex = MF.addFrameInst(
2407         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2408     break;
2409   case MIToken::kw_cfi_def_cfa_register:
2410     if (parseCFIRegister(Reg))
2411       return true;
2412     CFIIndex =
2413         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2414     break;
2415   case MIToken::kw_cfi_def_cfa_offset:
2416     if (parseCFIOffset(Offset))
2417       return true;
2418     CFIIndex =
2419         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2420     break;
2421   case MIToken::kw_cfi_adjust_cfa_offset:
2422     if (parseCFIOffset(Offset))
2423       return true;
2424     CFIIndex = MF.addFrameInst(
2425         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2426     break;
2427   case MIToken::kw_cfi_def_cfa:
2428     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2429         parseCFIOffset(Offset))
2430       return true;
2431     CFIIndex =
2432         MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2433     break;
2434   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2435     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2436         parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) ||
2437         parseCFIAddressSpace(AddressSpace))
2438       return true;
2439     CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa(
2440         nullptr, Reg, Offset, AddressSpace));
2441     break;
2442   case MIToken::kw_cfi_remember_state:
2443     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2444     break;
2445   case MIToken::kw_cfi_restore:
2446     if (parseCFIRegister(Reg))
2447       return true;
2448     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2449     break;
2450   case MIToken::kw_cfi_restore_state:
2451     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2452     break;
2453   case MIToken::kw_cfi_undefined:
2454     if (parseCFIRegister(Reg))
2455       return true;
2456     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2457     break;
2458   case MIToken::kw_cfi_register: {
2459     Register Reg2;
2460     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2461         parseCFIRegister(Reg2))
2462       return true;
2463 
2464     CFIIndex =
2465         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2466     break;
2467   }
2468   case MIToken::kw_cfi_window_save:
2469     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2470     break;
2471   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2472     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2473     break;
2474   case MIToken::kw_cfi_escape: {
2475     std::string Values;
2476     if (parseCFIEscapeValues(Values))
2477       return true;
2478     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2479     break;
2480   }
2481   default:
2482     // TODO: Parse the other CFI operands.
2483     llvm_unreachable("The current token should be a cfi operand");
2484   }
2485   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2486   return false;
2487 }
2488 
2489 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2490   switch (Token.kind()) {
2491   case MIToken::NamedIRBlock: {
2492     BB = dyn_cast_or_null<BasicBlock>(
2493         F.getValueSymbolTable()->lookup(Token.stringValue()));
2494     if (!BB)
2495       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2496     break;
2497   }
2498   case MIToken::IRBlock: {
2499     unsigned SlotNumber = 0;
2500     if (getUnsigned(SlotNumber))
2501       return true;
2502     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2503     if (!BB)
2504       return error(Twine("use of undefined IR block '%ir-block.") +
2505                    Twine(SlotNumber) + "'");
2506     break;
2507   }
2508   default:
2509     llvm_unreachable("The current token should be an IR block reference");
2510   }
2511   return false;
2512 }
2513 
2514 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2515   assert(Token.is(MIToken::kw_blockaddress));
2516   lex();
2517   if (expectAndConsume(MIToken::lparen))
2518     return true;
2519   if (Token.isNot(MIToken::GlobalValue) &&
2520       Token.isNot(MIToken::NamedGlobalValue))
2521     return error("expected a global value");
2522   GlobalValue *GV = nullptr;
2523   if (parseGlobalValue(GV))
2524     return true;
2525   auto *F = dyn_cast<Function>(GV);
2526   if (!F)
2527     return error("expected an IR function reference");
2528   lex();
2529   if (expectAndConsume(MIToken::comma))
2530     return true;
2531   BasicBlock *BB = nullptr;
2532   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2533     return error("expected an IR block reference");
2534   if (parseIRBlock(BB, *F))
2535     return true;
2536   lex();
2537   if (expectAndConsume(MIToken::rparen))
2538     return true;
2539   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2540   if (parseOperandsOffset(Dest))
2541     return true;
2542   return false;
2543 }
2544 
2545 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2546   assert(Token.is(MIToken::kw_intrinsic));
2547   lex();
2548   if (expectAndConsume(MIToken::lparen))
2549     return error("expected syntax intrinsic(@llvm.whatever)");
2550 
2551   if (Token.isNot(MIToken::NamedGlobalValue))
2552     return error("expected syntax intrinsic(@llvm.whatever)");
2553 
2554   std::string Name = std::string(Token.stringValue());
2555   lex();
2556 
2557   if (expectAndConsume(MIToken::rparen))
2558     return error("expected ')' to terminate intrinsic name");
2559 
2560   // Find out what intrinsic we're dealing with, first try the global namespace
2561   // and then the target's private intrinsics if that fails.
2562   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2563   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2564   if (ID == Intrinsic::not_intrinsic && TII)
2565     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2566 
2567   if (ID == Intrinsic::not_intrinsic)
2568     return error("unknown intrinsic name");
2569   Dest = MachineOperand::CreateIntrinsicID(ID);
2570 
2571   return false;
2572 }
2573 
2574 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2575   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2576   bool IsFloat = Token.is(MIToken::kw_floatpred);
2577   lex();
2578 
2579   if (expectAndConsume(MIToken::lparen))
2580     return error("expected syntax intpred(whatever) or floatpred(whatever");
2581 
2582   if (Token.isNot(MIToken::Identifier))
2583     return error("whatever");
2584 
2585   CmpInst::Predicate Pred;
2586   if (IsFloat) {
2587     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2588                .Case("false", CmpInst::FCMP_FALSE)
2589                .Case("oeq", CmpInst::FCMP_OEQ)
2590                .Case("ogt", CmpInst::FCMP_OGT)
2591                .Case("oge", CmpInst::FCMP_OGE)
2592                .Case("olt", CmpInst::FCMP_OLT)
2593                .Case("ole", CmpInst::FCMP_OLE)
2594                .Case("one", CmpInst::FCMP_ONE)
2595                .Case("ord", CmpInst::FCMP_ORD)
2596                .Case("uno", CmpInst::FCMP_UNO)
2597                .Case("ueq", CmpInst::FCMP_UEQ)
2598                .Case("ugt", CmpInst::FCMP_UGT)
2599                .Case("uge", CmpInst::FCMP_UGE)
2600                .Case("ult", CmpInst::FCMP_ULT)
2601                .Case("ule", CmpInst::FCMP_ULE)
2602                .Case("une", CmpInst::FCMP_UNE)
2603                .Case("true", CmpInst::FCMP_TRUE)
2604                .Default(CmpInst::BAD_FCMP_PREDICATE);
2605     if (!CmpInst::isFPPredicate(Pred))
2606       return error("invalid floating-point predicate");
2607   } else {
2608     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2609                .Case("eq", CmpInst::ICMP_EQ)
2610                .Case("ne", CmpInst::ICMP_NE)
2611                .Case("sgt", CmpInst::ICMP_SGT)
2612                .Case("sge", CmpInst::ICMP_SGE)
2613                .Case("slt", CmpInst::ICMP_SLT)
2614                .Case("sle", CmpInst::ICMP_SLE)
2615                .Case("ugt", CmpInst::ICMP_UGT)
2616                .Case("uge", CmpInst::ICMP_UGE)
2617                .Case("ult", CmpInst::ICMP_ULT)
2618                .Case("ule", CmpInst::ICMP_ULE)
2619                .Default(CmpInst::BAD_ICMP_PREDICATE);
2620     if (!CmpInst::isIntPredicate(Pred))
2621       return error("invalid integer predicate");
2622   }
2623 
2624   lex();
2625   Dest = MachineOperand::CreatePredicate(Pred);
2626   if (expectAndConsume(MIToken::rparen))
2627     return error("predicate should be terminated by ')'.");
2628 
2629   return false;
2630 }
2631 
2632 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2633   assert(Token.is(MIToken::kw_shufflemask));
2634 
2635   lex();
2636   if (expectAndConsume(MIToken::lparen))
2637     return error("expected syntax shufflemask(<integer or undef>, ...)");
2638 
2639   SmallVector<int, 32> ShufMask;
2640   do {
2641     if (Token.is(MIToken::kw_undef)) {
2642       ShufMask.push_back(-1);
2643     } else if (Token.is(MIToken::IntegerLiteral)) {
2644       const APSInt &Int = Token.integerValue();
2645       ShufMask.push_back(Int.getExtValue());
2646     } else
2647       return error("expected integer constant");
2648 
2649     lex();
2650   } while (consumeIfPresent(MIToken::comma));
2651 
2652   if (expectAndConsume(MIToken::rparen))
2653     return error("shufflemask should be terminated by ')'.");
2654 
2655   ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2656   Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2657   return false;
2658 }
2659 
2660 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2661   assert(Token.is(MIToken::kw_target_index));
2662   lex();
2663   if (expectAndConsume(MIToken::lparen))
2664     return true;
2665   if (Token.isNot(MIToken::Identifier))
2666     return error("expected the name of the target index");
2667   int Index = 0;
2668   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2669     return error("use of undefined target index '" + Token.stringValue() + "'");
2670   lex();
2671   if (expectAndConsume(MIToken::rparen))
2672     return true;
2673   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2674   if (parseOperandsOffset(Dest))
2675     return true;
2676   return false;
2677 }
2678 
2679 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2680   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2681   lex();
2682   if (expectAndConsume(MIToken::lparen))
2683     return true;
2684 
2685   uint32_t *Mask = MF.allocateRegMask();
2686   while (true) {
2687     if (Token.isNot(MIToken::NamedRegister))
2688       return error("expected a named register");
2689     Register Reg;
2690     if (parseNamedRegister(Reg))
2691       return true;
2692     lex();
2693     Mask[Reg / 32] |= 1U << (Reg % 32);
2694     // TODO: Report an error if the same register is used more than once.
2695     if (Token.isNot(MIToken::comma))
2696       break;
2697     lex();
2698   }
2699 
2700   if (expectAndConsume(MIToken::rparen))
2701     return true;
2702   Dest = MachineOperand::CreateRegMask(Mask);
2703   return false;
2704 }
2705 
2706 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2707   assert(Token.is(MIToken::kw_liveout));
2708   uint32_t *Mask = MF.allocateRegMask();
2709   lex();
2710   if (expectAndConsume(MIToken::lparen))
2711     return true;
2712   while (true) {
2713     if (Token.isNot(MIToken::NamedRegister))
2714       return error("expected a named register");
2715     Register Reg;
2716     if (parseNamedRegister(Reg))
2717       return true;
2718     lex();
2719     Mask[Reg / 32] |= 1U << (Reg % 32);
2720     // TODO: Report an error if the same register is used more than once.
2721     if (Token.isNot(MIToken::comma))
2722       break;
2723     lex();
2724   }
2725   if (expectAndConsume(MIToken::rparen))
2726     return true;
2727   Dest = MachineOperand::CreateRegLiveOut(Mask);
2728   return false;
2729 }
2730 
2731 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2732                                    MachineOperand &Dest,
2733                                    Optional<unsigned> &TiedDefIdx) {
2734   switch (Token.kind()) {
2735   case MIToken::kw_implicit:
2736   case MIToken::kw_implicit_define:
2737   case MIToken::kw_def:
2738   case MIToken::kw_dead:
2739   case MIToken::kw_killed:
2740   case MIToken::kw_undef:
2741   case MIToken::kw_internal:
2742   case MIToken::kw_early_clobber:
2743   case MIToken::kw_debug_use:
2744   case MIToken::kw_renamable:
2745   case MIToken::underscore:
2746   case MIToken::NamedRegister:
2747   case MIToken::VirtualRegister:
2748   case MIToken::NamedVirtualRegister:
2749     return parseRegisterOperand(Dest, TiedDefIdx);
2750   case MIToken::IntegerLiteral:
2751     return parseImmediateOperand(Dest);
2752   case MIToken::kw_half:
2753   case MIToken::kw_float:
2754   case MIToken::kw_double:
2755   case MIToken::kw_x86_fp80:
2756   case MIToken::kw_fp128:
2757   case MIToken::kw_ppc_fp128:
2758     return parseFPImmediateOperand(Dest);
2759   case MIToken::MachineBasicBlock:
2760     return parseMBBOperand(Dest);
2761   case MIToken::StackObject:
2762     return parseStackObjectOperand(Dest);
2763   case MIToken::FixedStackObject:
2764     return parseFixedStackObjectOperand(Dest);
2765   case MIToken::GlobalValue:
2766   case MIToken::NamedGlobalValue:
2767     return parseGlobalAddressOperand(Dest);
2768   case MIToken::ConstantPoolItem:
2769     return parseConstantPoolIndexOperand(Dest);
2770   case MIToken::JumpTableIndex:
2771     return parseJumpTableIndexOperand(Dest);
2772   case MIToken::ExternalSymbol:
2773     return parseExternalSymbolOperand(Dest);
2774   case MIToken::MCSymbol:
2775     return parseMCSymbolOperand(Dest);
2776   case MIToken::SubRegisterIndex:
2777     return parseSubRegisterIndexOperand(Dest);
2778   case MIToken::md_diexpr:
2779   case MIToken::exclaim:
2780     return parseMetadataOperand(Dest);
2781   case MIToken::kw_cfi_same_value:
2782   case MIToken::kw_cfi_offset:
2783   case MIToken::kw_cfi_rel_offset:
2784   case MIToken::kw_cfi_def_cfa_register:
2785   case MIToken::kw_cfi_def_cfa_offset:
2786   case MIToken::kw_cfi_adjust_cfa_offset:
2787   case MIToken::kw_cfi_escape:
2788   case MIToken::kw_cfi_def_cfa:
2789   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2790   case MIToken::kw_cfi_register:
2791   case MIToken::kw_cfi_remember_state:
2792   case MIToken::kw_cfi_restore:
2793   case MIToken::kw_cfi_restore_state:
2794   case MIToken::kw_cfi_undefined:
2795   case MIToken::kw_cfi_window_save:
2796   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2797     return parseCFIOperand(Dest);
2798   case MIToken::kw_blockaddress:
2799     return parseBlockAddressOperand(Dest);
2800   case MIToken::kw_intrinsic:
2801     return parseIntrinsicOperand(Dest);
2802   case MIToken::kw_target_index:
2803     return parseTargetIndexOperand(Dest);
2804   case MIToken::kw_liveout:
2805     return parseLiveoutRegisterMaskOperand(Dest);
2806   case MIToken::kw_floatpred:
2807   case MIToken::kw_intpred:
2808     return parsePredicateOperand(Dest);
2809   case MIToken::kw_shufflemask:
2810     return parseShuffleMaskOperand(Dest);
2811   case MIToken::Error:
2812     return true;
2813   case MIToken::Identifier:
2814     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2815       Dest = MachineOperand::CreateRegMask(RegMask);
2816       lex();
2817       break;
2818     } else if (Token.stringValue() == "CustomRegMask") {
2819       return parseCustomRegisterMaskOperand(Dest);
2820     } else
2821       return parseTypedImmediateOperand(Dest);
2822   case MIToken::dot: {
2823     const auto *TII = MF.getSubtarget().getInstrInfo();
2824     if (const auto *Formatter = TII->getMIRFormatter()) {
2825       return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2826     }
2827     LLVM_FALLTHROUGH;
2828   }
2829   default:
2830     // FIXME: Parse the MCSymbol machine operand.
2831     return error("expected a machine operand");
2832   }
2833   return false;
2834 }
2835 
2836 bool MIParser::parseMachineOperandAndTargetFlags(
2837     const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2838     Optional<unsigned> &TiedDefIdx) {
2839   unsigned TF = 0;
2840   bool HasTargetFlags = false;
2841   if (Token.is(MIToken::kw_target_flags)) {
2842     HasTargetFlags = true;
2843     lex();
2844     if (expectAndConsume(MIToken::lparen))
2845       return true;
2846     if (Token.isNot(MIToken::Identifier))
2847       return error("expected the name of the target flag");
2848     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2849       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2850         return error("use of undefined target flag '" + Token.stringValue() +
2851                      "'");
2852     }
2853     lex();
2854     while (Token.is(MIToken::comma)) {
2855       lex();
2856       if (Token.isNot(MIToken::Identifier))
2857         return error("expected the name of the target flag");
2858       unsigned BitFlag = 0;
2859       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2860         return error("use of undefined target flag '" + Token.stringValue() +
2861                      "'");
2862       // TODO: Report an error when using a duplicate bit target flag.
2863       TF |= BitFlag;
2864       lex();
2865     }
2866     if (expectAndConsume(MIToken::rparen))
2867       return true;
2868   }
2869   auto Loc = Token.location();
2870   if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2871     return true;
2872   if (!HasTargetFlags)
2873     return false;
2874   if (Dest.isReg())
2875     return error(Loc, "register operands can't have target flags");
2876   Dest.setTargetFlags(TF);
2877   return false;
2878 }
2879 
2880 bool MIParser::parseOffset(int64_t &Offset) {
2881   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2882     return false;
2883   StringRef Sign = Token.range();
2884   bool IsNegative = Token.is(MIToken::minus);
2885   lex();
2886   if (Token.isNot(MIToken::IntegerLiteral))
2887     return error("expected an integer literal after '" + Sign + "'");
2888   if (Token.integerValue().getMinSignedBits() > 64)
2889     return error("expected 64-bit integer (too large)");
2890   Offset = Token.integerValue().getExtValue();
2891   if (IsNegative)
2892     Offset = -Offset;
2893   lex();
2894   return false;
2895 }
2896 
2897 bool MIParser::parseAlignment(uint64_t &Alignment) {
2898   assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
2899   lex();
2900   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2901     return error("expected an integer literal after 'align'");
2902   if (getUint64(Alignment))
2903     return true;
2904   lex();
2905 
2906   if (!isPowerOf2_64(Alignment))
2907     return error("expected a power-of-2 literal after 'align'");
2908 
2909   return false;
2910 }
2911 
2912 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2913   assert(Token.is(MIToken::kw_addrspace));
2914   lex();
2915   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2916     return error("expected an integer literal after 'addrspace'");
2917   if (getUnsigned(Addrspace))
2918     return true;
2919   lex();
2920   return false;
2921 }
2922 
2923 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2924   int64_t Offset = 0;
2925   if (parseOffset(Offset))
2926     return true;
2927   Op.setOffset(Offset);
2928   return false;
2929 }
2930 
2931 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
2932                          const Value *&V, ErrorCallbackType ErrCB) {
2933   switch (Token.kind()) {
2934   case MIToken::NamedIRValue: {
2935     V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2936     break;
2937   }
2938   case MIToken::IRValue: {
2939     unsigned SlotNumber = 0;
2940     if (getUnsigned(Token, SlotNumber, ErrCB))
2941       return true;
2942     V = PFS.getIRValue(SlotNumber);
2943     break;
2944   }
2945   case MIToken::NamedGlobalValue:
2946   case MIToken::GlobalValue: {
2947     GlobalValue *GV = nullptr;
2948     if (parseGlobalValue(Token, PFS, GV, ErrCB))
2949       return true;
2950     V = GV;
2951     break;
2952   }
2953   case MIToken::QuotedIRValue: {
2954     const Constant *C = nullptr;
2955     if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
2956       return true;
2957     V = C;
2958     break;
2959   }
2960   case MIToken::kw_unknown_address:
2961     V = nullptr;
2962     return false;
2963   default:
2964     llvm_unreachable("The current token should be an IR block reference");
2965   }
2966   if (!V)
2967     return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
2968   return false;
2969 }
2970 
2971 bool MIParser::parseIRValue(const Value *&V) {
2972   return ::parseIRValue(
2973       Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2974         return error(Loc, Msg);
2975       });
2976 }
2977 
2978 bool MIParser::getUint64(uint64_t &Result) {
2979   if (Token.hasIntegerValue()) {
2980     if (Token.integerValue().getActiveBits() > 64)
2981       return error("expected 64-bit integer (too large)");
2982     Result = Token.integerValue().getZExtValue();
2983     return false;
2984   }
2985   if (Token.is(MIToken::HexLiteral)) {
2986     APInt A;
2987     if (getHexUint(A))
2988       return true;
2989     if (A.getBitWidth() > 64)
2990       return error("expected 64-bit integer (too large)");
2991     Result = A.getZExtValue();
2992     return false;
2993   }
2994   return true;
2995 }
2996 
2997 bool MIParser::getHexUint(APInt &Result) {
2998   return ::getHexUint(Token, Result);
2999 }
3000 
3001 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
3002   const auto OldFlags = Flags;
3003   switch (Token.kind()) {
3004   case MIToken::kw_volatile:
3005     Flags |= MachineMemOperand::MOVolatile;
3006     break;
3007   case MIToken::kw_non_temporal:
3008     Flags |= MachineMemOperand::MONonTemporal;
3009     break;
3010   case MIToken::kw_dereferenceable:
3011     Flags |= MachineMemOperand::MODereferenceable;
3012     break;
3013   case MIToken::kw_invariant:
3014     Flags |= MachineMemOperand::MOInvariant;
3015     break;
3016   case MIToken::StringConstant: {
3017     MachineMemOperand::Flags TF;
3018     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
3019       return error("use of undefined target MMO flag '" + Token.stringValue() +
3020                    "'");
3021     Flags |= TF;
3022     break;
3023   }
3024   default:
3025     llvm_unreachable("The current token should be a memory operand flag");
3026   }
3027   if (OldFlags == Flags)
3028     // We know that the same flag is specified more than once when the flags
3029     // weren't modified.
3030     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
3031   lex();
3032   return false;
3033 }
3034 
3035 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
3036   switch (Token.kind()) {
3037   case MIToken::kw_stack:
3038     PSV = MF.getPSVManager().getStack();
3039     break;
3040   case MIToken::kw_got:
3041     PSV = MF.getPSVManager().getGOT();
3042     break;
3043   case MIToken::kw_jump_table:
3044     PSV = MF.getPSVManager().getJumpTable();
3045     break;
3046   case MIToken::kw_constant_pool:
3047     PSV = MF.getPSVManager().getConstantPool();
3048     break;
3049   case MIToken::FixedStackObject: {
3050     int FI;
3051     if (parseFixedStackFrameIndex(FI))
3052       return true;
3053     PSV = MF.getPSVManager().getFixedStack(FI);
3054     // The token was already consumed, so use return here instead of break.
3055     return false;
3056   }
3057   case MIToken::StackObject: {
3058     int FI;
3059     if (parseStackFrameIndex(FI))
3060       return true;
3061     PSV = MF.getPSVManager().getFixedStack(FI);
3062     // The token was already consumed, so use return here instead of break.
3063     return false;
3064   }
3065   case MIToken::kw_call_entry:
3066     lex();
3067     switch (Token.kind()) {
3068     case MIToken::GlobalValue:
3069     case MIToken::NamedGlobalValue: {
3070       GlobalValue *GV = nullptr;
3071       if (parseGlobalValue(GV))
3072         return true;
3073       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
3074       break;
3075     }
3076     case MIToken::ExternalSymbol:
3077       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
3078           MF.createExternalSymbolName(Token.stringValue()));
3079       break;
3080     default:
3081       return error(
3082           "expected a global value or an external symbol after 'call-entry'");
3083     }
3084     break;
3085   case MIToken::kw_custom: {
3086     lex();
3087     const auto *TII = MF.getSubtarget().getInstrInfo();
3088     if (const auto *Formatter = TII->getMIRFormatter()) {
3089       if (Formatter->parseCustomPseudoSourceValue(
3090               Token.stringValue(), MF, PFS, PSV,
3091               [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3092                 return error(Loc, Msg);
3093               }))
3094         return true;
3095     } else
3096       return error("unable to parse target custom pseudo source value");
3097     break;
3098   }
3099   default:
3100     llvm_unreachable("The current token should be pseudo source value");
3101   }
3102   lex();
3103   return false;
3104 }
3105 
3106 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
3107   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
3108       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
3109       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
3110       Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
3111     const PseudoSourceValue *PSV = nullptr;
3112     if (parseMemoryPseudoSourceValue(PSV))
3113       return true;
3114     int64_t Offset = 0;
3115     if (parseOffset(Offset))
3116       return true;
3117     Dest = MachinePointerInfo(PSV, Offset);
3118     return false;
3119   }
3120   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
3121       Token.isNot(MIToken::GlobalValue) &&
3122       Token.isNot(MIToken::NamedGlobalValue) &&
3123       Token.isNot(MIToken::QuotedIRValue) &&
3124       Token.isNot(MIToken::kw_unknown_address))
3125     return error("expected an IR value reference");
3126   const Value *V = nullptr;
3127   if (parseIRValue(V))
3128     return true;
3129   if (V && !V->getType()->isPointerTy())
3130     return error("expected a pointer IR value");
3131   lex();
3132   int64_t Offset = 0;
3133   if (parseOffset(Offset))
3134     return true;
3135   Dest = MachinePointerInfo(V, Offset);
3136   return false;
3137 }
3138 
3139 bool MIParser::parseOptionalScope(LLVMContext &Context,
3140                                   SyncScope::ID &SSID) {
3141   SSID = SyncScope::System;
3142   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
3143     lex();
3144     if (expectAndConsume(MIToken::lparen))
3145       return error("expected '(' in syncscope");
3146 
3147     std::string SSN;
3148     if (parseStringConstant(SSN))
3149       return true;
3150 
3151     SSID = Context.getOrInsertSyncScopeID(SSN);
3152     if (expectAndConsume(MIToken::rparen))
3153       return error("expected ')' in syncscope");
3154   }
3155 
3156   return false;
3157 }
3158 
3159 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
3160   Order = AtomicOrdering::NotAtomic;
3161   if (Token.isNot(MIToken::Identifier))
3162     return false;
3163 
3164   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
3165               .Case("unordered", AtomicOrdering::Unordered)
3166               .Case("monotonic", AtomicOrdering::Monotonic)
3167               .Case("acquire", AtomicOrdering::Acquire)
3168               .Case("release", AtomicOrdering::Release)
3169               .Case("acq_rel", AtomicOrdering::AcquireRelease)
3170               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
3171               .Default(AtomicOrdering::NotAtomic);
3172 
3173   if (Order != AtomicOrdering::NotAtomic) {
3174     lex();
3175     return false;
3176   }
3177 
3178   return error("expected an atomic scope, ordering or a size specification");
3179 }
3180 
3181 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3182   if (expectAndConsume(MIToken::lparen))
3183     return true;
3184   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
3185   while (Token.isMemoryOperandFlag()) {
3186     if (parseMemoryOperandFlag(Flags))
3187       return true;
3188   }
3189   if (Token.isNot(MIToken::Identifier) ||
3190       (Token.stringValue() != "load" && Token.stringValue() != "store"))
3191     return error("expected 'load' or 'store' memory operation");
3192   if (Token.stringValue() == "load")
3193     Flags |= MachineMemOperand::MOLoad;
3194   else
3195     Flags |= MachineMemOperand::MOStore;
3196   lex();
3197 
3198   // Optional 'store' for operands that both load and store.
3199   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3200     Flags |= MachineMemOperand::MOStore;
3201     lex();
3202   }
3203 
3204   // Optional synchronization scope.
3205   SyncScope::ID SSID;
3206   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3207     return true;
3208 
3209   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3210   AtomicOrdering Order, FailureOrder;
3211   if (parseOptionalAtomicOrdering(Order))
3212     return true;
3213 
3214   if (parseOptionalAtomicOrdering(FailureOrder))
3215     return true;
3216 
3217   LLT MemoryType;
3218   if (Token.isNot(MIToken::IntegerLiteral) &&
3219       Token.isNot(MIToken::kw_unknown_size) &&
3220       Token.isNot(MIToken::lparen))
3221     return error("expected memory LLT, the size integer literal or 'unknown-size' after "
3222                  "memory operation");
3223 
3224   uint64_t Size = MemoryLocation::UnknownSize;
3225   if (Token.is(MIToken::IntegerLiteral)) {
3226     if (getUint64(Size))
3227       return true;
3228 
3229     // Convert from bytes to bits for storage.
3230     MemoryType = LLT::scalar(8 * Size);
3231     lex();
3232   } else if (Token.is(MIToken::kw_unknown_size)) {
3233     Size = MemoryLocation::UnknownSize;
3234     lex();
3235   } else {
3236     if (expectAndConsume(MIToken::lparen))
3237       return true;
3238     if (parseLowLevelType(Token.location(), MemoryType))
3239       return true;
3240     if (expectAndConsume(MIToken::rparen))
3241       return true;
3242 
3243     Size = MemoryType.getSizeInBytes();
3244   }
3245 
3246   MachinePointerInfo Ptr = MachinePointerInfo();
3247   if (Token.is(MIToken::Identifier)) {
3248     const char *Word =
3249         ((Flags & MachineMemOperand::MOLoad) &&
3250          (Flags & MachineMemOperand::MOStore))
3251             ? "on"
3252             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3253     if (Token.stringValue() != Word)
3254       return error(Twine("expected '") + Word + "'");
3255     lex();
3256 
3257     if (parseMachinePointerInfo(Ptr))
3258       return true;
3259   }
3260   uint64_t BaseAlignment =
3261       (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1);
3262   AAMDNodes AAInfo;
3263   MDNode *Range = nullptr;
3264   while (consumeIfPresent(MIToken::comma)) {
3265     switch (Token.kind()) {
3266     case MIToken::kw_align:
3267       // align is printed if it is different than size.
3268       if (parseAlignment(BaseAlignment))
3269         return true;
3270       break;
3271     case MIToken::kw_basealign:
3272       // basealign is printed if it is different than align.
3273       if (parseAlignment(BaseAlignment))
3274         return true;
3275       break;
3276     case MIToken::kw_addrspace:
3277       if (parseAddrspace(Ptr.AddrSpace))
3278         return true;
3279       break;
3280     case MIToken::md_tbaa:
3281       lex();
3282       if (parseMDNode(AAInfo.TBAA))
3283         return true;
3284       break;
3285     case MIToken::md_alias_scope:
3286       lex();
3287       if (parseMDNode(AAInfo.Scope))
3288         return true;
3289       break;
3290     case MIToken::md_noalias:
3291       lex();
3292       if (parseMDNode(AAInfo.NoAlias))
3293         return true;
3294       break;
3295     case MIToken::md_range:
3296       lex();
3297       if (parseMDNode(Range))
3298         return true;
3299       break;
3300     // TODO: Report an error on duplicate metadata nodes.
3301     default:
3302       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3303                    "'!noalias' or '!range'");
3304     }
3305   }
3306   if (expectAndConsume(MIToken::rparen))
3307     return true;
3308   Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment),
3309                                  AAInfo, Range, SSID, Order, FailureOrder);
3310   return false;
3311 }
3312 
3313 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3314   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3315           Token.is(MIToken::kw_post_instr_symbol)) &&
3316          "Invalid token for a pre- post-instruction symbol!");
3317   lex();
3318   if (Token.isNot(MIToken::MCSymbol))
3319     return error("expected a symbol after 'pre-instr-symbol'");
3320   Symbol = getOrCreateMCSymbol(Token.stringValue());
3321   lex();
3322   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3323       Token.is(MIToken::lbrace))
3324     return false;
3325   if (Token.isNot(MIToken::comma))
3326     return error("expected ',' before the next machine operand");
3327   lex();
3328   return false;
3329 }
3330 
3331 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3332   assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3333          "Invalid token for a heap alloc marker!");
3334   lex();
3335   parseMDNode(Node);
3336   if (!Node)
3337     return error("expected a MDNode after 'heap-alloc-marker'");
3338   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3339       Token.is(MIToken::lbrace))
3340     return false;
3341   if (Token.isNot(MIToken::comma))
3342     return error("expected ',' before the next machine operand");
3343   lex();
3344   return false;
3345 }
3346 
3347 static void initSlots2BasicBlocks(
3348     const Function &F,
3349     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3350   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3351   MST.incorporateFunction(F);
3352   for (auto &BB : F) {
3353     if (BB.hasName())
3354       continue;
3355     int Slot = MST.getLocalSlot(&BB);
3356     if (Slot == -1)
3357       continue;
3358     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3359   }
3360 }
3361 
3362 static const BasicBlock *getIRBlockFromSlot(
3363     unsigned Slot,
3364     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3365   return Slots2BasicBlocks.lookup(Slot);
3366 }
3367 
3368 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3369   if (Slots2BasicBlocks.empty())
3370     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3371   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3372 }
3373 
3374 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3375   if (&F == &MF.getFunction())
3376     return getIRBlock(Slot);
3377   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3378   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3379   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3380 }
3381 
3382 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3383   // FIXME: Currently we can't recognize temporary or local symbols and call all
3384   // of the appropriate forms to create them. However, this handles basic cases
3385   // well as most of the special aspects are recognized by a prefix on their
3386   // name, and the input names should already be unique. For test cases, keeping
3387   // the symbol name out of the symbol table isn't terribly important.
3388   return MF.getContext().getOrCreateSymbol(Name);
3389 }
3390 
3391 bool MIParser::parseStringConstant(std::string &Result) {
3392   if (Token.isNot(MIToken::StringConstant))
3393     return error("expected string constant");
3394   Result = std::string(Token.stringValue());
3395   lex();
3396   return false;
3397 }
3398 
3399 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3400                                              StringRef Src,
3401                                              SMDiagnostic &Error) {
3402   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3403 }
3404 
3405 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3406                                     StringRef Src, SMDiagnostic &Error) {
3407   return MIParser(PFS, Error, Src).parseBasicBlocks();
3408 }
3409 
3410 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3411                              MachineBasicBlock *&MBB, StringRef Src,
3412                              SMDiagnostic &Error) {
3413   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3414 }
3415 
3416 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3417                                   Register &Reg, StringRef Src,
3418                                   SMDiagnostic &Error) {
3419   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3420 }
3421 
3422 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3423                                        Register &Reg, StringRef Src,
3424                                        SMDiagnostic &Error) {
3425   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3426 }
3427 
3428 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3429                                          VRegInfo *&Info, StringRef Src,
3430                                          SMDiagnostic &Error) {
3431   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3432 }
3433 
3434 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3435                                      int &FI, StringRef Src,
3436                                      SMDiagnostic &Error) {
3437   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3438 }
3439 
3440 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3441                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3442   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3443 }
3444 
3445 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src,
3446                                 SMRange SrcRange, SMDiagnostic &Error) {
3447   return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata();
3448 }
3449 
3450 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3451                                 PerFunctionMIParsingState &PFS, const Value *&V,
3452                                 ErrorCallbackType ErrorCallback) {
3453   MIToken Token;
3454   Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3455     ErrorCallback(Loc, Msg);
3456   });
3457   V = nullptr;
3458 
3459   return ::parseIRValue(Token, PFS, V, ErrorCallback);
3460 }
3461