1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRFormatter.h" 32 #include "llvm/CodeGen/MIRPrinter.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 Register &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 auto ValueInfo = Slots2Values.find(Slot); 373 if (ValueInfo == Slots2Values.end()) 374 return nullptr; 375 return ValueInfo->second; 376 } 377 378 namespace { 379 380 /// A wrapper struct around the 'MachineOperand' struct that includes a source 381 /// range and other attributes. 382 struct ParsedMachineOperand { 383 MachineOperand Operand; 384 StringRef::iterator Begin; 385 StringRef::iterator End; 386 Optional<unsigned> TiedDefIdx; 387 388 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 389 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 390 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 391 if (TiedDefIdx) 392 assert(Operand.isReg() && Operand.isUse() && 393 "Only used register operands can be tied"); 394 } 395 }; 396 397 class MIParser { 398 MachineFunction &MF; 399 SMDiagnostic &Error; 400 StringRef Source, CurrentSource; 401 MIToken Token; 402 PerFunctionMIParsingState &PFS; 403 /// Maps from slot numbers to function's unnamed basic blocks. 404 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 405 406 public: 407 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 408 StringRef Source); 409 410 /// \p SkipChar gives the number of characters to skip before looking 411 /// for the next token. 412 void lex(unsigned SkipChar = 0); 413 414 /// Report an error at the current location with the given message. 415 /// 416 /// This function always return true. 417 bool error(const Twine &Msg); 418 419 /// Report an error at the given location with the given message. 420 /// 421 /// This function always return true. 422 bool error(StringRef::iterator Loc, const Twine &Msg); 423 424 bool 425 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 426 bool parseBasicBlocks(); 427 bool parse(MachineInstr *&MI); 428 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 429 bool parseStandaloneNamedRegister(Register &Reg); 430 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 431 bool parseStandaloneRegister(Register &Reg); 432 bool parseStandaloneStackObject(int &FI); 433 bool parseStandaloneMDNode(MDNode *&Node); 434 435 bool 436 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 437 bool parseBasicBlock(MachineBasicBlock &MBB, 438 MachineBasicBlock *&AddFalthroughFrom); 439 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 440 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 441 442 bool parseNamedRegister(Register &Reg); 443 bool parseVirtualRegister(VRegInfo *&Info); 444 bool parseNamedVirtualRegister(VRegInfo *&Info); 445 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 446 bool parseRegisterFlag(unsigned &Flags); 447 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 448 bool parseSubRegisterIndex(unsigned &SubReg); 449 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 450 bool parseRegisterOperand(MachineOperand &Dest, 451 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 452 bool parseImmediateOperand(MachineOperand &Dest); 453 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 454 const Constant *&C); 455 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 456 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 457 bool parseTypedImmediateOperand(MachineOperand &Dest); 458 bool parseFPImmediateOperand(MachineOperand &Dest); 459 bool parseMBBReference(MachineBasicBlock *&MBB); 460 bool parseMBBOperand(MachineOperand &Dest); 461 bool parseStackFrameIndex(int &FI); 462 bool parseStackObjectOperand(MachineOperand &Dest); 463 bool parseFixedStackFrameIndex(int &FI); 464 bool parseFixedStackObjectOperand(MachineOperand &Dest); 465 bool parseGlobalValue(GlobalValue *&GV); 466 bool parseGlobalAddressOperand(MachineOperand &Dest); 467 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 468 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 469 bool parseJumpTableIndexOperand(MachineOperand &Dest); 470 bool parseExternalSymbolOperand(MachineOperand &Dest); 471 bool parseMCSymbolOperand(MachineOperand &Dest); 472 bool parseMDNode(MDNode *&Node); 473 bool parseDIExpression(MDNode *&Expr); 474 bool parseDILocation(MDNode *&Expr); 475 bool parseMetadataOperand(MachineOperand &Dest); 476 bool parseCFIOffset(int &Offset); 477 bool parseCFIRegister(Register &Reg); 478 bool parseCFIEscapeValues(std::string& Values); 479 bool parseCFIOperand(MachineOperand &Dest); 480 bool parseIRBlock(BasicBlock *&BB, const Function &F); 481 bool parseBlockAddressOperand(MachineOperand &Dest); 482 bool parseIntrinsicOperand(MachineOperand &Dest); 483 bool parsePredicateOperand(MachineOperand &Dest); 484 bool parseShuffleMaskOperand(MachineOperand &Dest); 485 bool parseTargetIndexOperand(MachineOperand &Dest); 486 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 487 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 488 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 489 MachineOperand &Dest, 490 Optional<unsigned> &TiedDefIdx); 491 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 492 const unsigned OpIdx, 493 MachineOperand &Dest, 494 Optional<unsigned> &TiedDefIdx); 495 bool parseOffset(int64_t &Offset); 496 bool parseAlignment(unsigned &Alignment); 497 bool parseAddrspace(unsigned &Addrspace); 498 bool parseSectionID(Optional<MBBSectionID> &SID); 499 bool parseOperandsOffset(MachineOperand &Op); 500 bool parseIRValue(const Value *&V); 501 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 502 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 503 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 504 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 505 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 506 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 507 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 508 bool parseHeapAllocMarker(MDNode *&Node); 509 510 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 511 MachineOperand &Dest, const MIRFormatter &MF); 512 513 private: 514 /// Convert the integer literal in the current token into an unsigned integer. 515 /// 516 /// Return true if an error occurred. 517 bool getUnsigned(unsigned &Result); 518 519 /// Convert the integer literal in the current token into an uint64. 520 /// 521 /// Return true if an error occurred. 522 bool getUint64(uint64_t &Result); 523 524 /// Convert the hexadecimal literal in the current token into an unsigned 525 /// APInt with a minimum bitwidth required to represent the value. 526 /// 527 /// Return true if the literal does not represent an integer value. 528 bool getHexUint(APInt &Result); 529 530 /// If the current token is of the given kind, consume it and return false. 531 /// Otherwise report an error and return true. 532 bool expectAndConsume(MIToken::TokenKind TokenKind); 533 534 /// If the current token is of the given kind, consume it and return true. 535 /// Otherwise return false. 536 bool consumeIfPresent(MIToken::TokenKind TokenKind); 537 538 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 539 540 bool assignRegisterTies(MachineInstr &MI, 541 ArrayRef<ParsedMachineOperand> Operands); 542 543 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 544 const MCInstrDesc &MCID); 545 546 const BasicBlock *getIRBlock(unsigned Slot); 547 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 548 549 /// Get or create an MCSymbol for a given name. 550 MCSymbol *getOrCreateMCSymbol(StringRef Name); 551 552 /// parseStringConstant 553 /// ::= StringConstant 554 bool parseStringConstant(std::string &Result); 555 }; 556 557 } // end anonymous namespace 558 559 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 560 StringRef Source) 561 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 562 {} 563 564 void MIParser::lex(unsigned SkipChar) { 565 CurrentSource = lexMIToken( 566 CurrentSource.slice(SkipChar, StringRef::npos), Token, 567 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 568 } 569 570 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 571 572 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 573 const SourceMgr &SM = *PFS.SM; 574 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 575 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 576 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 577 // Create an ordinary diagnostic when the source manager's buffer is the 578 // source string. 579 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 580 return true; 581 } 582 // Create a diagnostic for a YAML string literal. 583 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 584 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 585 Source, None, None); 586 return true; 587 } 588 589 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 590 ErrorCallbackType; 591 592 static const char *toString(MIToken::TokenKind TokenKind) { 593 switch (TokenKind) { 594 case MIToken::comma: 595 return "','"; 596 case MIToken::equal: 597 return "'='"; 598 case MIToken::colon: 599 return "':'"; 600 case MIToken::lparen: 601 return "'('"; 602 case MIToken::rparen: 603 return "')'"; 604 default: 605 return "<unknown token>"; 606 } 607 } 608 609 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 610 if (Token.isNot(TokenKind)) 611 return error(Twine("expected ") + toString(TokenKind)); 612 lex(); 613 return false; 614 } 615 616 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 617 if (Token.isNot(TokenKind)) 618 return false; 619 lex(); 620 return true; 621 } 622 623 // Parse Machine Basic Block Section ID. 624 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) { 625 assert(Token.is(MIToken::kw_bbsections)); 626 lex(); 627 if (Token.is(MIToken::IntegerLiteral)) { 628 unsigned Value = 0; 629 if (getUnsigned(Value)) 630 return error("Unknown Section ID"); 631 SID = MBBSectionID{Value}; 632 } else { 633 const StringRef &S = Token.stringValue(); 634 if (S == "Exception") 635 SID = MBBSectionID::ExceptionSectionID; 636 else if (S == "Cold") 637 SID = MBBSectionID::ColdSectionID; 638 else 639 return error("Unknown Section ID"); 640 } 641 lex(); 642 return false; 643 } 644 645 bool MIParser::parseBasicBlockDefinition( 646 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 647 assert(Token.is(MIToken::MachineBasicBlockLabel)); 648 unsigned ID = 0; 649 if (getUnsigned(ID)) 650 return true; 651 auto Loc = Token.location(); 652 auto Name = Token.stringValue(); 653 lex(); 654 bool HasAddressTaken = false; 655 bool IsLandingPad = false; 656 bool IsEHFuncletEntry = false; 657 Optional<MBBSectionID> SectionID; 658 unsigned Alignment = 0; 659 BasicBlock *BB = nullptr; 660 if (consumeIfPresent(MIToken::lparen)) { 661 do { 662 // TODO: Report an error when multiple same attributes are specified. 663 switch (Token.kind()) { 664 case MIToken::kw_address_taken: 665 HasAddressTaken = true; 666 lex(); 667 break; 668 case MIToken::kw_landing_pad: 669 IsLandingPad = true; 670 lex(); 671 break; 672 case MIToken::kw_ehfunclet_entry: 673 IsEHFuncletEntry = true; 674 lex(); 675 break; 676 case MIToken::kw_align: 677 if (parseAlignment(Alignment)) 678 return true; 679 break; 680 case MIToken::IRBlock: 681 // TODO: Report an error when both name and ir block are specified. 682 if (parseIRBlock(BB, MF.getFunction())) 683 return true; 684 lex(); 685 break; 686 case MIToken::kw_bbsections: 687 if (parseSectionID(SectionID)) 688 return true; 689 break; 690 default: 691 break; 692 } 693 } while (consumeIfPresent(MIToken::comma)); 694 if (expectAndConsume(MIToken::rparen)) 695 return true; 696 } 697 if (expectAndConsume(MIToken::colon)) 698 return true; 699 700 if (!Name.empty()) { 701 BB = dyn_cast_or_null<BasicBlock>( 702 MF.getFunction().getValueSymbolTable()->lookup(Name)); 703 if (!BB) 704 return error(Loc, Twine("basic block '") + Name + 705 "' is not defined in the function '" + 706 MF.getName() + "'"); 707 } 708 auto *MBB = MF.CreateMachineBasicBlock(BB); 709 MF.insert(MF.end(), MBB); 710 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 711 if (!WasInserted) 712 return error(Loc, Twine("redefinition of machine basic block with id #") + 713 Twine(ID)); 714 if (Alignment) 715 MBB->setAlignment(Align(Alignment)); 716 if (HasAddressTaken) 717 MBB->setHasAddressTaken(); 718 MBB->setIsEHPad(IsLandingPad); 719 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 720 if (SectionID.hasValue()) { 721 MBB->setSectionID(SectionID.getValue()); 722 MF.setBBSectionsType(BasicBlockSection::List); 723 } 724 return false; 725 } 726 727 bool MIParser::parseBasicBlockDefinitions( 728 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 729 lex(); 730 // Skip until the first machine basic block. 731 while (Token.is(MIToken::Newline)) 732 lex(); 733 if (Token.isErrorOrEOF()) 734 return Token.isError(); 735 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 736 return error("expected a basic block definition before instructions"); 737 unsigned BraceDepth = 0; 738 do { 739 if (parseBasicBlockDefinition(MBBSlots)) 740 return true; 741 bool IsAfterNewline = false; 742 // Skip until the next machine basic block. 743 while (true) { 744 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 745 Token.isErrorOrEOF()) 746 break; 747 else if (Token.is(MIToken::MachineBasicBlockLabel)) 748 return error("basic block definition should be located at the start of " 749 "the line"); 750 else if (consumeIfPresent(MIToken::Newline)) { 751 IsAfterNewline = true; 752 continue; 753 } 754 IsAfterNewline = false; 755 if (Token.is(MIToken::lbrace)) 756 ++BraceDepth; 757 if (Token.is(MIToken::rbrace)) { 758 if (!BraceDepth) 759 return error("extraneous closing brace ('}')"); 760 --BraceDepth; 761 } 762 lex(); 763 } 764 // Verify that we closed all of the '{' at the end of a file or a block. 765 if (!Token.isError() && BraceDepth) 766 return error("expected '}'"); // FIXME: Report a note that shows '{'. 767 } while (!Token.isErrorOrEOF()); 768 return Token.isError(); 769 } 770 771 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 772 assert(Token.is(MIToken::kw_liveins)); 773 lex(); 774 if (expectAndConsume(MIToken::colon)) 775 return true; 776 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 777 return false; 778 do { 779 if (Token.isNot(MIToken::NamedRegister)) 780 return error("expected a named register"); 781 Register Reg; 782 if (parseNamedRegister(Reg)) 783 return true; 784 lex(); 785 LaneBitmask Mask = LaneBitmask::getAll(); 786 if (consumeIfPresent(MIToken::colon)) { 787 // Parse lane mask. 788 if (Token.isNot(MIToken::IntegerLiteral) && 789 Token.isNot(MIToken::HexLiteral)) 790 return error("expected a lane mask"); 791 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 792 "Use correct get-function for lane mask"); 793 LaneBitmask::Type V; 794 if (getUint64(V)) 795 return error("invalid lane mask value"); 796 Mask = LaneBitmask(V); 797 lex(); 798 } 799 MBB.addLiveIn(Reg, Mask); 800 } while (consumeIfPresent(MIToken::comma)); 801 return false; 802 } 803 804 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 805 assert(Token.is(MIToken::kw_successors)); 806 lex(); 807 if (expectAndConsume(MIToken::colon)) 808 return true; 809 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 810 return false; 811 do { 812 if (Token.isNot(MIToken::MachineBasicBlock)) 813 return error("expected a machine basic block reference"); 814 MachineBasicBlock *SuccMBB = nullptr; 815 if (parseMBBReference(SuccMBB)) 816 return true; 817 lex(); 818 unsigned Weight = 0; 819 if (consumeIfPresent(MIToken::lparen)) { 820 if (Token.isNot(MIToken::IntegerLiteral) && 821 Token.isNot(MIToken::HexLiteral)) 822 return error("expected an integer literal after '('"); 823 if (getUnsigned(Weight)) 824 return true; 825 lex(); 826 if (expectAndConsume(MIToken::rparen)) 827 return true; 828 } 829 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 830 } while (consumeIfPresent(MIToken::comma)); 831 MBB.normalizeSuccProbs(); 832 return false; 833 } 834 835 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 836 MachineBasicBlock *&AddFalthroughFrom) { 837 // Skip the definition. 838 assert(Token.is(MIToken::MachineBasicBlockLabel)); 839 lex(); 840 if (consumeIfPresent(MIToken::lparen)) { 841 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 842 lex(); 843 consumeIfPresent(MIToken::rparen); 844 } 845 consumeIfPresent(MIToken::colon); 846 847 // Parse the liveins and successors. 848 // N.B: Multiple lists of successors and liveins are allowed and they're 849 // merged into one. 850 // Example: 851 // liveins: %edi 852 // liveins: %esi 853 // 854 // is equivalent to 855 // liveins: %edi, %esi 856 bool ExplicitSuccessors = false; 857 while (true) { 858 if (Token.is(MIToken::kw_successors)) { 859 if (parseBasicBlockSuccessors(MBB)) 860 return true; 861 ExplicitSuccessors = true; 862 } else if (Token.is(MIToken::kw_liveins)) { 863 if (parseBasicBlockLiveins(MBB)) 864 return true; 865 } else if (consumeIfPresent(MIToken::Newline)) { 866 continue; 867 } else 868 break; 869 if (!Token.isNewlineOrEOF()) 870 return error("expected line break at the end of a list"); 871 lex(); 872 } 873 874 // Parse the instructions. 875 bool IsInBundle = false; 876 MachineInstr *PrevMI = nullptr; 877 while (!Token.is(MIToken::MachineBasicBlockLabel) && 878 !Token.is(MIToken::Eof)) { 879 if (consumeIfPresent(MIToken::Newline)) 880 continue; 881 if (consumeIfPresent(MIToken::rbrace)) { 882 // The first parsing pass should verify that all closing '}' have an 883 // opening '{'. 884 assert(IsInBundle); 885 IsInBundle = false; 886 continue; 887 } 888 MachineInstr *MI = nullptr; 889 if (parse(MI)) 890 return true; 891 MBB.insert(MBB.end(), MI); 892 if (IsInBundle) { 893 PrevMI->setFlag(MachineInstr::BundledSucc); 894 MI->setFlag(MachineInstr::BundledPred); 895 } 896 PrevMI = MI; 897 if (Token.is(MIToken::lbrace)) { 898 if (IsInBundle) 899 return error("nested instruction bundles are not allowed"); 900 lex(); 901 // This instruction is the start of the bundle. 902 MI->setFlag(MachineInstr::BundledSucc); 903 IsInBundle = true; 904 if (!Token.is(MIToken::Newline)) 905 // The next instruction can be on the same line. 906 continue; 907 } 908 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 909 lex(); 910 } 911 912 // Construct successor list by searching for basic block machine operands. 913 if (!ExplicitSuccessors) { 914 SmallVector<MachineBasicBlock*,4> Successors; 915 bool IsFallthrough; 916 guessSuccessors(MBB, Successors, IsFallthrough); 917 for (MachineBasicBlock *Succ : Successors) 918 MBB.addSuccessor(Succ); 919 920 if (IsFallthrough) { 921 AddFalthroughFrom = &MBB; 922 } else { 923 MBB.normalizeSuccProbs(); 924 } 925 } 926 927 return false; 928 } 929 930 bool MIParser::parseBasicBlocks() { 931 lex(); 932 // Skip until the first machine basic block. 933 while (Token.is(MIToken::Newline)) 934 lex(); 935 if (Token.isErrorOrEOF()) 936 return Token.isError(); 937 // The first parsing pass should have verified that this token is a MBB label 938 // in the 'parseBasicBlockDefinitions' method. 939 assert(Token.is(MIToken::MachineBasicBlockLabel)); 940 MachineBasicBlock *AddFalthroughFrom = nullptr; 941 do { 942 MachineBasicBlock *MBB = nullptr; 943 if (parseMBBReference(MBB)) 944 return true; 945 if (AddFalthroughFrom) { 946 if (!AddFalthroughFrom->isSuccessor(MBB)) 947 AddFalthroughFrom->addSuccessor(MBB); 948 AddFalthroughFrom->normalizeSuccProbs(); 949 AddFalthroughFrom = nullptr; 950 } 951 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 952 return true; 953 // The method 'parseBasicBlock' should parse the whole block until the next 954 // block or the end of file. 955 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 956 } while (Token.isNot(MIToken::Eof)); 957 return false; 958 } 959 960 bool MIParser::parse(MachineInstr *&MI) { 961 // Parse any register operands before '=' 962 MachineOperand MO = MachineOperand::CreateImm(0); 963 SmallVector<ParsedMachineOperand, 8> Operands; 964 while (Token.isRegister() || Token.isRegisterFlag()) { 965 auto Loc = Token.location(); 966 Optional<unsigned> TiedDefIdx; 967 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 968 return true; 969 Operands.push_back( 970 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 971 if (Token.isNot(MIToken::comma)) 972 break; 973 lex(); 974 } 975 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 976 return true; 977 978 unsigned OpCode, Flags = 0; 979 if (Token.isError() || parseInstruction(OpCode, Flags)) 980 return true; 981 982 // Parse the remaining machine operands. 983 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 984 Token.isNot(MIToken::kw_post_instr_symbol) && 985 Token.isNot(MIToken::kw_heap_alloc_marker) && 986 Token.isNot(MIToken::kw_debug_location) && 987 Token.isNot(MIToken::kw_debug_instr_number) && 988 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 989 auto Loc = Token.location(); 990 Optional<unsigned> TiedDefIdx; 991 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 992 return true; 993 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 994 MO.setIsDebug(); 995 Operands.push_back( 996 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 997 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 998 Token.is(MIToken::lbrace)) 999 break; 1000 if (Token.isNot(MIToken::comma)) 1001 return error("expected ',' before the next machine operand"); 1002 lex(); 1003 } 1004 1005 MCSymbol *PreInstrSymbol = nullptr; 1006 if (Token.is(MIToken::kw_pre_instr_symbol)) 1007 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1008 return true; 1009 MCSymbol *PostInstrSymbol = nullptr; 1010 if (Token.is(MIToken::kw_post_instr_symbol)) 1011 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1012 return true; 1013 MDNode *HeapAllocMarker = nullptr; 1014 if (Token.is(MIToken::kw_heap_alloc_marker)) 1015 if (parseHeapAllocMarker(HeapAllocMarker)) 1016 return true; 1017 1018 unsigned InstrNum = 0; 1019 if (Token.is(MIToken::kw_debug_instr_number)) { 1020 lex(); 1021 if (Token.isNot(MIToken::IntegerLiteral)) 1022 return error("expected an integer literal after 'debug-instr-number'"); 1023 if (getUnsigned(InstrNum)) 1024 return true; 1025 lex(); 1026 // Lex past trailing comma if present. 1027 if (Token.is(MIToken::comma)) 1028 lex(); 1029 } 1030 1031 DebugLoc DebugLocation; 1032 if (Token.is(MIToken::kw_debug_location)) { 1033 lex(); 1034 MDNode *Node = nullptr; 1035 if (Token.is(MIToken::exclaim)) { 1036 if (parseMDNode(Node)) 1037 return true; 1038 } else if (Token.is(MIToken::md_dilocation)) { 1039 if (parseDILocation(Node)) 1040 return true; 1041 } else 1042 return error("expected a metadata node after 'debug-location'"); 1043 if (!isa<DILocation>(Node)) 1044 return error("referenced metadata is not a DILocation"); 1045 DebugLocation = DebugLoc(Node); 1046 } 1047 1048 // Parse the machine memory operands. 1049 SmallVector<MachineMemOperand *, 2> MemOperands; 1050 if (Token.is(MIToken::coloncolon)) { 1051 lex(); 1052 while (!Token.isNewlineOrEOF()) { 1053 MachineMemOperand *MemOp = nullptr; 1054 if (parseMachineMemoryOperand(MemOp)) 1055 return true; 1056 MemOperands.push_back(MemOp); 1057 if (Token.isNewlineOrEOF()) 1058 break; 1059 if (Token.isNot(MIToken::comma)) 1060 return error("expected ',' before the next machine memory operand"); 1061 lex(); 1062 } 1063 } 1064 1065 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1066 if (!MCID.isVariadic()) { 1067 // FIXME: Move the implicit operand verification to the machine verifier. 1068 if (verifyImplicitOperands(Operands, MCID)) 1069 return true; 1070 } 1071 1072 // TODO: Check for extraneous machine operands. 1073 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1074 MI->setFlags(Flags); 1075 for (const auto &Operand : Operands) 1076 MI->addOperand(MF, Operand.Operand); 1077 if (assignRegisterTies(*MI, Operands)) 1078 return true; 1079 if (PreInstrSymbol) 1080 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1081 if (PostInstrSymbol) 1082 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1083 if (HeapAllocMarker) 1084 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1085 if (!MemOperands.empty()) 1086 MI->setMemRefs(MF, MemOperands); 1087 if (InstrNum) 1088 MI->setDebugInstrNum(InstrNum); 1089 return false; 1090 } 1091 1092 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1093 lex(); 1094 if (Token.isNot(MIToken::MachineBasicBlock)) 1095 return error("expected a machine basic block reference"); 1096 if (parseMBBReference(MBB)) 1097 return true; 1098 lex(); 1099 if (Token.isNot(MIToken::Eof)) 1100 return error( 1101 "expected end of string after the machine basic block reference"); 1102 return false; 1103 } 1104 1105 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1106 lex(); 1107 if (Token.isNot(MIToken::NamedRegister)) 1108 return error("expected a named register"); 1109 if (parseNamedRegister(Reg)) 1110 return true; 1111 lex(); 1112 if (Token.isNot(MIToken::Eof)) 1113 return error("expected end of string after the register reference"); 1114 return false; 1115 } 1116 1117 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1118 lex(); 1119 if (Token.isNot(MIToken::VirtualRegister)) 1120 return error("expected a virtual register"); 1121 if (parseVirtualRegister(Info)) 1122 return true; 1123 lex(); 1124 if (Token.isNot(MIToken::Eof)) 1125 return error("expected end of string after the register reference"); 1126 return false; 1127 } 1128 1129 bool MIParser::parseStandaloneRegister(Register &Reg) { 1130 lex(); 1131 if (Token.isNot(MIToken::NamedRegister) && 1132 Token.isNot(MIToken::VirtualRegister)) 1133 return error("expected either a named or virtual register"); 1134 1135 VRegInfo *Info; 1136 if (parseRegister(Reg, Info)) 1137 return true; 1138 1139 lex(); 1140 if (Token.isNot(MIToken::Eof)) 1141 return error("expected end of string after the register reference"); 1142 return false; 1143 } 1144 1145 bool MIParser::parseStandaloneStackObject(int &FI) { 1146 lex(); 1147 if (Token.isNot(MIToken::StackObject)) 1148 return error("expected a stack object"); 1149 if (parseStackFrameIndex(FI)) 1150 return true; 1151 if (Token.isNot(MIToken::Eof)) 1152 return error("expected end of string after the stack object reference"); 1153 return false; 1154 } 1155 1156 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1157 lex(); 1158 if (Token.is(MIToken::exclaim)) { 1159 if (parseMDNode(Node)) 1160 return true; 1161 } else if (Token.is(MIToken::md_diexpr)) { 1162 if (parseDIExpression(Node)) 1163 return true; 1164 } else if (Token.is(MIToken::md_dilocation)) { 1165 if (parseDILocation(Node)) 1166 return true; 1167 } else 1168 return error("expected a metadata node"); 1169 if (Token.isNot(MIToken::Eof)) 1170 return error("expected end of string after the metadata node"); 1171 return false; 1172 } 1173 1174 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1175 assert(MO.isImplicit()); 1176 return MO.isDef() ? "implicit-def" : "implicit"; 1177 } 1178 1179 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1180 Register Reg) { 1181 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1182 return StringRef(TRI->getName(Reg)).lower(); 1183 } 1184 1185 /// Return true if the parsed machine operands contain a given machine operand. 1186 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1187 ArrayRef<ParsedMachineOperand> Operands) { 1188 for (const auto &I : Operands) { 1189 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1190 return true; 1191 } 1192 return false; 1193 } 1194 1195 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1196 const MCInstrDesc &MCID) { 1197 if (MCID.isCall()) 1198 // We can't verify call instructions as they can contain arbitrary implicit 1199 // register and register mask operands. 1200 return false; 1201 1202 // Gather all the expected implicit operands. 1203 SmallVector<MachineOperand, 4> ImplicitOperands; 1204 if (MCID.ImplicitDefs) 1205 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1206 ImplicitOperands.push_back( 1207 MachineOperand::CreateReg(*ImpDefs, true, true)); 1208 if (MCID.ImplicitUses) 1209 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1210 ImplicitOperands.push_back( 1211 MachineOperand::CreateReg(*ImpUses, false, true)); 1212 1213 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1214 assert(TRI && "Expected target register info"); 1215 for (const auto &I : ImplicitOperands) { 1216 if (isImplicitOperandIn(I, Operands)) 1217 continue; 1218 return error(Operands.empty() ? Token.location() : Operands.back().End, 1219 Twine("missing implicit register operand '") + 1220 printImplicitRegisterFlag(I) + " $" + 1221 getRegisterName(TRI, I.getReg()) + "'"); 1222 } 1223 return false; 1224 } 1225 1226 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1227 // Allow frame and fast math flags for OPCODE 1228 while (Token.is(MIToken::kw_frame_setup) || 1229 Token.is(MIToken::kw_frame_destroy) || 1230 Token.is(MIToken::kw_nnan) || 1231 Token.is(MIToken::kw_ninf) || 1232 Token.is(MIToken::kw_nsz) || 1233 Token.is(MIToken::kw_arcp) || 1234 Token.is(MIToken::kw_contract) || 1235 Token.is(MIToken::kw_afn) || 1236 Token.is(MIToken::kw_reassoc) || 1237 Token.is(MIToken::kw_nuw) || 1238 Token.is(MIToken::kw_nsw) || 1239 Token.is(MIToken::kw_exact) || 1240 Token.is(MIToken::kw_nofpexcept)) { 1241 // Mine frame and fast math flags 1242 if (Token.is(MIToken::kw_frame_setup)) 1243 Flags |= MachineInstr::FrameSetup; 1244 if (Token.is(MIToken::kw_frame_destroy)) 1245 Flags |= MachineInstr::FrameDestroy; 1246 if (Token.is(MIToken::kw_nnan)) 1247 Flags |= MachineInstr::FmNoNans; 1248 if (Token.is(MIToken::kw_ninf)) 1249 Flags |= MachineInstr::FmNoInfs; 1250 if (Token.is(MIToken::kw_nsz)) 1251 Flags |= MachineInstr::FmNsz; 1252 if (Token.is(MIToken::kw_arcp)) 1253 Flags |= MachineInstr::FmArcp; 1254 if (Token.is(MIToken::kw_contract)) 1255 Flags |= MachineInstr::FmContract; 1256 if (Token.is(MIToken::kw_afn)) 1257 Flags |= MachineInstr::FmAfn; 1258 if (Token.is(MIToken::kw_reassoc)) 1259 Flags |= MachineInstr::FmReassoc; 1260 if (Token.is(MIToken::kw_nuw)) 1261 Flags |= MachineInstr::NoUWrap; 1262 if (Token.is(MIToken::kw_nsw)) 1263 Flags |= MachineInstr::NoSWrap; 1264 if (Token.is(MIToken::kw_exact)) 1265 Flags |= MachineInstr::IsExact; 1266 if (Token.is(MIToken::kw_nofpexcept)) 1267 Flags |= MachineInstr::NoFPExcept; 1268 1269 lex(); 1270 } 1271 if (Token.isNot(MIToken::Identifier)) 1272 return error("expected a machine instruction"); 1273 StringRef InstrName = Token.stringValue(); 1274 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1275 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1276 lex(); 1277 return false; 1278 } 1279 1280 bool MIParser::parseNamedRegister(Register &Reg) { 1281 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1282 StringRef Name = Token.stringValue(); 1283 if (PFS.Target.getRegisterByName(Name, Reg)) 1284 return error(Twine("unknown register name '") + Name + "'"); 1285 return false; 1286 } 1287 1288 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1289 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1290 StringRef Name = Token.stringValue(); 1291 // TODO: Check that the VReg name is not the same as a physical register name. 1292 // If it is, then print a warning (when warnings are implemented). 1293 Info = &PFS.getVRegInfoNamed(Name); 1294 return false; 1295 } 1296 1297 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1298 if (Token.is(MIToken::NamedVirtualRegister)) 1299 return parseNamedVirtualRegister(Info); 1300 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1301 unsigned ID; 1302 if (getUnsigned(ID)) 1303 return true; 1304 Info = &PFS.getVRegInfo(ID); 1305 return false; 1306 } 1307 1308 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1309 switch (Token.kind()) { 1310 case MIToken::underscore: 1311 Reg = 0; 1312 return false; 1313 case MIToken::NamedRegister: 1314 return parseNamedRegister(Reg); 1315 case MIToken::NamedVirtualRegister: 1316 case MIToken::VirtualRegister: 1317 if (parseVirtualRegister(Info)) 1318 return true; 1319 Reg = Info->VReg; 1320 return false; 1321 // TODO: Parse other register kinds. 1322 default: 1323 llvm_unreachable("The current token should be a register"); 1324 } 1325 } 1326 1327 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1328 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1329 return error("expected '_', register class, or register bank name"); 1330 StringRef::iterator Loc = Token.location(); 1331 StringRef Name = Token.stringValue(); 1332 1333 // Was it a register class? 1334 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1335 if (RC) { 1336 lex(); 1337 1338 switch (RegInfo.Kind) { 1339 case VRegInfo::UNKNOWN: 1340 case VRegInfo::NORMAL: 1341 RegInfo.Kind = VRegInfo::NORMAL; 1342 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1343 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1344 return error(Loc, Twine("conflicting register classes, previously: ") + 1345 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1346 } 1347 RegInfo.D.RC = RC; 1348 RegInfo.Explicit = true; 1349 return false; 1350 1351 case VRegInfo::GENERIC: 1352 case VRegInfo::REGBANK: 1353 return error(Loc, "register class specification on generic register"); 1354 } 1355 llvm_unreachable("Unexpected register kind"); 1356 } 1357 1358 // Should be a register bank or a generic register. 1359 const RegisterBank *RegBank = nullptr; 1360 if (Name != "_") { 1361 RegBank = PFS.Target.getRegBank(Name); 1362 if (!RegBank) 1363 return error(Loc, "expected '_', register class, or register bank name"); 1364 } 1365 1366 lex(); 1367 1368 switch (RegInfo.Kind) { 1369 case VRegInfo::UNKNOWN: 1370 case VRegInfo::GENERIC: 1371 case VRegInfo::REGBANK: 1372 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1373 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1374 return error(Loc, "conflicting generic register banks"); 1375 RegInfo.D.RegBank = RegBank; 1376 RegInfo.Explicit = true; 1377 return false; 1378 1379 case VRegInfo::NORMAL: 1380 return error(Loc, "register bank specification on normal register"); 1381 } 1382 llvm_unreachable("Unexpected register kind"); 1383 } 1384 1385 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1386 const unsigned OldFlags = Flags; 1387 switch (Token.kind()) { 1388 case MIToken::kw_implicit: 1389 Flags |= RegState::Implicit; 1390 break; 1391 case MIToken::kw_implicit_define: 1392 Flags |= RegState::ImplicitDefine; 1393 break; 1394 case MIToken::kw_def: 1395 Flags |= RegState::Define; 1396 break; 1397 case MIToken::kw_dead: 1398 Flags |= RegState::Dead; 1399 break; 1400 case MIToken::kw_killed: 1401 Flags |= RegState::Kill; 1402 break; 1403 case MIToken::kw_undef: 1404 Flags |= RegState::Undef; 1405 break; 1406 case MIToken::kw_internal: 1407 Flags |= RegState::InternalRead; 1408 break; 1409 case MIToken::kw_early_clobber: 1410 Flags |= RegState::EarlyClobber; 1411 break; 1412 case MIToken::kw_debug_use: 1413 Flags |= RegState::Debug; 1414 break; 1415 case MIToken::kw_renamable: 1416 Flags |= RegState::Renamable; 1417 break; 1418 default: 1419 llvm_unreachable("The current token should be a register flag"); 1420 } 1421 if (OldFlags == Flags) 1422 // We know that the same flag is specified more than once when the flags 1423 // weren't modified. 1424 return error("duplicate '" + Token.stringValue() + "' register flag"); 1425 lex(); 1426 return false; 1427 } 1428 1429 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1430 assert(Token.is(MIToken::dot)); 1431 lex(); 1432 if (Token.isNot(MIToken::Identifier)) 1433 return error("expected a subregister index after '.'"); 1434 auto Name = Token.stringValue(); 1435 SubReg = PFS.Target.getSubRegIndex(Name); 1436 if (!SubReg) 1437 return error(Twine("use of unknown subregister index '") + Name + "'"); 1438 lex(); 1439 return false; 1440 } 1441 1442 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1443 if (!consumeIfPresent(MIToken::kw_tied_def)) 1444 return true; 1445 if (Token.isNot(MIToken::IntegerLiteral)) 1446 return error("expected an integer literal after 'tied-def'"); 1447 if (getUnsigned(TiedDefIdx)) 1448 return true; 1449 lex(); 1450 if (expectAndConsume(MIToken::rparen)) 1451 return true; 1452 return false; 1453 } 1454 1455 bool MIParser::assignRegisterTies(MachineInstr &MI, 1456 ArrayRef<ParsedMachineOperand> Operands) { 1457 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1458 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1459 if (!Operands[I].TiedDefIdx) 1460 continue; 1461 // The parser ensures that this operand is a register use, so we just have 1462 // to check the tied-def operand. 1463 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1464 if (DefIdx >= E) 1465 return error(Operands[I].Begin, 1466 Twine("use of invalid tied-def operand index '" + 1467 Twine(DefIdx) + "'; instruction has only ") + 1468 Twine(E) + " operands"); 1469 const auto &DefOperand = Operands[DefIdx].Operand; 1470 if (!DefOperand.isReg() || !DefOperand.isDef()) 1471 // FIXME: add note with the def operand. 1472 return error(Operands[I].Begin, 1473 Twine("use of invalid tied-def operand index '") + 1474 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1475 " isn't a defined register"); 1476 // Check that the tied-def operand wasn't tied elsewhere. 1477 for (const auto &TiedPair : TiedRegisterPairs) { 1478 if (TiedPair.first == DefIdx) 1479 return error(Operands[I].Begin, 1480 Twine("the tied-def operand #") + Twine(DefIdx) + 1481 " is already tied with another register operand"); 1482 } 1483 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1484 } 1485 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1486 // indices must be less than tied max. 1487 for (const auto &TiedPair : TiedRegisterPairs) 1488 MI.tieOperands(TiedPair.first, TiedPair.second); 1489 return false; 1490 } 1491 1492 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1493 Optional<unsigned> &TiedDefIdx, 1494 bool IsDef) { 1495 unsigned Flags = IsDef ? RegState::Define : 0; 1496 while (Token.isRegisterFlag()) { 1497 if (parseRegisterFlag(Flags)) 1498 return true; 1499 } 1500 if (!Token.isRegister()) 1501 return error("expected a register after register flags"); 1502 Register Reg; 1503 VRegInfo *RegInfo; 1504 if (parseRegister(Reg, RegInfo)) 1505 return true; 1506 lex(); 1507 unsigned SubReg = 0; 1508 if (Token.is(MIToken::dot)) { 1509 if (parseSubRegisterIndex(SubReg)) 1510 return true; 1511 if (!Register::isVirtualRegister(Reg)) 1512 return error("subregister index expects a virtual register"); 1513 } 1514 if (Token.is(MIToken::colon)) { 1515 if (!Register::isVirtualRegister(Reg)) 1516 return error("register class specification expects a virtual register"); 1517 lex(); 1518 if (parseRegisterClassOrBank(*RegInfo)) 1519 return true; 1520 } 1521 MachineRegisterInfo &MRI = MF.getRegInfo(); 1522 if ((Flags & RegState::Define) == 0) { 1523 if (consumeIfPresent(MIToken::lparen)) { 1524 unsigned Idx; 1525 if (!parseRegisterTiedDefIndex(Idx)) 1526 TiedDefIdx = Idx; 1527 else { 1528 // Try a redundant low-level type. 1529 LLT Ty; 1530 if (parseLowLevelType(Token.location(), Ty)) 1531 return error("expected tied-def or low-level type after '('"); 1532 1533 if (expectAndConsume(MIToken::rparen)) 1534 return true; 1535 1536 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1537 return error("inconsistent type for generic virtual register"); 1538 1539 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1540 MRI.setType(Reg, Ty); 1541 } 1542 } 1543 } else if (consumeIfPresent(MIToken::lparen)) { 1544 // Virtual registers may have a tpe with GlobalISel. 1545 if (!Register::isVirtualRegister(Reg)) 1546 return error("unexpected type on physical register"); 1547 1548 LLT Ty; 1549 if (parseLowLevelType(Token.location(), Ty)) 1550 return true; 1551 1552 if (expectAndConsume(MIToken::rparen)) 1553 return true; 1554 1555 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1556 return error("inconsistent type for generic virtual register"); 1557 1558 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1559 MRI.setType(Reg, Ty); 1560 } else if (Register::isVirtualRegister(Reg)) { 1561 // Generic virtual registers must have a type. 1562 // If we end up here this means the type hasn't been specified and 1563 // this is bad! 1564 if (RegInfo->Kind == VRegInfo::GENERIC || 1565 RegInfo->Kind == VRegInfo::REGBANK) 1566 return error("generic virtual registers must have a type"); 1567 } 1568 Dest = MachineOperand::CreateReg( 1569 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1570 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1571 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1572 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1573 1574 return false; 1575 } 1576 1577 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1578 assert(Token.is(MIToken::IntegerLiteral)); 1579 const APSInt &Int = Token.integerValue(); 1580 if (Int.getMinSignedBits() > 64) 1581 return error("integer literal is too large to be an immediate operand"); 1582 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1583 lex(); 1584 return false; 1585 } 1586 1587 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1588 const unsigned OpIdx, 1589 MachineOperand &Dest, 1590 const MIRFormatter &MF) { 1591 assert(Token.is(MIToken::dot)); 1592 auto Loc = Token.location(); // record start position 1593 size_t Len = 1; // for "." 1594 lex(); 1595 1596 // Handle the case that mnemonic starts with number. 1597 if (Token.is(MIToken::IntegerLiteral)) { 1598 Len += Token.range().size(); 1599 lex(); 1600 } 1601 1602 StringRef Src; 1603 if (Token.is(MIToken::comma)) 1604 Src = StringRef(Loc, Len); 1605 else { 1606 assert(Token.is(MIToken::Identifier)); 1607 Src = StringRef(Loc, Len + Token.stringValue().size()); 1608 } 1609 int64_t Val; 1610 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1611 [this](StringRef::iterator Loc, const Twine &Msg) 1612 -> bool { return error(Loc, Msg); })) 1613 return true; 1614 1615 Dest = MachineOperand::CreateImm(Val); 1616 if (!Token.is(MIToken::comma)) 1617 lex(); 1618 return false; 1619 } 1620 1621 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1622 PerFunctionMIParsingState &PFS, const Constant *&C, 1623 ErrorCallbackType ErrCB) { 1624 auto Source = StringValue.str(); // The source has to be null terminated. 1625 SMDiagnostic Err; 1626 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1627 &PFS.IRSlots); 1628 if (!C) 1629 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1630 return false; 1631 } 1632 1633 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1634 const Constant *&C) { 1635 return ::parseIRConstant( 1636 Loc, StringValue, PFS, C, 1637 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1638 return error(Loc, Msg); 1639 }); 1640 } 1641 1642 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1643 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1644 return true; 1645 lex(); 1646 return false; 1647 } 1648 1649 // See LLT implemntation for bit size limits. 1650 static bool verifyScalarSize(uint64_t Size) { 1651 return Size != 0 && isUInt<16>(Size); 1652 } 1653 1654 static bool verifyVectorElementCount(uint64_t NumElts) { 1655 return NumElts != 0 && isUInt<16>(NumElts); 1656 } 1657 1658 static bool verifyAddrSpace(uint64_t AddrSpace) { 1659 return isUInt<24>(AddrSpace); 1660 } 1661 1662 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1663 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1664 StringRef SizeStr = Token.range().drop_front(); 1665 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1666 return error("expected integers after 's'/'p' type character"); 1667 } 1668 1669 if (Token.range().front() == 's') { 1670 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1671 if (!verifyScalarSize(ScalarSize)) 1672 return error("invalid size for scalar type"); 1673 1674 Ty = LLT::scalar(ScalarSize); 1675 lex(); 1676 return false; 1677 } else if (Token.range().front() == 'p') { 1678 const DataLayout &DL = MF.getDataLayout(); 1679 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1680 if (!verifyAddrSpace(AS)) 1681 return error("invalid address space number"); 1682 1683 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1684 lex(); 1685 return false; 1686 } 1687 1688 // Now we're looking for a vector. 1689 if (Token.isNot(MIToken::less)) 1690 return error(Loc, 1691 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1692 lex(); 1693 1694 if (Token.isNot(MIToken::IntegerLiteral)) 1695 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1696 uint64_t NumElements = Token.integerValue().getZExtValue(); 1697 if (!verifyVectorElementCount(NumElements)) 1698 return error("invalid number of vector elements"); 1699 1700 lex(); 1701 1702 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1703 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1704 lex(); 1705 1706 if (Token.range().front() != 's' && Token.range().front() != 'p') 1707 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1708 StringRef SizeStr = Token.range().drop_front(); 1709 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1710 return error("expected integers after 's'/'p' type character"); 1711 1712 if (Token.range().front() == 's') { 1713 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1714 if (!verifyScalarSize(ScalarSize)) 1715 return error("invalid size for scalar type"); 1716 Ty = LLT::scalar(ScalarSize); 1717 } else if (Token.range().front() == 'p') { 1718 const DataLayout &DL = MF.getDataLayout(); 1719 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1720 if (!verifyAddrSpace(AS)) 1721 return error("invalid address space number"); 1722 1723 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1724 } else 1725 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1726 lex(); 1727 1728 if (Token.isNot(MIToken::greater)) 1729 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1730 lex(); 1731 1732 Ty = LLT::vector(NumElements, Ty); 1733 return false; 1734 } 1735 1736 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1737 assert(Token.is(MIToken::Identifier)); 1738 StringRef TypeStr = Token.range(); 1739 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1740 TypeStr.front() != 'p') 1741 return error( 1742 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1743 StringRef SizeStr = Token.range().drop_front(); 1744 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1745 return error("expected integers after 'i'/'s'/'p' type character"); 1746 1747 auto Loc = Token.location(); 1748 lex(); 1749 if (Token.isNot(MIToken::IntegerLiteral)) { 1750 if (Token.isNot(MIToken::Identifier) || 1751 !(Token.range() == "true" || Token.range() == "false")) 1752 return error("expected an integer literal"); 1753 } 1754 const Constant *C = nullptr; 1755 if (parseIRConstant(Loc, C)) 1756 return true; 1757 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1758 return false; 1759 } 1760 1761 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1762 auto Loc = Token.location(); 1763 lex(); 1764 if (Token.isNot(MIToken::FloatingPointLiteral) && 1765 Token.isNot(MIToken::HexLiteral)) 1766 return error("expected a floating point literal"); 1767 const Constant *C = nullptr; 1768 if (parseIRConstant(Loc, C)) 1769 return true; 1770 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1771 return false; 1772 } 1773 1774 static bool getHexUint(const MIToken &Token, APInt &Result) { 1775 assert(Token.is(MIToken::HexLiteral)); 1776 StringRef S = Token.range(); 1777 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1778 // This could be a floating point literal with a special prefix. 1779 if (!isxdigit(S[2])) 1780 return true; 1781 StringRef V = S.substr(2); 1782 APInt A(V.size()*4, V, 16); 1783 1784 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1785 // sure it isn't the case before constructing result. 1786 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1787 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1788 return false; 1789 } 1790 1791 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1792 ErrorCallbackType ErrCB) { 1793 if (Token.hasIntegerValue()) { 1794 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1795 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1796 if (Val64 == Limit) 1797 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1798 Result = Val64; 1799 return false; 1800 } 1801 if (Token.is(MIToken::HexLiteral)) { 1802 APInt A; 1803 if (getHexUint(Token, A)) 1804 return true; 1805 if (A.getBitWidth() > 32) 1806 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1807 Result = A.getZExtValue(); 1808 return false; 1809 } 1810 return true; 1811 } 1812 1813 bool MIParser::getUnsigned(unsigned &Result) { 1814 return ::getUnsigned( 1815 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1816 return error(Loc, Msg); 1817 }); 1818 } 1819 1820 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1821 assert(Token.is(MIToken::MachineBasicBlock) || 1822 Token.is(MIToken::MachineBasicBlockLabel)); 1823 unsigned Number; 1824 if (getUnsigned(Number)) 1825 return true; 1826 auto MBBInfo = PFS.MBBSlots.find(Number); 1827 if (MBBInfo == PFS.MBBSlots.end()) 1828 return error(Twine("use of undefined machine basic block #") + 1829 Twine(Number)); 1830 MBB = MBBInfo->second; 1831 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1832 // we drop the <irname> from the bb.<id>.<irname> format. 1833 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1834 return error(Twine("the name of machine basic block #") + Twine(Number) + 1835 " isn't '" + Token.stringValue() + "'"); 1836 return false; 1837 } 1838 1839 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1840 MachineBasicBlock *MBB; 1841 if (parseMBBReference(MBB)) 1842 return true; 1843 Dest = MachineOperand::CreateMBB(MBB); 1844 lex(); 1845 return false; 1846 } 1847 1848 bool MIParser::parseStackFrameIndex(int &FI) { 1849 assert(Token.is(MIToken::StackObject)); 1850 unsigned ID; 1851 if (getUnsigned(ID)) 1852 return true; 1853 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1854 if (ObjectInfo == PFS.StackObjectSlots.end()) 1855 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1856 "'"); 1857 StringRef Name; 1858 if (const auto *Alloca = 1859 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1860 Name = Alloca->getName(); 1861 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1862 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1863 "' isn't '" + Token.stringValue() + "'"); 1864 lex(); 1865 FI = ObjectInfo->second; 1866 return false; 1867 } 1868 1869 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1870 int FI; 1871 if (parseStackFrameIndex(FI)) 1872 return true; 1873 Dest = MachineOperand::CreateFI(FI); 1874 return false; 1875 } 1876 1877 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1878 assert(Token.is(MIToken::FixedStackObject)); 1879 unsigned ID; 1880 if (getUnsigned(ID)) 1881 return true; 1882 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1883 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1884 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1885 Twine(ID) + "'"); 1886 lex(); 1887 FI = ObjectInfo->second; 1888 return false; 1889 } 1890 1891 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1892 int FI; 1893 if (parseFixedStackFrameIndex(FI)) 1894 return true; 1895 Dest = MachineOperand::CreateFI(FI); 1896 return false; 1897 } 1898 1899 static bool parseGlobalValue(const MIToken &Token, 1900 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 1901 ErrorCallbackType ErrCB) { 1902 switch (Token.kind()) { 1903 case MIToken::NamedGlobalValue: { 1904 const Module *M = PFS.MF.getFunction().getParent(); 1905 GV = M->getNamedValue(Token.stringValue()); 1906 if (!GV) 1907 return ErrCB(Token.location(), Twine("use of undefined global value '") + 1908 Token.range() + "'"); 1909 break; 1910 } 1911 case MIToken::GlobalValue: { 1912 unsigned GVIdx; 1913 if (getUnsigned(Token, GVIdx, ErrCB)) 1914 return true; 1915 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1916 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 1917 Twine(GVIdx) + "'"); 1918 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1919 break; 1920 } 1921 default: 1922 llvm_unreachable("The current token should be a global value"); 1923 } 1924 return false; 1925 } 1926 1927 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1928 return ::parseGlobalValue( 1929 Token, PFS, GV, 1930 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1931 return error(Loc, Msg); 1932 }); 1933 } 1934 1935 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1936 GlobalValue *GV = nullptr; 1937 if (parseGlobalValue(GV)) 1938 return true; 1939 lex(); 1940 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1941 if (parseOperandsOffset(Dest)) 1942 return true; 1943 return false; 1944 } 1945 1946 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1947 assert(Token.is(MIToken::ConstantPoolItem)); 1948 unsigned ID; 1949 if (getUnsigned(ID)) 1950 return true; 1951 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1952 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1953 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1954 lex(); 1955 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1956 if (parseOperandsOffset(Dest)) 1957 return true; 1958 return false; 1959 } 1960 1961 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1962 assert(Token.is(MIToken::JumpTableIndex)); 1963 unsigned ID; 1964 if (getUnsigned(ID)) 1965 return true; 1966 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1967 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1968 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1969 lex(); 1970 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1971 return false; 1972 } 1973 1974 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1975 assert(Token.is(MIToken::ExternalSymbol)); 1976 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1977 lex(); 1978 Dest = MachineOperand::CreateES(Symbol); 1979 if (parseOperandsOffset(Dest)) 1980 return true; 1981 return false; 1982 } 1983 1984 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1985 assert(Token.is(MIToken::MCSymbol)); 1986 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1987 lex(); 1988 Dest = MachineOperand::CreateMCSymbol(Symbol); 1989 if (parseOperandsOffset(Dest)) 1990 return true; 1991 return false; 1992 } 1993 1994 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1995 assert(Token.is(MIToken::SubRegisterIndex)); 1996 StringRef Name = Token.stringValue(); 1997 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1998 if (SubRegIndex == 0) 1999 return error(Twine("unknown subregister index '") + Name + "'"); 2000 lex(); 2001 Dest = MachineOperand::CreateImm(SubRegIndex); 2002 return false; 2003 } 2004 2005 bool MIParser::parseMDNode(MDNode *&Node) { 2006 assert(Token.is(MIToken::exclaim)); 2007 2008 auto Loc = Token.location(); 2009 lex(); 2010 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2011 return error("expected metadata id after '!'"); 2012 unsigned ID; 2013 if (getUnsigned(ID)) 2014 return true; 2015 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 2016 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 2017 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 2018 lex(); 2019 Node = NodeInfo->second.get(); 2020 return false; 2021 } 2022 2023 bool MIParser::parseDIExpression(MDNode *&Expr) { 2024 assert(Token.is(MIToken::md_diexpr)); 2025 lex(); 2026 2027 // FIXME: Share this parsing with the IL parser. 2028 SmallVector<uint64_t, 8> Elements; 2029 2030 if (expectAndConsume(MIToken::lparen)) 2031 return true; 2032 2033 if (Token.isNot(MIToken::rparen)) { 2034 do { 2035 if (Token.is(MIToken::Identifier)) { 2036 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2037 lex(); 2038 Elements.push_back(Op); 2039 continue; 2040 } 2041 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2042 lex(); 2043 Elements.push_back(Enc); 2044 continue; 2045 } 2046 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2047 } 2048 2049 if (Token.isNot(MIToken::IntegerLiteral) || 2050 Token.integerValue().isSigned()) 2051 return error("expected unsigned integer"); 2052 2053 auto &U = Token.integerValue(); 2054 if (U.ugt(UINT64_MAX)) 2055 return error("element too large, limit is " + Twine(UINT64_MAX)); 2056 Elements.push_back(U.getZExtValue()); 2057 lex(); 2058 2059 } while (consumeIfPresent(MIToken::comma)); 2060 } 2061 2062 if (expectAndConsume(MIToken::rparen)) 2063 return true; 2064 2065 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2066 return false; 2067 } 2068 2069 bool MIParser::parseDILocation(MDNode *&Loc) { 2070 assert(Token.is(MIToken::md_dilocation)); 2071 lex(); 2072 2073 bool HaveLine = false; 2074 unsigned Line = 0; 2075 unsigned Column = 0; 2076 MDNode *Scope = nullptr; 2077 MDNode *InlinedAt = nullptr; 2078 bool ImplicitCode = false; 2079 2080 if (expectAndConsume(MIToken::lparen)) 2081 return true; 2082 2083 if (Token.isNot(MIToken::rparen)) { 2084 do { 2085 if (Token.is(MIToken::Identifier)) { 2086 if (Token.stringValue() == "line") { 2087 lex(); 2088 if (expectAndConsume(MIToken::colon)) 2089 return true; 2090 if (Token.isNot(MIToken::IntegerLiteral) || 2091 Token.integerValue().isSigned()) 2092 return error("expected unsigned integer"); 2093 Line = Token.integerValue().getZExtValue(); 2094 HaveLine = true; 2095 lex(); 2096 continue; 2097 } 2098 if (Token.stringValue() == "column") { 2099 lex(); 2100 if (expectAndConsume(MIToken::colon)) 2101 return true; 2102 if (Token.isNot(MIToken::IntegerLiteral) || 2103 Token.integerValue().isSigned()) 2104 return error("expected unsigned integer"); 2105 Column = Token.integerValue().getZExtValue(); 2106 lex(); 2107 continue; 2108 } 2109 if (Token.stringValue() == "scope") { 2110 lex(); 2111 if (expectAndConsume(MIToken::colon)) 2112 return true; 2113 if (parseMDNode(Scope)) 2114 return error("expected metadata node"); 2115 if (!isa<DIScope>(Scope)) 2116 return error("expected DIScope node"); 2117 continue; 2118 } 2119 if (Token.stringValue() == "inlinedAt") { 2120 lex(); 2121 if (expectAndConsume(MIToken::colon)) 2122 return true; 2123 if (Token.is(MIToken::exclaim)) { 2124 if (parseMDNode(InlinedAt)) 2125 return true; 2126 } else if (Token.is(MIToken::md_dilocation)) { 2127 if (parseDILocation(InlinedAt)) 2128 return true; 2129 } else 2130 return error("expected metadata node"); 2131 if (!isa<DILocation>(InlinedAt)) 2132 return error("expected DILocation node"); 2133 continue; 2134 } 2135 if (Token.stringValue() == "isImplicitCode") { 2136 lex(); 2137 if (expectAndConsume(MIToken::colon)) 2138 return true; 2139 if (!Token.is(MIToken::Identifier)) 2140 return error("expected true/false"); 2141 // As far as I can see, we don't have any existing need for parsing 2142 // true/false in MIR yet. Do it ad-hoc until there's something else 2143 // that needs it. 2144 if (Token.stringValue() == "true") 2145 ImplicitCode = true; 2146 else if (Token.stringValue() == "false") 2147 ImplicitCode = false; 2148 else 2149 return error("expected true/false"); 2150 lex(); 2151 continue; 2152 } 2153 } 2154 return error(Twine("invalid DILocation argument '") + 2155 Token.stringValue() + "'"); 2156 } while (consumeIfPresent(MIToken::comma)); 2157 } 2158 2159 if (expectAndConsume(MIToken::rparen)) 2160 return true; 2161 2162 if (!HaveLine) 2163 return error("DILocation requires line number"); 2164 if (!Scope) 2165 return error("DILocation requires a scope"); 2166 2167 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2168 InlinedAt, ImplicitCode); 2169 return false; 2170 } 2171 2172 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2173 MDNode *Node = nullptr; 2174 if (Token.is(MIToken::exclaim)) { 2175 if (parseMDNode(Node)) 2176 return true; 2177 } else if (Token.is(MIToken::md_diexpr)) { 2178 if (parseDIExpression(Node)) 2179 return true; 2180 } 2181 Dest = MachineOperand::CreateMetadata(Node); 2182 return false; 2183 } 2184 2185 bool MIParser::parseCFIOffset(int &Offset) { 2186 if (Token.isNot(MIToken::IntegerLiteral)) 2187 return error("expected a cfi offset"); 2188 if (Token.integerValue().getMinSignedBits() > 32) 2189 return error("expected a 32 bit integer (the cfi offset is too large)"); 2190 Offset = (int)Token.integerValue().getExtValue(); 2191 lex(); 2192 return false; 2193 } 2194 2195 bool MIParser::parseCFIRegister(Register &Reg) { 2196 if (Token.isNot(MIToken::NamedRegister)) 2197 return error("expected a cfi register"); 2198 Register LLVMReg; 2199 if (parseNamedRegister(LLVMReg)) 2200 return true; 2201 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2202 assert(TRI && "Expected target register info"); 2203 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2204 if (DwarfReg < 0) 2205 return error("invalid DWARF register"); 2206 Reg = (unsigned)DwarfReg; 2207 lex(); 2208 return false; 2209 } 2210 2211 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2212 do { 2213 if (Token.isNot(MIToken::HexLiteral)) 2214 return error("expected a hexadecimal literal"); 2215 unsigned Value; 2216 if (getUnsigned(Value)) 2217 return true; 2218 if (Value > UINT8_MAX) 2219 return error("expected a 8-bit integer (too large)"); 2220 Values.push_back(static_cast<uint8_t>(Value)); 2221 lex(); 2222 } while (consumeIfPresent(MIToken::comma)); 2223 return false; 2224 } 2225 2226 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2227 auto Kind = Token.kind(); 2228 lex(); 2229 int Offset; 2230 Register Reg; 2231 unsigned CFIIndex; 2232 switch (Kind) { 2233 case MIToken::kw_cfi_same_value: 2234 if (parseCFIRegister(Reg)) 2235 return true; 2236 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2237 break; 2238 case MIToken::kw_cfi_offset: 2239 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2240 parseCFIOffset(Offset)) 2241 return true; 2242 CFIIndex = 2243 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2244 break; 2245 case MIToken::kw_cfi_rel_offset: 2246 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2247 parseCFIOffset(Offset)) 2248 return true; 2249 CFIIndex = MF.addFrameInst( 2250 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2251 break; 2252 case MIToken::kw_cfi_def_cfa_register: 2253 if (parseCFIRegister(Reg)) 2254 return true; 2255 CFIIndex = 2256 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2257 break; 2258 case MIToken::kw_cfi_def_cfa_offset: 2259 if (parseCFIOffset(Offset)) 2260 return true; 2261 CFIIndex = 2262 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); 2263 break; 2264 case MIToken::kw_cfi_adjust_cfa_offset: 2265 if (parseCFIOffset(Offset)) 2266 return true; 2267 CFIIndex = MF.addFrameInst( 2268 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2269 break; 2270 case MIToken::kw_cfi_def_cfa: 2271 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2272 parseCFIOffset(Offset)) 2273 return true; 2274 CFIIndex = 2275 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); 2276 break; 2277 case MIToken::kw_cfi_remember_state: 2278 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2279 break; 2280 case MIToken::kw_cfi_restore: 2281 if (parseCFIRegister(Reg)) 2282 return true; 2283 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2284 break; 2285 case MIToken::kw_cfi_restore_state: 2286 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2287 break; 2288 case MIToken::kw_cfi_undefined: 2289 if (parseCFIRegister(Reg)) 2290 return true; 2291 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2292 break; 2293 case MIToken::kw_cfi_register: { 2294 Register Reg2; 2295 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2296 parseCFIRegister(Reg2)) 2297 return true; 2298 2299 CFIIndex = 2300 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2301 break; 2302 } 2303 case MIToken::kw_cfi_window_save: 2304 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2305 break; 2306 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2307 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2308 break; 2309 case MIToken::kw_cfi_escape: { 2310 std::string Values; 2311 if (parseCFIEscapeValues(Values)) 2312 return true; 2313 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2314 break; 2315 } 2316 default: 2317 // TODO: Parse the other CFI operands. 2318 llvm_unreachable("The current token should be a cfi operand"); 2319 } 2320 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2321 return false; 2322 } 2323 2324 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2325 switch (Token.kind()) { 2326 case MIToken::NamedIRBlock: { 2327 BB = dyn_cast_or_null<BasicBlock>( 2328 F.getValueSymbolTable()->lookup(Token.stringValue())); 2329 if (!BB) 2330 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2331 break; 2332 } 2333 case MIToken::IRBlock: { 2334 unsigned SlotNumber = 0; 2335 if (getUnsigned(SlotNumber)) 2336 return true; 2337 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2338 if (!BB) 2339 return error(Twine("use of undefined IR block '%ir-block.") + 2340 Twine(SlotNumber) + "'"); 2341 break; 2342 } 2343 default: 2344 llvm_unreachable("The current token should be an IR block reference"); 2345 } 2346 return false; 2347 } 2348 2349 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2350 assert(Token.is(MIToken::kw_blockaddress)); 2351 lex(); 2352 if (expectAndConsume(MIToken::lparen)) 2353 return true; 2354 if (Token.isNot(MIToken::GlobalValue) && 2355 Token.isNot(MIToken::NamedGlobalValue)) 2356 return error("expected a global value"); 2357 GlobalValue *GV = nullptr; 2358 if (parseGlobalValue(GV)) 2359 return true; 2360 auto *F = dyn_cast<Function>(GV); 2361 if (!F) 2362 return error("expected an IR function reference"); 2363 lex(); 2364 if (expectAndConsume(MIToken::comma)) 2365 return true; 2366 BasicBlock *BB = nullptr; 2367 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2368 return error("expected an IR block reference"); 2369 if (parseIRBlock(BB, *F)) 2370 return true; 2371 lex(); 2372 if (expectAndConsume(MIToken::rparen)) 2373 return true; 2374 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2375 if (parseOperandsOffset(Dest)) 2376 return true; 2377 return false; 2378 } 2379 2380 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2381 assert(Token.is(MIToken::kw_intrinsic)); 2382 lex(); 2383 if (expectAndConsume(MIToken::lparen)) 2384 return error("expected syntax intrinsic(@llvm.whatever)"); 2385 2386 if (Token.isNot(MIToken::NamedGlobalValue)) 2387 return error("expected syntax intrinsic(@llvm.whatever)"); 2388 2389 std::string Name = std::string(Token.stringValue()); 2390 lex(); 2391 2392 if (expectAndConsume(MIToken::rparen)) 2393 return error("expected ')' to terminate intrinsic name"); 2394 2395 // Find out what intrinsic we're dealing with, first try the global namespace 2396 // and then the target's private intrinsics if that fails. 2397 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2398 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2399 if (ID == Intrinsic::not_intrinsic && TII) 2400 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2401 2402 if (ID == Intrinsic::not_intrinsic) 2403 return error("unknown intrinsic name"); 2404 Dest = MachineOperand::CreateIntrinsicID(ID); 2405 2406 return false; 2407 } 2408 2409 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2410 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2411 bool IsFloat = Token.is(MIToken::kw_floatpred); 2412 lex(); 2413 2414 if (expectAndConsume(MIToken::lparen)) 2415 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2416 2417 if (Token.isNot(MIToken::Identifier)) 2418 return error("whatever"); 2419 2420 CmpInst::Predicate Pred; 2421 if (IsFloat) { 2422 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2423 .Case("false", CmpInst::FCMP_FALSE) 2424 .Case("oeq", CmpInst::FCMP_OEQ) 2425 .Case("ogt", CmpInst::FCMP_OGT) 2426 .Case("oge", CmpInst::FCMP_OGE) 2427 .Case("olt", CmpInst::FCMP_OLT) 2428 .Case("ole", CmpInst::FCMP_OLE) 2429 .Case("one", CmpInst::FCMP_ONE) 2430 .Case("ord", CmpInst::FCMP_ORD) 2431 .Case("uno", CmpInst::FCMP_UNO) 2432 .Case("ueq", CmpInst::FCMP_UEQ) 2433 .Case("ugt", CmpInst::FCMP_UGT) 2434 .Case("uge", CmpInst::FCMP_UGE) 2435 .Case("ult", CmpInst::FCMP_ULT) 2436 .Case("ule", CmpInst::FCMP_ULE) 2437 .Case("une", CmpInst::FCMP_UNE) 2438 .Case("true", CmpInst::FCMP_TRUE) 2439 .Default(CmpInst::BAD_FCMP_PREDICATE); 2440 if (!CmpInst::isFPPredicate(Pred)) 2441 return error("invalid floating-point predicate"); 2442 } else { 2443 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2444 .Case("eq", CmpInst::ICMP_EQ) 2445 .Case("ne", CmpInst::ICMP_NE) 2446 .Case("sgt", CmpInst::ICMP_SGT) 2447 .Case("sge", CmpInst::ICMP_SGE) 2448 .Case("slt", CmpInst::ICMP_SLT) 2449 .Case("sle", CmpInst::ICMP_SLE) 2450 .Case("ugt", CmpInst::ICMP_UGT) 2451 .Case("uge", CmpInst::ICMP_UGE) 2452 .Case("ult", CmpInst::ICMP_ULT) 2453 .Case("ule", CmpInst::ICMP_ULE) 2454 .Default(CmpInst::BAD_ICMP_PREDICATE); 2455 if (!CmpInst::isIntPredicate(Pred)) 2456 return error("invalid integer predicate"); 2457 } 2458 2459 lex(); 2460 Dest = MachineOperand::CreatePredicate(Pred); 2461 if (expectAndConsume(MIToken::rparen)) 2462 return error("predicate should be terminated by ')'."); 2463 2464 return false; 2465 } 2466 2467 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2468 assert(Token.is(MIToken::kw_shufflemask)); 2469 2470 lex(); 2471 if (expectAndConsume(MIToken::lparen)) 2472 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2473 2474 SmallVector<int, 32> ShufMask; 2475 do { 2476 if (Token.is(MIToken::kw_undef)) { 2477 ShufMask.push_back(-1); 2478 } else if (Token.is(MIToken::IntegerLiteral)) { 2479 const APSInt &Int = Token.integerValue(); 2480 ShufMask.push_back(Int.getExtValue()); 2481 } else 2482 return error("expected integer constant"); 2483 2484 lex(); 2485 } while (consumeIfPresent(MIToken::comma)); 2486 2487 if (expectAndConsume(MIToken::rparen)) 2488 return error("shufflemask should be terminated by ')'."); 2489 2490 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2491 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2492 return false; 2493 } 2494 2495 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2496 assert(Token.is(MIToken::kw_target_index)); 2497 lex(); 2498 if (expectAndConsume(MIToken::lparen)) 2499 return true; 2500 if (Token.isNot(MIToken::Identifier)) 2501 return error("expected the name of the target index"); 2502 int Index = 0; 2503 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2504 return error("use of undefined target index '" + Token.stringValue() + "'"); 2505 lex(); 2506 if (expectAndConsume(MIToken::rparen)) 2507 return true; 2508 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2509 if (parseOperandsOffset(Dest)) 2510 return true; 2511 return false; 2512 } 2513 2514 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2515 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2516 lex(); 2517 if (expectAndConsume(MIToken::lparen)) 2518 return true; 2519 2520 uint32_t *Mask = MF.allocateRegMask(); 2521 while (true) { 2522 if (Token.isNot(MIToken::NamedRegister)) 2523 return error("expected a named register"); 2524 Register Reg; 2525 if (parseNamedRegister(Reg)) 2526 return true; 2527 lex(); 2528 Mask[Reg / 32] |= 1U << (Reg % 32); 2529 // TODO: Report an error if the same register is used more than once. 2530 if (Token.isNot(MIToken::comma)) 2531 break; 2532 lex(); 2533 } 2534 2535 if (expectAndConsume(MIToken::rparen)) 2536 return true; 2537 Dest = MachineOperand::CreateRegMask(Mask); 2538 return false; 2539 } 2540 2541 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2542 assert(Token.is(MIToken::kw_liveout)); 2543 uint32_t *Mask = MF.allocateRegMask(); 2544 lex(); 2545 if (expectAndConsume(MIToken::lparen)) 2546 return true; 2547 while (true) { 2548 if (Token.isNot(MIToken::NamedRegister)) 2549 return error("expected a named register"); 2550 Register Reg; 2551 if (parseNamedRegister(Reg)) 2552 return true; 2553 lex(); 2554 Mask[Reg / 32] |= 1U << (Reg % 32); 2555 // TODO: Report an error if the same register is used more than once. 2556 if (Token.isNot(MIToken::comma)) 2557 break; 2558 lex(); 2559 } 2560 if (expectAndConsume(MIToken::rparen)) 2561 return true; 2562 Dest = MachineOperand::CreateRegLiveOut(Mask); 2563 return false; 2564 } 2565 2566 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2567 MachineOperand &Dest, 2568 Optional<unsigned> &TiedDefIdx) { 2569 switch (Token.kind()) { 2570 case MIToken::kw_implicit: 2571 case MIToken::kw_implicit_define: 2572 case MIToken::kw_def: 2573 case MIToken::kw_dead: 2574 case MIToken::kw_killed: 2575 case MIToken::kw_undef: 2576 case MIToken::kw_internal: 2577 case MIToken::kw_early_clobber: 2578 case MIToken::kw_debug_use: 2579 case MIToken::kw_renamable: 2580 case MIToken::underscore: 2581 case MIToken::NamedRegister: 2582 case MIToken::VirtualRegister: 2583 case MIToken::NamedVirtualRegister: 2584 return parseRegisterOperand(Dest, TiedDefIdx); 2585 case MIToken::IntegerLiteral: 2586 return parseImmediateOperand(Dest); 2587 case MIToken::kw_half: 2588 case MIToken::kw_float: 2589 case MIToken::kw_double: 2590 case MIToken::kw_x86_fp80: 2591 case MIToken::kw_fp128: 2592 case MIToken::kw_ppc_fp128: 2593 return parseFPImmediateOperand(Dest); 2594 case MIToken::MachineBasicBlock: 2595 return parseMBBOperand(Dest); 2596 case MIToken::StackObject: 2597 return parseStackObjectOperand(Dest); 2598 case MIToken::FixedStackObject: 2599 return parseFixedStackObjectOperand(Dest); 2600 case MIToken::GlobalValue: 2601 case MIToken::NamedGlobalValue: 2602 return parseGlobalAddressOperand(Dest); 2603 case MIToken::ConstantPoolItem: 2604 return parseConstantPoolIndexOperand(Dest); 2605 case MIToken::JumpTableIndex: 2606 return parseJumpTableIndexOperand(Dest); 2607 case MIToken::ExternalSymbol: 2608 return parseExternalSymbolOperand(Dest); 2609 case MIToken::MCSymbol: 2610 return parseMCSymbolOperand(Dest); 2611 case MIToken::SubRegisterIndex: 2612 return parseSubRegisterIndexOperand(Dest); 2613 case MIToken::md_diexpr: 2614 case MIToken::exclaim: 2615 return parseMetadataOperand(Dest); 2616 case MIToken::kw_cfi_same_value: 2617 case MIToken::kw_cfi_offset: 2618 case MIToken::kw_cfi_rel_offset: 2619 case MIToken::kw_cfi_def_cfa_register: 2620 case MIToken::kw_cfi_def_cfa_offset: 2621 case MIToken::kw_cfi_adjust_cfa_offset: 2622 case MIToken::kw_cfi_escape: 2623 case MIToken::kw_cfi_def_cfa: 2624 case MIToken::kw_cfi_register: 2625 case MIToken::kw_cfi_remember_state: 2626 case MIToken::kw_cfi_restore: 2627 case MIToken::kw_cfi_restore_state: 2628 case MIToken::kw_cfi_undefined: 2629 case MIToken::kw_cfi_window_save: 2630 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2631 return parseCFIOperand(Dest); 2632 case MIToken::kw_blockaddress: 2633 return parseBlockAddressOperand(Dest); 2634 case MIToken::kw_intrinsic: 2635 return parseIntrinsicOperand(Dest); 2636 case MIToken::kw_target_index: 2637 return parseTargetIndexOperand(Dest); 2638 case MIToken::kw_liveout: 2639 return parseLiveoutRegisterMaskOperand(Dest); 2640 case MIToken::kw_floatpred: 2641 case MIToken::kw_intpred: 2642 return parsePredicateOperand(Dest); 2643 case MIToken::kw_shufflemask: 2644 return parseShuffleMaskOperand(Dest); 2645 case MIToken::Error: 2646 return true; 2647 case MIToken::Identifier: 2648 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2649 Dest = MachineOperand::CreateRegMask(RegMask); 2650 lex(); 2651 break; 2652 } else if (Token.stringValue() == "CustomRegMask") { 2653 return parseCustomRegisterMaskOperand(Dest); 2654 } else 2655 return parseTypedImmediateOperand(Dest); 2656 case MIToken::dot: { 2657 const auto *TII = MF.getSubtarget().getInstrInfo(); 2658 if (const auto *Formatter = TII->getMIRFormatter()) { 2659 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2660 } 2661 LLVM_FALLTHROUGH; 2662 } 2663 default: 2664 // FIXME: Parse the MCSymbol machine operand. 2665 return error("expected a machine operand"); 2666 } 2667 return false; 2668 } 2669 2670 bool MIParser::parseMachineOperandAndTargetFlags( 2671 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2672 Optional<unsigned> &TiedDefIdx) { 2673 unsigned TF = 0; 2674 bool HasTargetFlags = false; 2675 if (Token.is(MIToken::kw_target_flags)) { 2676 HasTargetFlags = true; 2677 lex(); 2678 if (expectAndConsume(MIToken::lparen)) 2679 return true; 2680 if (Token.isNot(MIToken::Identifier)) 2681 return error("expected the name of the target flag"); 2682 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2683 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2684 return error("use of undefined target flag '" + Token.stringValue() + 2685 "'"); 2686 } 2687 lex(); 2688 while (Token.is(MIToken::comma)) { 2689 lex(); 2690 if (Token.isNot(MIToken::Identifier)) 2691 return error("expected the name of the target flag"); 2692 unsigned BitFlag = 0; 2693 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2694 return error("use of undefined target flag '" + Token.stringValue() + 2695 "'"); 2696 // TODO: Report an error when using a duplicate bit target flag. 2697 TF |= BitFlag; 2698 lex(); 2699 } 2700 if (expectAndConsume(MIToken::rparen)) 2701 return true; 2702 } 2703 auto Loc = Token.location(); 2704 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2705 return true; 2706 if (!HasTargetFlags) 2707 return false; 2708 if (Dest.isReg()) 2709 return error(Loc, "register operands can't have target flags"); 2710 Dest.setTargetFlags(TF); 2711 return false; 2712 } 2713 2714 bool MIParser::parseOffset(int64_t &Offset) { 2715 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2716 return false; 2717 StringRef Sign = Token.range(); 2718 bool IsNegative = Token.is(MIToken::minus); 2719 lex(); 2720 if (Token.isNot(MIToken::IntegerLiteral)) 2721 return error("expected an integer literal after '" + Sign + "'"); 2722 if (Token.integerValue().getMinSignedBits() > 64) 2723 return error("expected 64-bit integer (too large)"); 2724 Offset = Token.integerValue().getExtValue(); 2725 if (IsNegative) 2726 Offset = -Offset; 2727 lex(); 2728 return false; 2729 } 2730 2731 bool MIParser::parseAlignment(unsigned &Alignment) { 2732 assert(Token.is(MIToken::kw_align)); 2733 lex(); 2734 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2735 return error("expected an integer literal after 'align'"); 2736 if (getUnsigned(Alignment)) 2737 return true; 2738 lex(); 2739 2740 if (!isPowerOf2_32(Alignment)) 2741 return error("expected a power-of-2 literal after 'align'"); 2742 2743 return false; 2744 } 2745 2746 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2747 assert(Token.is(MIToken::kw_addrspace)); 2748 lex(); 2749 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2750 return error("expected an integer literal after 'addrspace'"); 2751 if (getUnsigned(Addrspace)) 2752 return true; 2753 lex(); 2754 return false; 2755 } 2756 2757 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2758 int64_t Offset = 0; 2759 if (parseOffset(Offset)) 2760 return true; 2761 Op.setOffset(Offset); 2762 return false; 2763 } 2764 2765 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2766 const Value *&V, ErrorCallbackType ErrCB) { 2767 switch (Token.kind()) { 2768 case MIToken::NamedIRValue: { 2769 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2770 break; 2771 } 2772 case MIToken::IRValue: { 2773 unsigned SlotNumber = 0; 2774 if (getUnsigned(Token, SlotNumber, ErrCB)) 2775 return true; 2776 V = PFS.getIRValue(SlotNumber); 2777 break; 2778 } 2779 case MIToken::NamedGlobalValue: 2780 case MIToken::GlobalValue: { 2781 GlobalValue *GV = nullptr; 2782 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2783 return true; 2784 V = GV; 2785 break; 2786 } 2787 case MIToken::QuotedIRValue: { 2788 const Constant *C = nullptr; 2789 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2790 return true; 2791 V = C; 2792 break; 2793 } 2794 default: 2795 llvm_unreachable("The current token should be an IR block reference"); 2796 } 2797 if (!V) 2798 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2799 return false; 2800 } 2801 2802 bool MIParser::parseIRValue(const Value *&V) { 2803 return ::parseIRValue( 2804 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2805 return error(Loc, Msg); 2806 }); 2807 } 2808 2809 bool MIParser::getUint64(uint64_t &Result) { 2810 if (Token.hasIntegerValue()) { 2811 if (Token.integerValue().getActiveBits() > 64) 2812 return error("expected 64-bit integer (too large)"); 2813 Result = Token.integerValue().getZExtValue(); 2814 return false; 2815 } 2816 if (Token.is(MIToken::HexLiteral)) { 2817 APInt A; 2818 if (getHexUint(A)) 2819 return true; 2820 if (A.getBitWidth() > 64) 2821 return error("expected 64-bit integer (too large)"); 2822 Result = A.getZExtValue(); 2823 return false; 2824 } 2825 return true; 2826 } 2827 2828 bool MIParser::getHexUint(APInt &Result) { 2829 return ::getHexUint(Token, Result); 2830 } 2831 2832 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2833 const auto OldFlags = Flags; 2834 switch (Token.kind()) { 2835 case MIToken::kw_volatile: 2836 Flags |= MachineMemOperand::MOVolatile; 2837 break; 2838 case MIToken::kw_non_temporal: 2839 Flags |= MachineMemOperand::MONonTemporal; 2840 break; 2841 case MIToken::kw_dereferenceable: 2842 Flags |= MachineMemOperand::MODereferenceable; 2843 break; 2844 case MIToken::kw_invariant: 2845 Flags |= MachineMemOperand::MOInvariant; 2846 break; 2847 case MIToken::StringConstant: { 2848 MachineMemOperand::Flags TF; 2849 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2850 return error("use of undefined target MMO flag '" + Token.stringValue() + 2851 "'"); 2852 Flags |= TF; 2853 break; 2854 } 2855 default: 2856 llvm_unreachable("The current token should be a memory operand flag"); 2857 } 2858 if (OldFlags == Flags) 2859 // We know that the same flag is specified more than once when the flags 2860 // weren't modified. 2861 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2862 lex(); 2863 return false; 2864 } 2865 2866 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2867 switch (Token.kind()) { 2868 case MIToken::kw_stack: 2869 PSV = MF.getPSVManager().getStack(); 2870 break; 2871 case MIToken::kw_got: 2872 PSV = MF.getPSVManager().getGOT(); 2873 break; 2874 case MIToken::kw_jump_table: 2875 PSV = MF.getPSVManager().getJumpTable(); 2876 break; 2877 case MIToken::kw_constant_pool: 2878 PSV = MF.getPSVManager().getConstantPool(); 2879 break; 2880 case MIToken::FixedStackObject: { 2881 int FI; 2882 if (parseFixedStackFrameIndex(FI)) 2883 return true; 2884 PSV = MF.getPSVManager().getFixedStack(FI); 2885 // The token was already consumed, so use return here instead of break. 2886 return false; 2887 } 2888 case MIToken::StackObject: { 2889 int FI; 2890 if (parseStackFrameIndex(FI)) 2891 return true; 2892 PSV = MF.getPSVManager().getFixedStack(FI); 2893 // The token was already consumed, so use return here instead of break. 2894 return false; 2895 } 2896 case MIToken::kw_call_entry: 2897 lex(); 2898 switch (Token.kind()) { 2899 case MIToken::GlobalValue: 2900 case MIToken::NamedGlobalValue: { 2901 GlobalValue *GV = nullptr; 2902 if (parseGlobalValue(GV)) 2903 return true; 2904 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2905 break; 2906 } 2907 case MIToken::ExternalSymbol: 2908 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2909 MF.createExternalSymbolName(Token.stringValue())); 2910 break; 2911 default: 2912 return error( 2913 "expected a global value or an external symbol after 'call-entry'"); 2914 } 2915 break; 2916 case MIToken::kw_custom: { 2917 lex(); 2918 const auto *TII = MF.getSubtarget().getInstrInfo(); 2919 if (const auto *Formatter = TII->getMIRFormatter()) { 2920 if (Formatter->parseCustomPseudoSourceValue( 2921 Token.stringValue(), MF, PFS, PSV, 2922 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2923 return error(Loc, Msg); 2924 })) 2925 return true; 2926 } else 2927 return error("unable to parse target custom pseudo source value"); 2928 break; 2929 } 2930 default: 2931 llvm_unreachable("The current token should be pseudo source value"); 2932 } 2933 lex(); 2934 return false; 2935 } 2936 2937 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2938 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2939 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2940 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2941 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 2942 const PseudoSourceValue *PSV = nullptr; 2943 if (parseMemoryPseudoSourceValue(PSV)) 2944 return true; 2945 int64_t Offset = 0; 2946 if (parseOffset(Offset)) 2947 return true; 2948 Dest = MachinePointerInfo(PSV, Offset); 2949 return false; 2950 } 2951 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2952 Token.isNot(MIToken::GlobalValue) && 2953 Token.isNot(MIToken::NamedGlobalValue) && 2954 Token.isNot(MIToken::QuotedIRValue)) 2955 return error("expected an IR value reference"); 2956 const Value *V = nullptr; 2957 if (parseIRValue(V)) 2958 return true; 2959 if (!V->getType()->isPointerTy()) 2960 return error("expected a pointer IR value"); 2961 lex(); 2962 int64_t Offset = 0; 2963 if (parseOffset(Offset)) 2964 return true; 2965 Dest = MachinePointerInfo(V, Offset); 2966 return false; 2967 } 2968 2969 bool MIParser::parseOptionalScope(LLVMContext &Context, 2970 SyncScope::ID &SSID) { 2971 SSID = SyncScope::System; 2972 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2973 lex(); 2974 if (expectAndConsume(MIToken::lparen)) 2975 return error("expected '(' in syncscope"); 2976 2977 std::string SSN; 2978 if (parseStringConstant(SSN)) 2979 return true; 2980 2981 SSID = Context.getOrInsertSyncScopeID(SSN); 2982 if (expectAndConsume(MIToken::rparen)) 2983 return error("expected ')' in syncscope"); 2984 } 2985 2986 return false; 2987 } 2988 2989 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2990 Order = AtomicOrdering::NotAtomic; 2991 if (Token.isNot(MIToken::Identifier)) 2992 return false; 2993 2994 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2995 .Case("unordered", AtomicOrdering::Unordered) 2996 .Case("monotonic", AtomicOrdering::Monotonic) 2997 .Case("acquire", AtomicOrdering::Acquire) 2998 .Case("release", AtomicOrdering::Release) 2999 .Case("acq_rel", AtomicOrdering::AcquireRelease) 3000 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 3001 .Default(AtomicOrdering::NotAtomic); 3002 3003 if (Order != AtomicOrdering::NotAtomic) { 3004 lex(); 3005 return false; 3006 } 3007 3008 return error("expected an atomic scope, ordering or a size specification"); 3009 } 3010 3011 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 3012 if (expectAndConsume(MIToken::lparen)) 3013 return true; 3014 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 3015 while (Token.isMemoryOperandFlag()) { 3016 if (parseMemoryOperandFlag(Flags)) 3017 return true; 3018 } 3019 if (Token.isNot(MIToken::Identifier) || 3020 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3021 return error("expected 'load' or 'store' memory operation"); 3022 if (Token.stringValue() == "load") 3023 Flags |= MachineMemOperand::MOLoad; 3024 else 3025 Flags |= MachineMemOperand::MOStore; 3026 lex(); 3027 3028 // Optional 'store' for operands that both load and store. 3029 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3030 Flags |= MachineMemOperand::MOStore; 3031 lex(); 3032 } 3033 3034 // Optional synchronization scope. 3035 SyncScope::ID SSID; 3036 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3037 return true; 3038 3039 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3040 AtomicOrdering Order, FailureOrder; 3041 if (parseOptionalAtomicOrdering(Order)) 3042 return true; 3043 3044 if (parseOptionalAtomicOrdering(FailureOrder)) 3045 return true; 3046 3047 if (Token.isNot(MIToken::IntegerLiteral) && 3048 Token.isNot(MIToken::kw_unknown_size)) 3049 return error("expected the size integer literal or 'unknown-size' after " 3050 "memory operation"); 3051 uint64_t Size; 3052 if (Token.is(MIToken::IntegerLiteral)) { 3053 if (getUint64(Size)) 3054 return true; 3055 } else if (Token.is(MIToken::kw_unknown_size)) { 3056 Size = MemoryLocation::UnknownSize; 3057 } 3058 lex(); 3059 3060 MachinePointerInfo Ptr = MachinePointerInfo(); 3061 if (Token.is(MIToken::Identifier)) { 3062 const char *Word = 3063 ((Flags & MachineMemOperand::MOLoad) && 3064 (Flags & MachineMemOperand::MOStore)) 3065 ? "on" 3066 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3067 if (Token.stringValue() != Word) 3068 return error(Twine("expected '") + Word + "'"); 3069 lex(); 3070 3071 if (parseMachinePointerInfo(Ptr)) 3072 return true; 3073 } 3074 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 3075 AAMDNodes AAInfo; 3076 MDNode *Range = nullptr; 3077 while (consumeIfPresent(MIToken::comma)) { 3078 switch (Token.kind()) { 3079 case MIToken::kw_align: 3080 if (parseAlignment(BaseAlignment)) 3081 return true; 3082 break; 3083 case MIToken::kw_addrspace: 3084 if (parseAddrspace(Ptr.AddrSpace)) 3085 return true; 3086 break; 3087 case MIToken::md_tbaa: 3088 lex(); 3089 if (parseMDNode(AAInfo.TBAA)) 3090 return true; 3091 break; 3092 case MIToken::md_alias_scope: 3093 lex(); 3094 if (parseMDNode(AAInfo.Scope)) 3095 return true; 3096 break; 3097 case MIToken::md_noalias: 3098 lex(); 3099 if (parseMDNode(AAInfo.NoAlias)) 3100 return true; 3101 break; 3102 case MIToken::md_range: 3103 lex(); 3104 if (parseMDNode(Range)) 3105 return true; 3106 break; 3107 // TODO: Report an error on duplicate metadata nodes. 3108 default: 3109 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3110 "'!noalias' or '!range'"); 3111 } 3112 } 3113 if (expectAndConsume(MIToken::rparen)) 3114 return true; 3115 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, Align(BaseAlignment), AAInfo, 3116 Range, SSID, Order, FailureOrder); 3117 return false; 3118 } 3119 3120 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3121 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3122 Token.is(MIToken::kw_post_instr_symbol)) && 3123 "Invalid token for a pre- post-instruction symbol!"); 3124 lex(); 3125 if (Token.isNot(MIToken::MCSymbol)) 3126 return error("expected a symbol after 'pre-instr-symbol'"); 3127 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3128 lex(); 3129 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3130 Token.is(MIToken::lbrace)) 3131 return false; 3132 if (Token.isNot(MIToken::comma)) 3133 return error("expected ',' before the next machine operand"); 3134 lex(); 3135 return false; 3136 } 3137 3138 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3139 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3140 "Invalid token for a heap alloc marker!"); 3141 lex(); 3142 parseMDNode(Node); 3143 if (!Node) 3144 return error("expected a MDNode after 'heap-alloc-marker'"); 3145 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3146 Token.is(MIToken::lbrace)) 3147 return false; 3148 if (Token.isNot(MIToken::comma)) 3149 return error("expected ',' before the next machine operand"); 3150 lex(); 3151 return false; 3152 } 3153 3154 static void initSlots2BasicBlocks( 3155 const Function &F, 3156 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3157 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3158 MST.incorporateFunction(F); 3159 for (auto &BB : F) { 3160 if (BB.hasName()) 3161 continue; 3162 int Slot = MST.getLocalSlot(&BB); 3163 if (Slot == -1) 3164 continue; 3165 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3166 } 3167 } 3168 3169 static const BasicBlock *getIRBlockFromSlot( 3170 unsigned Slot, 3171 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3172 auto BlockInfo = Slots2BasicBlocks.find(Slot); 3173 if (BlockInfo == Slots2BasicBlocks.end()) 3174 return nullptr; 3175 return BlockInfo->second; 3176 } 3177 3178 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3179 if (Slots2BasicBlocks.empty()) 3180 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3181 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3182 } 3183 3184 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3185 if (&F == &MF.getFunction()) 3186 return getIRBlock(Slot); 3187 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3188 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3189 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3190 } 3191 3192 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3193 // FIXME: Currently we can't recognize temporary or local symbols and call all 3194 // of the appropriate forms to create them. However, this handles basic cases 3195 // well as most of the special aspects are recognized by a prefix on their 3196 // name, and the input names should already be unique. For test cases, keeping 3197 // the symbol name out of the symbol table isn't terribly important. 3198 return MF.getContext().getOrCreateSymbol(Name); 3199 } 3200 3201 bool MIParser::parseStringConstant(std::string &Result) { 3202 if (Token.isNot(MIToken::StringConstant)) 3203 return error("expected string constant"); 3204 Result = std::string(Token.stringValue()); 3205 lex(); 3206 return false; 3207 } 3208 3209 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3210 StringRef Src, 3211 SMDiagnostic &Error) { 3212 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3213 } 3214 3215 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3216 StringRef Src, SMDiagnostic &Error) { 3217 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3218 } 3219 3220 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3221 MachineBasicBlock *&MBB, StringRef Src, 3222 SMDiagnostic &Error) { 3223 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3224 } 3225 3226 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3227 Register &Reg, StringRef Src, 3228 SMDiagnostic &Error) { 3229 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3230 } 3231 3232 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3233 Register &Reg, StringRef Src, 3234 SMDiagnostic &Error) { 3235 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3236 } 3237 3238 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3239 VRegInfo *&Info, StringRef Src, 3240 SMDiagnostic &Error) { 3241 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3242 } 3243 3244 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3245 int &FI, StringRef Src, 3246 SMDiagnostic &Error) { 3247 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3248 } 3249 3250 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3251 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3252 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3253 } 3254 3255 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3256 PerFunctionMIParsingState &PFS, const Value *&V, 3257 ErrorCallbackType ErrorCallback) { 3258 MIToken Token; 3259 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3260 ErrorCallback(Loc, Msg); 3261 }); 3262 V = nullptr; 3263 3264 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3265 } 3266