1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRFormatter.h" 32 #include "llvm/CodeGen/MIRPrinter.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 unsigned &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 auto ValueInfo = Slots2Values.find(Slot); 373 if (ValueInfo == Slots2Values.end()) 374 return nullptr; 375 return ValueInfo->second; 376 } 377 378 namespace { 379 380 /// A wrapper struct around the 'MachineOperand' struct that includes a source 381 /// range and other attributes. 382 struct ParsedMachineOperand { 383 MachineOperand Operand; 384 StringRef::iterator Begin; 385 StringRef::iterator End; 386 Optional<unsigned> TiedDefIdx; 387 388 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 389 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 390 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 391 if (TiedDefIdx) 392 assert(Operand.isReg() && Operand.isUse() && 393 "Only used register operands can be tied"); 394 } 395 }; 396 397 class MIParser { 398 MachineFunction &MF; 399 SMDiagnostic &Error; 400 StringRef Source, CurrentSource; 401 MIToken Token; 402 PerFunctionMIParsingState &PFS; 403 /// Maps from slot numbers to function's unnamed basic blocks. 404 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 405 406 public: 407 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 408 StringRef Source); 409 410 /// \p SkipChar gives the number of characters to skip before looking 411 /// for the next token. 412 void lex(unsigned SkipChar = 0); 413 414 /// Report an error at the current location with the given message. 415 /// 416 /// This function always return true. 417 bool error(const Twine &Msg); 418 419 /// Report an error at the given location with the given message. 420 /// 421 /// This function always return true. 422 bool error(StringRef::iterator Loc, const Twine &Msg); 423 424 bool 425 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 426 bool parseBasicBlocks(); 427 bool parse(MachineInstr *&MI); 428 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 429 bool parseStandaloneNamedRegister(unsigned &Reg); 430 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 431 bool parseStandaloneRegister(unsigned &Reg); 432 bool parseStandaloneStackObject(int &FI); 433 bool parseStandaloneMDNode(MDNode *&Node); 434 435 bool 436 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 437 bool parseBasicBlock(MachineBasicBlock &MBB, 438 MachineBasicBlock *&AddFalthroughFrom); 439 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 440 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 441 442 bool parseNamedRegister(unsigned &Reg); 443 bool parseVirtualRegister(VRegInfo *&Info); 444 bool parseNamedVirtualRegister(VRegInfo *&Info); 445 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 446 bool parseRegisterFlag(unsigned &Flags); 447 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 448 bool parseSubRegisterIndex(unsigned &SubReg); 449 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 450 bool parseRegisterOperand(MachineOperand &Dest, 451 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 452 bool parseImmediateOperand(MachineOperand &Dest); 453 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 454 const Constant *&C); 455 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 456 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 457 bool parseTypedImmediateOperand(MachineOperand &Dest); 458 bool parseFPImmediateOperand(MachineOperand &Dest); 459 bool parseMBBReference(MachineBasicBlock *&MBB); 460 bool parseMBBOperand(MachineOperand &Dest); 461 bool parseStackFrameIndex(int &FI); 462 bool parseStackObjectOperand(MachineOperand &Dest); 463 bool parseFixedStackFrameIndex(int &FI); 464 bool parseFixedStackObjectOperand(MachineOperand &Dest); 465 bool parseGlobalValue(GlobalValue *&GV); 466 bool parseGlobalAddressOperand(MachineOperand &Dest); 467 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 468 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 469 bool parseJumpTableIndexOperand(MachineOperand &Dest); 470 bool parseExternalSymbolOperand(MachineOperand &Dest); 471 bool parseMCSymbolOperand(MachineOperand &Dest); 472 bool parseMDNode(MDNode *&Node); 473 bool parseDIExpression(MDNode *&Expr); 474 bool parseDILocation(MDNode *&Expr); 475 bool parseMetadataOperand(MachineOperand &Dest); 476 bool parseCFIOffset(int &Offset); 477 bool parseCFIRegister(unsigned &Reg); 478 bool parseCFIEscapeValues(std::string& Values); 479 bool parseCFIOperand(MachineOperand &Dest); 480 bool parseIRBlock(BasicBlock *&BB, const Function &F); 481 bool parseBlockAddressOperand(MachineOperand &Dest); 482 bool parseIntrinsicOperand(MachineOperand &Dest); 483 bool parsePredicateOperand(MachineOperand &Dest); 484 bool parseShuffleMaskOperand(MachineOperand &Dest); 485 bool parseTargetIndexOperand(MachineOperand &Dest); 486 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 487 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 488 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 489 MachineOperand &Dest, 490 Optional<unsigned> &TiedDefIdx); 491 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 492 const unsigned OpIdx, 493 MachineOperand &Dest, 494 Optional<unsigned> &TiedDefIdx); 495 bool parseOffset(int64_t &Offset); 496 bool parseAlignment(unsigned &Alignment); 497 bool parseAddrspace(unsigned &Addrspace); 498 bool parseOperandsOffset(MachineOperand &Op); 499 bool parseIRValue(const Value *&V); 500 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 501 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 502 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 503 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 504 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 505 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 506 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 507 bool parseHeapAllocMarker(MDNode *&Node); 508 509 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 510 MachineOperand &Dest, const MIRFormatter &MF); 511 512 private: 513 /// Convert the integer literal in the current token into an unsigned integer. 514 /// 515 /// Return true if an error occurred. 516 bool getUnsigned(unsigned &Result); 517 518 /// Convert the integer literal in the current token into an uint64. 519 /// 520 /// Return true if an error occurred. 521 bool getUint64(uint64_t &Result); 522 523 /// Convert the hexadecimal literal in the current token into an unsigned 524 /// APInt with a minimum bitwidth required to represent the value. 525 /// 526 /// Return true if the literal does not represent an integer value. 527 bool getHexUint(APInt &Result); 528 529 /// If the current token is of the given kind, consume it and return false. 530 /// Otherwise report an error and return true. 531 bool expectAndConsume(MIToken::TokenKind TokenKind); 532 533 /// If the current token is of the given kind, consume it and return true. 534 /// Otherwise return false. 535 bool consumeIfPresent(MIToken::TokenKind TokenKind); 536 537 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 538 539 bool assignRegisterTies(MachineInstr &MI, 540 ArrayRef<ParsedMachineOperand> Operands); 541 542 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 543 const MCInstrDesc &MCID); 544 545 const BasicBlock *getIRBlock(unsigned Slot); 546 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 547 548 const Value *getIRValue(unsigned Slot); 549 550 /// Get or create an MCSymbol for a given name. 551 MCSymbol *getOrCreateMCSymbol(StringRef Name); 552 553 /// parseStringConstant 554 /// ::= StringConstant 555 bool parseStringConstant(std::string &Result); 556 }; 557 558 } // end anonymous namespace 559 560 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 561 StringRef Source) 562 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 563 {} 564 565 void MIParser::lex(unsigned SkipChar) { 566 CurrentSource = lexMIToken( 567 CurrentSource.data() + SkipChar, Token, 568 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 569 } 570 571 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 572 573 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 574 const SourceMgr &SM = *PFS.SM; 575 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 576 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 577 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 578 // Create an ordinary diagnostic when the source manager's buffer is the 579 // source string. 580 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 581 return true; 582 } 583 // Create a diagnostic for a YAML string literal. 584 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 585 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 586 Source, None, None); 587 return true; 588 } 589 590 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 591 ErrorCallbackType; 592 593 static const char *toString(MIToken::TokenKind TokenKind) { 594 switch (TokenKind) { 595 case MIToken::comma: 596 return "','"; 597 case MIToken::equal: 598 return "'='"; 599 case MIToken::colon: 600 return "':'"; 601 case MIToken::lparen: 602 return "'('"; 603 case MIToken::rparen: 604 return "')'"; 605 default: 606 return "<unknown token>"; 607 } 608 } 609 610 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 611 if (Token.isNot(TokenKind)) 612 return error(Twine("expected ") + toString(TokenKind)); 613 lex(); 614 return false; 615 } 616 617 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 618 if (Token.isNot(TokenKind)) 619 return false; 620 lex(); 621 return true; 622 } 623 624 bool MIParser::parseBasicBlockDefinition( 625 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 626 assert(Token.is(MIToken::MachineBasicBlockLabel)); 627 unsigned ID = 0; 628 if (getUnsigned(ID)) 629 return true; 630 auto Loc = Token.location(); 631 auto Name = Token.stringValue(); 632 lex(); 633 bool HasAddressTaken = false; 634 bool IsLandingPad = false; 635 unsigned Alignment = 0; 636 BasicBlock *BB = nullptr; 637 if (consumeIfPresent(MIToken::lparen)) { 638 do { 639 // TODO: Report an error when multiple same attributes are specified. 640 switch (Token.kind()) { 641 case MIToken::kw_address_taken: 642 HasAddressTaken = true; 643 lex(); 644 break; 645 case MIToken::kw_landing_pad: 646 IsLandingPad = true; 647 lex(); 648 break; 649 case MIToken::kw_align: 650 if (parseAlignment(Alignment)) 651 return true; 652 break; 653 case MIToken::IRBlock: 654 // TODO: Report an error when both name and ir block are specified. 655 if (parseIRBlock(BB, MF.getFunction())) 656 return true; 657 lex(); 658 break; 659 default: 660 break; 661 } 662 } while (consumeIfPresent(MIToken::comma)); 663 if (expectAndConsume(MIToken::rparen)) 664 return true; 665 } 666 if (expectAndConsume(MIToken::colon)) 667 return true; 668 669 if (!Name.empty()) { 670 BB = dyn_cast_or_null<BasicBlock>( 671 MF.getFunction().getValueSymbolTable()->lookup(Name)); 672 if (!BB) 673 return error(Loc, Twine("basic block '") + Name + 674 "' is not defined in the function '" + 675 MF.getName() + "'"); 676 } 677 auto *MBB = MF.CreateMachineBasicBlock(BB); 678 MF.insert(MF.end(), MBB); 679 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 680 if (!WasInserted) 681 return error(Loc, Twine("redefinition of machine basic block with id #") + 682 Twine(ID)); 683 if (Alignment) 684 MBB->setAlignment(Align(Alignment)); 685 if (HasAddressTaken) 686 MBB->setHasAddressTaken(); 687 MBB->setIsEHPad(IsLandingPad); 688 return false; 689 } 690 691 bool MIParser::parseBasicBlockDefinitions( 692 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 693 lex(); 694 // Skip until the first machine basic block. 695 while (Token.is(MIToken::Newline)) 696 lex(); 697 if (Token.isErrorOrEOF()) 698 return Token.isError(); 699 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 700 return error("expected a basic block definition before instructions"); 701 unsigned BraceDepth = 0; 702 do { 703 if (parseBasicBlockDefinition(MBBSlots)) 704 return true; 705 bool IsAfterNewline = false; 706 // Skip until the next machine basic block. 707 while (true) { 708 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 709 Token.isErrorOrEOF()) 710 break; 711 else if (Token.is(MIToken::MachineBasicBlockLabel)) 712 return error("basic block definition should be located at the start of " 713 "the line"); 714 else if (consumeIfPresent(MIToken::Newline)) { 715 IsAfterNewline = true; 716 continue; 717 } 718 IsAfterNewline = false; 719 if (Token.is(MIToken::lbrace)) 720 ++BraceDepth; 721 if (Token.is(MIToken::rbrace)) { 722 if (!BraceDepth) 723 return error("extraneous closing brace ('}')"); 724 --BraceDepth; 725 } 726 lex(); 727 } 728 // Verify that we closed all of the '{' at the end of a file or a block. 729 if (!Token.isError() && BraceDepth) 730 return error("expected '}'"); // FIXME: Report a note that shows '{'. 731 } while (!Token.isErrorOrEOF()); 732 return Token.isError(); 733 } 734 735 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 736 assert(Token.is(MIToken::kw_liveins)); 737 lex(); 738 if (expectAndConsume(MIToken::colon)) 739 return true; 740 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 741 return false; 742 do { 743 if (Token.isNot(MIToken::NamedRegister)) 744 return error("expected a named register"); 745 unsigned Reg = 0; 746 if (parseNamedRegister(Reg)) 747 return true; 748 lex(); 749 LaneBitmask Mask = LaneBitmask::getAll(); 750 if (consumeIfPresent(MIToken::colon)) { 751 // Parse lane mask. 752 if (Token.isNot(MIToken::IntegerLiteral) && 753 Token.isNot(MIToken::HexLiteral)) 754 return error("expected a lane mask"); 755 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 756 "Use correct get-function for lane mask"); 757 LaneBitmask::Type V; 758 if (getUnsigned(V)) 759 return error("invalid lane mask value"); 760 Mask = LaneBitmask(V); 761 lex(); 762 } 763 MBB.addLiveIn(Reg, Mask); 764 } while (consumeIfPresent(MIToken::comma)); 765 return false; 766 } 767 768 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 769 assert(Token.is(MIToken::kw_successors)); 770 lex(); 771 if (expectAndConsume(MIToken::colon)) 772 return true; 773 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 774 return false; 775 do { 776 if (Token.isNot(MIToken::MachineBasicBlock)) 777 return error("expected a machine basic block reference"); 778 MachineBasicBlock *SuccMBB = nullptr; 779 if (parseMBBReference(SuccMBB)) 780 return true; 781 lex(); 782 unsigned Weight = 0; 783 if (consumeIfPresent(MIToken::lparen)) { 784 if (Token.isNot(MIToken::IntegerLiteral) && 785 Token.isNot(MIToken::HexLiteral)) 786 return error("expected an integer literal after '('"); 787 if (getUnsigned(Weight)) 788 return true; 789 lex(); 790 if (expectAndConsume(MIToken::rparen)) 791 return true; 792 } 793 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 794 } while (consumeIfPresent(MIToken::comma)); 795 MBB.normalizeSuccProbs(); 796 return false; 797 } 798 799 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 800 MachineBasicBlock *&AddFalthroughFrom) { 801 // Skip the definition. 802 assert(Token.is(MIToken::MachineBasicBlockLabel)); 803 lex(); 804 if (consumeIfPresent(MIToken::lparen)) { 805 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 806 lex(); 807 consumeIfPresent(MIToken::rparen); 808 } 809 consumeIfPresent(MIToken::colon); 810 811 // Parse the liveins and successors. 812 // N.B: Multiple lists of successors and liveins are allowed and they're 813 // merged into one. 814 // Example: 815 // liveins: %edi 816 // liveins: %esi 817 // 818 // is equivalent to 819 // liveins: %edi, %esi 820 bool ExplicitSuccessors = false; 821 while (true) { 822 if (Token.is(MIToken::kw_successors)) { 823 if (parseBasicBlockSuccessors(MBB)) 824 return true; 825 ExplicitSuccessors = true; 826 } else if (Token.is(MIToken::kw_liveins)) { 827 if (parseBasicBlockLiveins(MBB)) 828 return true; 829 } else if (consumeIfPresent(MIToken::Newline)) { 830 continue; 831 } else 832 break; 833 if (!Token.isNewlineOrEOF()) 834 return error("expected line break at the end of a list"); 835 lex(); 836 } 837 838 // Parse the instructions. 839 bool IsInBundle = false; 840 MachineInstr *PrevMI = nullptr; 841 while (!Token.is(MIToken::MachineBasicBlockLabel) && 842 !Token.is(MIToken::Eof)) { 843 if (consumeIfPresent(MIToken::Newline)) 844 continue; 845 if (consumeIfPresent(MIToken::rbrace)) { 846 // The first parsing pass should verify that all closing '}' have an 847 // opening '{'. 848 assert(IsInBundle); 849 IsInBundle = false; 850 continue; 851 } 852 MachineInstr *MI = nullptr; 853 if (parse(MI)) 854 return true; 855 MBB.insert(MBB.end(), MI); 856 if (IsInBundle) { 857 PrevMI->setFlag(MachineInstr::BundledSucc); 858 MI->setFlag(MachineInstr::BundledPred); 859 } 860 PrevMI = MI; 861 if (Token.is(MIToken::lbrace)) { 862 if (IsInBundle) 863 return error("nested instruction bundles are not allowed"); 864 lex(); 865 // This instruction is the start of the bundle. 866 MI->setFlag(MachineInstr::BundledSucc); 867 IsInBundle = true; 868 if (!Token.is(MIToken::Newline)) 869 // The next instruction can be on the same line. 870 continue; 871 } 872 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 873 lex(); 874 } 875 876 // Construct successor list by searching for basic block machine operands. 877 if (!ExplicitSuccessors) { 878 SmallVector<MachineBasicBlock*,4> Successors; 879 bool IsFallthrough; 880 guessSuccessors(MBB, Successors, IsFallthrough); 881 for (MachineBasicBlock *Succ : Successors) 882 MBB.addSuccessor(Succ); 883 884 if (IsFallthrough) { 885 AddFalthroughFrom = &MBB; 886 } else { 887 MBB.normalizeSuccProbs(); 888 } 889 } 890 891 return false; 892 } 893 894 bool MIParser::parseBasicBlocks() { 895 lex(); 896 // Skip until the first machine basic block. 897 while (Token.is(MIToken::Newline)) 898 lex(); 899 if (Token.isErrorOrEOF()) 900 return Token.isError(); 901 // The first parsing pass should have verified that this token is a MBB label 902 // in the 'parseBasicBlockDefinitions' method. 903 assert(Token.is(MIToken::MachineBasicBlockLabel)); 904 MachineBasicBlock *AddFalthroughFrom = nullptr; 905 do { 906 MachineBasicBlock *MBB = nullptr; 907 if (parseMBBReference(MBB)) 908 return true; 909 if (AddFalthroughFrom) { 910 if (!AddFalthroughFrom->isSuccessor(MBB)) 911 AddFalthroughFrom->addSuccessor(MBB); 912 AddFalthroughFrom->normalizeSuccProbs(); 913 AddFalthroughFrom = nullptr; 914 } 915 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 916 return true; 917 // The method 'parseBasicBlock' should parse the whole block until the next 918 // block or the end of file. 919 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 920 } while (Token.isNot(MIToken::Eof)); 921 return false; 922 } 923 924 bool MIParser::parse(MachineInstr *&MI) { 925 // Parse any register operands before '=' 926 MachineOperand MO = MachineOperand::CreateImm(0); 927 SmallVector<ParsedMachineOperand, 8> Operands; 928 while (Token.isRegister() || Token.isRegisterFlag()) { 929 auto Loc = Token.location(); 930 Optional<unsigned> TiedDefIdx; 931 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 932 return true; 933 Operands.push_back( 934 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 935 if (Token.isNot(MIToken::comma)) 936 break; 937 lex(); 938 } 939 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 940 return true; 941 942 unsigned OpCode, Flags = 0; 943 if (Token.isError() || parseInstruction(OpCode, Flags)) 944 return true; 945 946 // Parse the remaining machine operands. 947 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 948 Token.isNot(MIToken::kw_post_instr_symbol) && 949 Token.isNot(MIToken::kw_heap_alloc_marker) && 950 Token.isNot(MIToken::kw_debug_location) && 951 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 952 auto Loc = Token.location(); 953 Optional<unsigned> TiedDefIdx; 954 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 955 return true; 956 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 957 MO.setIsDebug(); 958 Operands.push_back( 959 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 960 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 961 Token.is(MIToken::lbrace)) 962 break; 963 if (Token.isNot(MIToken::comma)) 964 return error("expected ',' before the next machine operand"); 965 lex(); 966 } 967 968 MCSymbol *PreInstrSymbol = nullptr; 969 if (Token.is(MIToken::kw_pre_instr_symbol)) 970 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 971 return true; 972 MCSymbol *PostInstrSymbol = nullptr; 973 if (Token.is(MIToken::kw_post_instr_symbol)) 974 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 975 return true; 976 MDNode *HeapAllocMarker = nullptr; 977 if (Token.is(MIToken::kw_heap_alloc_marker)) 978 if (parseHeapAllocMarker(HeapAllocMarker)) 979 return true; 980 981 DebugLoc DebugLocation; 982 if (Token.is(MIToken::kw_debug_location)) { 983 lex(); 984 MDNode *Node = nullptr; 985 if (Token.is(MIToken::exclaim)) { 986 if (parseMDNode(Node)) 987 return true; 988 } else if (Token.is(MIToken::md_dilocation)) { 989 if (parseDILocation(Node)) 990 return true; 991 } else 992 return error("expected a metadata node after 'debug-location'"); 993 if (!isa<DILocation>(Node)) 994 return error("referenced metadata is not a DILocation"); 995 DebugLocation = DebugLoc(Node); 996 } 997 998 // Parse the machine memory operands. 999 SmallVector<MachineMemOperand *, 2> MemOperands; 1000 if (Token.is(MIToken::coloncolon)) { 1001 lex(); 1002 while (!Token.isNewlineOrEOF()) { 1003 MachineMemOperand *MemOp = nullptr; 1004 if (parseMachineMemoryOperand(MemOp)) 1005 return true; 1006 MemOperands.push_back(MemOp); 1007 if (Token.isNewlineOrEOF()) 1008 break; 1009 if (Token.isNot(MIToken::comma)) 1010 return error("expected ',' before the next machine memory operand"); 1011 lex(); 1012 } 1013 } 1014 1015 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1016 if (!MCID.isVariadic()) { 1017 // FIXME: Move the implicit operand verification to the machine verifier. 1018 if (verifyImplicitOperands(Operands, MCID)) 1019 return true; 1020 } 1021 1022 // TODO: Check for extraneous machine operands. 1023 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1024 MI->setFlags(Flags); 1025 for (const auto &Operand : Operands) 1026 MI->addOperand(MF, Operand.Operand); 1027 if (assignRegisterTies(*MI, Operands)) 1028 return true; 1029 if (PreInstrSymbol) 1030 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1031 if (PostInstrSymbol) 1032 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1033 if (HeapAllocMarker) 1034 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1035 if (!MemOperands.empty()) 1036 MI->setMemRefs(MF, MemOperands); 1037 return false; 1038 } 1039 1040 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1041 lex(); 1042 if (Token.isNot(MIToken::MachineBasicBlock)) 1043 return error("expected a machine basic block reference"); 1044 if (parseMBBReference(MBB)) 1045 return true; 1046 lex(); 1047 if (Token.isNot(MIToken::Eof)) 1048 return error( 1049 "expected end of string after the machine basic block reference"); 1050 return false; 1051 } 1052 1053 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 1054 lex(); 1055 if (Token.isNot(MIToken::NamedRegister)) 1056 return error("expected a named register"); 1057 if (parseNamedRegister(Reg)) 1058 return true; 1059 lex(); 1060 if (Token.isNot(MIToken::Eof)) 1061 return error("expected end of string after the register reference"); 1062 return false; 1063 } 1064 1065 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1066 lex(); 1067 if (Token.isNot(MIToken::VirtualRegister)) 1068 return error("expected a virtual register"); 1069 if (parseVirtualRegister(Info)) 1070 return true; 1071 lex(); 1072 if (Token.isNot(MIToken::Eof)) 1073 return error("expected end of string after the register reference"); 1074 return false; 1075 } 1076 1077 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 1078 lex(); 1079 if (Token.isNot(MIToken::NamedRegister) && 1080 Token.isNot(MIToken::VirtualRegister)) 1081 return error("expected either a named or virtual register"); 1082 1083 VRegInfo *Info; 1084 if (parseRegister(Reg, Info)) 1085 return true; 1086 1087 lex(); 1088 if (Token.isNot(MIToken::Eof)) 1089 return error("expected end of string after the register reference"); 1090 return false; 1091 } 1092 1093 bool MIParser::parseStandaloneStackObject(int &FI) { 1094 lex(); 1095 if (Token.isNot(MIToken::StackObject)) 1096 return error("expected a stack object"); 1097 if (parseStackFrameIndex(FI)) 1098 return true; 1099 if (Token.isNot(MIToken::Eof)) 1100 return error("expected end of string after the stack object reference"); 1101 return false; 1102 } 1103 1104 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1105 lex(); 1106 if (Token.is(MIToken::exclaim)) { 1107 if (parseMDNode(Node)) 1108 return true; 1109 } else if (Token.is(MIToken::md_diexpr)) { 1110 if (parseDIExpression(Node)) 1111 return true; 1112 } else if (Token.is(MIToken::md_dilocation)) { 1113 if (parseDILocation(Node)) 1114 return true; 1115 } else 1116 return error("expected a metadata node"); 1117 if (Token.isNot(MIToken::Eof)) 1118 return error("expected end of string after the metadata node"); 1119 return false; 1120 } 1121 1122 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1123 assert(MO.isImplicit()); 1124 return MO.isDef() ? "implicit-def" : "implicit"; 1125 } 1126 1127 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1128 unsigned Reg) { 1129 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1130 return StringRef(TRI->getName(Reg)).lower(); 1131 } 1132 1133 /// Return true if the parsed machine operands contain a given machine operand. 1134 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1135 ArrayRef<ParsedMachineOperand> Operands) { 1136 for (const auto &I : Operands) { 1137 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1138 return true; 1139 } 1140 return false; 1141 } 1142 1143 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1144 const MCInstrDesc &MCID) { 1145 if (MCID.isCall()) 1146 // We can't verify call instructions as they can contain arbitrary implicit 1147 // register and register mask operands. 1148 return false; 1149 1150 // Gather all the expected implicit operands. 1151 SmallVector<MachineOperand, 4> ImplicitOperands; 1152 if (MCID.ImplicitDefs) 1153 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1154 ImplicitOperands.push_back( 1155 MachineOperand::CreateReg(*ImpDefs, true, true)); 1156 if (MCID.ImplicitUses) 1157 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1158 ImplicitOperands.push_back( 1159 MachineOperand::CreateReg(*ImpUses, false, true)); 1160 1161 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1162 assert(TRI && "Expected target register info"); 1163 for (const auto &I : ImplicitOperands) { 1164 if (isImplicitOperandIn(I, Operands)) 1165 continue; 1166 return error(Operands.empty() ? Token.location() : Operands.back().End, 1167 Twine("missing implicit register operand '") + 1168 printImplicitRegisterFlag(I) + " $" + 1169 getRegisterName(TRI, I.getReg()) + "'"); 1170 } 1171 return false; 1172 } 1173 1174 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1175 // Allow frame and fast math flags for OPCODE 1176 while (Token.is(MIToken::kw_frame_setup) || 1177 Token.is(MIToken::kw_frame_destroy) || 1178 Token.is(MIToken::kw_nnan) || 1179 Token.is(MIToken::kw_ninf) || 1180 Token.is(MIToken::kw_nsz) || 1181 Token.is(MIToken::kw_arcp) || 1182 Token.is(MIToken::kw_contract) || 1183 Token.is(MIToken::kw_afn) || 1184 Token.is(MIToken::kw_reassoc) || 1185 Token.is(MIToken::kw_nuw) || 1186 Token.is(MIToken::kw_nsw) || 1187 Token.is(MIToken::kw_exact) || 1188 Token.is(MIToken::kw_fpexcept)) { 1189 // Mine frame and fast math flags 1190 if (Token.is(MIToken::kw_frame_setup)) 1191 Flags |= MachineInstr::FrameSetup; 1192 if (Token.is(MIToken::kw_frame_destroy)) 1193 Flags |= MachineInstr::FrameDestroy; 1194 if (Token.is(MIToken::kw_nnan)) 1195 Flags |= MachineInstr::FmNoNans; 1196 if (Token.is(MIToken::kw_ninf)) 1197 Flags |= MachineInstr::FmNoInfs; 1198 if (Token.is(MIToken::kw_nsz)) 1199 Flags |= MachineInstr::FmNsz; 1200 if (Token.is(MIToken::kw_arcp)) 1201 Flags |= MachineInstr::FmArcp; 1202 if (Token.is(MIToken::kw_contract)) 1203 Flags |= MachineInstr::FmContract; 1204 if (Token.is(MIToken::kw_afn)) 1205 Flags |= MachineInstr::FmAfn; 1206 if (Token.is(MIToken::kw_reassoc)) 1207 Flags |= MachineInstr::FmReassoc; 1208 if (Token.is(MIToken::kw_nuw)) 1209 Flags |= MachineInstr::NoUWrap; 1210 if (Token.is(MIToken::kw_nsw)) 1211 Flags |= MachineInstr::NoSWrap; 1212 if (Token.is(MIToken::kw_exact)) 1213 Flags |= MachineInstr::IsExact; 1214 if (Token.is(MIToken::kw_fpexcept)) 1215 Flags |= MachineInstr::FPExcept; 1216 1217 lex(); 1218 } 1219 if (Token.isNot(MIToken::Identifier)) 1220 return error("expected a machine instruction"); 1221 StringRef InstrName = Token.stringValue(); 1222 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1223 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1224 lex(); 1225 return false; 1226 } 1227 1228 bool MIParser::parseNamedRegister(unsigned &Reg) { 1229 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1230 StringRef Name = Token.stringValue(); 1231 if (PFS.Target.getRegisterByName(Name, Reg)) 1232 return error(Twine("unknown register name '") + Name + "'"); 1233 return false; 1234 } 1235 1236 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1237 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1238 StringRef Name = Token.stringValue(); 1239 // TODO: Check that the VReg name is not the same as a physical register name. 1240 // If it is, then print a warning (when warnings are implemented). 1241 Info = &PFS.getVRegInfoNamed(Name); 1242 return false; 1243 } 1244 1245 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1246 if (Token.is(MIToken::NamedVirtualRegister)) 1247 return parseNamedVirtualRegister(Info); 1248 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1249 unsigned ID; 1250 if (getUnsigned(ID)) 1251 return true; 1252 Info = &PFS.getVRegInfo(ID); 1253 return false; 1254 } 1255 1256 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1257 switch (Token.kind()) { 1258 case MIToken::underscore: 1259 Reg = 0; 1260 return false; 1261 case MIToken::NamedRegister: 1262 return parseNamedRegister(Reg); 1263 case MIToken::NamedVirtualRegister: 1264 case MIToken::VirtualRegister: 1265 if (parseVirtualRegister(Info)) 1266 return true; 1267 Reg = Info->VReg; 1268 return false; 1269 // TODO: Parse other register kinds. 1270 default: 1271 llvm_unreachable("The current token should be a register"); 1272 } 1273 } 1274 1275 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1276 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1277 return error("expected '_', register class, or register bank name"); 1278 StringRef::iterator Loc = Token.location(); 1279 StringRef Name = Token.stringValue(); 1280 1281 // Was it a register class? 1282 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1283 if (RC) { 1284 lex(); 1285 1286 switch (RegInfo.Kind) { 1287 case VRegInfo::UNKNOWN: 1288 case VRegInfo::NORMAL: 1289 RegInfo.Kind = VRegInfo::NORMAL; 1290 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1291 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1292 return error(Loc, Twine("conflicting register classes, previously: ") + 1293 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1294 } 1295 RegInfo.D.RC = RC; 1296 RegInfo.Explicit = true; 1297 return false; 1298 1299 case VRegInfo::GENERIC: 1300 case VRegInfo::REGBANK: 1301 return error(Loc, "register class specification on generic register"); 1302 } 1303 llvm_unreachable("Unexpected register kind"); 1304 } 1305 1306 // Should be a register bank or a generic register. 1307 const RegisterBank *RegBank = nullptr; 1308 if (Name != "_") { 1309 RegBank = PFS.Target.getRegBank(Name); 1310 if (!RegBank) 1311 return error(Loc, "expected '_', register class, or register bank name"); 1312 } 1313 1314 lex(); 1315 1316 switch (RegInfo.Kind) { 1317 case VRegInfo::UNKNOWN: 1318 case VRegInfo::GENERIC: 1319 case VRegInfo::REGBANK: 1320 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1321 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1322 return error(Loc, "conflicting generic register banks"); 1323 RegInfo.D.RegBank = RegBank; 1324 RegInfo.Explicit = true; 1325 return false; 1326 1327 case VRegInfo::NORMAL: 1328 return error(Loc, "register bank specification on normal register"); 1329 } 1330 llvm_unreachable("Unexpected register kind"); 1331 } 1332 1333 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1334 const unsigned OldFlags = Flags; 1335 switch (Token.kind()) { 1336 case MIToken::kw_implicit: 1337 Flags |= RegState::Implicit; 1338 break; 1339 case MIToken::kw_implicit_define: 1340 Flags |= RegState::ImplicitDefine; 1341 break; 1342 case MIToken::kw_def: 1343 Flags |= RegState::Define; 1344 break; 1345 case MIToken::kw_dead: 1346 Flags |= RegState::Dead; 1347 break; 1348 case MIToken::kw_killed: 1349 Flags |= RegState::Kill; 1350 break; 1351 case MIToken::kw_undef: 1352 Flags |= RegState::Undef; 1353 break; 1354 case MIToken::kw_internal: 1355 Flags |= RegState::InternalRead; 1356 break; 1357 case MIToken::kw_early_clobber: 1358 Flags |= RegState::EarlyClobber; 1359 break; 1360 case MIToken::kw_debug_use: 1361 Flags |= RegState::Debug; 1362 break; 1363 case MIToken::kw_renamable: 1364 Flags |= RegState::Renamable; 1365 break; 1366 default: 1367 llvm_unreachable("The current token should be a register flag"); 1368 } 1369 if (OldFlags == Flags) 1370 // We know that the same flag is specified more than once when the flags 1371 // weren't modified. 1372 return error("duplicate '" + Token.stringValue() + "' register flag"); 1373 lex(); 1374 return false; 1375 } 1376 1377 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1378 assert(Token.is(MIToken::dot)); 1379 lex(); 1380 if (Token.isNot(MIToken::Identifier)) 1381 return error("expected a subregister index after '.'"); 1382 auto Name = Token.stringValue(); 1383 SubReg = PFS.Target.getSubRegIndex(Name); 1384 if (!SubReg) 1385 return error(Twine("use of unknown subregister index '") + Name + "'"); 1386 lex(); 1387 return false; 1388 } 1389 1390 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1391 if (!consumeIfPresent(MIToken::kw_tied_def)) 1392 return true; 1393 if (Token.isNot(MIToken::IntegerLiteral)) 1394 return error("expected an integer literal after 'tied-def'"); 1395 if (getUnsigned(TiedDefIdx)) 1396 return true; 1397 lex(); 1398 if (expectAndConsume(MIToken::rparen)) 1399 return true; 1400 return false; 1401 } 1402 1403 bool MIParser::assignRegisterTies(MachineInstr &MI, 1404 ArrayRef<ParsedMachineOperand> Operands) { 1405 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1406 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1407 if (!Operands[I].TiedDefIdx) 1408 continue; 1409 // The parser ensures that this operand is a register use, so we just have 1410 // to check the tied-def operand. 1411 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1412 if (DefIdx >= E) 1413 return error(Operands[I].Begin, 1414 Twine("use of invalid tied-def operand index '" + 1415 Twine(DefIdx) + "'; instruction has only ") + 1416 Twine(E) + " operands"); 1417 const auto &DefOperand = Operands[DefIdx].Operand; 1418 if (!DefOperand.isReg() || !DefOperand.isDef()) 1419 // FIXME: add note with the def operand. 1420 return error(Operands[I].Begin, 1421 Twine("use of invalid tied-def operand index '") + 1422 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1423 " isn't a defined register"); 1424 // Check that the tied-def operand wasn't tied elsewhere. 1425 for (const auto &TiedPair : TiedRegisterPairs) { 1426 if (TiedPair.first == DefIdx) 1427 return error(Operands[I].Begin, 1428 Twine("the tied-def operand #") + Twine(DefIdx) + 1429 " is already tied with another register operand"); 1430 } 1431 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1432 } 1433 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1434 // indices must be less than tied max. 1435 for (const auto &TiedPair : TiedRegisterPairs) 1436 MI.tieOperands(TiedPair.first, TiedPair.second); 1437 return false; 1438 } 1439 1440 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1441 Optional<unsigned> &TiedDefIdx, 1442 bool IsDef) { 1443 unsigned Flags = IsDef ? RegState::Define : 0; 1444 while (Token.isRegisterFlag()) { 1445 if (parseRegisterFlag(Flags)) 1446 return true; 1447 } 1448 if (!Token.isRegister()) 1449 return error("expected a register after register flags"); 1450 unsigned Reg; 1451 VRegInfo *RegInfo; 1452 if (parseRegister(Reg, RegInfo)) 1453 return true; 1454 lex(); 1455 unsigned SubReg = 0; 1456 if (Token.is(MIToken::dot)) { 1457 if (parseSubRegisterIndex(SubReg)) 1458 return true; 1459 if (!Register::isVirtualRegister(Reg)) 1460 return error("subregister index expects a virtual register"); 1461 } 1462 if (Token.is(MIToken::colon)) { 1463 if (!Register::isVirtualRegister(Reg)) 1464 return error("register class specification expects a virtual register"); 1465 lex(); 1466 if (parseRegisterClassOrBank(*RegInfo)) 1467 return true; 1468 } 1469 MachineRegisterInfo &MRI = MF.getRegInfo(); 1470 if ((Flags & RegState::Define) == 0) { 1471 if (consumeIfPresent(MIToken::lparen)) { 1472 unsigned Idx; 1473 if (!parseRegisterTiedDefIndex(Idx)) 1474 TiedDefIdx = Idx; 1475 else { 1476 // Try a redundant low-level type. 1477 LLT Ty; 1478 if (parseLowLevelType(Token.location(), Ty)) 1479 return error("expected tied-def or low-level type after '('"); 1480 1481 if (expectAndConsume(MIToken::rparen)) 1482 return true; 1483 1484 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1485 return error("inconsistent type for generic virtual register"); 1486 1487 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1488 MRI.setType(Reg, Ty); 1489 } 1490 } 1491 } else if (consumeIfPresent(MIToken::lparen)) { 1492 // Virtual registers may have a tpe with GlobalISel. 1493 if (!Register::isVirtualRegister(Reg)) 1494 return error("unexpected type on physical register"); 1495 1496 LLT Ty; 1497 if (parseLowLevelType(Token.location(), Ty)) 1498 return true; 1499 1500 if (expectAndConsume(MIToken::rparen)) 1501 return true; 1502 1503 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1504 return error("inconsistent type for generic virtual register"); 1505 1506 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1507 MRI.setType(Reg, Ty); 1508 } else if (Register::isVirtualRegister(Reg)) { 1509 // Generic virtual registers must have a type. 1510 // If we end up here this means the type hasn't been specified and 1511 // this is bad! 1512 if (RegInfo->Kind == VRegInfo::GENERIC || 1513 RegInfo->Kind == VRegInfo::REGBANK) 1514 return error("generic virtual registers must have a type"); 1515 } 1516 Dest = MachineOperand::CreateReg( 1517 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1518 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1519 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1520 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1521 1522 return false; 1523 } 1524 1525 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1526 assert(Token.is(MIToken::IntegerLiteral)); 1527 const APSInt &Int = Token.integerValue(); 1528 if (Int.getMinSignedBits() > 64) 1529 return error("integer literal is too large to be an immediate operand"); 1530 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1531 lex(); 1532 return false; 1533 } 1534 1535 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1536 const unsigned OpIdx, 1537 MachineOperand &Dest, 1538 const MIRFormatter &MF) { 1539 assert(Token.is(MIToken::dot)); 1540 auto Loc = Token.location(); // record start position 1541 size_t Len = 1; // for "." 1542 lex(); 1543 1544 // Handle the case that mnemonic starts with number. 1545 if (Token.is(MIToken::IntegerLiteral)) { 1546 Len += Token.range().size(); 1547 lex(); 1548 } 1549 1550 StringRef Src; 1551 if (Token.is(MIToken::comma)) 1552 Src = StringRef(Loc, Len); 1553 else { 1554 assert(Token.is(MIToken::Identifier)); 1555 Src = StringRef(Loc, Len + Token.stringValue().size()); 1556 } 1557 int64_t Val; 1558 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1559 [this](StringRef::iterator Loc, const Twine &Msg) 1560 -> bool { return error(Loc, Msg); })) 1561 return true; 1562 1563 Dest = MachineOperand::CreateImm(Val); 1564 if (!Token.is(MIToken::comma)) 1565 lex(); 1566 return false; 1567 } 1568 1569 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1570 PerFunctionMIParsingState &PFS, const Constant *&C, 1571 ErrorCallbackType ErrCB) { 1572 auto Source = StringValue.str(); // The source has to be null terminated. 1573 SMDiagnostic Err; 1574 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1575 &PFS.IRSlots); 1576 if (!C) 1577 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1578 return false; 1579 } 1580 1581 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1582 const Constant *&C) { 1583 return ::parseIRConstant( 1584 Loc, StringValue, PFS, C, 1585 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1586 return error(Loc, Msg); 1587 }); 1588 } 1589 1590 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1591 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1592 return true; 1593 lex(); 1594 return false; 1595 } 1596 1597 // See LLT implemntation for bit size limits. 1598 static bool verifyScalarSize(uint64_t Size) { 1599 return Size != 0 && isUInt<16>(Size); 1600 } 1601 1602 static bool verifyVectorElementCount(uint64_t NumElts) { 1603 return NumElts != 0 && isUInt<16>(NumElts); 1604 } 1605 1606 static bool verifyAddrSpace(uint64_t AddrSpace) { 1607 return isUInt<24>(AddrSpace); 1608 } 1609 1610 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1611 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1612 StringRef SizeStr = Token.range().drop_front(); 1613 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1614 return error("expected integers after 's'/'p' type character"); 1615 } 1616 1617 if (Token.range().front() == 's') { 1618 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1619 if (!verifyScalarSize(ScalarSize)) 1620 return error("invalid size for scalar type"); 1621 1622 Ty = LLT::scalar(ScalarSize); 1623 lex(); 1624 return false; 1625 } else if (Token.range().front() == 'p') { 1626 const DataLayout &DL = MF.getDataLayout(); 1627 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1628 if (!verifyAddrSpace(AS)) 1629 return error("invalid address space number"); 1630 1631 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1632 lex(); 1633 return false; 1634 } 1635 1636 // Now we're looking for a vector. 1637 if (Token.isNot(MIToken::less)) 1638 return error(Loc, 1639 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1640 lex(); 1641 1642 if (Token.isNot(MIToken::IntegerLiteral)) 1643 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1644 uint64_t NumElements = Token.integerValue().getZExtValue(); 1645 if (!verifyVectorElementCount(NumElements)) 1646 return error("invalid number of vector elements"); 1647 1648 lex(); 1649 1650 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1651 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1652 lex(); 1653 1654 if (Token.range().front() != 's' && Token.range().front() != 'p') 1655 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1656 StringRef SizeStr = Token.range().drop_front(); 1657 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1658 return error("expected integers after 's'/'p' type character"); 1659 1660 if (Token.range().front() == 's') { 1661 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1662 if (!verifyScalarSize(ScalarSize)) 1663 return error("invalid size for scalar type"); 1664 Ty = LLT::scalar(ScalarSize); 1665 } else if (Token.range().front() == 'p') { 1666 const DataLayout &DL = MF.getDataLayout(); 1667 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1668 if (!verifyAddrSpace(AS)) 1669 return error("invalid address space number"); 1670 1671 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1672 } else 1673 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1674 lex(); 1675 1676 if (Token.isNot(MIToken::greater)) 1677 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1678 lex(); 1679 1680 Ty = LLT::vector(NumElements, Ty); 1681 return false; 1682 } 1683 1684 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1685 assert(Token.is(MIToken::Identifier)); 1686 StringRef TypeStr = Token.range(); 1687 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1688 TypeStr.front() != 'p') 1689 return error( 1690 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1691 StringRef SizeStr = Token.range().drop_front(); 1692 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1693 return error("expected integers after 'i'/'s'/'p' type character"); 1694 1695 auto Loc = Token.location(); 1696 lex(); 1697 if (Token.isNot(MIToken::IntegerLiteral)) { 1698 if (Token.isNot(MIToken::Identifier) || 1699 !(Token.range() == "true" || Token.range() == "false")) 1700 return error("expected an integer literal"); 1701 } 1702 const Constant *C = nullptr; 1703 if (parseIRConstant(Loc, C)) 1704 return true; 1705 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1706 return false; 1707 } 1708 1709 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1710 auto Loc = Token.location(); 1711 lex(); 1712 if (Token.isNot(MIToken::FloatingPointLiteral) && 1713 Token.isNot(MIToken::HexLiteral)) 1714 return error("expected a floating point literal"); 1715 const Constant *C = nullptr; 1716 if (parseIRConstant(Loc, C)) 1717 return true; 1718 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1719 return false; 1720 } 1721 1722 static bool getHexUint(const MIToken &Token, APInt &Result) { 1723 assert(Token.is(MIToken::HexLiteral)); 1724 StringRef S = Token.range(); 1725 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1726 // This could be a floating point literal with a special prefix. 1727 if (!isxdigit(S[2])) 1728 return true; 1729 StringRef V = S.substr(2); 1730 APInt A(V.size()*4, V, 16); 1731 1732 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1733 // sure it isn't the case before constructing result. 1734 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1735 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1736 return false; 1737 } 1738 1739 bool getUnsigned(const MIToken &Token, unsigned &Result, 1740 ErrorCallbackType ErrCB) { 1741 if (Token.hasIntegerValue()) { 1742 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1743 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1744 if (Val64 == Limit) 1745 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1746 Result = Val64; 1747 return false; 1748 } 1749 if (Token.is(MIToken::HexLiteral)) { 1750 APInt A; 1751 if (getHexUint(Token, A)) 1752 return true; 1753 if (A.getBitWidth() > 32) 1754 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1755 Result = A.getZExtValue(); 1756 return false; 1757 } 1758 return true; 1759 } 1760 1761 bool MIParser::getUnsigned(unsigned &Result) { 1762 return ::getUnsigned( 1763 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1764 return error(Loc, Msg); 1765 }); 1766 } 1767 1768 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1769 assert(Token.is(MIToken::MachineBasicBlock) || 1770 Token.is(MIToken::MachineBasicBlockLabel)); 1771 unsigned Number; 1772 if (getUnsigned(Number)) 1773 return true; 1774 auto MBBInfo = PFS.MBBSlots.find(Number); 1775 if (MBBInfo == PFS.MBBSlots.end()) 1776 return error(Twine("use of undefined machine basic block #") + 1777 Twine(Number)); 1778 MBB = MBBInfo->second; 1779 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1780 // we drop the <irname> from the bb.<id>.<irname> format. 1781 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1782 return error(Twine("the name of machine basic block #") + Twine(Number) + 1783 " isn't '" + Token.stringValue() + "'"); 1784 return false; 1785 } 1786 1787 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1788 MachineBasicBlock *MBB; 1789 if (parseMBBReference(MBB)) 1790 return true; 1791 Dest = MachineOperand::CreateMBB(MBB); 1792 lex(); 1793 return false; 1794 } 1795 1796 bool MIParser::parseStackFrameIndex(int &FI) { 1797 assert(Token.is(MIToken::StackObject)); 1798 unsigned ID; 1799 if (getUnsigned(ID)) 1800 return true; 1801 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1802 if (ObjectInfo == PFS.StackObjectSlots.end()) 1803 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1804 "'"); 1805 StringRef Name; 1806 if (const auto *Alloca = 1807 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1808 Name = Alloca->getName(); 1809 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1810 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1811 "' isn't '" + Token.stringValue() + "'"); 1812 lex(); 1813 FI = ObjectInfo->second; 1814 return false; 1815 } 1816 1817 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1818 int FI; 1819 if (parseStackFrameIndex(FI)) 1820 return true; 1821 Dest = MachineOperand::CreateFI(FI); 1822 return false; 1823 } 1824 1825 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1826 assert(Token.is(MIToken::FixedStackObject)); 1827 unsigned ID; 1828 if (getUnsigned(ID)) 1829 return true; 1830 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1831 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1832 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1833 Twine(ID) + "'"); 1834 lex(); 1835 FI = ObjectInfo->second; 1836 return false; 1837 } 1838 1839 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1840 int FI; 1841 if (parseFixedStackFrameIndex(FI)) 1842 return true; 1843 Dest = MachineOperand::CreateFI(FI); 1844 return false; 1845 } 1846 1847 static bool parseGlobalValue(const MIToken &Token, 1848 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 1849 ErrorCallbackType ErrCB) { 1850 switch (Token.kind()) { 1851 case MIToken::NamedGlobalValue: { 1852 const Module *M = PFS.MF.getFunction().getParent(); 1853 GV = M->getNamedValue(Token.stringValue()); 1854 if (!GV) 1855 return ErrCB(Token.location(), Twine("use of undefined global value '") + 1856 Token.range() + "'"); 1857 break; 1858 } 1859 case MIToken::GlobalValue: { 1860 unsigned GVIdx; 1861 if (getUnsigned(Token, GVIdx, ErrCB)) 1862 return true; 1863 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1864 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 1865 Twine(GVIdx) + "'"); 1866 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1867 break; 1868 } 1869 default: 1870 llvm_unreachable("The current token should be a global value"); 1871 } 1872 return false; 1873 } 1874 1875 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1876 return ::parseGlobalValue( 1877 Token, PFS, GV, 1878 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1879 return error(Loc, Msg); 1880 }); 1881 } 1882 1883 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1884 GlobalValue *GV = nullptr; 1885 if (parseGlobalValue(GV)) 1886 return true; 1887 lex(); 1888 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1889 if (parseOperandsOffset(Dest)) 1890 return true; 1891 return false; 1892 } 1893 1894 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1895 assert(Token.is(MIToken::ConstantPoolItem)); 1896 unsigned ID; 1897 if (getUnsigned(ID)) 1898 return true; 1899 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1900 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1901 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1902 lex(); 1903 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1904 if (parseOperandsOffset(Dest)) 1905 return true; 1906 return false; 1907 } 1908 1909 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1910 assert(Token.is(MIToken::JumpTableIndex)); 1911 unsigned ID; 1912 if (getUnsigned(ID)) 1913 return true; 1914 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1915 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1916 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1917 lex(); 1918 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1919 return false; 1920 } 1921 1922 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1923 assert(Token.is(MIToken::ExternalSymbol)); 1924 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1925 lex(); 1926 Dest = MachineOperand::CreateES(Symbol); 1927 if (parseOperandsOffset(Dest)) 1928 return true; 1929 return false; 1930 } 1931 1932 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1933 assert(Token.is(MIToken::MCSymbol)); 1934 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1935 lex(); 1936 Dest = MachineOperand::CreateMCSymbol(Symbol); 1937 if (parseOperandsOffset(Dest)) 1938 return true; 1939 return false; 1940 } 1941 1942 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1943 assert(Token.is(MIToken::SubRegisterIndex)); 1944 StringRef Name = Token.stringValue(); 1945 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1946 if (SubRegIndex == 0) 1947 return error(Twine("unknown subregister index '") + Name + "'"); 1948 lex(); 1949 Dest = MachineOperand::CreateImm(SubRegIndex); 1950 return false; 1951 } 1952 1953 bool MIParser::parseMDNode(MDNode *&Node) { 1954 assert(Token.is(MIToken::exclaim)); 1955 1956 auto Loc = Token.location(); 1957 lex(); 1958 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1959 return error("expected metadata id after '!'"); 1960 unsigned ID; 1961 if (getUnsigned(ID)) 1962 return true; 1963 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1964 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1965 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1966 lex(); 1967 Node = NodeInfo->second.get(); 1968 return false; 1969 } 1970 1971 bool MIParser::parseDIExpression(MDNode *&Expr) { 1972 assert(Token.is(MIToken::md_diexpr)); 1973 lex(); 1974 1975 // FIXME: Share this parsing with the IL parser. 1976 SmallVector<uint64_t, 8> Elements; 1977 1978 if (expectAndConsume(MIToken::lparen)) 1979 return true; 1980 1981 if (Token.isNot(MIToken::rparen)) { 1982 do { 1983 if (Token.is(MIToken::Identifier)) { 1984 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1985 lex(); 1986 Elements.push_back(Op); 1987 continue; 1988 } 1989 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 1990 lex(); 1991 Elements.push_back(Enc); 1992 continue; 1993 } 1994 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1995 } 1996 1997 if (Token.isNot(MIToken::IntegerLiteral) || 1998 Token.integerValue().isSigned()) 1999 return error("expected unsigned integer"); 2000 2001 auto &U = Token.integerValue(); 2002 if (U.ugt(UINT64_MAX)) 2003 return error("element too large, limit is " + Twine(UINT64_MAX)); 2004 Elements.push_back(U.getZExtValue()); 2005 lex(); 2006 2007 } while (consumeIfPresent(MIToken::comma)); 2008 } 2009 2010 if (expectAndConsume(MIToken::rparen)) 2011 return true; 2012 2013 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2014 return false; 2015 } 2016 2017 bool MIParser::parseDILocation(MDNode *&Loc) { 2018 assert(Token.is(MIToken::md_dilocation)); 2019 lex(); 2020 2021 bool HaveLine = false; 2022 unsigned Line = 0; 2023 unsigned Column = 0; 2024 MDNode *Scope = nullptr; 2025 MDNode *InlinedAt = nullptr; 2026 bool ImplicitCode = false; 2027 2028 if (expectAndConsume(MIToken::lparen)) 2029 return true; 2030 2031 if (Token.isNot(MIToken::rparen)) { 2032 do { 2033 if (Token.is(MIToken::Identifier)) { 2034 if (Token.stringValue() == "line") { 2035 lex(); 2036 if (expectAndConsume(MIToken::colon)) 2037 return true; 2038 if (Token.isNot(MIToken::IntegerLiteral) || 2039 Token.integerValue().isSigned()) 2040 return error("expected unsigned integer"); 2041 Line = Token.integerValue().getZExtValue(); 2042 HaveLine = true; 2043 lex(); 2044 continue; 2045 } 2046 if (Token.stringValue() == "column") { 2047 lex(); 2048 if (expectAndConsume(MIToken::colon)) 2049 return true; 2050 if (Token.isNot(MIToken::IntegerLiteral) || 2051 Token.integerValue().isSigned()) 2052 return error("expected unsigned integer"); 2053 Column = Token.integerValue().getZExtValue(); 2054 lex(); 2055 continue; 2056 } 2057 if (Token.stringValue() == "scope") { 2058 lex(); 2059 if (expectAndConsume(MIToken::colon)) 2060 return true; 2061 if (parseMDNode(Scope)) 2062 return error("expected metadata node"); 2063 if (!isa<DIScope>(Scope)) 2064 return error("expected DIScope node"); 2065 continue; 2066 } 2067 if (Token.stringValue() == "inlinedAt") { 2068 lex(); 2069 if (expectAndConsume(MIToken::colon)) 2070 return true; 2071 if (Token.is(MIToken::exclaim)) { 2072 if (parseMDNode(InlinedAt)) 2073 return true; 2074 } else if (Token.is(MIToken::md_dilocation)) { 2075 if (parseDILocation(InlinedAt)) 2076 return true; 2077 } else 2078 return error("expected metadata node"); 2079 if (!isa<DILocation>(InlinedAt)) 2080 return error("expected DILocation node"); 2081 continue; 2082 } 2083 if (Token.stringValue() == "isImplicitCode") { 2084 lex(); 2085 if (expectAndConsume(MIToken::colon)) 2086 return true; 2087 if (!Token.is(MIToken::Identifier)) 2088 return error("expected true/false"); 2089 // As far as I can see, we don't have any existing need for parsing 2090 // true/false in MIR yet. Do it ad-hoc until there's something else 2091 // that needs it. 2092 if (Token.stringValue() == "true") 2093 ImplicitCode = true; 2094 else if (Token.stringValue() == "false") 2095 ImplicitCode = false; 2096 else 2097 return error("expected true/false"); 2098 lex(); 2099 continue; 2100 } 2101 } 2102 return error(Twine("invalid DILocation argument '") + 2103 Token.stringValue() + "'"); 2104 } while (consumeIfPresent(MIToken::comma)); 2105 } 2106 2107 if (expectAndConsume(MIToken::rparen)) 2108 return true; 2109 2110 if (!HaveLine) 2111 return error("DILocation requires line number"); 2112 if (!Scope) 2113 return error("DILocation requires a scope"); 2114 2115 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2116 InlinedAt, ImplicitCode); 2117 return false; 2118 } 2119 2120 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2121 MDNode *Node = nullptr; 2122 if (Token.is(MIToken::exclaim)) { 2123 if (parseMDNode(Node)) 2124 return true; 2125 } else if (Token.is(MIToken::md_diexpr)) { 2126 if (parseDIExpression(Node)) 2127 return true; 2128 } 2129 Dest = MachineOperand::CreateMetadata(Node); 2130 return false; 2131 } 2132 2133 bool MIParser::parseCFIOffset(int &Offset) { 2134 if (Token.isNot(MIToken::IntegerLiteral)) 2135 return error("expected a cfi offset"); 2136 if (Token.integerValue().getMinSignedBits() > 32) 2137 return error("expected a 32 bit integer (the cfi offset is too large)"); 2138 Offset = (int)Token.integerValue().getExtValue(); 2139 lex(); 2140 return false; 2141 } 2142 2143 bool MIParser::parseCFIRegister(unsigned &Reg) { 2144 if (Token.isNot(MIToken::NamedRegister)) 2145 return error("expected a cfi register"); 2146 unsigned LLVMReg; 2147 if (parseNamedRegister(LLVMReg)) 2148 return true; 2149 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2150 assert(TRI && "Expected target register info"); 2151 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2152 if (DwarfReg < 0) 2153 return error("invalid DWARF register"); 2154 Reg = (unsigned)DwarfReg; 2155 lex(); 2156 return false; 2157 } 2158 2159 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2160 do { 2161 if (Token.isNot(MIToken::HexLiteral)) 2162 return error("expected a hexadecimal literal"); 2163 unsigned Value; 2164 if (getUnsigned(Value)) 2165 return true; 2166 if (Value > UINT8_MAX) 2167 return error("expected a 8-bit integer (too large)"); 2168 Values.push_back(static_cast<uint8_t>(Value)); 2169 lex(); 2170 } while (consumeIfPresent(MIToken::comma)); 2171 return false; 2172 } 2173 2174 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2175 auto Kind = Token.kind(); 2176 lex(); 2177 int Offset; 2178 unsigned Reg; 2179 unsigned CFIIndex; 2180 switch (Kind) { 2181 case MIToken::kw_cfi_same_value: 2182 if (parseCFIRegister(Reg)) 2183 return true; 2184 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2185 break; 2186 case MIToken::kw_cfi_offset: 2187 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2188 parseCFIOffset(Offset)) 2189 return true; 2190 CFIIndex = 2191 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2192 break; 2193 case MIToken::kw_cfi_rel_offset: 2194 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2195 parseCFIOffset(Offset)) 2196 return true; 2197 CFIIndex = MF.addFrameInst( 2198 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2199 break; 2200 case MIToken::kw_cfi_def_cfa_register: 2201 if (parseCFIRegister(Reg)) 2202 return true; 2203 CFIIndex = 2204 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2205 break; 2206 case MIToken::kw_cfi_def_cfa_offset: 2207 if (parseCFIOffset(Offset)) 2208 return true; 2209 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 2210 CFIIndex = MF.addFrameInst( 2211 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 2212 break; 2213 case MIToken::kw_cfi_adjust_cfa_offset: 2214 if (parseCFIOffset(Offset)) 2215 return true; 2216 CFIIndex = MF.addFrameInst( 2217 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2218 break; 2219 case MIToken::kw_cfi_def_cfa: 2220 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2221 parseCFIOffset(Offset)) 2222 return true; 2223 // NB: MCCFIInstruction::createDefCfa negates the offset. 2224 CFIIndex = 2225 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 2226 break; 2227 case MIToken::kw_cfi_remember_state: 2228 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2229 break; 2230 case MIToken::kw_cfi_restore: 2231 if (parseCFIRegister(Reg)) 2232 return true; 2233 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2234 break; 2235 case MIToken::kw_cfi_restore_state: 2236 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2237 break; 2238 case MIToken::kw_cfi_undefined: 2239 if (parseCFIRegister(Reg)) 2240 return true; 2241 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2242 break; 2243 case MIToken::kw_cfi_register: { 2244 unsigned Reg2; 2245 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2246 parseCFIRegister(Reg2)) 2247 return true; 2248 2249 CFIIndex = 2250 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2251 break; 2252 } 2253 case MIToken::kw_cfi_window_save: 2254 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2255 break; 2256 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2257 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2258 break; 2259 case MIToken::kw_cfi_escape: { 2260 std::string Values; 2261 if (parseCFIEscapeValues(Values)) 2262 return true; 2263 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2264 break; 2265 } 2266 default: 2267 // TODO: Parse the other CFI operands. 2268 llvm_unreachable("The current token should be a cfi operand"); 2269 } 2270 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2271 return false; 2272 } 2273 2274 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2275 switch (Token.kind()) { 2276 case MIToken::NamedIRBlock: { 2277 BB = dyn_cast_or_null<BasicBlock>( 2278 F.getValueSymbolTable()->lookup(Token.stringValue())); 2279 if (!BB) 2280 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2281 break; 2282 } 2283 case MIToken::IRBlock: { 2284 unsigned SlotNumber = 0; 2285 if (getUnsigned(SlotNumber)) 2286 return true; 2287 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2288 if (!BB) 2289 return error(Twine("use of undefined IR block '%ir-block.") + 2290 Twine(SlotNumber) + "'"); 2291 break; 2292 } 2293 default: 2294 llvm_unreachable("The current token should be an IR block reference"); 2295 } 2296 return false; 2297 } 2298 2299 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2300 assert(Token.is(MIToken::kw_blockaddress)); 2301 lex(); 2302 if (expectAndConsume(MIToken::lparen)) 2303 return true; 2304 if (Token.isNot(MIToken::GlobalValue) && 2305 Token.isNot(MIToken::NamedGlobalValue)) 2306 return error("expected a global value"); 2307 GlobalValue *GV = nullptr; 2308 if (parseGlobalValue(GV)) 2309 return true; 2310 auto *F = dyn_cast<Function>(GV); 2311 if (!F) 2312 return error("expected an IR function reference"); 2313 lex(); 2314 if (expectAndConsume(MIToken::comma)) 2315 return true; 2316 BasicBlock *BB = nullptr; 2317 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2318 return error("expected an IR block reference"); 2319 if (parseIRBlock(BB, *F)) 2320 return true; 2321 lex(); 2322 if (expectAndConsume(MIToken::rparen)) 2323 return true; 2324 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2325 if (parseOperandsOffset(Dest)) 2326 return true; 2327 return false; 2328 } 2329 2330 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2331 assert(Token.is(MIToken::kw_intrinsic)); 2332 lex(); 2333 if (expectAndConsume(MIToken::lparen)) 2334 return error("expected syntax intrinsic(@llvm.whatever)"); 2335 2336 if (Token.isNot(MIToken::NamedGlobalValue)) 2337 return error("expected syntax intrinsic(@llvm.whatever)"); 2338 2339 std::string Name = Token.stringValue(); 2340 lex(); 2341 2342 if (expectAndConsume(MIToken::rparen)) 2343 return error("expected ')' to terminate intrinsic name"); 2344 2345 // Find out what intrinsic we're dealing with, first try the global namespace 2346 // and then the target's private intrinsics if that fails. 2347 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2348 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2349 if (ID == Intrinsic::not_intrinsic && TII) 2350 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2351 2352 if (ID == Intrinsic::not_intrinsic) 2353 return error("unknown intrinsic name"); 2354 Dest = MachineOperand::CreateIntrinsicID(ID); 2355 2356 return false; 2357 } 2358 2359 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2360 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2361 bool IsFloat = Token.is(MIToken::kw_floatpred); 2362 lex(); 2363 2364 if (expectAndConsume(MIToken::lparen)) 2365 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2366 2367 if (Token.isNot(MIToken::Identifier)) 2368 return error("whatever"); 2369 2370 CmpInst::Predicate Pred; 2371 if (IsFloat) { 2372 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2373 .Case("false", CmpInst::FCMP_FALSE) 2374 .Case("oeq", CmpInst::FCMP_OEQ) 2375 .Case("ogt", CmpInst::FCMP_OGT) 2376 .Case("oge", CmpInst::FCMP_OGE) 2377 .Case("olt", CmpInst::FCMP_OLT) 2378 .Case("ole", CmpInst::FCMP_OLE) 2379 .Case("one", CmpInst::FCMP_ONE) 2380 .Case("ord", CmpInst::FCMP_ORD) 2381 .Case("uno", CmpInst::FCMP_UNO) 2382 .Case("ueq", CmpInst::FCMP_UEQ) 2383 .Case("ugt", CmpInst::FCMP_UGT) 2384 .Case("uge", CmpInst::FCMP_UGE) 2385 .Case("ult", CmpInst::FCMP_ULT) 2386 .Case("ule", CmpInst::FCMP_ULE) 2387 .Case("une", CmpInst::FCMP_UNE) 2388 .Case("true", CmpInst::FCMP_TRUE) 2389 .Default(CmpInst::BAD_FCMP_PREDICATE); 2390 if (!CmpInst::isFPPredicate(Pred)) 2391 return error("invalid floating-point predicate"); 2392 } else { 2393 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2394 .Case("eq", CmpInst::ICMP_EQ) 2395 .Case("ne", CmpInst::ICMP_NE) 2396 .Case("sgt", CmpInst::ICMP_SGT) 2397 .Case("sge", CmpInst::ICMP_SGE) 2398 .Case("slt", CmpInst::ICMP_SLT) 2399 .Case("sle", CmpInst::ICMP_SLE) 2400 .Case("ugt", CmpInst::ICMP_UGT) 2401 .Case("uge", CmpInst::ICMP_UGE) 2402 .Case("ult", CmpInst::ICMP_ULT) 2403 .Case("ule", CmpInst::ICMP_ULE) 2404 .Default(CmpInst::BAD_ICMP_PREDICATE); 2405 if (!CmpInst::isIntPredicate(Pred)) 2406 return error("invalid integer predicate"); 2407 } 2408 2409 lex(); 2410 Dest = MachineOperand::CreatePredicate(Pred); 2411 if (expectAndConsume(MIToken::rparen)) 2412 return error("predicate should be terminated by ')'."); 2413 2414 return false; 2415 } 2416 2417 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2418 assert(Token.is(MIToken::kw_shufflemask)); 2419 2420 lex(); 2421 if (expectAndConsume(MIToken::lparen)) 2422 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2423 2424 SmallVector<Constant *, 32> ShufMask; 2425 LLVMContext &Ctx = MF.getFunction().getContext(); 2426 Type *I32Ty = Type::getInt32Ty(Ctx); 2427 2428 bool AllZero = true; 2429 bool AllUndef = true; 2430 2431 do { 2432 if (Token.is(MIToken::kw_undef)) { 2433 ShufMask.push_back(UndefValue::get(I32Ty)); 2434 AllZero = false; 2435 } else if (Token.is(MIToken::IntegerLiteral)) { 2436 AllUndef = false; 2437 const APSInt &Int = Token.integerValue(); 2438 if (!Int.isNullValue()) 2439 AllZero = false; 2440 ShufMask.push_back(ConstantInt::get(I32Ty, Int.getExtValue())); 2441 } else 2442 return error("expected integer constant"); 2443 2444 lex(); 2445 } while (consumeIfPresent(MIToken::comma)); 2446 2447 if (expectAndConsume(MIToken::rparen)) 2448 return error("shufflemask should be terminated by ')'."); 2449 2450 if (AllZero || AllUndef) { 2451 VectorType *VT = VectorType::get(I32Ty, ShufMask.size()); 2452 Constant *C = AllZero ? Constant::getNullValue(VT) : UndefValue::get(VT); 2453 Dest = MachineOperand::CreateShuffleMask(C); 2454 } else 2455 Dest = MachineOperand::CreateShuffleMask(ConstantVector::get(ShufMask)); 2456 2457 return false; 2458 } 2459 2460 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2461 assert(Token.is(MIToken::kw_target_index)); 2462 lex(); 2463 if (expectAndConsume(MIToken::lparen)) 2464 return true; 2465 if (Token.isNot(MIToken::Identifier)) 2466 return error("expected the name of the target index"); 2467 int Index = 0; 2468 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2469 return error("use of undefined target index '" + Token.stringValue() + "'"); 2470 lex(); 2471 if (expectAndConsume(MIToken::rparen)) 2472 return true; 2473 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2474 if (parseOperandsOffset(Dest)) 2475 return true; 2476 return false; 2477 } 2478 2479 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2480 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2481 lex(); 2482 if (expectAndConsume(MIToken::lparen)) 2483 return true; 2484 2485 uint32_t *Mask = MF.allocateRegMask(); 2486 while (true) { 2487 if (Token.isNot(MIToken::NamedRegister)) 2488 return error("expected a named register"); 2489 unsigned Reg; 2490 if (parseNamedRegister(Reg)) 2491 return true; 2492 lex(); 2493 Mask[Reg / 32] |= 1U << (Reg % 32); 2494 // TODO: Report an error if the same register is used more than once. 2495 if (Token.isNot(MIToken::comma)) 2496 break; 2497 lex(); 2498 } 2499 2500 if (expectAndConsume(MIToken::rparen)) 2501 return true; 2502 Dest = MachineOperand::CreateRegMask(Mask); 2503 return false; 2504 } 2505 2506 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2507 assert(Token.is(MIToken::kw_liveout)); 2508 uint32_t *Mask = MF.allocateRegMask(); 2509 lex(); 2510 if (expectAndConsume(MIToken::lparen)) 2511 return true; 2512 while (true) { 2513 if (Token.isNot(MIToken::NamedRegister)) 2514 return error("expected a named register"); 2515 unsigned Reg; 2516 if (parseNamedRegister(Reg)) 2517 return true; 2518 lex(); 2519 Mask[Reg / 32] |= 1U << (Reg % 32); 2520 // TODO: Report an error if the same register is used more than once. 2521 if (Token.isNot(MIToken::comma)) 2522 break; 2523 lex(); 2524 } 2525 if (expectAndConsume(MIToken::rparen)) 2526 return true; 2527 Dest = MachineOperand::CreateRegLiveOut(Mask); 2528 return false; 2529 } 2530 2531 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2532 MachineOperand &Dest, 2533 Optional<unsigned> &TiedDefIdx) { 2534 switch (Token.kind()) { 2535 case MIToken::kw_implicit: 2536 case MIToken::kw_implicit_define: 2537 case MIToken::kw_def: 2538 case MIToken::kw_dead: 2539 case MIToken::kw_killed: 2540 case MIToken::kw_undef: 2541 case MIToken::kw_internal: 2542 case MIToken::kw_early_clobber: 2543 case MIToken::kw_debug_use: 2544 case MIToken::kw_renamable: 2545 case MIToken::underscore: 2546 case MIToken::NamedRegister: 2547 case MIToken::VirtualRegister: 2548 case MIToken::NamedVirtualRegister: 2549 return parseRegisterOperand(Dest, TiedDefIdx); 2550 case MIToken::IntegerLiteral: 2551 return parseImmediateOperand(Dest); 2552 case MIToken::kw_half: 2553 case MIToken::kw_float: 2554 case MIToken::kw_double: 2555 case MIToken::kw_x86_fp80: 2556 case MIToken::kw_fp128: 2557 case MIToken::kw_ppc_fp128: 2558 return parseFPImmediateOperand(Dest); 2559 case MIToken::MachineBasicBlock: 2560 return parseMBBOperand(Dest); 2561 case MIToken::StackObject: 2562 return parseStackObjectOperand(Dest); 2563 case MIToken::FixedStackObject: 2564 return parseFixedStackObjectOperand(Dest); 2565 case MIToken::GlobalValue: 2566 case MIToken::NamedGlobalValue: 2567 return parseGlobalAddressOperand(Dest); 2568 case MIToken::ConstantPoolItem: 2569 return parseConstantPoolIndexOperand(Dest); 2570 case MIToken::JumpTableIndex: 2571 return parseJumpTableIndexOperand(Dest); 2572 case MIToken::ExternalSymbol: 2573 return parseExternalSymbolOperand(Dest); 2574 case MIToken::MCSymbol: 2575 return parseMCSymbolOperand(Dest); 2576 case MIToken::SubRegisterIndex: 2577 return parseSubRegisterIndexOperand(Dest); 2578 case MIToken::md_diexpr: 2579 case MIToken::exclaim: 2580 return parseMetadataOperand(Dest); 2581 case MIToken::kw_cfi_same_value: 2582 case MIToken::kw_cfi_offset: 2583 case MIToken::kw_cfi_rel_offset: 2584 case MIToken::kw_cfi_def_cfa_register: 2585 case MIToken::kw_cfi_def_cfa_offset: 2586 case MIToken::kw_cfi_adjust_cfa_offset: 2587 case MIToken::kw_cfi_escape: 2588 case MIToken::kw_cfi_def_cfa: 2589 case MIToken::kw_cfi_register: 2590 case MIToken::kw_cfi_remember_state: 2591 case MIToken::kw_cfi_restore: 2592 case MIToken::kw_cfi_restore_state: 2593 case MIToken::kw_cfi_undefined: 2594 case MIToken::kw_cfi_window_save: 2595 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2596 return parseCFIOperand(Dest); 2597 case MIToken::kw_blockaddress: 2598 return parseBlockAddressOperand(Dest); 2599 case MIToken::kw_intrinsic: 2600 return parseIntrinsicOperand(Dest); 2601 case MIToken::kw_target_index: 2602 return parseTargetIndexOperand(Dest); 2603 case MIToken::kw_liveout: 2604 return parseLiveoutRegisterMaskOperand(Dest); 2605 case MIToken::kw_floatpred: 2606 case MIToken::kw_intpred: 2607 return parsePredicateOperand(Dest); 2608 case MIToken::kw_shufflemask: 2609 return parseShuffleMaskOperand(Dest); 2610 case MIToken::Error: 2611 return true; 2612 case MIToken::Identifier: 2613 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2614 Dest = MachineOperand::CreateRegMask(RegMask); 2615 lex(); 2616 break; 2617 } else if (Token.stringValue() == "CustomRegMask") { 2618 return parseCustomRegisterMaskOperand(Dest); 2619 } else 2620 return parseTypedImmediateOperand(Dest); 2621 case MIToken::dot: { 2622 if (const auto *Formatter = MF.getTarget().getMIRFormatter()) { 2623 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2624 } 2625 LLVM_FALLTHROUGH; 2626 } 2627 default: 2628 // FIXME: Parse the MCSymbol machine operand. 2629 return error("expected a machine operand"); 2630 } 2631 return false; 2632 } 2633 2634 bool MIParser::parseMachineOperandAndTargetFlags( 2635 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2636 Optional<unsigned> &TiedDefIdx) { 2637 unsigned TF = 0; 2638 bool HasTargetFlags = false; 2639 if (Token.is(MIToken::kw_target_flags)) { 2640 HasTargetFlags = true; 2641 lex(); 2642 if (expectAndConsume(MIToken::lparen)) 2643 return true; 2644 if (Token.isNot(MIToken::Identifier)) 2645 return error("expected the name of the target flag"); 2646 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2647 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2648 return error("use of undefined target flag '" + Token.stringValue() + 2649 "'"); 2650 } 2651 lex(); 2652 while (Token.is(MIToken::comma)) { 2653 lex(); 2654 if (Token.isNot(MIToken::Identifier)) 2655 return error("expected the name of the target flag"); 2656 unsigned BitFlag = 0; 2657 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2658 return error("use of undefined target flag '" + Token.stringValue() + 2659 "'"); 2660 // TODO: Report an error when using a duplicate bit target flag. 2661 TF |= BitFlag; 2662 lex(); 2663 } 2664 if (expectAndConsume(MIToken::rparen)) 2665 return true; 2666 } 2667 auto Loc = Token.location(); 2668 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2669 return true; 2670 if (!HasTargetFlags) 2671 return false; 2672 if (Dest.isReg()) 2673 return error(Loc, "register operands can't have target flags"); 2674 Dest.setTargetFlags(TF); 2675 return false; 2676 } 2677 2678 bool MIParser::parseOffset(int64_t &Offset) { 2679 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2680 return false; 2681 StringRef Sign = Token.range(); 2682 bool IsNegative = Token.is(MIToken::minus); 2683 lex(); 2684 if (Token.isNot(MIToken::IntegerLiteral)) 2685 return error("expected an integer literal after '" + Sign + "'"); 2686 if (Token.integerValue().getMinSignedBits() > 64) 2687 return error("expected 64-bit integer (too large)"); 2688 Offset = Token.integerValue().getExtValue(); 2689 if (IsNegative) 2690 Offset = -Offset; 2691 lex(); 2692 return false; 2693 } 2694 2695 bool MIParser::parseAlignment(unsigned &Alignment) { 2696 assert(Token.is(MIToken::kw_align)); 2697 lex(); 2698 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2699 return error("expected an integer literal after 'align'"); 2700 if (getUnsigned(Alignment)) 2701 return true; 2702 lex(); 2703 2704 if (!isPowerOf2_32(Alignment)) 2705 return error("expected a power-of-2 literal after 'align'"); 2706 2707 return false; 2708 } 2709 2710 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2711 assert(Token.is(MIToken::kw_addrspace)); 2712 lex(); 2713 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2714 return error("expected an integer literal after 'addrspace'"); 2715 if (getUnsigned(Addrspace)) 2716 return true; 2717 lex(); 2718 return false; 2719 } 2720 2721 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2722 int64_t Offset = 0; 2723 if (parseOffset(Offset)) 2724 return true; 2725 Op.setOffset(Offset); 2726 return false; 2727 } 2728 2729 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2730 const Value *&V, ErrorCallbackType ErrCB) { 2731 switch (Token.kind()) { 2732 case MIToken::NamedIRValue: { 2733 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2734 break; 2735 } 2736 case MIToken::IRValue: { 2737 unsigned SlotNumber = 0; 2738 if (getUnsigned(Token, SlotNumber, ErrCB)) 2739 return true; 2740 V = PFS.getIRValue(SlotNumber); 2741 break; 2742 } 2743 case MIToken::NamedGlobalValue: 2744 case MIToken::GlobalValue: { 2745 GlobalValue *GV = nullptr; 2746 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2747 return true; 2748 V = GV; 2749 break; 2750 } 2751 case MIToken::QuotedIRValue: { 2752 const Constant *C = nullptr; 2753 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2754 return true; 2755 V = C; 2756 break; 2757 } 2758 default: 2759 llvm_unreachable("The current token should be an IR block reference"); 2760 } 2761 if (!V) 2762 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2763 return false; 2764 } 2765 2766 bool MIParser::parseIRValue(const Value *&V) { 2767 return ::parseIRValue( 2768 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2769 return error(Loc, Msg); 2770 }); 2771 } 2772 2773 bool MIParser::getUint64(uint64_t &Result) { 2774 if (Token.hasIntegerValue()) { 2775 if (Token.integerValue().getActiveBits() > 64) 2776 return error("expected 64-bit integer (too large)"); 2777 Result = Token.integerValue().getZExtValue(); 2778 return false; 2779 } 2780 if (Token.is(MIToken::HexLiteral)) { 2781 APInt A; 2782 if (getHexUint(A)) 2783 return true; 2784 if (A.getBitWidth() > 64) 2785 return error("expected 64-bit integer (too large)"); 2786 Result = A.getZExtValue(); 2787 return false; 2788 } 2789 return true; 2790 } 2791 2792 bool MIParser::getHexUint(APInt &Result) { 2793 return ::getHexUint(Token, Result); 2794 } 2795 2796 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2797 const auto OldFlags = Flags; 2798 switch (Token.kind()) { 2799 case MIToken::kw_volatile: 2800 Flags |= MachineMemOperand::MOVolatile; 2801 break; 2802 case MIToken::kw_non_temporal: 2803 Flags |= MachineMemOperand::MONonTemporal; 2804 break; 2805 case MIToken::kw_dereferenceable: 2806 Flags |= MachineMemOperand::MODereferenceable; 2807 break; 2808 case MIToken::kw_invariant: 2809 Flags |= MachineMemOperand::MOInvariant; 2810 break; 2811 case MIToken::StringConstant: { 2812 MachineMemOperand::Flags TF; 2813 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2814 return error("use of undefined target MMO flag '" + Token.stringValue() + 2815 "'"); 2816 Flags |= TF; 2817 break; 2818 } 2819 default: 2820 llvm_unreachable("The current token should be a memory operand flag"); 2821 } 2822 if (OldFlags == Flags) 2823 // We know that the same flag is specified more than once when the flags 2824 // weren't modified. 2825 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2826 lex(); 2827 return false; 2828 } 2829 2830 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2831 switch (Token.kind()) { 2832 case MIToken::kw_stack: 2833 PSV = MF.getPSVManager().getStack(); 2834 break; 2835 case MIToken::kw_got: 2836 PSV = MF.getPSVManager().getGOT(); 2837 break; 2838 case MIToken::kw_jump_table: 2839 PSV = MF.getPSVManager().getJumpTable(); 2840 break; 2841 case MIToken::kw_constant_pool: 2842 PSV = MF.getPSVManager().getConstantPool(); 2843 break; 2844 case MIToken::FixedStackObject: { 2845 int FI; 2846 if (parseFixedStackFrameIndex(FI)) 2847 return true; 2848 PSV = MF.getPSVManager().getFixedStack(FI); 2849 // The token was already consumed, so use return here instead of break. 2850 return false; 2851 } 2852 case MIToken::StackObject: { 2853 int FI; 2854 if (parseStackFrameIndex(FI)) 2855 return true; 2856 PSV = MF.getPSVManager().getFixedStack(FI); 2857 // The token was already consumed, so use return here instead of break. 2858 return false; 2859 } 2860 case MIToken::kw_call_entry: 2861 lex(); 2862 switch (Token.kind()) { 2863 case MIToken::GlobalValue: 2864 case MIToken::NamedGlobalValue: { 2865 GlobalValue *GV = nullptr; 2866 if (parseGlobalValue(GV)) 2867 return true; 2868 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2869 break; 2870 } 2871 case MIToken::ExternalSymbol: 2872 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2873 MF.createExternalSymbolName(Token.stringValue())); 2874 break; 2875 default: 2876 return error( 2877 "expected a global value or an external symbol after 'call-entry'"); 2878 } 2879 break; 2880 case MIToken::kw_custom: { 2881 lex(); 2882 if (const auto *Formatter = MF.getTarget().getMIRFormatter()) { 2883 if (Formatter->parseCustomPseudoSourceValue( 2884 Token.stringValue(), MF, PFS, PSV, 2885 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2886 return error(Loc, Msg); 2887 })) 2888 return true; 2889 } else 2890 return error("unable to parse target custom pseudo source value"); 2891 break; 2892 } 2893 default: 2894 llvm_unreachable("The current token should be pseudo source value"); 2895 } 2896 lex(); 2897 return false; 2898 } 2899 2900 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2901 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2902 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2903 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2904 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 2905 const PseudoSourceValue *PSV = nullptr; 2906 if (parseMemoryPseudoSourceValue(PSV)) 2907 return true; 2908 int64_t Offset = 0; 2909 if (parseOffset(Offset)) 2910 return true; 2911 Dest = MachinePointerInfo(PSV, Offset); 2912 return false; 2913 } 2914 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2915 Token.isNot(MIToken::GlobalValue) && 2916 Token.isNot(MIToken::NamedGlobalValue) && 2917 Token.isNot(MIToken::QuotedIRValue)) 2918 return error("expected an IR value reference"); 2919 const Value *V = nullptr; 2920 if (parseIRValue(V)) 2921 return true; 2922 if (!V->getType()->isPointerTy()) 2923 return error("expected a pointer IR value"); 2924 lex(); 2925 int64_t Offset = 0; 2926 if (parseOffset(Offset)) 2927 return true; 2928 Dest = MachinePointerInfo(V, Offset); 2929 return false; 2930 } 2931 2932 bool MIParser::parseOptionalScope(LLVMContext &Context, 2933 SyncScope::ID &SSID) { 2934 SSID = SyncScope::System; 2935 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2936 lex(); 2937 if (expectAndConsume(MIToken::lparen)) 2938 return error("expected '(' in syncscope"); 2939 2940 std::string SSN; 2941 if (parseStringConstant(SSN)) 2942 return true; 2943 2944 SSID = Context.getOrInsertSyncScopeID(SSN); 2945 if (expectAndConsume(MIToken::rparen)) 2946 return error("expected ')' in syncscope"); 2947 } 2948 2949 return false; 2950 } 2951 2952 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2953 Order = AtomicOrdering::NotAtomic; 2954 if (Token.isNot(MIToken::Identifier)) 2955 return false; 2956 2957 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2958 .Case("unordered", AtomicOrdering::Unordered) 2959 .Case("monotonic", AtomicOrdering::Monotonic) 2960 .Case("acquire", AtomicOrdering::Acquire) 2961 .Case("release", AtomicOrdering::Release) 2962 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2963 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2964 .Default(AtomicOrdering::NotAtomic); 2965 2966 if (Order != AtomicOrdering::NotAtomic) { 2967 lex(); 2968 return false; 2969 } 2970 2971 return error("expected an atomic scope, ordering or a size specification"); 2972 } 2973 2974 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2975 if (expectAndConsume(MIToken::lparen)) 2976 return true; 2977 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2978 while (Token.isMemoryOperandFlag()) { 2979 if (parseMemoryOperandFlag(Flags)) 2980 return true; 2981 } 2982 if (Token.isNot(MIToken::Identifier) || 2983 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2984 return error("expected 'load' or 'store' memory operation"); 2985 if (Token.stringValue() == "load") 2986 Flags |= MachineMemOperand::MOLoad; 2987 else 2988 Flags |= MachineMemOperand::MOStore; 2989 lex(); 2990 2991 // Optional 'store' for operands that both load and store. 2992 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2993 Flags |= MachineMemOperand::MOStore; 2994 lex(); 2995 } 2996 2997 // Optional synchronization scope. 2998 SyncScope::ID SSID; 2999 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3000 return true; 3001 3002 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3003 AtomicOrdering Order, FailureOrder; 3004 if (parseOptionalAtomicOrdering(Order)) 3005 return true; 3006 3007 if (parseOptionalAtomicOrdering(FailureOrder)) 3008 return true; 3009 3010 if (Token.isNot(MIToken::IntegerLiteral) && 3011 Token.isNot(MIToken::kw_unknown_size)) 3012 return error("expected the size integer literal or 'unknown-size' after " 3013 "memory operation"); 3014 uint64_t Size; 3015 if (Token.is(MIToken::IntegerLiteral)) { 3016 if (getUint64(Size)) 3017 return true; 3018 } else if (Token.is(MIToken::kw_unknown_size)) { 3019 Size = MemoryLocation::UnknownSize; 3020 } 3021 lex(); 3022 3023 MachinePointerInfo Ptr = MachinePointerInfo(); 3024 if (Token.is(MIToken::Identifier)) { 3025 const char *Word = 3026 ((Flags & MachineMemOperand::MOLoad) && 3027 (Flags & MachineMemOperand::MOStore)) 3028 ? "on" 3029 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3030 if (Token.stringValue() != Word) 3031 return error(Twine("expected '") + Word + "'"); 3032 lex(); 3033 3034 if (parseMachinePointerInfo(Ptr)) 3035 return true; 3036 } 3037 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 3038 AAMDNodes AAInfo; 3039 MDNode *Range = nullptr; 3040 while (consumeIfPresent(MIToken::comma)) { 3041 switch (Token.kind()) { 3042 case MIToken::kw_align: 3043 if (parseAlignment(BaseAlignment)) 3044 return true; 3045 break; 3046 case MIToken::kw_addrspace: 3047 if (parseAddrspace(Ptr.AddrSpace)) 3048 return true; 3049 break; 3050 case MIToken::md_tbaa: 3051 lex(); 3052 if (parseMDNode(AAInfo.TBAA)) 3053 return true; 3054 break; 3055 case MIToken::md_alias_scope: 3056 lex(); 3057 if (parseMDNode(AAInfo.Scope)) 3058 return true; 3059 break; 3060 case MIToken::md_noalias: 3061 lex(); 3062 if (parseMDNode(AAInfo.NoAlias)) 3063 return true; 3064 break; 3065 case MIToken::md_range: 3066 lex(); 3067 if (parseMDNode(Range)) 3068 return true; 3069 break; 3070 // TODO: Report an error on duplicate metadata nodes. 3071 default: 3072 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3073 "'!noalias' or '!range'"); 3074 } 3075 } 3076 if (expectAndConsume(MIToken::rparen)) 3077 return true; 3078 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 3079 SSID, Order, FailureOrder); 3080 return false; 3081 } 3082 3083 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3084 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3085 Token.is(MIToken::kw_post_instr_symbol)) && 3086 "Invalid token for a pre- post-instruction symbol!"); 3087 lex(); 3088 if (Token.isNot(MIToken::MCSymbol)) 3089 return error("expected a symbol after 'pre-instr-symbol'"); 3090 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3091 lex(); 3092 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3093 Token.is(MIToken::lbrace)) 3094 return false; 3095 if (Token.isNot(MIToken::comma)) 3096 return error("expected ',' before the next machine operand"); 3097 lex(); 3098 return false; 3099 } 3100 3101 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3102 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3103 "Invalid token for a heap alloc marker!"); 3104 lex(); 3105 parseMDNode(Node); 3106 if (!Node) 3107 return error("expected a MDNode after 'heap-alloc-marker'"); 3108 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3109 Token.is(MIToken::lbrace)) 3110 return false; 3111 if (Token.isNot(MIToken::comma)) 3112 return error("expected ',' before the next machine operand"); 3113 lex(); 3114 return false; 3115 } 3116 3117 static void initSlots2BasicBlocks( 3118 const Function &F, 3119 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3120 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3121 MST.incorporateFunction(F); 3122 for (auto &BB : F) { 3123 if (BB.hasName()) 3124 continue; 3125 int Slot = MST.getLocalSlot(&BB); 3126 if (Slot == -1) 3127 continue; 3128 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3129 } 3130 } 3131 3132 static const BasicBlock *getIRBlockFromSlot( 3133 unsigned Slot, 3134 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3135 auto BlockInfo = Slots2BasicBlocks.find(Slot); 3136 if (BlockInfo == Slots2BasicBlocks.end()) 3137 return nullptr; 3138 return BlockInfo->second; 3139 } 3140 3141 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3142 if (Slots2BasicBlocks.empty()) 3143 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3144 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3145 } 3146 3147 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3148 if (&F == &MF.getFunction()) 3149 return getIRBlock(Slot); 3150 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3151 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3152 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3153 } 3154 3155 const Value *MIParser::getIRValue(unsigned Slot) { 3156 return PFS.getIRValue(Slot); 3157 } 3158 3159 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3160 // FIXME: Currently we can't recognize temporary or local symbols and call all 3161 // of the appropriate forms to create them. However, this handles basic cases 3162 // well as most of the special aspects are recognized by a prefix on their 3163 // name, and the input names should already be unique. For test cases, keeping 3164 // the symbol name out of the symbol table isn't terribly important. 3165 return MF.getContext().getOrCreateSymbol(Name); 3166 } 3167 3168 bool MIParser::parseStringConstant(std::string &Result) { 3169 if (Token.isNot(MIToken::StringConstant)) 3170 return error("expected string constant"); 3171 Result = Token.stringValue(); 3172 lex(); 3173 return false; 3174 } 3175 3176 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3177 StringRef Src, 3178 SMDiagnostic &Error) { 3179 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3180 } 3181 3182 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3183 StringRef Src, SMDiagnostic &Error) { 3184 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3185 } 3186 3187 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3188 MachineBasicBlock *&MBB, StringRef Src, 3189 SMDiagnostic &Error) { 3190 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3191 } 3192 3193 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3194 unsigned &Reg, StringRef Src, 3195 SMDiagnostic &Error) { 3196 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3197 } 3198 3199 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3200 unsigned &Reg, StringRef Src, 3201 SMDiagnostic &Error) { 3202 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3203 } 3204 3205 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3206 VRegInfo *&Info, StringRef Src, 3207 SMDiagnostic &Error) { 3208 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3209 } 3210 3211 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3212 int &FI, StringRef Src, 3213 SMDiagnostic &Error) { 3214 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3215 } 3216 3217 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3218 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3219 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3220 } 3221 3222 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3223 PerFunctionMIParsingState &PFS, const Value *&V, 3224 ErrorCallbackType ErrorCallback) { 3225 MIToken Token; 3226 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3227 ErrorCallback(Loc, Msg); 3228 }); 3229 V = nullptr; 3230 3231 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3232 } 3233