1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRPrinter.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/MC/LaneBitmask.h" 59 #include "llvm/MC/MCContext.h" 60 #include "llvm/MC/MCDwarf.h" 61 #include "llvm/MC/MCInstrDesc.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/BranchProbability.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/SMLoc.h" 70 #include "llvm/Support/SourceMgr.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetIntrinsicInfo.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cctype> 77 #include <cstddef> 78 #include <cstdint> 79 #include <limits> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 void PerTargetMIParsingState::setTarget( 86 const TargetSubtargetInfo &NewSubtarget) { 87 88 // If the subtarget changed, over conservatively assume everything is invalid. 89 if (&Subtarget == &NewSubtarget) 90 return; 91 92 Names2InstrOpCodes.clear(); 93 Names2Regs.clear(); 94 Names2RegMasks.clear(); 95 Names2SubRegIndices.clear(); 96 Names2TargetIndices.clear(); 97 Names2DirectTargetFlags.clear(); 98 Names2BitmaskTargetFlags.clear(); 99 Names2MMOTargetFlags.clear(); 100 101 initNames2RegClasses(); 102 initNames2RegBanks(); 103 } 104 105 void PerTargetMIParsingState::initNames2Regs() { 106 if (!Names2Regs.empty()) 107 return; 108 109 // The '%noreg' register is the register 0. 110 Names2Regs.insert(std::make_pair("noreg", 0)); 111 const auto *TRI = Subtarget.getRegisterInfo(); 112 assert(TRI && "Expected target register info"); 113 114 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 115 bool WasInserted = 116 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 117 .second; 118 (void)WasInserted; 119 assert(WasInserted && "Expected registers to be unique case-insensitively"); 120 } 121 } 122 123 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 124 unsigned &Reg) { 125 initNames2Regs(); 126 auto RegInfo = Names2Regs.find(RegName); 127 if (RegInfo == Names2Regs.end()) 128 return true; 129 Reg = RegInfo->getValue(); 130 return false; 131 } 132 133 void PerTargetMIParsingState::initNames2InstrOpCodes() { 134 if (!Names2InstrOpCodes.empty()) 135 return; 136 const auto *TII = Subtarget.getInstrInfo(); 137 assert(TII && "Expected target instruction info"); 138 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 139 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 140 } 141 142 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 143 unsigned &OpCode) { 144 initNames2InstrOpCodes(); 145 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 146 if (InstrInfo == Names2InstrOpCodes.end()) 147 return true; 148 OpCode = InstrInfo->getValue(); 149 return false; 150 } 151 152 void PerTargetMIParsingState::initNames2RegMasks() { 153 if (!Names2RegMasks.empty()) 154 return; 155 const auto *TRI = Subtarget.getRegisterInfo(); 156 assert(TRI && "Expected target register info"); 157 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 158 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 159 assert(RegMasks.size() == RegMaskNames.size()); 160 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 161 Names2RegMasks.insert( 162 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 163 } 164 165 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 166 initNames2RegMasks(); 167 auto RegMaskInfo = Names2RegMasks.find(Identifier); 168 if (RegMaskInfo == Names2RegMasks.end()) 169 return nullptr; 170 return RegMaskInfo->getValue(); 171 } 172 173 void PerTargetMIParsingState::initNames2SubRegIndices() { 174 if (!Names2SubRegIndices.empty()) 175 return; 176 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 177 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 178 Names2SubRegIndices.insert( 179 std::make_pair(TRI->getSubRegIndexName(I), I)); 180 } 181 182 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 183 initNames2SubRegIndices(); 184 auto SubRegInfo = Names2SubRegIndices.find(Name); 185 if (SubRegInfo == Names2SubRegIndices.end()) 186 return 0; 187 return SubRegInfo->getValue(); 188 } 189 190 void PerTargetMIParsingState::initNames2TargetIndices() { 191 if (!Names2TargetIndices.empty()) 192 return; 193 const auto *TII = Subtarget.getInstrInfo(); 194 assert(TII && "Expected target instruction info"); 195 auto Indices = TII->getSerializableTargetIndices(); 196 for (const auto &I : Indices) 197 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 198 } 199 200 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 201 initNames2TargetIndices(); 202 auto IndexInfo = Names2TargetIndices.find(Name); 203 if (IndexInfo == Names2TargetIndices.end()) 204 return true; 205 Index = IndexInfo->second; 206 return false; 207 } 208 209 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 210 if (!Names2DirectTargetFlags.empty()) 211 return; 212 213 const auto *TII = Subtarget.getInstrInfo(); 214 assert(TII && "Expected target instruction info"); 215 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 216 for (const auto &I : Flags) 217 Names2DirectTargetFlags.insert( 218 std::make_pair(StringRef(I.second), I.first)); 219 } 220 221 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 222 unsigned &Flag) { 223 initNames2DirectTargetFlags(); 224 auto FlagInfo = Names2DirectTargetFlags.find(Name); 225 if (FlagInfo == Names2DirectTargetFlags.end()) 226 return true; 227 Flag = FlagInfo->second; 228 return false; 229 } 230 231 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 232 if (!Names2BitmaskTargetFlags.empty()) 233 return; 234 235 const auto *TII = Subtarget.getInstrInfo(); 236 assert(TII && "Expected target instruction info"); 237 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 238 for (const auto &I : Flags) 239 Names2BitmaskTargetFlags.insert( 240 std::make_pair(StringRef(I.second), I.first)); 241 } 242 243 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 244 unsigned &Flag) { 245 initNames2BitmaskTargetFlags(); 246 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 247 if (FlagInfo == Names2BitmaskTargetFlags.end()) 248 return true; 249 Flag = FlagInfo->second; 250 return false; 251 } 252 253 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 254 if (!Names2MMOTargetFlags.empty()) 255 return; 256 257 const auto *TII = Subtarget.getInstrInfo(); 258 assert(TII && "Expected target instruction info"); 259 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 260 for (const auto &I : Flags) 261 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 262 } 263 264 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 265 MachineMemOperand::Flags &Flag) { 266 initNames2MMOTargetFlags(); 267 auto FlagInfo = Names2MMOTargetFlags.find(Name); 268 if (FlagInfo == Names2MMOTargetFlags.end()) 269 return true; 270 Flag = FlagInfo->second; 271 return false; 272 } 273 274 void PerTargetMIParsingState::initNames2RegClasses() { 275 if (!Names2RegClasses.empty()) 276 return; 277 278 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 279 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 280 const auto *RC = TRI->getRegClass(I); 281 Names2RegClasses.insert( 282 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 283 } 284 } 285 286 void PerTargetMIParsingState::initNames2RegBanks() { 287 if (!Names2RegBanks.empty()) 288 return; 289 290 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 291 // If the target does not support GlobalISel, we may not have a 292 // register bank info. 293 if (!RBI) 294 return; 295 296 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 297 const auto &RegBank = RBI->getRegBank(I); 298 Names2RegBanks.insert( 299 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 300 } 301 } 302 303 const TargetRegisterClass * 304 PerTargetMIParsingState::getRegClass(StringRef Name) { 305 auto RegClassInfo = Names2RegClasses.find(Name); 306 if (RegClassInfo == Names2RegClasses.end()) 307 return nullptr; 308 return RegClassInfo->getValue(); 309 } 310 311 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 312 auto RegBankInfo = Names2RegBanks.find(Name); 313 if (RegBankInfo == Names2RegBanks.end()) 314 return nullptr; 315 return RegBankInfo->getValue(); 316 } 317 318 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 319 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 320 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 321 } 322 323 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 324 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 325 if (I.second) { 326 MachineRegisterInfo &MRI = MF.getRegInfo(); 327 VRegInfo *Info = new (Allocator) VRegInfo; 328 Info->VReg = MRI.createIncompleteVirtualRegister(); 329 I.first->second = Info; 330 } 331 return *I.first->second; 332 } 333 334 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 335 assert(RegName != "" && "Expected named reg."); 336 337 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 338 if (I.second) { 339 VRegInfo *Info = new (Allocator) VRegInfo; 340 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 341 I.first->second = Info; 342 } 343 return *I.first->second; 344 } 345 346 namespace { 347 348 /// A wrapper struct around the 'MachineOperand' struct that includes a source 349 /// range and other attributes. 350 struct ParsedMachineOperand { 351 MachineOperand Operand; 352 StringRef::iterator Begin; 353 StringRef::iterator End; 354 Optional<unsigned> TiedDefIdx; 355 356 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 357 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 358 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 359 if (TiedDefIdx) 360 assert(Operand.isReg() && Operand.isUse() && 361 "Only used register operands can be tied"); 362 } 363 }; 364 365 class MIParser { 366 MachineFunction &MF; 367 SMDiagnostic &Error; 368 StringRef Source, CurrentSource; 369 MIToken Token; 370 PerFunctionMIParsingState &PFS; 371 /// Maps from slot numbers to function's unnamed basic blocks. 372 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 373 /// Maps from slot numbers to function's unnamed values. 374 DenseMap<unsigned, const Value *> Slots2Values; 375 376 public: 377 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 378 StringRef Source); 379 380 /// \p SkipChar gives the number of characters to skip before looking 381 /// for the next token. 382 void lex(unsigned SkipChar = 0); 383 384 /// Report an error at the current location with the given message. 385 /// 386 /// This function always return true. 387 bool error(const Twine &Msg); 388 389 /// Report an error at the given location with the given message. 390 /// 391 /// This function always return true. 392 bool error(StringRef::iterator Loc, const Twine &Msg); 393 394 bool 395 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 396 bool parseBasicBlocks(); 397 bool parse(MachineInstr *&MI); 398 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 399 bool parseStandaloneNamedRegister(unsigned &Reg); 400 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 401 bool parseStandaloneRegister(unsigned &Reg); 402 bool parseStandaloneStackObject(int &FI); 403 bool parseStandaloneMDNode(MDNode *&Node); 404 405 bool 406 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 407 bool parseBasicBlock(MachineBasicBlock &MBB, 408 MachineBasicBlock *&AddFalthroughFrom); 409 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 410 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 411 412 bool parseNamedRegister(unsigned &Reg); 413 bool parseVirtualRegister(VRegInfo *&Info); 414 bool parseNamedVirtualRegister(VRegInfo *&Info); 415 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 416 bool parseRegisterFlag(unsigned &Flags); 417 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 418 bool parseSubRegisterIndex(unsigned &SubReg); 419 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 420 bool parseRegisterOperand(MachineOperand &Dest, 421 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 422 bool parseImmediateOperand(MachineOperand &Dest); 423 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 424 const Constant *&C); 425 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 426 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 427 bool parseTypedImmediateOperand(MachineOperand &Dest); 428 bool parseFPImmediateOperand(MachineOperand &Dest); 429 bool parseMBBReference(MachineBasicBlock *&MBB); 430 bool parseMBBOperand(MachineOperand &Dest); 431 bool parseStackFrameIndex(int &FI); 432 bool parseStackObjectOperand(MachineOperand &Dest); 433 bool parseFixedStackFrameIndex(int &FI); 434 bool parseFixedStackObjectOperand(MachineOperand &Dest); 435 bool parseGlobalValue(GlobalValue *&GV); 436 bool parseGlobalAddressOperand(MachineOperand &Dest); 437 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 438 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 439 bool parseJumpTableIndexOperand(MachineOperand &Dest); 440 bool parseExternalSymbolOperand(MachineOperand &Dest); 441 bool parseMCSymbolOperand(MachineOperand &Dest); 442 bool parseMDNode(MDNode *&Node); 443 bool parseDIExpression(MDNode *&Expr); 444 bool parseDILocation(MDNode *&Expr); 445 bool parseMetadataOperand(MachineOperand &Dest); 446 bool parseCFIOffset(int &Offset); 447 bool parseCFIRegister(unsigned &Reg); 448 bool parseCFIEscapeValues(std::string& Values); 449 bool parseCFIOperand(MachineOperand &Dest); 450 bool parseIRBlock(BasicBlock *&BB, const Function &F); 451 bool parseBlockAddressOperand(MachineOperand &Dest); 452 bool parseIntrinsicOperand(MachineOperand &Dest); 453 bool parsePredicateOperand(MachineOperand &Dest); 454 bool parseTargetIndexOperand(MachineOperand &Dest); 455 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 456 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 457 bool parseMachineOperand(MachineOperand &Dest, 458 Optional<unsigned> &TiedDefIdx); 459 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 460 Optional<unsigned> &TiedDefIdx); 461 bool parseOffset(int64_t &Offset); 462 bool parseAlignment(unsigned &Alignment); 463 bool parseAddrspace(unsigned &Addrspace); 464 bool parseOperandsOffset(MachineOperand &Op); 465 bool parseIRValue(const Value *&V); 466 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 467 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 468 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 469 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 470 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 471 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 472 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 473 474 private: 475 /// Convert the integer literal in the current token into an unsigned integer. 476 /// 477 /// Return true if an error occurred. 478 bool getUnsigned(unsigned &Result); 479 480 /// Convert the integer literal in the current token into an uint64. 481 /// 482 /// Return true if an error occurred. 483 bool getUint64(uint64_t &Result); 484 485 /// Convert the hexadecimal literal in the current token into an unsigned 486 /// APInt with a minimum bitwidth required to represent the value. 487 /// 488 /// Return true if the literal does not represent an integer value. 489 bool getHexUint(APInt &Result); 490 491 /// If the current token is of the given kind, consume it and return false. 492 /// Otherwise report an error and return true. 493 bool expectAndConsume(MIToken::TokenKind TokenKind); 494 495 /// If the current token is of the given kind, consume it and return true. 496 /// Otherwise return false. 497 bool consumeIfPresent(MIToken::TokenKind TokenKind); 498 499 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 500 501 bool assignRegisterTies(MachineInstr &MI, 502 ArrayRef<ParsedMachineOperand> Operands); 503 504 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 505 const MCInstrDesc &MCID); 506 507 const BasicBlock *getIRBlock(unsigned Slot); 508 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 509 510 const Value *getIRValue(unsigned Slot); 511 512 /// Get or create an MCSymbol for a given name. 513 MCSymbol *getOrCreateMCSymbol(StringRef Name); 514 515 /// parseStringConstant 516 /// ::= StringConstant 517 bool parseStringConstant(std::string &Result); 518 }; 519 520 } // end anonymous namespace 521 522 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 523 StringRef Source) 524 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 525 {} 526 527 void MIParser::lex(unsigned SkipChar) { 528 CurrentSource = lexMIToken( 529 CurrentSource.data() + SkipChar, Token, 530 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 531 } 532 533 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 534 535 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 536 const SourceMgr &SM = *PFS.SM; 537 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 538 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 539 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 540 // Create an ordinary diagnostic when the source manager's buffer is the 541 // source string. 542 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 543 return true; 544 } 545 // Create a diagnostic for a YAML string literal. 546 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 547 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 548 Source, None, None); 549 return true; 550 } 551 552 static const char *toString(MIToken::TokenKind TokenKind) { 553 switch (TokenKind) { 554 case MIToken::comma: 555 return "','"; 556 case MIToken::equal: 557 return "'='"; 558 case MIToken::colon: 559 return "':'"; 560 case MIToken::lparen: 561 return "'('"; 562 case MIToken::rparen: 563 return "')'"; 564 default: 565 return "<unknown token>"; 566 } 567 } 568 569 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 570 if (Token.isNot(TokenKind)) 571 return error(Twine("expected ") + toString(TokenKind)); 572 lex(); 573 return false; 574 } 575 576 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 577 if (Token.isNot(TokenKind)) 578 return false; 579 lex(); 580 return true; 581 } 582 583 bool MIParser::parseBasicBlockDefinition( 584 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 585 assert(Token.is(MIToken::MachineBasicBlockLabel)); 586 unsigned ID = 0; 587 if (getUnsigned(ID)) 588 return true; 589 auto Loc = Token.location(); 590 auto Name = Token.stringValue(); 591 lex(); 592 bool HasAddressTaken = false; 593 bool IsLandingPad = false; 594 unsigned Alignment = 0; 595 BasicBlock *BB = nullptr; 596 if (consumeIfPresent(MIToken::lparen)) { 597 do { 598 // TODO: Report an error when multiple same attributes are specified. 599 switch (Token.kind()) { 600 case MIToken::kw_address_taken: 601 HasAddressTaken = true; 602 lex(); 603 break; 604 case MIToken::kw_landing_pad: 605 IsLandingPad = true; 606 lex(); 607 break; 608 case MIToken::kw_align: 609 if (parseAlignment(Alignment)) 610 return true; 611 break; 612 case MIToken::IRBlock: 613 // TODO: Report an error when both name and ir block are specified. 614 if (parseIRBlock(BB, MF.getFunction())) 615 return true; 616 lex(); 617 break; 618 default: 619 break; 620 } 621 } while (consumeIfPresent(MIToken::comma)); 622 if (expectAndConsume(MIToken::rparen)) 623 return true; 624 } 625 if (expectAndConsume(MIToken::colon)) 626 return true; 627 628 if (!Name.empty()) { 629 BB = dyn_cast_or_null<BasicBlock>( 630 MF.getFunction().getValueSymbolTable()->lookup(Name)); 631 if (!BB) 632 return error(Loc, Twine("basic block '") + Name + 633 "' is not defined in the function '" + 634 MF.getName() + "'"); 635 } 636 auto *MBB = MF.CreateMachineBasicBlock(BB); 637 MF.insert(MF.end(), MBB); 638 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 639 if (!WasInserted) 640 return error(Loc, Twine("redefinition of machine basic block with id #") + 641 Twine(ID)); 642 if (Alignment) 643 MBB->setAlignment(Alignment); 644 if (HasAddressTaken) 645 MBB->setHasAddressTaken(); 646 MBB->setIsEHPad(IsLandingPad); 647 return false; 648 } 649 650 bool MIParser::parseBasicBlockDefinitions( 651 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 652 lex(); 653 // Skip until the first machine basic block. 654 while (Token.is(MIToken::Newline)) 655 lex(); 656 if (Token.isErrorOrEOF()) 657 return Token.isError(); 658 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 659 return error("expected a basic block definition before instructions"); 660 unsigned BraceDepth = 0; 661 do { 662 if (parseBasicBlockDefinition(MBBSlots)) 663 return true; 664 bool IsAfterNewline = false; 665 // Skip until the next machine basic block. 666 while (true) { 667 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 668 Token.isErrorOrEOF()) 669 break; 670 else if (Token.is(MIToken::MachineBasicBlockLabel)) 671 return error("basic block definition should be located at the start of " 672 "the line"); 673 else if (consumeIfPresent(MIToken::Newline)) { 674 IsAfterNewline = true; 675 continue; 676 } 677 IsAfterNewline = false; 678 if (Token.is(MIToken::lbrace)) 679 ++BraceDepth; 680 if (Token.is(MIToken::rbrace)) { 681 if (!BraceDepth) 682 return error("extraneous closing brace ('}')"); 683 --BraceDepth; 684 } 685 lex(); 686 } 687 // Verify that we closed all of the '{' at the end of a file or a block. 688 if (!Token.isError() && BraceDepth) 689 return error("expected '}'"); // FIXME: Report a note that shows '{'. 690 } while (!Token.isErrorOrEOF()); 691 return Token.isError(); 692 } 693 694 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 695 assert(Token.is(MIToken::kw_liveins)); 696 lex(); 697 if (expectAndConsume(MIToken::colon)) 698 return true; 699 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 700 return false; 701 do { 702 if (Token.isNot(MIToken::NamedRegister)) 703 return error("expected a named register"); 704 unsigned Reg = 0; 705 if (parseNamedRegister(Reg)) 706 return true; 707 lex(); 708 LaneBitmask Mask = LaneBitmask::getAll(); 709 if (consumeIfPresent(MIToken::colon)) { 710 // Parse lane mask. 711 if (Token.isNot(MIToken::IntegerLiteral) && 712 Token.isNot(MIToken::HexLiteral)) 713 return error("expected a lane mask"); 714 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 715 "Use correct get-function for lane mask"); 716 LaneBitmask::Type V; 717 if (getUnsigned(V)) 718 return error("invalid lane mask value"); 719 Mask = LaneBitmask(V); 720 lex(); 721 } 722 MBB.addLiveIn(Reg, Mask); 723 } while (consumeIfPresent(MIToken::comma)); 724 return false; 725 } 726 727 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 728 assert(Token.is(MIToken::kw_successors)); 729 lex(); 730 if (expectAndConsume(MIToken::colon)) 731 return true; 732 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 733 return false; 734 do { 735 if (Token.isNot(MIToken::MachineBasicBlock)) 736 return error("expected a machine basic block reference"); 737 MachineBasicBlock *SuccMBB = nullptr; 738 if (parseMBBReference(SuccMBB)) 739 return true; 740 lex(); 741 unsigned Weight = 0; 742 if (consumeIfPresent(MIToken::lparen)) { 743 if (Token.isNot(MIToken::IntegerLiteral) && 744 Token.isNot(MIToken::HexLiteral)) 745 return error("expected an integer literal after '('"); 746 if (getUnsigned(Weight)) 747 return true; 748 lex(); 749 if (expectAndConsume(MIToken::rparen)) 750 return true; 751 } 752 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 753 } while (consumeIfPresent(MIToken::comma)); 754 MBB.normalizeSuccProbs(); 755 return false; 756 } 757 758 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 759 MachineBasicBlock *&AddFalthroughFrom) { 760 // Skip the definition. 761 assert(Token.is(MIToken::MachineBasicBlockLabel)); 762 lex(); 763 if (consumeIfPresent(MIToken::lparen)) { 764 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 765 lex(); 766 consumeIfPresent(MIToken::rparen); 767 } 768 consumeIfPresent(MIToken::colon); 769 770 // Parse the liveins and successors. 771 // N.B: Multiple lists of successors and liveins are allowed and they're 772 // merged into one. 773 // Example: 774 // liveins: %edi 775 // liveins: %esi 776 // 777 // is equivalent to 778 // liveins: %edi, %esi 779 bool ExplicitSuccessors = false; 780 while (true) { 781 if (Token.is(MIToken::kw_successors)) { 782 if (parseBasicBlockSuccessors(MBB)) 783 return true; 784 ExplicitSuccessors = true; 785 } else if (Token.is(MIToken::kw_liveins)) { 786 if (parseBasicBlockLiveins(MBB)) 787 return true; 788 } else if (consumeIfPresent(MIToken::Newline)) { 789 continue; 790 } else 791 break; 792 if (!Token.isNewlineOrEOF()) 793 return error("expected line break at the end of a list"); 794 lex(); 795 } 796 797 // Parse the instructions. 798 bool IsInBundle = false; 799 MachineInstr *PrevMI = nullptr; 800 while (!Token.is(MIToken::MachineBasicBlockLabel) && 801 !Token.is(MIToken::Eof)) { 802 if (consumeIfPresent(MIToken::Newline)) 803 continue; 804 if (consumeIfPresent(MIToken::rbrace)) { 805 // The first parsing pass should verify that all closing '}' have an 806 // opening '{'. 807 assert(IsInBundle); 808 IsInBundle = false; 809 continue; 810 } 811 MachineInstr *MI = nullptr; 812 if (parse(MI)) 813 return true; 814 MBB.insert(MBB.end(), MI); 815 if (IsInBundle) { 816 PrevMI->setFlag(MachineInstr::BundledSucc); 817 MI->setFlag(MachineInstr::BundledPred); 818 } 819 PrevMI = MI; 820 if (Token.is(MIToken::lbrace)) { 821 if (IsInBundle) 822 return error("nested instruction bundles are not allowed"); 823 lex(); 824 // This instruction is the start of the bundle. 825 MI->setFlag(MachineInstr::BundledSucc); 826 IsInBundle = true; 827 if (!Token.is(MIToken::Newline)) 828 // The next instruction can be on the same line. 829 continue; 830 } 831 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 832 lex(); 833 } 834 835 // Construct successor list by searching for basic block machine operands. 836 if (!ExplicitSuccessors) { 837 SmallVector<MachineBasicBlock*,4> Successors; 838 bool IsFallthrough; 839 guessSuccessors(MBB, Successors, IsFallthrough); 840 for (MachineBasicBlock *Succ : Successors) 841 MBB.addSuccessor(Succ); 842 843 if (IsFallthrough) { 844 AddFalthroughFrom = &MBB; 845 } else { 846 MBB.normalizeSuccProbs(); 847 } 848 } 849 850 return false; 851 } 852 853 bool MIParser::parseBasicBlocks() { 854 lex(); 855 // Skip until the first machine basic block. 856 while (Token.is(MIToken::Newline)) 857 lex(); 858 if (Token.isErrorOrEOF()) 859 return Token.isError(); 860 // The first parsing pass should have verified that this token is a MBB label 861 // in the 'parseBasicBlockDefinitions' method. 862 assert(Token.is(MIToken::MachineBasicBlockLabel)); 863 MachineBasicBlock *AddFalthroughFrom = nullptr; 864 do { 865 MachineBasicBlock *MBB = nullptr; 866 if (parseMBBReference(MBB)) 867 return true; 868 if (AddFalthroughFrom) { 869 if (!AddFalthroughFrom->isSuccessor(MBB)) 870 AddFalthroughFrom->addSuccessor(MBB); 871 AddFalthroughFrom->normalizeSuccProbs(); 872 AddFalthroughFrom = nullptr; 873 } 874 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 875 return true; 876 // The method 'parseBasicBlock' should parse the whole block until the next 877 // block or the end of file. 878 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 879 } while (Token.isNot(MIToken::Eof)); 880 return false; 881 } 882 883 bool MIParser::parse(MachineInstr *&MI) { 884 // Parse any register operands before '=' 885 MachineOperand MO = MachineOperand::CreateImm(0); 886 SmallVector<ParsedMachineOperand, 8> Operands; 887 while (Token.isRegister() || Token.isRegisterFlag()) { 888 auto Loc = Token.location(); 889 Optional<unsigned> TiedDefIdx; 890 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 891 return true; 892 Operands.push_back( 893 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 894 if (Token.isNot(MIToken::comma)) 895 break; 896 lex(); 897 } 898 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 899 return true; 900 901 unsigned OpCode, Flags = 0; 902 if (Token.isError() || parseInstruction(OpCode, Flags)) 903 return true; 904 905 // Parse the remaining machine operands. 906 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 907 Token.isNot(MIToken::kw_post_instr_symbol) && 908 Token.isNot(MIToken::kw_debug_location) && 909 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 910 auto Loc = Token.location(); 911 Optional<unsigned> TiedDefIdx; 912 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 913 return true; 914 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 915 MO.setIsDebug(); 916 Operands.push_back( 917 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 918 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 919 Token.is(MIToken::lbrace)) 920 break; 921 if (Token.isNot(MIToken::comma)) 922 return error("expected ',' before the next machine operand"); 923 lex(); 924 } 925 926 MCSymbol *PreInstrSymbol = nullptr; 927 if (Token.is(MIToken::kw_pre_instr_symbol)) 928 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 929 return true; 930 MCSymbol *PostInstrSymbol = nullptr; 931 if (Token.is(MIToken::kw_post_instr_symbol)) 932 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 933 return true; 934 935 DebugLoc DebugLocation; 936 if (Token.is(MIToken::kw_debug_location)) { 937 lex(); 938 MDNode *Node = nullptr; 939 if (Token.is(MIToken::exclaim)) { 940 if (parseMDNode(Node)) 941 return true; 942 } else if (Token.is(MIToken::md_dilocation)) { 943 if (parseDILocation(Node)) 944 return true; 945 } else 946 return error("expected a metadata node after 'debug-location'"); 947 if (!isa<DILocation>(Node)) 948 return error("referenced metadata is not a DILocation"); 949 DebugLocation = DebugLoc(Node); 950 } 951 952 // Parse the machine memory operands. 953 SmallVector<MachineMemOperand *, 2> MemOperands; 954 if (Token.is(MIToken::coloncolon)) { 955 lex(); 956 while (!Token.isNewlineOrEOF()) { 957 MachineMemOperand *MemOp = nullptr; 958 if (parseMachineMemoryOperand(MemOp)) 959 return true; 960 MemOperands.push_back(MemOp); 961 if (Token.isNewlineOrEOF()) 962 break; 963 if (Token.isNot(MIToken::comma)) 964 return error("expected ',' before the next machine memory operand"); 965 lex(); 966 } 967 } 968 969 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 970 if (!MCID.isVariadic()) { 971 // FIXME: Move the implicit operand verification to the machine verifier. 972 if (verifyImplicitOperands(Operands, MCID)) 973 return true; 974 } 975 976 // TODO: Check for extraneous machine operands. 977 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 978 MI->setFlags(Flags); 979 for (const auto &Operand : Operands) 980 MI->addOperand(MF, Operand.Operand); 981 if (assignRegisterTies(*MI, Operands)) 982 return true; 983 if (PreInstrSymbol) 984 MI->setPreInstrSymbol(MF, PreInstrSymbol); 985 if (PostInstrSymbol) 986 MI->setPostInstrSymbol(MF, PostInstrSymbol); 987 if (!MemOperands.empty()) 988 MI->setMemRefs(MF, MemOperands); 989 return false; 990 } 991 992 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 993 lex(); 994 if (Token.isNot(MIToken::MachineBasicBlock)) 995 return error("expected a machine basic block reference"); 996 if (parseMBBReference(MBB)) 997 return true; 998 lex(); 999 if (Token.isNot(MIToken::Eof)) 1000 return error( 1001 "expected end of string after the machine basic block reference"); 1002 return false; 1003 } 1004 1005 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 1006 lex(); 1007 if (Token.isNot(MIToken::NamedRegister)) 1008 return error("expected a named register"); 1009 if (parseNamedRegister(Reg)) 1010 return true; 1011 lex(); 1012 if (Token.isNot(MIToken::Eof)) 1013 return error("expected end of string after the register reference"); 1014 return false; 1015 } 1016 1017 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1018 lex(); 1019 if (Token.isNot(MIToken::VirtualRegister)) 1020 return error("expected a virtual register"); 1021 if (parseVirtualRegister(Info)) 1022 return true; 1023 lex(); 1024 if (Token.isNot(MIToken::Eof)) 1025 return error("expected end of string after the register reference"); 1026 return false; 1027 } 1028 1029 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 1030 lex(); 1031 if (Token.isNot(MIToken::NamedRegister) && 1032 Token.isNot(MIToken::VirtualRegister)) 1033 return error("expected either a named or virtual register"); 1034 1035 VRegInfo *Info; 1036 if (parseRegister(Reg, Info)) 1037 return true; 1038 1039 lex(); 1040 if (Token.isNot(MIToken::Eof)) 1041 return error("expected end of string after the register reference"); 1042 return false; 1043 } 1044 1045 bool MIParser::parseStandaloneStackObject(int &FI) { 1046 lex(); 1047 if (Token.isNot(MIToken::StackObject)) 1048 return error("expected a stack object"); 1049 if (parseStackFrameIndex(FI)) 1050 return true; 1051 if (Token.isNot(MIToken::Eof)) 1052 return error("expected end of string after the stack object reference"); 1053 return false; 1054 } 1055 1056 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1057 lex(); 1058 if (Token.is(MIToken::exclaim)) { 1059 if (parseMDNode(Node)) 1060 return true; 1061 } else if (Token.is(MIToken::md_diexpr)) { 1062 if (parseDIExpression(Node)) 1063 return true; 1064 } else if (Token.is(MIToken::md_dilocation)) { 1065 if (parseDILocation(Node)) 1066 return true; 1067 } else 1068 return error("expected a metadata node"); 1069 if (Token.isNot(MIToken::Eof)) 1070 return error("expected end of string after the metadata node"); 1071 return false; 1072 } 1073 1074 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1075 assert(MO.isImplicit()); 1076 return MO.isDef() ? "implicit-def" : "implicit"; 1077 } 1078 1079 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1080 unsigned Reg) { 1081 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 1082 return StringRef(TRI->getName(Reg)).lower(); 1083 } 1084 1085 /// Return true if the parsed machine operands contain a given machine operand. 1086 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1087 ArrayRef<ParsedMachineOperand> Operands) { 1088 for (const auto &I : Operands) { 1089 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1090 return true; 1091 } 1092 return false; 1093 } 1094 1095 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1096 const MCInstrDesc &MCID) { 1097 if (MCID.isCall()) 1098 // We can't verify call instructions as they can contain arbitrary implicit 1099 // register and register mask operands. 1100 return false; 1101 1102 // Gather all the expected implicit operands. 1103 SmallVector<MachineOperand, 4> ImplicitOperands; 1104 if (MCID.ImplicitDefs) 1105 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1106 ImplicitOperands.push_back( 1107 MachineOperand::CreateReg(*ImpDefs, true, true)); 1108 if (MCID.ImplicitUses) 1109 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1110 ImplicitOperands.push_back( 1111 MachineOperand::CreateReg(*ImpUses, false, true)); 1112 1113 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1114 assert(TRI && "Expected target register info"); 1115 for (const auto &I : ImplicitOperands) { 1116 if (isImplicitOperandIn(I, Operands)) 1117 continue; 1118 return error(Operands.empty() ? Token.location() : Operands.back().End, 1119 Twine("missing implicit register operand '") + 1120 printImplicitRegisterFlag(I) + " $" + 1121 getRegisterName(TRI, I.getReg()) + "'"); 1122 } 1123 return false; 1124 } 1125 1126 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1127 // Allow frame and fast math flags for OPCODE 1128 while (Token.is(MIToken::kw_frame_setup) || 1129 Token.is(MIToken::kw_frame_destroy) || 1130 Token.is(MIToken::kw_nnan) || 1131 Token.is(MIToken::kw_ninf) || 1132 Token.is(MIToken::kw_nsz) || 1133 Token.is(MIToken::kw_arcp) || 1134 Token.is(MIToken::kw_contract) || 1135 Token.is(MIToken::kw_afn) || 1136 Token.is(MIToken::kw_reassoc) || 1137 Token.is(MIToken::kw_nuw) || 1138 Token.is(MIToken::kw_nsw) || 1139 Token.is(MIToken::kw_exact)) { 1140 // Mine frame and fast math flags 1141 if (Token.is(MIToken::kw_frame_setup)) 1142 Flags |= MachineInstr::FrameSetup; 1143 if (Token.is(MIToken::kw_frame_destroy)) 1144 Flags |= MachineInstr::FrameDestroy; 1145 if (Token.is(MIToken::kw_nnan)) 1146 Flags |= MachineInstr::FmNoNans; 1147 if (Token.is(MIToken::kw_ninf)) 1148 Flags |= MachineInstr::FmNoInfs; 1149 if (Token.is(MIToken::kw_nsz)) 1150 Flags |= MachineInstr::FmNsz; 1151 if (Token.is(MIToken::kw_arcp)) 1152 Flags |= MachineInstr::FmArcp; 1153 if (Token.is(MIToken::kw_contract)) 1154 Flags |= MachineInstr::FmContract; 1155 if (Token.is(MIToken::kw_afn)) 1156 Flags |= MachineInstr::FmAfn; 1157 if (Token.is(MIToken::kw_reassoc)) 1158 Flags |= MachineInstr::FmReassoc; 1159 if (Token.is(MIToken::kw_nuw)) 1160 Flags |= MachineInstr::NoUWrap; 1161 if (Token.is(MIToken::kw_nsw)) 1162 Flags |= MachineInstr::NoSWrap; 1163 if (Token.is(MIToken::kw_exact)) 1164 Flags |= MachineInstr::IsExact; 1165 1166 lex(); 1167 } 1168 if (Token.isNot(MIToken::Identifier)) 1169 return error("expected a machine instruction"); 1170 StringRef InstrName = Token.stringValue(); 1171 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1172 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1173 lex(); 1174 return false; 1175 } 1176 1177 bool MIParser::parseNamedRegister(unsigned &Reg) { 1178 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1179 StringRef Name = Token.stringValue(); 1180 if (PFS.Target.getRegisterByName(Name, Reg)) 1181 return error(Twine("unknown register name '") + Name + "'"); 1182 return false; 1183 } 1184 1185 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1186 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1187 StringRef Name = Token.stringValue(); 1188 // TODO: Check that the VReg name is not the same as a physical register name. 1189 // If it is, then print a warning (when warnings are implemented). 1190 Info = &PFS.getVRegInfoNamed(Name); 1191 return false; 1192 } 1193 1194 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1195 if (Token.is(MIToken::NamedVirtualRegister)) 1196 return parseNamedVirtualRegister(Info); 1197 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1198 unsigned ID; 1199 if (getUnsigned(ID)) 1200 return true; 1201 Info = &PFS.getVRegInfo(ID); 1202 return false; 1203 } 1204 1205 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1206 switch (Token.kind()) { 1207 case MIToken::underscore: 1208 Reg = 0; 1209 return false; 1210 case MIToken::NamedRegister: 1211 return parseNamedRegister(Reg); 1212 case MIToken::NamedVirtualRegister: 1213 case MIToken::VirtualRegister: 1214 if (parseVirtualRegister(Info)) 1215 return true; 1216 Reg = Info->VReg; 1217 return false; 1218 // TODO: Parse other register kinds. 1219 default: 1220 llvm_unreachable("The current token should be a register"); 1221 } 1222 } 1223 1224 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1225 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1226 return error("expected '_', register class, or register bank name"); 1227 StringRef::iterator Loc = Token.location(); 1228 StringRef Name = Token.stringValue(); 1229 1230 // Was it a register class? 1231 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1232 if (RC) { 1233 lex(); 1234 1235 switch (RegInfo.Kind) { 1236 case VRegInfo::UNKNOWN: 1237 case VRegInfo::NORMAL: 1238 RegInfo.Kind = VRegInfo::NORMAL; 1239 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1240 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1241 return error(Loc, Twine("conflicting register classes, previously: ") + 1242 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1243 } 1244 RegInfo.D.RC = RC; 1245 RegInfo.Explicit = true; 1246 return false; 1247 1248 case VRegInfo::GENERIC: 1249 case VRegInfo::REGBANK: 1250 return error(Loc, "register class specification on generic register"); 1251 } 1252 llvm_unreachable("Unexpected register kind"); 1253 } 1254 1255 // Should be a register bank or a generic register. 1256 const RegisterBank *RegBank = nullptr; 1257 if (Name != "_") { 1258 RegBank = PFS.Target.getRegBank(Name); 1259 if (!RegBank) 1260 return error(Loc, "expected '_', register class, or register bank name"); 1261 } 1262 1263 lex(); 1264 1265 switch (RegInfo.Kind) { 1266 case VRegInfo::UNKNOWN: 1267 case VRegInfo::GENERIC: 1268 case VRegInfo::REGBANK: 1269 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1270 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1271 return error(Loc, "conflicting generic register banks"); 1272 RegInfo.D.RegBank = RegBank; 1273 RegInfo.Explicit = true; 1274 return false; 1275 1276 case VRegInfo::NORMAL: 1277 return error(Loc, "register bank specification on normal register"); 1278 } 1279 llvm_unreachable("Unexpected register kind"); 1280 } 1281 1282 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1283 const unsigned OldFlags = Flags; 1284 switch (Token.kind()) { 1285 case MIToken::kw_implicit: 1286 Flags |= RegState::Implicit; 1287 break; 1288 case MIToken::kw_implicit_define: 1289 Flags |= RegState::ImplicitDefine; 1290 break; 1291 case MIToken::kw_def: 1292 Flags |= RegState::Define; 1293 break; 1294 case MIToken::kw_dead: 1295 Flags |= RegState::Dead; 1296 break; 1297 case MIToken::kw_killed: 1298 Flags |= RegState::Kill; 1299 break; 1300 case MIToken::kw_undef: 1301 Flags |= RegState::Undef; 1302 break; 1303 case MIToken::kw_internal: 1304 Flags |= RegState::InternalRead; 1305 break; 1306 case MIToken::kw_early_clobber: 1307 Flags |= RegState::EarlyClobber; 1308 break; 1309 case MIToken::kw_debug_use: 1310 Flags |= RegState::Debug; 1311 break; 1312 case MIToken::kw_renamable: 1313 Flags |= RegState::Renamable; 1314 break; 1315 default: 1316 llvm_unreachable("The current token should be a register flag"); 1317 } 1318 if (OldFlags == Flags) 1319 // We know that the same flag is specified more than once when the flags 1320 // weren't modified. 1321 return error("duplicate '" + Token.stringValue() + "' register flag"); 1322 lex(); 1323 return false; 1324 } 1325 1326 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1327 assert(Token.is(MIToken::dot)); 1328 lex(); 1329 if (Token.isNot(MIToken::Identifier)) 1330 return error("expected a subregister index after '.'"); 1331 auto Name = Token.stringValue(); 1332 SubReg = PFS.Target.getSubRegIndex(Name); 1333 if (!SubReg) 1334 return error(Twine("use of unknown subregister index '") + Name + "'"); 1335 lex(); 1336 return false; 1337 } 1338 1339 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1340 if (!consumeIfPresent(MIToken::kw_tied_def)) 1341 return true; 1342 if (Token.isNot(MIToken::IntegerLiteral)) 1343 return error("expected an integer literal after 'tied-def'"); 1344 if (getUnsigned(TiedDefIdx)) 1345 return true; 1346 lex(); 1347 if (expectAndConsume(MIToken::rparen)) 1348 return true; 1349 return false; 1350 } 1351 1352 bool MIParser::assignRegisterTies(MachineInstr &MI, 1353 ArrayRef<ParsedMachineOperand> Operands) { 1354 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1355 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1356 if (!Operands[I].TiedDefIdx) 1357 continue; 1358 // The parser ensures that this operand is a register use, so we just have 1359 // to check the tied-def operand. 1360 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1361 if (DefIdx >= E) 1362 return error(Operands[I].Begin, 1363 Twine("use of invalid tied-def operand index '" + 1364 Twine(DefIdx) + "'; instruction has only ") + 1365 Twine(E) + " operands"); 1366 const auto &DefOperand = Operands[DefIdx].Operand; 1367 if (!DefOperand.isReg() || !DefOperand.isDef()) 1368 // FIXME: add note with the def operand. 1369 return error(Operands[I].Begin, 1370 Twine("use of invalid tied-def operand index '") + 1371 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1372 " isn't a defined register"); 1373 // Check that the tied-def operand wasn't tied elsewhere. 1374 for (const auto &TiedPair : TiedRegisterPairs) { 1375 if (TiedPair.first == DefIdx) 1376 return error(Operands[I].Begin, 1377 Twine("the tied-def operand #") + Twine(DefIdx) + 1378 " is already tied with another register operand"); 1379 } 1380 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1381 } 1382 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1383 // indices must be less than tied max. 1384 for (const auto &TiedPair : TiedRegisterPairs) 1385 MI.tieOperands(TiedPair.first, TiedPair.second); 1386 return false; 1387 } 1388 1389 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1390 Optional<unsigned> &TiedDefIdx, 1391 bool IsDef) { 1392 unsigned Flags = IsDef ? RegState::Define : 0; 1393 while (Token.isRegisterFlag()) { 1394 if (parseRegisterFlag(Flags)) 1395 return true; 1396 } 1397 if (!Token.isRegister()) 1398 return error("expected a register after register flags"); 1399 unsigned Reg; 1400 VRegInfo *RegInfo; 1401 if (parseRegister(Reg, RegInfo)) 1402 return true; 1403 lex(); 1404 unsigned SubReg = 0; 1405 if (Token.is(MIToken::dot)) { 1406 if (parseSubRegisterIndex(SubReg)) 1407 return true; 1408 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1409 return error("subregister index expects a virtual register"); 1410 } 1411 if (Token.is(MIToken::colon)) { 1412 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1413 return error("register class specification expects a virtual register"); 1414 lex(); 1415 if (parseRegisterClassOrBank(*RegInfo)) 1416 return true; 1417 } 1418 MachineRegisterInfo &MRI = MF.getRegInfo(); 1419 if ((Flags & RegState::Define) == 0) { 1420 if (consumeIfPresent(MIToken::lparen)) { 1421 unsigned Idx; 1422 if (!parseRegisterTiedDefIndex(Idx)) 1423 TiedDefIdx = Idx; 1424 else { 1425 // Try a redundant low-level type. 1426 LLT Ty; 1427 if (parseLowLevelType(Token.location(), Ty)) 1428 return error("expected tied-def or low-level type after '('"); 1429 1430 if (expectAndConsume(MIToken::rparen)) 1431 return true; 1432 1433 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1434 return error("inconsistent type for generic virtual register"); 1435 1436 MRI.setType(Reg, Ty); 1437 } 1438 } 1439 } else if (consumeIfPresent(MIToken::lparen)) { 1440 // Virtual registers may have a tpe with GlobalISel. 1441 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1442 return error("unexpected type on physical register"); 1443 1444 LLT Ty; 1445 if (parseLowLevelType(Token.location(), Ty)) 1446 return true; 1447 1448 if (expectAndConsume(MIToken::rparen)) 1449 return true; 1450 1451 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1452 return error("inconsistent type for generic virtual register"); 1453 1454 MRI.setType(Reg, Ty); 1455 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1456 // Generic virtual registers must have a type. 1457 // If we end up here this means the type hasn't been specified and 1458 // this is bad! 1459 if (RegInfo->Kind == VRegInfo::GENERIC || 1460 RegInfo->Kind == VRegInfo::REGBANK) 1461 return error("generic virtual registers must have a type"); 1462 } 1463 Dest = MachineOperand::CreateReg( 1464 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1465 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1466 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1467 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1468 1469 return false; 1470 } 1471 1472 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1473 assert(Token.is(MIToken::IntegerLiteral)); 1474 const APSInt &Int = Token.integerValue(); 1475 if (Int.getMinSignedBits() > 64) 1476 return error("integer literal is too large to be an immediate operand"); 1477 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1478 lex(); 1479 return false; 1480 } 1481 1482 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1483 const Constant *&C) { 1484 auto Source = StringValue.str(); // The source has to be null terminated. 1485 SMDiagnostic Err; 1486 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1487 &PFS.IRSlots); 1488 if (!C) 1489 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1490 return false; 1491 } 1492 1493 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1494 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1495 return true; 1496 lex(); 1497 return false; 1498 } 1499 1500 // See LLT implemntation for bit size limits. 1501 static bool verifyScalarSize(uint64_t Size) { 1502 return Size != 0 && isUInt<16>(Size); 1503 } 1504 1505 static bool verifyVectorElementCount(uint64_t NumElts) { 1506 return NumElts != 0 && isUInt<16>(NumElts); 1507 } 1508 1509 static bool verifyAddrSpace(uint64_t AddrSpace) { 1510 return isUInt<24>(AddrSpace); 1511 } 1512 1513 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1514 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1515 StringRef SizeStr = Token.range().drop_front(); 1516 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1517 return error("expected integers after 's'/'p' type character"); 1518 } 1519 1520 if (Token.range().front() == 's') { 1521 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1522 if (!verifyScalarSize(ScalarSize)) 1523 return error("invalid size for scalar type"); 1524 1525 Ty = LLT::scalar(ScalarSize); 1526 lex(); 1527 return false; 1528 } else if (Token.range().front() == 'p') { 1529 const DataLayout &DL = MF.getDataLayout(); 1530 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1531 if (!verifyAddrSpace(AS)) 1532 return error("invalid address space number"); 1533 1534 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1535 lex(); 1536 return false; 1537 } 1538 1539 // Now we're looking for a vector. 1540 if (Token.isNot(MIToken::less)) 1541 return error(Loc, 1542 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1543 lex(); 1544 1545 if (Token.isNot(MIToken::IntegerLiteral)) 1546 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1547 uint64_t NumElements = Token.integerValue().getZExtValue(); 1548 if (!verifyVectorElementCount(NumElements)) 1549 return error("invalid number of vector elements"); 1550 1551 lex(); 1552 1553 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1554 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1555 lex(); 1556 1557 if (Token.range().front() != 's' && Token.range().front() != 'p') 1558 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1559 StringRef SizeStr = Token.range().drop_front(); 1560 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1561 return error("expected integers after 's'/'p' type character"); 1562 1563 if (Token.range().front() == 's') { 1564 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1565 if (!verifyScalarSize(ScalarSize)) 1566 return error("invalid size for scalar type"); 1567 Ty = LLT::scalar(ScalarSize); 1568 } else if (Token.range().front() == 'p') { 1569 const DataLayout &DL = MF.getDataLayout(); 1570 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1571 if (!verifyAddrSpace(AS)) 1572 return error("invalid address space number"); 1573 1574 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1575 } else 1576 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1577 lex(); 1578 1579 if (Token.isNot(MIToken::greater)) 1580 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1581 lex(); 1582 1583 Ty = LLT::vector(NumElements, Ty); 1584 return false; 1585 } 1586 1587 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1588 assert(Token.is(MIToken::Identifier)); 1589 StringRef TypeStr = Token.range(); 1590 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1591 TypeStr.front() != 'p') 1592 return error( 1593 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1594 StringRef SizeStr = Token.range().drop_front(); 1595 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1596 return error("expected integers after 'i'/'s'/'p' type character"); 1597 1598 auto Loc = Token.location(); 1599 lex(); 1600 if (Token.isNot(MIToken::IntegerLiteral)) { 1601 if (Token.isNot(MIToken::Identifier) || 1602 !(Token.range() == "true" || Token.range() == "false")) 1603 return error("expected an integer literal"); 1604 } 1605 const Constant *C = nullptr; 1606 if (parseIRConstant(Loc, C)) 1607 return true; 1608 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1609 return false; 1610 } 1611 1612 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1613 auto Loc = Token.location(); 1614 lex(); 1615 if (Token.isNot(MIToken::FloatingPointLiteral) && 1616 Token.isNot(MIToken::HexLiteral)) 1617 return error("expected a floating point literal"); 1618 const Constant *C = nullptr; 1619 if (parseIRConstant(Loc, C)) 1620 return true; 1621 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1622 return false; 1623 } 1624 1625 bool MIParser::getUnsigned(unsigned &Result) { 1626 if (Token.hasIntegerValue()) { 1627 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1628 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1629 if (Val64 == Limit) 1630 return error("expected 32-bit integer (too large)"); 1631 Result = Val64; 1632 return false; 1633 } 1634 if (Token.is(MIToken::HexLiteral)) { 1635 APInt A; 1636 if (getHexUint(A)) 1637 return true; 1638 if (A.getBitWidth() > 32) 1639 return error("expected 32-bit integer (too large)"); 1640 Result = A.getZExtValue(); 1641 return false; 1642 } 1643 return true; 1644 } 1645 1646 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1647 assert(Token.is(MIToken::MachineBasicBlock) || 1648 Token.is(MIToken::MachineBasicBlockLabel)); 1649 unsigned Number; 1650 if (getUnsigned(Number)) 1651 return true; 1652 auto MBBInfo = PFS.MBBSlots.find(Number); 1653 if (MBBInfo == PFS.MBBSlots.end()) 1654 return error(Twine("use of undefined machine basic block #") + 1655 Twine(Number)); 1656 MBB = MBBInfo->second; 1657 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1658 // we drop the <irname> from the bb.<id>.<irname> format. 1659 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1660 return error(Twine("the name of machine basic block #") + Twine(Number) + 1661 " isn't '" + Token.stringValue() + "'"); 1662 return false; 1663 } 1664 1665 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1666 MachineBasicBlock *MBB; 1667 if (parseMBBReference(MBB)) 1668 return true; 1669 Dest = MachineOperand::CreateMBB(MBB); 1670 lex(); 1671 return false; 1672 } 1673 1674 bool MIParser::parseStackFrameIndex(int &FI) { 1675 assert(Token.is(MIToken::StackObject)); 1676 unsigned ID; 1677 if (getUnsigned(ID)) 1678 return true; 1679 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1680 if (ObjectInfo == PFS.StackObjectSlots.end()) 1681 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1682 "'"); 1683 StringRef Name; 1684 if (const auto *Alloca = 1685 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1686 Name = Alloca->getName(); 1687 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1688 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1689 "' isn't '" + Token.stringValue() + "'"); 1690 lex(); 1691 FI = ObjectInfo->second; 1692 return false; 1693 } 1694 1695 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1696 int FI; 1697 if (parseStackFrameIndex(FI)) 1698 return true; 1699 Dest = MachineOperand::CreateFI(FI); 1700 return false; 1701 } 1702 1703 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1704 assert(Token.is(MIToken::FixedStackObject)); 1705 unsigned ID; 1706 if (getUnsigned(ID)) 1707 return true; 1708 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1709 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1710 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1711 Twine(ID) + "'"); 1712 lex(); 1713 FI = ObjectInfo->second; 1714 return false; 1715 } 1716 1717 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1718 int FI; 1719 if (parseFixedStackFrameIndex(FI)) 1720 return true; 1721 Dest = MachineOperand::CreateFI(FI); 1722 return false; 1723 } 1724 1725 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1726 switch (Token.kind()) { 1727 case MIToken::NamedGlobalValue: { 1728 const Module *M = MF.getFunction().getParent(); 1729 GV = M->getNamedValue(Token.stringValue()); 1730 if (!GV) 1731 return error(Twine("use of undefined global value '") + Token.range() + 1732 "'"); 1733 break; 1734 } 1735 case MIToken::GlobalValue: { 1736 unsigned GVIdx; 1737 if (getUnsigned(GVIdx)) 1738 return true; 1739 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1740 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1741 "'"); 1742 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1743 break; 1744 } 1745 default: 1746 llvm_unreachable("The current token should be a global value"); 1747 } 1748 return false; 1749 } 1750 1751 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1752 GlobalValue *GV = nullptr; 1753 if (parseGlobalValue(GV)) 1754 return true; 1755 lex(); 1756 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1757 if (parseOperandsOffset(Dest)) 1758 return true; 1759 return false; 1760 } 1761 1762 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1763 assert(Token.is(MIToken::ConstantPoolItem)); 1764 unsigned ID; 1765 if (getUnsigned(ID)) 1766 return true; 1767 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1768 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1769 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1770 lex(); 1771 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1772 if (parseOperandsOffset(Dest)) 1773 return true; 1774 return false; 1775 } 1776 1777 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1778 assert(Token.is(MIToken::JumpTableIndex)); 1779 unsigned ID; 1780 if (getUnsigned(ID)) 1781 return true; 1782 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1783 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1784 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1785 lex(); 1786 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1787 return false; 1788 } 1789 1790 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1791 assert(Token.is(MIToken::ExternalSymbol)); 1792 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1793 lex(); 1794 Dest = MachineOperand::CreateES(Symbol); 1795 if (parseOperandsOffset(Dest)) 1796 return true; 1797 return false; 1798 } 1799 1800 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1801 assert(Token.is(MIToken::MCSymbol)); 1802 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1803 lex(); 1804 Dest = MachineOperand::CreateMCSymbol(Symbol); 1805 if (parseOperandsOffset(Dest)) 1806 return true; 1807 return false; 1808 } 1809 1810 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1811 assert(Token.is(MIToken::SubRegisterIndex)); 1812 StringRef Name = Token.stringValue(); 1813 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1814 if (SubRegIndex == 0) 1815 return error(Twine("unknown subregister index '") + Name + "'"); 1816 lex(); 1817 Dest = MachineOperand::CreateImm(SubRegIndex); 1818 return false; 1819 } 1820 1821 bool MIParser::parseMDNode(MDNode *&Node) { 1822 assert(Token.is(MIToken::exclaim)); 1823 1824 auto Loc = Token.location(); 1825 lex(); 1826 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1827 return error("expected metadata id after '!'"); 1828 unsigned ID; 1829 if (getUnsigned(ID)) 1830 return true; 1831 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1832 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1833 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1834 lex(); 1835 Node = NodeInfo->second.get(); 1836 return false; 1837 } 1838 1839 bool MIParser::parseDIExpression(MDNode *&Expr) { 1840 assert(Token.is(MIToken::md_diexpr)); 1841 lex(); 1842 1843 // FIXME: Share this parsing with the IL parser. 1844 SmallVector<uint64_t, 8> Elements; 1845 1846 if (expectAndConsume(MIToken::lparen)) 1847 return true; 1848 1849 if (Token.isNot(MIToken::rparen)) { 1850 do { 1851 if (Token.is(MIToken::Identifier)) { 1852 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1853 lex(); 1854 Elements.push_back(Op); 1855 continue; 1856 } 1857 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 1858 lex(); 1859 Elements.push_back(Enc); 1860 continue; 1861 } 1862 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1863 } 1864 1865 if (Token.isNot(MIToken::IntegerLiteral) || 1866 Token.integerValue().isSigned()) 1867 return error("expected unsigned integer"); 1868 1869 auto &U = Token.integerValue(); 1870 if (U.ugt(UINT64_MAX)) 1871 return error("element too large, limit is " + Twine(UINT64_MAX)); 1872 Elements.push_back(U.getZExtValue()); 1873 lex(); 1874 1875 } while (consumeIfPresent(MIToken::comma)); 1876 } 1877 1878 if (expectAndConsume(MIToken::rparen)) 1879 return true; 1880 1881 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1882 return false; 1883 } 1884 1885 bool MIParser::parseDILocation(MDNode *&Loc) { 1886 assert(Token.is(MIToken::md_dilocation)); 1887 lex(); 1888 1889 bool HaveLine = false; 1890 unsigned Line = 0; 1891 unsigned Column = 0; 1892 MDNode *Scope = nullptr; 1893 MDNode *InlinedAt = nullptr; 1894 bool ImplicitCode = false; 1895 1896 if (expectAndConsume(MIToken::lparen)) 1897 return true; 1898 1899 if (Token.isNot(MIToken::rparen)) { 1900 do { 1901 if (Token.is(MIToken::Identifier)) { 1902 if (Token.stringValue() == "line") { 1903 lex(); 1904 if (expectAndConsume(MIToken::colon)) 1905 return true; 1906 if (Token.isNot(MIToken::IntegerLiteral) || 1907 Token.integerValue().isSigned()) 1908 return error("expected unsigned integer"); 1909 Line = Token.integerValue().getZExtValue(); 1910 HaveLine = true; 1911 lex(); 1912 continue; 1913 } 1914 if (Token.stringValue() == "column") { 1915 lex(); 1916 if (expectAndConsume(MIToken::colon)) 1917 return true; 1918 if (Token.isNot(MIToken::IntegerLiteral) || 1919 Token.integerValue().isSigned()) 1920 return error("expected unsigned integer"); 1921 Column = Token.integerValue().getZExtValue(); 1922 lex(); 1923 continue; 1924 } 1925 if (Token.stringValue() == "scope") { 1926 lex(); 1927 if (expectAndConsume(MIToken::colon)) 1928 return true; 1929 if (parseMDNode(Scope)) 1930 return error("expected metadata node"); 1931 if (!isa<DIScope>(Scope)) 1932 return error("expected DIScope node"); 1933 continue; 1934 } 1935 if (Token.stringValue() == "inlinedAt") { 1936 lex(); 1937 if (expectAndConsume(MIToken::colon)) 1938 return true; 1939 if (Token.is(MIToken::exclaim)) { 1940 if (parseMDNode(InlinedAt)) 1941 return true; 1942 } else if (Token.is(MIToken::md_dilocation)) { 1943 if (parseDILocation(InlinedAt)) 1944 return true; 1945 } else 1946 return error("expected metadata node"); 1947 if (!isa<DILocation>(InlinedAt)) 1948 return error("expected DILocation node"); 1949 continue; 1950 } 1951 if (Token.stringValue() == "isImplicitCode") { 1952 lex(); 1953 if (expectAndConsume(MIToken::colon)) 1954 return true; 1955 if (!Token.is(MIToken::Identifier)) 1956 return error("expected true/false"); 1957 // As far as I can see, we don't have any existing need for parsing 1958 // true/false in MIR yet. Do it ad-hoc until there's something else 1959 // that needs it. 1960 if (Token.stringValue() == "true") 1961 ImplicitCode = true; 1962 else if (Token.stringValue() == "false") 1963 ImplicitCode = false; 1964 else 1965 return error("expected true/false"); 1966 lex(); 1967 continue; 1968 } 1969 } 1970 return error(Twine("invalid DILocation argument '") + 1971 Token.stringValue() + "'"); 1972 } while (consumeIfPresent(MIToken::comma)); 1973 } 1974 1975 if (expectAndConsume(MIToken::rparen)) 1976 return true; 1977 1978 if (!HaveLine) 1979 return error("DILocation requires line number"); 1980 if (!Scope) 1981 return error("DILocation requires a scope"); 1982 1983 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 1984 InlinedAt, ImplicitCode); 1985 return false; 1986 } 1987 1988 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1989 MDNode *Node = nullptr; 1990 if (Token.is(MIToken::exclaim)) { 1991 if (parseMDNode(Node)) 1992 return true; 1993 } else if (Token.is(MIToken::md_diexpr)) { 1994 if (parseDIExpression(Node)) 1995 return true; 1996 } 1997 Dest = MachineOperand::CreateMetadata(Node); 1998 return false; 1999 } 2000 2001 bool MIParser::parseCFIOffset(int &Offset) { 2002 if (Token.isNot(MIToken::IntegerLiteral)) 2003 return error("expected a cfi offset"); 2004 if (Token.integerValue().getMinSignedBits() > 32) 2005 return error("expected a 32 bit integer (the cfi offset is too large)"); 2006 Offset = (int)Token.integerValue().getExtValue(); 2007 lex(); 2008 return false; 2009 } 2010 2011 bool MIParser::parseCFIRegister(unsigned &Reg) { 2012 if (Token.isNot(MIToken::NamedRegister)) 2013 return error("expected a cfi register"); 2014 unsigned LLVMReg; 2015 if (parseNamedRegister(LLVMReg)) 2016 return true; 2017 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2018 assert(TRI && "Expected target register info"); 2019 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2020 if (DwarfReg < 0) 2021 return error("invalid DWARF register"); 2022 Reg = (unsigned)DwarfReg; 2023 lex(); 2024 return false; 2025 } 2026 2027 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2028 do { 2029 if (Token.isNot(MIToken::HexLiteral)) 2030 return error("expected a hexadecimal literal"); 2031 unsigned Value; 2032 if (getUnsigned(Value)) 2033 return true; 2034 if (Value > UINT8_MAX) 2035 return error("expected a 8-bit integer (too large)"); 2036 Values.push_back(static_cast<uint8_t>(Value)); 2037 lex(); 2038 } while (consumeIfPresent(MIToken::comma)); 2039 return false; 2040 } 2041 2042 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2043 auto Kind = Token.kind(); 2044 lex(); 2045 int Offset; 2046 unsigned Reg; 2047 unsigned CFIIndex; 2048 switch (Kind) { 2049 case MIToken::kw_cfi_same_value: 2050 if (parseCFIRegister(Reg)) 2051 return true; 2052 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2053 break; 2054 case MIToken::kw_cfi_offset: 2055 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2056 parseCFIOffset(Offset)) 2057 return true; 2058 CFIIndex = 2059 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2060 break; 2061 case MIToken::kw_cfi_rel_offset: 2062 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2063 parseCFIOffset(Offset)) 2064 return true; 2065 CFIIndex = MF.addFrameInst( 2066 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2067 break; 2068 case MIToken::kw_cfi_def_cfa_register: 2069 if (parseCFIRegister(Reg)) 2070 return true; 2071 CFIIndex = 2072 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2073 break; 2074 case MIToken::kw_cfi_def_cfa_offset: 2075 if (parseCFIOffset(Offset)) 2076 return true; 2077 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 2078 CFIIndex = MF.addFrameInst( 2079 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 2080 break; 2081 case MIToken::kw_cfi_adjust_cfa_offset: 2082 if (parseCFIOffset(Offset)) 2083 return true; 2084 CFIIndex = MF.addFrameInst( 2085 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2086 break; 2087 case MIToken::kw_cfi_def_cfa: 2088 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2089 parseCFIOffset(Offset)) 2090 return true; 2091 // NB: MCCFIInstruction::createDefCfa negates the offset. 2092 CFIIndex = 2093 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 2094 break; 2095 case MIToken::kw_cfi_remember_state: 2096 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2097 break; 2098 case MIToken::kw_cfi_restore: 2099 if (parseCFIRegister(Reg)) 2100 return true; 2101 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2102 break; 2103 case MIToken::kw_cfi_restore_state: 2104 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2105 break; 2106 case MIToken::kw_cfi_undefined: 2107 if (parseCFIRegister(Reg)) 2108 return true; 2109 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2110 break; 2111 case MIToken::kw_cfi_register: { 2112 unsigned Reg2; 2113 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2114 parseCFIRegister(Reg2)) 2115 return true; 2116 2117 CFIIndex = 2118 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2119 break; 2120 } 2121 case MIToken::kw_cfi_window_save: 2122 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2123 break; 2124 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2125 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2126 break; 2127 case MIToken::kw_cfi_escape: { 2128 std::string Values; 2129 if (parseCFIEscapeValues(Values)) 2130 return true; 2131 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2132 break; 2133 } 2134 default: 2135 // TODO: Parse the other CFI operands. 2136 llvm_unreachable("The current token should be a cfi operand"); 2137 } 2138 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2139 return false; 2140 } 2141 2142 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2143 switch (Token.kind()) { 2144 case MIToken::NamedIRBlock: { 2145 BB = dyn_cast_or_null<BasicBlock>( 2146 F.getValueSymbolTable()->lookup(Token.stringValue())); 2147 if (!BB) 2148 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2149 break; 2150 } 2151 case MIToken::IRBlock: { 2152 unsigned SlotNumber = 0; 2153 if (getUnsigned(SlotNumber)) 2154 return true; 2155 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2156 if (!BB) 2157 return error(Twine("use of undefined IR block '%ir-block.") + 2158 Twine(SlotNumber) + "'"); 2159 break; 2160 } 2161 default: 2162 llvm_unreachable("The current token should be an IR block reference"); 2163 } 2164 return false; 2165 } 2166 2167 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2168 assert(Token.is(MIToken::kw_blockaddress)); 2169 lex(); 2170 if (expectAndConsume(MIToken::lparen)) 2171 return true; 2172 if (Token.isNot(MIToken::GlobalValue) && 2173 Token.isNot(MIToken::NamedGlobalValue)) 2174 return error("expected a global value"); 2175 GlobalValue *GV = nullptr; 2176 if (parseGlobalValue(GV)) 2177 return true; 2178 auto *F = dyn_cast<Function>(GV); 2179 if (!F) 2180 return error("expected an IR function reference"); 2181 lex(); 2182 if (expectAndConsume(MIToken::comma)) 2183 return true; 2184 BasicBlock *BB = nullptr; 2185 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2186 return error("expected an IR block reference"); 2187 if (parseIRBlock(BB, *F)) 2188 return true; 2189 lex(); 2190 if (expectAndConsume(MIToken::rparen)) 2191 return true; 2192 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2193 if (parseOperandsOffset(Dest)) 2194 return true; 2195 return false; 2196 } 2197 2198 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2199 assert(Token.is(MIToken::kw_intrinsic)); 2200 lex(); 2201 if (expectAndConsume(MIToken::lparen)) 2202 return error("expected syntax intrinsic(@llvm.whatever)"); 2203 2204 if (Token.isNot(MIToken::NamedGlobalValue)) 2205 return error("expected syntax intrinsic(@llvm.whatever)"); 2206 2207 std::string Name = Token.stringValue(); 2208 lex(); 2209 2210 if (expectAndConsume(MIToken::rparen)) 2211 return error("expected ')' to terminate intrinsic name"); 2212 2213 // Find out what intrinsic we're dealing with, first try the global namespace 2214 // and then the target's private intrinsics if that fails. 2215 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2216 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2217 if (ID == Intrinsic::not_intrinsic && TII) 2218 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2219 2220 if (ID == Intrinsic::not_intrinsic) 2221 return error("unknown intrinsic name"); 2222 Dest = MachineOperand::CreateIntrinsicID(ID); 2223 2224 return false; 2225 } 2226 2227 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2228 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2229 bool IsFloat = Token.is(MIToken::kw_floatpred); 2230 lex(); 2231 2232 if (expectAndConsume(MIToken::lparen)) 2233 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2234 2235 if (Token.isNot(MIToken::Identifier)) 2236 return error("whatever"); 2237 2238 CmpInst::Predicate Pred; 2239 if (IsFloat) { 2240 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2241 .Case("false", CmpInst::FCMP_FALSE) 2242 .Case("oeq", CmpInst::FCMP_OEQ) 2243 .Case("ogt", CmpInst::FCMP_OGT) 2244 .Case("oge", CmpInst::FCMP_OGE) 2245 .Case("olt", CmpInst::FCMP_OLT) 2246 .Case("ole", CmpInst::FCMP_OLE) 2247 .Case("one", CmpInst::FCMP_ONE) 2248 .Case("ord", CmpInst::FCMP_ORD) 2249 .Case("uno", CmpInst::FCMP_UNO) 2250 .Case("ueq", CmpInst::FCMP_UEQ) 2251 .Case("ugt", CmpInst::FCMP_UGT) 2252 .Case("uge", CmpInst::FCMP_UGE) 2253 .Case("ult", CmpInst::FCMP_ULT) 2254 .Case("ule", CmpInst::FCMP_ULE) 2255 .Case("une", CmpInst::FCMP_UNE) 2256 .Case("true", CmpInst::FCMP_TRUE) 2257 .Default(CmpInst::BAD_FCMP_PREDICATE); 2258 if (!CmpInst::isFPPredicate(Pred)) 2259 return error("invalid floating-point predicate"); 2260 } else { 2261 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2262 .Case("eq", CmpInst::ICMP_EQ) 2263 .Case("ne", CmpInst::ICMP_NE) 2264 .Case("sgt", CmpInst::ICMP_SGT) 2265 .Case("sge", CmpInst::ICMP_SGE) 2266 .Case("slt", CmpInst::ICMP_SLT) 2267 .Case("sle", CmpInst::ICMP_SLE) 2268 .Case("ugt", CmpInst::ICMP_UGT) 2269 .Case("uge", CmpInst::ICMP_UGE) 2270 .Case("ult", CmpInst::ICMP_ULT) 2271 .Case("ule", CmpInst::ICMP_ULE) 2272 .Default(CmpInst::BAD_ICMP_PREDICATE); 2273 if (!CmpInst::isIntPredicate(Pred)) 2274 return error("invalid integer predicate"); 2275 } 2276 2277 lex(); 2278 Dest = MachineOperand::CreatePredicate(Pred); 2279 if (expectAndConsume(MIToken::rparen)) 2280 return error("predicate should be terminated by ')'."); 2281 2282 return false; 2283 } 2284 2285 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2286 assert(Token.is(MIToken::kw_target_index)); 2287 lex(); 2288 if (expectAndConsume(MIToken::lparen)) 2289 return true; 2290 if (Token.isNot(MIToken::Identifier)) 2291 return error("expected the name of the target index"); 2292 int Index = 0; 2293 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2294 return error("use of undefined target index '" + Token.stringValue() + "'"); 2295 lex(); 2296 if (expectAndConsume(MIToken::rparen)) 2297 return true; 2298 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2299 if (parseOperandsOffset(Dest)) 2300 return true; 2301 return false; 2302 } 2303 2304 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2305 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2306 lex(); 2307 if (expectAndConsume(MIToken::lparen)) 2308 return true; 2309 2310 uint32_t *Mask = MF.allocateRegMask(); 2311 while (true) { 2312 if (Token.isNot(MIToken::NamedRegister)) 2313 return error("expected a named register"); 2314 unsigned Reg; 2315 if (parseNamedRegister(Reg)) 2316 return true; 2317 lex(); 2318 Mask[Reg / 32] |= 1U << (Reg % 32); 2319 // TODO: Report an error if the same register is used more than once. 2320 if (Token.isNot(MIToken::comma)) 2321 break; 2322 lex(); 2323 } 2324 2325 if (expectAndConsume(MIToken::rparen)) 2326 return true; 2327 Dest = MachineOperand::CreateRegMask(Mask); 2328 return false; 2329 } 2330 2331 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2332 assert(Token.is(MIToken::kw_liveout)); 2333 uint32_t *Mask = MF.allocateRegMask(); 2334 lex(); 2335 if (expectAndConsume(MIToken::lparen)) 2336 return true; 2337 while (true) { 2338 if (Token.isNot(MIToken::NamedRegister)) 2339 return error("expected a named register"); 2340 unsigned Reg; 2341 if (parseNamedRegister(Reg)) 2342 return true; 2343 lex(); 2344 Mask[Reg / 32] |= 1U << (Reg % 32); 2345 // TODO: Report an error if the same register is used more than once. 2346 if (Token.isNot(MIToken::comma)) 2347 break; 2348 lex(); 2349 } 2350 if (expectAndConsume(MIToken::rparen)) 2351 return true; 2352 Dest = MachineOperand::CreateRegLiveOut(Mask); 2353 return false; 2354 } 2355 2356 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2357 Optional<unsigned> &TiedDefIdx) { 2358 switch (Token.kind()) { 2359 case MIToken::kw_implicit: 2360 case MIToken::kw_implicit_define: 2361 case MIToken::kw_def: 2362 case MIToken::kw_dead: 2363 case MIToken::kw_killed: 2364 case MIToken::kw_undef: 2365 case MIToken::kw_internal: 2366 case MIToken::kw_early_clobber: 2367 case MIToken::kw_debug_use: 2368 case MIToken::kw_renamable: 2369 case MIToken::underscore: 2370 case MIToken::NamedRegister: 2371 case MIToken::VirtualRegister: 2372 case MIToken::NamedVirtualRegister: 2373 return parseRegisterOperand(Dest, TiedDefIdx); 2374 case MIToken::IntegerLiteral: 2375 return parseImmediateOperand(Dest); 2376 case MIToken::kw_half: 2377 case MIToken::kw_float: 2378 case MIToken::kw_double: 2379 case MIToken::kw_x86_fp80: 2380 case MIToken::kw_fp128: 2381 case MIToken::kw_ppc_fp128: 2382 return parseFPImmediateOperand(Dest); 2383 case MIToken::MachineBasicBlock: 2384 return parseMBBOperand(Dest); 2385 case MIToken::StackObject: 2386 return parseStackObjectOperand(Dest); 2387 case MIToken::FixedStackObject: 2388 return parseFixedStackObjectOperand(Dest); 2389 case MIToken::GlobalValue: 2390 case MIToken::NamedGlobalValue: 2391 return parseGlobalAddressOperand(Dest); 2392 case MIToken::ConstantPoolItem: 2393 return parseConstantPoolIndexOperand(Dest); 2394 case MIToken::JumpTableIndex: 2395 return parseJumpTableIndexOperand(Dest); 2396 case MIToken::ExternalSymbol: 2397 return parseExternalSymbolOperand(Dest); 2398 case MIToken::MCSymbol: 2399 return parseMCSymbolOperand(Dest); 2400 case MIToken::SubRegisterIndex: 2401 return parseSubRegisterIndexOperand(Dest); 2402 case MIToken::md_diexpr: 2403 case MIToken::exclaim: 2404 return parseMetadataOperand(Dest); 2405 case MIToken::kw_cfi_same_value: 2406 case MIToken::kw_cfi_offset: 2407 case MIToken::kw_cfi_rel_offset: 2408 case MIToken::kw_cfi_def_cfa_register: 2409 case MIToken::kw_cfi_def_cfa_offset: 2410 case MIToken::kw_cfi_adjust_cfa_offset: 2411 case MIToken::kw_cfi_escape: 2412 case MIToken::kw_cfi_def_cfa: 2413 case MIToken::kw_cfi_register: 2414 case MIToken::kw_cfi_remember_state: 2415 case MIToken::kw_cfi_restore: 2416 case MIToken::kw_cfi_restore_state: 2417 case MIToken::kw_cfi_undefined: 2418 case MIToken::kw_cfi_window_save: 2419 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2420 return parseCFIOperand(Dest); 2421 case MIToken::kw_blockaddress: 2422 return parseBlockAddressOperand(Dest); 2423 case MIToken::kw_intrinsic: 2424 return parseIntrinsicOperand(Dest); 2425 case MIToken::kw_target_index: 2426 return parseTargetIndexOperand(Dest); 2427 case MIToken::kw_liveout: 2428 return parseLiveoutRegisterMaskOperand(Dest); 2429 case MIToken::kw_floatpred: 2430 case MIToken::kw_intpred: 2431 return parsePredicateOperand(Dest); 2432 case MIToken::Error: 2433 return true; 2434 case MIToken::Identifier: 2435 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2436 Dest = MachineOperand::CreateRegMask(RegMask); 2437 lex(); 2438 break; 2439 } else if (Token.stringValue() == "CustomRegMask") { 2440 return parseCustomRegisterMaskOperand(Dest); 2441 } else 2442 return parseTypedImmediateOperand(Dest); 2443 default: 2444 // FIXME: Parse the MCSymbol machine operand. 2445 return error("expected a machine operand"); 2446 } 2447 return false; 2448 } 2449 2450 bool MIParser::parseMachineOperandAndTargetFlags( 2451 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2452 unsigned TF = 0; 2453 bool HasTargetFlags = false; 2454 if (Token.is(MIToken::kw_target_flags)) { 2455 HasTargetFlags = true; 2456 lex(); 2457 if (expectAndConsume(MIToken::lparen)) 2458 return true; 2459 if (Token.isNot(MIToken::Identifier)) 2460 return error("expected the name of the target flag"); 2461 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2462 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2463 return error("use of undefined target flag '" + Token.stringValue() + 2464 "'"); 2465 } 2466 lex(); 2467 while (Token.is(MIToken::comma)) { 2468 lex(); 2469 if (Token.isNot(MIToken::Identifier)) 2470 return error("expected the name of the target flag"); 2471 unsigned BitFlag = 0; 2472 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2473 return error("use of undefined target flag '" + Token.stringValue() + 2474 "'"); 2475 // TODO: Report an error when using a duplicate bit target flag. 2476 TF |= BitFlag; 2477 lex(); 2478 } 2479 if (expectAndConsume(MIToken::rparen)) 2480 return true; 2481 } 2482 auto Loc = Token.location(); 2483 if (parseMachineOperand(Dest, TiedDefIdx)) 2484 return true; 2485 if (!HasTargetFlags) 2486 return false; 2487 if (Dest.isReg()) 2488 return error(Loc, "register operands can't have target flags"); 2489 Dest.setTargetFlags(TF); 2490 return false; 2491 } 2492 2493 bool MIParser::parseOffset(int64_t &Offset) { 2494 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2495 return false; 2496 StringRef Sign = Token.range(); 2497 bool IsNegative = Token.is(MIToken::minus); 2498 lex(); 2499 if (Token.isNot(MIToken::IntegerLiteral)) 2500 return error("expected an integer literal after '" + Sign + "'"); 2501 if (Token.integerValue().getMinSignedBits() > 64) 2502 return error("expected 64-bit integer (too large)"); 2503 Offset = Token.integerValue().getExtValue(); 2504 if (IsNegative) 2505 Offset = -Offset; 2506 lex(); 2507 return false; 2508 } 2509 2510 bool MIParser::parseAlignment(unsigned &Alignment) { 2511 assert(Token.is(MIToken::kw_align)); 2512 lex(); 2513 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2514 return error("expected an integer literal after 'align'"); 2515 if (getUnsigned(Alignment)) 2516 return true; 2517 lex(); 2518 2519 if (!isPowerOf2_32(Alignment)) 2520 return error("expected a power-of-2 literal after 'align'"); 2521 2522 return false; 2523 } 2524 2525 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2526 assert(Token.is(MIToken::kw_addrspace)); 2527 lex(); 2528 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2529 return error("expected an integer literal after 'addrspace'"); 2530 if (getUnsigned(Addrspace)) 2531 return true; 2532 lex(); 2533 return false; 2534 } 2535 2536 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2537 int64_t Offset = 0; 2538 if (parseOffset(Offset)) 2539 return true; 2540 Op.setOffset(Offset); 2541 return false; 2542 } 2543 2544 bool MIParser::parseIRValue(const Value *&V) { 2545 switch (Token.kind()) { 2546 case MIToken::NamedIRValue: { 2547 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2548 break; 2549 } 2550 case MIToken::IRValue: { 2551 unsigned SlotNumber = 0; 2552 if (getUnsigned(SlotNumber)) 2553 return true; 2554 V = getIRValue(SlotNumber); 2555 break; 2556 } 2557 case MIToken::NamedGlobalValue: 2558 case MIToken::GlobalValue: { 2559 GlobalValue *GV = nullptr; 2560 if (parseGlobalValue(GV)) 2561 return true; 2562 V = GV; 2563 break; 2564 } 2565 case MIToken::QuotedIRValue: { 2566 const Constant *C = nullptr; 2567 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2568 return true; 2569 V = C; 2570 break; 2571 } 2572 default: 2573 llvm_unreachable("The current token should be an IR block reference"); 2574 } 2575 if (!V) 2576 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2577 return false; 2578 } 2579 2580 bool MIParser::getUint64(uint64_t &Result) { 2581 if (Token.hasIntegerValue()) { 2582 if (Token.integerValue().getActiveBits() > 64) 2583 return error("expected 64-bit integer (too large)"); 2584 Result = Token.integerValue().getZExtValue(); 2585 return false; 2586 } 2587 if (Token.is(MIToken::HexLiteral)) { 2588 APInt A; 2589 if (getHexUint(A)) 2590 return true; 2591 if (A.getBitWidth() > 64) 2592 return error("expected 64-bit integer (too large)"); 2593 Result = A.getZExtValue(); 2594 return false; 2595 } 2596 return true; 2597 } 2598 2599 bool MIParser::getHexUint(APInt &Result) { 2600 assert(Token.is(MIToken::HexLiteral)); 2601 StringRef S = Token.range(); 2602 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2603 // This could be a floating point literal with a special prefix. 2604 if (!isxdigit(S[2])) 2605 return true; 2606 StringRef V = S.substr(2); 2607 APInt A(V.size()*4, V, 16); 2608 2609 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2610 // sure it isn't the case before constructing result. 2611 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2612 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2613 return false; 2614 } 2615 2616 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2617 const auto OldFlags = Flags; 2618 switch (Token.kind()) { 2619 case MIToken::kw_volatile: 2620 Flags |= MachineMemOperand::MOVolatile; 2621 break; 2622 case MIToken::kw_non_temporal: 2623 Flags |= MachineMemOperand::MONonTemporal; 2624 break; 2625 case MIToken::kw_dereferenceable: 2626 Flags |= MachineMemOperand::MODereferenceable; 2627 break; 2628 case MIToken::kw_invariant: 2629 Flags |= MachineMemOperand::MOInvariant; 2630 break; 2631 case MIToken::StringConstant: { 2632 MachineMemOperand::Flags TF; 2633 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2634 return error("use of undefined target MMO flag '" + Token.stringValue() + 2635 "'"); 2636 Flags |= TF; 2637 break; 2638 } 2639 default: 2640 llvm_unreachable("The current token should be a memory operand flag"); 2641 } 2642 if (OldFlags == Flags) 2643 // We know that the same flag is specified more than once when the flags 2644 // weren't modified. 2645 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2646 lex(); 2647 return false; 2648 } 2649 2650 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2651 switch (Token.kind()) { 2652 case MIToken::kw_stack: 2653 PSV = MF.getPSVManager().getStack(); 2654 break; 2655 case MIToken::kw_got: 2656 PSV = MF.getPSVManager().getGOT(); 2657 break; 2658 case MIToken::kw_jump_table: 2659 PSV = MF.getPSVManager().getJumpTable(); 2660 break; 2661 case MIToken::kw_constant_pool: 2662 PSV = MF.getPSVManager().getConstantPool(); 2663 break; 2664 case MIToken::FixedStackObject: { 2665 int FI; 2666 if (parseFixedStackFrameIndex(FI)) 2667 return true; 2668 PSV = MF.getPSVManager().getFixedStack(FI); 2669 // The token was already consumed, so use return here instead of break. 2670 return false; 2671 } 2672 case MIToken::StackObject: { 2673 int FI; 2674 if (parseStackFrameIndex(FI)) 2675 return true; 2676 PSV = MF.getPSVManager().getFixedStack(FI); 2677 // The token was already consumed, so use return here instead of break. 2678 return false; 2679 } 2680 case MIToken::kw_call_entry: 2681 lex(); 2682 switch (Token.kind()) { 2683 case MIToken::GlobalValue: 2684 case MIToken::NamedGlobalValue: { 2685 GlobalValue *GV = nullptr; 2686 if (parseGlobalValue(GV)) 2687 return true; 2688 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2689 break; 2690 } 2691 case MIToken::ExternalSymbol: 2692 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2693 MF.createExternalSymbolName(Token.stringValue())); 2694 break; 2695 default: 2696 return error( 2697 "expected a global value or an external symbol after 'call-entry'"); 2698 } 2699 break; 2700 default: 2701 llvm_unreachable("The current token should be pseudo source value"); 2702 } 2703 lex(); 2704 return false; 2705 } 2706 2707 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2708 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2709 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2710 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2711 Token.is(MIToken::kw_call_entry)) { 2712 const PseudoSourceValue *PSV = nullptr; 2713 if (parseMemoryPseudoSourceValue(PSV)) 2714 return true; 2715 int64_t Offset = 0; 2716 if (parseOffset(Offset)) 2717 return true; 2718 Dest = MachinePointerInfo(PSV, Offset); 2719 return false; 2720 } 2721 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2722 Token.isNot(MIToken::GlobalValue) && 2723 Token.isNot(MIToken::NamedGlobalValue) && 2724 Token.isNot(MIToken::QuotedIRValue)) 2725 return error("expected an IR value reference"); 2726 const Value *V = nullptr; 2727 if (parseIRValue(V)) 2728 return true; 2729 if (!V->getType()->isPointerTy()) 2730 return error("expected a pointer IR value"); 2731 lex(); 2732 int64_t Offset = 0; 2733 if (parseOffset(Offset)) 2734 return true; 2735 Dest = MachinePointerInfo(V, Offset); 2736 return false; 2737 } 2738 2739 bool MIParser::parseOptionalScope(LLVMContext &Context, 2740 SyncScope::ID &SSID) { 2741 SSID = SyncScope::System; 2742 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2743 lex(); 2744 if (expectAndConsume(MIToken::lparen)) 2745 return error("expected '(' in syncscope"); 2746 2747 std::string SSN; 2748 if (parseStringConstant(SSN)) 2749 return true; 2750 2751 SSID = Context.getOrInsertSyncScopeID(SSN); 2752 if (expectAndConsume(MIToken::rparen)) 2753 return error("expected ')' in syncscope"); 2754 } 2755 2756 return false; 2757 } 2758 2759 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2760 Order = AtomicOrdering::NotAtomic; 2761 if (Token.isNot(MIToken::Identifier)) 2762 return false; 2763 2764 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2765 .Case("unordered", AtomicOrdering::Unordered) 2766 .Case("monotonic", AtomicOrdering::Monotonic) 2767 .Case("acquire", AtomicOrdering::Acquire) 2768 .Case("release", AtomicOrdering::Release) 2769 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2770 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2771 .Default(AtomicOrdering::NotAtomic); 2772 2773 if (Order != AtomicOrdering::NotAtomic) { 2774 lex(); 2775 return false; 2776 } 2777 2778 return error("expected an atomic scope, ordering or a size specification"); 2779 } 2780 2781 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2782 if (expectAndConsume(MIToken::lparen)) 2783 return true; 2784 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2785 while (Token.isMemoryOperandFlag()) { 2786 if (parseMemoryOperandFlag(Flags)) 2787 return true; 2788 } 2789 if (Token.isNot(MIToken::Identifier) || 2790 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2791 return error("expected 'load' or 'store' memory operation"); 2792 if (Token.stringValue() == "load") 2793 Flags |= MachineMemOperand::MOLoad; 2794 else 2795 Flags |= MachineMemOperand::MOStore; 2796 lex(); 2797 2798 // Optional 'store' for operands that both load and store. 2799 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2800 Flags |= MachineMemOperand::MOStore; 2801 lex(); 2802 } 2803 2804 // Optional synchronization scope. 2805 SyncScope::ID SSID; 2806 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2807 return true; 2808 2809 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2810 AtomicOrdering Order, FailureOrder; 2811 if (parseOptionalAtomicOrdering(Order)) 2812 return true; 2813 2814 if (parseOptionalAtomicOrdering(FailureOrder)) 2815 return true; 2816 2817 if (Token.isNot(MIToken::IntegerLiteral) && 2818 Token.isNot(MIToken::kw_unknown_size)) 2819 return error("expected the size integer literal or 'unknown-size' after " 2820 "memory operation"); 2821 uint64_t Size; 2822 if (Token.is(MIToken::IntegerLiteral)) { 2823 if (getUint64(Size)) 2824 return true; 2825 } else if (Token.is(MIToken::kw_unknown_size)) { 2826 Size = MemoryLocation::UnknownSize; 2827 } 2828 lex(); 2829 2830 MachinePointerInfo Ptr = MachinePointerInfo(); 2831 if (Token.is(MIToken::Identifier)) { 2832 const char *Word = 2833 ((Flags & MachineMemOperand::MOLoad) && 2834 (Flags & MachineMemOperand::MOStore)) 2835 ? "on" 2836 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2837 if (Token.stringValue() != Word) 2838 return error(Twine("expected '") + Word + "'"); 2839 lex(); 2840 2841 if (parseMachinePointerInfo(Ptr)) 2842 return true; 2843 } 2844 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2845 AAMDNodes AAInfo; 2846 MDNode *Range = nullptr; 2847 while (consumeIfPresent(MIToken::comma)) { 2848 switch (Token.kind()) { 2849 case MIToken::kw_align: 2850 if (parseAlignment(BaseAlignment)) 2851 return true; 2852 break; 2853 case MIToken::kw_addrspace: 2854 if (parseAddrspace(Ptr.AddrSpace)) 2855 return true; 2856 break; 2857 case MIToken::md_tbaa: 2858 lex(); 2859 if (parseMDNode(AAInfo.TBAA)) 2860 return true; 2861 break; 2862 case MIToken::md_alias_scope: 2863 lex(); 2864 if (parseMDNode(AAInfo.Scope)) 2865 return true; 2866 break; 2867 case MIToken::md_noalias: 2868 lex(); 2869 if (parseMDNode(AAInfo.NoAlias)) 2870 return true; 2871 break; 2872 case MIToken::md_range: 2873 lex(); 2874 if (parseMDNode(Range)) 2875 return true; 2876 break; 2877 // TODO: Report an error on duplicate metadata nodes. 2878 default: 2879 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2880 "'!noalias' or '!range'"); 2881 } 2882 } 2883 if (expectAndConsume(MIToken::rparen)) 2884 return true; 2885 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2886 SSID, Order, FailureOrder); 2887 return false; 2888 } 2889 2890 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2891 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2892 Token.is(MIToken::kw_post_instr_symbol)) && 2893 "Invalid token for a pre- post-instruction symbol!"); 2894 lex(); 2895 if (Token.isNot(MIToken::MCSymbol)) 2896 return error("expected a symbol after 'pre-instr-symbol'"); 2897 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2898 lex(); 2899 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2900 Token.is(MIToken::lbrace)) 2901 return false; 2902 if (Token.isNot(MIToken::comma)) 2903 return error("expected ',' before the next machine operand"); 2904 lex(); 2905 return false; 2906 } 2907 2908 static void initSlots2BasicBlocks( 2909 const Function &F, 2910 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2911 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2912 MST.incorporateFunction(F); 2913 for (auto &BB : F) { 2914 if (BB.hasName()) 2915 continue; 2916 int Slot = MST.getLocalSlot(&BB); 2917 if (Slot == -1) 2918 continue; 2919 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2920 } 2921 } 2922 2923 static const BasicBlock *getIRBlockFromSlot( 2924 unsigned Slot, 2925 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2926 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2927 if (BlockInfo == Slots2BasicBlocks.end()) 2928 return nullptr; 2929 return BlockInfo->second; 2930 } 2931 2932 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2933 if (Slots2BasicBlocks.empty()) 2934 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2935 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2936 } 2937 2938 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2939 if (&F == &MF.getFunction()) 2940 return getIRBlock(Slot); 2941 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2942 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2943 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2944 } 2945 2946 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2947 DenseMap<unsigned, const Value *> &Slots2Values) { 2948 int Slot = MST.getLocalSlot(V); 2949 if (Slot == -1) 2950 return; 2951 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2952 } 2953 2954 /// Creates the mapping from slot numbers to function's unnamed IR values. 2955 static void initSlots2Values(const Function &F, 2956 DenseMap<unsigned, const Value *> &Slots2Values) { 2957 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2958 MST.incorporateFunction(F); 2959 for (const auto &Arg : F.args()) 2960 mapValueToSlot(&Arg, MST, Slots2Values); 2961 for (const auto &BB : F) { 2962 mapValueToSlot(&BB, MST, Slots2Values); 2963 for (const auto &I : BB) 2964 mapValueToSlot(&I, MST, Slots2Values); 2965 } 2966 } 2967 2968 const Value *MIParser::getIRValue(unsigned Slot) { 2969 if (Slots2Values.empty()) 2970 initSlots2Values(MF.getFunction(), Slots2Values); 2971 auto ValueInfo = Slots2Values.find(Slot); 2972 if (ValueInfo == Slots2Values.end()) 2973 return nullptr; 2974 return ValueInfo->second; 2975 } 2976 2977 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 2978 // FIXME: Currently we can't recognize temporary or local symbols and call all 2979 // of the appropriate forms to create them. However, this handles basic cases 2980 // well as most of the special aspects are recognized by a prefix on their 2981 // name, and the input names should already be unique. For test cases, keeping 2982 // the symbol name out of the symbol table isn't terribly important. 2983 return MF.getContext().getOrCreateSymbol(Name); 2984 } 2985 2986 bool MIParser::parseStringConstant(std::string &Result) { 2987 if (Token.isNot(MIToken::StringConstant)) 2988 return error("expected string constant"); 2989 Result = Token.stringValue(); 2990 lex(); 2991 return false; 2992 } 2993 2994 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2995 StringRef Src, 2996 SMDiagnostic &Error) { 2997 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2998 } 2999 3000 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3001 StringRef Src, SMDiagnostic &Error) { 3002 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3003 } 3004 3005 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3006 MachineBasicBlock *&MBB, StringRef Src, 3007 SMDiagnostic &Error) { 3008 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3009 } 3010 3011 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3012 unsigned &Reg, StringRef Src, 3013 SMDiagnostic &Error) { 3014 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3015 } 3016 3017 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3018 unsigned &Reg, StringRef Src, 3019 SMDiagnostic &Error) { 3020 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3021 } 3022 3023 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3024 VRegInfo *&Info, StringRef Src, 3025 SMDiagnostic &Error) { 3026 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3027 } 3028 3029 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3030 int &FI, StringRef Src, 3031 SMDiagnostic &Error) { 3032 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3033 } 3034 3035 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3036 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3037 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3038 } 3039