1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRPrinter.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/MC/LaneBitmask.h" 59 #include "llvm/MC/MCContext.h" 60 #include "llvm/MC/MCDwarf.h" 61 #include "llvm/MC/MCInstrDesc.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/BranchProbability.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/SMLoc.h" 70 #include "llvm/Support/SourceMgr.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetIntrinsicInfo.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cctype> 77 #include <cstddef> 78 #include <cstdint> 79 #include <limits> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 void PerTargetMIParsingState::setTarget( 86 const TargetSubtargetInfo &NewSubtarget) { 87 88 // If the subtarget changed, over conservatively assume everything is invalid. 89 if (&Subtarget == &NewSubtarget) 90 return; 91 92 Names2InstrOpCodes.clear(); 93 Names2Regs.clear(); 94 Names2RegMasks.clear(); 95 Names2SubRegIndices.clear(); 96 Names2TargetIndices.clear(); 97 Names2DirectTargetFlags.clear(); 98 Names2BitmaskTargetFlags.clear(); 99 Names2MMOTargetFlags.clear(); 100 101 initNames2RegClasses(); 102 initNames2RegBanks(); 103 } 104 105 void PerTargetMIParsingState::initNames2Regs() { 106 if (!Names2Regs.empty()) 107 return; 108 109 // The '%noreg' register is the register 0. 110 Names2Regs.insert(std::make_pair("noreg", 0)); 111 const auto *TRI = Subtarget.getRegisterInfo(); 112 assert(TRI && "Expected target register info"); 113 114 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 115 bool WasInserted = 116 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 117 .second; 118 (void)WasInserted; 119 assert(WasInserted && "Expected registers to be unique case-insensitively"); 120 } 121 } 122 123 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 124 unsigned &Reg) { 125 initNames2Regs(); 126 auto RegInfo = Names2Regs.find(RegName); 127 if (RegInfo == Names2Regs.end()) 128 return true; 129 Reg = RegInfo->getValue(); 130 return false; 131 } 132 133 void PerTargetMIParsingState::initNames2InstrOpCodes() { 134 if (!Names2InstrOpCodes.empty()) 135 return; 136 const auto *TII = Subtarget.getInstrInfo(); 137 assert(TII && "Expected target instruction info"); 138 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 139 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 140 } 141 142 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 143 unsigned &OpCode) { 144 initNames2InstrOpCodes(); 145 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 146 if (InstrInfo == Names2InstrOpCodes.end()) 147 return true; 148 OpCode = InstrInfo->getValue(); 149 return false; 150 } 151 152 void PerTargetMIParsingState::initNames2RegMasks() { 153 if (!Names2RegMasks.empty()) 154 return; 155 const auto *TRI = Subtarget.getRegisterInfo(); 156 assert(TRI && "Expected target register info"); 157 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 158 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 159 assert(RegMasks.size() == RegMaskNames.size()); 160 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 161 Names2RegMasks.insert( 162 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 163 } 164 165 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 166 initNames2RegMasks(); 167 auto RegMaskInfo = Names2RegMasks.find(Identifier); 168 if (RegMaskInfo == Names2RegMasks.end()) 169 return nullptr; 170 return RegMaskInfo->getValue(); 171 } 172 173 void PerTargetMIParsingState::initNames2SubRegIndices() { 174 if (!Names2SubRegIndices.empty()) 175 return; 176 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 177 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 178 Names2SubRegIndices.insert( 179 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 180 } 181 182 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 183 initNames2SubRegIndices(); 184 auto SubRegInfo = Names2SubRegIndices.find(Name); 185 if (SubRegInfo == Names2SubRegIndices.end()) 186 return 0; 187 return SubRegInfo->getValue(); 188 } 189 190 void PerTargetMIParsingState::initNames2TargetIndices() { 191 if (!Names2TargetIndices.empty()) 192 return; 193 const auto *TII = Subtarget.getInstrInfo(); 194 assert(TII && "Expected target instruction info"); 195 auto Indices = TII->getSerializableTargetIndices(); 196 for (const auto &I : Indices) 197 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 198 } 199 200 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 201 initNames2TargetIndices(); 202 auto IndexInfo = Names2TargetIndices.find(Name); 203 if (IndexInfo == Names2TargetIndices.end()) 204 return true; 205 Index = IndexInfo->second; 206 return false; 207 } 208 209 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 210 if (!Names2DirectTargetFlags.empty()) 211 return; 212 213 const auto *TII = Subtarget.getInstrInfo(); 214 assert(TII && "Expected target instruction info"); 215 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 216 for (const auto &I : Flags) 217 Names2DirectTargetFlags.insert( 218 std::make_pair(StringRef(I.second), I.first)); 219 } 220 221 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 222 unsigned &Flag) { 223 initNames2DirectTargetFlags(); 224 auto FlagInfo = Names2DirectTargetFlags.find(Name); 225 if (FlagInfo == Names2DirectTargetFlags.end()) 226 return true; 227 Flag = FlagInfo->second; 228 return false; 229 } 230 231 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 232 if (!Names2BitmaskTargetFlags.empty()) 233 return; 234 235 const auto *TII = Subtarget.getInstrInfo(); 236 assert(TII && "Expected target instruction info"); 237 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 238 for (const auto &I : Flags) 239 Names2BitmaskTargetFlags.insert( 240 std::make_pair(StringRef(I.second), I.first)); 241 } 242 243 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 244 unsigned &Flag) { 245 initNames2BitmaskTargetFlags(); 246 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 247 if (FlagInfo == Names2BitmaskTargetFlags.end()) 248 return true; 249 Flag = FlagInfo->second; 250 return false; 251 } 252 253 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 254 if (!Names2MMOTargetFlags.empty()) 255 return; 256 257 const auto *TII = Subtarget.getInstrInfo(); 258 assert(TII && "Expected target instruction info"); 259 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 260 for (const auto &I : Flags) 261 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 262 } 263 264 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 265 MachineMemOperand::Flags &Flag) { 266 initNames2MMOTargetFlags(); 267 auto FlagInfo = Names2MMOTargetFlags.find(Name); 268 if (FlagInfo == Names2MMOTargetFlags.end()) 269 return true; 270 Flag = FlagInfo->second; 271 return false; 272 } 273 274 void PerTargetMIParsingState::initNames2RegClasses() { 275 if (!Names2RegClasses.empty()) 276 return; 277 278 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 279 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 280 const auto *RC = TRI->getRegClass(I); 281 Names2RegClasses.insert( 282 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 283 } 284 } 285 286 void PerTargetMIParsingState::initNames2RegBanks() { 287 if (!Names2RegBanks.empty()) 288 return; 289 290 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 291 // If the target does not support GlobalISel, we may not have a 292 // register bank info. 293 if (!RBI) 294 return; 295 296 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 297 const auto &RegBank = RBI->getRegBank(I); 298 Names2RegBanks.insert( 299 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 300 } 301 } 302 303 const TargetRegisterClass * 304 PerTargetMIParsingState::getRegClass(StringRef Name) { 305 auto RegClassInfo = Names2RegClasses.find(Name); 306 if (RegClassInfo == Names2RegClasses.end()) 307 return nullptr; 308 return RegClassInfo->getValue(); 309 } 310 311 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 312 auto RegBankInfo = Names2RegBanks.find(Name); 313 if (RegBankInfo == Names2RegBanks.end()) 314 return nullptr; 315 return RegBankInfo->getValue(); 316 } 317 318 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 319 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 320 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 321 } 322 323 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 324 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 325 if (I.second) { 326 MachineRegisterInfo &MRI = MF.getRegInfo(); 327 VRegInfo *Info = new (Allocator) VRegInfo; 328 Info->VReg = MRI.createIncompleteVirtualRegister(); 329 I.first->second = Info; 330 } 331 return *I.first->second; 332 } 333 334 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 335 assert(RegName != "" && "Expected named reg."); 336 337 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 338 if (I.second) { 339 VRegInfo *Info = new (Allocator) VRegInfo; 340 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 341 I.first->second = Info; 342 } 343 return *I.first->second; 344 } 345 346 namespace { 347 348 /// A wrapper struct around the 'MachineOperand' struct that includes a source 349 /// range and other attributes. 350 struct ParsedMachineOperand { 351 MachineOperand Operand; 352 StringRef::iterator Begin; 353 StringRef::iterator End; 354 Optional<unsigned> TiedDefIdx; 355 356 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 357 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 358 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 359 if (TiedDefIdx) 360 assert(Operand.isReg() && Operand.isUse() && 361 "Only used register operands can be tied"); 362 } 363 }; 364 365 class MIParser { 366 MachineFunction &MF; 367 SMDiagnostic &Error; 368 StringRef Source, CurrentSource; 369 MIToken Token; 370 PerFunctionMIParsingState &PFS; 371 /// Maps from slot numbers to function's unnamed basic blocks. 372 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 373 /// Maps from slot numbers to function's unnamed values. 374 DenseMap<unsigned, const Value *> Slots2Values; 375 376 public: 377 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 378 StringRef Source); 379 380 /// \p SkipChar gives the number of characters to skip before looking 381 /// for the next token. 382 void lex(unsigned SkipChar = 0); 383 384 /// Report an error at the current location with the given message. 385 /// 386 /// This function always return true. 387 bool error(const Twine &Msg); 388 389 /// Report an error at the given location with the given message. 390 /// 391 /// This function always return true. 392 bool error(StringRef::iterator Loc, const Twine &Msg); 393 394 bool 395 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 396 bool parseBasicBlocks(); 397 bool parse(MachineInstr *&MI); 398 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 399 bool parseStandaloneNamedRegister(unsigned &Reg); 400 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 401 bool parseStandaloneRegister(unsigned &Reg); 402 bool parseStandaloneStackObject(int &FI); 403 bool parseStandaloneMDNode(MDNode *&Node); 404 405 bool 406 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 407 bool parseBasicBlock(MachineBasicBlock &MBB, 408 MachineBasicBlock *&AddFalthroughFrom); 409 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 410 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 411 412 bool parseNamedRegister(unsigned &Reg); 413 bool parseVirtualRegister(VRegInfo *&Info); 414 bool parseNamedVirtualRegister(VRegInfo *&Info); 415 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 416 bool parseRegisterFlag(unsigned &Flags); 417 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 418 bool parseSubRegisterIndex(unsigned &SubReg); 419 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 420 bool parseRegisterOperand(MachineOperand &Dest, 421 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 422 bool parseImmediateOperand(MachineOperand &Dest); 423 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 424 const Constant *&C); 425 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 426 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 427 bool parseTypedImmediateOperand(MachineOperand &Dest); 428 bool parseFPImmediateOperand(MachineOperand &Dest); 429 bool parseMBBReference(MachineBasicBlock *&MBB); 430 bool parseMBBOperand(MachineOperand &Dest); 431 bool parseStackFrameIndex(int &FI); 432 bool parseStackObjectOperand(MachineOperand &Dest); 433 bool parseFixedStackFrameIndex(int &FI); 434 bool parseFixedStackObjectOperand(MachineOperand &Dest); 435 bool parseGlobalValue(GlobalValue *&GV); 436 bool parseGlobalAddressOperand(MachineOperand &Dest); 437 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 438 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 439 bool parseJumpTableIndexOperand(MachineOperand &Dest); 440 bool parseExternalSymbolOperand(MachineOperand &Dest); 441 bool parseMCSymbolOperand(MachineOperand &Dest); 442 bool parseMDNode(MDNode *&Node); 443 bool parseDIExpression(MDNode *&Expr); 444 bool parseDILocation(MDNode *&Expr); 445 bool parseMetadataOperand(MachineOperand &Dest); 446 bool parseCFIOffset(int &Offset); 447 bool parseCFIRegister(unsigned &Reg); 448 bool parseCFIEscapeValues(std::string& Values); 449 bool parseCFIOperand(MachineOperand &Dest); 450 bool parseIRBlock(BasicBlock *&BB, const Function &F); 451 bool parseBlockAddressOperand(MachineOperand &Dest); 452 bool parseIntrinsicOperand(MachineOperand &Dest); 453 bool parsePredicateOperand(MachineOperand &Dest); 454 bool parseTargetIndexOperand(MachineOperand &Dest); 455 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 456 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 457 bool parseMachineOperand(MachineOperand &Dest, 458 Optional<unsigned> &TiedDefIdx); 459 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 460 Optional<unsigned> &TiedDefIdx); 461 bool parseOffset(int64_t &Offset); 462 bool parseAlignment(unsigned &Alignment); 463 bool parseAddrspace(unsigned &Addrspace); 464 bool parseOperandsOffset(MachineOperand &Op); 465 bool parseIRValue(const Value *&V); 466 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 467 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 468 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 469 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 470 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 471 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 472 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 473 474 private: 475 /// Convert the integer literal in the current token into an unsigned integer. 476 /// 477 /// Return true if an error occurred. 478 bool getUnsigned(unsigned &Result); 479 480 /// Convert the integer literal in the current token into an uint64. 481 /// 482 /// Return true if an error occurred. 483 bool getUint64(uint64_t &Result); 484 485 /// Convert the hexadecimal literal in the current token into an unsigned 486 /// APInt with a minimum bitwidth required to represent the value. 487 /// 488 /// Return true if the literal does not represent an integer value. 489 bool getHexUint(APInt &Result); 490 491 /// If the current token is of the given kind, consume it and return false. 492 /// Otherwise report an error and return true. 493 bool expectAndConsume(MIToken::TokenKind TokenKind); 494 495 /// If the current token is of the given kind, consume it and return true. 496 /// Otherwise return false. 497 bool consumeIfPresent(MIToken::TokenKind TokenKind); 498 499 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 500 501 bool assignRegisterTies(MachineInstr &MI, 502 ArrayRef<ParsedMachineOperand> Operands); 503 504 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 505 const MCInstrDesc &MCID); 506 507 const BasicBlock *getIRBlock(unsigned Slot); 508 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 509 510 const Value *getIRValue(unsigned Slot); 511 512 /// Get or create an MCSymbol for a given name. 513 MCSymbol *getOrCreateMCSymbol(StringRef Name); 514 515 /// parseStringConstant 516 /// ::= StringConstant 517 bool parseStringConstant(std::string &Result); 518 }; 519 520 } // end anonymous namespace 521 522 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 523 StringRef Source) 524 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 525 {} 526 527 void MIParser::lex(unsigned SkipChar) { 528 CurrentSource = lexMIToken( 529 CurrentSource.data() + SkipChar, Token, 530 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 531 } 532 533 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 534 535 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 536 const SourceMgr &SM = *PFS.SM; 537 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 538 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 539 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 540 // Create an ordinary diagnostic when the source manager's buffer is the 541 // source string. 542 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 543 return true; 544 } 545 // Create a diagnostic for a YAML string literal. 546 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 547 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 548 Source, None, None); 549 return true; 550 } 551 552 static const char *toString(MIToken::TokenKind TokenKind) { 553 switch (TokenKind) { 554 case MIToken::comma: 555 return "','"; 556 case MIToken::equal: 557 return "'='"; 558 case MIToken::colon: 559 return "':'"; 560 case MIToken::lparen: 561 return "'('"; 562 case MIToken::rparen: 563 return "')'"; 564 default: 565 return "<unknown token>"; 566 } 567 } 568 569 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 570 if (Token.isNot(TokenKind)) 571 return error(Twine("expected ") + toString(TokenKind)); 572 lex(); 573 return false; 574 } 575 576 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 577 if (Token.isNot(TokenKind)) 578 return false; 579 lex(); 580 return true; 581 } 582 583 bool MIParser::parseBasicBlockDefinition( 584 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 585 assert(Token.is(MIToken::MachineBasicBlockLabel)); 586 unsigned ID = 0; 587 if (getUnsigned(ID)) 588 return true; 589 auto Loc = Token.location(); 590 auto Name = Token.stringValue(); 591 lex(); 592 bool HasAddressTaken = false; 593 bool IsLandingPad = false; 594 unsigned Alignment = 0; 595 BasicBlock *BB = nullptr; 596 if (consumeIfPresent(MIToken::lparen)) { 597 do { 598 // TODO: Report an error when multiple same attributes are specified. 599 switch (Token.kind()) { 600 case MIToken::kw_address_taken: 601 HasAddressTaken = true; 602 lex(); 603 break; 604 case MIToken::kw_landing_pad: 605 IsLandingPad = true; 606 lex(); 607 break; 608 case MIToken::kw_align: 609 if (parseAlignment(Alignment)) 610 return true; 611 break; 612 case MIToken::IRBlock: 613 // TODO: Report an error when both name and ir block are specified. 614 if (parseIRBlock(BB, MF.getFunction())) 615 return true; 616 lex(); 617 break; 618 default: 619 break; 620 } 621 } while (consumeIfPresent(MIToken::comma)); 622 if (expectAndConsume(MIToken::rparen)) 623 return true; 624 } 625 if (expectAndConsume(MIToken::colon)) 626 return true; 627 628 if (!Name.empty()) { 629 BB = dyn_cast_or_null<BasicBlock>( 630 MF.getFunction().getValueSymbolTable()->lookup(Name)); 631 if (!BB) 632 return error(Loc, Twine("basic block '") + Name + 633 "' is not defined in the function '" + 634 MF.getName() + "'"); 635 } 636 auto *MBB = MF.CreateMachineBasicBlock(BB); 637 MF.insert(MF.end(), MBB); 638 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 639 if (!WasInserted) 640 return error(Loc, Twine("redefinition of machine basic block with id #") + 641 Twine(ID)); 642 if (Alignment) 643 MBB->setAlignment(Alignment); 644 if (HasAddressTaken) 645 MBB->setHasAddressTaken(); 646 MBB->setIsEHPad(IsLandingPad); 647 return false; 648 } 649 650 bool MIParser::parseBasicBlockDefinitions( 651 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 652 lex(); 653 // Skip until the first machine basic block. 654 while (Token.is(MIToken::Newline)) 655 lex(); 656 if (Token.isErrorOrEOF()) 657 return Token.isError(); 658 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 659 return error("expected a basic block definition before instructions"); 660 unsigned BraceDepth = 0; 661 do { 662 if (parseBasicBlockDefinition(MBBSlots)) 663 return true; 664 bool IsAfterNewline = false; 665 // Skip until the next machine basic block. 666 while (true) { 667 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 668 Token.isErrorOrEOF()) 669 break; 670 else if (Token.is(MIToken::MachineBasicBlockLabel)) 671 return error("basic block definition should be located at the start of " 672 "the line"); 673 else if (consumeIfPresent(MIToken::Newline)) { 674 IsAfterNewline = true; 675 continue; 676 } 677 IsAfterNewline = false; 678 if (Token.is(MIToken::lbrace)) 679 ++BraceDepth; 680 if (Token.is(MIToken::rbrace)) { 681 if (!BraceDepth) 682 return error("extraneous closing brace ('}')"); 683 --BraceDepth; 684 } 685 lex(); 686 } 687 // Verify that we closed all of the '{' at the end of a file or a block. 688 if (!Token.isError() && BraceDepth) 689 return error("expected '}'"); // FIXME: Report a note that shows '{'. 690 } while (!Token.isErrorOrEOF()); 691 return Token.isError(); 692 } 693 694 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 695 assert(Token.is(MIToken::kw_liveins)); 696 lex(); 697 if (expectAndConsume(MIToken::colon)) 698 return true; 699 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 700 return false; 701 do { 702 if (Token.isNot(MIToken::NamedRegister)) 703 return error("expected a named register"); 704 unsigned Reg = 0; 705 if (parseNamedRegister(Reg)) 706 return true; 707 lex(); 708 LaneBitmask Mask = LaneBitmask::getAll(); 709 if (consumeIfPresent(MIToken::colon)) { 710 // Parse lane mask. 711 if (Token.isNot(MIToken::IntegerLiteral) && 712 Token.isNot(MIToken::HexLiteral)) 713 return error("expected a lane mask"); 714 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 715 "Use correct get-function for lane mask"); 716 LaneBitmask::Type V; 717 if (getUnsigned(V)) 718 return error("invalid lane mask value"); 719 Mask = LaneBitmask(V); 720 lex(); 721 } 722 MBB.addLiveIn(Reg, Mask); 723 } while (consumeIfPresent(MIToken::comma)); 724 return false; 725 } 726 727 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 728 assert(Token.is(MIToken::kw_successors)); 729 lex(); 730 if (expectAndConsume(MIToken::colon)) 731 return true; 732 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 733 return false; 734 do { 735 if (Token.isNot(MIToken::MachineBasicBlock)) 736 return error("expected a machine basic block reference"); 737 MachineBasicBlock *SuccMBB = nullptr; 738 if (parseMBBReference(SuccMBB)) 739 return true; 740 lex(); 741 unsigned Weight = 0; 742 if (consumeIfPresent(MIToken::lparen)) { 743 if (Token.isNot(MIToken::IntegerLiteral) && 744 Token.isNot(MIToken::HexLiteral)) 745 return error("expected an integer literal after '('"); 746 if (getUnsigned(Weight)) 747 return true; 748 lex(); 749 if (expectAndConsume(MIToken::rparen)) 750 return true; 751 } 752 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 753 } while (consumeIfPresent(MIToken::comma)); 754 MBB.normalizeSuccProbs(); 755 return false; 756 } 757 758 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 759 MachineBasicBlock *&AddFalthroughFrom) { 760 // Skip the definition. 761 assert(Token.is(MIToken::MachineBasicBlockLabel)); 762 lex(); 763 if (consumeIfPresent(MIToken::lparen)) { 764 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 765 lex(); 766 consumeIfPresent(MIToken::rparen); 767 } 768 consumeIfPresent(MIToken::colon); 769 770 // Parse the liveins and successors. 771 // N.B: Multiple lists of successors and liveins are allowed and they're 772 // merged into one. 773 // Example: 774 // liveins: %edi 775 // liveins: %esi 776 // 777 // is equivalent to 778 // liveins: %edi, %esi 779 bool ExplicitSuccessors = false; 780 while (true) { 781 if (Token.is(MIToken::kw_successors)) { 782 if (parseBasicBlockSuccessors(MBB)) 783 return true; 784 ExplicitSuccessors = true; 785 } else if (Token.is(MIToken::kw_liveins)) { 786 if (parseBasicBlockLiveins(MBB)) 787 return true; 788 } else if (consumeIfPresent(MIToken::Newline)) { 789 continue; 790 } else 791 break; 792 if (!Token.isNewlineOrEOF()) 793 return error("expected line break at the end of a list"); 794 lex(); 795 } 796 797 // Parse the instructions. 798 bool IsInBundle = false; 799 MachineInstr *PrevMI = nullptr; 800 while (!Token.is(MIToken::MachineBasicBlockLabel) && 801 !Token.is(MIToken::Eof)) { 802 if (consumeIfPresent(MIToken::Newline)) 803 continue; 804 if (consumeIfPresent(MIToken::rbrace)) { 805 // The first parsing pass should verify that all closing '}' have an 806 // opening '{'. 807 assert(IsInBundle); 808 IsInBundle = false; 809 continue; 810 } 811 MachineInstr *MI = nullptr; 812 if (parse(MI)) 813 return true; 814 MBB.insert(MBB.end(), MI); 815 if (IsInBundle) { 816 PrevMI->setFlag(MachineInstr::BundledSucc); 817 MI->setFlag(MachineInstr::BundledPred); 818 } 819 PrevMI = MI; 820 if (Token.is(MIToken::lbrace)) { 821 if (IsInBundle) 822 return error("nested instruction bundles are not allowed"); 823 lex(); 824 // This instruction is the start of the bundle. 825 MI->setFlag(MachineInstr::BundledSucc); 826 IsInBundle = true; 827 if (!Token.is(MIToken::Newline)) 828 // The next instruction can be on the same line. 829 continue; 830 } 831 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 832 lex(); 833 } 834 835 // Construct successor list by searching for basic block machine operands. 836 if (!ExplicitSuccessors) { 837 SmallVector<MachineBasicBlock*,4> Successors; 838 bool IsFallthrough; 839 guessSuccessors(MBB, Successors, IsFallthrough); 840 for (MachineBasicBlock *Succ : Successors) 841 MBB.addSuccessor(Succ); 842 843 if (IsFallthrough) { 844 AddFalthroughFrom = &MBB; 845 } else { 846 MBB.normalizeSuccProbs(); 847 } 848 } 849 850 return false; 851 } 852 853 bool MIParser::parseBasicBlocks() { 854 lex(); 855 // Skip until the first machine basic block. 856 while (Token.is(MIToken::Newline)) 857 lex(); 858 if (Token.isErrorOrEOF()) 859 return Token.isError(); 860 // The first parsing pass should have verified that this token is a MBB label 861 // in the 'parseBasicBlockDefinitions' method. 862 assert(Token.is(MIToken::MachineBasicBlockLabel)); 863 MachineBasicBlock *AddFalthroughFrom = nullptr; 864 do { 865 MachineBasicBlock *MBB = nullptr; 866 if (parseMBBReference(MBB)) 867 return true; 868 if (AddFalthroughFrom) { 869 if (!AddFalthroughFrom->isSuccessor(MBB)) 870 AddFalthroughFrom->addSuccessor(MBB); 871 AddFalthroughFrom->normalizeSuccProbs(); 872 AddFalthroughFrom = nullptr; 873 } 874 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 875 return true; 876 // The method 'parseBasicBlock' should parse the whole block until the next 877 // block or the end of file. 878 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 879 } while (Token.isNot(MIToken::Eof)); 880 return false; 881 } 882 883 bool MIParser::parse(MachineInstr *&MI) { 884 // Parse any register operands before '=' 885 MachineOperand MO = MachineOperand::CreateImm(0); 886 SmallVector<ParsedMachineOperand, 8> Operands; 887 while (Token.isRegister() || Token.isRegisterFlag()) { 888 auto Loc = Token.location(); 889 Optional<unsigned> TiedDefIdx; 890 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 891 return true; 892 Operands.push_back( 893 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 894 if (Token.isNot(MIToken::comma)) 895 break; 896 lex(); 897 } 898 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 899 return true; 900 901 unsigned OpCode, Flags = 0; 902 if (Token.isError() || parseInstruction(OpCode, Flags)) 903 return true; 904 905 // Parse the remaining machine operands. 906 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 907 Token.isNot(MIToken::kw_post_instr_symbol) && 908 Token.isNot(MIToken::kw_debug_location) && 909 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 910 auto Loc = Token.location(); 911 Optional<unsigned> TiedDefIdx; 912 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 913 return true; 914 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 915 MO.setIsDebug(); 916 Operands.push_back( 917 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 918 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 919 Token.is(MIToken::lbrace)) 920 break; 921 if (Token.isNot(MIToken::comma)) 922 return error("expected ',' before the next machine operand"); 923 lex(); 924 } 925 926 MCSymbol *PreInstrSymbol = nullptr; 927 if (Token.is(MIToken::kw_pre_instr_symbol)) 928 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 929 return true; 930 MCSymbol *PostInstrSymbol = nullptr; 931 if (Token.is(MIToken::kw_post_instr_symbol)) 932 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 933 return true; 934 935 DebugLoc DebugLocation; 936 if (Token.is(MIToken::kw_debug_location)) { 937 lex(); 938 MDNode *Node = nullptr; 939 if (Token.is(MIToken::exclaim)) { 940 if (parseMDNode(Node)) 941 return true; 942 } else if (Token.is(MIToken::md_dilocation)) { 943 if (parseDILocation(Node)) 944 return true; 945 } else 946 return error("expected a metadata node after 'debug-location'"); 947 if (!isa<DILocation>(Node)) 948 return error("referenced metadata is not a DILocation"); 949 DebugLocation = DebugLoc(Node); 950 } 951 952 // Parse the machine memory operands. 953 SmallVector<MachineMemOperand *, 2> MemOperands; 954 if (Token.is(MIToken::coloncolon)) { 955 lex(); 956 while (!Token.isNewlineOrEOF()) { 957 MachineMemOperand *MemOp = nullptr; 958 if (parseMachineMemoryOperand(MemOp)) 959 return true; 960 MemOperands.push_back(MemOp); 961 if (Token.isNewlineOrEOF()) 962 break; 963 if (Token.isNot(MIToken::comma)) 964 return error("expected ',' before the next machine memory operand"); 965 lex(); 966 } 967 } 968 969 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 970 if (!MCID.isVariadic()) { 971 // FIXME: Move the implicit operand verification to the machine verifier. 972 if (verifyImplicitOperands(Operands, MCID)) 973 return true; 974 } 975 976 // TODO: Check for extraneous machine operands. 977 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 978 MI->setFlags(Flags); 979 for (const auto &Operand : Operands) 980 MI->addOperand(MF, Operand.Operand); 981 if (assignRegisterTies(*MI, Operands)) 982 return true; 983 if (PreInstrSymbol) 984 MI->setPreInstrSymbol(MF, PreInstrSymbol); 985 if (PostInstrSymbol) 986 MI->setPostInstrSymbol(MF, PostInstrSymbol); 987 if (!MemOperands.empty()) 988 MI->setMemRefs(MF, MemOperands); 989 return false; 990 } 991 992 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 993 lex(); 994 if (Token.isNot(MIToken::MachineBasicBlock)) 995 return error("expected a machine basic block reference"); 996 if (parseMBBReference(MBB)) 997 return true; 998 lex(); 999 if (Token.isNot(MIToken::Eof)) 1000 return error( 1001 "expected end of string after the machine basic block reference"); 1002 return false; 1003 } 1004 1005 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 1006 lex(); 1007 if (Token.isNot(MIToken::NamedRegister)) 1008 return error("expected a named register"); 1009 if (parseNamedRegister(Reg)) 1010 return true; 1011 lex(); 1012 if (Token.isNot(MIToken::Eof)) 1013 return error("expected end of string after the register reference"); 1014 return false; 1015 } 1016 1017 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1018 lex(); 1019 if (Token.isNot(MIToken::VirtualRegister)) 1020 return error("expected a virtual register"); 1021 if (parseVirtualRegister(Info)) 1022 return true; 1023 lex(); 1024 if (Token.isNot(MIToken::Eof)) 1025 return error("expected end of string after the register reference"); 1026 return false; 1027 } 1028 1029 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 1030 lex(); 1031 if (Token.isNot(MIToken::NamedRegister) && 1032 Token.isNot(MIToken::VirtualRegister)) 1033 return error("expected either a named or virtual register"); 1034 1035 VRegInfo *Info; 1036 if (parseRegister(Reg, Info)) 1037 return true; 1038 1039 lex(); 1040 if (Token.isNot(MIToken::Eof)) 1041 return error("expected end of string after the register reference"); 1042 return false; 1043 } 1044 1045 bool MIParser::parseStandaloneStackObject(int &FI) { 1046 lex(); 1047 if (Token.isNot(MIToken::StackObject)) 1048 return error("expected a stack object"); 1049 if (parseStackFrameIndex(FI)) 1050 return true; 1051 if (Token.isNot(MIToken::Eof)) 1052 return error("expected end of string after the stack object reference"); 1053 return false; 1054 } 1055 1056 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1057 lex(); 1058 if (Token.is(MIToken::exclaim)) { 1059 if (parseMDNode(Node)) 1060 return true; 1061 } else if (Token.is(MIToken::md_diexpr)) { 1062 if (parseDIExpression(Node)) 1063 return true; 1064 } else if (Token.is(MIToken::md_dilocation)) { 1065 if (parseDILocation(Node)) 1066 return true; 1067 } else 1068 return error("expected a metadata node"); 1069 if (Token.isNot(MIToken::Eof)) 1070 return error("expected end of string after the metadata node"); 1071 return false; 1072 } 1073 1074 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1075 assert(MO.isImplicit()); 1076 return MO.isDef() ? "implicit-def" : "implicit"; 1077 } 1078 1079 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1080 unsigned Reg) { 1081 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 1082 return StringRef(TRI->getName(Reg)).lower(); 1083 } 1084 1085 /// Return true if the parsed machine operands contain a given machine operand. 1086 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1087 ArrayRef<ParsedMachineOperand> Operands) { 1088 for (const auto &I : Operands) { 1089 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1090 return true; 1091 } 1092 return false; 1093 } 1094 1095 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1096 const MCInstrDesc &MCID) { 1097 if (MCID.isCall()) 1098 // We can't verify call instructions as they can contain arbitrary implicit 1099 // register and register mask operands. 1100 return false; 1101 1102 // Gather all the expected implicit operands. 1103 SmallVector<MachineOperand, 4> ImplicitOperands; 1104 if (MCID.ImplicitDefs) 1105 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1106 ImplicitOperands.push_back( 1107 MachineOperand::CreateReg(*ImpDefs, true, true)); 1108 if (MCID.ImplicitUses) 1109 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1110 ImplicitOperands.push_back( 1111 MachineOperand::CreateReg(*ImpUses, false, true)); 1112 1113 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1114 assert(TRI && "Expected target register info"); 1115 for (const auto &I : ImplicitOperands) { 1116 if (isImplicitOperandIn(I, Operands)) 1117 continue; 1118 return error(Operands.empty() ? Token.location() : Operands.back().End, 1119 Twine("missing implicit register operand '") + 1120 printImplicitRegisterFlag(I) + " $" + 1121 getRegisterName(TRI, I.getReg()) + "'"); 1122 } 1123 return false; 1124 } 1125 1126 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1127 // Allow frame and fast math flags for OPCODE 1128 while (Token.is(MIToken::kw_frame_setup) || 1129 Token.is(MIToken::kw_frame_destroy) || 1130 Token.is(MIToken::kw_nnan) || 1131 Token.is(MIToken::kw_ninf) || 1132 Token.is(MIToken::kw_nsz) || 1133 Token.is(MIToken::kw_arcp) || 1134 Token.is(MIToken::kw_contract) || 1135 Token.is(MIToken::kw_afn) || 1136 Token.is(MIToken::kw_reassoc) || 1137 Token.is(MIToken::kw_nuw) || 1138 Token.is(MIToken::kw_nsw) || 1139 Token.is(MIToken::kw_exact)) { 1140 // Mine frame and fast math flags 1141 if (Token.is(MIToken::kw_frame_setup)) 1142 Flags |= MachineInstr::FrameSetup; 1143 if (Token.is(MIToken::kw_frame_destroy)) 1144 Flags |= MachineInstr::FrameDestroy; 1145 if (Token.is(MIToken::kw_nnan)) 1146 Flags |= MachineInstr::FmNoNans; 1147 if (Token.is(MIToken::kw_ninf)) 1148 Flags |= MachineInstr::FmNoInfs; 1149 if (Token.is(MIToken::kw_nsz)) 1150 Flags |= MachineInstr::FmNsz; 1151 if (Token.is(MIToken::kw_arcp)) 1152 Flags |= MachineInstr::FmArcp; 1153 if (Token.is(MIToken::kw_contract)) 1154 Flags |= MachineInstr::FmContract; 1155 if (Token.is(MIToken::kw_afn)) 1156 Flags |= MachineInstr::FmAfn; 1157 if (Token.is(MIToken::kw_reassoc)) 1158 Flags |= MachineInstr::FmReassoc; 1159 if (Token.is(MIToken::kw_nuw)) 1160 Flags |= MachineInstr::NoUWrap; 1161 if (Token.is(MIToken::kw_nsw)) 1162 Flags |= MachineInstr::NoSWrap; 1163 if (Token.is(MIToken::kw_exact)) 1164 Flags |= MachineInstr::IsExact; 1165 1166 lex(); 1167 } 1168 if (Token.isNot(MIToken::Identifier)) 1169 return error("expected a machine instruction"); 1170 StringRef InstrName = Token.stringValue(); 1171 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1172 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1173 lex(); 1174 return false; 1175 } 1176 1177 bool MIParser::parseNamedRegister(unsigned &Reg) { 1178 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1179 StringRef Name = Token.stringValue(); 1180 if (PFS.Target.getRegisterByName(Name, Reg)) 1181 return error(Twine("unknown register name '") + Name + "'"); 1182 return false; 1183 } 1184 1185 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1186 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1187 StringRef Name = Token.stringValue(); 1188 // TODO: Check that the VReg name is not the same as a physical register name. 1189 // If it is, then print a warning (when warnings are implemented). 1190 Info = &PFS.getVRegInfoNamed(Name); 1191 return false; 1192 } 1193 1194 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1195 if (Token.is(MIToken::NamedVirtualRegister)) 1196 return parseNamedVirtualRegister(Info); 1197 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1198 unsigned ID; 1199 if (getUnsigned(ID)) 1200 return true; 1201 Info = &PFS.getVRegInfo(ID); 1202 return false; 1203 } 1204 1205 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1206 switch (Token.kind()) { 1207 case MIToken::underscore: 1208 Reg = 0; 1209 return false; 1210 case MIToken::NamedRegister: 1211 return parseNamedRegister(Reg); 1212 case MIToken::NamedVirtualRegister: 1213 case MIToken::VirtualRegister: 1214 if (parseVirtualRegister(Info)) 1215 return true; 1216 Reg = Info->VReg; 1217 return false; 1218 // TODO: Parse other register kinds. 1219 default: 1220 llvm_unreachable("The current token should be a register"); 1221 } 1222 } 1223 1224 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1225 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1226 return error("expected '_', register class, or register bank name"); 1227 StringRef::iterator Loc = Token.location(); 1228 StringRef Name = Token.stringValue(); 1229 1230 // Was it a register class? 1231 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1232 if (RC) { 1233 lex(); 1234 1235 switch (RegInfo.Kind) { 1236 case VRegInfo::UNKNOWN: 1237 case VRegInfo::NORMAL: 1238 RegInfo.Kind = VRegInfo::NORMAL; 1239 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1240 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1241 return error(Loc, Twine("conflicting register classes, previously: ") + 1242 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1243 } 1244 RegInfo.D.RC = RC; 1245 RegInfo.Explicit = true; 1246 return false; 1247 1248 case VRegInfo::GENERIC: 1249 case VRegInfo::REGBANK: 1250 return error(Loc, "register class specification on generic register"); 1251 } 1252 llvm_unreachable("Unexpected register kind"); 1253 } 1254 1255 // Should be a register bank or a generic register. 1256 const RegisterBank *RegBank = nullptr; 1257 if (Name != "_") { 1258 RegBank = PFS.Target.getRegBank(Name); 1259 if (!RegBank) 1260 return error(Loc, "expected '_', register class, or register bank name"); 1261 } 1262 1263 lex(); 1264 1265 switch (RegInfo.Kind) { 1266 case VRegInfo::UNKNOWN: 1267 case VRegInfo::GENERIC: 1268 case VRegInfo::REGBANK: 1269 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1270 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1271 return error(Loc, "conflicting generic register banks"); 1272 RegInfo.D.RegBank = RegBank; 1273 RegInfo.Explicit = true; 1274 return false; 1275 1276 case VRegInfo::NORMAL: 1277 return error(Loc, "register bank specification on normal register"); 1278 } 1279 llvm_unreachable("Unexpected register kind"); 1280 } 1281 1282 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1283 const unsigned OldFlags = Flags; 1284 switch (Token.kind()) { 1285 case MIToken::kw_implicit: 1286 Flags |= RegState::Implicit; 1287 break; 1288 case MIToken::kw_implicit_define: 1289 Flags |= RegState::ImplicitDefine; 1290 break; 1291 case MIToken::kw_def: 1292 Flags |= RegState::Define; 1293 break; 1294 case MIToken::kw_dead: 1295 Flags |= RegState::Dead; 1296 break; 1297 case MIToken::kw_killed: 1298 Flags |= RegState::Kill; 1299 break; 1300 case MIToken::kw_undef: 1301 Flags |= RegState::Undef; 1302 break; 1303 case MIToken::kw_internal: 1304 Flags |= RegState::InternalRead; 1305 break; 1306 case MIToken::kw_early_clobber: 1307 Flags |= RegState::EarlyClobber; 1308 break; 1309 case MIToken::kw_debug_use: 1310 Flags |= RegState::Debug; 1311 break; 1312 case MIToken::kw_renamable: 1313 Flags |= RegState::Renamable; 1314 break; 1315 default: 1316 llvm_unreachable("The current token should be a register flag"); 1317 } 1318 if (OldFlags == Flags) 1319 // We know that the same flag is specified more than once when the flags 1320 // weren't modified. 1321 return error("duplicate '" + Token.stringValue() + "' register flag"); 1322 lex(); 1323 return false; 1324 } 1325 1326 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1327 assert(Token.is(MIToken::dot)); 1328 lex(); 1329 if (Token.isNot(MIToken::Identifier)) 1330 return error("expected a subregister index after '.'"); 1331 auto Name = Token.stringValue(); 1332 SubReg = PFS.Target.getSubRegIndex(Name); 1333 if (!SubReg) 1334 return error(Twine("use of unknown subregister index '") + Name + "'"); 1335 lex(); 1336 return false; 1337 } 1338 1339 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1340 if (!consumeIfPresent(MIToken::kw_tied_def)) 1341 return true; 1342 if (Token.isNot(MIToken::IntegerLiteral)) 1343 return error("expected an integer literal after 'tied-def'"); 1344 if (getUnsigned(TiedDefIdx)) 1345 return true; 1346 lex(); 1347 if (expectAndConsume(MIToken::rparen)) 1348 return true; 1349 return false; 1350 } 1351 1352 bool MIParser::assignRegisterTies(MachineInstr &MI, 1353 ArrayRef<ParsedMachineOperand> Operands) { 1354 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1355 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1356 if (!Operands[I].TiedDefIdx) 1357 continue; 1358 // The parser ensures that this operand is a register use, so we just have 1359 // to check the tied-def operand. 1360 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1361 if (DefIdx >= E) 1362 return error(Operands[I].Begin, 1363 Twine("use of invalid tied-def operand index '" + 1364 Twine(DefIdx) + "'; instruction has only ") + 1365 Twine(E) + " operands"); 1366 const auto &DefOperand = Operands[DefIdx].Operand; 1367 if (!DefOperand.isReg() || !DefOperand.isDef()) 1368 // FIXME: add note with the def operand. 1369 return error(Operands[I].Begin, 1370 Twine("use of invalid tied-def operand index '") + 1371 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1372 " isn't a defined register"); 1373 // Check that the tied-def operand wasn't tied elsewhere. 1374 for (const auto &TiedPair : TiedRegisterPairs) { 1375 if (TiedPair.first == DefIdx) 1376 return error(Operands[I].Begin, 1377 Twine("the tied-def operand #") + Twine(DefIdx) + 1378 " is already tied with another register operand"); 1379 } 1380 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1381 } 1382 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1383 // indices must be less than tied max. 1384 for (const auto &TiedPair : TiedRegisterPairs) 1385 MI.tieOperands(TiedPair.first, TiedPair.second); 1386 return false; 1387 } 1388 1389 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1390 Optional<unsigned> &TiedDefIdx, 1391 bool IsDef) { 1392 unsigned Flags = IsDef ? RegState::Define : 0; 1393 while (Token.isRegisterFlag()) { 1394 if (parseRegisterFlag(Flags)) 1395 return true; 1396 } 1397 if (!Token.isRegister()) 1398 return error("expected a register after register flags"); 1399 unsigned Reg; 1400 VRegInfo *RegInfo; 1401 if (parseRegister(Reg, RegInfo)) 1402 return true; 1403 lex(); 1404 unsigned SubReg = 0; 1405 if (Token.is(MIToken::dot)) { 1406 if (parseSubRegisterIndex(SubReg)) 1407 return true; 1408 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1409 return error("subregister index expects a virtual register"); 1410 } 1411 if (Token.is(MIToken::colon)) { 1412 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1413 return error("register class specification expects a virtual register"); 1414 lex(); 1415 if (parseRegisterClassOrBank(*RegInfo)) 1416 return true; 1417 } 1418 MachineRegisterInfo &MRI = MF.getRegInfo(); 1419 if ((Flags & RegState::Define) == 0) { 1420 if (consumeIfPresent(MIToken::lparen)) { 1421 unsigned Idx; 1422 if (!parseRegisterTiedDefIndex(Idx)) 1423 TiedDefIdx = Idx; 1424 else { 1425 // Try a redundant low-level type. 1426 LLT Ty; 1427 if (parseLowLevelType(Token.location(), Ty)) 1428 return error("expected tied-def or low-level type after '('"); 1429 1430 if (expectAndConsume(MIToken::rparen)) 1431 return true; 1432 1433 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1434 return error("inconsistent type for generic virtual register"); 1435 1436 MRI.setType(Reg, Ty); 1437 } 1438 } 1439 } else if (consumeIfPresent(MIToken::lparen)) { 1440 // Virtual registers may have a tpe with GlobalISel. 1441 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1442 return error("unexpected type on physical register"); 1443 1444 LLT Ty; 1445 if (parseLowLevelType(Token.location(), Ty)) 1446 return true; 1447 1448 if (expectAndConsume(MIToken::rparen)) 1449 return true; 1450 1451 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1452 return error("inconsistent type for generic virtual register"); 1453 1454 MRI.setType(Reg, Ty); 1455 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1456 // Generic virtual registers must have a type. 1457 // If we end up here this means the type hasn't been specified and 1458 // this is bad! 1459 if (RegInfo->Kind == VRegInfo::GENERIC || 1460 RegInfo->Kind == VRegInfo::REGBANK) 1461 return error("generic virtual registers must have a type"); 1462 } 1463 Dest = MachineOperand::CreateReg( 1464 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1465 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1466 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1467 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1468 1469 return false; 1470 } 1471 1472 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1473 assert(Token.is(MIToken::IntegerLiteral)); 1474 const APSInt &Int = Token.integerValue(); 1475 if (Int.getMinSignedBits() > 64) 1476 return error("integer literal is too large to be an immediate operand"); 1477 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1478 lex(); 1479 return false; 1480 } 1481 1482 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1483 const Constant *&C) { 1484 auto Source = StringValue.str(); // The source has to be null terminated. 1485 SMDiagnostic Err; 1486 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1487 &PFS.IRSlots); 1488 if (!C) 1489 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1490 return false; 1491 } 1492 1493 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1494 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1495 return true; 1496 lex(); 1497 return false; 1498 } 1499 1500 // See LLT implemntation for bit size limits. 1501 static bool verifyScalarSize(uint64_t Size) { 1502 return Size != 0 && isUInt<16>(Size); 1503 } 1504 1505 static bool verifyVectorElementCount(uint64_t NumElts) { 1506 return NumElts != 0 && isUInt<16>(NumElts); 1507 } 1508 1509 static bool verifyAddrSpace(uint64_t AddrSpace) { 1510 return isUInt<24>(AddrSpace); 1511 } 1512 1513 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1514 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1515 StringRef SizeStr = Token.range().drop_front(); 1516 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1517 return error("expected integers after 's'/'p' type character"); 1518 } 1519 1520 if (Token.range().front() == 's') { 1521 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1522 if (!verifyScalarSize(ScalarSize)) 1523 return error("invalid size for scalar type"); 1524 1525 Ty = LLT::scalar(ScalarSize); 1526 lex(); 1527 return false; 1528 } else if (Token.range().front() == 'p') { 1529 const DataLayout &DL = MF.getDataLayout(); 1530 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1531 if (!verifyAddrSpace(AS)) 1532 return error("invalid address space number"); 1533 1534 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1535 lex(); 1536 return false; 1537 } 1538 1539 // Now we're looking for a vector. 1540 if (Token.isNot(MIToken::less)) 1541 return error(Loc, 1542 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1543 lex(); 1544 1545 if (Token.isNot(MIToken::IntegerLiteral)) 1546 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1547 uint64_t NumElements = Token.integerValue().getZExtValue(); 1548 if (!verifyVectorElementCount(NumElements)) 1549 return error("invalid number of vector elements"); 1550 1551 lex(); 1552 1553 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1554 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1555 lex(); 1556 1557 if (Token.range().front() != 's' && Token.range().front() != 'p') 1558 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1559 StringRef SizeStr = Token.range().drop_front(); 1560 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1561 return error("expected integers after 's'/'p' type character"); 1562 1563 if (Token.range().front() == 's') { 1564 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1565 if (!verifyScalarSize(ScalarSize)) 1566 return error("invalid size for scalar type"); 1567 Ty = LLT::scalar(ScalarSize); 1568 } else if (Token.range().front() == 'p') { 1569 const DataLayout &DL = MF.getDataLayout(); 1570 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1571 if (!verifyAddrSpace(AS)) 1572 return error("invalid address space number"); 1573 1574 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1575 } else 1576 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1577 lex(); 1578 1579 if (Token.isNot(MIToken::greater)) 1580 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1581 lex(); 1582 1583 Ty = LLT::vector(NumElements, Ty); 1584 return false; 1585 } 1586 1587 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1588 assert(Token.is(MIToken::Identifier)); 1589 StringRef TypeStr = Token.range(); 1590 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1591 TypeStr.front() != 'p') 1592 return error( 1593 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1594 StringRef SizeStr = Token.range().drop_front(); 1595 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1596 return error("expected integers after 'i'/'s'/'p' type character"); 1597 1598 auto Loc = Token.location(); 1599 lex(); 1600 if (Token.isNot(MIToken::IntegerLiteral)) { 1601 if (Token.isNot(MIToken::Identifier) || 1602 !(Token.range() == "true" || Token.range() == "false")) 1603 return error("expected an integer literal"); 1604 } 1605 const Constant *C = nullptr; 1606 if (parseIRConstant(Loc, C)) 1607 return true; 1608 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1609 return false; 1610 } 1611 1612 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1613 auto Loc = Token.location(); 1614 lex(); 1615 if (Token.isNot(MIToken::FloatingPointLiteral) && 1616 Token.isNot(MIToken::HexLiteral)) 1617 return error("expected a floating point literal"); 1618 const Constant *C = nullptr; 1619 if (parseIRConstant(Loc, C)) 1620 return true; 1621 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1622 return false; 1623 } 1624 1625 bool MIParser::getUnsigned(unsigned &Result) { 1626 if (Token.hasIntegerValue()) { 1627 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1628 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1629 if (Val64 == Limit) 1630 return error("expected 32-bit integer (too large)"); 1631 Result = Val64; 1632 return false; 1633 } 1634 if (Token.is(MIToken::HexLiteral)) { 1635 APInt A; 1636 if (getHexUint(A)) 1637 return true; 1638 if (A.getBitWidth() > 32) 1639 return error("expected 32-bit integer (too large)"); 1640 Result = A.getZExtValue(); 1641 return false; 1642 } 1643 return true; 1644 } 1645 1646 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1647 assert(Token.is(MIToken::MachineBasicBlock) || 1648 Token.is(MIToken::MachineBasicBlockLabel)); 1649 unsigned Number; 1650 if (getUnsigned(Number)) 1651 return true; 1652 auto MBBInfo = PFS.MBBSlots.find(Number); 1653 if (MBBInfo == PFS.MBBSlots.end()) 1654 return error(Twine("use of undefined machine basic block #") + 1655 Twine(Number)); 1656 MBB = MBBInfo->second; 1657 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1658 // we drop the <irname> from the bb.<id>.<irname> format. 1659 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1660 return error(Twine("the name of machine basic block #") + Twine(Number) + 1661 " isn't '" + Token.stringValue() + "'"); 1662 return false; 1663 } 1664 1665 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1666 MachineBasicBlock *MBB; 1667 if (parseMBBReference(MBB)) 1668 return true; 1669 Dest = MachineOperand::CreateMBB(MBB); 1670 lex(); 1671 return false; 1672 } 1673 1674 bool MIParser::parseStackFrameIndex(int &FI) { 1675 assert(Token.is(MIToken::StackObject)); 1676 unsigned ID; 1677 if (getUnsigned(ID)) 1678 return true; 1679 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1680 if (ObjectInfo == PFS.StackObjectSlots.end()) 1681 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1682 "'"); 1683 StringRef Name; 1684 if (const auto *Alloca = 1685 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1686 Name = Alloca->getName(); 1687 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1688 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1689 "' isn't '" + Token.stringValue() + "'"); 1690 lex(); 1691 FI = ObjectInfo->second; 1692 return false; 1693 } 1694 1695 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1696 int FI; 1697 if (parseStackFrameIndex(FI)) 1698 return true; 1699 Dest = MachineOperand::CreateFI(FI); 1700 return false; 1701 } 1702 1703 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1704 assert(Token.is(MIToken::FixedStackObject)); 1705 unsigned ID; 1706 if (getUnsigned(ID)) 1707 return true; 1708 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1709 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1710 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1711 Twine(ID) + "'"); 1712 lex(); 1713 FI = ObjectInfo->second; 1714 return false; 1715 } 1716 1717 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1718 int FI; 1719 if (parseFixedStackFrameIndex(FI)) 1720 return true; 1721 Dest = MachineOperand::CreateFI(FI); 1722 return false; 1723 } 1724 1725 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1726 switch (Token.kind()) { 1727 case MIToken::NamedGlobalValue: { 1728 const Module *M = MF.getFunction().getParent(); 1729 GV = M->getNamedValue(Token.stringValue()); 1730 if (!GV) 1731 return error(Twine("use of undefined global value '") + Token.range() + 1732 "'"); 1733 break; 1734 } 1735 case MIToken::GlobalValue: { 1736 unsigned GVIdx; 1737 if (getUnsigned(GVIdx)) 1738 return true; 1739 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1740 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1741 "'"); 1742 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1743 break; 1744 } 1745 default: 1746 llvm_unreachable("The current token should be a global value"); 1747 } 1748 return false; 1749 } 1750 1751 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1752 GlobalValue *GV = nullptr; 1753 if (parseGlobalValue(GV)) 1754 return true; 1755 lex(); 1756 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1757 if (parseOperandsOffset(Dest)) 1758 return true; 1759 return false; 1760 } 1761 1762 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1763 assert(Token.is(MIToken::ConstantPoolItem)); 1764 unsigned ID; 1765 if (getUnsigned(ID)) 1766 return true; 1767 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1768 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1769 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1770 lex(); 1771 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1772 if (parseOperandsOffset(Dest)) 1773 return true; 1774 return false; 1775 } 1776 1777 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1778 assert(Token.is(MIToken::JumpTableIndex)); 1779 unsigned ID; 1780 if (getUnsigned(ID)) 1781 return true; 1782 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1783 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1784 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1785 lex(); 1786 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1787 return false; 1788 } 1789 1790 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1791 assert(Token.is(MIToken::ExternalSymbol)); 1792 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1793 lex(); 1794 Dest = MachineOperand::CreateES(Symbol); 1795 if (parseOperandsOffset(Dest)) 1796 return true; 1797 return false; 1798 } 1799 1800 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1801 assert(Token.is(MIToken::MCSymbol)); 1802 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1803 lex(); 1804 Dest = MachineOperand::CreateMCSymbol(Symbol); 1805 if (parseOperandsOffset(Dest)) 1806 return true; 1807 return false; 1808 } 1809 1810 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1811 assert(Token.is(MIToken::SubRegisterIndex)); 1812 StringRef Name = Token.stringValue(); 1813 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1814 if (SubRegIndex == 0) 1815 return error(Twine("unknown subregister index '") + Name + "'"); 1816 lex(); 1817 Dest = MachineOperand::CreateImm(SubRegIndex); 1818 return false; 1819 } 1820 1821 bool MIParser::parseMDNode(MDNode *&Node) { 1822 assert(Token.is(MIToken::exclaim)); 1823 1824 auto Loc = Token.location(); 1825 lex(); 1826 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1827 return error("expected metadata id after '!'"); 1828 unsigned ID; 1829 if (getUnsigned(ID)) 1830 return true; 1831 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1832 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1833 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1834 lex(); 1835 Node = NodeInfo->second.get(); 1836 return false; 1837 } 1838 1839 bool MIParser::parseDIExpression(MDNode *&Expr) { 1840 assert(Token.is(MIToken::md_diexpr)); 1841 lex(); 1842 1843 // FIXME: Share this parsing with the IL parser. 1844 SmallVector<uint64_t, 8> Elements; 1845 1846 if (expectAndConsume(MIToken::lparen)) 1847 return true; 1848 1849 if (Token.isNot(MIToken::rparen)) { 1850 do { 1851 if (Token.is(MIToken::Identifier)) { 1852 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1853 lex(); 1854 Elements.push_back(Op); 1855 continue; 1856 } 1857 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1858 } 1859 1860 if (Token.isNot(MIToken::IntegerLiteral) || 1861 Token.integerValue().isSigned()) 1862 return error("expected unsigned integer"); 1863 1864 auto &U = Token.integerValue(); 1865 if (U.ugt(UINT64_MAX)) 1866 return error("element too large, limit is " + Twine(UINT64_MAX)); 1867 Elements.push_back(U.getZExtValue()); 1868 lex(); 1869 1870 } while (consumeIfPresent(MIToken::comma)); 1871 } 1872 1873 if (expectAndConsume(MIToken::rparen)) 1874 return true; 1875 1876 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1877 return false; 1878 } 1879 1880 bool MIParser::parseDILocation(MDNode *&Loc) { 1881 assert(Token.is(MIToken::md_dilocation)); 1882 lex(); 1883 1884 bool HaveLine = false; 1885 unsigned Line = 0; 1886 unsigned Column = 0; 1887 MDNode *Scope = nullptr; 1888 MDNode *InlinedAt = nullptr; 1889 bool ImplicitCode = false; 1890 1891 if (expectAndConsume(MIToken::lparen)) 1892 return true; 1893 1894 if (Token.isNot(MIToken::rparen)) { 1895 do { 1896 if (Token.is(MIToken::Identifier)) { 1897 if (Token.stringValue() == "line") { 1898 lex(); 1899 if (expectAndConsume(MIToken::colon)) 1900 return true; 1901 if (Token.isNot(MIToken::IntegerLiteral) || 1902 Token.integerValue().isSigned()) 1903 return error("expected unsigned integer"); 1904 Line = Token.integerValue().getZExtValue(); 1905 HaveLine = true; 1906 lex(); 1907 continue; 1908 } 1909 if (Token.stringValue() == "column") { 1910 lex(); 1911 if (expectAndConsume(MIToken::colon)) 1912 return true; 1913 if (Token.isNot(MIToken::IntegerLiteral) || 1914 Token.integerValue().isSigned()) 1915 return error("expected unsigned integer"); 1916 Column = Token.integerValue().getZExtValue(); 1917 lex(); 1918 continue; 1919 } 1920 if (Token.stringValue() == "scope") { 1921 lex(); 1922 if (expectAndConsume(MIToken::colon)) 1923 return true; 1924 if (parseMDNode(Scope)) 1925 return error("expected metadata node"); 1926 if (!isa<DIScope>(Scope)) 1927 return error("expected DIScope node"); 1928 continue; 1929 } 1930 if (Token.stringValue() == "inlinedAt") { 1931 lex(); 1932 if (expectAndConsume(MIToken::colon)) 1933 return true; 1934 if (Token.is(MIToken::exclaim)) { 1935 if (parseMDNode(InlinedAt)) 1936 return true; 1937 } else if (Token.is(MIToken::md_dilocation)) { 1938 if (parseDILocation(InlinedAt)) 1939 return true; 1940 } else 1941 return error("expected metadata node"); 1942 if (!isa<DILocation>(InlinedAt)) 1943 return error("expected DILocation node"); 1944 continue; 1945 } 1946 if (Token.stringValue() == "isImplicitCode") { 1947 lex(); 1948 if (expectAndConsume(MIToken::colon)) 1949 return true; 1950 if (!Token.is(MIToken::Identifier)) 1951 return error("expected true/false"); 1952 // As far as I can see, we don't have any existing need for parsing 1953 // true/false in MIR yet. Do it ad-hoc until there's something else 1954 // that needs it. 1955 if (Token.stringValue() == "true") 1956 ImplicitCode = true; 1957 else if (Token.stringValue() == "false") 1958 ImplicitCode = false; 1959 else 1960 return error("expected true/false"); 1961 lex(); 1962 continue; 1963 } 1964 } 1965 return error(Twine("invalid DILocation argument '") + 1966 Token.stringValue() + "'"); 1967 } while (consumeIfPresent(MIToken::comma)); 1968 } 1969 1970 if (expectAndConsume(MIToken::rparen)) 1971 return true; 1972 1973 if (!HaveLine) 1974 return error("DILocation requires line number"); 1975 if (!Scope) 1976 return error("DILocation requires a scope"); 1977 1978 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 1979 InlinedAt, ImplicitCode); 1980 return false; 1981 } 1982 1983 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1984 MDNode *Node = nullptr; 1985 if (Token.is(MIToken::exclaim)) { 1986 if (parseMDNode(Node)) 1987 return true; 1988 } else if (Token.is(MIToken::md_diexpr)) { 1989 if (parseDIExpression(Node)) 1990 return true; 1991 } 1992 Dest = MachineOperand::CreateMetadata(Node); 1993 return false; 1994 } 1995 1996 bool MIParser::parseCFIOffset(int &Offset) { 1997 if (Token.isNot(MIToken::IntegerLiteral)) 1998 return error("expected a cfi offset"); 1999 if (Token.integerValue().getMinSignedBits() > 32) 2000 return error("expected a 32 bit integer (the cfi offset is too large)"); 2001 Offset = (int)Token.integerValue().getExtValue(); 2002 lex(); 2003 return false; 2004 } 2005 2006 bool MIParser::parseCFIRegister(unsigned &Reg) { 2007 if (Token.isNot(MIToken::NamedRegister)) 2008 return error("expected a cfi register"); 2009 unsigned LLVMReg; 2010 if (parseNamedRegister(LLVMReg)) 2011 return true; 2012 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2013 assert(TRI && "Expected target register info"); 2014 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2015 if (DwarfReg < 0) 2016 return error("invalid DWARF register"); 2017 Reg = (unsigned)DwarfReg; 2018 lex(); 2019 return false; 2020 } 2021 2022 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2023 do { 2024 if (Token.isNot(MIToken::HexLiteral)) 2025 return error("expected a hexadecimal literal"); 2026 unsigned Value; 2027 if (getUnsigned(Value)) 2028 return true; 2029 if (Value > UINT8_MAX) 2030 return error("expected a 8-bit integer (too large)"); 2031 Values.push_back(static_cast<uint8_t>(Value)); 2032 lex(); 2033 } while (consumeIfPresent(MIToken::comma)); 2034 return false; 2035 } 2036 2037 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2038 auto Kind = Token.kind(); 2039 lex(); 2040 int Offset; 2041 unsigned Reg; 2042 unsigned CFIIndex; 2043 switch (Kind) { 2044 case MIToken::kw_cfi_same_value: 2045 if (parseCFIRegister(Reg)) 2046 return true; 2047 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2048 break; 2049 case MIToken::kw_cfi_offset: 2050 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2051 parseCFIOffset(Offset)) 2052 return true; 2053 CFIIndex = 2054 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2055 break; 2056 case MIToken::kw_cfi_rel_offset: 2057 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2058 parseCFIOffset(Offset)) 2059 return true; 2060 CFIIndex = MF.addFrameInst( 2061 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2062 break; 2063 case MIToken::kw_cfi_def_cfa_register: 2064 if (parseCFIRegister(Reg)) 2065 return true; 2066 CFIIndex = 2067 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2068 break; 2069 case MIToken::kw_cfi_def_cfa_offset: 2070 if (parseCFIOffset(Offset)) 2071 return true; 2072 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 2073 CFIIndex = MF.addFrameInst( 2074 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 2075 break; 2076 case MIToken::kw_cfi_adjust_cfa_offset: 2077 if (parseCFIOffset(Offset)) 2078 return true; 2079 CFIIndex = MF.addFrameInst( 2080 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2081 break; 2082 case MIToken::kw_cfi_def_cfa: 2083 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2084 parseCFIOffset(Offset)) 2085 return true; 2086 // NB: MCCFIInstruction::createDefCfa negates the offset. 2087 CFIIndex = 2088 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 2089 break; 2090 case MIToken::kw_cfi_remember_state: 2091 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2092 break; 2093 case MIToken::kw_cfi_restore: 2094 if (parseCFIRegister(Reg)) 2095 return true; 2096 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2097 break; 2098 case MIToken::kw_cfi_restore_state: 2099 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2100 break; 2101 case MIToken::kw_cfi_undefined: 2102 if (parseCFIRegister(Reg)) 2103 return true; 2104 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2105 break; 2106 case MIToken::kw_cfi_register: { 2107 unsigned Reg2; 2108 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2109 parseCFIRegister(Reg2)) 2110 return true; 2111 2112 CFIIndex = 2113 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2114 break; 2115 } 2116 case MIToken::kw_cfi_window_save: 2117 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2118 break; 2119 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2120 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2121 break; 2122 case MIToken::kw_cfi_escape: { 2123 std::string Values; 2124 if (parseCFIEscapeValues(Values)) 2125 return true; 2126 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2127 break; 2128 } 2129 default: 2130 // TODO: Parse the other CFI operands. 2131 llvm_unreachable("The current token should be a cfi operand"); 2132 } 2133 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2134 return false; 2135 } 2136 2137 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2138 switch (Token.kind()) { 2139 case MIToken::NamedIRBlock: { 2140 BB = dyn_cast_or_null<BasicBlock>( 2141 F.getValueSymbolTable()->lookup(Token.stringValue())); 2142 if (!BB) 2143 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2144 break; 2145 } 2146 case MIToken::IRBlock: { 2147 unsigned SlotNumber = 0; 2148 if (getUnsigned(SlotNumber)) 2149 return true; 2150 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2151 if (!BB) 2152 return error(Twine("use of undefined IR block '%ir-block.") + 2153 Twine(SlotNumber) + "'"); 2154 break; 2155 } 2156 default: 2157 llvm_unreachable("The current token should be an IR block reference"); 2158 } 2159 return false; 2160 } 2161 2162 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2163 assert(Token.is(MIToken::kw_blockaddress)); 2164 lex(); 2165 if (expectAndConsume(MIToken::lparen)) 2166 return true; 2167 if (Token.isNot(MIToken::GlobalValue) && 2168 Token.isNot(MIToken::NamedGlobalValue)) 2169 return error("expected a global value"); 2170 GlobalValue *GV = nullptr; 2171 if (parseGlobalValue(GV)) 2172 return true; 2173 auto *F = dyn_cast<Function>(GV); 2174 if (!F) 2175 return error("expected an IR function reference"); 2176 lex(); 2177 if (expectAndConsume(MIToken::comma)) 2178 return true; 2179 BasicBlock *BB = nullptr; 2180 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2181 return error("expected an IR block reference"); 2182 if (parseIRBlock(BB, *F)) 2183 return true; 2184 lex(); 2185 if (expectAndConsume(MIToken::rparen)) 2186 return true; 2187 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2188 if (parseOperandsOffset(Dest)) 2189 return true; 2190 return false; 2191 } 2192 2193 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2194 assert(Token.is(MIToken::kw_intrinsic)); 2195 lex(); 2196 if (expectAndConsume(MIToken::lparen)) 2197 return error("expected syntax intrinsic(@llvm.whatever)"); 2198 2199 if (Token.isNot(MIToken::NamedGlobalValue)) 2200 return error("expected syntax intrinsic(@llvm.whatever)"); 2201 2202 std::string Name = Token.stringValue(); 2203 lex(); 2204 2205 if (expectAndConsume(MIToken::rparen)) 2206 return error("expected ')' to terminate intrinsic name"); 2207 2208 // Find out what intrinsic we're dealing with, first try the global namespace 2209 // and then the target's private intrinsics if that fails. 2210 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2211 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2212 if (ID == Intrinsic::not_intrinsic && TII) 2213 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2214 2215 if (ID == Intrinsic::not_intrinsic) 2216 return error("unknown intrinsic name"); 2217 Dest = MachineOperand::CreateIntrinsicID(ID); 2218 2219 return false; 2220 } 2221 2222 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2223 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2224 bool IsFloat = Token.is(MIToken::kw_floatpred); 2225 lex(); 2226 2227 if (expectAndConsume(MIToken::lparen)) 2228 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2229 2230 if (Token.isNot(MIToken::Identifier)) 2231 return error("whatever"); 2232 2233 CmpInst::Predicate Pred; 2234 if (IsFloat) { 2235 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2236 .Case("false", CmpInst::FCMP_FALSE) 2237 .Case("oeq", CmpInst::FCMP_OEQ) 2238 .Case("ogt", CmpInst::FCMP_OGT) 2239 .Case("oge", CmpInst::FCMP_OGE) 2240 .Case("olt", CmpInst::FCMP_OLT) 2241 .Case("ole", CmpInst::FCMP_OLE) 2242 .Case("one", CmpInst::FCMP_ONE) 2243 .Case("ord", CmpInst::FCMP_ORD) 2244 .Case("uno", CmpInst::FCMP_UNO) 2245 .Case("ueq", CmpInst::FCMP_UEQ) 2246 .Case("ugt", CmpInst::FCMP_UGT) 2247 .Case("uge", CmpInst::FCMP_UGE) 2248 .Case("ult", CmpInst::FCMP_ULT) 2249 .Case("ule", CmpInst::FCMP_ULE) 2250 .Case("une", CmpInst::FCMP_UNE) 2251 .Case("true", CmpInst::FCMP_TRUE) 2252 .Default(CmpInst::BAD_FCMP_PREDICATE); 2253 if (!CmpInst::isFPPredicate(Pred)) 2254 return error("invalid floating-point predicate"); 2255 } else { 2256 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2257 .Case("eq", CmpInst::ICMP_EQ) 2258 .Case("ne", CmpInst::ICMP_NE) 2259 .Case("sgt", CmpInst::ICMP_SGT) 2260 .Case("sge", CmpInst::ICMP_SGE) 2261 .Case("slt", CmpInst::ICMP_SLT) 2262 .Case("sle", CmpInst::ICMP_SLE) 2263 .Case("ugt", CmpInst::ICMP_UGT) 2264 .Case("uge", CmpInst::ICMP_UGE) 2265 .Case("ult", CmpInst::ICMP_ULT) 2266 .Case("ule", CmpInst::ICMP_ULE) 2267 .Default(CmpInst::BAD_ICMP_PREDICATE); 2268 if (!CmpInst::isIntPredicate(Pred)) 2269 return error("invalid integer predicate"); 2270 } 2271 2272 lex(); 2273 Dest = MachineOperand::CreatePredicate(Pred); 2274 if (expectAndConsume(MIToken::rparen)) 2275 return error("predicate should be terminated by ')'."); 2276 2277 return false; 2278 } 2279 2280 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2281 assert(Token.is(MIToken::kw_target_index)); 2282 lex(); 2283 if (expectAndConsume(MIToken::lparen)) 2284 return true; 2285 if (Token.isNot(MIToken::Identifier)) 2286 return error("expected the name of the target index"); 2287 int Index = 0; 2288 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2289 return error("use of undefined target index '" + Token.stringValue() + "'"); 2290 lex(); 2291 if (expectAndConsume(MIToken::rparen)) 2292 return true; 2293 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2294 if (parseOperandsOffset(Dest)) 2295 return true; 2296 return false; 2297 } 2298 2299 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2300 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2301 lex(); 2302 if (expectAndConsume(MIToken::lparen)) 2303 return true; 2304 2305 uint32_t *Mask = MF.allocateRegMask(); 2306 while (true) { 2307 if (Token.isNot(MIToken::NamedRegister)) 2308 return error("expected a named register"); 2309 unsigned Reg; 2310 if (parseNamedRegister(Reg)) 2311 return true; 2312 lex(); 2313 Mask[Reg / 32] |= 1U << (Reg % 32); 2314 // TODO: Report an error if the same register is used more than once. 2315 if (Token.isNot(MIToken::comma)) 2316 break; 2317 lex(); 2318 } 2319 2320 if (expectAndConsume(MIToken::rparen)) 2321 return true; 2322 Dest = MachineOperand::CreateRegMask(Mask); 2323 return false; 2324 } 2325 2326 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2327 assert(Token.is(MIToken::kw_liveout)); 2328 uint32_t *Mask = MF.allocateRegMask(); 2329 lex(); 2330 if (expectAndConsume(MIToken::lparen)) 2331 return true; 2332 while (true) { 2333 if (Token.isNot(MIToken::NamedRegister)) 2334 return error("expected a named register"); 2335 unsigned Reg; 2336 if (parseNamedRegister(Reg)) 2337 return true; 2338 lex(); 2339 Mask[Reg / 32] |= 1U << (Reg % 32); 2340 // TODO: Report an error if the same register is used more than once. 2341 if (Token.isNot(MIToken::comma)) 2342 break; 2343 lex(); 2344 } 2345 if (expectAndConsume(MIToken::rparen)) 2346 return true; 2347 Dest = MachineOperand::CreateRegLiveOut(Mask); 2348 return false; 2349 } 2350 2351 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2352 Optional<unsigned> &TiedDefIdx) { 2353 switch (Token.kind()) { 2354 case MIToken::kw_implicit: 2355 case MIToken::kw_implicit_define: 2356 case MIToken::kw_def: 2357 case MIToken::kw_dead: 2358 case MIToken::kw_killed: 2359 case MIToken::kw_undef: 2360 case MIToken::kw_internal: 2361 case MIToken::kw_early_clobber: 2362 case MIToken::kw_debug_use: 2363 case MIToken::kw_renamable: 2364 case MIToken::underscore: 2365 case MIToken::NamedRegister: 2366 case MIToken::VirtualRegister: 2367 case MIToken::NamedVirtualRegister: 2368 return parseRegisterOperand(Dest, TiedDefIdx); 2369 case MIToken::IntegerLiteral: 2370 return parseImmediateOperand(Dest); 2371 case MIToken::kw_half: 2372 case MIToken::kw_float: 2373 case MIToken::kw_double: 2374 case MIToken::kw_x86_fp80: 2375 case MIToken::kw_fp128: 2376 case MIToken::kw_ppc_fp128: 2377 return parseFPImmediateOperand(Dest); 2378 case MIToken::MachineBasicBlock: 2379 return parseMBBOperand(Dest); 2380 case MIToken::StackObject: 2381 return parseStackObjectOperand(Dest); 2382 case MIToken::FixedStackObject: 2383 return parseFixedStackObjectOperand(Dest); 2384 case MIToken::GlobalValue: 2385 case MIToken::NamedGlobalValue: 2386 return parseGlobalAddressOperand(Dest); 2387 case MIToken::ConstantPoolItem: 2388 return parseConstantPoolIndexOperand(Dest); 2389 case MIToken::JumpTableIndex: 2390 return parseJumpTableIndexOperand(Dest); 2391 case MIToken::ExternalSymbol: 2392 return parseExternalSymbolOperand(Dest); 2393 case MIToken::MCSymbol: 2394 return parseMCSymbolOperand(Dest); 2395 case MIToken::SubRegisterIndex: 2396 return parseSubRegisterIndexOperand(Dest); 2397 case MIToken::md_diexpr: 2398 case MIToken::exclaim: 2399 return parseMetadataOperand(Dest); 2400 case MIToken::kw_cfi_same_value: 2401 case MIToken::kw_cfi_offset: 2402 case MIToken::kw_cfi_rel_offset: 2403 case MIToken::kw_cfi_def_cfa_register: 2404 case MIToken::kw_cfi_def_cfa_offset: 2405 case MIToken::kw_cfi_adjust_cfa_offset: 2406 case MIToken::kw_cfi_escape: 2407 case MIToken::kw_cfi_def_cfa: 2408 case MIToken::kw_cfi_register: 2409 case MIToken::kw_cfi_remember_state: 2410 case MIToken::kw_cfi_restore: 2411 case MIToken::kw_cfi_restore_state: 2412 case MIToken::kw_cfi_undefined: 2413 case MIToken::kw_cfi_window_save: 2414 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2415 return parseCFIOperand(Dest); 2416 case MIToken::kw_blockaddress: 2417 return parseBlockAddressOperand(Dest); 2418 case MIToken::kw_intrinsic: 2419 return parseIntrinsicOperand(Dest); 2420 case MIToken::kw_target_index: 2421 return parseTargetIndexOperand(Dest); 2422 case MIToken::kw_liveout: 2423 return parseLiveoutRegisterMaskOperand(Dest); 2424 case MIToken::kw_floatpred: 2425 case MIToken::kw_intpred: 2426 return parsePredicateOperand(Dest); 2427 case MIToken::Error: 2428 return true; 2429 case MIToken::Identifier: 2430 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2431 Dest = MachineOperand::CreateRegMask(RegMask); 2432 lex(); 2433 break; 2434 } else if (Token.stringValue() == "CustomRegMask") { 2435 return parseCustomRegisterMaskOperand(Dest); 2436 } else 2437 return parseTypedImmediateOperand(Dest); 2438 default: 2439 // FIXME: Parse the MCSymbol machine operand. 2440 return error("expected a machine operand"); 2441 } 2442 return false; 2443 } 2444 2445 bool MIParser::parseMachineOperandAndTargetFlags( 2446 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2447 unsigned TF = 0; 2448 bool HasTargetFlags = false; 2449 if (Token.is(MIToken::kw_target_flags)) { 2450 HasTargetFlags = true; 2451 lex(); 2452 if (expectAndConsume(MIToken::lparen)) 2453 return true; 2454 if (Token.isNot(MIToken::Identifier)) 2455 return error("expected the name of the target flag"); 2456 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2457 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2458 return error("use of undefined target flag '" + Token.stringValue() + 2459 "'"); 2460 } 2461 lex(); 2462 while (Token.is(MIToken::comma)) { 2463 lex(); 2464 if (Token.isNot(MIToken::Identifier)) 2465 return error("expected the name of the target flag"); 2466 unsigned BitFlag = 0; 2467 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2468 return error("use of undefined target flag '" + Token.stringValue() + 2469 "'"); 2470 // TODO: Report an error when using a duplicate bit target flag. 2471 TF |= BitFlag; 2472 lex(); 2473 } 2474 if (expectAndConsume(MIToken::rparen)) 2475 return true; 2476 } 2477 auto Loc = Token.location(); 2478 if (parseMachineOperand(Dest, TiedDefIdx)) 2479 return true; 2480 if (!HasTargetFlags) 2481 return false; 2482 if (Dest.isReg()) 2483 return error(Loc, "register operands can't have target flags"); 2484 Dest.setTargetFlags(TF); 2485 return false; 2486 } 2487 2488 bool MIParser::parseOffset(int64_t &Offset) { 2489 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2490 return false; 2491 StringRef Sign = Token.range(); 2492 bool IsNegative = Token.is(MIToken::minus); 2493 lex(); 2494 if (Token.isNot(MIToken::IntegerLiteral)) 2495 return error("expected an integer literal after '" + Sign + "'"); 2496 if (Token.integerValue().getMinSignedBits() > 64) 2497 return error("expected 64-bit integer (too large)"); 2498 Offset = Token.integerValue().getExtValue(); 2499 if (IsNegative) 2500 Offset = -Offset; 2501 lex(); 2502 return false; 2503 } 2504 2505 bool MIParser::parseAlignment(unsigned &Alignment) { 2506 assert(Token.is(MIToken::kw_align)); 2507 lex(); 2508 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2509 return error("expected an integer literal after 'align'"); 2510 if (getUnsigned(Alignment)) 2511 return true; 2512 lex(); 2513 2514 if (!isPowerOf2_32(Alignment)) 2515 return error("expected a power-of-2 literal after 'align'"); 2516 2517 return false; 2518 } 2519 2520 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2521 assert(Token.is(MIToken::kw_addrspace)); 2522 lex(); 2523 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2524 return error("expected an integer literal after 'addrspace'"); 2525 if (getUnsigned(Addrspace)) 2526 return true; 2527 lex(); 2528 return false; 2529 } 2530 2531 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2532 int64_t Offset = 0; 2533 if (parseOffset(Offset)) 2534 return true; 2535 Op.setOffset(Offset); 2536 return false; 2537 } 2538 2539 bool MIParser::parseIRValue(const Value *&V) { 2540 switch (Token.kind()) { 2541 case MIToken::NamedIRValue: { 2542 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2543 break; 2544 } 2545 case MIToken::IRValue: { 2546 unsigned SlotNumber = 0; 2547 if (getUnsigned(SlotNumber)) 2548 return true; 2549 V = getIRValue(SlotNumber); 2550 break; 2551 } 2552 case MIToken::NamedGlobalValue: 2553 case MIToken::GlobalValue: { 2554 GlobalValue *GV = nullptr; 2555 if (parseGlobalValue(GV)) 2556 return true; 2557 V = GV; 2558 break; 2559 } 2560 case MIToken::QuotedIRValue: { 2561 const Constant *C = nullptr; 2562 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2563 return true; 2564 V = C; 2565 break; 2566 } 2567 default: 2568 llvm_unreachable("The current token should be an IR block reference"); 2569 } 2570 if (!V) 2571 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2572 return false; 2573 } 2574 2575 bool MIParser::getUint64(uint64_t &Result) { 2576 if (Token.hasIntegerValue()) { 2577 if (Token.integerValue().getActiveBits() > 64) 2578 return error("expected 64-bit integer (too large)"); 2579 Result = Token.integerValue().getZExtValue(); 2580 return false; 2581 } 2582 if (Token.is(MIToken::HexLiteral)) { 2583 APInt A; 2584 if (getHexUint(A)) 2585 return true; 2586 if (A.getBitWidth() > 64) 2587 return error("expected 64-bit integer (too large)"); 2588 Result = A.getZExtValue(); 2589 return false; 2590 } 2591 return true; 2592 } 2593 2594 bool MIParser::getHexUint(APInt &Result) { 2595 assert(Token.is(MIToken::HexLiteral)); 2596 StringRef S = Token.range(); 2597 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2598 // This could be a floating point literal with a special prefix. 2599 if (!isxdigit(S[2])) 2600 return true; 2601 StringRef V = S.substr(2); 2602 APInt A(V.size()*4, V, 16); 2603 2604 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2605 // sure it isn't the case before constructing result. 2606 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2607 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2608 return false; 2609 } 2610 2611 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2612 const auto OldFlags = Flags; 2613 switch (Token.kind()) { 2614 case MIToken::kw_volatile: 2615 Flags |= MachineMemOperand::MOVolatile; 2616 break; 2617 case MIToken::kw_non_temporal: 2618 Flags |= MachineMemOperand::MONonTemporal; 2619 break; 2620 case MIToken::kw_dereferenceable: 2621 Flags |= MachineMemOperand::MODereferenceable; 2622 break; 2623 case MIToken::kw_invariant: 2624 Flags |= MachineMemOperand::MOInvariant; 2625 break; 2626 case MIToken::StringConstant: { 2627 MachineMemOperand::Flags TF; 2628 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2629 return error("use of undefined target MMO flag '" + Token.stringValue() + 2630 "'"); 2631 Flags |= TF; 2632 break; 2633 } 2634 default: 2635 llvm_unreachable("The current token should be a memory operand flag"); 2636 } 2637 if (OldFlags == Flags) 2638 // We know that the same flag is specified more than once when the flags 2639 // weren't modified. 2640 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2641 lex(); 2642 return false; 2643 } 2644 2645 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2646 switch (Token.kind()) { 2647 case MIToken::kw_stack: 2648 PSV = MF.getPSVManager().getStack(); 2649 break; 2650 case MIToken::kw_got: 2651 PSV = MF.getPSVManager().getGOT(); 2652 break; 2653 case MIToken::kw_jump_table: 2654 PSV = MF.getPSVManager().getJumpTable(); 2655 break; 2656 case MIToken::kw_constant_pool: 2657 PSV = MF.getPSVManager().getConstantPool(); 2658 break; 2659 case MIToken::FixedStackObject: { 2660 int FI; 2661 if (parseFixedStackFrameIndex(FI)) 2662 return true; 2663 PSV = MF.getPSVManager().getFixedStack(FI); 2664 // The token was already consumed, so use return here instead of break. 2665 return false; 2666 } 2667 case MIToken::StackObject: { 2668 int FI; 2669 if (parseStackFrameIndex(FI)) 2670 return true; 2671 PSV = MF.getPSVManager().getFixedStack(FI); 2672 // The token was already consumed, so use return here instead of break. 2673 return false; 2674 } 2675 case MIToken::kw_call_entry: 2676 lex(); 2677 switch (Token.kind()) { 2678 case MIToken::GlobalValue: 2679 case MIToken::NamedGlobalValue: { 2680 GlobalValue *GV = nullptr; 2681 if (parseGlobalValue(GV)) 2682 return true; 2683 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2684 break; 2685 } 2686 case MIToken::ExternalSymbol: 2687 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2688 MF.createExternalSymbolName(Token.stringValue())); 2689 break; 2690 default: 2691 return error( 2692 "expected a global value or an external symbol after 'call-entry'"); 2693 } 2694 break; 2695 default: 2696 llvm_unreachable("The current token should be pseudo source value"); 2697 } 2698 lex(); 2699 return false; 2700 } 2701 2702 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2703 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2704 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2705 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2706 Token.is(MIToken::kw_call_entry)) { 2707 const PseudoSourceValue *PSV = nullptr; 2708 if (parseMemoryPseudoSourceValue(PSV)) 2709 return true; 2710 int64_t Offset = 0; 2711 if (parseOffset(Offset)) 2712 return true; 2713 Dest = MachinePointerInfo(PSV, Offset); 2714 return false; 2715 } 2716 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2717 Token.isNot(MIToken::GlobalValue) && 2718 Token.isNot(MIToken::NamedGlobalValue) && 2719 Token.isNot(MIToken::QuotedIRValue)) 2720 return error("expected an IR value reference"); 2721 const Value *V = nullptr; 2722 if (parseIRValue(V)) 2723 return true; 2724 if (!V->getType()->isPointerTy()) 2725 return error("expected a pointer IR value"); 2726 lex(); 2727 int64_t Offset = 0; 2728 if (parseOffset(Offset)) 2729 return true; 2730 Dest = MachinePointerInfo(V, Offset); 2731 return false; 2732 } 2733 2734 bool MIParser::parseOptionalScope(LLVMContext &Context, 2735 SyncScope::ID &SSID) { 2736 SSID = SyncScope::System; 2737 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2738 lex(); 2739 if (expectAndConsume(MIToken::lparen)) 2740 return error("expected '(' in syncscope"); 2741 2742 std::string SSN; 2743 if (parseStringConstant(SSN)) 2744 return true; 2745 2746 SSID = Context.getOrInsertSyncScopeID(SSN); 2747 if (expectAndConsume(MIToken::rparen)) 2748 return error("expected ')' in syncscope"); 2749 } 2750 2751 return false; 2752 } 2753 2754 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2755 Order = AtomicOrdering::NotAtomic; 2756 if (Token.isNot(MIToken::Identifier)) 2757 return false; 2758 2759 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2760 .Case("unordered", AtomicOrdering::Unordered) 2761 .Case("monotonic", AtomicOrdering::Monotonic) 2762 .Case("acquire", AtomicOrdering::Acquire) 2763 .Case("release", AtomicOrdering::Release) 2764 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2765 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2766 .Default(AtomicOrdering::NotAtomic); 2767 2768 if (Order != AtomicOrdering::NotAtomic) { 2769 lex(); 2770 return false; 2771 } 2772 2773 return error("expected an atomic scope, ordering or a size specification"); 2774 } 2775 2776 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2777 if (expectAndConsume(MIToken::lparen)) 2778 return true; 2779 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2780 while (Token.isMemoryOperandFlag()) { 2781 if (parseMemoryOperandFlag(Flags)) 2782 return true; 2783 } 2784 if (Token.isNot(MIToken::Identifier) || 2785 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2786 return error("expected 'load' or 'store' memory operation"); 2787 if (Token.stringValue() == "load") 2788 Flags |= MachineMemOperand::MOLoad; 2789 else 2790 Flags |= MachineMemOperand::MOStore; 2791 lex(); 2792 2793 // Optional 'store' for operands that both load and store. 2794 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2795 Flags |= MachineMemOperand::MOStore; 2796 lex(); 2797 } 2798 2799 // Optional synchronization scope. 2800 SyncScope::ID SSID; 2801 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2802 return true; 2803 2804 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2805 AtomicOrdering Order, FailureOrder; 2806 if (parseOptionalAtomicOrdering(Order)) 2807 return true; 2808 2809 if (parseOptionalAtomicOrdering(FailureOrder)) 2810 return true; 2811 2812 if (Token.isNot(MIToken::IntegerLiteral) && 2813 Token.isNot(MIToken::kw_unknown_size)) 2814 return error("expected the size integer literal or 'unknown-size' after " 2815 "memory operation"); 2816 uint64_t Size; 2817 if (Token.is(MIToken::IntegerLiteral)) { 2818 if (getUint64(Size)) 2819 return true; 2820 } else if (Token.is(MIToken::kw_unknown_size)) { 2821 Size = MemoryLocation::UnknownSize; 2822 } 2823 lex(); 2824 2825 MachinePointerInfo Ptr = MachinePointerInfo(); 2826 if (Token.is(MIToken::Identifier)) { 2827 const char *Word = 2828 ((Flags & MachineMemOperand::MOLoad) && 2829 (Flags & MachineMemOperand::MOStore)) 2830 ? "on" 2831 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2832 if (Token.stringValue() != Word) 2833 return error(Twine("expected '") + Word + "'"); 2834 lex(); 2835 2836 if (parseMachinePointerInfo(Ptr)) 2837 return true; 2838 } 2839 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2840 AAMDNodes AAInfo; 2841 MDNode *Range = nullptr; 2842 while (consumeIfPresent(MIToken::comma)) { 2843 switch (Token.kind()) { 2844 case MIToken::kw_align: 2845 if (parseAlignment(BaseAlignment)) 2846 return true; 2847 break; 2848 case MIToken::kw_addrspace: 2849 if (parseAddrspace(Ptr.AddrSpace)) 2850 return true; 2851 break; 2852 case MIToken::md_tbaa: 2853 lex(); 2854 if (parseMDNode(AAInfo.TBAA)) 2855 return true; 2856 break; 2857 case MIToken::md_alias_scope: 2858 lex(); 2859 if (parseMDNode(AAInfo.Scope)) 2860 return true; 2861 break; 2862 case MIToken::md_noalias: 2863 lex(); 2864 if (parseMDNode(AAInfo.NoAlias)) 2865 return true; 2866 break; 2867 case MIToken::md_range: 2868 lex(); 2869 if (parseMDNode(Range)) 2870 return true; 2871 break; 2872 // TODO: Report an error on duplicate metadata nodes. 2873 default: 2874 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2875 "'!noalias' or '!range'"); 2876 } 2877 } 2878 if (expectAndConsume(MIToken::rparen)) 2879 return true; 2880 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2881 SSID, Order, FailureOrder); 2882 return false; 2883 } 2884 2885 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2886 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2887 Token.is(MIToken::kw_post_instr_symbol)) && 2888 "Invalid token for a pre- post-instruction symbol!"); 2889 lex(); 2890 if (Token.isNot(MIToken::MCSymbol)) 2891 return error("expected a symbol after 'pre-instr-symbol'"); 2892 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2893 lex(); 2894 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2895 Token.is(MIToken::lbrace)) 2896 return false; 2897 if (Token.isNot(MIToken::comma)) 2898 return error("expected ',' before the next machine operand"); 2899 lex(); 2900 return false; 2901 } 2902 2903 static void initSlots2BasicBlocks( 2904 const Function &F, 2905 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2906 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2907 MST.incorporateFunction(F); 2908 for (auto &BB : F) { 2909 if (BB.hasName()) 2910 continue; 2911 int Slot = MST.getLocalSlot(&BB); 2912 if (Slot == -1) 2913 continue; 2914 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2915 } 2916 } 2917 2918 static const BasicBlock *getIRBlockFromSlot( 2919 unsigned Slot, 2920 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2921 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2922 if (BlockInfo == Slots2BasicBlocks.end()) 2923 return nullptr; 2924 return BlockInfo->second; 2925 } 2926 2927 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2928 if (Slots2BasicBlocks.empty()) 2929 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2930 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2931 } 2932 2933 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2934 if (&F == &MF.getFunction()) 2935 return getIRBlock(Slot); 2936 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2937 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2938 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2939 } 2940 2941 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2942 DenseMap<unsigned, const Value *> &Slots2Values) { 2943 int Slot = MST.getLocalSlot(V); 2944 if (Slot == -1) 2945 return; 2946 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2947 } 2948 2949 /// Creates the mapping from slot numbers to function's unnamed IR values. 2950 static void initSlots2Values(const Function &F, 2951 DenseMap<unsigned, const Value *> &Slots2Values) { 2952 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2953 MST.incorporateFunction(F); 2954 for (const auto &Arg : F.args()) 2955 mapValueToSlot(&Arg, MST, Slots2Values); 2956 for (const auto &BB : F) { 2957 mapValueToSlot(&BB, MST, Slots2Values); 2958 for (const auto &I : BB) 2959 mapValueToSlot(&I, MST, Slots2Values); 2960 } 2961 } 2962 2963 const Value *MIParser::getIRValue(unsigned Slot) { 2964 if (Slots2Values.empty()) 2965 initSlots2Values(MF.getFunction(), Slots2Values); 2966 auto ValueInfo = Slots2Values.find(Slot); 2967 if (ValueInfo == Slots2Values.end()) 2968 return nullptr; 2969 return ValueInfo->second; 2970 } 2971 2972 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 2973 // FIXME: Currently we can't recognize temporary or local symbols and call all 2974 // of the appropriate forms to create them. However, this handles basic cases 2975 // well as most of the special aspects are recognized by a prefix on their 2976 // name, and the input names should already be unique. For test cases, keeping 2977 // the symbol name out of the symbol table isn't terribly important. 2978 return MF.getContext().getOrCreateSymbol(Name); 2979 } 2980 2981 bool MIParser::parseStringConstant(std::string &Result) { 2982 if (Token.isNot(MIToken::StringConstant)) 2983 return error("expected string constant"); 2984 Result = Token.stringValue(); 2985 lex(); 2986 return false; 2987 } 2988 2989 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2990 StringRef Src, 2991 SMDiagnostic &Error) { 2992 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2993 } 2994 2995 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2996 StringRef Src, SMDiagnostic &Error) { 2997 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2998 } 2999 3000 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3001 MachineBasicBlock *&MBB, StringRef Src, 3002 SMDiagnostic &Error) { 3003 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3004 } 3005 3006 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3007 unsigned &Reg, StringRef Src, 3008 SMDiagnostic &Error) { 3009 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3010 } 3011 3012 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3013 unsigned &Reg, StringRef Src, 3014 SMDiagnostic &Error) { 3015 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3016 } 3017 3018 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3019 VRegInfo *&Info, StringRef Src, 3020 SMDiagnostic &Error) { 3021 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3022 } 3023 3024 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3025 int &FI, StringRef Src, 3026 SMDiagnostic &Error) { 3027 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3028 } 3029 3030 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3031 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3032 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3033 } 3034