1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRPrinter.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueSymbolTable.h"
58 #include "llvm/MC/LaneBitmask.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCDwarf.h"
61 #include "llvm/MC/MCInstrDesc.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/LowLevelTypeImpl.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/SMLoc.h"
70 #include "llvm/Support/SourceMgr.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetIntrinsicInfo.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cctype>
77 #include <cstddef>
78 #include <cstdint>
79 #include <limits>
80 #include <string>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 void PerTargetMIParsingState::setTarget(
86   const TargetSubtargetInfo &NewSubtarget) {
87 
88   // If the subtarget changed, over conservatively assume everything is invalid.
89   if (&Subtarget == &NewSubtarget)
90     return;
91 
92   Names2InstrOpCodes.clear();
93   Names2Regs.clear();
94   Names2RegMasks.clear();
95   Names2SubRegIndices.clear();
96   Names2TargetIndices.clear();
97   Names2DirectTargetFlags.clear();
98   Names2BitmaskTargetFlags.clear();
99   Names2MMOTargetFlags.clear();
100 
101   initNames2RegClasses();
102   initNames2RegBanks();
103 }
104 
105 void PerTargetMIParsingState::initNames2Regs() {
106   if (!Names2Regs.empty())
107     return;
108 
109   // The '%noreg' register is the register 0.
110   Names2Regs.insert(std::make_pair("noreg", 0));
111   const auto *TRI = Subtarget.getRegisterInfo();
112   assert(TRI && "Expected target register info");
113 
114   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
115     bool WasInserted =
116         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
117             .second;
118     (void)WasInserted;
119     assert(WasInserted && "Expected registers to be unique case-insensitively");
120   }
121 }
122 
123 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
124                                                 unsigned &Reg) {
125   initNames2Regs();
126   auto RegInfo = Names2Regs.find(RegName);
127   if (RegInfo == Names2Regs.end())
128     return true;
129   Reg = RegInfo->getValue();
130   return false;
131 }
132 
133 void PerTargetMIParsingState::initNames2InstrOpCodes() {
134   if (!Names2InstrOpCodes.empty())
135     return;
136   const auto *TII = Subtarget.getInstrInfo();
137   assert(TII && "Expected target instruction info");
138   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
139     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
140 }
141 
142 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
143                                              unsigned &OpCode) {
144   initNames2InstrOpCodes();
145   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
146   if (InstrInfo == Names2InstrOpCodes.end())
147     return true;
148   OpCode = InstrInfo->getValue();
149   return false;
150 }
151 
152 void PerTargetMIParsingState::initNames2RegMasks() {
153   if (!Names2RegMasks.empty())
154     return;
155   const auto *TRI = Subtarget.getRegisterInfo();
156   assert(TRI && "Expected target register info");
157   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
158   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
159   assert(RegMasks.size() == RegMaskNames.size());
160   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
161     Names2RegMasks.insert(
162         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
163 }
164 
165 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
166   initNames2RegMasks();
167   auto RegMaskInfo = Names2RegMasks.find(Identifier);
168   if (RegMaskInfo == Names2RegMasks.end())
169     return nullptr;
170   return RegMaskInfo->getValue();
171 }
172 
173 void PerTargetMIParsingState::initNames2SubRegIndices() {
174   if (!Names2SubRegIndices.empty())
175     return;
176   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
177   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
178     Names2SubRegIndices.insert(
179         std::make_pair(TRI->getSubRegIndexName(I), I));
180 }
181 
182 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
183   initNames2SubRegIndices();
184   auto SubRegInfo = Names2SubRegIndices.find(Name);
185   if (SubRegInfo == Names2SubRegIndices.end())
186     return 0;
187   return SubRegInfo->getValue();
188 }
189 
190 void PerTargetMIParsingState::initNames2TargetIndices() {
191   if (!Names2TargetIndices.empty())
192     return;
193   const auto *TII = Subtarget.getInstrInfo();
194   assert(TII && "Expected target instruction info");
195   auto Indices = TII->getSerializableTargetIndices();
196   for (const auto &I : Indices)
197     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
198 }
199 
200 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
201   initNames2TargetIndices();
202   auto IndexInfo = Names2TargetIndices.find(Name);
203   if (IndexInfo == Names2TargetIndices.end())
204     return true;
205   Index = IndexInfo->second;
206   return false;
207 }
208 
209 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
210   if (!Names2DirectTargetFlags.empty())
211     return;
212 
213   const auto *TII = Subtarget.getInstrInfo();
214   assert(TII && "Expected target instruction info");
215   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
216   for (const auto &I : Flags)
217     Names2DirectTargetFlags.insert(
218         std::make_pair(StringRef(I.second), I.first));
219 }
220 
221 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
222                                                   unsigned &Flag) {
223   initNames2DirectTargetFlags();
224   auto FlagInfo = Names2DirectTargetFlags.find(Name);
225   if (FlagInfo == Names2DirectTargetFlags.end())
226     return true;
227   Flag = FlagInfo->second;
228   return false;
229 }
230 
231 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
232   if (!Names2BitmaskTargetFlags.empty())
233     return;
234 
235   const auto *TII = Subtarget.getInstrInfo();
236   assert(TII && "Expected target instruction info");
237   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
238   for (const auto &I : Flags)
239     Names2BitmaskTargetFlags.insert(
240         std::make_pair(StringRef(I.second), I.first));
241 }
242 
243 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
244                                                    unsigned &Flag) {
245   initNames2BitmaskTargetFlags();
246   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
247   if (FlagInfo == Names2BitmaskTargetFlags.end())
248     return true;
249   Flag = FlagInfo->second;
250   return false;
251 }
252 
253 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
254   if (!Names2MMOTargetFlags.empty())
255     return;
256 
257   const auto *TII = Subtarget.getInstrInfo();
258   assert(TII && "Expected target instruction info");
259   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
260   for (const auto &I : Flags)
261     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
262 }
263 
264 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
265                                                MachineMemOperand::Flags &Flag) {
266   initNames2MMOTargetFlags();
267   auto FlagInfo = Names2MMOTargetFlags.find(Name);
268   if (FlagInfo == Names2MMOTargetFlags.end())
269     return true;
270   Flag = FlagInfo->second;
271   return false;
272 }
273 
274 void PerTargetMIParsingState::initNames2RegClasses() {
275   if (!Names2RegClasses.empty())
276     return;
277 
278   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
279   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
280     const auto *RC = TRI->getRegClass(I);
281     Names2RegClasses.insert(
282         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
283   }
284 }
285 
286 void PerTargetMIParsingState::initNames2RegBanks() {
287   if (!Names2RegBanks.empty())
288     return;
289 
290   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
291   // If the target does not support GlobalISel, we may not have a
292   // register bank info.
293   if (!RBI)
294     return;
295 
296   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
297     const auto &RegBank = RBI->getRegBank(I);
298     Names2RegBanks.insert(
299         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
300   }
301 }
302 
303 const TargetRegisterClass *
304 PerTargetMIParsingState::getRegClass(StringRef Name) {
305   auto RegClassInfo = Names2RegClasses.find(Name);
306   if (RegClassInfo == Names2RegClasses.end())
307     return nullptr;
308   return RegClassInfo->getValue();
309 }
310 
311 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
312   auto RegBankInfo = Names2RegBanks.find(Name);
313   if (RegBankInfo == Names2RegBanks.end())
314     return nullptr;
315   return RegBankInfo->getValue();
316 }
317 
318 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
319     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
320   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
321 }
322 
323 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
324   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
325   if (I.second) {
326     MachineRegisterInfo &MRI = MF.getRegInfo();
327     VRegInfo *Info = new (Allocator) VRegInfo;
328     Info->VReg = MRI.createIncompleteVirtualRegister();
329     I.first->second = Info;
330   }
331   return *I.first->second;
332 }
333 
334 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
335   assert(RegName != "" && "Expected named reg.");
336 
337   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
338   if (I.second) {
339     VRegInfo *Info = new (Allocator) VRegInfo;
340     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
341     I.first->second = Info;
342   }
343   return *I.first->second;
344 }
345 
346 namespace {
347 
348 /// A wrapper struct around the 'MachineOperand' struct that includes a source
349 /// range and other attributes.
350 struct ParsedMachineOperand {
351   MachineOperand Operand;
352   StringRef::iterator Begin;
353   StringRef::iterator End;
354   Optional<unsigned> TiedDefIdx;
355 
356   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
357                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
358       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
359     if (TiedDefIdx)
360       assert(Operand.isReg() && Operand.isUse() &&
361              "Only used register operands can be tied");
362   }
363 };
364 
365 class MIParser {
366   MachineFunction &MF;
367   SMDiagnostic &Error;
368   StringRef Source, CurrentSource;
369   MIToken Token;
370   PerFunctionMIParsingState &PFS;
371   /// Maps from slot numbers to function's unnamed basic blocks.
372   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
373   /// Maps from slot numbers to function's unnamed values.
374   DenseMap<unsigned, const Value *> Slots2Values;
375 
376 public:
377   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
378            StringRef Source);
379 
380   /// \p SkipChar gives the number of characters to skip before looking
381   /// for the next token.
382   void lex(unsigned SkipChar = 0);
383 
384   /// Report an error at the current location with the given message.
385   ///
386   /// This function always return true.
387   bool error(const Twine &Msg);
388 
389   /// Report an error at the given location with the given message.
390   ///
391   /// This function always return true.
392   bool error(StringRef::iterator Loc, const Twine &Msg);
393 
394   bool
395   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
396   bool parseBasicBlocks();
397   bool parse(MachineInstr *&MI);
398   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
399   bool parseStandaloneNamedRegister(unsigned &Reg);
400   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
401   bool parseStandaloneRegister(unsigned &Reg);
402   bool parseStandaloneStackObject(int &FI);
403   bool parseStandaloneMDNode(MDNode *&Node);
404 
405   bool
406   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
407   bool parseBasicBlock(MachineBasicBlock &MBB,
408                        MachineBasicBlock *&AddFalthroughFrom);
409   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
410   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
411 
412   bool parseNamedRegister(unsigned &Reg);
413   bool parseVirtualRegister(VRegInfo *&Info);
414   bool parseNamedVirtualRegister(VRegInfo *&Info);
415   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
416   bool parseRegisterFlag(unsigned &Flags);
417   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
418   bool parseSubRegisterIndex(unsigned &SubReg);
419   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
420   bool parseRegisterOperand(MachineOperand &Dest,
421                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
422   bool parseImmediateOperand(MachineOperand &Dest);
423   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
424                        const Constant *&C);
425   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
426   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
427   bool parseTypedImmediateOperand(MachineOperand &Dest);
428   bool parseFPImmediateOperand(MachineOperand &Dest);
429   bool parseMBBReference(MachineBasicBlock *&MBB);
430   bool parseMBBOperand(MachineOperand &Dest);
431   bool parseStackFrameIndex(int &FI);
432   bool parseStackObjectOperand(MachineOperand &Dest);
433   bool parseFixedStackFrameIndex(int &FI);
434   bool parseFixedStackObjectOperand(MachineOperand &Dest);
435   bool parseGlobalValue(GlobalValue *&GV);
436   bool parseGlobalAddressOperand(MachineOperand &Dest);
437   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
438   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
439   bool parseJumpTableIndexOperand(MachineOperand &Dest);
440   bool parseExternalSymbolOperand(MachineOperand &Dest);
441   bool parseMCSymbolOperand(MachineOperand &Dest);
442   bool parseMDNode(MDNode *&Node);
443   bool parseDIExpression(MDNode *&Expr);
444   bool parseDILocation(MDNode *&Expr);
445   bool parseMetadataOperand(MachineOperand &Dest);
446   bool parseCFIOffset(int &Offset);
447   bool parseCFIRegister(unsigned &Reg);
448   bool parseCFIEscapeValues(std::string& Values);
449   bool parseCFIOperand(MachineOperand &Dest);
450   bool parseIRBlock(BasicBlock *&BB, const Function &F);
451   bool parseBlockAddressOperand(MachineOperand &Dest);
452   bool parseIntrinsicOperand(MachineOperand &Dest);
453   bool parsePredicateOperand(MachineOperand &Dest);
454   bool parseShuffleMaskOperand(MachineOperand &Dest);
455   bool parseTargetIndexOperand(MachineOperand &Dest);
456   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
457   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
458   bool parseMachineOperand(MachineOperand &Dest,
459                            Optional<unsigned> &TiedDefIdx);
460   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
461                                          Optional<unsigned> &TiedDefIdx);
462   bool parseOffset(int64_t &Offset);
463   bool parseAlignment(unsigned &Alignment);
464   bool parseAddrspace(unsigned &Addrspace);
465   bool parseOperandsOffset(MachineOperand &Op);
466   bool parseIRValue(const Value *&V);
467   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
468   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
469   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
470   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
471   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
472   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
473   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
474 
475 private:
476   /// Convert the integer literal in the current token into an unsigned integer.
477   ///
478   /// Return true if an error occurred.
479   bool getUnsigned(unsigned &Result);
480 
481   /// Convert the integer literal in the current token into an uint64.
482   ///
483   /// Return true if an error occurred.
484   bool getUint64(uint64_t &Result);
485 
486   /// Convert the hexadecimal literal in the current token into an unsigned
487   ///  APInt with a minimum bitwidth required to represent the value.
488   ///
489   /// Return true if the literal does not represent an integer value.
490   bool getHexUint(APInt &Result);
491 
492   /// If the current token is of the given kind, consume it and return false.
493   /// Otherwise report an error and return true.
494   bool expectAndConsume(MIToken::TokenKind TokenKind);
495 
496   /// If the current token is of the given kind, consume it and return true.
497   /// Otherwise return false.
498   bool consumeIfPresent(MIToken::TokenKind TokenKind);
499 
500   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
501 
502   bool assignRegisterTies(MachineInstr &MI,
503                           ArrayRef<ParsedMachineOperand> Operands);
504 
505   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
506                               const MCInstrDesc &MCID);
507 
508   const BasicBlock *getIRBlock(unsigned Slot);
509   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
510 
511   const Value *getIRValue(unsigned Slot);
512 
513   /// Get or create an MCSymbol for a given name.
514   MCSymbol *getOrCreateMCSymbol(StringRef Name);
515 
516   /// parseStringConstant
517   ///   ::= StringConstant
518   bool parseStringConstant(std::string &Result);
519 };
520 
521 } // end anonymous namespace
522 
523 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
524                    StringRef Source)
525     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
526 {}
527 
528 void MIParser::lex(unsigned SkipChar) {
529   CurrentSource = lexMIToken(
530       CurrentSource.data() + SkipChar, Token,
531       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
532 }
533 
534 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
535 
536 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
537   const SourceMgr &SM = *PFS.SM;
538   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
539   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
540   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
541     // Create an ordinary diagnostic when the source manager's buffer is the
542     // source string.
543     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
544     return true;
545   }
546   // Create a diagnostic for a YAML string literal.
547   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
548                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
549                        Source, None, None);
550   return true;
551 }
552 
553 static const char *toString(MIToken::TokenKind TokenKind) {
554   switch (TokenKind) {
555   case MIToken::comma:
556     return "','";
557   case MIToken::equal:
558     return "'='";
559   case MIToken::colon:
560     return "':'";
561   case MIToken::lparen:
562     return "'('";
563   case MIToken::rparen:
564     return "')'";
565   default:
566     return "<unknown token>";
567   }
568 }
569 
570 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
571   if (Token.isNot(TokenKind))
572     return error(Twine("expected ") + toString(TokenKind));
573   lex();
574   return false;
575 }
576 
577 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
578   if (Token.isNot(TokenKind))
579     return false;
580   lex();
581   return true;
582 }
583 
584 bool MIParser::parseBasicBlockDefinition(
585     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
586   assert(Token.is(MIToken::MachineBasicBlockLabel));
587   unsigned ID = 0;
588   if (getUnsigned(ID))
589     return true;
590   auto Loc = Token.location();
591   auto Name = Token.stringValue();
592   lex();
593   bool HasAddressTaken = false;
594   bool IsLandingPad = false;
595   unsigned Alignment = 0;
596   BasicBlock *BB = nullptr;
597   if (consumeIfPresent(MIToken::lparen)) {
598     do {
599       // TODO: Report an error when multiple same attributes are specified.
600       switch (Token.kind()) {
601       case MIToken::kw_address_taken:
602         HasAddressTaken = true;
603         lex();
604         break;
605       case MIToken::kw_landing_pad:
606         IsLandingPad = true;
607         lex();
608         break;
609       case MIToken::kw_align:
610         if (parseAlignment(Alignment))
611           return true;
612         break;
613       case MIToken::IRBlock:
614         // TODO: Report an error when both name and ir block are specified.
615         if (parseIRBlock(BB, MF.getFunction()))
616           return true;
617         lex();
618         break;
619       default:
620         break;
621       }
622     } while (consumeIfPresent(MIToken::comma));
623     if (expectAndConsume(MIToken::rparen))
624       return true;
625   }
626   if (expectAndConsume(MIToken::colon))
627     return true;
628 
629   if (!Name.empty()) {
630     BB = dyn_cast_or_null<BasicBlock>(
631         MF.getFunction().getValueSymbolTable()->lookup(Name));
632     if (!BB)
633       return error(Loc, Twine("basic block '") + Name +
634                             "' is not defined in the function '" +
635                             MF.getName() + "'");
636   }
637   auto *MBB = MF.CreateMachineBasicBlock(BB);
638   MF.insert(MF.end(), MBB);
639   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
640   if (!WasInserted)
641     return error(Loc, Twine("redefinition of machine basic block with id #") +
642                           Twine(ID));
643   if (Alignment)
644     MBB->setAlignment(llvm::Align(Alignment));
645   if (HasAddressTaken)
646     MBB->setHasAddressTaken();
647   MBB->setIsEHPad(IsLandingPad);
648   return false;
649 }
650 
651 bool MIParser::parseBasicBlockDefinitions(
652     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
653   lex();
654   // Skip until the first machine basic block.
655   while (Token.is(MIToken::Newline))
656     lex();
657   if (Token.isErrorOrEOF())
658     return Token.isError();
659   if (Token.isNot(MIToken::MachineBasicBlockLabel))
660     return error("expected a basic block definition before instructions");
661   unsigned BraceDepth = 0;
662   do {
663     if (parseBasicBlockDefinition(MBBSlots))
664       return true;
665     bool IsAfterNewline = false;
666     // Skip until the next machine basic block.
667     while (true) {
668       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
669           Token.isErrorOrEOF())
670         break;
671       else if (Token.is(MIToken::MachineBasicBlockLabel))
672         return error("basic block definition should be located at the start of "
673                      "the line");
674       else if (consumeIfPresent(MIToken::Newline)) {
675         IsAfterNewline = true;
676         continue;
677       }
678       IsAfterNewline = false;
679       if (Token.is(MIToken::lbrace))
680         ++BraceDepth;
681       if (Token.is(MIToken::rbrace)) {
682         if (!BraceDepth)
683           return error("extraneous closing brace ('}')");
684         --BraceDepth;
685       }
686       lex();
687     }
688     // Verify that we closed all of the '{' at the end of a file or a block.
689     if (!Token.isError() && BraceDepth)
690       return error("expected '}'"); // FIXME: Report a note that shows '{'.
691   } while (!Token.isErrorOrEOF());
692   return Token.isError();
693 }
694 
695 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
696   assert(Token.is(MIToken::kw_liveins));
697   lex();
698   if (expectAndConsume(MIToken::colon))
699     return true;
700   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
701     return false;
702   do {
703     if (Token.isNot(MIToken::NamedRegister))
704       return error("expected a named register");
705     unsigned Reg = 0;
706     if (parseNamedRegister(Reg))
707       return true;
708     lex();
709     LaneBitmask Mask = LaneBitmask::getAll();
710     if (consumeIfPresent(MIToken::colon)) {
711       // Parse lane mask.
712       if (Token.isNot(MIToken::IntegerLiteral) &&
713           Token.isNot(MIToken::HexLiteral))
714         return error("expected a lane mask");
715       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
716                     "Use correct get-function for lane mask");
717       LaneBitmask::Type V;
718       if (getUnsigned(V))
719         return error("invalid lane mask value");
720       Mask = LaneBitmask(V);
721       lex();
722     }
723     MBB.addLiveIn(Reg, Mask);
724   } while (consumeIfPresent(MIToken::comma));
725   return false;
726 }
727 
728 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
729   assert(Token.is(MIToken::kw_successors));
730   lex();
731   if (expectAndConsume(MIToken::colon))
732     return true;
733   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
734     return false;
735   do {
736     if (Token.isNot(MIToken::MachineBasicBlock))
737       return error("expected a machine basic block reference");
738     MachineBasicBlock *SuccMBB = nullptr;
739     if (parseMBBReference(SuccMBB))
740       return true;
741     lex();
742     unsigned Weight = 0;
743     if (consumeIfPresent(MIToken::lparen)) {
744       if (Token.isNot(MIToken::IntegerLiteral) &&
745           Token.isNot(MIToken::HexLiteral))
746         return error("expected an integer literal after '('");
747       if (getUnsigned(Weight))
748         return true;
749       lex();
750       if (expectAndConsume(MIToken::rparen))
751         return true;
752     }
753     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
754   } while (consumeIfPresent(MIToken::comma));
755   MBB.normalizeSuccProbs();
756   return false;
757 }
758 
759 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
760                                MachineBasicBlock *&AddFalthroughFrom) {
761   // Skip the definition.
762   assert(Token.is(MIToken::MachineBasicBlockLabel));
763   lex();
764   if (consumeIfPresent(MIToken::lparen)) {
765     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
766       lex();
767     consumeIfPresent(MIToken::rparen);
768   }
769   consumeIfPresent(MIToken::colon);
770 
771   // Parse the liveins and successors.
772   // N.B: Multiple lists of successors and liveins are allowed and they're
773   // merged into one.
774   // Example:
775   //   liveins: %edi
776   //   liveins: %esi
777   //
778   // is equivalent to
779   //   liveins: %edi, %esi
780   bool ExplicitSuccessors = false;
781   while (true) {
782     if (Token.is(MIToken::kw_successors)) {
783       if (parseBasicBlockSuccessors(MBB))
784         return true;
785       ExplicitSuccessors = true;
786     } else if (Token.is(MIToken::kw_liveins)) {
787       if (parseBasicBlockLiveins(MBB))
788         return true;
789     } else if (consumeIfPresent(MIToken::Newline)) {
790       continue;
791     } else
792       break;
793     if (!Token.isNewlineOrEOF())
794       return error("expected line break at the end of a list");
795     lex();
796   }
797 
798   // Parse the instructions.
799   bool IsInBundle = false;
800   MachineInstr *PrevMI = nullptr;
801   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
802          !Token.is(MIToken::Eof)) {
803     if (consumeIfPresent(MIToken::Newline))
804       continue;
805     if (consumeIfPresent(MIToken::rbrace)) {
806       // The first parsing pass should verify that all closing '}' have an
807       // opening '{'.
808       assert(IsInBundle);
809       IsInBundle = false;
810       continue;
811     }
812     MachineInstr *MI = nullptr;
813     if (parse(MI))
814       return true;
815     MBB.insert(MBB.end(), MI);
816     if (IsInBundle) {
817       PrevMI->setFlag(MachineInstr::BundledSucc);
818       MI->setFlag(MachineInstr::BundledPred);
819     }
820     PrevMI = MI;
821     if (Token.is(MIToken::lbrace)) {
822       if (IsInBundle)
823         return error("nested instruction bundles are not allowed");
824       lex();
825       // This instruction is the start of the bundle.
826       MI->setFlag(MachineInstr::BundledSucc);
827       IsInBundle = true;
828       if (!Token.is(MIToken::Newline))
829         // The next instruction can be on the same line.
830         continue;
831     }
832     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
833     lex();
834   }
835 
836   // Construct successor list by searching for basic block machine operands.
837   if (!ExplicitSuccessors) {
838     SmallVector<MachineBasicBlock*,4> Successors;
839     bool IsFallthrough;
840     guessSuccessors(MBB, Successors, IsFallthrough);
841     for (MachineBasicBlock *Succ : Successors)
842       MBB.addSuccessor(Succ);
843 
844     if (IsFallthrough) {
845       AddFalthroughFrom = &MBB;
846     } else {
847       MBB.normalizeSuccProbs();
848     }
849   }
850 
851   return false;
852 }
853 
854 bool MIParser::parseBasicBlocks() {
855   lex();
856   // Skip until the first machine basic block.
857   while (Token.is(MIToken::Newline))
858     lex();
859   if (Token.isErrorOrEOF())
860     return Token.isError();
861   // The first parsing pass should have verified that this token is a MBB label
862   // in the 'parseBasicBlockDefinitions' method.
863   assert(Token.is(MIToken::MachineBasicBlockLabel));
864   MachineBasicBlock *AddFalthroughFrom = nullptr;
865   do {
866     MachineBasicBlock *MBB = nullptr;
867     if (parseMBBReference(MBB))
868       return true;
869     if (AddFalthroughFrom) {
870       if (!AddFalthroughFrom->isSuccessor(MBB))
871         AddFalthroughFrom->addSuccessor(MBB);
872       AddFalthroughFrom->normalizeSuccProbs();
873       AddFalthroughFrom = nullptr;
874     }
875     if (parseBasicBlock(*MBB, AddFalthroughFrom))
876       return true;
877     // The method 'parseBasicBlock' should parse the whole block until the next
878     // block or the end of file.
879     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
880   } while (Token.isNot(MIToken::Eof));
881   return false;
882 }
883 
884 bool MIParser::parse(MachineInstr *&MI) {
885   // Parse any register operands before '='
886   MachineOperand MO = MachineOperand::CreateImm(0);
887   SmallVector<ParsedMachineOperand, 8> Operands;
888   while (Token.isRegister() || Token.isRegisterFlag()) {
889     auto Loc = Token.location();
890     Optional<unsigned> TiedDefIdx;
891     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
892       return true;
893     Operands.push_back(
894         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
895     if (Token.isNot(MIToken::comma))
896       break;
897     lex();
898   }
899   if (!Operands.empty() && expectAndConsume(MIToken::equal))
900     return true;
901 
902   unsigned OpCode, Flags = 0;
903   if (Token.isError() || parseInstruction(OpCode, Flags))
904     return true;
905 
906   // Parse the remaining machine operands.
907   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
908          Token.isNot(MIToken::kw_post_instr_symbol) &&
909          Token.isNot(MIToken::kw_debug_location) &&
910          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
911     auto Loc = Token.location();
912     Optional<unsigned> TiedDefIdx;
913     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
914       return true;
915     if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
916       MO.setIsDebug();
917     Operands.push_back(
918         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
919     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
920         Token.is(MIToken::lbrace))
921       break;
922     if (Token.isNot(MIToken::comma))
923       return error("expected ',' before the next machine operand");
924     lex();
925   }
926 
927   MCSymbol *PreInstrSymbol = nullptr;
928   if (Token.is(MIToken::kw_pre_instr_symbol))
929     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
930       return true;
931   MCSymbol *PostInstrSymbol = nullptr;
932   if (Token.is(MIToken::kw_post_instr_symbol))
933     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
934       return true;
935 
936   DebugLoc DebugLocation;
937   if (Token.is(MIToken::kw_debug_location)) {
938     lex();
939     MDNode *Node = nullptr;
940     if (Token.is(MIToken::exclaim)) {
941       if (parseMDNode(Node))
942         return true;
943     } else if (Token.is(MIToken::md_dilocation)) {
944       if (parseDILocation(Node))
945         return true;
946     } else
947       return error("expected a metadata node after 'debug-location'");
948     if (!isa<DILocation>(Node))
949       return error("referenced metadata is not a DILocation");
950     DebugLocation = DebugLoc(Node);
951   }
952 
953   // Parse the machine memory operands.
954   SmallVector<MachineMemOperand *, 2> MemOperands;
955   if (Token.is(MIToken::coloncolon)) {
956     lex();
957     while (!Token.isNewlineOrEOF()) {
958       MachineMemOperand *MemOp = nullptr;
959       if (parseMachineMemoryOperand(MemOp))
960         return true;
961       MemOperands.push_back(MemOp);
962       if (Token.isNewlineOrEOF())
963         break;
964       if (Token.isNot(MIToken::comma))
965         return error("expected ',' before the next machine memory operand");
966       lex();
967     }
968   }
969 
970   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
971   if (!MCID.isVariadic()) {
972     // FIXME: Move the implicit operand verification to the machine verifier.
973     if (verifyImplicitOperands(Operands, MCID))
974       return true;
975   }
976 
977   // TODO: Check for extraneous machine operands.
978   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
979   MI->setFlags(Flags);
980   for (const auto &Operand : Operands)
981     MI->addOperand(MF, Operand.Operand);
982   if (assignRegisterTies(*MI, Operands))
983     return true;
984   if (PreInstrSymbol)
985     MI->setPreInstrSymbol(MF, PreInstrSymbol);
986   if (PostInstrSymbol)
987     MI->setPostInstrSymbol(MF, PostInstrSymbol);
988   if (!MemOperands.empty())
989     MI->setMemRefs(MF, MemOperands);
990   return false;
991 }
992 
993 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
994   lex();
995   if (Token.isNot(MIToken::MachineBasicBlock))
996     return error("expected a machine basic block reference");
997   if (parseMBBReference(MBB))
998     return true;
999   lex();
1000   if (Token.isNot(MIToken::Eof))
1001     return error(
1002         "expected end of string after the machine basic block reference");
1003   return false;
1004 }
1005 
1006 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
1007   lex();
1008   if (Token.isNot(MIToken::NamedRegister))
1009     return error("expected a named register");
1010   if (parseNamedRegister(Reg))
1011     return true;
1012   lex();
1013   if (Token.isNot(MIToken::Eof))
1014     return error("expected end of string after the register reference");
1015   return false;
1016 }
1017 
1018 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1019   lex();
1020   if (Token.isNot(MIToken::VirtualRegister))
1021     return error("expected a virtual register");
1022   if (parseVirtualRegister(Info))
1023     return true;
1024   lex();
1025   if (Token.isNot(MIToken::Eof))
1026     return error("expected end of string after the register reference");
1027   return false;
1028 }
1029 
1030 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
1031   lex();
1032   if (Token.isNot(MIToken::NamedRegister) &&
1033       Token.isNot(MIToken::VirtualRegister))
1034     return error("expected either a named or virtual register");
1035 
1036   VRegInfo *Info;
1037   if (parseRegister(Reg, Info))
1038     return true;
1039 
1040   lex();
1041   if (Token.isNot(MIToken::Eof))
1042     return error("expected end of string after the register reference");
1043   return false;
1044 }
1045 
1046 bool MIParser::parseStandaloneStackObject(int &FI) {
1047   lex();
1048   if (Token.isNot(MIToken::StackObject))
1049     return error("expected a stack object");
1050   if (parseStackFrameIndex(FI))
1051     return true;
1052   if (Token.isNot(MIToken::Eof))
1053     return error("expected end of string after the stack object reference");
1054   return false;
1055 }
1056 
1057 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1058   lex();
1059   if (Token.is(MIToken::exclaim)) {
1060     if (parseMDNode(Node))
1061       return true;
1062   } else if (Token.is(MIToken::md_diexpr)) {
1063     if (parseDIExpression(Node))
1064       return true;
1065   } else if (Token.is(MIToken::md_dilocation)) {
1066     if (parseDILocation(Node))
1067       return true;
1068   } else
1069     return error("expected a metadata node");
1070   if (Token.isNot(MIToken::Eof))
1071     return error("expected end of string after the metadata node");
1072   return false;
1073 }
1074 
1075 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1076   assert(MO.isImplicit());
1077   return MO.isDef() ? "implicit-def" : "implicit";
1078 }
1079 
1080 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1081                                    unsigned Reg) {
1082   assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1083   return StringRef(TRI->getName(Reg)).lower();
1084 }
1085 
1086 /// Return true if the parsed machine operands contain a given machine operand.
1087 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1088                                 ArrayRef<ParsedMachineOperand> Operands) {
1089   for (const auto &I : Operands) {
1090     if (ImplicitOperand.isIdenticalTo(I.Operand))
1091       return true;
1092   }
1093   return false;
1094 }
1095 
1096 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1097                                       const MCInstrDesc &MCID) {
1098   if (MCID.isCall())
1099     // We can't verify call instructions as they can contain arbitrary implicit
1100     // register and register mask operands.
1101     return false;
1102 
1103   // Gather all the expected implicit operands.
1104   SmallVector<MachineOperand, 4> ImplicitOperands;
1105   if (MCID.ImplicitDefs)
1106     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1107       ImplicitOperands.push_back(
1108           MachineOperand::CreateReg(*ImpDefs, true, true));
1109   if (MCID.ImplicitUses)
1110     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1111       ImplicitOperands.push_back(
1112           MachineOperand::CreateReg(*ImpUses, false, true));
1113 
1114   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1115   assert(TRI && "Expected target register info");
1116   for (const auto &I : ImplicitOperands) {
1117     if (isImplicitOperandIn(I, Operands))
1118       continue;
1119     return error(Operands.empty() ? Token.location() : Operands.back().End,
1120                  Twine("missing implicit register operand '") +
1121                      printImplicitRegisterFlag(I) + " $" +
1122                      getRegisterName(TRI, I.getReg()) + "'");
1123   }
1124   return false;
1125 }
1126 
1127 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1128   // Allow frame and fast math flags for OPCODE
1129   while (Token.is(MIToken::kw_frame_setup) ||
1130          Token.is(MIToken::kw_frame_destroy) ||
1131          Token.is(MIToken::kw_nnan) ||
1132          Token.is(MIToken::kw_ninf) ||
1133          Token.is(MIToken::kw_nsz) ||
1134          Token.is(MIToken::kw_arcp) ||
1135          Token.is(MIToken::kw_contract) ||
1136          Token.is(MIToken::kw_afn) ||
1137          Token.is(MIToken::kw_reassoc) ||
1138          Token.is(MIToken::kw_nuw) ||
1139          Token.is(MIToken::kw_nsw) ||
1140          Token.is(MIToken::kw_exact) ||
1141          Token.is(MIToken::kw_fpexcept)) {
1142     // Mine frame and fast math flags
1143     if (Token.is(MIToken::kw_frame_setup))
1144       Flags |= MachineInstr::FrameSetup;
1145     if (Token.is(MIToken::kw_frame_destroy))
1146       Flags |= MachineInstr::FrameDestroy;
1147     if (Token.is(MIToken::kw_nnan))
1148       Flags |= MachineInstr::FmNoNans;
1149     if (Token.is(MIToken::kw_ninf))
1150       Flags |= MachineInstr::FmNoInfs;
1151     if (Token.is(MIToken::kw_nsz))
1152       Flags |= MachineInstr::FmNsz;
1153     if (Token.is(MIToken::kw_arcp))
1154       Flags |= MachineInstr::FmArcp;
1155     if (Token.is(MIToken::kw_contract))
1156       Flags |= MachineInstr::FmContract;
1157     if (Token.is(MIToken::kw_afn))
1158       Flags |= MachineInstr::FmAfn;
1159     if (Token.is(MIToken::kw_reassoc))
1160       Flags |= MachineInstr::FmReassoc;
1161     if (Token.is(MIToken::kw_nuw))
1162       Flags |= MachineInstr::NoUWrap;
1163     if (Token.is(MIToken::kw_nsw))
1164       Flags |= MachineInstr::NoSWrap;
1165     if (Token.is(MIToken::kw_exact))
1166       Flags |= MachineInstr::IsExact;
1167     if (Token.is(MIToken::kw_fpexcept))
1168       Flags |= MachineInstr::FPExcept;
1169 
1170     lex();
1171   }
1172   if (Token.isNot(MIToken::Identifier))
1173     return error("expected a machine instruction");
1174   StringRef InstrName = Token.stringValue();
1175   if (PFS.Target.parseInstrName(InstrName, OpCode))
1176     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1177   lex();
1178   return false;
1179 }
1180 
1181 bool MIParser::parseNamedRegister(unsigned &Reg) {
1182   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1183   StringRef Name = Token.stringValue();
1184   if (PFS.Target.getRegisterByName(Name, Reg))
1185     return error(Twine("unknown register name '") + Name + "'");
1186   return false;
1187 }
1188 
1189 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1190   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1191   StringRef Name = Token.stringValue();
1192   // TODO: Check that the VReg name is not the same as a physical register name.
1193   //       If it is, then print a warning (when warnings are implemented).
1194   Info = &PFS.getVRegInfoNamed(Name);
1195   return false;
1196 }
1197 
1198 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1199   if (Token.is(MIToken::NamedVirtualRegister))
1200     return parseNamedVirtualRegister(Info);
1201   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1202   unsigned ID;
1203   if (getUnsigned(ID))
1204     return true;
1205   Info = &PFS.getVRegInfo(ID);
1206   return false;
1207 }
1208 
1209 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1210   switch (Token.kind()) {
1211   case MIToken::underscore:
1212     Reg = 0;
1213     return false;
1214   case MIToken::NamedRegister:
1215     return parseNamedRegister(Reg);
1216   case MIToken::NamedVirtualRegister:
1217   case MIToken::VirtualRegister:
1218     if (parseVirtualRegister(Info))
1219       return true;
1220     Reg = Info->VReg;
1221     return false;
1222   // TODO: Parse other register kinds.
1223   default:
1224     llvm_unreachable("The current token should be a register");
1225   }
1226 }
1227 
1228 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1229   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1230     return error("expected '_', register class, or register bank name");
1231   StringRef::iterator Loc = Token.location();
1232   StringRef Name = Token.stringValue();
1233 
1234   // Was it a register class?
1235   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1236   if (RC) {
1237     lex();
1238 
1239     switch (RegInfo.Kind) {
1240     case VRegInfo::UNKNOWN:
1241     case VRegInfo::NORMAL:
1242       RegInfo.Kind = VRegInfo::NORMAL;
1243       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1244         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1245         return error(Loc, Twine("conflicting register classes, previously: ") +
1246                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1247       }
1248       RegInfo.D.RC = RC;
1249       RegInfo.Explicit = true;
1250       return false;
1251 
1252     case VRegInfo::GENERIC:
1253     case VRegInfo::REGBANK:
1254       return error(Loc, "register class specification on generic register");
1255     }
1256     llvm_unreachable("Unexpected register kind");
1257   }
1258 
1259   // Should be a register bank or a generic register.
1260   const RegisterBank *RegBank = nullptr;
1261   if (Name != "_") {
1262     RegBank = PFS.Target.getRegBank(Name);
1263     if (!RegBank)
1264       return error(Loc, "expected '_', register class, or register bank name");
1265   }
1266 
1267   lex();
1268 
1269   switch (RegInfo.Kind) {
1270   case VRegInfo::UNKNOWN:
1271   case VRegInfo::GENERIC:
1272   case VRegInfo::REGBANK:
1273     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1274     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1275       return error(Loc, "conflicting generic register banks");
1276     RegInfo.D.RegBank = RegBank;
1277     RegInfo.Explicit = true;
1278     return false;
1279 
1280   case VRegInfo::NORMAL:
1281     return error(Loc, "register bank specification on normal register");
1282   }
1283   llvm_unreachable("Unexpected register kind");
1284 }
1285 
1286 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1287   const unsigned OldFlags = Flags;
1288   switch (Token.kind()) {
1289   case MIToken::kw_implicit:
1290     Flags |= RegState::Implicit;
1291     break;
1292   case MIToken::kw_implicit_define:
1293     Flags |= RegState::ImplicitDefine;
1294     break;
1295   case MIToken::kw_def:
1296     Flags |= RegState::Define;
1297     break;
1298   case MIToken::kw_dead:
1299     Flags |= RegState::Dead;
1300     break;
1301   case MIToken::kw_killed:
1302     Flags |= RegState::Kill;
1303     break;
1304   case MIToken::kw_undef:
1305     Flags |= RegState::Undef;
1306     break;
1307   case MIToken::kw_internal:
1308     Flags |= RegState::InternalRead;
1309     break;
1310   case MIToken::kw_early_clobber:
1311     Flags |= RegState::EarlyClobber;
1312     break;
1313   case MIToken::kw_debug_use:
1314     Flags |= RegState::Debug;
1315     break;
1316   case MIToken::kw_renamable:
1317     Flags |= RegState::Renamable;
1318     break;
1319   default:
1320     llvm_unreachable("The current token should be a register flag");
1321   }
1322   if (OldFlags == Flags)
1323     // We know that the same flag is specified more than once when the flags
1324     // weren't modified.
1325     return error("duplicate '" + Token.stringValue() + "' register flag");
1326   lex();
1327   return false;
1328 }
1329 
1330 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1331   assert(Token.is(MIToken::dot));
1332   lex();
1333   if (Token.isNot(MIToken::Identifier))
1334     return error("expected a subregister index after '.'");
1335   auto Name = Token.stringValue();
1336   SubReg = PFS.Target.getSubRegIndex(Name);
1337   if (!SubReg)
1338     return error(Twine("use of unknown subregister index '") + Name + "'");
1339   lex();
1340   return false;
1341 }
1342 
1343 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1344   if (!consumeIfPresent(MIToken::kw_tied_def))
1345     return true;
1346   if (Token.isNot(MIToken::IntegerLiteral))
1347     return error("expected an integer literal after 'tied-def'");
1348   if (getUnsigned(TiedDefIdx))
1349     return true;
1350   lex();
1351   if (expectAndConsume(MIToken::rparen))
1352     return true;
1353   return false;
1354 }
1355 
1356 bool MIParser::assignRegisterTies(MachineInstr &MI,
1357                                   ArrayRef<ParsedMachineOperand> Operands) {
1358   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1359   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1360     if (!Operands[I].TiedDefIdx)
1361       continue;
1362     // The parser ensures that this operand is a register use, so we just have
1363     // to check the tied-def operand.
1364     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1365     if (DefIdx >= E)
1366       return error(Operands[I].Begin,
1367                    Twine("use of invalid tied-def operand index '" +
1368                          Twine(DefIdx) + "'; instruction has only ") +
1369                        Twine(E) + " operands");
1370     const auto &DefOperand = Operands[DefIdx].Operand;
1371     if (!DefOperand.isReg() || !DefOperand.isDef())
1372       // FIXME: add note with the def operand.
1373       return error(Operands[I].Begin,
1374                    Twine("use of invalid tied-def operand index '") +
1375                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1376                        " isn't a defined register");
1377     // Check that the tied-def operand wasn't tied elsewhere.
1378     for (const auto &TiedPair : TiedRegisterPairs) {
1379       if (TiedPair.first == DefIdx)
1380         return error(Operands[I].Begin,
1381                      Twine("the tied-def operand #") + Twine(DefIdx) +
1382                          " is already tied with another register operand");
1383     }
1384     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1385   }
1386   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1387   // indices must be less than tied max.
1388   for (const auto &TiedPair : TiedRegisterPairs)
1389     MI.tieOperands(TiedPair.first, TiedPair.second);
1390   return false;
1391 }
1392 
1393 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1394                                     Optional<unsigned> &TiedDefIdx,
1395                                     bool IsDef) {
1396   unsigned Flags = IsDef ? RegState::Define : 0;
1397   while (Token.isRegisterFlag()) {
1398     if (parseRegisterFlag(Flags))
1399       return true;
1400   }
1401   if (!Token.isRegister())
1402     return error("expected a register after register flags");
1403   unsigned Reg;
1404   VRegInfo *RegInfo;
1405   if (parseRegister(Reg, RegInfo))
1406     return true;
1407   lex();
1408   unsigned SubReg = 0;
1409   if (Token.is(MIToken::dot)) {
1410     if (parseSubRegisterIndex(SubReg))
1411       return true;
1412     if (!Register::isVirtualRegister(Reg))
1413       return error("subregister index expects a virtual register");
1414   }
1415   if (Token.is(MIToken::colon)) {
1416     if (!Register::isVirtualRegister(Reg))
1417       return error("register class specification expects a virtual register");
1418     lex();
1419     if (parseRegisterClassOrBank(*RegInfo))
1420         return true;
1421   }
1422   MachineRegisterInfo &MRI = MF.getRegInfo();
1423   if ((Flags & RegState::Define) == 0) {
1424     if (consumeIfPresent(MIToken::lparen)) {
1425       unsigned Idx;
1426       if (!parseRegisterTiedDefIndex(Idx))
1427         TiedDefIdx = Idx;
1428       else {
1429         // Try a redundant low-level type.
1430         LLT Ty;
1431         if (parseLowLevelType(Token.location(), Ty))
1432           return error("expected tied-def or low-level type after '('");
1433 
1434         if (expectAndConsume(MIToken::rparen))
1435           return true;
1436 
1437         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1438           return error("inconsistent type for generic virtual register");
1439 
1440         MRI.setType(Reg, Ty);
1441       }
1442     }
1443   } else if (consumeIfPresent(MIToken::lparen)) {
1444     // Virtual registers may have a tpe with GlobalISel.
1445     if (!Register::isVirtualRegister(Reg))
1446       return error("unexpected type on physical register");
1447 
1448     LLT Ty;
1449     if (parseLowLevelType(Token.location(), Ty))
1450       return true;
1451 
1452     if (expectAndConsume(MIToken::rparen))
1453       return true;
1454 
1455     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1456       return error("inconsistent type for generic virtual register");
1457 
1458     MRI.setType(Reg, Ty);
1459   } else if (Register::isVirtualRegister(Reg)) {
1460     // Generic virtual registers must have a type.
1461     // If we end up here this means the type hasn't been specified and
1462     // this is bad!
1463     if (RegInfo->Kind == VRegInfo::GENERIC ||
1464         RegInfo->Kind == VRegInfo::REGBANK)
1465       return error("generic virtual registers must have a type");
1466   }
1467   Dest = MachineOperand::CreateReg(
1468       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1469       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1470       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1471       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1472 
1473   return false;
1474 }
1475 
1476 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1477   assert(Token.is(MIToken::IntegerLiteral));
1478   const APSInt &Int = Token.integerValue();
1479   if (Int.getMinSignedBits() > 64)
1480     return error("integer literal is too large to be an immediate operand");
1481   Dest = MachineOperand::CreateImm(Int.getExtValue());
1482   lex();
1483   return false;
1484 }
1485 
1486 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1487                                const Constant *&C) {
1488   auto Source = StringValue.str(); // The source has to be null terminated.
1489   SMDiagnostic Err;
1490   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1491                          &PFS.IRSlots);
1492   if (!C)
1493     return error(Loc + Err.getColumnNo(), Err.getMessage());
1494   return false;
1495 }
1496 
1497 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1498   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1499     return true;
1500   lex();
1501   return false;
1502 }
1503 
1504 // See LLT implemntation for bit size limits.
1505 static bool verifyScalarSize(uint64_t Size) {
1506   return Size != 0 && isUInt<16>(Size);
1507 }
1508 
1509 static bool verifyVectorElementCount(uint64_t NumElts) {
1510   return NumElts != 0 && isUInt<16>(NumElts);
1511 }
1512 
1513 static bool verifyAddrSpace(uint64_t AddrSpace) {
1514   return isUInt<24>(AddrSpace);
1515 }
1516 
1517 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1518   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1519     StringRef SizeStr = Token.range().drop_front();
1520     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1521       return error("expected integers after 's'/'p' type character");
1522   }
1523 
1524   if (Token.range().front() == 's') {
1525     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1526     if (!verifyScalarSize(ScalarSize))
1527       return error("invalid size for scalar type");
1528 
1529     Ty = LLT::scalar(ScalarSize);
1530     lex();
1531     return false;
1532   } else if (Token.range().front() == 'p') {
1533     const DataLayout &DL = MF.getDataLayout();
1534     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1535     if (!verifyAddrSpace(AS))
1536       return error("invalid address space number");
1537 
1538     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1539     lex();
1540     return false;
1541   }
1542 
1543   // Now we're looking for a vector.
1544   if (Token.isNot(MIToken::less))
1545     return error(Loc,
1546                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1547   lex();
1548 
1549   if (Token.isNot(MIToken::IntegerLiteral))
1550     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1551   uint64_t NumElements = Token.integerValue().getZExtValue();
1552   if (!verifyVectorElementCount(NumElements))
1553     return error("invalid number of vector elements");
1554 
1555   lex();
1556 
1557   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1558     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1559   lex();
1560 
1561   if (Token.range().front() != 's' && Token.range().front() != 'p')
1562     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1563   StringRef SizeStr = Token.range().drop_front();
1564   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1565     return error("expected integers after 's'/'p' type character");
1566 
1567   if (Token.range().front() == 's') {
1568     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1569     if (!verifyScalarSize(ScalarSize))
1570       return error("invalid size for scalar type");
1571     Ty = LLT::scalar(ScalarSize);
1572   } else if (Token.range().front() == 'p') {
1573     const DataLayout &DL = MF.getDataLayout();
1574     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1575     if (!verifyAddrSpace(AS))
1576       return error("invalid address space number");
1577 
1578     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1579   } else
1580     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1581   lex();
1582 
1583   if (Token.isNot(MIToken::greater))
1584     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1585   lex();
1586 
1587   Ty = LLT::vector(NumElements, Ty);
1588   return false;
1589 }
1590 
1591 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1592   assert(Token.is(MIToken::Identifier));
1593   StringRef TypeStr = Token.range();
1594   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1595       TypeStr.front() != 'p')
1596     return error(
1597         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1598   StringRef SizeStr = Token.range().drop_front();
1599   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1600     return error("expected integers after 'i'/'s'/'p' type character");
1601 
1602   auto Loc = Token.location();
1603   lex();
1604   if (Token.isNot(MIToken::IntegerLiteral)) {
1605     if (Token.isNot(MIToken::Identifier) ||
1606         !(Token.range() == "true" || Token.range() == "false"))
1607       return error("expected an integer literal");
1608   }
1609   const Constant *C = nullptr;
1610   if (parseIRConstant(Loc, C))
1611     return true;
1612   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1613   return false;
1614 }
1615 
1616 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1617   auto Loc = Token.location();
1618   lex();
1619   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1620       Token.isNot(MIToken::HexLiteral))
1621     return error("expected a floating point literal");
1622   const Constant *C = nullptr;
1623   if (parseIRConstant(Loc, C))
1624     return true;
1625   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1626   return false;
1627 }
1628 
1629 bool MIParser::getUnsigned(unsigned &Result) {
1630   if (Token.hasIntegerValue()) {
1631     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1632     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1633     if (Val64 == Limit)
1634       return error("expected 32-bit integer (too large)");
1635     Result = Val64;
1636     return false;
1637   }
1638   if (Token.is(MIToken::HexLiteral)) {
1639     APInt A;
1640     if (getHexUint(A))
1641       return true;
1642     if (A.getBitWidth() > 32)
1643       return error("expected 32-bit integer (too large)");
1644     Result = A.getZExtValue();
1645     return false;
1646   }
1647   return true;
1648 }
1649 
1650 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1651   assert(Token.is(MIToken::MachineBasicBlock) ||
1652          Token.is(MIToken::MachineBasicBlockLabel));
1653   unsigned Number;
1654   if (getUnsigned(Number))
1655     return true;
1656   auto MBBInfo = PFS.MBBSlots.find(Number);
1657   if (MBBInfo == PFS.MBBSlots.end())
1658     return error(Twine("use of undefined machine basic block #") +
1659                  Twine(Number));
1660   MBB = MBBInfo->second;
1661   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1662   // we drop the <irname> from the bb.<id>.<irname> format.
1663   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1664     return error(Twine("the name of machine basic block #") + Twine(Number) +
1665                  " isn't '" + Token.stringValue() + "'");
1666   return false;
1667 }
1668 
1669 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1670   MachineBasicBlock *MBB;
1671   if (parseMBBReference(MBB))
1672     return true;
1673   Dest = MachineOperand::CreateMBB(MBB);
1674   lex();
1675   return false;
1676 }
1677 
1678 bool MIParser::parseStackFrameIndex(int &FI) {
1679   assert(Token.is(MIToken::StackObject));
1680   unsigned ID;
1681   if (getUnsigned(ID))
1682     return true;
1683   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1684   if (ObjectInfo == PFS.StackObjectSlots.end())
1685     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1686                  "'");
1687   StringRef Name;
1688   if (const auto *Alloca =
1689           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1690     Name = Alloca->getName();
1691   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1692     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1693                  "' isn't '" + Token.stringValue() + "'");
1694   lex();
1695   FI = ObjectInfo->second;
1696   return false;
1697 }
1698 
1699 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1700   int FI;
1701   if (parseStackFrameIndex(FI))
1702     return true;
1703   Dest = MachineOperand::CreateFI(FI);
1704   return false;
1705 }
1706 
1707 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1708   assert(Token.is(MIToken::FixedStackObject));
1709   unsigned ID;
1710   if (getUnsigned(ID))
1711     return true;
1712   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1713   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1714     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1715                  Twine(ID) + "'");
1716   lex();
1717   FI = ObjectInfo->second;
1718   return false;
1719 }
1720 
1721 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1722   int FI;
1723   if (parseFixedStackFrameIndex(FI))
1724     return true;
1725   Dest = MachineOperand::CreateFI(FI);
1726   return false;
1727 }
1728 
1729 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1730   switch (Token.kind()) {
1731   case MIToken::NamedGlobalValue: {
1732     const Module *M = MF.getFunction().getParent();
1733     GV = M->getNamedValue(Token.stringValue());
1734     if (!GV)
1735       return error(Twine("use of undefined global value '") + Token.range() +
1736                    "'");
1737     break;
1738   }
1739   case MIToken::GlobalValue: {
1740     unsigned GVIdx;
1741     if (getUnsigned(GVIdx))
1742       return true;
1743     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1744       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1745                    "'");
1746     GV = PFS.IRSlots.GlobalValues[GVIdx];
1747     break;
1748   }
1749   default:
1750     llvm_unreachable("The current token should be a global value");
1751   }
1752   return false;
1753 }
1754 
1755 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1756   GlobalValue *GV = nullptr;
1757   if (parseGlobalValue(GV))
1758     return true;
1759   lex();
1760   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1761   if (parseOperandsOffset(Dest))
1762     return true;
1763   return false;
1764 }
1765 
1766 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1767   assert(Token.is(MIToken::ConstantPoolItem));
1768   unsigned ID;
1769   if (getUnsigned(ID))
1770     return true;
1771   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1772   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1773     return error("use of undefined constant '%const." + Twine(ID) + "'");
1774   lex();
1775   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1776   if (parseOperandsOffset(Dest))
1777     return true;
1778   return false;
1779 }
1780 
1781 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1782   assert(Token.is(MIToken::JumpTableIndex));
1783   unsigned ID;
1784   if (getUnsigned(ID))
1785     return true;
1786   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1787   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1788     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1789   lex();
1790   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1791   return false;
1792 }
1793 
1794 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1795   assert(Token.is(MIToken::ExternalSymbol));
1796   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1797   lex();
1798   Dest = MachineOperand::CreateES(Symbol);
1799   if (parseOperandsOffset(Dest))
1800     return true;
1801   return false;
1802 }
1803 
1804 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1805   assert(Token.is(MIToken::MCSymbol));
1806   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1807   lex();
1808   Dest = MachineOperand::CreateMCSymbol(Symbol);
1809   if (parseOperandsOffset(Dest))
1810     return true;
1811   return false;
1812 }
1813 
1814 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1815   assert(Token.is(MIToken::SubRegisterIndex));
1816   StringRef Name = Token.stringValue();
1817   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
1818   if (SubRegIndex == 0)
1819     return error(Twine("unknown subregister index '") + Name + "'");
1820   lex();
1821   Dest = MachineOperand::CreateImm(SubRegIndex);
1822   return false;
1823 }
1824 
1825 bool MIParser::parseMDNode(MDNode *&Node) {
1826   assert(Token.is(MIToken::exclaim));
1827 
1828   auto Loc = Token.location();
1829   lex();
1830   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1831     return error("expected metadata id after '!'");
1832   unsigned ID;
1833   if (getUnsigned(ID))
1834     return true;
1835   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1836   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1837     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1838   lex();
1839   Node = NodeInfo->second.get();
1840   return false;
1841 }
1842 
1843 bool MIParser::parseDIExpression(MDNode *&Expr) {
1844   assert(Token.is(MIToken::md_diexpr));
1845   lex();
1846 
1847   // FIXME: Share this parsing with the IL parser.
1848   SmallVector<uint64_t, 8> Elements;
1849 
1850   if (expectAndConsume(MIToken::lparen))
1851     return true;
1852 
1853   if (Token.isNot(MIToken::rparen)) {
1854     do {
1855       if (Token.is(MIToken::Identifier)) {
1856         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1857           lex();
1858           Elements.push_back(Op);
1859           continue;
1860         }
1861         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
1862           lex();
1863           Elements.push_back(Enc);
1864           continue;
1865         }
1866         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1867       }
1868 
1869       if (Token.isNot(MIToken::IntegerLiteral) ||
1870           Token.integerValue().isSigned())
1871         return error("expected unsigned integer");
1872 
1873       auto &U = Token.integerValue();
1874       if (U.ugt(UINT64_MAX))
1875         return error("element too large, limit is " + Twine(UINT64_MAX));
1876       Elements.push_back(U.getZExtValue());
1877       lex();
1878 
1879     } while (consumeIfPresent(MIToken::comma));
1880   }
1881 
1882   if (expectAndConsume(MIToken::rparen))
1883     return true;
1884 
1885   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1886   return false;
1887 }
1888 
1889 bool MIParser::parseDILocation(MDNode *&Loc) {
1890   assert(Token.is(MIToken::md_dilocation));
1891   lex();
1892 
1893   bool HaveLine = false;
1894   unsigned Line = 0;
1895   unsigned Column = 0;
1896   MDNode *Scope = nullptr;
1897   MDNode *InlinedAt = nullptr;
1898   bool ImplicitCode = false;
1899 
1900   if (expectAndConsume(MIToken::lparen))
1901     return true;
1902 
1903   if (Token.isNot(MIToken::rparen)) {
1904     do {
1905       if (Token.is(MIToken::Identifier)) {
1906         if (Token.stringValue() == "line") {
1907           lex();
1908           if (expectAndConsume(MIToken::colon))
1909             return true;
1910           if (Token.isNot(MIToken::IntegerLiteral) ||
1911               Token.integerValue().isSigned())
1912             return error("expected unsigned integer");
1913           Line = Token.integerValue().getZExtValue();
1914           HaveLine = true;
1915           lex();
1916           continue;
1917         }
1918         if (Token.stringValue() == "column") {
1919           lex();
1920           if (expectAndConsume(MIToken::colon))
1921             return true;
1922           if (Token.isNot(MIToken::IntegerLiteral) ||
1923               Token.integerValue().isSigned())
1924             return error("expected unsigned integer");
1925           Column = Token.integerValue().getZExtValue();
1926           lex();
1927           continue;
1928         }
1929         if (Token.stringValue() == "scope") {
1930           lex();
1931           if (expectAndConsume(MIToken::colon))
1932             return true;
1933           if (parseMDNode(Scope))
1934             return error("expected metadata node");
1935           if (!isa<DIScope>(Scope))
1936             return error("expected DIScope node");
1937           continue;
1938         }
1939         if (Token.stringValue() == "inlinedAt") {
1940           lex();
1941           if (expectAndConsume(MIToken::colon))
1942             return true;
1943           if (Token.is(MIToken::exclaim)) {
1944             if (parseMDNode(InlinedAt))
1945               return true;
1946           } else if (Token.is(MIToken::md_dilocation)) {
1947             if (parseDILocation(InlinedAt))
1948               return true;
1949           } else
1950             return error("expected metadata node");
1951           if (!isa<DILocation>(InlinedAt))
1952             return error("expected DILocation node");
1953           continue;
1954         }
1955         if (Token.stringValue() == "isImplicitCode") {
1956           lex();
1957           if (expectAndConsume(MIToken::colon))
1958             return true;
1959           if (!Token.is(MIToken::Identifier))
1960             return error("expected true/false");
1961           // As far as I can see, we don't have any existing need for parsing
1962           // true/false in MIR yet. Do it ad-hoc until there's something else
1963           // that needs it.
1964           if (Token.stringValue() == "true")
1965             ImplicitCode = true;
1966           else if (Token.stringValue() == "false")
1967             ImplicitCode = false;
1968           else
1969             return error("expected true/false");
1970           lex();
1971           continue;
1972         }
1973       }
1974       return error(Twine("invalid DILocation argument '") +
1975                    Token.stringValue() + "'");
1976     } while (consumeIfPresent(MIToken::comma));
1977   }
1978 
1979   if (expectAndConsume(MIToken::rparen))
1980     return true;
1981 
1982   if (!HaveLine)
1983     return error("DILocation requires line number");
1984   if (!Scope)
1985     return error("DILocation requires a scope");
1986 
1987   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
1988                         InlinedAt, ImplicitCode);
1989   return false;
1990 }
1991 
1992 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1993   MDNode *Node = nullptr;
1994   if (Token.is(MIToken::exclaim)) {
1995     if (parseMDNode(Node))
1996       return true;
1997   } else if (Token.is(MIToken::md_diexpr)) {
1998     if (parseDIExpression(Node))
1999       return true;
2000   }
2001   Dest = MachineOperand::CreateMetadata(Node);
2002   return false;
2003 }
2004 
2005 bool MIParser::parseCFIOffset(int &Offset) {
2006   if (Token.isNot(MIToken::IntegerLiteral))
2007     return error("expected a cfi offset");
2008   if (Token.integerValue().getMinSignedBits() > 32)
2009     return error("expected a 32 bit integer (the cfi offset is too large)");
2010   Offset = (int)Token.integerValue().getExtValue();
2011   lex();
2012   return false;
2013 }
2014 
2015 bool MIParser::parseCFIRegister(unsigned &Reg) {
2016   if (Token.isNot(MIToken::NamedRegister))
2017     return error("expected a cfi register");
2018   unsigned LLVMReg;
2019   if (parseNamedRegister(LLVMReg))
2020     return true;
2021   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2022   assert(TRI && "Expected target register info");
2023   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2024   if (DwarfReg < 0)
2025     return error("invalid DWARF register");
2026   Reg = (unsigned)DwarfReg;
2027   lex();
2028   return false;
2029 }
2030 
2031 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2032   do {
2033     if (Token.isNot(MIToken::HexLiteral))
2034       return error("expected a hexadecimal literal");
2035     unsigned Value;
2036     if (getUnsigned(Value))
2037       return true;
2038     if (Value > UINT8_MAX)
2039       return error("expected a 8-bit integer (too large)");
2040     Values.push_back(static_cast<uint8_t>(Value));
2041     lex();
2042   } while (consumeIfPresent(MIToken::comma));
2043   return false;
2044 }
2045 
2046 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2047   auto Kind = Token.kind();
2048   lex();
2049   int Offset;
2050   unsigned Reg;
2051   unsigned CFIIndex;
2052   switch (Kind) {
2053   case MIToken::kw_cfi_same_value:
2054     if (parseCFIRegister(Reg))
2055       return true;
2056     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2057     break;
2058   case MIToken::kw_cfi_offset:
2059     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2060         parseCFIOffset(Offset))
2061       return true;
2062     CFIIndex =
2063         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2064     break;
2065   case MIToken::kw_cfi_rel_offset:
2066     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2067         parseCFIOffset(Offset))
2068       return true;
2069     CFIIndex = MF.addFrameInst(
2070         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2071     break;
2072   case MIToken::kw_cfi_def_cfa_register:
2073     if (parseCFIRegister(Reg))
2074       return true;
2075     CFIIndex =
2076         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2077     break;
2078   case MIToken::kw_cfi_def_cfa_offset:
2079     if (parseCFIOffset(Offset))
2080       return true;
2081     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
2082     CFIIndex = MF.addFrameInst(
2083         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
2084     break;
2085   case MIToken::kw_cfi_adjust_cfa_offset:
2086     if (parseCFIOffset(Offset))
2087       return true;
2088     CFIIndex = MF.addFrameInst(
2089         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2090     break;
2091   case MIToken::kw_cfi_def_cfa:
2092     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2093         parseCFIOffset(Offset))
2094       return true;
2095     // NB: MCCFIInstruction::createDefCfa negates the offset.
2096     CFIIndex =
2097         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
2098     break;
2099   case MIToken::kw_cfi_remember_state:
2100     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2101     break;
2102   case MIToken::kw_cfi_restore:
2103     if (parseCFIRegister(Reg))
2104       return true;
2105     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2106     break;
2107   case MIToken::kw_cfi_restore_state:
2108     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2109     break;
2110   case MIToken::kw_cfi_undefined:
2111     if (parseCFIRegister(Reg))
2112       return true;
2113     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2114     break;
2115   case MIToken::kw_cfi_register: {
2116     unsigned Reg2;
2117     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2118         parseCFIRegister(Reg2))
2119       return true;
2120 
2121     CFIIndex =
2122         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2123     break;
2124   }
2125   case MIToken::kw_cfi_window_save:
2126     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2127     break;
2128   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2129     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2130     break;
2131   case MIToken::kw_cfi_escape: {
2132     std::string Values;
2133     if (parseCFIEscapeValues(Values))
2134       return true;
2135     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2136     break;
2137   }
2138   default:
2139     // TODO: Parse the other CFI operands.
2140     llvm_unreachable("The current token should be a cfi operand");
2141   }
2142   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2143   return false;
2144 }
2145 
2146 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2147   switch (Token.kind()) {
2148   case MIToken::NamedIRBlock: {
2149     BB = dyn_cast_or_null<BasicBlock>(
2150         F.getValueSymbolTable()->lookup(Token.stringValue()));
2151     if (!BB)
2152       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2153     break;
2154   }
2155   case MIToken::IRBlock: {
2156     unsigned SlotNumber = 0;
2157     if (getUnsigned(SlotNumber))
2158       return true;
2159     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2160     if (!BB)
2161       return error(Twine("use of undefined IR block '%ir-block.") +
2162                    Twine(SlotNumber) + "'");
2163     break;
2164   }
2165   default:
2166     llvm_unreachable("The current token should be an IR block reference");
2167   }
2168   return false;
2169 }
2170 
2171 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2172   assert(Token.is(MIToken::kw_blockaddress));
2173   lex();
2174   if (expectAndConsume(MIToken::lparen))
2175     return true;
2176   if (Token.isNot(MIToken::GlobalValue) &&
2177       Token.isNot(MIToken::NamedGlobalValue))
2178     return error("expected a global value");
2179   GlobalValue *GV = nullptr;
2180   if (parseGlobalValue(GV))
2181     return true;
2182   auto *F = dyn_cast<Function>(GV);
2183   if (!F)
2184     return error("expected an IR function reference");
2185   lex();
2186   if (expectAndConsume(MIToken::comma))
2187     return true;
2188   BasicBlock *BB = nullptr;
2189   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2190     return error("expected an IR block reference");
2191   if (parseIRBlock(BB, *F))
2192     return true;
2193   lex();
2194   if (expectAndConsume(MIToken::rparen))
2195     return true;
2196   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2197   if (parseOperandsOffset(Dest))
2198     return true;
2199   return false;
2200 }
2201 
2202 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2203   assert(Token.is(MIToken::kw_intrinsic));
2204   lex();
2205   if (expectAndConsume(MIToken::lparen))
2206     return error("expected syntax intrinsic(@llvm.whatever)");
2207 
2208   if (Token.isNot(MIToken::NamedGlobalValue))
2209     return error("expected syntax intrinsic(@llvm.whatever)");
2210 
2211   std::string Name = Token.stringValue();
2212   lex();
2213 
2214   if (expectAndConsume(MIToken::rparen))
2215     return error("expected ')' to terminate intrinsic name");
2216 
2217   // Find out what intrinsic we're dealing with, first try the global namespace
2218   // and then the target's private intrinsics if that fails.
2219   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2220   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2221   if (ID == Intrinsic::not_intrinsic && TII)
2222     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2223 
2224   if (ID == Intrinsic::not_intrinsic)
2225     return error("unknown intrinsic name");
2226   Dest = MachineOperand::CreateIntrinsicID(ID);
2227 
2228   return false;
2229 }
2230 
2231 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2232   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2233   bool IsFloat = Token.is(MIToken::kw_floatpred);
2234   lex();
2235 
2236   if (expectAndConsume(MIToken::lparen))
2237     return error("expected syntax intpred(whatever) or floatpred(whatever");
2238 
2239   if (Token.isNot(MIToken::Identifier))
2240     return error("whatever");
2241 
2242   CmpInst::Predicate Pred;
2243   if (IsFloat) {
2244     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2245                .Case("false", CmpInst::FCMP_FALSE)
2246                .Case("oeq", CmpInst::FCMP_OEQ)
2247                .Case("ogt", CmpInst::FCMP_OGT)
2248                .Case("oge", CmpInst::FCMP_OGE)
2249                .Case("olt", CmpInst::FCMP_OLT)
2250                .Case("ole", CmpInst::FCMP_OLE)
2251                .Case("one", CmpInst::FCMP_ONE)
2252                .Case("ord", CmpInst::FCMP_ORD)
2253                .Case("uno", CmpInst::FCMP_UNO)
2254                .Case("ueq", CmpInst::FCMP_UEQ)
2255                .Case("ugt", CmpInst::FCMP_UGT)
2256                .Case("uge", CmpInst::FCMP_UGE)
2257                .Case("ult", CmpInst::FCMP_ULT)
2258                .Case("ule", CmpInst::FCMP_ULE)
2259                .Case("une", CmpInst::FCMP_UNE)
2260                .Case("true", CmpInst::FCMP_TRUE)
2261                .Default(CmpInst::BAD_FCMP_PREDICATE);
2262     if (!CmpInst::isFPPredicate(Pred))
2263       return error("invalid floating-point predicate");
2264   } else {
2265     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2266                .Case("eq", CmpInst::ICMP_EQ)
2267                .Case("ne", CmpInst::ICMP_NE)
2268                .Case("sgt", CmpInst::ICMP_SGT)
2269                .Case("sge", CmpInst::ICMP_SGE)
2270                .Case("slt", CmpInst::ICMP_SLT)
2271                .Case("sle", CmpInst::ICMP_SLE)
2272                .Case("ugt", CmpInst::ICMP_UGT)
2273                .Case("uge", CmpInst::ICMP_UGE)
2274                .Case("ult", CmpInst::ICMP_ULT)
2275                .Case("ule", CmpInst::ICMP_ULE)
2276                .Default(CmpInst::BAD_ICMP_PREDICATE);
2277     if (!CmpInst::isIntPredicate(Pred))
2278       return error("invalid integer predicate");
2279   }
2280 
2281   lex();
2282   Dest = MachineOperand::CreatePredicate(Pred);
2283   if (expectAndConsume(MIToken::rparen))
2284     return error("predicate should be terminated by ')'.");
2285 
2286   return false;
2287 }
2288 
2289 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2290   assert(Token.is(MIToken::kw_shufflemask));
2291 
2292   lex();
2293   if (expectAndConsume(MIToken::lparen))
2294     return error("expected syntax shufflemask(<integer or undef>, ...)");
2295 
2296   SmallVector<Constant *, 32> ShufMask;
2297   LLVMContext &Ctx = MF.getFunction().getContext();
2298   Type *I32Ty = Type::getInt32Ty(Ctx);
2299 
2300   bool AllZero = true;
2301   bool AllUndef = true;
2302 
2303   do {
2304     if (Token.is(MIToken::kw_undef)) {
2305       ShufMask.push_back(UndefValue::get(I32Ty));
2306       AllZero = false;
2307     } else if (Token.is(MIToken::IntegerLiteral)) {
2308       AllUndef = false;
2309       const APSInt &Int = Token.integerValue();
2310       if (!Int.isNullValue())
2311         AllZero = false;
2312       ShufMask.push_back(ConstantInt::get(I32Ty, Int.getExtValue()));
2313     } else
2314       return error("expected integer constant");
2315 
2316     lex();
2317   } while (consumeIfPresent(MIToken::comma));
2318 
2319   if (expectAndConsume(MIToken::rparen))
2320     return error("shufflemask should be terminated by ')'.");
2321 
2322   if (AllZero || AllUndef) {
2323     VectorType *VT = VectorType::get(I32Ty, ShufMask.size());
2324     Constant *C = AllZero ? Constant::getNullValue(VT) : UndefValue::get(VT);
2325     Dest = MachineOperand::CreateShuffleMask(C);
2326   } else
2327     Dest = MachineOperand::CreateShuffleMask(ConstantVector::get(ShufMask));
2328 
2329   return false;
2330 }
2331 
2332 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2333   assert(Token.is(MIToken::kw_target_index));
2334   lex();
2335   if (expectAndConsume(MIToken::lparen))
2336     return true;
2337   if (Token.isNot(MIToken::Identifier))
2338     return error("expected the name of the target index");
2339   int Index = 0;
2340   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2341     return error("use of undefined target index '" + Token.stringValue() + "'");
2342   lex();
2343   if (expectAndConsume(MIToken::rparen))
2344     return true;
2345   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2346   if (parseOperandsOffset(Dest))
2347     return true;
2348   return false;
2349 }
2350 
2351 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2352   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2353   lex();
2354   if (expectAndConsume(MIToken::lparen))
2355     return true;
2356 
2357   uint32_t *Mask = MF.allocateRegMask();
2358   while (true) {
2359     if (Token.isNot(MIToken::NamedRegister))
2360       return error("expected a named register");
2361     unsigned Reg;
2362     if (parseNamedRegister(Reg))
2363       return true;
2364     lex();
2365     Mask[Reg / 32] |= 1U << (Reg % 32);
2366     // TODO: Report an error if the same register is used more than once.
2367     if (Token.isNot(MIToken::comma))
2368       break;
2369     lex();
2370   }
2371 
2372   if (expectAndConsume(MIToken::rparen))
2373     return true;
2374   Dest = MachineOperand::CreateRegMask(Mask);
2375   return false;
2376 }
2377 
2378 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2379   assert(Token.is(MIToken::kw_liveout));
2380   uint32_t *Mask = MF.allocateRegMask();
2381   lex();
2382   if (expectAndConsume(MIToken::lparen))
2383     return true;
2384   while (true) {
2385     if (Token.isNot(MIToken::NamedRegister))
2386       return error("expected a named register");
2387     unsigned Reg;
2388     if (parseNamedRegister(Reg))
2389       return true;
2390     lex();
2391     Mask[Reg / 32] |= 1U << (Reg % 32);
2392     // TODO: Report an error if the same register is used more than once.
2393     if (Token.isNot(MIToken::comma))
2394       break;
2395     lex();
2396   }
2397   if (expectAndConsume(MIToken::rparen))
2398     return true;
2399   Dest = MachineOperand::CreateRegLiveOut(Mask);
2400   return false;
2401 }
2402 
2403 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2404                                    Optional<unsigned> &TiedDefIdx) {
2405   switch (Token.kind()) {
2406   case MIToken::kw_implicit:
2407   case MIToken::kw_implicit_define:
2408   case MIToken::kw_def:
2409   case MIToken::kw_dead:
2410   case MIToken::kw_killed:
2411   case MIToken::kw_undef:
2412   case MIToken::kw_internal:
2413   case MIToken::kw_early_clobber:
2414   case MIToken::kw_debug_use:
2415   case MIToken::kw_renamable:
2416   case MIToken::underscore:
2417   case MIToken::NamedRegister:
2418   case MIToken::VirtualRegister:
2419   case MIToken::NamedVirtualRegister:
2420     return parseRegisterOperand(Dest, TiedDefIdx);
2421   case MIToken::IntegerLiteral:
2422     return parseImmediateOperand(Dest);
2423   case MIToken::kw_half:
2424   case MIToken::kw_float:
2425   case MIToken::kw_double:
2426   case MIToken::kw_x86_fp80:
2427   case MIToken::kw_fp128:
2428   case MIToken::kw_ppc_fp128:
2429     return parseFPImmediateOperand(Dest);
2430   case MIToken::MachineBasicBlock:
2431     return parseMBBOperand(Dest);
2432   case MIToken::StackObject:
2433     return parseStackObjectOperand(Dest);
2434   case MIToken::FixedStackObject:
2435     return parseFixedStackObjectOperand(Dest);
2436   case MIToken::GlobalValue:
2437   case MIToken::NamedGlobalValue:
2438     return parseGlobalAddressOperand(Dest);
2439   case MIToken::ConstantPoolItem:
2440     return parseConstantPoolIndexOperand(Dest);
2441   case MIToken::JumpTableIndex:
2442     return parseJumpTableIndexOperand(Dest);
2443   case MIToken::ExternalSymbol:
2444     return parseExternalSymbolOperand(Dest);
2445   case MIToken::MCSymbol:
2446     return parseMCSymbolOperand(Dest);
2447   case MIToken::SubRegisterIndex:
2448     return parseSubRegisterIndexOperand(Dest);
2449   case MIToken::md_diexpr:
2450   case MIToken::exclaim:
2451     return parseMetadataOperand(Dest);
2452   case MIToken::kw_cfi_same_value:
2453   case MIToken::kw_cfi_offset:
2454   case MIToken::kw_cfi_rel_offset:
2455   case MIToken::kw_cfi_def_cfa_register:
2456   case MIToken::kw_cfi_def_cfa_offset:
2457   case MIToken::kw_cfi_adjust_cfa_offset:
2458   case MIToken::kw_cfi_escape:
2459   case MIToken::kw_cfi_def_cfa:
2460   case MIToken::kw_cfi_register:
2461   case MIToken::kw_cfi_remember_state:
2462   case MIToken::kw_cfi_restore:
2463   case MIToken::kw_cfi_restore_state:
2464   case MIToken::kw_cfi_undefined:
2465   case MIToken::kw_cfi_window_save:
2466   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2467     return parseCFIOperand(Dest);
2468   case MIToken::kw_blockaddress:
2469     return parseBlockAddressOperand(Dest);
2470   case MIToken::kw_intrinsic:
2471     return parseIntrinsicOperand(Dest);
2472   case MIToken::kw_target_index:
2473     return parseTargetIndexOperand(Dest);
2474   case MIToken::kw_liveout:
2475     return parseLiveoutRegisterMaskOperand(Dest);
2476   case MIToken::kw_floatpred:
2477   case MIToken::kw_intpred:
2478     return parsePredicateOperand(Dest);
2479   case MIToken::kw_shufflemask:
2480     return parseShuffleMaskOperand(Dest);
2481   case MIToken::Error:
2482     return true;
2483   case MIToken::Identifier:
2484     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2485       Dest = MachineOperand::CreateRegMask(RegMask);
2486       lex();
2487       break;
2488     } else if (Token.stringValue() == "CustomRegMask") {
2489       return parseCustomRegisterMaskOperand(Dest);
2490     } else
2491       return parseTypedImmediateOperand(Dest);
2492   default:
2493     // FIXME: Parse the MCSymbol machine operand.
2494     return error("expected a machine operand");
2495   }
2496   return false;
2497 }
2498 
2499 bool MIParser::parseMachineOperandAndTargetFlags(
2500     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2501   unsigned TF = 0;
2502   bool HasTargetFlags = false;
2503   if (Token.is(MIToken::kw_target_flags)) {
2504     HasTargetFlags = true;
2505     lex();
2506     if (expectAndConsume(MIToken::lparen))
2507       return true;
2508     if (Token.isNot(MIToken::Identifier))
2509       return error("expected the name of the target flag");
2510     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2511       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2512         return error("use of undefined target flag '" + Token.stringValue() +
2513                      "'");
2514     }
2515     lex();
2516     while (Token.is(MIToken::comma)) {
2517       lex();
2518       if (Token.isNot(MIToken::Identifier))
2519         return error("expected the name of the target flag");
2520       unsigned BitFlag = 0;
2521       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2522         return error("use of undefined target flag '" + Token.stringValue() +
2523                      "'");
2524       // TODO: Report an error when using a duplicate bit target flag.
2525       TF |= BitFlag;
2526       lex();
2527     }
2528     if (expectAndConsume(MIToken::rparen))
2529       return true;
2530   }
2531   auto Loc = Token.location();
2532   if (parseMachineOperand(Dest, TiedDefIdx))
2533     return true;
2534   if (!HasTargetFlags)
2535     return false;
2536   if (Dest.isReg())
2537     return error(Loc, "register operands can't have target flags");
2538   Dest.setTargetFlags(TF);
2539   return false;
2540 }
2541 
2542 bool MIParser::parseOffset(int64_t &Offset) {
2543   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2544     return false;
2545   StringRef Sign = Token.range();
2546   bool IsNegative = Token.is(MIToken::minus);
2547   lex();
2548   if (Token.isNot(MIToken::IntegerLiteral))
2549     return error("expected an integer literal after '" + Sign + "'");
2550   if (Token.integerValue().getMinSignedBits() > 64)
2551     return error("expected 64-bit integer (too large)");
2552   Offset = Token.integerValue().getExtValue();
2553   if (IsNegative)
2554     Offset = -Offset;
2555   lex();
2556   return false;
2557 }
2558 
2559 bool MIParser::parseAlignment(unsigned &Alignment) {
2560   assert(Token.is(MIToken::kw_align));
2561   lex();
2562   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2563     return error("expected an integer literal after 'align'");
2564   if (getUnsigned(Alignment))
2565     return true;
2566   lex();
2567 
2568   if (!isPowerOf2_32(Alignment))
2569     return error("expected a power-of-2 literal after 'align'");
2570 
2571   return false;
2572 }
2573 
2574 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2575   assert(Token.is(MIToken::kw_addrspace));
2576   lex();
2577   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2578     return error("expected an integer literal after 'addrspace'");
2579   if (getUnsigned(Addrspace))
2580     return true;
2581   lex();
2582   return false;
2583 }
2584 
2585 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2586   int64_t Offset = 0;
2587   if (parseOffset(Offset))
2588     return true;
2589   Op.setOffset(Offset);
2590   return false;
2591 }
2592 
2593 bool MIParser::parseIRValue(const Value *&V) {
2594   switch (Token.kind()) {
2595   case MIToken::NamedIRValue: {
2596     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2597     break;
2598   }
2599   case MIToken::IRValue: {
2600     unsigned SlotNumber = 0;
2601     if (getUnsigned(SlotNumber))
2602       return true;
2603     V = getIRValue(SlotNumber);
2604     break;
2605   }
2606   case MIToken::NamedGlobalValue:
2607   case MIToken::GlobalValue: {
2608     GlobalValue *GV = nullptr;
2609     if (parseGlobalValue(GV))
2610       return true;
2611     V = GV;
2612     break;
2613   }
2614   case MIToken::QuotedIRValue: {
2615     const Constant *C = nullptr;
2616     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2617       return true;
2618     V = C;
2619     break;
2620   }
2621   default:
2622     llvm_unreachable("The current token should be an IR block reference");
2623   }
2624   if (!V)
2625     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2626   return false;
2627 }
2628 
2629 bool MIParser::getUint64(uint64_t &Result) {
2630   if (Token.hasIntegerValue()) {
2631     if (Token.integerValue().getActiveBits() > 64)
2632       return error("expected 64-bit integer (too large)");
2633     Result = Token.integerValue().getZExtValue();
2634     return false;
2635   }
2636   if (Token.is(MIToken::HexLiteral)) {
2637     APInt A;
2638     if (getHexUint(A))
2639       return true;
2640     if (A.getBitWidth() > 64)
2641       return error("expected 64-bit integer (too large)");
2642     Result = A.getZExtValue();
2643     return false;
2644   }
2645   return true;
2646 }
2647 
2648 bool MIParser::getHexUint(APInt &Result) {
2649   assert(Token.is(MIToken::HexLiteral));
2650   StringRef S = Token.range();
2651   assert(S[0] == '0' && tolower(S[1]) == 'x');
2652   // This could be a floating point literal with a special prefix.
2653   if (!isxdigit(S[2]))
2654     return true;
2655   StringRef V = S.substr(2);
2656   APInt A(V.size()*4, V, 16);
2657 
2658   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2659   // sure it isn't the case before constructing result.
2660   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2661   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2662   return false;
2663 }
2664 
2665 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2666   const auto OldFlags = Flags;
2667   switch (Token.kind()) {
2668   case MIToken::kw_volatile:
2669     Flags |= MachineMemOperand::MOVolatile;
2670     break;
2671   case MIToken::kw_non_temporal:
2672     Flags |= MachineMemOperand::MONonTemporal;
2673     break;
2674   case MIToken::kw_dereferenceable:
2675     Flags |= MachineMemOperand::MODereferenceable;
2676     break;
2677   case MIToken::kw_invariant:
2678     Flags |= MachineMemOperand::MOInvariant;
2679     break;
2680   case MIToken::StringConstant: {
2681     MachineMemOperand::Flags TF;
2682     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
2683       return error("use of undefined target MMO flag '" + Token.stringValue() +
2684                    "'");
2685     Flags |= TF;
2686     break;
2687   }
2688   default:
2689     llvm_unreachable("The current token should be a memory operand flag");
2690   }
2691   if (OldFlags == Flags)
2692     // We know that the same flag is specified more than once when the flags
2693     // weren't modified.
2694     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2695   lex();
2696   return false;
2697 }
2698 
2699 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2700   switch (Token.kind()) {
2701   case MIToken::kw_stack:
2702     PSV = MF.getPSVManager().getStack();
2703     break;
2704   case MIToken::kw_got:
2705     PSV = MF.getPSVManager().getGOT();
2706     break;
2707   case MIToken::kw_jump_table:
2708     PSV = MF.getPSVManager().getJumpTable();
2709     break;
2710   case MIToken::kw_constant_pool:
2711     PSV = MF.getPSVManager().getConstantPool();
2712     break;
2713   case MIToken::FixedStackObject: {
2714     int FI;
2715     if (parseFixedStackFrameIndex(FI))
2716       return true;
2717     PSV = MF.getPSVManager().getFixedStack(FI);
2718     // The token was already consumed, so use return here instead of break.
2719     return false;
2720   }
2721   case MIToken::StackObject: {
2722     int FI;
2723     if (parseStackFrameIndex(FI))
2724       return true;
2725     PSV = MF.getPSVManager().getFixedStack(FI);
2726     // The token was already consumed, so use return here instead of break.
2727     return false;
2728   }
2729   case MIToken::kw_call_entry:
2730     lex();
2731     switch (Token.kind()) {
2732     case MIToken::GlobalValue:
2733     case MIToken::NamedGlobalValue: {
2734       GlobalValue *GV = nullptr;
2735       if (parseGlobalValue(GV))
2736         return true;
2737       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2738       break;
2739     }
2740     case MIToken::ExternalSymbol:
2741       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2742           MF.createExternalSymbolName(Token.stringValue()));
2743       break;
2744     default:
2745       return error(
2746           "expected a global value or an external symbol after 'call-entry'");
2747     }
2748     break;
2749   default:
2750     llvm_unreachable("The current token should be pseudo source value");
2751   }
2752   lex();
2753   return false;
2754 }
2755 
2756 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2757   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2758       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2759       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2760       Token.is(MIToken::kw_call_entry)) {
2761     const PseudoSourceValue *PSV = nullptr;
2762     if (parseMemoryPseudoSourceValue(PSV))
2763       return true;
2764     int64_t Offset = 0;
2765     if (parseOffset(Offset))
2766       return true;
2767     Dest = MachinePointerInfo(PSV, Offset);
2768     return false;
2769   }
2770   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2771       Token.isNot(MIToken::GlobalValue) &&
2772       Token.isNot(MIToken::NamedGlobalValue) &&
2773       Token.isNot(MIToken::QuotedIRValue))
2774     return error("expected an IR value reference");
2775   const Value *V = nullptr;
2776   if (parseIRValue(V))
2777     return true;
2778   if (!V->getType()->isPointerTy())
2779     return error("expected a pointer IR value");
2780   lex();
2781   int64_t Offset = 0;
2782   if (parseOffset(Offset))
2783     return true;
2784   Dest = MachinePointerInfo(V, Offset);
2785   return false;
2786 }
2787 
2788 bool MIParser::parseOptionalScope(LLVMContext &Context,
2789                                   SyncScope::ID &SSID) {
2790   SSID = SyncScope::System;
2791   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2792     lex();
2793     if (expectAndConsume(MIToken::lparen))
2794       return error("expected '(' in syncscope");
2795 
2796     std::string SSN;
2797     if (parseStringConstant(SSN))
2798       return true;
2799 
2800     SSID = Context.getOrInsertSyncScopeID(SSN);
2801     if (expectAndConsume(MIToken::rparen))
2802       return error("expected ')' in syncscope");
2803   }
2804 
2805   return false;
2806 }
2807 
2808 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2809   Order = AtomicOrdering::NotAtomic;
2810   if (Token.isNot(MIToken::Identifier))
2811     return false;
2812 
2813   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2814               .Case("unordered", AtomicOrdering::Unordered)
2815               .Case("monotonic", AtomicOrdering::Monotonic)
2816               .Case("acquire", AtomicOrdering::Acquire)
2817               .Case("release", AtomicOrdering::Release)
2818               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2819               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2820               .Default(AtomicOrdering::NotAtomic);
2821 
2822   if (Order != AtomicOrdering::NotAtomic) {
2823     lex();
2824     return false;
2825   }
2826 
2827   return error("expected an atomic scope, ordering or a size specification");
2828 }
2829 
2830 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2831   if (expectAndConsume(MIToken::lparen))
2832     return true;
2833   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2834   while (Token.isMemoryOperandFlag()) {
2835     if (parseMemoryOperandFlag(Flags))
2836       return true;
2837   }
2838   if (Token.isNot(MIToken::Identifier) ||
2839       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2840     return error("expected 'load' or 'store' memory operation");
2841   if (Token.stringValue() == "load")
2842     Flags |= MachineMemOperand::MOLoad;
2843   else
2844     Flags |= MachineMemOperand::MOStore;
2845   lex();
2846 
2847   // Optional 'store' for operands that both load and store.
2848   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2849     Flags |= MachineMemOperand::MOStore;
2850     lex();
2851   }
2852 
2853   // Optional synchronization scope.
2854   SyncScope::ID SSID;
2855   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2856     return true;
2857 
2858   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2859   AtomicOrdering Order, FailureOrder;
2860   if (parseOptionalAtomicOrdering(Order))
2861     return true;
2862 
2863   if (parseOptionalAtomicOrdering(FailureOrder))
2864     return true;
2865 
2866   if (Token.isNot(MIToken::IntegerLiteral) &&
2867       Token.isNot(MIToken::kw_unknown_size))
2868     return error("expected the size integer literal or 'unknown-size' after "
2869                  "memory operation");
2870   uint64_t Size;
2871   if (Token.is(MIToken::IntegerLiteral)) {
2872     if (getUint64(Size))
2873       return true;
2874   } else if (Token.is(MIToken::kw_unknown_size)) {
2875     Size = MemoryLocation::UnknownSize;
2876   }
2877   lex();
2878 
2879   MachinePointerInfo Ptr = MachinePointerInfo();
2880   if (Token.is(MIToken::Identifier)) {
2881     const char *Word =
2882         ((Flags & MachineMemOperand::MOLoad) &&
2883          (Flags & MachineMemOperand::MOStore))
2884             ? "on"
2885             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2886     if (Token.stringValue() != Word)
2887       return error(Twine("expected '") + Word + "'");
2888     lex();
2889 
2890     if (parseMachinePointerInfo(Ptr))
2891       return true;
2892   }
2893   unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
2894   AAMDNodes AAInfo;
2895   MDNode *Range = nullptr;
2896   while (consumeIfPresent(MIToken::comma)) {
2897     switch (Token.kind()) {
2898     case MIToken::kw_align:
2899       if (parseAlignment(BaseAlignment))
2900         return true;
2901       break;
2902     case MIToken::kw_addrspace:
2903       if (parseAddrspace(Ptr.AddrSpace))
2904         return true;
2905       break;
2906     case MIToken::md_tbaa:
2907       lex();
2908       if (parseMDNode(AAInfo.TBAA))
2909         return true;
2910       break;
2911     case MIToken::md_alias_scope:
2912       lex();
2913       if (parseMDNode(AAInfo.Scope))
2914         return true;
2915       break;
2916     case MIToken::md_noalias:
2917       lex();
2918       if (parseMDNode(AAInfo.NoAlias))
2919         return true;
2920       break;
2921     case MIToken::md_range:
2922       lex();
2923       if (parseMDNode(Range))
2924         return true;
2925       break;
2926     // TODO: Report an error on duplicate metadata nodes.
2927     default:
2928       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2929                    "'!noalias' or '!range'");
2930     }
2931   }
2932   if (expectAndConsume(MIToken::rparen))
2933     return true;
2934   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2935                                  SSID, Order, FailureOrder);
2936   return false;
2937 }
2938 
2939 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
2940   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
2941           Token.is(MIToken::kw_post_instr_symbol)) &&
2942          "Invalid token for a pre- post-instruction symbol!");
2943   lex();
2944   if (Token.isNot(MIToken::MCSymbol))
2945     return error("expected a symbol after 'pre-instr-symbol'");
2946   Symbol = getOrCreateMCSymbol(Token.stringValue());
2947   lex();
2948   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
2949       Token.is(MIToken::lbrace))
2950     return false;
2951   if (Token.isNot(MIToken::comma))
2952     return error("expected ',' before the next machine operand");
2953   lex();
2954   return false;
2955 }
2956 
2957 static void initSlots2BasicBlocks(
2958     const Function &F,
2959     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2960   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2961   MST.incorporateFunction(F);
2962   for (auto &BB : F) {
2963     if (BB.hasName())
2964       continue;
2965     int Slot = MST.getLocalSlot(&BB);
2966     if (Slot == -1)
2967       continue;
2968     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2969   }
2970 }
2971 
2972 static const BasicBlock *getIRBlockFromSlot(
2973     unsigned Slot,
2974     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2975   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2976   if (BlockInfo == Slots2BasicBlocks.end())
2977     return nullptr;
2978   return BlockInfo->second;
2979 }
2980 
2981 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2982   if (Slots2BasicBlocks.empty())
2983     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2984   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2985 }
2986 
2987 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2988   if (&F == &MF.getFunction())
2989     return getIRBlock(Slot);
2990   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2991   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2992   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2993 }
2994 
2995 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2996                            DenseMap<unsigned, const Value *> &Slots2Values) {
2997   int Slot = MST.getLocalSlot(V);
2998   if (Slot == -1)
2999     return;
3000   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
3001 }
3002 
3003 /// Creates the mapping from slot numbers to function's unnamed IR values.
3004 static void initSlots2Values(const Function &F,
3005                              DenseMap<unsigned, const Value *> &Slots2Values) {
3006   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3007   MST.incorporateFunction(F);
3008   for (const auto &Arg : F.args())
3009     mapValueToSlot(&Arg, MST, Slots2Values);
3010   for (const auto &BB : F) {
3011     mapValueToSlot(&BB, MST, Slots2Values);
3012     for (const auto &I : BB)
3013       mapValueToSlot(&I, MST, Slots2Values);
3014   }
3015 }
3016 
3017 const Value *MIParser::getIRValue(unsigned Slot) {
3018   if (Slots2Values.empty())
3019     initSlots2Values(MF.getFunction(), Slots2Values);
3020   auto ValueInfo = Slots2Values.find(Slot);
3021   if (ValueInfo == Slots2Values.end())
3022     return nullptr;
3023   return ValueInfo->second;
3024 }
3025 
3026 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3027   // FIXME: Currently we can't recognize temporary or local symbols and call all
3028   // of the appropriate forms to create them. However, this handles basic cases
3029   // well as most of the special aspects are recognized by a prefix on their
3030   // name, and the input names should already be unique. For test cases, keeping
3031   // the symbol name out of the symbol table isn't terribly important.
3032   return MF.getContext().getOrCreateSymbol(Name);
3033 }
3034 
3035 bool MIParser::parseStringConstant(std::string &Result) {
3036   if (Token.isNot(MIToken::StringConstant))
3037     return error("expected string constant");
3038   Result = Token.stringValue();
3039   lex();
3040   return false;
3041 }
3042 
3043 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3044                                              StringRef Src,
3045                                              SMDiagnostic &Error) {
3046   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3047 }
3048 
3049 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3050                                     StringRef Src, SMDiagnostic &Error) {
3051   return MIParser(PFS, Error, Src).parseBasicBlocks();
3052 }
3053 
3054 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3055                              MachineBasicBlock *&MBB, StringRef Src,
3056                              SMDiagnostic &Error) {
3057   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3058 }
3059 
3060 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3061                                   unsigned &Reg, StringRef Src,
3062                                   SMDiagnostic &Error) {
3063   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3064 }
3065 
3066 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3067                                        unsigned &Reg, StringRef Src,
3068                                        SMDiagnostic &Error) {
3069   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3070 }
3071 
3072 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3073                                          VRegInfo *&Info, StringRef Src,
3074                                          SMDiagnostic &Error) {
3075   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3076 }
3077 
3078 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3079                                      int &FI, StringRef Src,
3080                                      SMDiagnostic &Error) {
3081   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3082 }
3083 
3084 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3085                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3086   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3087 }
3088