1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRPrinter.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSlotTracker.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/MC/LaneBitmask.h" 59 #include "llvm/MC/MCContext.h" 60 #include "llvm/MC/MCDwarf.h" 61 #include "llvm/MC/MCInstrDesc.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/BranchProbability.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/SMLoc.h" 70 #include "llvm/Support/SourceMgr.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetIntrinsicInfo.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cctype> 77 #include <cstddef> 78 #include <cstdint> 79 #include <limits> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 void PerTargetMIParsingState::setTarget( 86 const TargetSubtargetInfo &NewSubtarget) { 87 88 // If the subtarget changed, over conservatively assume everything is invalid. 89 if (&Subtarget == &NewSubtarget) 90 return; 91 92 Names2InstrOpCodes.clear(); 93 Names2Regs.clear(); 94 Names2RegMasks.clear(); 95 Names2SubRegIndices.clear(); 96 Names2TargetIndices.clear(); 97 Names2DirectTargetFlags.clear(); 98 Names2BitmaskTargetFlags.clear(); 99 Names2MMOTargetFlags.clear(); 100 101 initNames2RegClasses(); 102 initNames2RegBanks(); 103 } 104 105 void PerTargetMIParsingState::initNames2Regs() { 106 if (!Names2Regs.empty()) 107 return; 108 109 // The '%noreg' register is the register 0. 110 Names2Regs.insert(std::make_pair("noreg", 0)); 111 const auto *TRI = Subtarget.getRegisterInfo(); 112 assert(TRI && "Expected target register info"); 113 114 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 115 bool WasInserted = 116 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 117 .second; 118 (void)WasInserted; 119 assert(WasInserted && "Expected registers to be unique case-insensitively"); 120 } 121 } 122 123 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 124 unsigned &Reg) { 125 initNames2Regs(); 126 auto RegInfo = Names2Regs.find(RegName); 127 if (RegInfo == Names2Regs.end()) 128 return true; 129 Reg = RegInfo->getValue(); 130 return false; 131 } 132 133 void PerTargetMIParsingState::initNames2InstrOpCodes() { 134 if (!Names2InstrOpCodes.empty()) 135 return; 136 const auto *TII = Subtarget.getInstrInfo(); 137 assert(TII && "Expected target instruction info"); 138 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 139 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 140 } 141 142 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 143 unsigned &OpCode) { 144 initNames2InstrOpCodes(); 145 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 146 if (InstrInfo == Names2InstrOpCodes.end()) 147 return true; 148 OpCode = InstrInfo->getValue(); 149 return false; 150 } 151 152 void PerTargetMIParsingState::initNames2RegMasks() { 153 if (!Names2RegMasks.empty()) 154 return; 155 const auto *TRI = Subtarget.getRegisterInfo(); 156 assert(TRI && "Expected target register info"); 157 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 158 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 159 assert(RegMasks.size() == RegMaskNames.size()); 160 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 161 Names2RegMasks.insert( 162 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 163 } 164 165 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 166 initNames2RegMasks(); 167 auto RegMaskInfo = Names2RegMasks.find(Identifier); 168 if (RegMaskInfo == Names2RegMasks.end()) 169 return nullptr; 170 return RegMaskInfo->getValue(); 171 } 172 173 void PerTargetMIParsingState::initNames2SubRegIndices() { 174 if (!Names2SubRegIndices.empty()) 175 return; 176 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 177 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 178 Names2SubRegIndices.insert( 179 std::make_pair(TRI->getSubRegIndexName(I), I)); 180 } 181 182 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 183 initNames2SubRegIndices(); 184 auto SubRegInfo = Names2SubRegIndices.find(Name); 185 if (SubRegInfo == Names2SubRegIndices.end()) 186 return 0; 187 return SubRegInfo->getValue(); 188 } 189 190 void PerTargetMIParsingState::initNames2TargetIndices() { 191 if (!Names2TargetIndices.empty()) 192 return; 193 const auto *TII = Subtarget.getInstrInfo(); 194 assert(TII && "Expected target instruction info"); 195 auto Indices = TII->getSerializableTargetIndices(); 196 for (const auto &I : Indices) 197 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 198 } 199 200 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 201 initNames2TargetIndices(); 202 auto IndexInfo = Names2TargetIndices.find(Name); 203 if (IndexInfo == Names2TargetIndices.end()) 204 return true; 205 Index = IndexInfo->second; 206 return false; 207 } 208 209 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 210 if (!Names2DirectTargetFlags.empty()) 211 return; 212 213 const auto *TII = Subtarget.getInstrInfo(); 214 assert(TII && "Expected target instruction info"); 215 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 216 for (const auto &I : Flags) 217 Names2DirectTargetFlags.insert( 218 std::make_pair(StringRef(I.second), I.first)); 219 } 220 221 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 222 unsigned &Flag) { 223 initNames2DirectTargetFlags(); 224 auto FlagInfo = Names2DirectTargetFlags.find(Name); 225 if (FlagInfo == Names2DirectTargetFlags.end()) 226 return true; 227 Flag = FlagInfo->second; 228 return false; 229 } 230 231 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 232 if (!Names2BitmaskTargetFlags.empty()) 233 return; 234 235 const auto *TII = Subtarget.getInstrInfo(); 236 assert(TII && "Expected target instruction info"); 237 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 238 for (const auto &I : Flags) 239 Names2BitmaskTargetFlags.insert( 240 std::make_pair(StringRef(I.second), I.first)); 241 } 242 243 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 244 unsigned &Flag) { 245 initNames2BitmaskTargetFlags(); 246 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 247 if (FlagInfo == Names2BitmaskTargetFlags.end()) 248 return true; 249 Flag = FlagInfo->second; 250 return false; 251 } 252 253 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 254 if (!Names2MMOTargetFlags.empty()) 255 return; 256 257 const auto *TII = Subtarget.getInstrInfo(); 258 assert(TII && "Expected target instruction info"); 259 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 260 for (const auto &I : Flags) 261 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 262 } 263 264 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 265 MachineMemOperand::Flags &Flag) { 266 initNames2MMOTargetFlags(); 267 auto FlagInfo = Names2MMOTargetFlags.find(Name); 268 if (FlagInfo == Names2MMOTargetFlags.end()) 269 return true; 270 Flag = FlagInfo->second; 271 return false; 272 } 273 274 void PerTargetMIParsingState::initNames2RegClasses() { 275 if (!Names2RegClasses.empty()) 276 return; 277 278 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 279 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 280 const auto *RC = TRI->getRegClass(I); 281 Names2RegClasses.insert( 282 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 283 } 284 } 285 286 void PerTargetMIParsingState::initNames2RegBanks() { 287 if (!Names2RegBanks.empty()) 288 return; 289 290 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 291 // If the target does not support GlobalISel, we may not have a 292 // register bank info. 293 if (!RBI) 294 return; 295 296 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 297 const auto &RegBank = RBI->getRegBank(I); 298 Names2RegBanks.insert( 299 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 300 } 301 } 302 303 const TargetRegisterClass * 304 PerTargetMIParsingState::getRegClass(StringRef Name) { 305 auto RegClassInfo = Names2RegClasses.find(Name); 306 if (RegClassInfo == Names2RegClasses.end()) 307 return nullptr; 308 return RegClassInfo->getValue(); 309 } 310 311 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 312 auto RegBankInfo = Names2RegBanks.find(Name); 313 if (RegBankInfo == Names2RegBanks.end()) 314 return nullptr; 315 return RegBankInfo->getValue(); 316 } 317 318 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 319 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 320 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 321 } 322 323 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 324 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 325 if (I.second) { 326 MachineRegisterInfo &MRI = MF.getRegInfo(); 327 VRegInfo *Info = new (Allocator) VRegInfo; 328 Info->VReg = MRI.createIncompleteVirtualRegister(); 329 I.first->second = Info; 330 } 331 return *I.first->second; 332 } 333 334 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 335 assert(RegName != "" && "Expected named reg."); 336 337 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 338 if (I.second) { 339 VRegInfo *Info = new (Allocator) VRegInfo; 340 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 341 I.first->second = Info; 342 } 343 return *I.first->second; 344 } 345 346 namespace { 347 348 /// A wrapper struct around the 'MachineOperand' struct that includes a source 349 /// range and other attributes. 350 struct ParsedMachineOperand { 351 MachineOperand Operand; 352 StringRef::iterator Begin; 353 StringRef::iterator End; 354 Optional<unsigned> TiedDefIdx; 355 356 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 357 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 358 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 359 if (TiedDefIdx) 360 assert(Operand.isReg() && Operand.isUse() && 361 "Only used register operands can be tied"); 362 } 363 }; 364 365 class MIParser { 366 MachineFunction &MF; 367 SMDiagnostic &Error; 368 StringRef Source, CurrentSource; 369 MIToken Token; 370 PerFunctionMIParsingState &PFS; 371 /// Maps from slot numbers to function's unnamed basic blocks. 372 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 373 /// Maps from slot numbers to function's unnamed values. 374 DenseMap<unsigned, const Value *> Slots2Values; 375 376 public: 377 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 378 StringRef Source); 379 380 /// \p SkipChar gives the number of characters to skip before looking 381 /// for the next token. 382 void lex(unsigned SkipChar = 0); 383 384 /// Report an error at the current location with the given message. 385 /// 386 /// This function always return true. 387 bool error(const Twine &Msg); 388 389 /// Report an error at the given location with the given message. 390 /// 391 /// This function always return true. 392 bool error(StringRef::iterator Loc, const Twine &Msg); 393 394 bool 395 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 396 bool parseBasicBlocks(); 397 bool parse(MachineInstr *&MI); 398 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 399 bool parseStandaloneNamedRegister(unsigned &Reg); 400 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 401 bool parseStandaloneRegister(unsigned &Reg); 402 bool parseStandaloneStackObject(int &FI); 403 bool parseStandaloneMDNode(MDNode *&Node); 404 405 bool 406 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 407 bool parseBasicBlock(MachineBasicBlock &MBB, 408 MachineBasicBlock *&AddFalthroughFrom); 409 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 410 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 411 412 bool parseNamedRegister(unsigned &Reg); 413 bool parseVirtualRegister(VRegInfo *&Info); 414 bool parseNamedVirtualRegister(VRegInfo *&Info); 415 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 416 bool parseRegisterFlag(unsigned &Flags); 417 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 418 bool parseSubRegisterIndex(unsigned &SubReg); 419 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 420 bool parseRegisterOperand(MachineOperand &Dest, 421 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 422 bool parseImmediateOperand(MachineOperand &Dest); 423 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 424 const Constant *&C); 425 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 426 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 427 bool parseTypedImmediateOperand(MachineOperand &Dest); 428 bool parseFPImmediateOperand(MachineOperand &Dest); 429 bool parseMBBReference(MachineBasicBlock *&MBB); 430 bool parseMBBOperand(MachineOperand &Dest); 431 bool parseStackFrameIndex(int &FI); 432 bool parseStackObjectOperand(MachineOperand &Dest); 433 bool parseFixedStackFrameIndex(int &FI); 434 bool parseFixedStackObjectOperand(MachineOperand &Dest); 435 bool parseGlobalValue(GlobalValue *&GV); 436 bool parseGlobalAddressOperand(MachineOperand &Dest); 437 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 438 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 439 bool parseJumpTableIndexOperand(MachineOperand &Dest); 440 bool parseExternalSymbolOperand(MachineOperand &Dest); 441 bool parseMCSymbolOperand(MachineOperand &Dest); 442 bool parseMDNode(MDNode *&Node); 443 bool parseDIExpression(MDNode *&Expr); 444 bool parseDILocation(MDNode *&Expr); 445 bool parseMetadataOperand(MachineOperand &Dest); 446 bool parseCFIOffset(int &Offset); 447 bool parseCFIRegister(unsigned &Reg); 448 bool parseCFIEscapeValues(std::string& Values); 449 bool parseCFIOperand(MachineOperand &Dest); 450 bool parseIRBlock(BasicBlock *&BB, const Function &F); 451 bool parseBlockAddressOperand(MachineOperand &Dest); 452 bool parseIntrinsicOperand(MachineOperand &Dest); 453 bool parsePredicateOperand(MachineOperand &Dest); 454 bool parseShuffleMaskOperand(MachineOperand &Dest); 455 bool parseTargetIndexOperand(MachineOperand &Dest); 456 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 457 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 458 bool parseMachineOperand(MachineOperand &Dest, 459 Optional<unsigned> &TiedDefIdx); 460 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 461 Optional<unsigned> &TiedDefIdx); 462 bool parseOffset(int64_t &Offset); 463 bool parseAlignment(unsigned &Alignment); 464 bool parseAddrspace(unsigned &Addrspace); 465 bool parseOperandsOffset(MachineOperand &Op); 466 bool parseIRValue(const Value *&V); 467 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 468 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 469 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 470 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 471 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 472 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 473 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 474 475 private: 476 /// Convert the integer literal in the current token into an unsigned integer. 477 /// 478 /// Return true if an error occurred. 479 bool getUnsigned(unsigned &Result); 480 481 /// Convert the integer literal in the current token into an uint64. 482 /// 483 /// Return true if an error occurred. 484 bool getUint64(uint64_t &Result); 485 486 /// Convert the hexadecimal literal in the current token into an unsigned 487 /// APInt with a minimum bitwidth required to represent the value. 488 /// 489 /// Return true if the literal does not represent an integer value. 490 bool getHexUint(APInt &Result); 491 492 /// If the current token is of the given kind, consume it and return false. 493 /// Otherwise report an error and return true. 494 bool expectAndConsume(MIToken::TokenKind TokenKind); 495 496 /// If the current token is of the given kind, consume it and return true. 497 /// Otherwise return false. 498 bool consumeIfPresent(MIToken::TokenKind TokenKind); 499 500 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 501 502 bool assignRegisterTies(MachineInstr &MI, 503 ArrayRef<ParsedMachineOperand> Operands); 504 505 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 506 const MCInstrDesc &MCID); 507 508 const BasicBlock *getIRBlock(unsigned Slot); 509 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 510 511 const Value *getIRValue(unsigned Slot); 512 513 /// Get or create an MCSymbol for a given name. 514 MCSymbol *getOrCreateMCSymbol(StringRef Name); 515 516 /// parseStringConstant 517 /// ::= StringConstant 518 bool parseStringConstant(std::string &Result); 519 }; 520 521 } // end anonymous namespace 522 523 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 524 StringRef Source) 525 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 526 {} 527 528 void MIParser::lex(unsigned SkipChar) { 529 CurrentSource = lexMIToken( 530 CurrentSource.data() + SkipChar, Token, 531 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 532 } 533 534 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 535 536 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 537 const SourceMgr &SM = *PFS.SM; 538 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 539 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 540 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 541 // Create an ordinary diagnostic when the source manager's buffer is the 542 // source string. 543 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 544 return true; 545 } 546 // Create a diagnostic for a YAML string literal. 547 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 548 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 549 Source, None, None); 550 return true; 551 } 552 553 static const char *toString(MIToken::TokenKind TokenKind) { 554 switch (TokenKind) { 555 case MIToken::comma: 556 return "','"; 557 case MIToken::equal: 558 return "'='"; 559 case MIToken::colon: 560 return "':'"; 561 case MIToken::lparen: 562 return "'('"; 563 case MIToken::rparen: 564 return "')'"; 565 default: 566 return "<unknown token>"; 567 } 568 } 569 570 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 571 if (Token.isNot(TokenKind)) 572 return error(Twine("expected ") + toString(TokenKind)); 573 lex(); 574 return false; 575 } 576 577 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 578 if (Token.isNot(TokenKind)) 579 return false; 580 lex(); 581 return true; 582 } 583 584 bool MIParser::parseBasicBlockDefinition( 585 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 586 assert(Token.is(MIToken::MachineBasicBlockLabel)); 587 unsigned ID = 0; 588 if (getUnsigned(ID)) 589 return true; 590 auto Loc = Token.location(); 591 auto Name = Token.stringValue(); 592 lex(); 593 bool HasAddressTaken = false; 594 bool IsLandingPad = false; 595 unsigned Alignment = 0; 596 BasicBlock *BB = nullptr; 597 if (consumeIfPresent(MIToken::lparen)) { 598 do { 599 // TODO: Report an error when multiple same attributes are specified. 600 switch (Token.kind()) { 601 case MIToken::kw_address_taken: 602 HasAddressTaken = true; 603 lex(); 604 break; 605 case MIToken::kw_landing_pad: 606 IsLandingPad = true; 607 lex(); 608 break; 609 case MIToken::kw_align: 610 if (parseAlignment(Alignment)) 611 return true; 612 break; 613 case MIToken::IRBlock: 614 // TODO: Report an error when both name and ir block are specified. 615 if (parseIRBlock(BB, MF.getFunction())) 616 return true; 617 lex(); 618 break; 619 default: 620 break; 621 } 622 } while (consumeIfPresent(MIToken::comma)); 623 if (expectAndConsume(MIToken::rparen)) 624 return true; 625 } 626 if (expectAndConsume(MIToken::colon)) 627 return true; 628 629 if (!Name.empty()) { 630 BB = dyn_cast_or_null<BasicBlock>( 631 MF.getFunction().getValueSymbolTable()->lookup(Name)); 632 if (!BB) 633 return error(Loc, Twine("basic block '") + Name + 634 "' is not defined in the function '" + 635 MF.getName() + "'"); 636 } 637 auto *MBB = MF.CreateMachineBasicBlock(BB); 638 MF.insert(MF.end(), MBB); 639 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 640 if (!WasInserted) 641 return error(Loc, Twine("redefinition of machine basic block with id #") + 642 Twine(ID)); 643 if (Alignment) 644 MBB->setAlignment(llvm::Align(Alignment)); 645 if (HasAddressTaken) 646 MBB->setHasAddressTaken(); 647 MBB->setIsEHPad(IsLandingPad); 648 return false; 649 } 650 651 bool MIParser::parseBasicBlockDefinitions( 652 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 653 lex(); 654 // Skip until the first machine basic block. 655 while (Token.is(MIToken::Newline)) 656 lex(); 657 if (Token.isErrorOrEOF()) 658 return Token.isError(); 659 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 660 return error("expected a basic block definition before instructions"); 661 unsigned BraceDepth = 0; 662 do { 663 if (parseBasicBlockDefinition(MBBSlots)) 664 return true; 665 bool IsAfterNewline = false; 666 // Skip until the next machine basic block. 667 while (true) { 668 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 669 Token.isErrorOrEOF()) 670 break; 671 else if (Token.is(MIToken::MachineBasicBlockLabel)) 672 return error("basic block definition should be located at the start of " 673 "the line"); 674 else if (consumeIfPresent(MIToken::Newline)) { 675 IsAfterNewline = true; 676 continue; 677 } 678 IsAfterNewline = false; 679 if (Token.is(MIToken::lbrace)) 680 ++BraceDepth; 681 if (Token.is(MIToken::rbrace)) { 682 if (!BraceDepth) 683 return error("extraneous closing brace ('}')"); 684 --BraceDepth; 685 } 686 lex(); 687 } 688 // Verify that we closed all of the '{' at the end of a file or a block. 689 if (!Token.isError() && BraceDepth) 690 return error("expected '}'"); // FIXME: Report a note that shows '{'. 691 } while (!Token.isErrorOrEOF()); 692 return Token.isError(); 693 } 694 695 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 696 assert(Token.is(MIToken::kw_liveins)); 697 lex(); 698 if (expectAndConsume(MIToken::colon)) 699 return true; 700 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 701 return false; 702 do { 703 if (Token.isNot(MIToken::NamedRegister)) 704 return error("expected a named register"); 705 unsigned Reg = 0; 706 if (parseNamedRegister(Reg)) 707 return true; 708 lex(); 709 LaneBitmask Mask = LaneBitmask::getAll(); 710 if (consumeIfPresent(MIToken::colon)) { 711 // Parse lane mask. 712 if (Token.isNot(MIToken::IntegerLiteral) && 713 Token.isNot(MIToken::HexLiteral)) 714 return error("expected a lane mask"); 715 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 716 "Use correct get-function for lane mask"); 717 LaneBitmask::Type V; 718 if (getUnsigned(V)) 719 return error("invalid lane mask value"); 720 Mask = LaneBitmask(V); 721 lex(); 722 } 723 MBB.addLiveIn(Reg, Mask); 724 } while (consumeIfPresent(MIToken::comma)); 725 return false; 726 } 727 728 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 729 assert(Token.is(MIToken::kw_successors)); 730 lex(); 731 if (expectAndConsume(MIToken::colon)) 732 return true; 733 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 734 return false; 735 do { 736 if (Token.isNot(MIToken::MachineBasicBlock)) 737 return error("expected a machine basic block reference"); 738 MachineBasicBlock *SuccMBB = nullptr; 739 if (parseMBBReference(SuccMBB)) 740 return true; 741 lex(); 742 unsigned Weight = 0; 743 if (consumeIfPresent(MIToken::lparen)) { 744 if (Token.isNot(MIToken::IntegerLiteral) && 745 Token.isNot(MIToken::HexLiteral)) 746 return error("expected an integer literal after '('"); 747 if (getUnsigned(Weight)) 748 return true; 749 lex(); 750 if (expectAndConsume(MIToken::rparen)) 751 return true; 752 } 753 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 754 } while (consumeIfPresent(MIToken::comma)); 755 MBB.normalizeSuccProbs(); 756 return false; 757 } 758 759 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 760 MachineBasicBlock *&AddFalthroughFrom) { 761 // Skip the definition. 762 assert(Token.is(MIToken::MachineBasicBlockLabel)); 763 lex(); 764 if (consumeIfPresent(MIToken::lparen)) { 765 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 766 lex(); 767 consumeIfPresent(MIToken::rparen); 768 } 769 consumeIfPresent(MIToken::colon); 770 771 // Parse the liveins and successors. 772 // N.B: Multiple lists of successors and liveins are allowed and they're 773 // merged into one. 774 // Example: 775 // liveins: %edi 776 // liveins: %esi 777 // 778 // is equivalent to 779 // liveins: %edi, %esi 780 bool ExplicitSuccessors = false; 781 while (true) { 782 if (Token.is(MIToken::kw_successors)) { 783 if (parseBasicBlockSuccessors(MBB)) 784 return true; 785 ExplicitSuccessors = true; 786 } else if (Token.is(MIToken::kw_liveins)) { 787 if (parseBasicBlockLiveins(MBB)) 788 return true; 789 } else if (consumeIfPresent(MIToken::Newline)) { 790 continue; 791 } else 792 break; 793 if (!Token.isNewlineOrEOF()) 794 return error("expected line break at the end of a list"); 795 lex(); 796 } 797 798 // Parse the instructions. 799 bool IsInBundle = false; 800 MachineInstr *PrevMI = nullptr; 801 while (!Token.is(MIToken::MachineBasicBlockLabel) && 802 !Token.is(MIToken::Eof)) { 803 if (consumeIfPresent(MIToken::Newline)) 804 continue; 805 if (consumeIfPresent(MIToken::rbrace)) { 806 // The first parsing pass should verify that all closing '}' have an 807 // opening '{'. 808 assert(IsInBundle); 809 IsInBundle = false; 810 continue; 811 } 812 MachineInstr *MI = nullptr; 813 if (parse(MI)) 814 return true; 815 MBB.insert(MBB.end(), MI); 816 if (IsInBundle) { 817 PrevMI->setFlag(MachineInstr::BundledSucc); 818 MI->setFlag(MachineInstr::BundledPred); 819 } 820 PrevMI = MI; 821 if (Token.is(MIToken::lbrace)) { 822 if (IsInBundle) 823 return error("nested instruction bundles are not allowed"); 824 lex(); 825 // This instruction is the start of the bundle. 826 MI->setFlag(MachineInstr::BundledSucc); 827 IsInBundle = true; 828 if (!Token.is(MIToken::Newline)) 829 // The next instruction can be on the same line. 830 continue; 831 } 832 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 833 lex(); 834 } 835 836 // Construct successor list by searching for basic block machine operands. 837 if (!ExplicitSuccessors) { 838 SmallVector<MachineBasicBlock*,4> Successors; 839 bool IsFallthrough; 840 guessSuccessors(MBB, Successors, IsFallthrough); 841 for (MachineBasicBlock *Succ : Successors) 842 MBB.addSuccessor(Succ); 843 844 if (IsFallthrough) { 845 AddFalthroughFrom = &MBB; 846 } else { 847 MBB.normalizeSuccProbs(); 848 } 849 } 850 851 return false; 852 } 853 854 bool MIParser::parseBasicBlocks() { 855 lex(); 856 // Skip until the first machine basic block. 857 while (Token.is(MIToken::Newline)) 858 lex(); 859 if (Token.isErrorOrEOF()) 860 return Token.isError(); 861 // The first parsing pass should have verified that this token is a MBB label 862 // in the 'parseBasicBlockDefinitions' method. 863 assert(Token.is(MIToken::MachineBasicBlockLabel)); 864 MachineBasicBlock *AddFalthroughFrom = nullptr; 865 do { 866 MachineBasicBlock *MBB = nullptr; 867 if (parseMBBReference(MBB)) 868 return true; 869 if (AddFalthroughFrom) { 870 if (!AddFalthroughFrom->isSuccessor(MBB)) 871 AddFalthroughFrom->addSuccessor(MBB); 872 AddFalthroughFrom->normalizeSuccProbs(); 873 AddFalthroughFrom = nullptr; 874 } 875 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 876 return true; 877 // The method 'parseBasicBlock' should parse the whole block until the next 878 // block or the end of file. 879 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 880 } while (Token.isNot(MIToken::Eof)); 881 return false; 882 } 883 884 bool MIParser::parse(MachineInstr *&MI) { 885 // Parse any register operands before '=' 886 MachineOperand MO = MachineOperand::CreateImm(0); 887 SmallVector<ParsedMachineOperand, 8> Operands; 888 while (Token.isRegister() || Token.isRegisterFlag()) { 889 auto Loc = Token.location(); 890 Optional<unsigned> TiedDefIdx; 891 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 892 return true; 893 Operands.push_back( 894 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 895 if (Token.isNot(MIToken::comma)) 896 break; 897 lex(); 898 } 899 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 900 return true; 901 902 unsigned OpCode, Flags = 0; 903 if (Token.isError() || parseInstruction(OpCode, Flags)) 904 return true; 905 906 // Parse the remaining machine operands. 907 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 908 Token.isNot(MIToken::kw_post_instr_symbol) && 909 Token.isNot(MIToken::kw_debug_location) && 910 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 911 auto Loc = Token.location(); 912 Optional<unsigned> TiedDefIdx; 913 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 914 return true; 915 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 916 MO.setIsDebug(); 917 Operands.push_back( 918 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 919 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 920 Token.is(MIToken::lbrace)) 921 break; 922 if (Token.isNot(MIToken::comma)) 923 return error("expected ',' before the next machine operand"); 924 lex(); 925 } 926 927 MCSymbol *PreInstrSymbol = nullptr; 928 if (Token.is(MIToken::kw_pre_instr_symbol)) 929 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 930 return true; 931 MCSymbol *PostInstrSymbol = nullptr; 932 if (Token.is(MIToken::kw_post_instr_symbol)) 933 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 934 return true; 935 936 DebugLoc DebugLocation; 937 if (Token.is(MIToken::kw_debug_location)) { 938 lex(); 939 MDNode *Node = nullptr; 940 if (Token.is(MIToken::exclaim)) { 941 if (parseMDNode(Node)) 942 return true; 943 } else if (Token.is(MIToken::md_dilocation)) { 944 if (parseDILocation(Node)) 945 return true; 946 } else 947 return error("expected a metadata node after 'debug-location'"); 948 if (!isa<DILocation>(Node)) 949 return error("referenced metadata is not a DILocation"); 950 DebugLocation = DebugLoc(Node); 951 } 952 953 // Parse the machine memory operands. 954 SmallVector<MachineMemOperand *, 2> MemOperands; 955 if (Token.is(MIToken::coloncolon)) { 956 lex(); 957 while (!Token.isNewlineOrEOF()) { 958 MachineMemOperand *MemOp = nullptr; 959 if (parseMachineMemoryOperand(MemOp)) 960 return true; 961 MemOperands.push_back(MemOp); 962 if (Token.isNewlineOrEOF()) 963 break; 964 if (Token.isNot(MIToken::comma)) 965 return error("expected ',' before the next machine memory operand"); 966 lex(); 967 } 968 } 969 970 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 971 if (!MCID.isVariadic()) { 972 // FIXME: Move the implicit operand verification to the machine verifier. 973 if (verifyImplicitOperands(Operands, MCID)) 974 return true; 975 } 976 977 // TODO: Check for extraneous machine operands. 978 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 979 MI->setFlags(Flags); 980 for (const auto &Operand : Operands) 981 MI->addOperand(MF, Operand.Operand); 982 if (assignRegisterTies(*MI, Operands)) 983 return true; 984 if (PreInstrSymbol) 985 MI->setPreInstrSymbol(MF, PreInstrSymbol); 986 if (PostInstrSymbol) 987 MI->setPostInstrSymbol(MF, PostInstrSymbol); 988 if (!MemOperands.empty()) 989 MI->setMemRefs(MF, MemOperands); 990 return false; 991 } 992 993 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 994 lex(); 995 if (Token.isNot(MIToken::MachineBasicBlock)) 996 return error("expected a machine basic block reference"); 997 if (parseMBBReference(MBB)) 998 return true; 999 lex(); 1000 if (Token.isNot(MIToken::Eof)) 1001 return error( 1002 "expected end of string after the machine basic block reference"); 1003 return false; 1004 } 1005 1006 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 1007 lex(); 1008 if (Token.isNot(MIToken::NamedRegister)) 1009 return error("expected a named register"); 1010 if (parseNamedRegister(Reg)) 1011 return true; 1012 lex(); 1013 if (Token.isNot(MIToken::Eof)) 1014 return error("expected end of string after the register reference"); 1015 return false; 1016 } 1017 1018 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1019 lex(); 1020 if (Token.isNot(MIToken::VirtualRegister)) 1021 return error("expected a virtual register"); 1022 if (parseVirtualRegister(Info)) 1023 return true; 1024 lex(); 1025 if (Token.isNot(MIToken::Eof)) 1026 return error("expected end of string after the register reference"); 1027 return false; 1028 } 1029 1030 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 1031 lex(); 1032 if (Token.isNot(MIToken::NamedRegister) && 1033 Token.isNot(MIToken::VirtualRegister)) 1034 return error("expected either a named or virtual register"); 1035 1036 VRegInfo *Info; 1037 if (parseRegister(Reg, Info)) 1038 return true; 1039 1040 lex(); 1041 if (Token.isNot(MIToken::Eof)) 1042 return error("expected end of string after the register reference"); 1043 return false; 1044 } 1045 1046 bool MIParser::parseStandaloneStackObject(int &FI) { 1047 lex(); 1048 if (Token.isNot(MIToken::StackObject)) 1049 return error("expected a stack object"); 1050 if (parseStackFrameIndex(FI)) 1051 return true; 1052 if (Token.isNot(MIToken::Eof)) 1053 return error("expected end of string after the stack object reference"); 1054 return false; 1055 } 1056 1057 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1058 lex(); 1059 if (Token.is(MIToken::exclaim)) { 1060 if (parseMDNode(Node)) 1061 return true; 1062 } else if (Token.is(MIToken::md_diexpr)) { 1063 if (parseDIExpression(Node)) 1064 return true; 1065 } else if (Token.is(MIToken::md_dilocation)) { 1066 if (parseDILocation(Node)) 1067 return true; 1068 } else 1069 return error("expected a metadata node"); 1070 if (Token.isNot(MIToken::Eof)) 1071 return error("expected end of string after the metadata node"); 1072 return false; 1073 } 1074 1075 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1076 assert(MO.isImplicit()); 1077 return MO.isDef() ? "implicit-def" : "implicit"; 1078 } 1079 1080 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1081 unsigned Reg) { 1082 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1083 return StringRef(TRI->getName(Reg)).lower(); 1084 } 1085 1086 /// Return true if the parsed machine operands contain a given machine operand. 1087 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1088 ArrayRef<ParsedMachineOperand> Operands) { 1089 for (const auto &I : Operands) { 1090 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1091 return true; 1092 } 1093 return false; 1094 } 1095 1096 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1097 const MCInstrDesc &MCID) { 1098 if (MCID.isCall()) 1099 // We can't verify call instructions as they can contain arbitrary implicit 1100 // register and register mask operands. 1101 return false; 1102 1103 // Gather all the expected implicit operands. 1104 SmallVector<MachineOperand, 4> ImplicitOperands; 1105 if (MCID.ImplicitDefs) 1106 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1107 ImplicitOperands.push_back( 1108 MachineOperand::CreateReg(*ImpDefs, true, true)); 1109 if (MCID.ImplicitUses) 1110 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1111 ImplicitOperands.push_back( 1112 MachineOperand::CreateReg(*ImpUses, false, true)); 1113 1114 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1115 assert(TRI && "Expected target register info"); 1116 for (const auto &I : ImplicitOperands) { 1117 if (isImplicitOperandIn(I, Operands)) 1118 continue; 1119 return error(Operands.empty() ? Token.location() : Operands.back().End, 1120 Twine("missing implicit register operand '") + 1121 printImplicitRegisterFlag(I) + " $" + 1122 getRegisterName(TRI, I.getReg()) + "'"); 1123 } 1124 return false; 1125 } 1126 1127 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1128 // Allow frame and fast math flags for OPCODE 1129 while (Token.is(MIToken::kw_frame_setup) || 1130 Token.is(MIToken::kw_frame_destroy) || 1131 Token.is(MIToken::kw_nnan) || 1132 Token.is(MIToken::kw_ninf) || 1133 Token.is(MIToken::kw_nsz) || 1134 Token.is(MIToken::kw_arcp) || 1135 Token.is(MIToken::kw_contract) || 1136 Token.is(MIToken::kw_afn) || 1137 Token.is(MIToken::kw_reassoc) || 1138 Token.is(MIToken::kw_nuw) || 1139 Token.is(MIToken::kw_nsw) || 1140 Token.is(MIToken::kw_exact) || 1141 Token.is(MIToken::kw_fpexcept)) { 1142 // Mine frame and fast math flags 1143 if (Token.is(MIToken::kw_frame_setup)) 1144 Flags |= MachineInstr::FrameSetup; 1145 if (Token.is(MIToken::kw_frame_destroy)) 1146 Flags |= MachineInstr::FrameDestroy; 1147 if (Token.is(MIToken::kw_nnan)) 1148 Flags |= MachineInstr::FmNoNans; 1149 if (Token.is(MIToken::kw_ninf)) 1150 Flags |= MachineInstr::FmNoInfs; 1151 if (Token.is(MIToken::kw_nsz)) 1152 Flags |= MachineInstr::FmNsz; 1153 if (Token.is(MIToken::kw_arcp)) 1154 Flags |= MachineInstr::FmArcp; 1155 if (Token.is(MIToken::kw_contract)) 1156 Flags |= MachineInstr::FmContract; 1157 if (Token.is(MIToken::kw_afn)) 1158 Flags |= MachineInstr::FmAfn; 1159 if (Token.is(MIToken::kw_reassoc)) 1160 Flags |= MachineInstr::FmReassoc; 1161 if (Token.is(MIToken::kw_nuw)) 1162 Flags |= MachineInstr::NoUWrap; 1163 if (Token.is(MIToken::kw_nsw)) 1164 Flags |= MachineInstr::NoSWrap; 1165 if (Token.is(MIToken::kw_exact)) 1166 Flags |= MachineInstr::IsExact; 1167 if (Token.is(MIToken::kw_fpexcept)) 1168 Flags |= MachineInstr::FPExcept; 1169 1170 lex(); 1171 } 1172 if (Token.isNot(MIToken::Identifier)) 1173 return error("expected a machine instruction"); 1174 StringRef InstrName = Token.stringValue(); 1175 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1176 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1177 lex(); 1178 return false; 1179 } 1180 1181 bool MIParser::parseNamedRegister(unsigned &Reg) { 1182 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1183 StringRef Name = Token.stringValue(); 1184 if (PFS.Target.getRegisterByName(Name, Reg)) 1185 return error(Twine("unknown register name '") + Name + "'"); 1186 return false; 1187 } 1188 1189 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1190 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1191 StringRef Name = Token.stringValue(); 1192 // TODO: Check that the VReg name is not the same as a physical register name. 1193 // If it is, then print a warning (when warnings are implemented). 1194 Info = &PFS.getVRegInfoNamed(Name); 1195 return false; 1196 } 1197 1198 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1199 if (Token.is(MIToken::NamedVirtualRegister)) 1200 return parseNamedVirtualRegister(Info); 1201 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1202 unsigned ID; 1203 if (getUnsigned(ID)) 1204 return true; 1205 Info = &PFS.getVRegInfo(ID); 1206 return false; 1207 } 1208 1209 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1210 switch (Token.kind()) { 1211 case MIToken::underscore: 1212 Reg = 0; 1213 return false; 1214 case MIToken::NamedRegister: 1215 return parseNamedRegister(Reg); 1216 case MIToken::NamedVirtualRegister: 1217 case MIToken::VirtualRegister: 1218 if (parseVirtualRegister(Info)) 1219 return true; 1220 Reg = Info->VReg; 1221 return false; 1222 // TODO: Parse other register kinds. 1223 default: 1224 llvm_unreachable("The current token should be a register"); 1225 } 1226 } 1227 1228 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1229 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1230 return error("expected '_', register class, or register bank name"); 1231 StringRef::iterator Loc = Token.location(); 1232 StringRef Name = Token.stringValue(); 1233 1234 // Was it a register class? 1235 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1236 if (RC) { 1237 lex(); 1238 1239 switch (RegInfo.Kind) { 1240 case VRegInfo::UNKNOWN: 1241 case VRegInfo::NORMAL: 1242 RegInfo.Kind = VRegInfo::NORMAL; 1243 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1244 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1245 return error(Loc, Twine("conflicting register classes, previously: ") + 1246 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1247 } 1248 RegInfo.D.RC = RC; 1249 RegInfo.Explicit = true; 1250 return false; 1251 1252 case VRegInfo::GENERIC: 1253 case VRegInfo::REGBANK: 1254 return error(Loc, "register class specification on generic register"); 1255 } 1256 llvm_unreachable("Unexpected register kind"); 1257 } 1258 1259 // Should be a register bank or a generic register. 1260 const RegisterBank *RegBank = nullptr; 1261 if (Name != "_") { 1262 RegBank = PFS.Target.getRegBank(Name); 1263 if (!RegBank) 1264 return error(Loc, "expected '_', register class, or register bank name"); 1265 } 1266 1267 lex(); 1268 1269 switch (RegInfo.Kind) { 1270 case VRegInfo::UNKNOWN: 1271 case VRegInfo::GENERIC: 1272 case VRegInfo::REGBANK: 1273 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1274 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1275 return error(Loc, "conflicting generic register banks"); 1276 RegInfo.D.RegBank = RegBank; 1277 RegInfo.Explicit = true; 1278 return false; 1279 1280 case VRegInfo::NORMAL: 1281 return error(Loc, "register bank specification on normal register"); 1282 } 1283 llvm_unreachable("Unexpected register kind"); 1284 } 1285 1286 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1287 const unsigned OldFlags = Flags; 1288 switch (Token.kind()) { 1289 case MIToken::kw_implicit: 1290 Flags |= RegState::Implicit; 1291 break; 1292 case MIToken::kw_implicit_define: 1293 Flags |= RegState::ImplicitDefine; 1294 break; 1295 case MIToken::kw_def: 1296 Flags |= RegState::Define; 1297 break; 1298 case MIToken::kw_dead: 1299 Flags |= RegState::Dead; 1300 break; 1301 case MIToken::kw_killed: 1302 Flags |= RegState::Kill; 1303 break; 1304 case MIToken::kw_undef: 1305 Flags |= RegState::Undef; 1306 break; 1307 case MIToken::kw_internal: 1308 Flags |= RegState::InternalRead; 1309 break; 1310 case MIToken::kw_early_clobber: 1311 Flags |= RegState::EarlyClobber; 1312 break; 1313 case MIToken::kw_debug_use: 1314 Flags |= RegState::Debug; 1315 break; 1316 case MIToken::kw_renamable: 1317 Flags |= RegState::Renamable; 1318 break; 1319 default: 1320 llvm_unreachable("The current token should be a register flag"); 1321 } 1322 if (OldFlags == Flags) 1323 // We know that the same flag is specified more than once when the flags 1324 // weren't modified. 1325 return error("duplicate '" + Token.stringValue() + "' register flag"); 1326 lex(); 1327 return false; 1328 } 1329 1330 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1331 assert(Token.is(MIToken::dot)); 1332 lex(); 1333 if (Token.isNot(MIToken::Identifier)) 1334 return error("expected a subregister index after '.'"); 1335 auto Name = Token.stringValue(); 1336 SubReg = PFS.Target.getSubRegIndex(Name); 1337 if (!SubReg) 1338 return error(Twine("use of unknown subregister index '") + Name + "'"); 1339 lex(); 1340 return false; 1341 } 1342 1343 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1344 if (!consumeIfPresent(MIToken::kw_tied_def)) 1345 return true; 1346 if (Token.isNot(MIToken::IntegerLiteral)) 1347 return error("expected an integer literal after 'tied-def'"); 1348 if (getUnsigned(TiedDefIdx)) 1349 return true; 1350 lex(); 1351 if (expectAndConsume(MIToken::rparen)) 1352 return true; 1353 return false; 1354 } 1355 1356 bool MIParser::assignRegisterTies(MachineInstr &MI, 1357 ArrayRef<ParsedMachineOperand> Operands) { 1358 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1359 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1360 if (!Operands[I].TiedDefIdx) 1361 continue; 1362 // The parser ensures that this operand is a register use, so we just have 1363 // to check the tied-def operand. 1364 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1365 if (DefIdx >= E) 1366 return error(Operands[I].Begin, 1367 Twine("use of invalid tied-def operand index '" + 1368 Twine(DefIdx) + "'; instruction has only ") + 1369 Twine(E) + " operands"); 1370 const auto &DefOperand = Operands[DefIdx].Operand; 1371 if (!DefOperand.isReg() || !DefOperand.isDef()) 1372 // FIXME: add note with the def operand. 1373 return error(Operands[I].Begin, 1374 Twine("use of invalid tied-def operand index '") + 1375 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1376 " isn't a defined register"); 1377 // Check that the tied-def operand wasn't tied elsewhere. 1378 for (const auto &TiedPair : TiedRegisterPairs) { 1379 if (TiedPair.first == DefIdx) 1380 return error(Operands[I].Begin, 1381 Twine("the tied-def operand #") + Twine(DefIdx) + 1382 " is already tied with another register operand"); 1383 } 1384 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1385 } 1386 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1387 // indices must be less than tied max. 1388 for (const auto &TiedPair : TiedRegisterPairs) 1389 MI.tieOperands(TiedPair.first, TiedPair.second); 1390 return false; 1391 } 1392 1393 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1394 Optional<unsigned> &TiedDefIdx, 1395 bool IsDef) { 1396 unsigned Flags = IsDef ? RegState::Define : 0; 1397 while (Token.isRegisterFlag()) { 1398 if (parseRegisterFlag(Flags)) 1399 return true; 1400 } 1401 if (!Token.isRegister()) 1402 return error("expected a register after register flags"); 1403 unsigned Reg; 1404 VRegInfo *RegInfo; 1405 if (parseRegister(Reg, RegInfo)) 1406 return true; 1407 lex(); 1408 unsigned SubReg = 0; 1409 if (Token.is(MIToken::dot)) { 1410 if (parseSubRegisterIndex(SubReg)) 1411 return true; 1412 if (!Register::isVirtualRegister(Reg)) 1413 return error("subregister index expects a virtual register"); 1414 } 1415 if (Token.is(MIToken::colon)) { 1416 if (!Register::isVirtualRegister(Reg)) 1417 return error("register class specification expects a virtual register"); 1418 lex(); 1419 if (parseRegisterClassOrBank(*RegInfo)) 1420 return true; 1421 } 1422 MachineRegisterInfo &MRI = MF.getRegInfo(); 1423 if ((Flags & RegState::Define) == 0) { 1424 if (consumeIfPresent(MIToken::lparen)) { 1425 unsigned Idx; 1426 if (!parseRegisterTiedDefIndex(Idx)) 1427 TiedDefIdx = Idx; 1428 else { 1429 // Try a redundant low-level type. 1430 LLT Ty; 1431 if (parseLowLevelType(Token.location(), Ty)) 1432 return error("expected tied-def or low-level type after '('"); 1433 1434 if (expectAndConsume(MIToken::rparen)) 1435 return true; 1436 1437 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1438 return error("inconsistent type for generic virtual register"); 1439 1440 MRI.setType(Reg, Ty); 1441 } 1442 } 1443 } else if (consumeIfPresent(MIToken::lparen)) { 1444 // Virtual registers may have a tpe with GlobalISel. 1445 if (!Register::isVirtualRegister(Reg)) 1446 return error("unexpected type on physical register"); 1447 1448 LLT Ty; 1449 if (parseLowLevelType(Token.location(), Ty)) 1450 return true; 1451 1452 if (expectAndConsume(MIToken::rparen)) 1453 return true; 1454 1455 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1456 return error("inconsistent type for generic virtual register"); 1457 1458 MRI.setType(Reg, Ty); 1459 } else if (Register::isVirtualRegister(Reg)) { 1460 // Generic virtual registers must have a type. 1461 // If we end up here this means the type hasn't been specified and 1462 // this is bad! 1463 if (RegInfo->Kind == VRegInfo::GENERIC || 1464 RegInfo->Kind == VRegInfo::REGBANK) 1465 return error("generic virtual registers must have a type"); 1466 } 1467 Dest = MachineOperand::CreateReg( 1468 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1469 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1470 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1471 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1472 1473 return false; 1474 } 1475 1476 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1477 assert(Token.is(MIToken::IntegerLiteral)); 1478 const APSInt &Int = Token.integerValue(); 1479 if (Int.getMinSignedBits() > 64) 1480 return error("integer literal is too large to be an immediate operand"); 1481 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1482 lex(); 1483 return false; 1484 } 1485 1486 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1487 const Constant *&C) { 1488 auto Source = StringValue.str(); // The source has to be null terminated. 1489 SMDiagnostic Err; 1490 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1491 &PFS.IRSlots); 1492 if (!C) 1493 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1494 return false; 1495 } 1496 1497 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1498 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1499 return true; 1500 lex(); 1501 return false; 1502 } 1503 1504 // See LLT implemntation for bit size limits. 1505 static bool verifyScalarSize(uint64_t Size) { 1506 return Size != 0 && isUInt<16>(Size); 1507 } 1508 1509 static bool verifyVectorElementCount(uint64_t NumElts) { 1510 return NumElts != 0 && isUInt<16>(NumElts); 1511 } 1512 1513 static bool verifyAddrSpace(uint64_t AddrSpace) { 1514 return isUInt<24>(AddrSpace); 1515 } 1516 1517 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1518 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1519 StringRef SizeStr = Token.range().drop_front(); 1520 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1521 return error("expected integers after 's'/'p' type character"); 1522 } 1523 1524 if (Token.range().front() == 's') { 1525 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1526 if (!verifyScalarSize(ScalarSize)) 1527 return error("invalid size for scalar type"); 1528 1529 Ty = LLT::scalar(ScalarSize); 1530 lex(); 1531 return false; 1532 } else if (Token.range().front() == 'p') { 1533 const DataLayout &DL = MF.getDataLayout(); 1534 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1535 if (!verifyAddrSpace(AS)) 1536 return error("invalid address space number"); 1537 1538 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1539 lex(); 1540 return false; 1541 } 1542 1543 // Now we're looking for a vector. 1544 if (Token.isNot(MIToken::less)) 1545 return error(Loc, 1546 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1547 lex(); 1548 1549 if (Token.isNot(MIToken::IntegerLiteral)) 1550 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1551 uint64_t NumElements = Token.integerValue().getZExtValue(); 1552 if (!verifyVectorElementCount(NumElements)) 1553 return error("invalid number of vector elements"); 1554 1555 lex(); 1556 1557 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1558 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1559 lex(); 1560 1561 if (Token.range().front() != 's' && Token.range().front() != 'p') 1562 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1563 StringRef SizeStr = Token.range().drop_front(); 1564 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1565 return error("expected integers after 's'/'p' type character"); 1566 1567 if (Token.range().front() == 's') { 1568 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1569 if (!verifyScalarSize(ScalarSize)) 1570 return error("invalid size for scalar type"); 1571 Ty = LLT::scalar(ScalarSize); 1572 } else if (Token.range().front() == 'p') { 1573 const DataLayout &DL = MF.getDataLayout(); 1574 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1575 if (!verifyAddrSpace(AS)) 1576 return error("invalid address space number"); 1577 1578 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1579 } else 1580 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1581 lex(); 1582 1583 if (Token.isNot(MIToken::greater)) 1584 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1585 lex(); 1586 1587 Ty = LLT::vector(NumElements, Ty); 1588 return false; 1589 } 1590 1591 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1592 assert(Token.is(MIToken::Identifier)); 1593 StringRef TypeStr = Token.range(); 1594 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1595 TypeStr.front() != 'p') 1596 return error( 1597 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1598 StringRef SizeStr = Token.range().drop_front(); 1599 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1600 return error("expected integers after 'i'/'s'/'p' type character"); 1601 1602 auto Loc = Token.location(); 1603 lex(); 1604 if (Token.isNot(MIToken::IntegerLiteral)) { 1605 if (Token.isNot(MIToken::Identifier) || 1606 !(Token.range() == "true" || Token.range() == "false")) 1607 return error("expected an integer literal"); 1608 } 1609 const Constant *C = nullptr; 1610 if (parseIRConstant(Loc, C)) 1611 return true; 1612 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1613 return false; 1614 } 1615 1616 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1617 auto Loc = Token.location(); 1618 lex(); 1619 if (Token.isNot(MIToken::FloatingPointLiteral) && 1620 Token.isNot(MIToken::HexLiteral)) 1621 return error("expected a floating point literal"); 1622 const Constant *C = nullptr; 1623 if (parseIRConstant(Loc, C)) 1624 return true; 1625 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1626 return false; 1627 } 1628 1629 bool MIParser::getUnsigned(unsigned &Result) { 1630 if (Token.hasIntegerValue()) { 1631 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1632 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1633 if (Val64 == Limit) 1634 return error("expected 32-bit integer (too large)"); 1635 Result = Val64; 1636 return false; 1637 } 1638 if (Token.is(MIToken::HexLiteral)) { 1639 APInt A; 1640 if (getHexUint(A)) 1641 return true; 1642 if (A.getBitWidth() > 32) 1643 return error("expected 32-bit integer (too large)"); 1644 Result = A.getZExtValue(); 1645 return false; 1646 } 1647 return true; 1648 } 1649 1650 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1651 assert(Token.is(MIToken::MachineBasicBlock) || 1652 Token.is(MIToken::MachineBasicBlockLabel)); 1653 unsigned Number; 1654 if (getUnsigned(Number)) 1655 return true; 1656 auto MBBInfo = PFS.MBBSlots.find(Number); 1657 if (MBBInfo == PFS.MBBSlots.end()) 1658 return error(Twine("use of undefined machine basic block #") + 1659 Twine(Number)); 1660 MBB = MBBInfo->second; 1661 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1662 // we drop the <irname> from the bb.<id>.<irname> format. 1663 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1664 return error(Twine("the name of machine basic block #") + Twine(Number) + 1665 " isn't '" + Token.stringValue() + "'"); 1666 return false; 1667 } 1668 1669 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1670 MachineBasicBlock *MBB; 1671 if (parseMBBReference(MBB)) 1672 return true; 1673 Dest = MachineOperand::CreateMBB(MBB); 1674 lex(); 1675 return false; 1676 } 1677 1678 bool MIParser::parseStackFrameIndex(int &FI) { 1679 assert(Token.is(MIToken::StackObject)); 1680 unsigned ID; 1681 if (getUnsigned(ID)) 1682 return true; 1683 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1684 if (ObjectInfo == PFS.StackObjectSlots.end()) 1685 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1686 "'"); 1687 StringRef Name; 1688 if (const auto *Alloca = 1689 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1690 Name = Alloca->getName(); 1691 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1692 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1693 "' isn't '" + Token.stringValue() + "'"); 1694 lex(); 1695 FI = ObjectInfo->second; 1696 return false; 1697 } 1698 1699 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1700 int FI; 1701 if (parseStackFrameIndex(FI)) 1702 return true; 1703 Dest = MachineOperand::CreateFI(FI); 1704 return false; 1705 } 1706 1707 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1708 assert(Token.is(MIToken::FixedStackObject)); 1709 unsigned ID; 1710 if (getUnsigned(ID)) 1711 return true; 1712 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1713 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1714 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1715 Twine(ID) + "'"); 1716 lex(); 1717 FI = ObjectInfo->second; 1718 return false; 1719 } 1720 1721 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1722 int FI; 1723 if (parseFixedStackFrameIndex(FI)) 1724 return true; 1725 Dest = MachineOperand::CreateFI(FI); 1726 return false; 1727 } 1728 1729 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1730 switch (Token.kind()) { 1731 case MIToken::NamedGlobalValue: { 1732 const Module *M = MF.getFunction().getParent(); 1733 GV = M->getNamedValue(Token.stringValue()); 1734 if (!GV) 1735 return error(Twine("use of undefined global value '") + Token.range() + 1736 "'"); 1737 break; 1738 } 1739 case MIToken::GlobalValue: { 1740 unsigned GVIdx; 1741 if (getUnsigned(GVIdx)) 1742 return true; 1743 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1744 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1745 "'"); 1746 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1747 break; 1748 } 1749 default: 1750 llvm_unreachable("The current token should be a global value"); 1751 } 1752 return false; 1753 } 1754 1755 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1756 GlobalValue *GV = nullptr; 1757 if (parseGlobalValue(GV)) 1758 return true; 1759 lex(); 1760 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1761 if (parseOperandsOffset(Dest)) 1762 return true; 1763 return false; 1764 } 1765 1766 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1767 assert(Token.is(MIToken::ConstantPoolItem)); 1768 unsigned ID; 1769 if (getUnsigned(ID)) 1770 return true; 1771 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1772 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1773 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1774 lex(); 1775 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1776 if (parseOperandsOffset(Dest)) 1777 return true; 1778 return false; 1779 } 1780 1781 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1782 assert(Token.is(MIToken::JumpTableIndex)); 1783 unsigned ID; 1784 if (getUnsigned(ID)) 1785 return true; 1786 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1787 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1788 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1789 lex(); 1790 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1791 return false; 1792 } 1793 1794 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1795 assert(Token.is(MIToken::ExternalSymbol)); 1796 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1797 lex(); 1798 Dest = MachineOperand::CreateES(Symbol); 1799 if (parseOperandsOffset(Dest)) 1800 return true; 1801 return false; 1802 } 1803 1804 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1805 assert(Token.is(MIToken::MCSymbol)); 1806 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1807 lex(); 1808 Dest = MachineOperand::CreateMCSymbol(Symbol); 1809 if (parseOperandsOffset(Dest)) 1810 return true; 1811 return false; 1812 } 1813 1814 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1815 assert(Token.is(MIToken::SubRegisterIndex)); 1816 StringRef Name = Token.stringValue(); 1817 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1818 if (SubRegIndex == 0) 1819 return error(Twine("unknown subregister index '") + Name + "'"); 1820 lex(); 1821 Dest = MachineOperand::CreateImm(SubRegIndex); 1822 return false; 1823 } 1824 1825 bool MIParser::parseMDNode(MDNode *&Node) { 1826 assert(Token.is(MIToken::exclaim)); 1827 1828 auto Loc = Token.location(); 1829 lex(); 1830 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1831 return error("expected metadata id after '!'"); 1832 unsigned ID; 1833 if (getUnsigned(ID)) 1834 return true; 1835 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1836 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1837 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1838 lex(); 1839 Node = NodeInfo->second.get(); 1840 return false; 1841 } 1842 1843 bool MIParser::parseDIExpression(MDNode *&Expr) { 1844 assert(Token.is(MIToken::md_diexpr)); 1845 lex(); 1846 1847 // FIXME: Share this parsing with the IL parser. 1848 SmallVector<uint64_t, 8> Elements; 1849 1850 if (expectAndConsume(MIToken::lparen)) 1851 return true; 1852 1853 if (Token.isNot(MIToken::rparen)) { 1854 do { 1855 if (Token.is(MIToken::Identifier)) { 1856 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1857 lex(); 1858 Elements.push_back(Op); 1859 continue; 1860 } 1861 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 1862 lex(); 1863 Elements.push_back(Enc); 1864 continue; 1865 } 1866 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1867 } 1868 1869 if (Token.isNot(MIToken::IntegerLiteral) || 1870 Token.integerValue().isSigned()) 1871 return error("expected unsigned integer"); 1872 1873 auto &U = Token.integerValue(); 1874 if (U.ugt(UINT64_MAX)) 1875 return error("element too large, limit is " + Twine(UINT64_MAX)); 1876 Elements.push_back(U.getZExtValue()); 1877 lex(); 1878 1879 } while (consumeIfPresent(MIToken::comma)); 1880 } 1881 1882 if (expectAndConsume(MIToken::rparen)) 1883 return true; 1884 1885 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1886 return false; 1887 } 1888 1889 bool MIParser::parseDILocation(MDNode *&Loc) { 1890 assert(Token.is(MIToken::md_dilocation)); 1891 lex(); 1892 1893 bool HaveLine = false; 1894 unsigned Line = 0; 1895 unsigned Column = 0; 1896 MDNode *Scope = nullptr; 1897 MDNode *InlinedAt = nullptr; 1898 bool ImplicitCode = false; 1899 1900 if (expectAndConsume(MIToken::lparen)) 1901 return true; 1902 1903 if (Token.isNot(MIToken::rparen)) { 1904 do { 1905 if (Token.is(MIToken::Identifier)) { 1906 if (Token.stringValue() == "line") { 1907 lex(); 1908 if (expectAndConsume(MIToken::colon)) 1909 return true; 1910 if (Token.isNot(MIToken::IntegerLiteral) || 1911 Token.integerValue().isSigned()) 1912 return error("expected unsigned integer"); 1913 Line = Token.integerValue().getZExtValue(); 1914 HaveLine = true; 1915 lex(); 1916 continue; 1917 } 1918 if (Token.stringValue() == "column") { 1919 lex(); 1920 if (expectAndConsume(MIToken::colon)) 1921 return true; 1922 if (Token.isNot(MIToken::IntegerLiteral) || 1923 Token.integerValue().isSigned()) 1924 return error("expected unsigned integer"); 1925 Column = Token.integerValue().getZExtValue(); 1926 lex(); 1927 continue; 1928 } 1929 if (Token.stringValue() == "scope") { 1930 lex(); 1931 if (expectAndConsume(MIToken::colon)) 1932 return true; 1933 if (parseMDNode(Scope)) 1934 return error("expected metadata node"); 1935 if (!isa<DIScope>(Scope)) 1936 return error("expected DIScope node"); 1937 continue; 1938 } 1939 if (Token.stringValue() == "inlinedAt") { 1940 lex(); 1941 if (expectAndConsume(MIToken::colon)) 1942 return true; 1943 if (Token.is(MIToken::exclaim)) { 1944 if (parseMDNode(InlinedAt)) 1945 return true; 1946 } else if (Token.is(MIToken::md_dilocation)) { 1947 if (parseDILocation(InlinedAt)) 1948 return true; 1949 } else 1950 return error("expected metadata node"); 1951 if (!isa<DILocation>(InlinedAt)) 1952 return error("expected DILocation node"); 1953 continue; 1954 } 1955 if (Token.stringValue() == "isImplicitCode") { 1956 lex(); 1957 if (expectAndConsume(MIToken::colon)) 1958 return true; 1959 if (!Token.is(MIToken::Identifier)) 1960 return error("expected true/false"); 1961 // As far as I can see, we don't have any existing need for parsing 1962 // true/false in MIR yet. Do it ad-hoc until there's something else 1963 // that needs it. 1964 if (Token.stringValue() == "true") 1965 ImplicitCode = true; 1966 else if (Token.stringValue() == "false") 1967 ImplicitCode = false; 1968 else 1969 return error("expected true/false"); 1970 lex(); 1971 continue; 1972 } 1973 } 1974 return error(Twine("invalid DILocation argument '") + 1975 Token.stringValue() + "'"); 1976 } while (consumeIfPresent(MIToken::comma)); 1977 } 1978 1979 if (expectAndConsume(MIToken::rparen)) 1980 return true; 1981 1982 if (!HaveLine) 1983 return error("DILocation requires line number"); 1984 if (!Scope) 1985 return error("DILocation requires a scope"); 1986 1987 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 1988 InlinedAt, ImplicitCode); 1989 return false; 1990 } 1991 1992 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1993 MDNode *Node = nullptr; 1994 if (Token.is(MIToken::exclaim)) { 1995 if (parseMDNode(Node)) 1996 return true; 1997 } else if (Token.is(MIToken::md_diexpr)) { 1998 if (parseDIExpression(Node)) 1999 return true; 2000 } 2001 Dest = MachineOperand::CreateMetadata(Node); 2002 return false; 2003 } 2004 2005 bool MIParser::parseCFIOffset(int &Offset) { 2006 if (Token.isNot(MIToken::IntegerLiteral)) 2007 return error("expected a cfi offset"); 2008 if (Token.integerValue().getMinSignedBits() > 32) 2009 return error("expected a 32 bit integer (the cfi offset is too large)"); 2010 Offset = (int)Token.integerValue().getExtValue(); 2011 lex(); 2012 return false; 2013 } 2014 2015 bool MIParser::parseCFIRegister(unsigned &Reg) { 2016 if (Token.isNot(MIToken::NamedRegister)) 2017 return error("expected a cfi register"); 2018 unsigned LLVMReg; 2019 if (parseNamedRegister(LLVMReg)) 2020 return true; 2021 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2022 assert(TRI && "Expected target register info"); 2023 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2024 if (DwarfReg < 0) 2025 return error("invalid DWARF register"); 2026 Reg = (unsigned)DwarfReg; 2027 lex(); 2028 return false; 2029 } 2030 2031 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2032 do { 2033 if (Token.isNot(MIToken::HexLiteral)) 2034 return error("expected a hexadecimal literal"); 2035 unsigned Value; 2036 if (getUnsigned(Value)) 2037 return true; 2038 if (Value > UINT8_MAX) 2039 return error("expected a 8-bit integer (too large)"); 2040 Values.push_back(static_cast<uint8_t>(Value)); 2041 lex(); 2042 } while (consumeIfPresent(MIToken::comma)); 2043 return false; 2044 } 2045 2046 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2047 auto Kind = Token.kind(); 2048 lex(); 2049 int Offset; 2050 unsigned Reg; 2051 unsigned CFIIndex; 2052 switch (Kind) { 2053 case MIToken::kw_cfi_same_value: 2054 if (parseCFIRegister(Reg)) 2055 return true; 2056 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2057 break; 2058 case MIToken::kw_cfi_offset: 2059 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2060 parseCFIOffset(Offset)) 2061 return true; 2062 CFIIndex = 2063 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2064 break; 2065 case MIToken::kw_cfi_rel_offset: 2066 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2067 parseCFIOffset(Offset)) 2068 return true; 2069 CFIIndex = MF.addFrameInst( 2070 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2071 break; 2072 case MIToken::kw_cfi_def_cfa_register: 2073 if (parseCFIRegister(Reg)) 2074 return true; 2075 CFIIndex = 2076 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2077 break; 2078 case MIToken::kw_cfi_def_cfa_offset: 2079 if (parseCFIOffset(Offset)) 2080 return true; 2081 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 2082 CFIIndex = MF.addFrameInst( 2083 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 2084 break; 2085 case MIToken::kw_cfi_adjust_cfa_offset: 2086 if (parseCFIOffset(Offset)) 2087 return true; 2088 CFIIndex = MF.addFrameInst( 2089 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2090 break; 2091 case MIToken::kw_cfi_def_cfa: 2092 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2093 parseCFIOffset(Offset)) 2094 return true; 2095 // NB: MCCFIInstruction::createDefCfa negates the offset. 2096 CFIIndex = 2097 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 2098 break; 2099 case MIToken::kw_cfi_remember_state: 2100 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2101 break; 2102 case MIToken::kw_cfi_restore: 2103 if (parseCFIRegister(Reg)) 2104 return true; 2105 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2106 break; 2107 case MIToken::kw_cfi_restore_state: 2108 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2109 break; 2110 case MIToken::kw_cfi_undefined: 2111 if (parseCFIRegister(Reg)) 2112 return true; 2113 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2114 break; 2115 case MIToken::kw_cfi_register: { 2116 unsigned Reg2; 2117 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2118 parseCFIRegister(Reg2)) 2119 return true; 2120 2121 CFIIndex = 2122 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2123 break; 2124 } 2125 case MIToken::kw_cfi_window_save: 2126 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2127 break; 2128 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2129 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2130 break; 2131 case MIToken::kw_cfi_escape: { 2132 std::string Values; 2133 if (parseCFIEscapeValues(Values)) 2134 return true; 2135 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2136 break; 2137 } 2138 default: 2139 // TODO: Parse the other CFI operands. 2140 llvm_unreachable("The current token should be a cfi operand"); 2141 } 2142 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2143 return false; 2144 } 2145 2146 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2147 switch (Token.kind()) { 2148 case MIToken::NamedIRBlock: { 2149 BB = dyn_cast_or_null<BasicBlock>( 2150 F.getValueSymbolTable()->lookup(Token.stringValue())); 2151 if (!BB) 2152 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2153 break; 2154 } 2155 case MIToken::IRBlock: { 2156 unsigned SlotNumber = 0; 2157 if (getUnsigned(SlotNumber)) 2158 return true; 2159 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2160 if (!BB) 2161 return error(Twine("use of undefined IR block '%ir-block.") + 2162 Twine(SlotNumber) + "'"); 2163 break; 2164 } 2165 default: 2166 llvm_unreachable("The current token should be an IR block reference"); 2167 } 2168 return false; 2169 } 2170 2171 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2172 assert(Token.is(MIToken::kw_blockaddress)); 2173 lex(); 2174 if (expectAndConsume(MIToken::lparen)) 2175 return true; 2176 if (Token.isNot(MIToken::GlobalValue) && 2177 Token.isNot(MIToken::NamedGlobalValue)) 2178 return error("expected a global value"); 2179 GlobalValue *GV = nullptr; 2180 if (parseGlobalValue(GV)) 2181 return true; 2182 auto *F = dyn_cast<Function>(GV); 2183 if (!F) 2184 return error("expected an IR function reference"); 2185 lex(); 2186 if (expectAndConsume(MIToken::comma)) 2187 return true; 2188 BasicBlock *BB = nullptr; 2189 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2190 return error("expected an IR block reference"); 2191 if (parseIRBlock(BB, *F)) 2192 return true; 2193 lex(); 2194 if (expectAndConsume(MIToken::rparen)) 2195 return true; 2196 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2197 if (parseOperandsOffset(Dest)) 2198 return true; 2199 return false; 2200 } 2201 2202 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2203 assert(Token.is(MIToken::kw_intrinsic)); 2204 lex(); 2205 if (expectAndConsume(MIToken::lparen)) 2206 return error("expected syntax intrinsic(@llvm.whatever)"); 2207 2208 if (Token.isNot(MIToken::NamedGlobalValue)) 2209 return error("expected syntax intrinsic(@llvm.whatever)"); 2210 2211 std::string Name = Token.stringValue(); 2212 lex(); 2213 2214 if (expectAndConsume(MIToken::rparen)) 2215 return error("expected ')' to terminate intrinsic name"); 2216 2217 // Find out what intrinsic we're dealing with, first try the global namespace 2218 // and then the target's private intrinsics if that fails. 2219 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2220 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2221 if (ID == Intrinsic::not_intrinsic && TII) 2222 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2223 2224 if (ID == Intrinsic::not_intrinsic) 2225 return error("unknown intrinsic name"); 2226 Dest = MachineOperand::CreateIntrinsicID(ID); 2227 2228 return false; 2229 } 2230 2231 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2232 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2233 bool IsFloat = Token.is(MIToken::kw_floatpred); 2234 lex(); 2235 2236 if (expectAndConsume(MIToken::lparen)) 2237 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2238 2239 if (Token.isNot(MIToken::Identifier)) 2240 return error("whatever"); 2241 2242 CmpInst::Predicate Pred; 2243 if (IsFloat) { 2244 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2245 .Case("false", CmpInst::FCMP_FALSE) 2246 .Case("oeq", CmpInst::FCMP_OEQ) 2247 .Case("ogt", CmpInst::FCMP_OGT) 2248 .Case("oge", CmpInst::FCMP_OGE) 2249 .Case("olt", CmpInst::FCMP_OLT) 2250 .Case("ole", CmpInst::FCMP_OLE) 2251 .Case("one", CmpInst::FCMP_ONE) 2252 .Case("ord", CmpInst::FCMP_ORD) 2253 .Case("uno", CmpInst::FCMP_UNO) 2254 .Case("ueq", CmpInst::FCMP_UEQ) 2255 .Case("ugt", CmpInst::FCMP_UGT) 2256 .Case("uge", CmpInst::FCMP_UGE) 2257 .Case("ult", CmpInst::FCMP_ULT) 2258 .Case("ule", CmpInst::FCMP_ULE) 2259 .Case("une", CmpInst::FCMP_UNE) 2260 .Case("true", CmpInst::FCMP_TRUE) 2261 .Default(CmpInst::BAD_FCMP_PREDICATE); 2262 if (!CmpInst::isFPPredicate(Pred)) 2263 return error("invalid floating-point predicate"); 2264 } else { 2265 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2266 .Case("eq", CmpInst::ICMP_EQ) 2267 .Case("ne", CmpInst::ICMP_NE) 2268 .Case("sgt", CmpInst::ICMP_SGT) 2269 .Case("sge", CmpInst::ICMP_SGE) 2270 .Case("slt", CmpInst::ICMP_SLT) 2271 .Case("sle", CmpInst::ICMP_SLE) 2272 .Case("ugt", CmpInst::ICMP_UGT) 2273 .Case("uge", CmpInst::ICMP_UGE) 2274 .Case("ult", CmpInst::ICMP_ULT) 2275 .Case("ule", CmpInst::ICMP_ULE) 2276 .Default(CmpInst::BAD_ICMP_PREDICATE); 2277 if (!CmpInst::isIntPredicate(Pred)) 2278 return error("invalid integer predicate"); 2279 } 2280 2281 lex(); 2282 Dest = MachineOperand::CreatePredicate(Pred); 2283 if (expectAndConsume(MIToken::rparen)) 2284 return error("predicate should be terminated by ')'."); 2285 2286 return false; 2287 } 2288 2289 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2290 assert(Token.is(MIToken::kw_shufflemask)); 2291 2292 lex(); 2293 if (expectAndConsume(MIToken::lparen)) 2294 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2295 2296 SmallVector<Constant *, 32> ShufMask; 2297 LLVMContext &Ctx = MF.getFunction().getContext(); 2298 Type *I32Ty = Type::getInt32Ty(Ctx); 2299 2300 bool AllZero = true; 2301 bool AllUndef = true; 2302 2303 do { 2304 if (Token.is(MIToken::kw_undef)) { 2305 ShufMask.push_back(UndefValue::get(I32Ty)); 2306 AllZero = false; 2307 } else if (Token.is(MIToken::IntegerLiteral)) { 2308 AllUndef = false; 2309 const APSInt &Int = Token.integerValue(); 2310 if (!Int.isNullValue()) 2311 AllZero = false; 2312 ShufMask.push_back(ConstantInt::get(I32Ty, Int.getExtValue())); 2313 } else 2314 return error("expected integer constant"); 2315 2316 lex(); 2317 } while (consumeIfPresent(MIToken::comma)); 2318 2319 if (expectAndConsume(MIToken::rparen)) 2320 return error("shufflemask should be terminated by ')'."); 2321 2322 if (AllZero || AllUndef) { 2323 VectorType *VT = VectorType::get(I32Ty, ShufMask.size()); 2324 Constant *C = AllZero ? Constant::getNullValue(VT) : UndefValue::get(VT); 2325 Dest = MachineOperand::CreateShuffleMask(C); 2326 } else 2327 Dest = MachineOperand::CreateShuffleMask(ConstantVector::get(ShufMask)); 2328 2329 return false; 2330 } 2331 2332 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2333 assert(Token.is(MIToken::kw_target_index)); 2334 lex(); 2335 if (expectAndConsume(MIToken::lparen)) 2336 return true; 2337 if (Token.isNot(MIToken::Identifier)) 2338 return error("expected the name of the target index"); 2339 int Index = 0; 2340 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2341 return error("use of undefined target index '" + Token.stringValue() + "'"); 2342 lex(); 2343 if (expectAndConsume(MIToken::rparen)) 2344 return true; 2345 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2346 if (parseOperandsOffset(Dest)) 2347 return true; 2348 return false; 2349 } 2350 2351 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2352 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2353 lex(); 2354 if (expectAndConsume(MIToken::lparen)) 2355 return true; 2356 2357 uint32_t *Mask = MF.allocateRegMask(); 2358 while (true) { 2359 if (Token.isNot(MIToken::NamedRegister)) 2360 return error("expected a named register"); 2361 unsigned Reg; 2362 if (parseNamedRegister(Reg)) 2363 return true; 2364 lex(); 2365 Mask[Reg / 32] |= 1U << (Reg % 32); 2366 // TODO: Report an error if the same register is used more than once. 2367 if (Token.isNot(MIToken::comma)) 2368 break; 2369 lex(); 2370 } 2371 2372 if (expectAndConsume(MIToken::rparen)) 2373 return true; 2374 Dest = MachineOperand::CreateRegMask(Mask); 2375 return false; 2376 } 2377 2378 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2379 assert(Token.is(MIToken::kw_liveout)); 2380 uint32_t *Mask = MF.allocateRegMask(); 2381 lex(); 2382 if (expectAndConsume(MIToken::lparen)) 2383 return true; 2384 while (true) { 2385 if (Token.isNot(MIToken::NamedRegister)) 2386 return error("expected a named register"); 2387 unsigned Reg; 2388 if (parseNamedRegister(Reg)) 2389 return true; 2390 lex(); 2391 Mask[Reg / 32] |= 1U << (Reg % 32); 2392 // TODO: Report an error if the same register is used more than once. 2393 if (Token.isNot(MIToken::comma)) 2394 break; 2395 lex(); 2396 } 2397 if (expectAndConsume(MIToken::rparen)) 2398 return true; 2399 Dest = MachineOperand::CreateRegLiveOut(Mask); 2400 return false; 2401 } 2402 2403 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2404 Optional<unsigned> &TiedDefIdx) { 2405 switch (Token.kind()) { 2406 case MIToken::kw_implicit: 2407 case MIToken::kw_implicit_define: 2408 case MIToken::kw_def: 2409 case MIToken::kw_dead: 2410 case MIToken::kw_killed: 2411 case MIToken::kw_undef: 2412 case MIToken::kw_internal: 2413 case MIToken::kw_early_clobber: 2414 case MIToken::kw_debug_use: 2415 case MIToken::kw_renamable: 2416 case MIToken::underscore: 2417 case MIToken::NamedRegister: 2418 case MIToken::VirtualRegister: 2419 case MIToken::NamedVirtualRegister: 2420 return parseRegisterOperand(Dest, TiedDefIdx); 2421 case MIToken::IntegerLiteral: 2422 return parseImmediateOperand(Dest); 2423 case MIToken::kw_half: 2424 case MIToken::kw_float: 2425 case MIToken::kw_double: 2426 case MIToken::kw_x86_fp80: 2427 case MIToken::kw_fp128: 2428 case MIToken::kw_ppc_fp128: 2429 return parseFPImmediateOperand(Dest); 2430 case MIToken::MachineBasicBlock: 2431 return parseMBBOperand(Dest); 2432 case MIToken::StackObject: 2433 return parseStackObjectOperand(Dest); 2434 case MIToken::FixedStackObject: 2435 return parseFixedStackObjectOperand(Dest); 2436 case MIToken::GlobalValue: 2437 case MIToken::NamedGlobalValue: 2438 return parseGlobalAddressOperand(Dest); 2439 case MIToken::ConstantPoolItem: 2440 return parseConstantPoolIndexOperand(Dest); 2441 case MIToken::JumpTableIndex: 2442 return parseJumpTableIndexOperand(Dest); 2443 case MIToken::ExternalSymbol: 2444 return parseExternalSymbolOperand(Dest); 2445 case MIToken::MCSymbol: 2446 return parseMCSymbolOperand(Dest); 2447 case MIToken::SubRegisterIndex: 2448 return parseSubRegisterIndexOperand(Dest); 2449 case MIToken::md_diexpr: 2450 case MIToken::exclaim: 2451 return parseMetadataOperand(Dest); 2452 case MIToken::kw_cfi_same_value: 2453 case MIToken::kw_cfi_offset: 2454 case MIToken::kw_cfi_rel_offset: 2455 case MIToken::kw_cfi_def_cfa_register: 2456 case MIToken::kw_cfi_def_cfa_offset: 2457 case MIToken::kw_cfi_adjust_cfa_offset: 2458 case MIToken::kw_cfi_escape: 2459 case MIToken::kw_cfi_def_cfa: 2460 case MIToken::kw_cfi_register: 2461 case MIToken::kw_cfi_remember_state: 2462 case MIToken::kw_cfi_restore: 2463 case MIToken::kw_cfi_restore_state: 2464 case MIToken::kw_cfi_undefined: 2465 case MIToken::kw_cfi_window_save: 2466 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2467 return parseCFIOperand(Dest); 2468 case MIToken::kw_blockaddress: 2469 return parseBlockAddressOperand(Dest); 2470 case MIToken::kw_intrinsic: 2471 return parseIntrinsicOperand(Dest); 2472 case MIToken::kw_target_index: 2473 return parseTargetIndexOperand(Dest); 2474 case MIToken::kw_liveout: 2475 return parseLiveoutRegisterMaskOperand(Dest); 2476 case MIToken::kw_floatpred: 2477 case MIToken::kw_intpred: 2478 return parsePredicateOperand(Dest); 2479 case MIToken::kw_shufflemask: 2480 return parseShuffleMaskOperand(Dest); 2481 case MIToken::Error: 2482 return true; 2483 case MIToken::Identifier: 2484 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2485 Dest = MachineOperand::CreateRegMask(RegMask); 2486 lex(); 2487 break; 2488 } else if (Token.stringValue() == "CustomRegMask") { 2489 return parseCustomRegisterMaskOperand(Dest); 2490 } else 2491 return parseTypedImmediateOperand(Dest); 2492 default: 2493 // FIXME: Parse the MCSymbol machine operand. 2494 return error("expected a machine operand"); 2495 } 2496 return false; 2497 } 2498 2499 bool MIParser::parseMachineOperandAndTargetFlags( 2500 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2501 unsigned TF = 0; 2502 bool HasTargetFlags = false; 2503 if (Token.is(MIToken::kw_target_flags)) { 2504 HasTargetFlags = true; 2505 lex(); 2506 if (expectAndConsume(MIToken::lparen)) 2507 return true; 2508 if (Token.isNot(MIToken::Identifier)) 2509 return error("expected the name of the target flag"); 2510 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2511 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2512 return error("use of undefined target flag '" + Token.stringValue() + 2513 "'"); 2514 } 2515 lex(); 2516 while (Token.is(MIToken::comma)) { 2517 lex(); 2518 if (Token.isNot(MIToken::Identifier)) 2519 return error("expected the name of the target flag"); 2520 unsigned BitFlag = 0; 2521 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2522 return error("use of undefined target flag '" + Token.stringValue() + 2523 "'"); 2524 // TODO: Report an error when using a duplicate bit target flag. 2525 TF |= BitFlag; 2526 lex(); 2527 } 2528 if (expectAndConsume(MIToken::rparen)) 2529 return true; 2530 } 2531 auto Loc = Token.location(); 2532 if (parseMachineOperand(Dest, TiedDefIdx)) 2533 return true; 2534 if (!HasTargetFlags) 2535 return false; 2536 if (Dest.isReg()) 2537 return error(Loc, "register operands can't have target flags"); 2538 Dest.setTargetFlags(TF); 2539 return false; 2540 } 2541 2542 bool MIParser::parseOffset(int64_t &Offset) { 2543 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2544 return false; 2545 StringRef Sign = Token.range(); 2546 bool IsNegative = Token.is(MIToken::minus); 2547 lex(); 2548 if (Token.isNot(MIToken::IntegerLiteral)) 2549 return error("expected an integer literal after '" + Sign + "'"); 2550 if (Token.integerValue().getMinSignedBits() > 64) 2551 return error("expected 64-bit integer (too large)"); 2552 Offset = Token.integerValue().getExtValue(); 2553 if (IsNegative) 2554 Offset = -Offset; 2555 lex(); 2556 return false; 2557 } 2558 2559 bool MIParser::parseAlignment(unsigned &Alignment) { 2560 assert(Token.is(MIToken::kw_align)); 2561 lex(); 2562 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2563 return error("expected an integer literal after 'align'"); 2564 if (getUnsigned(Alignment)) 2565 return true; 2566 lex(); 2567 2568 if (!isPowerOf2_32(Alignment)) 2569 return error("expected a power-of-2 literal after 'align'"); 2570 2571 return false; 2572 } 2573 2574 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2575 assert(Token.is(MIToken::kw_addrspace)); 2576 lex(); 2577 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2578 return error("expected an integer literal after 'addrspace'"); 2579 if (getUnsigned(Addrspace)) 2580 return true; 2581 lex(); 2582 return false; 2583 } 2584 2585 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2586 int64_t Offset = 0; 2587 if (parseOffset(Offset)) 2588 return true; 2589 Op.setOffset(Offset); 2590 return false; 2591 } 2592 2593 bool MIParser::parseIRValue(const Value *&V) { 2594 switch (Token.kind()) { 2595 case MIToken::NamedIRValue: { 2596 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2597 break; 2598 } 2599 case MIToken::IRValue: { 2600 unsigned SlotNumber = 0; 2601 if (getUnsigned(SlotNumber)) 2602 return true; 2603 V = getIRValue(SlotNumber); 2604 break; 2605 } 2606 case MIToken::NamedGlobalValue: 2607 case MIToken::GlobalValue: { 2608 GlobalValue *GV = nullptr; 2609 if (parseGlobalValue(GV)) 2610 return true; 2611 V = GV; 2612 break; 2613 } 2614 case MIToken::QuotedIRValue: { 2615 const Constant *C = nullptr; 2616 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2617 return true; 2618 V = C; 2619 break; 2620 } 2621 default: 2622 llvm_unreachable("The current token should be an IR block reference"); 2623 } 2624 if (!V) 2625 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2626 return false; 2627 } 2628 2629 bool MIParser::getUint64(uint64_t &Result) { 2630 if (Token.hasIntegerValue()) { 2631 if (Token.integerValue().getActiveBits() > 64) 2632 return error("expected 64-bit integer (too large)"); 2633 Result = Token.integerValue().getZExtValue(); 2634 return false; 2635 } 2636 if (Token.is(MIToken::HexLiteral)) { 2637 APInt A; 2638 if (getHexUint(A)) 2639 return true; 2640 if (A.getBitWidth() > 64) 2641 return error("expected 64-bit integer (too large)"); 2642 Result = A.getZExtValue(); 2643 return false; 2644 } 2645 return true; 2646 } 2647 2648 bool MIParser::getHexUint(APInt &Result) { 2649 assert(Token.is(MIToken::HexLiteral)); 2650 StringRef S = Token.range(); 2651 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2652 // This could be a floating point literal with a special prefix. 2653 if (!isxdigit(S[2])) 2654 return true; 2655 StringRef V = S.substr(2); 2656 APInt A(V.size()*4, V, 16); 2657 2658 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2659 // sure it isn't the case before constructing result. 2660 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2661 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2662 return false; 2663 } 2664 2665 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2666 const auto OldFlags = Flags; 2667 switch (Token.kind()) { 2668 case MIToken::kw_volatile: 2669 Flags |= MachineMemOperand::MOVolatile; 2670 break; 2671 case MIToken::kw_non_temporal: 2672 Flags |= MachineMemOperand::MONonTemporal; 2673 break; 2674 case MIToken::kw_dereferenceable: 2675 Flags |= MachineMemOperand::MODereferenceable; 2676 break; 2677 case MIToken::kw_invariant: 2678 Flags |= MachineMemOperand::MOInvariant; 2679 break; 2680 case MIToken::StringConstant: { 2681 MachineMemOperand::Flags TF; 2682 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2683 return error("use of undefined target MMO flag '" + Token.stringValue() + 2684 "'"); 2685 Flags |= TF; 2686 break; 2687 } 2688 default: 2689 llvm_unreachable("The current token should be a memory operand flag"); 2690 } 2691 if (OldFlags == Flags) 2692 // We know that the same flag is specified more than once when the flags 2693 // weren't modified. 2694 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2695 lex(); 2696 return false; 2697 } 2698 2699 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2700 switch (Token.kind()) { 2701 case MIToken::kw_stack: 2702 PSV = MF.getPSVManager().getStack(); 2703 break; 2704 case MIToken::kw_got: 2705 PSV = MF.getPSVManager().getGOT(); 2706 break; 2707 case MIToken::kw_jump_table: 2708 PSV = MF.getPSVManager().getJumpTable(); 2709 break; 2710 case MIToken::kw_constant_pool: 2711 PSV = MF.getPSVManager().getConstantPool(); 2712 break; 2713 case MIToken::FixedStackObject: { 2714 int FI; 2715 if (parseFixedStackFrameIndex(FI)) 2716 return true; 2717 PSV = MF.getPSVManager().getFixedStack(FI); 2718 // The token was already consumed, so use return here instead of break. 2719 return false; 2720 } 2721 case MIToken::StackObject: { 2722 int FI; 2723 if (parseStackFrameIndex(FI)) 2724 return true; 2725 PSV = MF.getPSVManager().getFixedStack(FI); 2726 // The token was already consumed, so use return here instead of break. 2727 return false; 2728 } 2729 case MIToken::kw_call_entry: 2730 lex(); 2731 switch (Token.kind()) { 2732 case MIToken::GlobalValue: 2733 case MIToken::NamedGlobalValue: { 2734 GlobalValue *GV = nullptr; 2735 if (parseGlobalValue(GV)) 2736 return true; 2737 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2738 break; 2739 } 2740 case MIToken::ExternalSymbol: 2741 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2742 MF.createExternalSymbolName(Token.stringValue())); 2743 break; 2744 default: 2745 return error( 2746 "expected a global value or an external symbol after 'call-entry'"); 2747 } 2748 break; 2749 default: 2750 llvm_unreachable("The current token should be pseudo source value"); 2751 } 2752 lex(); 2753 return false; 2754 } 2755 2756 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2757 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2758 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2759 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2760 Token.is(MIToken::kw_call_entry)) { 2761 const PseudoSourceValue *PSV = nullptr; 2762 if (parseMemoryPseudoSourceValue(PSV)) 2763 return true; 2764 int64_t Offset = 0; 2765 if (parseOffset(Offset)) 2766 return true; 2767 Dest = MachinePointerInfo(PSV, Offset); 2768 return false; 2769 } 2770 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2771 Token.isNot(MIToken::GlobalValue) && 2772 Token.isNot(MIToken::NamedGlobalValue) && 2773 Token.isNot(MIToken::QuotedIRValue)) 2774 return error("expected an IR value reference"); 2775 const Value *V = nullptr; 2776 if (parseIRValue(V)) 2777 return true; 2778 if (!V->getType()->isPointerTy()) 2779 return error("expected a pointer IR value"); 2780 lex(); 2781 int64_t Offset = 0; 2782 if (parseOffset(Offset)) 2783 return true; 2784 Dest = MachinePointerInfo(V, Offset); 2785 return false; 2786 } 2787 2788 bool MIParser::parseOptionalScope(LLVMContext &Context, 2789 SyncScope::ID &SSID) { 2790 SSID = SyncScope::System; 2791 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2792 lex(); 2793 if (expectAndConsume(MIToken::lparen)) 2794 return error("expected '(' in syncscope"); 2795 2796 std::string SSN; 2797 if (parseStringConstant(SSN)) 2798 return true; 2799 2800 SSID = Context.getOrInsertSyncScopeID(SSN); 2801 if (expectAndConsume(MIToken::rparen)) 2802 return error("expected ')' in syncscope"); 2803 } 2804 2805 return false; 2806 } 2807 2808 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2809 Order = AtomicOrdering::NotAtomic; 2810 if (Token.isNot(MIToken::Identifier)) 2811 return false; 2812 2813 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2814 .Case("unordered", AtomicOrdering::Unordered) 2815 .Case("monotonic", AtomicOrdering::Monotonic) 2816 .Case("acquire", AtomicOrdering::Acquire) 2817 .Case("release", AtomicOrdering::Release) 2818 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2819 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2820 .Default(AtomicOrdering::NotAtomic); 2821 2822 if (Order != AtomicOrdering::NotAtomic) { 2823 lex(); 2824 return false; 2825 } 2826 2827 return error("expected an atomic scope, ordering or a size specification"); 2828 } 2829 2830 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2831 if (expectAndConsume(MIToken::lparen)) 2832 return true; 2833 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2834 while (Token.isMemoryOperandFlag()) { 2835 if (parseMemoryOperandFlag(Flags)) 2836 return true; 2837 } 2838 if (Token.isNot(MIToken::Identifier) || 2839 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2840 return error("expected 'load' or 'store' memory operation"); 2841 if (Token.stringValue() == "load") 2842 Flags |= MachineMemOperand::MOLoad; 2843 else 2844 Flags |= MachineMemOperand::MOStore; 2845 lex(); 2846 2847 // Optional 'store' for operands that both load and store. 2848 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2849 Flags |= MachineMemOperand::MOStore; 2850 lex(); 2851 } 2852 2853 // Optional synchronization scope. 2854 SyncScope::ID SSID; 2855 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2856 return true; 2857 2858 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2859 AtomicOrdering Order, FailureOrder; 2860 if (parseOptionalAtomicOrdering(Order)) 2861 return true; 2862 2863 if (parseOptionalAtomicOrdering(FailureOrder)) 2864 return true; 2865 2866 if (Token.isNot(MIToken::IntegerLiteral) && 2867 Token.isNot(MIToken::kw_unknown_size)) 2868 return error("expected the size integer literal or 'unknown-size' after " 2869 "memory operation"); 2870 uint64_t Size; 2871 if (Token.is(MIToken::IntegerLiteral)) { 2872 if (getUint64(Size)) 2873 return true; 2874 } else if (Token.is(MIToken::kw_unknown_size)) { 2875 Size = MemoryLocation::UnknownSize; 2876 } 2877 lex(); 2878 2879 MachinePointerInfo Ptr = MachinePointerInfo(); 2880 if (Token.is(MIToken::Identifier)) { 2881 const char *Word = 2882 ((Flags & MachineMemOperand::MOLoad) && 2883 (Flags & MachineMemOperand::MOStore)) 2884 ? "on" 2885 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2886 if (Token.stringValue() != Word) 2887 return error(Twine("expected '") + Word + "'"); 2888 lex(); 2889 2890 if (parseMachinePointerInfo(Ptr)) 2891 return true; 2892 } 2893 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2894 AAMDNodes AAInfo; 2895 MDNode *Range = nullptr; 2896 while (consumeIfPresent(MIToken::comma)) { 2897 switch (Token.kind()) { 2898 case MIToken::kw_align: 2899 if (parseAlignment(BaseAlignment)) 2900 return true; 2901 break; 2902 case MIToken::kw_addrspace: 2903 if (parseAddrspace(Ptr.AddrSpace)) 2904 return true; 2905 break; 2906 case MIToken::md_tbaa: 2907 lex(); 2908 if (parseMDNode(AAInfo.TBAA)) 2909 return true; 2910 break; 2911 case MIToken::md_alias_scope: 2912 lex(); 2913 if (parseMDNode(AAInfo.Scope)) 2914 return true; 2915 break; 2916 case MIToken::md_noalias: 2917 lex(); 2918 if (parseMDNode(AAInfo.NoAlias)) 2919 return true; 2920 break; 2921 case MIToken::md_range: 2922 lex(); 2923 if (parseMDNode(Range)) 2924 return true; 2925 break; 2926 // TODO: Report an error on duplicate metadata nodes. 2927 default: 2928 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2929 "'!noalias' or '!range'"); 2930 } 2931 } 2932 if (expectAndConsume(MIToken::rparen)) 2933 return true; 2934 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2935 SSID, Order, FailureOrder); 2936 return false; 2937 } 2938 2939 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2940 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2941 Token.is(MIToken::kw_post_instr_symbol)) && 2942 "Invalid token for a pre- post-instruction symbol!"); 2943 lex(); 2944 if (Token.isNot(MIToken::MCSymbol)) 2945 return error("expected a symbol after 'pre-instr-symbol'"); 2946 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2947 lex(); 2948 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2949 Token.is(MIToken::lbrace)) 2950 return false; 2951 if (Token.isNot(MIToken::comma)) 2952 return error("expected ',' before the next machine operand"); 2953 lex(); 2954 return false; 2955 } 2956 2957 static void initSlots2BasicBlocks( 2958 const Function &F, 2959 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2960 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2961 MST.incorporateFunction(F); 2962 for (auto &BB : F) { 2963 if (BB.hasName()) 2964 continue; 2965 int Slot = MST.getLocalSlot(&BB); 2966 if (Slot == -1) 2967 continue; 2968 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2969 } 2970 } 2971 2972 static const BasicBlock *getIRBlockFromSlot( 2973 unsigned Slot, 2974 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2975 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2976 if (BlockInfo == Slots2BasicBlocks.end()) 2977 return nullptr; 2978 return BlockInfo->second; 2979 } 2980 2981 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2982 if (Slots2BasicBlocks.empty()) 2983 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2984 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2985 } 2986 2987 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2988 if (&F == &MF.getFunction()) 2989 return getIRBlock(Slot); 2990 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2991 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2992 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2993 } 2994 2995 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2996 DenseMap<unsigned, const Value *> &Slots2Values) { 2997 int Slot = MST.getLocalSlot(V); 2998 if (Slot == -1) 2999 return; 3000 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 3001 } 3002 3003 /// Creates the mapping from slot numbers to function's unnamed IR values. 3004 static void initSlots2Values(const Function &F, 3005 DenseMap<unsigned, const Value *> &Slots2Values) { 3006 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3007 MST.incorporateFunction(F); 3008 for (const auto &Arg : F.args()) 3009 mapValueToSlot(&Arg, MST, Slots2Values); 3010 for (const auto &BB : F) { 3011 mapValueToSlot(&BB, MST, Slots2Values); 3012 for (const auto &I : BB) 3013 mapValueToSlot(&I, MST, Slots2Values); 3014 } 3015 } 3016 3017 const Value *MIParser::getIRValue(unsigned Slot) { 3018 if (Slots2Values.empty()) 3019 initSlots2Values(MF.getFunction(), Slots2Values); 3020 auto ValueInfo = Slots2Values.find(Slot); 3021 if (ValueInfo == Slots2Values.end()) 3022 return nullptr; 3023 return ValueInfo->second; 3024 } 3025 3026 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3027 // FIXME: Currently we can't recognize temporary or local symbols and call all 3028 // of the appropriate forms to create them. However, this handles basic cases 3029 // well as most of the special aspects are recognized by a prefix on their 3030 // name, and the input names should already be unique. For test cases, keeping 3031 // the symbol name out of the symbol table isn't terribly important. 3032 return MF.getContext().getOrCreateSymbol(Name); 3033 } 3034 3035 bool MIParser::parseStringConstant(std::string &Result) { 3036 if (Token.isNot(MIToken::StringConstant)) 3037 return error("expected string constant"); 3038 Result = Token.stringValue(); 3039 lex(); 3040 return false; 3041 } 3042 3043 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3044 StringRef Src, 3045 SMDiagnostic &Error) { 3046 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3047 } 3048 3049 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3050 StringRef Src, SMDiagnostic &Error) { 3051 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3052 } 3053 3054 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3055 MachineBasicBlock *&MBB, StringRef Src, 3056 SMDiagnostic &Error) { 3057 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3058 } 3059 3060 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3061 unsigned &Reg, StringRef Src, 3062 SMDiagnostic &Error) { 3063 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3064 } 3065 3066 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3067 unsigned &Reg, StringRef Src, 3068 SMDiagnostic &Error) { 3069 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3070 } 3071 3072 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3073 VRegInfo *&Info, StringRef Src, 3074 SMDiagnostic &Error) { 3075 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3076 } 3077 3078 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3079 int &FI, StringRef Src, 3080 SMDiagnostic &Error) { 3081 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3082 } 3083 3084 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3085 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3086 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3087 } 3088