1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRFormatter.h" 30 #include "llvm/CodeGen/MIRPrinter.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/RegisterBank.h" 40 #include "llvm/CodeGen/RegisterBankInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 Register &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 return Slots2Values.lookup(Slot); 373 } 374 375 namespace { 376 377 /// A wrapper struct around the 'MachineOperand' struct that includes a source 378 /// range and other attributes. 379 struct ParsedMachineOperand { 380 MachineOperand Operand; 381 StringRef::iterator Begin; 382 StringRef::iterator End; 383 Optional<unsigned> TiedDefIdx; 384 385 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 386 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 387 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 388 if (TiedDefIdx) 389 assert(Operand.isReg() && Operand.isUse() && 390 "Only used register operands can be tied"); 391 } 392 }; 393 394 class MIParser { 395 MachineFunction &MF; 396 SMDiagnostic &Error; 397 StringRef Source, CurrentSource; 398 SMRange SourceRange; 399 MIToken Token; 400 PerFunctionMIParsingState &PFS; 401 /// Maps from slot numbers to function's unnamed basic blocks. 402 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 403 404 public: 405 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 406 StringRef Source); 407 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 408 StringRef Source, SMRange SourceRange); 409 410 /// \p SkipChar gives the number of characters to skip before looking 411 /// for the next token. 412 void lex(unsigned SkipChar = 0); 413 414 /// Report an error at the current location with the given message. 415 /// 416 /// This function always return true. 417 bool error(const Twine &Msg); 418 419 /// Report an error at the given location with the given message. 420 /// 421 /// This function always return true. 422 bool error(StringRef::iterator Loc, const Twine &Msg); 423 424 bool 425 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 426 bool parseBasicBlocks(); 427 bool parse(MachineInstr *&MI); 428 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 429 bool parseStandaloneNamedRegister(Register &Reg); 430 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 431 bool parseStandaloneRegister(Register &Reg); 432 bool parseStandaloneStackObject(int &FI); 433 bool parseStandaloneMDNode(MDNode *&Node); 434 bool parseMachineMetadata(); 435 bool parseMDTuple(MDNode *&MD, bool IsDistinct); 436 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts); 437 bool parseMetadata(Metadata *&MD); 438 439 bool 440 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 441 bool parseBasicBlock(MachineBasicBlock &MBB, 442 MachineBasicBlock *&AddFalthroughFrom); 443 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 444 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 445 446 bool parseNamedRegister(Register &Reg); 447 bool parseVirtualRegister(VRegInfo *&Info); 448 bool parseNamedVirtualRegister(VRegInfo *&Info); 449 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 450 bool parseRegisterFlag(unsigned &Flags); 451 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 452 bool parseSubRegisterIndex(unsigned &SubReg); 453 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 454 bool parseRegisterOperand(MachineOperand &Dest, 455 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 456 bool parseImmediateOperand(MachineOperand &Dest); 457 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 458 const Constant *&C); 459 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 460 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 461 bool parseTypedImmediateOperand(MachineOperand &Dest); 462 bool parseFPImmediateOperand(MachineOperand &Dest); 463 bool parseMBBReference(MachineBasicBlock *&MBB); 464 bool parseMBBOperand(MachineOperand &Dest); 465 bool parseStackFrameIndex(int &FI); 466 bool parseStackObjectOperand(MachineOperand &Dest); 467 bool parseFixedStackFrameIndex(int &FI); 468 bool parseFixedStackObjectOperand(MachineOperand &Dest); 469 bool parseGlobalValue(GlobalValue *&GV); 470 bool parseGlobalAddressOperand(MachineOperand &Dest); 471 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 472 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 473 bool parseJumpTableIndexOperand(MachineOperand &Dest); 474 bool parseExternalSymbolOperand(MachineOperand &Dest); 475 bool parseMCSymbolOperand(MachineOperand &Dest); 476 bool parseMDNode(MDNode *&Node); 477 bool parseDIExpression(MDNode *&Expr); 478 bool parseDILocation(MDNode *&Expr); 479 bool parseMetadataOperand(MachineOperand &Dest); 480 bool parseCFIOffset(int &Offset); 481 bool parseCFIRegister(Register &Reg); 482 bool parseCFIAddressSpace(unsigned &AddressSpace); 483 bool parseCFIEscapeValues(std::string& Values); 484 bool parseCFIOperand(MachineOperand &Dest); 485 bool parseIRBlock(BasicBlock *&BB, const Function &F); 486 bool parseBlockAddressOperand(MachineOperand &Dest); 487 bool parseIntrinsicOperand(MachineOperand &Dest); 488 bool parsePredicateOperand(MachineOperand &Dest); 489 bool parseShuffleMaskOperand(MachineOperand &Dest); 490 bool parseTargetIndexOperand(MachineOperand &Dest); 491 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 492 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 493 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 494 MachineOperand &Dest, 495 Optional<unsigned> &TiedDefIdx); 496 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 497 const unsigned OpIdx, 498 MachineOperand &Dest, 499 Optional<unsigned> &TiedDefIdx); 500 bool parseOffset(int64_t &Offset); 501 bool parseAlignment(uint64_t &Alignment); 502 bool parseAddrspace(unsigned &Addrspace); 503 bool parseSectionID(Optional<MBBSectionID> &SID); 504 bool parseOperandsOffset(MachineOperand &Op); 505 bool parseIRValue(const Value *&V); 506 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 507 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 508 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 509 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 510 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 511 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 512 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 513 bool parseHeapAllocMarker(MDNode *&Node); 514 515 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 516 MachineOperand &Dest, const MIRFormatter &MF); 517 518 private: 519 /// Convert the integer literal in the current token into an unsigned integer. 520 /// 521 /// Return true if an error occurred. 522 bool getUnsigned(unsigned &Result); 523 524 /// Convert the integer literal in the current token into an uint64. 525 /// 526 /// Return true if an error occurred. 527 bool getUint64(uint64_t &Result); 528 529 /// Convert the hexadecimal literal in the current token into an unsigned 530 /// APInt with a minimum bitwidth required to represent the value. 531 /// 532 /// Return true if the literal does not represent an integer value. 533 bool getHexUint(APInt &Result); 534 535 /// If the current token is of the given kind, consume it and return false. 536 /// Otherwise report an error and return true. 537 bool expectAndConsume(MIToken::TokenKind TokenKind); 538 539 /// If the current token is of the given kind, consume it and return true. 540 /// Otherwise return false. 541 bool consumeIfPresent(MIToken::TokenKind TokenKind); 542 543 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 544 545 bool assignRegisterTies(MachineInstr &MI, 546 ArrayRef<ParsedMachineOperand> Operands); 547 548 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 549 const MCInstrDesc &MCID); 550 551 const BasicBlock *getIRBlock(unsigned Slot); 552 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 553 554 /// Get or create an MCSymbol for a given name. 555 MCSymbol *getOrCreateMCSymbol(StringRef Name); 556 557 /// parseStringConstant 558 /// ::= StringConstant 559 bool parseStringConstant(std::string &Result); 560 561 /// Map the location in the MI string to the corresponding location specified 562 /// in `SourceRange`. 563 SMLoc mapSMLoc(StringRef::iterator Loc); 564 }; 565 566 } // end anonymous namespace 567 568 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 569 StringRef Source) 570 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 571 {} 572 573 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 574 StringRef Source, SMRange SourceRange) 575 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), 576 SourceRange(SourceRange), PFS(PFS) {} 577 578 void MIParser::lex(unsigned SkipChar) { 579 CurrentSource = lexMIToken( 580 CurrentSource.slice(SkipChar, StringRef::npos), Token, 581 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 582 } 583 584 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 585 586 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 587 const SourceMgr &SM = *PFS.SM; 588 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 589 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 590 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 591 // Create an ordinary diagnostic when the source manager's buffer is the 592 // source string. 593 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 594 return true; 595 } 596 // Create a diagnostic for a YAML string literal. 597 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 598 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 599 Source, None, None); 600 return true; 601 } 602 603 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) { 604 assert(SourceRange.isValid() && "Invalid source range"); 605 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 606 return SMLoc::getFromPointer(SourceRange.Start.getPointer() + 607 (Loc - Source.data())); 608 } 609 610 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 611 ErrorCallbackType; 612 613 static const char *toString(MIToken::TokenKind TokenKind) { 614 switch (TokenKind) { 615 case MIToken::comma: 616 return "','"; 617 case MIToken::equal: 618 return "'='"; 619 case MIToken::colon: 620 return "':'"; 621 case MIToken::lparen: 622 return "'('"; 623 case MIToken::rparen: 624 return "')'"; 625 default: 626 return "<unknown token>"; 627 } 628 } 629 630 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 631 if (Token.isNot(TokenKind)) 632 return error(Twine("expected ") + toString(TokenKind)); 633 lex(); 634 return false; 635 } 636 637 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 638 if (Token.isNot(TokenKind)) 639 return false; 640 lex(); 641 return true; 642 } 643 644 // Parse Machine Basic Block Section ID. 645 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) { 646 assert(Token.is(MIToken::kw_bbsections)); 647 lex(); 648 if (Token.is(MIToken::IntegerLiteral)) { 649 unsigned Value = 0; 650 if (getUnsigned(Value)) 651 return error("Unknown Section ID"); 652 SID = MBBSectionID{Value}; 653 } else { 654 const StringRef &S = Token.stringValue(); 655 if (S == "Exception") 656 SID = MBBSectionID::ExceptionSectionID; 657 else if (S == "Cold") 658 SID = MBBSectionID::ColdSectionID; 659 else 660 return error("Unknown Section ID"); 661 } 662 lex(); 663 return false; 664 } 665 666 bool MIParser::parseBasicBlockDefinition( 667 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 668 assert(Token.is(MIToken::MachineBasicBlockLabel)); 669 unsigned ID = 0; 670 if (getUnsigned(ID)) 671 return true; 672 auto Loc = Token.location(); 673 auto Name = Token.stringValue(); 674 lex(); 675 bool HasAddressTaken = false; 676 bool IsLandingPad = false; 677 bool IsInlineAsmBrIndirectTarget = false; 678 bool IsEHFuncletEntry = false; 679 Optional<MBBSectionID> SectionID; 680 uint64_t Alignment = 0; 681 BasicBlock *BB = nullptr; 682 if (consumeIfPresent(MIToken::lparen)) { 683 do { 684 // TODO: Report an error when multiple same attributes are specified. 685 switch (Token.kind()) { 686 case MIToken::kw_address_taken: 687 HasAddressTaken = true; 688 lex(); 689 break; 690 case MIToken::kw_landing_pad: 691 IsLandingPad = true; 692 lex(); 693 break; 694 case MIToken::kw_inlineasm_br_indirect_target: 695 IsInlineAsmBrIndirectTarget = true; 696 lex(); 697 break; 698 case MIToken::kw_ehfunclet_entry: 699 IsEHFuncletEntry = true; 700 lex(); 701 break; 702 case MIToken::kw_align: 703 if (parseAlignment(Alignment)) 704 return true; 705 break; 706 case MIToken::IRBlock: 707 // TODO: Report an error when both name and ir block are specified. 708 if (parseIRBlock(BB, MF.getFunction())) 709 return true; 710 lex(); 711 break; 712 case MIToken::kw_bbsections: 713 if (parseSectionID(SectionID)) 714 return true; 715 break; 716 default: 717 break; 718 } 719 } while (consumeIfPresent(MIToken::comma)); 720 if (expectAndConsume(MIToken::rparen)) 721 return true; 722 } 723 if (expectAndConsume(MIToken::colon)) 724 return true; 725 726 if (!Name.empty()) { 727 BB = dyn_cast_or_null<BasicBlock>( 728 MF.getFunction().getValueSymbolTable()->lookup(Name)); 729 if (!BB) 730 return error(Loc, Twine("basic block '") + Name + 731 "' is not defined in the function '" + 732 MF.getName() + "'"); 733 } 734 auto *MBB = MF.CreateMachineBasicBlock(BB); 735 MF.insert(MF.end(), MBB); 736 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 737 if (!WasInserted) 738 return error(Loc, Twine("redefinition of machine basic block with id #") + 739 Twine(ID)); 740 if (Alignment) 741 MBB->setAlignment(Align(Alignment)); 742 if (HasAddressTaken) 743 MBB->setHasAddressTaken(); 744 MBB->setIsEHPad(IsLandingPad); 745 MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget); 746 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 747 if (SectionID.hasValue()) { 748 MBB->setSectionID(SectionID.getValue()); 749 MF.setBBSectionsType(BasicBlockSection::List); 750 } 751 return false; 752 } 753 754 bool MIParser::parseBasicBlockDefinitions( 755 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 756 lex(); 757 // Skip until the first machine basic block. 758 while (Token.is(MIToken::Newline)) 759 lex(); 760 if (Token.isErrorOrEOF()) 761 return Token.isError(); 762 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 763 return error("expected a basic block definition before instructions"); 764 unsigned BraceDepth = 0; 765 do { 766 if (parseBasicBlockDefinition(MBBSlots)) 767 return true; 768 bool IsAfterNewline = false; 769 // Skip until the next machine basic block. 770 while (true) { 771 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 772 Token.isErrorOrEOF()) 773 break; 774 else if (Token.is(MIToken::MachineBasicBlockLabel)) 775 return error("basic block definition should be located at the start of " 776 "the line"); 777 else if (consumeIfPresent(MIToken::Newline)) { 778 IsAfterNewline = true; 779 continue; 780 } 781 IsAfterNewline = false; 782 if (Token.is(MIToken::lbrace)) 783 ++BraceDepth; 784 if (Token.is(MIToken::rbrace)) { 785 if (!BraceDepth) 786 return error("extraneous closing brace ('}')"); 787 --BraceDepth; 788 } 789 lex(); 790 } 791 // Verify that we closed all of the '{' at the end of a file or a block. 792 if (!Token.isError() && BraceDepth) 793 return error("expected '}'"); // FIXME: Report a note that shows '{'. 794 } while (!Token.isErrorOrEOF()); 795 return Token.isError(); 796 } 797 798 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 799 assert(Token.is(MIToken::kw_liveins)); 800 lex(); 801 if (expectAndConsume(MIToken::colon)) 802 return true; 803 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 804 return false; 805 do { 806 if (Token.isNot(MIToken::NamedRegister)) 807 return error("expected a named register"); 808 Register Reg; 809 if (parseNamedRegister(Reg)) 810 return true; 811 lex(); 812 LaneBitmask Mask = LaneBitmask::getAll(); 813 if (consumeIfPresent(MIToken::colon)) { 814 // Parse lane mask. 815 if (Token.isNot(MIToken::IntegerLiteral) && 816 Token.isNot(MIToken::HexLiteral)) 817 return error("expected a lane mask"); 818 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 819 "Use correct get-function for lane mask"); 820 LaneBitmask::Type V; 821 if (getUint64(V)) 822 return error("invalid lane mask value"); 823 Mask = LaneBitmask(V); 824 lex(); 825 } 826 MBB.addLiveIn(Reg, Mask); 827 } while (consumeIfPresent(MIToken::comma)); 828 return false; 829 } 830 831 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 832 assert(Token.is(MIToken::kw_successors)); 833 lex(); 834 if (expectAndConsume(MIToken::colon)) 835 return true; 836 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 837 return false; 838 do { 839 if (Token.isNot(MIToken::MachineBasicBlock)) 840 return error("expected a machine basic block reference"); 841 MachineBasicBlock *SuccMBB = nullptr; 842 if (parseMBBReference(SuccMBB)) 843 return true; 844 lex(); 845 unsigned Weight = 0; 846 if (consumeIfPresent(MIToken::lparen)) { 847 if (Token.isNot(MIToken::IntegerLiteral) && 848 Token.isNot(MIToken::HexLiteral)) 849 return error("expected an integer literal after '('"); 850 if (getUnsigned(Weight)) 851 return true; 852 lex(); 853 if (expectAndConsume(MIToken::rparen)) 854 return true; 855 } 856 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 857 } while (consumeIfPresent(MIToken::comma)); 858 MBB.normalizeSuccProbs(); 859 return false; 860 } 861 862 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 863 MachineBasicBlock *&AddFalthroughFrom) { 864 // Skip the definition. 865 assert(Token.is(MIToken::MachineBasicBlockLabel)); 866 lex(); 867 if (consumeIfPresent(MIToken::lparen)) { 868 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 869 lex(); 870 consumeIfPresent(MIToken::rparen); 871 } 872 consumeIfPresent(MIToken::colon); 873 874 // Parse the liveins and successors. 875 // N.B: Multiple lists of successors and liveins are allowed and they're 876 // merged into one. 877 // Example: 878 // liveins: $edi 879 // liveins: $esi 880 // 881 // is equivalent to 882 // liveins: $edi, $esi 883 bool ExplicitSuccessors = false; 884 while (true) { 885 if (Token.is(MIToken::kw_successors)) { 886 if (parseBasicBlockSuccessors(MBB)) 887 return true; 888 ExplicitSuccessors = true; 889 } else if (Token.is(MIToken::kw_liveins)) { 890 if (parseBasicBlockLiveins(MBB)) 891 return true; 892 } else if (consumeIfPresent(MIToken::Newline)) { 893 continue; 894 } else 895 break; 896 if (!Token.isNewlineOrEOF()) 897 return error("expected line break at the end of a list"); 898 lex(); 899 } 900 901 // Parse the instructions. 902 bool IsInBundle = false; 903 MachineInstr *PrevMI = nullptr; 904 while (!Token.is(MIToken::MachineBasicBlockLabel) && 905 !Token.is(MIToken::Eof)) { 906 if (consumeIfPresent(MIToken::Newline)) 907 continue; 908 if (consumeIfPresent(MIToken::rbrace)) { 909 // The first parsing pass should verify that all closing '}' have an 910 // opening '{'. 911 assert(IsInBundle); 912 IsInBundle = false; 913 continue; 914 } 915 MachineInstr *MI = nullptr; 916 if (parse(MI)) 917 return true; 918 MBB.insert(MBB.end(), MI); 919 if (IsInBundle) { 920 PrevMI->setFlag(MachineInstr::BundledSucc); 921 MI->setFlag(MachineInstr::BundledPred); 922 } 923 PrevMI = MI; 924 if (Token.is(MIToken::lbrace)) { 925 if (IsInBundle) 926 return error("nested instruction bundles are not allowed"); 927 lex(); 928 // This instruction is the start of the bundle. 929 MI->setFlag(MachineInstr::BundledSucc); 930 IsInBundle = true; 931 if (!Token.is(MIToken::Newline)) 932 // The next instruction can be on the same line. 933 continue; 934 } 935 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 936 lex(); 937 } 938 939 // Construct successor list by searching for basic block machine operands. 940 if (!ExplicitSuccessors) { 941 SmallVector<MachineBasicBlock*,4> Successors; 942 bool IsFallthrough; 943 guessSuccessors(MBB, Successors, IsFallthrough); 944 for (MachineBasicBlock *Succ : Successors) 945 MBB.addSuccessor(Succ); 946 947 if (IsFallthrough) { 948 AddFalthroughFrom = &MBB; 949 } else { 950 MBB.normalizeSuccProbs(); 951 } 952 } 953 954 return false; 955 } 956 957 bool MIParser::parseBasicBlocks() { 958 lex(); 959 // Skip until the first machine basic block. 960 while (Token.is(MIToken::Newline)) 961 lex(); 962 if (Token.isErrorOrEOF()) 963 return Token.isError(); 964 // The first parsing pass should have verified that this token is a MBB label 965 // in the 'parseBasicBlockDefinitions' method. 966 assert(Token.is(MIToken::MachineBasicBlockLabel)); 967 MachineBasicBlock *AddFalthroughFrom = nullptr; 968 do { 969 MachineBasicBlock *MBB = nullptr; 970 if (parseMBBReference(MBB)) 971 return true; 972 if (AddFalthroughFrom) { 973 if (!AddFalthroughFrom->isSuccessor(MBB)) 974 AddFalthroughFrom->addSuccessor(MBB); 975 AddFalthroughFrom->normalizeSuccProbs(); 976 AddFalthroughFrom = nullptr; 977 } 978 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 979 return true; 980 // The method 'parseBasicBlock' should parse the whole block until the next 981 // block or the end of file. 982 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 983 } while (Token.isNot(MIToken::Eof)); 984 return false; 985 } 986 987 bool MIParser::parse(MachineInstr *&MI) { 988 // Parse any register operands before '=' 989 MachineOperand MO = MachineOperand::CreateImm(0); 990 SmallVector<ParsedMachineOperand, 8> Operands; 991 while (Token.isRegister() || Token.isRegisterFlag()) { 992 auto Loc = Token.location(); 993 Optional<unsigned> TiedDefIdx; 994 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 995 return true; 996 Operands.push_back( 997 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 998 if (Token.isNot(MIToken::comma)) 999 break; 1000 lex(); 1001 } 1002 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 1003 return true; 1004 1005 unsigned OpCode, Flags = 0; 1006 if (Token.isError() || parseInstruction(OpCode, Flags)) 1007 return true; 1008 1009 // Parse the remaining machine operands. 1010 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 1011 Token.isNot(MIToken::kw_post_instr_symbol) && 1012 Token.isNot(MIToken::kw_heap_alloc_marker) && 1013 Token.isNot(MIToken::kw_debug_location) && 1014 Token.isNot(MIToken::kw_debug_instr_number) && 1015 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 1016 auto Loc = Token.location(); 1017 Optional<unsigned> TiedDefIdx; 1018 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 1019 return true; 1020 Operands.push_back( 1021 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 1022 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 1023 Token.is(MIToken::lbrace)) 1024 break; 1025 if (Token.isNot(MIToken::comma)) 1026 return error("expected ',' before the next machine operand"); 1027 lex(); 1028 } 1029 1030 MCSymbol *PreInstrSymbol = nullptr; 1031 if (Token.is(MIToken::kw_pre_instr_symbol)) 1032 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1033 return true; 1034 MCSymbol *PostInstrSymbol = nullptr; 1035 if (Token.is(MIToken::kw_post_instr_symbol)) 1036 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1037 return true; 1038 MDNode *HeapAllocMarker = nullptr; 1039 if (Token.is(MIToken::kw_heap_alloc_marker)) 1040 if (parseHeapAllocMarker(HeapAllocMarker)) 1041 return true; 1042 1043 unsigned InstrNum = 0; 1044 if (Token.is(MIToken::kw_debug_instr_number)) { 1045 lex(); 1046 if (Token.isNot(MIToken::IntegerLiteral)) 1047 return error("expected an integer literal after 'debug-instr-number'"); 1048 if (getUnsigned(InstrNum)) 1049 return true; 1050 lex(); 1051 // Lex past trailing comma if present. 1052 if (Token.is(MIToken::comma)) 1053 lex(); 1054 } 1055 1056 DebugLoc DebugLocation; 1057 if (Token.is(MIToken::kw_debug_location)) { 1058 lex(); 1059 MDNode *Node = nullptr; 1060 if (Token.is(MIToken::exclaim)) { 1061 if (parseMDNode(Node)) 1062 return true; 1063 } else if (Token.is(MIToken::md_dilocation)) { 1064 if (parseDILocation(Node)) 1065 return true; 1066 } else 1067 return error("expected a metadata node after 'debug-location'"); 1068 if (!isa<DILocation>(Node)) 1069 return error("referenced metadata is not a DILocation"); 1070 DebugLocation = DebugLoc(Node); 1071 } 1072 1073 // Parse the machine memory operands. 1074 SmallVector<MachineMemOperand *, 2> MemOperands; 1075 if (Token.is(MIToken::coloncolon)) { 1076 lex(); 1077 while (!Token.isNewlineOrEOF()) { 1078 MachineMemOperand *MemOp = nullptr; 1079 if (parseMachineMemoryOperand(MemOp)) 1080 return true; 1081 MemOperands.push_back(MemOp); 1082 if (Token.isNewlineOrEOF()) 1083 break; 1084 if (Token.isNot(MIToken::comma)) 1085 return error("expected ',' before the next machine memory operand"); 1086 lex(); 1087 } 1088 } 1089 1090 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1091 if (!MCID.isVariadic()) { 1092 // FIXME: Move the implicit operand verification to the machine verifier. 1093 if (verifyImplicitOperands(Operands, MCID)) 1094 return true; 1095 } 1096 1097 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1098 MI->setFlags(Flags); 1099 1100 unsigned NumExplicitOps = 0; 1101 for (const auto &Operand : Operands) { 1102 bool IsImplicitOp = Operand.Operand.isReg() && Operand.Operand.isImplicit(); 1103 if (!IsImplicitOp) { 1104 if (!MCID.isVariadic() && NumExplicitOps >= MCID.getNumOperands() && 1105 !Operand.Operand.isValidExcessOperand()) 1106 return error("too many operands for instruction"); 1107 1108 ++NumExplicitOps; 1109 } 1110 1111 MI->addOperand(MF, Operand.Operand); 1112 } 1113 1114 if (assignRegisterTies(*MI, Operands)) 1115 return true; 1116 if (PreInstrSymbol) 1117 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1118 if (PostInstrSymbol) 1119 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1120 if (HeapAllocMarker) 1121 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1122 if (!MemOperands.empty()) 1123 MI->setMemRefs(MF, MemOperands); 1124 if (InstrNum) 1125 MI->setDebugInstrNum(InstrNum); 1126 return false; 1127 } 1128 1129 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1130 lex(); 1131 if (Token.isNot(MIToken::MachineBasicBlock)) 1132 return error("expected a machine basic block reference"); 1133 if (parseMBBReference(MBB)) 1134 return true; 1135 lex(); 1136 if (Token.isNot(MIToken::Eof)) 1137 return error( 1138 "expected end of string after the machine basic block reference"); 1139 return false; 1140 } 1141 1142 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1143 lex(); 1144 if (Token.isNot(MIToken::NamedRegister)) 1145 return error("expected a named register"); 1146 if (parseNamedRegister(Reg)) 1147 return true; 1148 lex(); 1149 if (Token.isNot(MIToken::Eof)) 1150 return error("expected end of string after the register reference"); 1151 return false; 1152 } 1153 1154 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1155 lex(); 1156 if (Token.isNot(MIToken::VirtualRegister)) 1157 return error("expected a virtual register"); 1158 if (parseVirtualRegister(Info)) 1159 return true; 1160 lex(); 1161 if (Token.isNot(MIToken::Eof)) 1162 return error("expected end of string after the register reference"); 1163 return false; 1164 } 1165 1166 bool MIParser::parseStandaloneRegister(Register &Reg) { 1167 lex(); 1168 if (Token.isNot(MIToken::NamedRegister) && 1169 Token.isNot(MIToken::VirtualRegister)) 1170 return error("expected either a named or virtual register"); 1171 1172 VRegInfo *Info; 1173 if (parseRegister(Reg, Info)) 1174 return true; 1175 1176 lex(); 1177 if (Token.isNot(MIToken::Eof)) 1178 return error("expected end of string after the register reference"); 1179 return false; 1180 } 1181 1182 bool MIParser::parseStandaloneStackObject(int &FI) { 1183 lex(); 1184 if (Token.isNot(MIToken::StackObject)) 1185 return error("expected a stack object"); 1186 if (parseStackFrameIndex(FI)) 1187 return true; 1188 if (Token.isNot(MIToken::Eof)) 1189 return error("expected end of string after the stack object reference"); 1190 return false; 1191 } 1192 1193 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1194 lex(); 1195 if (Token.is(MIToken::exclaim)) { 1196 if (parseMDNode(Node)) 1197 return true; 1198 } else if (Token.is(MIToken::md_diexpr)) { 1199 if (parseDIExpression(Node)) 1200 return true; 1201 } else if (Token.is(MIToken::md_dilocation)) { 1202 if (parseDILocation(Node)) 1203 return true; 1204 } else 1205 return error("expected a metadata node"); 1206 if (Token.isNot(MIToken::Eof)) 1207 return error("expected end of string after the metadata node"); 1208 return false; 1209 } 1210 1211 bool MIParser::parseMachineMetadata() { 1212 lex(); 1213 if (Token.isNot(MIToken::exclaim)) 1214 return error("expected a metadata node"); 1215 1216 lex(); 1217 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1218 return error("expected metadata id after '!'"); 1219 unsigned ID = 0; 1220 if (getUnsigned(ID)) 1221 return true; 1222 lex(); 1223 if (expectAndConsume(MIToken::equal)) 1224 return true; 1225 bool IsDistinct = Token.is(MIToken::kw_distinct); 1226 if (IsDistinct) 1227 lex(); 1228 if (Token.isNot(MIToken::exclaim)) 1229 return error("expected a metadata node"); 1230 lex(); 1231 1232 MDNode *MD; 1233 if (parseMDTuple(MD, IsDistinct)) 1234 return true; 1235 1236 auto FI = PFS.MachineForwardRefMDNodes.find(ID); 1237 if (FI != PFS.MachineForwardRefMDNodes.end()) { 1238 FI->second.first->replaceAllUsesWith(MD); 1239 PFS.MachineForwardRefMDNodes.erase(FI); 1240 1241 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work"); 1242 } else { 1243 if (PFS.MachineMetadataNodes.count(ID)) 1244 return error("Metadata id is already used"); 1245 PFS.MachineMetadataNodes[ID].reset(MD); 1246 } 1247 1248 return false; 1249 } 1250 1251 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 1252 SmallVector<Metadata *, 16> Elts; 1253 if (parseMDNodeVector(Elts)) 1254 return true; 1255 MD = (IsDistinct ? MDTuple::getDistinct 1256 : MDTuple::get)(MF.getFunction().getContext(), Elts); 1257 return false; 1258 } 1259 1260 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 1261 if (Token.isNot(MIToken::lbrace)) 1262 return error("expected '{' here"); 1263 lex(); 1264 1265 if (Token.is(MIToken::rbrace)) { 1266 lex(); 1267 return false; 1268 } 1269 1270 do { 1271 Metadata *MD; 1272 if (parseMetadata(MD)) 1273 return true; 1274 1275 Elts.push_back(MD); 1276 1277 if (Token.isNot(MIToken::comma)) 1278 break; 1279 lex(); 1280 } while (true); 1281 1282 if (Token.isNot(MIToken::rbrace)) 1283 return error("expected end of metadata node"); 1284 lex(); 1285 1286 return false; 1287 } 1288 1289 // ::= !42 1290 // ::= !"string" 1291 bool MIParser::parseMetadata(Metadata *&MD) { 1292 if (Token.isNot(MIToken::exclaim)) 1293 return error("expected '!' here"); 1294 lex(); 1295 1296 if (Token.is(MIToken::StringConstant)) { 1297 std::string Str; 1298 if (parseStringConstant(Str)) 1299 return true; 1300 MD = MDString::get(MF.getFunction().getContext(), Str); 1301 return false; 1302 } 1303 1304 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1305 return error("expected metadata id after '!'"); 1306 1307 SMLoc Loc = mapSMLoc(Token.location()); 1308 1309 unsigned ID = 0; 1310 if (getUnsigned(ID)) 1311 return true; 1312 lex(); 1313 1314 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1315 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) { 1316 MD = NodeInfo->second.get(); 1317 return false; 1318 } 1319 // Check machine metadata. 1320 NodeInfo = PFS.MachineMetadataNodes.find(ID); 1321 if (NodeInfo != PFS.MachineMetadataNodes.end()) { 1322 MD = NodeInfo->second.get(); 1323 return false; 1324 } 1325 // Forward reference. 1326 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID]; 1327 FwdRef = std::make_pair( 1328 MDTuple::getTemporary(MF.getFunction().getContext(), None), Loc); 1329 PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get()); 1330 MD = FwdRef.first.get(); 1331 1332 return false; 1333 } 1334 1335 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1336 assert(MO.isImplicit()); 1337 return MO.isDef() ? "implicit-def" : "implicit"; 1338 } 1339 1340 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1341 Register Reg) { 1342 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1343 return StringRef(TRI->getName(Reg)).lower(); 1344 } 1345 1346 /// Return true if the parsed machine operands contain a given machine operand. 1347 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1348 ArrayRef<ParsedMachineOperand> Operands) { 1349 for (const auto &I : Operands) { 1350 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1351 return true; 1352 } 1353 return false; 1354 } 1355 1356 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1357 const MCInstrDesc &MCID) { 1358 if (MCID.isCall()) 1359 // We can't verify call instructions as they can contain arbitrary implicit 1360 // register and register mask operands. 1361 return false; 1362 1363 // Gather all the expected implicit operands. 1364 SmallVector<MachineOperand, 4> ImplicitOperands; 1365 if (MCID.ImplicitDefs) 1366 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1367 ImplicitOperands.push_back( 1368 MachineOperand::CreateReg(*ImpDefs, true, true)); 1369 if (MCID.ImplicitUses) 1370 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1371 ImplicitOperands.push_back( 1372 MachineOperand::CreateReg(*ImpUses, false, true)); 1373 1374 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1375 assert(TRI && "Expected target register info"); 1376 for (const auto &I : ImplicitOperands) { 1377 if (isImplicitOperandIn(I, Operands)) 1378 continue; 1379 return error(Operands.empty() ? Token.location() : Operands.back().End, 1380 Twine("missing implicit register operand '") + 1381 printImplicitRegisterFlag(I) + " $" + 1382 getRegisterName(TRI, I.getReg()) + "'"); 1383 } 1384 return false; 1385 } 1386 1387 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1388 // Allow frame and fast math flags for OPCODE 1389 while (Token.is(MIToken::kw_frame_setup) || 1390 Token.is(MIToken::kw_frame_destroy) || 1391 Token.is(MIToken::kw_nnan) || 1392 Token.is(MIToken::kw_ninf) || 1393 Token.is(MIToken::kw_nsz) || 1394 Token.is(MIToken::kw_arcp) || 1395 Token.is(MIToken::kw_contract) || 1396 Token.is(MIToken::kw_afn) || 1397 Token.is(MIToken::kw_reassoc) || 1398 Token.is(MIToken::kw_nuw) || 1399 Token.is(MIToken::kw_nsw) || 1400 Token.is(MIToken::kw_exact) || 1401 Token.is(MIToken::kw_nofpexcept)) { 1402 // Mine frame and fast math flags 1403 if (Token.is(MIToken::kw_frame_setup)) 1404 Flags |= MachineInstr::FrameSetup; 1405 if (Token.is(MIToken::kw_frame_destroy)) 1406 Flags |= MachineInstr::FrameDestroy; 1407 if (Token.is(MIToken::kw_nnan)) 1408 Flags |= MachineInstr::FmNoNans; 1409 if (Token.is(MIToken::kw_ninf)) 1410 Flags |= MachineInstr::FmNoInfs; 1411 if (Token.is(MIToken::kw_nsz)) 1412 Flags |= MachineInstr::FmNsz; 1413 if (Token.is(MIToken::kw_arcp)) 1414 Flags |= MachineInstr::FmArcp; 1415 if (Token.is(MIToken::kw_contract)) 1416 Flags |= MachineInstr::FmContract; 1417 if (Token.is(MIToken::kw_afn)) 1418 Flags |= MachineInstr::FmAfn; 1419 if (Token.is(MIToken::kw_reassoc)) 1420 Flags |= MachineInstr::FmReassoc; 1421 if (Token.is(MIToken::kw_nuw)) 1422 Flags |= MachineInstr::NoUWrap; 1423 if (Token.is(MIToken::kw_nsw)) 1424 Flags |= MachineInstr::NoSWrap; 1425 if (Token.is(MIToken::kw_exact)) 1426 Flags |= MachineInstr::IsExact; 1427 if (Token.is(MIToken::kw_nofpexcept)) 1428 Flags |= MachineInstr::NoFPExcept; 1429 1430 lex(); 1431 } 1432 if (Token.isNot(MIToken::Identifier)) 1433 return error("expected a machine instruction"); 1434 StringRef InstrName = Token.stringValue(); 1435 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1436 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1437 lex(); 1438 return false; 1439 } 1440 1441 bool MIParser::parseNamedRegister(Register &Reg) { 1442 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1443 StringRef Name = Token.stringValue(); 1444 if (PFS.Target.getRegisterByName(Name, Reg)) 1445 return error(Twine("unknown register name '") + Name + "'"); 1446 return false; 1447 } 1448 1449 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1450 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1451 StringRef Name = Token.stringValue(); 1452 // TODO: Check that the VReg name is not the same as a physical register name. 1453 // If it is, then print a warning (when warnings are implemented). 1454 Info = &PFS.getVRegInfoNamed(Name); 1455 return false; 1456 } 1457 1458 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1459 if (Token.is(MIToken::NamedVirtualRegister)) 1460 return parseNamedVirtualRegister(Info); 1461 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1462 unsigned ID; 1463 if (getUnsigned(ID)) 1464 return true; 1465 Info = &PFS.getVRegInfo(ID); 1466 return false; 1467 } 1468 1469 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1470 switch (Token.kind()) { 1471 case MIToken::underscore: 1472 Reg = 0; 1473 return false; 1474 case MIToken::NamedRegister: 1475 return parseNamedRegister(Reg); 1476 case MIToken::NamedVirtualRegister: 1477 case MIToken::VirtualRegister: 1478 if (parseVirtualRegister(Info)) 1479 return true; 1480 Reg = Info->VReg; 1481 return false; 1482 // TODO: Parse other register kinds. 1483 default: 1484 llvm_unreachable("The current token should be a register"); 1485 } 1486 } 1487 1488 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1489 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1490 return error("expected '_', register class, or register bank name"); 1491 StringRef::iterator Loc = Token.location(); 1492 StringRef Name = Token.stringValue(); 1493 1494 // Was it a register class? 1495 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1496 if (RC) { 1497 lex(); 1498 1499 switch (RegInfo.Kind) { 1500 case VRegInfo::UNKNOWN: 1501 case VRegInfo::NORMAL: 1502 RegInfo.Kind = VRegInfo::NORMAL; 1503 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1504 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1505 return error(Loc, Twine("conflicting register classes, previously: ") + 1506 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1507 } 1508 RegInfo.D.RC = RC; 1509 RegInfo.Explicit = true; 1510 return false; 1511 1512 case VRegInfo::GENERIC: 1513 case VRegInfo::REGBANK: 1514 return error(Loc, "register class specification on generic register"); 1515 } 1516 llvm_unreachable("Unexpected register kind"); 1517 } 1518 1519 // Should be a register bank or a generic register. 1520 const RegisterBank *RegBank = nullptr; 1521 if (Name != "_") { 1522 RegBank = PFS.Target.getRegBank(Name); 1523 if (!RegBank) 1524 return error(Loc, "expected '_', register class, or register bank name"); 1525 } 1526 1527 lex(); 1528 1529 switch (RegInfo.Kind) { 1530 case VRegInfo::UNKNOWN: 1531 case VRegInfo::GENERIC: 1532 case VRegInfo::REGBANK: 1533 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1534 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1535 return error(Loc, "conflicting generic register banks"); 1536 RegInfo.D.RegBank = RegBank; 1537 RegInfo.Explicit = true; 1538 return false; 1539 1540 case VRegInfo::NORMAL: 1541 return error(Loc, "register bank specification on normal register"); 1542 } 1543 llvm_unreachable("Unexpected register kind"); 1544 } 1545 1546 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1547 const unsigned OldFlags = Flags; 1548 switch (Token.kind()) { 1549 case MIToken::kw_implicit: 1550 Flags |= RegState::Implicit; 1551 break; 1552 case MIToken::kw_implicit_define: 1553 Flags |= RegState::ImplicitDefine; 1554 break; 1555 case MIToken::kw_def: 1556 Flags |= RegState::Define; 1557 break; 1558 case MIToken::kw_dead: 1559 Flags |= RegState::Dead; 1560 break; 1561 case MIToken::kw_killed: 1562 Flags |= RegState::Kill; 1563 break; 1564 case MIToken::kw_undef: 1565 Flags |= RegState::Undef; 1566 break; 1567 case MIToken::kw_internal: 1568 Flags |= RegState::InternalRead; 1569 break; 1570 case MIToken::kw_early_clobber: 1571 Flags |= RegState::EarlyClobber; 1572 break; 1573 case MIToken::kw_debug_use: 1574 Flags |= RegState::Debug; 1575 break; 1576 case MIToken::kw_renamable: 1577 Flags |= RegState::Renamable; 1578 break; 1579 default: 1580 llvm_unreachable("The current token should be a register flag"); 1581 } 1582 if (OldFlags == Flags) 1583 // We know that the same flag is specified more than once when the flags 1584 // weren't modified. 1585 return error("duplicate '" + Token.stringValue() + "' register flag"); 1586 lex(); 1587 return false; 1588 } 1589 1590 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1591 assert(Token.is(MIToken::dot)); 1592 lex(); 1593 if (Token.isNot(MIToken::Identifier)) 1594 return error("expected a subregister index after '.'"); 1595 auto Name = Token.stringValue(); 1596 SubReg = PFS.Target.getSubRegIndex(Name); 1597 if (!SubReg) 1598 return error(Twine("use of unknown subregister index '") + Name + "'"); 1599 lex(); 1600 return false; 1601 } 1602 1603 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1604 if (!consumeIfPresent(MIToken::kw_tied_def)) 1605 return true; 1606 if (Token.isNot(MIToken::IntegerLiteral)) 1607 return error("expected an integer literal after 'tied-def'"); 1608 if (getUnsigned(TiedDefIdx)) 1609 return true; 1610 lex(); 1611 if (expectAndConsume(MIToken::rparen)) 1612 return true; 1613 return false; 1614 } 1615 1616 bool MIParser::assignRegisterTies(MachineInstr &MI, 1617 ArrayRef<ParsedMachineOperand> Operands) { 1618 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1619 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1620 if (!Operands[I].TiedDefIdx) 1621 continue; 1622 // The parser ensures that this operand is a register use, so we just have 1623 // to check the tied-def operand. 1624 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1625 if (DefIdx >= E) 1626 return error(Operands[I].Begin, 1627 Twine("use of invalid tied-def operand index '" + 1628 Twine(DefIdx) + "'; instruction has only ") + 1629 Twine(E) + " operands"); 1630 const auto &DefOperand = Operands[DefIdx].Operand; 1631 if (!DefOperand.isReg() || !DefOperand.isDef()) 1632 // FIXME: add note with the def operand. 1633 return error(Operands[I].Begin, 1634 Twine("use of invalid tied-def operand index '") + 1635 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1636 " isn't a defined register"); 1637 // Check that the tied-def operand wasn't tied elsewhere. 1638 for (const auto &TiedPair : TiedRegisterPairs) { 1639 if (TiedPair.first == DefIdx) 1640 return error(Operands[I].Begin, 1641 Twine("the tied-def operand #") + Twine(DefIdx) + 1642 " is already tied with another register operand"); 1643 } 1644 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1645 } 1646 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1647 // indices must be less than tied max. 1648 for (const auto &TiedPair : TiedRegisterPairs) 1649 MI.tieOperands(TiedPair.first, TiedPair.second); 1650 return false; 1651 } 1652 1653 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1654 Optional<unsigned> &TiedDefIdx, 1655 bool IsDef) { 1656 unsigned Flags = IsDef ? RegState::Define : 0; 1657 while (Token.isRegisterFlag()) { 1658 if (parseRegisterFlag(Flags)) 1659 return true; 1660 } 1661 if (!Token.isRegister()) 1662 return error("expected a register after register flags"); 1663 Register Reg; 1664 VRegInfo *RegInfo; 1665 if (parseRegister(Reg, RegInfo)) 1666 return true; 1667 lex(); 1668 unsigned SubReg = 0; 1669 if (Token.is(MIToken::dot)) { 1670 if (parseSubRegisterIndex(SubReg)) 1671 return true; 1672 if (!Register::isVirtualRegister(Reg)) 1673 return error("subregister index expects a virtual register"); 1674 } 1675 if (Token.is(MIToken::colon)) { 1676 if (!Register::isVirtualRegister(Reg)) 1677 return error("register class specification expects a virtual register"); 1678 lex(); 1679 if (parseRegisterClassOrBank(*RegInfo)) 1680 return true; 1681 } 1682 MachineRegisterInfo &MRI = MF.getRegInfo(); 1683 if ((Flags & RegState::Define) == 0) { 1684 if (consumeIfPresent(MIToken::lparen)) { 1685 unsigned Idx; 1686 if (!parseRegisterTiedDefIndex(Idx)) 1687 TiedDefIdx = Idx; 1688 else { 1689 // Try a redundant low-level type. 1690 LLT Ty; 1691 if (parseLowLevelType(Token.location(), Ty)) 1692 return error("expected tied-def or low-level type after '('"); 1693 1694 if (expectAndConsume(MIToken::rparen)) 1695 return true; 1696 1697 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1698 return error("inconsistent type for generic virtual register"); 1699 1700 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1701 MRI.setType(Reg, Ty); 1702 } 1703 } 1704 } else if (consumeIfPresent(MIToken::lparen)) { 1705 // Virtual registers may have a tpe with GlobalISel. 1706 if (!Register::isVirtualRegister(Reg)) 1707 return error("unexpected type on physical register"); 1708 1709 LLT Ty; 1710 if (parseLowLevelType(Token.location(), Ty)) 1711 return true; 1712 1713 if (expectAndConsume(MIToken::rparen)) 1714 return true; 1715 1716 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1717 return error("inconsistent type for generic virtual register"); 1718 1719 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1720 MRI.setType(Reg, Ty); 1721 } else if (Register::isVirtualRegister(Reg)) { 1722 // Generic virtual registers must have a type. 1723 // If we end up here this means the type hasn't been specified and 1724 // this is bad! 1725 if (RegInfo->Kind == VRegInfo::GENERIC || 1726 RegInfo->Kind == VRegInfo::REGBANK) 1727 return error("generic virtual registers must have a type"); 1728 } 1729 Dest = MachineOperand::CreateReg( 1730 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1731 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1732 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1733 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1734 1735 return false; 1736 } 1737 1738 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1739 assert(Token.is(MIToken::IntegerLiteral)); 1740 const APSInt &Int = Token.integerValue(); 1741 if (Int.getMinSignedBits() > 64) 1742 return error("integer literal is too large to be an immediate operand"); 1743 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1744 lex(); 1745 return false; 1746 } 1747 1748 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1749 const unsigned OpIdx, 1750 MachineOperand &Dest, 1751 const MIRFormatter &MF) { 1752 assert(Token.is(MIToken::dot)); 1753 auto Loc = Token.location(); // record start position 1754 size_t Len = 1; // for "." 1755 lex(); 1756 1757 // Handle the case that mnemonic starts with number. 1758 if (Token.is(MIToken::IntegerLiteral)) { 1759 Len += Token.range().size(); 1760 lex(); 1761 } 1762 1763 StringRef Src; 1764 if (Token.is(MIToken::comma)) 1765 Src = StringRef(Loc, Len); 1766 else { 1767 assert(Token.is(MIToken::Identifier)); 1768 Src = StringRef(Loc, Len + Token.stringValue().size()); 1769 } 1770 int64_t Val; 1771 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1772 [this](StringRef::iterator Loc, const Twine &Msg) 1773 -> bool { return error(Loc, Msg); })) 1774 return true; 1775 1776 Dest = MachineOperand::CreateImm(Val); 1777 if (!Token.is(MIToken::comma)) 1778 lex(); 1779 return false; 1780 } 1781 1782 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1783 PerFunctionMIParsingState &PFS, const Constant *&C, 1784 ErrorCallbackType ErrCB) { 1785 auto Source = StringValue.str(); // The source has to be null terminated. 1786 SMDiagnostic Err; 1787 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1788 &PFS.IRSlots); 1789 if (!C) 1790 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1791 return false; 1792 } 1793 1794 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1795 const Constant *&C) { 1796 return ::parseIRConstant( 1797 Loc, StringValue, PFS, C, 1798 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1799 return error(Loc, Msg); 1800 }); 1801 } 1802 1803 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1804 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1805 return true; 1806 lex(); 1807 return false; 1808 } 1809 1810 // See LLT implemntation for bit size limits. 1811 static bool verifyScalarSize(uint64_t Size) { 1812 return Size != 0 && isUInt<16>(Size); 1813 } 1814 1815 static bool verifyVectorElementCount(uint64_t NumElts) { 1816 return NumElts != 0 && isUInt<16>(NumElts); 1817 } 1818 1819 static bool verifyAddrSpace(uint64_t AddrSpace) { 1820 return isUInt<24>(AddrSpace); 1821 } 1822 1823 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1824 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1825 StringRef SizeStr = Token.range().drop_front(); 1826 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1827 return error("expected integers after 's'/'p' type character"); 1828 } 1829 1830 if (Token.range().front() == 's') { 1831 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1832 if (!verifyScalarSize(ScalarSize)) 1833 return error("invalid size for scalar type"); 1834 1835 Ty = LLT::scalar(ScalarSize); 1836 lex(); 1837 return false; 1838 } else if (Token.range().front() == 'p') { 1839 const DataLayout &DL = MF.getDataLayout(); 1840 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1841 if (!verifyAddrSpace(AS)) 1842 return error("invalid address space number"); 1843 1844 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1845 lex(); 1846 return false; 1847 } 1848 1849 // Now we're looking for a vector. 1850 if (Token.isNot(MIToken::less)) 1851 return error(Loc, 1852 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1853 lex(); 1854 1855 if (Token.isNot(MIToken::IntegerLiteral)) 1856 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1857 uint64_t NumElements = Token.integerValue().getZExtValue(); 1858 if (!verifyVectorElementCount(NumElements)) 1859 return error("invalid number of vector elements"); 1860 1861 lex(); 1862 1863 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1864 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1865 lex(); 1866 1867 if (Token.range().front() != 's' && Token.range().front() != 'p') 1868 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1869 StringRef SizeStr = Token.range().drop_front(); 1870 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1871 return error("expected integers after 's'/'p' type character"); 1872 1873 if (Token.range().front() == 's') { 1874 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1875 if (!verifyScalarSize(ScalarSize)) 1876 return error("invalid size for scalar type"); 1877 Ty = LLT::scalar(ScalarSize); 1878 } else if (Token.range().front() == 'p') { 1879 const DataLayout &DL = MF.getDataLayout(); 1880 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1881 if (!verifyAddrSpace(AS)) 1882 return error("invalid address space number"); 1883 1884 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1885 } else 1886 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1887 lex(); 1888 1889 if (Token.isNot(MIToken::greater)) 1890 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1891 lex(); 1892 1893 Ty = LLT::fixed_vector(NumElements, Ty); 1894 return false; 1895 } 1896 1897 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1898 assert(Token.is(MIToken::Identifier)); 1899 StringRef TypeStr = Token.range(); 1900 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1901 TypeStr.front() != 'p') 1902 return error( 1903 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1904 StringRef SizeStr = Token.range().drop_front(); 1905 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1906 return error("expected integers after 'i'/'s'/'p' type character"); 1907 1908 auto Loc = Token.location(); 1909 lex(); 1910 if (Token.isNot(MIToken::IntegerLiteral)) { 1911 if (Token.isNot(MIToken::Identifier) || 1912 !(Token.range() == "true" || Token.range() == "false")) 1913 return error("expected an integer literal"); 1914 } 1915 const Constant *C = nullptr; 1916 if (parseIRConstant(Loc, C)) 1917 return true; 1918 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1919 return false; 1920 } 1921 1922 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1923 auto Loc = Token.location(); 1924 lex(); 1925 if (Token.isNot(MIToken::FloatingPointLiteral) && 1926 Token.isNot(MIToken::HexLiteral)) 1927 return error("expected a floating point literal"); 1928 const Constant *C = nullptr; 1929 if (parseIRConstant(Loc, C)) 1930 return true; 1931 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1932 return false; 1933 } 1934 1935 static bool getHexUint(const MIToken &Token, APInt &Result) { 1936 assert(Token.is(MIToken::HexLiteral)); 1937 StringRef S = Token.range(); 1938 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1939 // This could be a floating point literal with a special prefix. 1940 if (!isxdigit(S[2])) 1941 return true; 1942 StringRef V = S.substr(2); 1943 APInt A(V.size()*4, V, 16); 1944 1945 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1946 // sure it isn't the case before constructing result. 1947 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1948 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1949 return false; 1950 } 1951 1952 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1953 ErrorCallbackType ErrCB) { 1954 if (Token.hasIntegerValue()) { 1955 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1956 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1957 if (Val64 == Limit) 1958 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1959 Result = Val64; 1960 return false; 1961 } 1962 if (Token.is(MIToken::HexLiteral)) { 1963 APInt A; 1964 if (getHexUint(Token, A)) 1965 return true; 1966 if (A.getBitWidth() > 32) 1967 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1968 Result = A.getZExtValue(); 1969 return false; 1970 } 1971 return true; 1972 } 1973 1974 bool MIParser::getUnsigned(unsigned &Result) { 1975 return ::getUnsigned( 1976 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1977 return error(Loc, Msg); 1978 }); 1979 } 1980 1981 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1982 assert(Token.is(MIToken::MachineBasicBlock) || 1983 Token.is(MIToken::MachineBasicBlockLabel)); 1984 unsigned Number; 1985 if (getUnsigned(Number)) 1986 return true; 1987 auto MBBInfo = PFS.MBBSlots.find(Number); 1988 if (MBBInfo == PFS.MBBSlots.end()) 1989 return error(Twine("use of undefined machine basic block #") + 1990 Twine(Number)); 1991 MBB = MBBInfo->second; 1992 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1993 // we drop the <irname> from the bb.<id>.<irname> format. 1994 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1995 return error(Twine("the name of machine basic block #") + Twine(Number) + 1996 " isn't '" + Token.stringValue() + "'"); 1997 return false; 1998 } 1999 2000 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 2001 MachineBasicBlock *MBB; 2002 if (parseMBBReference(MBB)) 2003 return true; 2004 Dest = MachineOperand::CreateMBB(MBB); 2005 lex(); 2006 return false; 2007 } 2008 2009 bool MIParser::parseStackFrameIndex(int &FI) { 2010 assert(Token.is(MIToken::StackObject)); 2011 unsigned ID; 2012 if (getUnsigned(ID)) 2013 return true; 2014 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 2015 if (ObjectInfo == PFS.StackObjectSlots.end()) 2016 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 2017 "'"); 2018 StringRef Name; 2019 if (const auto *Alloca = 2020 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 2021 Name = Alloca->getName(); 2022 if (!Token.stringValue().empty() && Token.stringValue() != Name) 2023 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 2024 "' isn't '" + Token.stringValue() + "'"); 2025 lex(); 2026 FI = ObjectInfo->second; 2027 return false; 2028 } 2029 2030 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 2031 int FI; 2032 if (parseStackFrameIndex(FI)) 2033 return true; 2034 Dest = MachineOperand::CreateFI(FI); 2035 return false; 2036 } 2037 2038 bool MIParser::parseFixedStackFrameIndex(int &FI) { 2039 assert(Token.is(MIToken::FixedStackObject)); 2040 unsigned ID; 2041 if (getUnsigned(ID)) 2042 return true; 2043 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 2044 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 2045 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 2046 Twine(ID) + "'"); 2047 lex(); 2048 FI = ObjectInfo->second; 2049 return false; 2050 } 2051 2052 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 2053 int FI; 2054 if (parseFixedStackFrameIndex(FI)) 2055 return true; 2056 Dest = MachineOperand::CreateFI(FI); 2057 return false; 2058 } 2059 2060 static bool parseGlobalValue(const MIToken &Token, 2061 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 2062 ErrorCallbackType ErrCB) { 2063 switch (Token.kind()) { 2064 case MIToken::NamedGlobalValue: { 2065 const Module *M = PFS.MF.getFunction().getParent(); 2066 GV = M->getNamedValue(Token.stringValue()); 2067 if (!GV) 2068 return ErrCB(Token.location(), Twine("use of undefined global value '") + 2069 Token.range() + "'"); 2070 break; 2071 } 2072 case MIToken::GlobalValue: { 2073 unsigned GVIdx; 2074 if (getUnsigned(Token, GVIdx, ErrCB)) 2075 return true; 2076 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 2077 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 2078 Twine(GVIdx) + "'"); 2079 GV = PFS.IRSlots.GlobalValues[GVIdx]; 2080 break; 2081 } 2082 default: 2083 llvm_unreachable("The current token should be a global value"); 2084 } 2085 return false; 2086 } 2087 2088 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 2089 return ::parseGlobalValue( 2090 Token, PFS, GV, 2091 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2092 return error(Loc, Msg); 2093 }); 2094 } 2095 2096 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 2097 GlobalValue *GV = nullptr; 2098 if (parseGlobalValue(GV)) 2099 return true; 2100 lex(); 2101 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 2102 if (parseOperandsOffset(Dest)) 2103 return true; 2104 return false; 2105 } 2106 2107 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 2108 assert(Token.is(MIToken::ConstantPoolItem)); 2109 unsigned ID; 2110 if (getUnsigned(ID)) 2111 return true; 2112 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 2113 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 2114 return error("use of undefined constant '%const." + Twine(ID) + "'"); 2115 lex(); 2116 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 2117 if (parseOperandsOffset(Dest)) 2118 return true; 2119 return false; 2120 } 2121 2122 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 2123 assert(Token.is(MIToken::JumpTableIndex)); 2124 unsigned ID; 2125 if (getUnsigned(ID)) 2126 return true; 2127 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 2128 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 2129 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 2130 lex(); 2131 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 2132 return false; 2133 } 2134 2135 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 2136 assert(Token.is(MIToken::ExternalSymbol)); 2137 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 2138 lex(); 2139 Dest = MachineOperand::CreateES(Symbol); 2140 if (parseOperandsOffset(Dest)) 2141 return true; 2142 return false; 2143 } 2144 2145 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 2146 assert(Token.is(MIToken::MCSymbol)); 2147 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 2148 lex(); 2149 Dest = MachineOperand::CreateMCSymbol(Symbol); 2150 if (parseOperandsOffset(Dest)) 2151 return true; 2152 return false; 2153 } 2154 2155 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 2156 assert(Token.is(MIToken::SubRegisterIndex)); 2157 StringRef Name = Token.stringValue(); 2158 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 2159 if (SubRegIndex == 0) 2160 return error(Twine("unknown subregister index '") + Name + "'"); 2161 lex(); 2162 Dest = MachineOperand::CreateImm(SubRegIndex); 2163 return false; 2164 } 2165 2166 bool MIParser::parseMDNode(MDNode *&Node) { 2167 assert(Token.is(MIToken::exclaim)); 2168 2169 auto Loc = Token.location(); 2170 lex(); 2171 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2172 return error("expected metadata id after '!'"); 2173 unsigned ID; 2174 if (getUnsigned(ID)) 2175 return true; 2176 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 2177 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) { 2178 NodeInfo = PFS.MachineMetadataNodes.find(ID); 2179 if (NodeInfo == PFS.MachineMetadataNodes.end()) 2180 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 2181 } 2182 lex(); 2183 Node = NodeInfo->second.get(); 2184 return false; 2185 } 2186 2187 bool MIParser::parseDIExpression(MDNode *&Expr) { 2188 assert(Token.is(MIToken::md_diexpr)); 2189 lex(); 2190 2191 // FIXME: Share this parsing with the IL parser. 2192 SmallVector<uint64_t, 8> Elements; 2193 2194 if (expectAndConsume(MIToken::lparen)) 2195 return true; 2196 2197 if (Token.isNot(MIToken::rparen)) { 2198 do { 2199 if (Token.is(MIToken::Identifier)) { 2200 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2201 lex(); 2202 Elements.push_back(Op); 2203 continue; 2204 } 2205 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2206 lex(); 2207 Elements.push_back(Enc); 2208 continue; 2209 } 2210 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2211 } 2212 2213 if (Token.isNot(MIToken::IntegerLiteral) || 2214 Token.integerValue().isSigned()) 2215 return error("expected unsigned integer"); 2216 2217 auto &U = Token.integerValue(); 2218 if (U.ugt(UINT64_MAX)) 2219 return error("element too large, limit is " + Twine(UINT64_MAX)); 2220 Elements.push_back(U.getZExtValue()); 2221 lex(); 2222 2223 } while (consumeIfPresent(MIToken::comma)); 2224 } 2225 2226 if (expectAndConsume(MIToken::rparen)) 2227 return true; 2228 2229 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2230 return false; 2231 } 2232 2233 bool MIParser::parseDILocation(MDNode *&Loc) { 2234 assert(Token.is(MIToken::md_dilocation)); 2235 lex(); 2236 2237 bool HaveLine = false; 2238 unsigned Line = 0; 2239 unsigned Column = 0; 2240 MDNode *Scope = nullptr; 2241 MDNode *InlinedAt = nullptr; 2242 bool ImplicitCode = false; 2243 2244 if (expectAndConsume(MIToken::lparen)) 2245 return true; 2246 2247 if (Token.isNot(MIToken::rparen)) { 2248 do { 2249 if (Token.is(MIToken::Identifier)) { 2250 if (Token.stringValue() == "line") { 2251 lex(); 2252 if (expectAndConsume(MIToken::colon)) 2253 return true; 2254 if (Token.isNot(MIToken::IntegerLiteral) || 2255 Token.integerValue().isSigned()) 2256 return error("expected unsigned integer"); 2257 Line = Token.integerValue().getZExtValue(); 2258 HaveLine = true; 2259 lex(); 2260 continue; 2261 } 2262 if (Token.stringValue() == "column") { 2263 lex(); 2264 if (expectAndConsume(MIToken::colon)) 2265 return true; 2266 if (Token.isNot(MIToken::IntegerLiteral) || 2267 Token.integerValue().isSigned()) 2268 return error("expected unsigned integer"); 2269 Column = Token.integerValue().getZExtValue(); 2270 lex(); 2271 continue; 2272 } 2273 if (Token.stringValue() == "scope") { 2274 lex(); 2275 if (expectAndConsume(MIToken::colon)) 2276 return true; 2277 if (parseMDNode(Scope)) 2278 return error("expected metadata node"); 2279 if (!isa<DIScope>(Scope)) 2280 return error("expected DIScope node"); 2281 continue; 2282 } 2283 if (Token.stringValue() == "inlinedAt") { 2284 lex(); 2285 if (expectAndConsume(MIToken::colon)) 2286 return true; 2287 if (Token.is(MIToken::exclaim)) { 2288 if (parseMDNode(InlinedAt)) 2289 return true; 2290 } else if (Token.is(MIToken::md_dilocation)) { 2291 if (parseDILocation(InlinedAt)) 2292 return true; 2293 } else 2294 return error("expected metadata node"); 2295 if (!isa<DILocation>(InlinedAt)) 2296 return error("expected DILocation node"); 2297 continue; 2298 } 2299 if (Token.stringValue() == "isImplicitCode") { 2300 lex(); 2301 if (expectAndConsume(MIToken::colon)) 2302 return true; 2303 if (!Token.is(MIToken::Identifier)) 2304 return error("expected true/false"); 2305 // As far as I can see, we don't have any existing need for parsing 2306 // true/false in MIR yet. Do it ad-hoc until there's something else 2307 // that needs it. 2308 if (Token.stringValue() == "true") 2309 ImplicitCode = true; 2310 else if (Token.stringValue() == "false") 2311 ImplicitCode = false; 2312 else 2313 return error("expected true/false"); 2314 lex(); 2315 continue; 2316 } 2317 } 2318 return error(Twine("invalid DILocation argument '") + 2319 Token.stringValue() + "'"); 2320 } while (consumeIfPresent(MIToken::comma)); 2321 } 2322 2323 if (expectAndConsume(MIToken::rparen)) 2324 return true; 2325 2326 if (!HaveLine) 2327 return error("DILocation requires line number"); 2328 if (!Scope) 2329 return error("DILocation requires a scope"); 2330 2331 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2332 InlinedAt, ImplicitCode); 2333 return false; 2334 } 2335 2336 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2337 MDNode *Node = nullptr; 2338 if (Token.is(MIToken::exclaim)) { 2339 if (parseMDNode(Node)) 2340 return true; 2341 } else if (Token.is(MIToken::md_diexpr)) { 2342 if (parseDIExpression(Node)) 2343 return true; 2344 } 2345 Dest = MachineOperand::CreateMetadata(Node); 2346 return false; 2347 } 2348 2349 bool MIParser::parseCFIOffset(int &Offset) { 2350 if (Token.isNot(MIToken::IntegerLiteral)) 2351 return error("expected a cfi offset"); 2352 if (Token.integerValue().getMinSignedBits() > 32) 2353 return error("expected a 32 bit integer (the cfi offset is too large)"); 2354 Offset = (int)Token.integerValue().getExtValue(); 2355 lex(); 2356 return false; 2357 } 2358 2359 bool MIParser::parseCFIRegister(Register &Reg) { 2360 if (Token.isNot(MIToken::NamedRegister)) 2361 return error("expected a cfi register"); 2362 Register LLVMReg; 2363 if (parseNamedRegister(LLVMReg)) 2364 return true; 2365 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2366 assert(TRI && "Expected target register info"); 2367 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2368 if (DwarfReg < 0) 2369 return error("invalid DWARF register"); 2370 Reg = (unsigned)DwarfReg; 2371 lex(); 2372 return false; 2373 } 2374 2375 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) { 2376 if (Token.isNot(MIToken::IntegerLiteral)) 2377 return error("expected a cfi address space literal"); 2378 if (Token.integerValue().isSigned()) 2379 return error("expected an unsigned integer (cfi address space)"); 2380 AddressSpace = Token.integerValue().getZExtValue(); 2381 lex(); 2382 return false; 2383 } 2384 2385 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2386 do { 2387 if (Token.isNot(MIToken::HexLiteral)) 2388 return error("expected a hexadecimal literal"); 2389 unsigned Value; 2390 if (getUnsigned(Value)) 2391 return true; 2392 if (Value > UINT8_MAX) 2393 return error("expected a 8-bit integer (too large)"); 2394 Values.push_back(static_cast<uint8_t>(Value)); 2395 lex(); 2396 } while (consumeIfPresent(MIToken::comma)); 2397 return false; 2398 } 2399 2400 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2401 auto Kind = Token.kind(); 2402 lex(); 2403 int Offset; 2404 Register Reg; 2405 unsigned AddressSpace; 2406 unsigned CFIIndex; 2407 switch (Kind) { 2408 case MIToken::kw_cfi_same_value: 2409 if (parseCFIRegister(Reg)) 2410 return true; 2411 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2412 break; 2413 case MIToken::kw_cfi_offset: 2414 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2415 parseCFIOffset(Offset)) 2416 return true; 2417 CFIIndex = 2418 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2419 break; 2420 case MIToken::kw_cfi_rel_offset: 2421 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2422 parseCFIOffset(Offset)) 2423 return true; 2424 CFIIndex = MF.addFrameInst( 2425 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2426 break; 2427 case MIToken::kw_cfi_def_cfa_register: 2428 if (parseCFIRegister(Reg)) 2429 return true; 2430 CFIIndex = 2431 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2432 break; 2433 case MIToken::kw_cfi_def_cfa_offset: 2434 if (parseCFIOffset(Offset)) 2435 return true; 2436 CFIIndex = 2437 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); 2438 break; 2439 case MIToken::kw_cfi_adjust_cfa_offset: 2440 if (parseCFIOffset(Offset)) 2441 return true; 2442 CFIIndex = MF.addFrameInst( 2443 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2444 break; 2445 case MIToken::kw_cfi_def_cfa: 2446 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2447 parseCFIOffset(Offset)) 2448 return true; 2449 CFIIndex = 2450 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); 2451 break; 2452 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2453 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2454 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) || 2455 parseCFIAddressSpace(AddressSpace)) 2456 return true; 2457 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa( 2458 nullptr, Reg, Offset, AddressSpace)); 2459 break; 2460 case MIToken::kw_cfi_remember_state: 2461 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2462 break; 2463 case MIToken::kw_cfi_restore: 2464 if (parseCFIRegister(Reg)) 2465 return true; 2466 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2467 break; 2468 case MIToken::kw_cfi_restore_state: 2469 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2470 break; 2471 case MIToken::kw_cfi_undefined: 2472 if (parseCFIRegister(Reg)) 2473 return true; 2474 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2475 break; 2476 case MIToken::kw_cfi_register: { 2477 Register Reg2; 2478 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2479 parseCFIRegister(Reg2)) 2480 return true; 2481 2482 CFIIndex = 2483 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2484 break; 2485 } 2486 case MIToken::kw_cfi_window_save: 2487 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2488 break; 2489 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2490 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2491 break; 2492 case MIToken::kw_cfi_escape: { 2493 std::string Values; 2494 if (parseCFIEscapeValues(Values)) 2495 return true; 2496 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2497 break; 2498 } 2499 default: 2500 // TODO: Parse the other CFI operands. 2501 llvm_unreachable("The current token should be a cfi operand"); 2502 } 2503 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2504 return false; 2505 } 2506 2507 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2508 switch (Token.kind()) { 2509 case MIToken::NamedIRBlock: { 2510 BB = dyn_cast_or_null<BasicBlock>( 2511 F.getValueSymbolTable()->lookup(Token.stringValue())); 2512 if (!BB) 2513 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2514 break; 2515 } 2516 case MIToken::IRBlock: { 2517 unsigned SlotNumber = 0; 2518 if (getUnsigned(SlotNumber)) 2519 return true; 2520 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2521 if (!BB) 2522 return error(Twine("use of undefined IR block '%ir-block.") + 2523 Twine(SlotNumber) + "'"); 2524 break; 2525 } 2526 default: 2527 llvm_unreachable("The current token should be an IR block reference"); 2528 } 2529 return false; 2530 } 2531 2532 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2533 assert(Token.is(MIToken::kw_blockaddress)); 2534 lex(); 2535 if (expectAndConsume(MIToken::lparen)) 2536 return true; 2537 if (Token.isNot(MIToken::GlobalValue) && 2538 Token.isNot(MIToken::NamedGlobalValue)) 2539 return error("expected a global value"); 2540 GlobalValue *GV = nullptr; 2541 if (parseGlobalValue(GV)) 2542 return true; 2543 auto *F = dyn_cast<Function>(GV); 2544 if (!F) 2545 return error("expected an IR function reference"); 2546 lex(); 2547 if (expectAndConsume(MIToken::comma)) 2548 return true; 2549 BasicBlock *BB = nullptr; 2550 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2551 return error("expected an IR block reference"); 2552 if (parseIRBlock(BB, *F)) 2553 return true; 2554 lex(); 2555 if (expectAndConsume(MIToken::rparen)) 2556 return true; 2557 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2558 if (parseOperandsOffset(Dest)) 2559 return true; 2560 return false; 2561 } 2562 2563 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2564 assert(Token.is(MIToken::kw_intrinsic)); 2565 lex(); 2566 if (expectAndConsume(MIToken::lparen)) 2567 return error("expected syntax intrinsic(@llvm.whatever)"); 2568 2569 if (Token.isNot(MIToken::NamedGlobalValue)) 2570 return error("expected syntax intrinsic(@llvm.whatever)"); 2571 2572 std::string Name = std::string(Token.stringValue()); 2573 lex(); 2574 2575 if (expectAndConsume(MIToken::rparen)) 2576 return error("expected ')' to terminate intrinsic name"); 2577 2578 // Find out what intrinsic we're dealing with, first try the global namespace 2579 // and then the target's private intrinsics if that fails. 2580 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2581 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2582 if (ID == Intrinsic::not_intrinsic && TII) 2583 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2584 2585 if (ID == Intrinsic::not_intrinsic) 2586 return error("unknown intrinsic name"); 2587 Dest = MachineOperand::CreateIntrinsicID(ID); 2588 2589 return false; 2590 } 2591 2592 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2593 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2594 bool IsFloat = Token.is(MIToken::kw_floatpred); 2595 lex(); 2596 2597 if (expectAndConsume(MIToken::lparen)) 2598 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2599 2600 if (Token.isNot(MIToken::Identifier)) 2601 return error("whatever"); 2602 2603 CmpInst::Predicate Pred; 2604 if (IsFloat) { 2605 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2606 .Case("false", CmpInst::FCMP_FALSE) 2607 .Case("oeq", CmpInst::FCMP_OEQ) 2608 .Case("ogt", CmpInst::FCMP_OGT) 2609 .Case("oge", CmpInst::FCMP_OGE) 2610 .Case("olt", CmpInst::FCMP_OLT) 2611 .Case("ole", CmpInst::FCMP_OLE) 2612 .Case("one", CmpInst::FCMP_ONE) 2613 .Case("ord", CmpInst::FCMP_ORD) 2614 .Case("uno", CmpInst::FCMP_UNO) 2615 .Case("ueq", CmpInst::FCMP_UEQ) 2616 .Case("ugt", CmpInst::FCMP_UGT) 2617 .Case("uge", CmpInst::FCMP_UGE) 2618 .Case("ult", CmpInst::FCMP_ULT) 2619 .Case("ule", CmpInst::FCMP_ULE) 2620 .Case("une", CmpInst::FCMP_UNE) 2621 .Case("true", CmpInst::FCMP_TRUE) 2622 .Default(CmpInst::BAD_FCMP_PREDICATE); 2623 if (!CmpInst::isFPPredicate(Pred)) 2624 return error("invalid floating-point predicate"); 2625 } else { 2626 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2627 .Case("eq", CmpInst::ICMP_EQ) 2628 .Case("ne", CmpInst::ICMP_NE) 2629 .Case("sgt", CmpInst::ICMP_SGT) 2630 .Case("sge", CmpInst::ICMP_SGE) 2631 .Case("slt", CmpInst::ICMP_SLT) 2632 .Case("sle", CmpInst::ICMP_SLE) 2633 .Case("ugt", CmpInst::ICMP_UGT) 2634 .Case("uge", CmpInst::ICMP_UGE) 2635 .Case("ult", CmpInst::ICMP_ULT) 2636 .Case("ule", CmpInst::ICMP_ULE) 2637 .Default(CmpInst::BAD_ICMP_PREDICATE); 2638 if (!CmpInst::isIntPredicate(Pred)) 2639 return error("invalid integer predicate"); 2640 } 2641 2642 lex(); 2643 Dest = MachineOperand::CreatePredicate(Pred); 2644 if (expectAndConsume(MIToken::rparen)) 2645 return error("predicate should be terminated by ')'."); 2646 2647 return false; 2648 } 2649 2650 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2651 assert(Token.is(MIToken::kw_shufflemask)); 2652 2653 lex(); 2654 if (expectAndConsume(MIToken::lparen)) 2655 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2656 2657 SmallVector<int, 32> ShufMask; 2658 do { 2659 if (Token.is(MIToken::kw_undef)) { 2660 ShufMask.push_back(-1); 2661 } else if (Token.is(MIToken::IntegerLiteral)) { 2662 const APSInt &Int = Token.integerValue(); 2663 ShufMask.push_back(Int.getExtValue()); 2664 } else 2665 return error("expected integer constant"); 2666 2667 lex(); 2668 } while (consumeIfPresent(MIToken::comma)); 2669 2670 if (expectAndConsume(MIToken::rparen)) 2671 return error("shufflemask should be terminated by ')'."); 2672 2673 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2674 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2675 return false; 2676 } 2677 2678 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2679 assert(Token.is(MIToken::kw_target_index)); 2680 lex(); 2681 if (expectAndConsume(MIToken::lparen)) 2682 return true; 2683 if (Token.isNot(MIToken::Identifier)) 2684 return error("expected the name of the target index"); 2685 int Index = 0; 2686 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2687 return error("use of undefined target index '" + Token.stringValue() + "'"); 2688 lex(); 2689 if (expectAndConsume(MIToken::rparen)) 2690 return true; 2691 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2692 if (parseOperandsOffset(Dest)) 2693 return true; 2694 return false; 2695 } 2696 2697 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2698 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2699 lex(); 2700 if (expectAndConsume(MIToken::lparen)) 2701 return true; 2702 2703 uint32_t *Mask = MF.allocateRegMask(); 2704 while (true) { 2705 if (Token.isNot(MIToken::NamedRegister)) 2706 return error("expected a named register"); 2707 Register Reg; 2708 if (parseNamedRegister(Reg)) 2709 return true; 2710 lex(); 2711 Mask[Reg / 32] |= 1U << (Reg % 32); 2712 // TODO: Report an error if the same register is used more than once. 2713 if (Token.isNot(MIToken::comma)) 2714 break; 2715 lex(); 2716 } 2717 2718 if (expectAndConsume(MIToken::rparen)) 2719 return true; 2720 Dest = MachineOperand::CreateRegMask(Mask); 2721 return false; 2722 } 2723 2724 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2725 assert(Token.is(MIToken::kw_liveout)); 2726 uint32_t *Mask = MF.allocateRegMask(); 2727 lex(); 2728 if (expectAndConsume(MIToken::lparen)) 2729 return true; 2730 while (true) { 2731 if (Token.isNot(MIToken::NamedRegister)) 2732 return error("expected a named register"); 2733 Register Reg; 2734 if (parseNamedRegister(Reg)) 2735 return true; 2736 lex(); 2737 Mask[Reg / 32] |= 1U << (Reg % 32); 2738 // TODO: Report an error if the same register is used more than once. 2739 if (Token.isNot(MIToken::comma)) 2740 break; 2741 lex(); 2742 } 2743 if (expectAndConsume(MIToken::rparen)) 2744 return true; 2745 Dest = MachineOperand::CreateRegLiveOut(Mask); 2746 return false; 2747 } 2748 2749 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2750 MachineOperand &Dest, 2751 Optional<unsigned> &TiedDefIdx) { 2752 switch (Token.kind()) { 2753 case MIToken::kw_implicit: 2754 case MIToken::kw_implicit_define: 2755 case MIToken::kw_def: 2756 case MIToken::kw_dead: 2757 case MIToken::kw_killed: 2758 case MIToken::kw_undef: 2759 case MIToken::kw_internal: 2760 case MIToken::kw_early_clobber: 2761 case MIToken::kw_debug_use: 2762 case MIToken::kw_renamable: 2763 case MIToken::underscore: 2764 case MIToken::NamedRegister: 2765 case MIToken::VirtualRegister: 2766 case MIToken::NamedVirtualRegister: 2767 return parseRegisterOperand(Dest, TiedDefIdx); 2768 case MIToken::IntegerLiteral: 2769 return parseImmediateOperand(Dest); 2770 case MIToken::kw_half: 2771 case MIToken::kw_float: 2772 case MIToken::kw_double: 2773 case MIToken::kw_x86_fp80: 2774 case MIToken::kw_fp128: 2775 case MIToken::kw_ppc_fp128: 2776 return parseFPImmediateOperand(Dest); 2777 case MIToken::MachineBasicBlock: 2778 return parseMBBOperand(Dest); 2779 case MIToken::StackObject: 2780 return parseStackObjectOperand(Dest); 2781 case MIToken::FixedStackObject: 2782 return parseFixedStackObjectOperand(Dest); 2783 case MIToken::GlobalValue: 2784 case MIToken::NamedGlobalValue: 2785 return parseGlobalAddressOperand(Dest); 2786 case MIToken::ConstantPoolItem: 2787 return parseConstantPoolIndexOperand(Dest); 2788 case MIToken::JumpTableIndex: 2789 return parseJumpTableIndexOperand(Dest); 2790 case MIToken::ExternalSymbol: 2791 return parseExternalSymbolOperand(Dest); 2792 case MIToken::MCSymbol: 2793 return parseMCSymbolOperand(Dest); 2794 case MIToken::SubRegisterIndex: 2795 return parseSubRegisterIndexOperand(Dest); 2796 case MIToken::md_diexpr: 2797 case MIToken::exclaim: 2798 return parseMetadataOperand(Dest); 2799 case MIToken::kw_cfi_same_value: 2800 case MIToken::kw_cfi_offset: 2801 case MIToken::kw_cfi_rel_offset: 2802 case MIToken::kw_cfi_def_cfa_register: 2803 case MIToken::kw_cfi_def_cfa_offset: 2804 case MIToken::kw_cfi_adjust_cfa_offset: 2805 case MIToken::kw_cfi_escape: 2806 case MIToken::kw_cfi_def_cfa: 2807 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2808 case MIToken::kw_cfi_register: 2809 case MIToken::kw_cfi_remember_state: 2810 case MIToken::kw_cfi_restore: 2811 case MIToken::kw_cfi_restore_state: 2812 case MIToken::kw_cfi_undefined: 2813 case MIToken::kw_cfi_window_save: 2814 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2815 return parseCFIOperand(Dest); 2816 case MIToken::kw_blockaddress: 2817 return parseBlockAddressOperand(Dest); 2818 case MIToken::kw_intrinsic: 2819 return parseIntrinsicOperand(Dest); 2820 case MIToken::kw_target_index: 2821 return parseTargetIndexOperand(Dest); 2822 case MIToken::kw_liveout: 2823 return parseLiveoutRegisterMaskOperand(Dest); 2824 case MIToken::kw_floatpred: 2825 case MIToken::kw_intpred: 2826 return parsePredicateOperand(Dest); 2827 case MIToken::kw_shufflemask: 2828 return parseShuffleMaskOperand(Dest); 2829 case MIToken::Error: 2830 return true; 2831 case MIToken::Identifier: 2832 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2833 Dest = MachineOperand::CreateRegMask(RegMask); 2834 lex(); 2835 break; 2836 } else if (Token.stringValue() == "CustomRegMask") { 2837 return parseCustomRegisterMaskOperand(Dest); 2838 } else 2839 return parseTypedImmediateOperand(Dest); 2840 case MIToken::dot: { 2841 const auto *TII = MF.getSubtarget().getInstrInfo(); 2842 if (const auto *Formatter = TII->getMIRFormatter()) { 2843 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2844 } 2845 LLVM_FALLTHROUGH; 2846 } 2847 default: 2848 // FIXME: Parse the MCSymbol machine operand. 2849 return error("expected a machine operand"); 2850 } 2851 return false; 2852 } 2853 2854 bool MIParser::parseMachineOperandAndTargetFlags( 2855 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2856 Optional<unsigned> &TiedDefIdx) { 2857 unsigned TF = 0; 2858 bool HasTargetFlags = false; 2859 if (Token.is(MIToken::kw_target_flags)) { 2860 HasTargetFlags = true; 2861 lex(); 2862 if (expectAndConsume(MIToken::lparen)) 2863 return true; 2864 if (Token.isNot(MIToken::Identifier)) 2865 return error("expected the name of the target flag"); 2866 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2867 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2868 return error("use of undefined target flag '" + Token.stringValue() + 2869 "'"); 2870 } 2871 lex(); 2872 while (Token.is(MIToken::comma)) { 2873 lex(); 2874 if (Token.isNot(MIToken::Identifier)) 2875 return error("expected the name of the target flag"); 2876 unsigned BitFlag = 0; 2877 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2878 return error("use of undefined target flag '" + Token.stringValue() + 2879 "'"); 2880 // TODO: Report an error when using a duplicate bit target flag. 2881 TF |= BitFlag; 2882 lex(); 2883 } 2884 if (expectAndConsume(MIToken::rparen)) 2885 return true; 2886 } 2887 auto Loc = Token.location(); 2888 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2889 return true; 2890 if (!HasTargetFlags) 2891 return false; 2892 if (Dest.isReg()) 2893 return error(Loc, "register operands can't have target flags"); 2894 Dest.setTargetFlags(TF); 2895 return false; 2896 } 2897 2898 bool MIParser::parseOffset(int64_t &Offset) { 2899 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2900 return false; 2901 StringRef Sign = Token.range(); 2902 bool IsNegative = Token.is(MIToken::minus); 2903 lex(); 2904 if (Token.isNot(MIToken::IntegerLiteral)) 2905 return error("expected an integer literal after '" + Sign + "'"); 2906 if (Token.integerValue().getMinSignedBits() > 64) 2907 return error("expected 64-bit integer (too large)"); 2908 Offset = Token.integerValue().getExtValue(); 2909 if (IsNegative) 2910 Offset = -Offset; 2911 lex(); 2912 return false; 2913 } 2914 2915 bool MIParser::parseAlignment(uint64_t &Alignment) { 2916 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign)); 2917 lex(); 2918 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2919 return error("expected an integer literal after 'align'"); 2920 if (getUint64(Alignment)) 2921 return true; 2922 lex(); 2923 2924 if (!isPowerOf2_64(Alignment)) 2925 return error("expected a power-of-2 literal after 'align'"); 2926 2927 return false; 2928 } 2929 2930 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2931 assert(Token.is(MIToken::kw_addrspace)); 2932 lex(); 2933 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2934 return error("expected an integer literal after 'addrspace'"); 2935 if (getUnsigned(Addrspace)) 2936 return true; 2937 lex(); 2938 return false; 2939 } 2940 2941 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2942 int64_t Offset = 0; 2943 if (parseOffset(Offset)) 2944 return true; 2945 Op.setOffset(Offset); 2946 return false; 2947 } 2948 2949 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2950 const Value *&V, ErrorCallbackType ErrCB) { 2951 switch (Token.kind()) { 2952 case MIToken::NamedIRValue: { 2953 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2954 break; 2955 } 2956 case MIToken::IRValue: { 2957 unsigned SlotNumber = 0; 2958 if (getUnsigned(Token, SlotNumber, ErrCB)) 2959 return true; 2960 V = PFS.getIRValue(SlotNumber); 2961 break; 2962 } 2963 case MIToken::NamedGlobalValue: 2964 case MIToken::GlobalValue: { 2965 GlobalValue *GV = nullptr; 2966 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2967 return true; 2968 V = GV; 2969 break; 2970 } 2971 case MIToken::QuotedIRValue: { 2972 const Constant *C = nullptr; 2973 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2974 return true; 2975 V = C; 2976 break; 2977 } 2978 case MIToken::kw_unknown_address: 2979 V = nullptr; 2980 return false; 2981 default: 2982 llvm_unreachable("The current token should be an IR block reference"); 2983 } 2984 if (!V) 2985 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2986 return false; 2987 } 2988 2989 bool MIParser::parseIRValue(const Value *&V) { 2990 return ::parseIRValue( 2991 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2992 return error(Loc, Msg); 2993 }); 2994 } 2995 2996 bool MIParser::getUint64(uint64_t &Result) { 2997 if (Token.hasIntegerValue()) { 2998 if (Token.integerValue().getActiveBits() > 64) 2999 return error("expected 64-bit integer (too large)"); 3000 Result = Token.integerValue().getZExtValue(); 3001 return false; 3002 } 3003 if (Token.is(MIToken::HexLiteral)) { 3004 APInt A; 3005 if (getHexUint(A)) 3006 return true; 3007 if (A.getBitWidth() > 64) 3008 return error("expected 64-bit integer (too large)"); 3009 Result = A.getZExtValue(); 3010 return false; 3011 } 3012 return true; 3013 } 3014 3015 bool MIParser::getHexUint(APInt &Result) { 3016 return ::getHexUint(Token, Result); 3017 } 3018 3019 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 3020 const auto OldFlags = Flags; 3021 switch (Token.kind()) { 3022 case MIToken::kw_volatile: 3023 Flags |= MachineMemOperand::MOVolatile; 3024 break; 3025 case MIToken::kw_non_temporal: 3026 Flags |= MachineMemOperand::MONonTemporal; 3027 break; 3028 case MIToken::kw_dereferenceable: 3029 Flags |= MachineMemOperand::MODereferenceable; 3030 break; 3031 case MIToken::kw_invariant: 3032 Flags |= MachineMemOperand::MOInvariant; 3033 break; 3034 case MIToken::StringConstant: { 3035 MachineMemOperand::Flags TF; 3036 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 3037 return error("use of undefined target MMO flag '" + Token.stringValue() + 3038 "'"); 3039 Flags |= TF; 3040 break; 3041 } 3042 default: 3043 llvm_unreachable("The current token should be a memory operand flag"); 3044 } 3045 if (OldFlags == Flags) 3046 // We know that the same flag is specified more than once when the flags 3047 // weren't modified. 3048 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 3049 lex(); 3050 return false; 3051 } 3052 3053 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 3054 switch (Token.kind()) { 3055 case MIToken::kw_stack: 3056 PSV = MF.getPSVManager().getStack(); 3057 break; 3058 case MIToken::kw_got: 3059 PSV = MF.getPSVManager().getGOT(); 3060 break; 3061 case MIToken::kw_jump_table: 3062 PSV = MF.getPSVManager().getJumpTable(); 3063 break; 3064 case MIToken::kw_constant_pool: 3065 PSV = MF.getPSVManager().getConstantPool(); 3066 break; 3067 case MIToken::FixedStackObject: { 3068 int FI; 3069 if (parseFixedStackFrameIndex(FI)) 3070 return true; 3071 PSV = MF.getPSVManager().getFixedStack(FI); 3072 // The token was already consumed, so use return here instead of break. 3073 return false; 3074 } 3075 case MIToken::StackObject: { 3076 int FI; 3077 if (parseStackFrameIndex(FI)) 3078 return true; 3079 PSV = MF.getPSVManager().getFixedStack(FI); 3080 // The token was already consumed, so use return here instead of break. 3081 return false; 3082 } 3083 case MIToken::kw_call_entry: 3084 lex(); 3085 switch (Token.kind()) { 3086 case MIToken::GlobalValue: 3087 case MIToken::NamedGlobalValue: { 3088 GlobalValue *GV = nullptr; 3089 if (parseGlobalValue(GV)) 3090 return true; 3091 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 3092 break; 3093 } 3094 case MIToken::ExternalSymbol: 3095 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 3096 MF.createExternalSymbolName(Token.stringValue())); 3097 break; 3098 default: 3099 return error( 3100 "expected a global value or an external symbol after 'call-entry'"); 3101 } 3102 break; 3103 case MIToken::kw_custom: { 3104 lex(); 3105 const auto *TII = MF.getSubtarget().getInstrInfo(); 3106 if (const auto *Formatter = TII->getMIRFormatter()) { 3107 if (Formatter->parseCustomPseudoSourceValue( 3108 Token.stringValue(), MF, PFS, PSV, 3109 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 3110 return error(Loc, Msg); 3111 })) 3112 return true; 3113 } else 3114 return error("unable to parse target custom pseudo source value"); 3115 break; 3116 } 3117 default: 3118 llvm_unreachable("The current token should be pseudo source value"); 3119 } 3120 lex(); 3121 return false; 3122 } 3123 3124 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 3125 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 3126 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 3127 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 3128 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 3129 const PseudoSourceValue *PSV = nullptr; 3130 if (parseMemoryPseudoSourceValue(PSV)) 3131 return true; 3132 int64_t Offset = 0; 3133 if (parseOffset(Offset)) 3134 return true; 3135 Dest = MachinePointerInfo(PSV, Offset); 3136 return false; 3137 } 3138 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 3139 Token.isNot(MIToken::GlobalValue) && 3140 Token.isNot(MIToken::NamedGlobalValue) && 3141 Token.isNot(MIToken::QuotedIRValue) && 3142 Token.isNot(MIToken::kw_unknown_address)) 3143 return error("expected an IR value reference"); 3144 const Value *V = nullptr; 3145 if (parseIRValue(V)) 3146 return true; 3147 if (V && !V->getType()->isPointerTy()) 3148 return error("expected a pointer IR value"); 3149 lex(); 3150 int64_t Offset = 0; 3151 if (parseOffset(Offset)) 3152 return true; 3153 Dest = MachinePointerInfo(V, Offset); 3154 return false; 3155 } 3156 3157 bool MIParser::parseOptionalScope(LLVMContext &Context, 3158 SyncScope::ID &SSID) { 3159 SSID = SyncScope::System; 3160 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 3161 lex(); 3162 if (expectAndConsume(MIToken::lparen)) 3163 return error("expected '(' in syncscope"); 3164 3165 std::string SSN; 3166 if (parseStringConstant(SSN)) 3167 return true; 3168 3169 SSID = Context.getOrInsertSyncScopeID(SSN); 3170 if (expectAndConsume(MIToken::rparen)) 3171 return error("expected ')' in syncscope"); 3172 } 3173 3174 return false; 3175 } 3176 3177 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 3178 Order = AtomicOrdering::NotAtomic; 3179 if (Token.isNot(MIToken::Identifier)) 3180 return false; 3181 3182 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 3183 .Case("unordered", AtomicOrdering::Unordered) 3184 .Case("monotonic", AtomicOrdering::Monotonic) 3185 .Case("acquire", AtomicOrdering::Acquire) 3186 .Case("release", AtomicOrdering::Release) 3187 .Case("acq_rel", AtomicOrdering::AcquireRelease) 3188 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 3189 .Default(AtomicOrdering::NotAtomic); 3190 3191 if (Order != AtomicOrdering::NotAtomic) { 3192 lex(); 3193 return false; 3194 } 3195 3196 return error("expected an atomic scope, ordering or a size specification"); 3197 } 3198 3199 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 3200 if (expectAndConsume(MIToken::lparen)) 3201 return true; 3202 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 3203 while (Token.isMemoryOperandFlag()) { 3204 if (parseMemoryOperandFlag(Flags)) 3205 return true; 3206 } 3207 if (Token.isNot(MIToken::Identifier) || 3208 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3209 return error("expected 'load' or 'store' memory operation"); 3210 if (Token.stringValue() == "load") 3211 Flags |= MachineMemOperand::MOLoad; 3212 else 3213 Flags |= MachineMemOperand::MOStore; 3214 lex(); 3215 3216 // Optional 'store' for operands that both load and store. 3217 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3218 Flags |= MachineMemOperand::MOStore; 3219 lex(); 3220 } 3221 3222 // Optional synchronization scope. 3223 SyncScope::ID SSID; 3224 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3225 return true; 3226 3227 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3228 AtomicOrdering Order, FailureOrder; 3229 if (parseOptionalAtomicOrdering(Order)) 3230 return true; 3231 3232 if (parseOptionalAtomicOrdering(FailureOrder)) 3233 return true; 3234 3235 LLT MemoryType; 3236 if (Token.isNot(MIToken::IntegerLiteral) && 3237 Token.isNot(MIToken::kw_unknown_size) && 3238 Token.isNot(MIToken::lparen)) 3239 return error("expected memory LLT, the size integer literal or 'unknown-size' after " 3240 "memory operation"); 3241 3242 uint64_t Size = MemoryLocation::UnknownSize; 3243 if (Token.is(MIToken::IntegerLiteral)) { 3244 if (getUint64(Size)) 3245 return true; 3246 3247 // Convert from bytes to bits for storage. 3248 MemoryType = LLT::scalar(8 * Size); 3249 lex(); 3250 } else if (Token.is(MIToken::kw_unknown_size)) { 3251 Size = MemoryLocation::UnknownSize; 3252 lex(); 3253 } else { 3254 if (expectAndConsume(MIToken::lparen)) 3255 return true; 3256 if (parseLowLevelType(Token.location(), MemoryType)) 3257 return true; 3258 if (expectAndConsume(MIToken::rparen)) 3259 return true; 3260 3261 Size = MemoryType.getSizeInBytes(); 3262 } 3263 3264 MachinePointerInfo Ptr = MachinePointerInfo(); 3265 if (Token.is(MIToken::Identifier)) { 3266 const char *Word = 3267 ((Flags & MachineMemOperand::MOLoad) && 3268 (Flags & MachineMemOperand::MOStore)) 3269 ? "on" 3270 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3271 if (Token.stringValue() != Word) 3272 return error(Twine("expected '") + Word + "'"); 3273 lex(); 3274 3275 if (parseMachinePointerInfo(Ptr)) 3276 return true; 3277 } 3278 uint64_t BaseAlignment = 3279 (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1); 3280 AAMDNodes AAInfo; 3281 MDNode *Range = nullptr; 3282 while (consumeIfPresent(MIToken::comma)) { 3283 switch (Token.kind()) { 3284 case MIToken::kw_align: { 3285 // align is printed if it is different than size. 3286 uint64_t Alignment; 3287 if (parseAlignment(Alignment)) 3288 return true; 3289 if (Ptr.Offset & (Alignment - 1)) { 3290 // MachineMemOperand::getAlign never returns a value greater than the 3291 // alignment of offset, so this just guards against hand-written MIR 3292 // that specifies a large "align" value when it should probably use 3293 // "basealign" instead. 3294 return error("specified alignment is more aligned than offset"); 3295 } 3296 BaseAlignment = Alignment; 3297 break; 3298 } 3299 case MIToken::kw_basealign: 3300 // basealign is printed if it is different than align. 3301 if (parseAlignment(BaseAlignment)) 3302 return true; 3303 break; 3304 case MIToken::kw_addrspace: 3305 if (parseAddrspace(Ptr.AddrSpace)) 3306 return true; 3307 break; 3308 case MIToken::md_tbaa: 3309 lex(); 3310 if (parseMDNode(AAInfo.TBAA)) 3311 return true; 3312 break; 3313 case MIToken::md_alias_scope: 3314 lex(); 3315 if (parseMDNode(AAInfo.Scope)) 3316 return true; 3317 break; 3318 case MIToken::md_noalias: 3319 lex(); 3320 if (parseMDNode(AAInfo.NoAlias)) 3321 return true; 3322 break; 3323 case MIToken::md_range: 3324 lex(); 3325 if (parseMDNode(Range)) 3326 return true; 3327 break; 3328 // TODO: Report an error on duplicate metadata nodes. 3329 default: 3330 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3331 "'!noalias' or '!range'"); 3332 } 3333 } 3334 if (expectAndConsume(MIToken::rparen)) 3335 return true; 3336 Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment), 3337 AAInfo, Range, SSID, Order, FailureOrder); 3338 return false; 3339 } 3340 3341 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3342 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3343 Token.is(MIToken::kw_post_instr_symbol)) && 3344 "Invalid token for a pre- post-instruction symbol!"); 3345 lex(); 3346 if (Token.isNot(MIToken::MCSymbol)) 3347 return error("expected a symbol after 'pre-instr-symbol'"); 3348 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3349 lex(); 3350 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3351 Token.is(MIToken::lbrace)) 3352 return false; 3353 if (Token.isNot(MIToken::comma)) 3354 return error("expected ',' before the next machine operand"); 3355 lex(); 3356 return false; 3357 } 3358 3359 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3360 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3361 "Invalid token for a heap alloc marker!"); 3362 lex(); 3363 parseMDNode(Node); 3364 if (!Node) 3365 return error("expected a MDNode after 'heap-alloc-marker'"); 3366 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3367 Token.is(MIToken::lbrace)) 3368 return false; 3369 if (Token.isNot(MIToken::comma)) 3370 return error("expected ',' before the next machine operand"); 3371 lex(); 3372 return false; 3373 } 3374 3375 static void initSlots2BasicBlocks( 3376 const Function &F, 3377 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3378 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3379 MST.incorporateFunction(F); 3380 for (auto &BB : F) { 3381 if (BB.hasName()) 3382 continue; 3383 int Slot = MST.getLocalSlot(&BB); 3384 if (Slot == -1) 3385 continue; 3386 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3387 } 3388 } 3389 3390 static const BasicBlock *getIRBlockFromSlot( 3391 unsigned Slot, 3392 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3393 return Slots2BasicBlocks.lookup(Slot); 3394 } 3395 3396 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3397 if (Slots2BasicBlocks.empty()) 3398 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3399 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3400 } 3401 3402 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3403 if (&F == &MF.getFunction()) 3404 return getIRBlock(Slot); 3405 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3406 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3407 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3408 } 3409 3410 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3411 // FIXME: Currently we can't recognize temporary or local symbols and call all 3412 // of the appropriate forms to create them. However, this handles basic cases 3413 // well as most of the special aspects are recognized by a prefix on their 3414 // name, and the input names should already be unique. For test cases, keeping 3415 // the symbol name out of the symbol table isn't terribly important. 3416 return MF.getContext().getOrCreateSymbol(Name); 3417 } 3418 3419 bool MIParser::parseStringConstant(std::string &Result) { 3420 if (Token.isNot(MIToken::StringConstant)) 3421 return error("expected string constant"); 3422 Result = std::string(Token.stringValue()); 3423 lex(); 3424 return false; 3425 } 3426 3427 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3428 StringRef Src, 3429 SMDiagnostic &Error) { 3430 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3431 } 3432 3433 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3434 StringRef Src, SMDiagnostic &Error) { 3435 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3436 } 3437 3438 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3439 MachineBasicBlock *&MBB, StringRef Src, 3440 SMDiagnostic &Error) { 3441 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3442 } 3443 3444 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3445 Register &Reg, StringRef Src, 3446 SMDiagnostic &Error) { 3447 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3448 } 3449 3450 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3451 Register &Reg, StringRef Src, 3452 SMDiagnostic &Error) { 3453 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3454 } 3455 3456 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3457 VRegInfo *&Info, StringRef Src, 3458 SMDiagnostic &Error) { 3459 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3460 } 3461 3462 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3463 int &FI, StringRef Src, 3464 SMDiagnostic &Error) { 3465 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3466 } 3467 3468 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3469 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3470 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3471 } 3472 3473 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src, 3474 SMRange SrcRange, SMDiagnostic &Error) { 3475 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata(); 3476 } 3477 3478 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3479 PerFunctionMIParsingState &PFS, const Value *&V, 3480 ErrorCallbackType ErrorCallback) { 3481 MIToken Token; 3482 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3483 ErrorCallback(Loc, Msg); 3484 }); 3485 V = nullptr; 3486 3487 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3488 } 3489