1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRFormatter.h"
30 #include "llvm/CodeGen/MIRPrinter.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/RegisterBank.h"
40 #include "llvm/CodeGen/RegisterBankInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/LaneBitmask.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/MC/MCDwarf.h"
62 #include "llvm/MC/MCInstrDesc.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Support/SourceMgr.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <limits>
81 #include <string>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 void PerTargetMIParsingState::setTarget(
87   const TargetSubtargetInfo &NewSubtarget) {
88 
89   // If the subtarget changed, over conservatively assume everything is invalid.
90   if (&Subtarget == &NewSubtarget)
91     return;
92 
93   Names2InstrOpCodes.clear();
94   Names2Regs.clear();
95   Names2RegMasks.clear();
96   Names2SubRegIndices.clear();
97   Names2TargetIndices.clear();
98   Names2DirectTargetFlags.clear();
99   Names2BitmaskTargetFlags.clear();
100   Names2MMOTargetFlags.clear();
101 
102   initNames2RegClasses();
103   initNames2RegBanks();
104 }
105 
106 void PerTargetMIParsingState::initNames2Regs() {
107   if (!Names2Regs.empty())
108     return;
109 
110   // The '%noreg' register is the register 0.
111   Names2Regs.insert(std::make_pair("noreg", 0));
112   const auto *TRI = Subtarget.getRegisterInfo();
113   assert(TRI && "Expected target register info");
114 
115   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
116     bool WasInserted =
117         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
118             .second;
119     (void)WasInserted;
120     assert(WasInserted && "Expected registers to be unique case-insensitively");
121   }
122 }
123 
124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
125                                                 Register &Reg) {
126   initNames2Regs();
127   auto RegInfo = Names2Regs.find(RegName);
128   if (RegInfo == Names2Regs.end())
129     return true;
130   Reg = RegInfo->getValue();
131   return false;
132 }
133 
134 void PerTargetMIParsingState::initNames2InstrOpCodes() {
135   if (!Names2InstrOpCodes.empty())
136     return;
137   const auto *TII = Subtarget.getInstrInfo();
138   assert(TII && "Expected target instruction info");
139   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
140     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
141 }
142 
143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
144                                              unsigned &OpCode) {
145   initNames2InstrOpCodes();
146   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
147   if (InstrInfo == Names2InstrOpCodes.end())
148     return true;
149   OpCode = InstrInfo->getValue();
150   return false;
151 }
152 
153 void PerTargetMIParsingState::initNames2RegMasks() {
154   if (!Names2RegMasks.empty())
155     return;
156   const auto *TRI = Subtarget.getRegisterInfo();
157   assert(TRI && "Expected target register info");
158   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
159   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
160   assert(RegMasks.size() == RegMaskNames.size());
161   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
162     Names2RegMasks.insert(
163         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
164 }
165 
166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
167   initNames2RegMasks();
168   auto RegMaskInfo = Names2RegMasks.find(Identifier);
169   if (RegMaskInfo == Names2RegMasks.end())
170     return nullptr;
171   return RegMaskInfo->getValue();
172 }
173 
174 void PerTargetMIParsingState::initNames2SubRegIndices() {
175   if (!Names2SubRegIndices.empty())
176     return;
177   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
178   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
179     Names2SubRegIndices.insert(
180         std::make_pair(TRI->getSubRegIndexName(I), I));
181 }
182 
183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
184   initNames2SubRegIndices();
185   auto SubRegInfo = Names2SubRegIndices.find(Name);
186   if (SubRegInfo == Names2SubRegIndices.end())
187     return 0;
188   return SubRegInfo->getValue();
189 }
190 
191 void PerTargetMIParsingState::initNames2TargetIndices() {
192   if (!Names2TargetIndices.empty())
193     return;
194   const auto *TII = Subtarget.getInstrInfo();
195   assert(TII && "Expected target instruction info");
196   auto Indices = TII->getSerializableTargetIndices();
197   for (const auto &I : Indices)
198     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
199 }
200 
201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
202   initNames2TargetIndices();
203   auto IndexInfo = Names2TargetIndices.find(Name);
204   if (IndexInfo == Names2TargetIndices.end())
205     return true;
206   Index = IndexInfo->second;
207   return false;
208 }
209 
210 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
211   if (!Names2DirectTargetFlags.empty())
212     return;
213 
214   const auto *TII = Subtarget.getInstrInfo();
215   assert(TII && "Expected target instruction info");
216   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
217   for (const auto &I : Flags)
218     Names2DirectTargetFlags.insert(
219         std::make_pair(StringRef(I.second), I.first));
220 }
221 
222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
223                                                   unsigned &Flag) {
224   initNames2DirectTargetFlags();
225   auto FlagInfo = Names2DirectTargetFlags.find(Name);
226   if (FlagInfo == Names2DirectTargetFlags.end())
227     return true;
228   Flag = FlagInfo->second;
229   return false;
230 }
231 
232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
233   if (!Names2BitmaskTargetFlags.empty())
234     return;
235 
236   const auto *TII = Subtarget.getInstrInfo();
237   assert(TII && "Expected target instruction info");
238   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
239   for (const auto &I : Flags)
240     Names2BitmaskTargetFlags.insert(
241         std::make_pair(StringRef(I.second), I.first));
242 }
243 
244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
245                                                    unsigned &Flag) {
246   initNames2BitmaskTargetFlags();
247   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
248   if (FlagInfo == Names2BitmaskTargetFlags.end())
249     return true;
250   Flag = FlagInfo->second;
251   return false;
252 }
253 
254 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
255   if (!Names2MMOTargetFlags.empty())
256     return;
257 
258   const auto *TII = Subtarget.getInstrInfo();
259   assert(TII && "Expected target instruction info");
260   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
261   for (const auto &I : Flags)
262     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
263 }
264 
265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
266                                                MachineMemOperand::Flags &Flag) {
267   initNames2MMOTargetFlags();
268   auto FlagInfo = Names2MMOTargetFlags.find(Name);
269   if (FlagInfo == Names2MMOTargetFlags.end())
270     return true;
271   Flag = FlagInfo->second;
272   return false;
273 }
274 
275 void PerTargetMIParsingState::initNames2RegClasses() {
276   if (!Names2RegClasses.empty())
277     return;
278 
279   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
280   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
281     const auto *RC = TRI->getRegClass(I);
282     Names2RegClasses.insert(
283         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
284   }
285 }
286 
287 void PerTargetMIParsingState::initNames2RegBanks() {
288   if (!Names2RegBanks.empty())
289     return;
290 
291   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
292   // If the target does not support GlobalISel, we may not have a
293   // register bank info.
294   if (!RBI)
295     return;
296 
297   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
298     const auto &RegBank = RBI->getRegBank(I);
299     Names2RegBanks.insert(
300         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
301   }
302 }
303 
304 const TargetRegisterClass *
305 PerTargetMIParsingState::getRegClass(StringRef Name) {
306   auto RegClassInfo = Names2RegClasses.find(Name);
307   if (RegClassInfo == Names2RegClasses.end())
308     return nullptr;
309   return RegClassInfo->getValue();
310 }
311 
312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
313   auto RegBankInfo = Names2RegBanks.find(Name);
314   if (RegBankInfo == Names2RegBanks.end())
315     return nullptr;
316   return RegBankInfo->getValue();
317 }
318 
319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
320     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
321   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
322 }
323 
324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
325   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
326   if (I.second) {
327     MachineRegisterInfo &MRI = MF.getRegInfo();
328     VRegInfo *Info = new (Allocator) VRegInfo;
329     Info->VReg = MRI.createIncompleteVirtualRegister();
330     I.first->second = Info;
331   }
332   return *I.first->second;
333 }
334 
335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
336   assert(RegName != "" && "Expected named reg.");
337 
338   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
339   if (I.second) {
340     VRegInfo *Info = new (Allocator) VRegInfo;
341     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
342     I.first->second = Info;
343   }
344   return *I.first->second;
345 }
346 
347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
348                            DenseMap<unsigned, const Value *> &Slots2Values) {
349   int Slot = MST.getLocalSlot(V);
350   if (Slot == -1)
351     return;
352   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
353 }
354 
355 /// Creates the mapping from slot numbers to function's unnamed IR values.
356 static void initSlots2Values(const Function &F,
357                              DenseMap<unsigned, const Value *> &Slots2Values) {
358   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
359   MST.incorporateFunction(F);
360   for (const auto &Arg : F.args())
361     mapValueToSlot(&Arg, MST, Slots2Values);
362   for (const auto &BB : F) {
363     mapValueToSlot(&BB, MST, Slots2Values);
364     for (const auto &I : BB)
365       mapValueToSlot(&I, MST, Slots2Values);
366   }
367 }
368 
369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
370   if (Slots2Values.empty())
371     initSlots2Values(MF.getFunction(), Slots2Values);
372   return Slots2Values.lookup(Slot);
373 }
374 
375 namespace {
376 
377 /// A wrapper struct around the 'MachineOperand' struct that includes a source
378 /// range and other attributes.
379 struct ParsedMachineOperand {
380   MachineOperand Operand;
381   StringRef::iterator Begin;
382   StringRef::iterator End;
383   Optional<unsigned> TiedDefIdx;
384 
385   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
386                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
387       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
388     if (TiedDefIdx)
389       assert(Operand.isReg() && Operand.isUse() &&
390              "Only used register operands can be tied");
391   }
392 };
393 
394 class MIParser {
395   MachineFunction &MF;
396   SMDiagnostic &Error;
397   StringRef Source, CurrentSource;
398   SMRange SourceRange;
399   MIToken Token;
400   PerFunctionMIParsingState &PFS;
401   /// Maps from slot numbers to function's unnamed basic blocks.
402   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
403 
404 public:
405   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
406            StringRef Source);
407   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
408            StringRef Source, SMRange SourceRange);
409 
410   /// \p SkipChar gives the number of characters to skip before looking
411   /// for the next token.
412   void lex(unsigned SkipChar = 0);
413 
414   /// Report an error at the current location with the given message.
415   ///
416   /// This function always return true.
417   bool error(const Twine &Msg);
418 
419   /// Report an error at the given location with the given message.
420   ///
421   /// This function always return true.
422   bool error(StringRef::iterator Loc, const Twine &Msg);
423 
424   bool
425   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
426   bool parseBasicBlocks();
427   bool parse(MachineInstr *&MI);
428   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
429   bool parseStandaloneNamedRegister(Register &Reg);
430   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
431   bool parseStandaloneRegister(Register &Reg);
432   bool parseStandaloneStackObject(int &FI);
433   bool parseStandaloneMDNode(MDNode *&Node);
434   bool parseMachineMetadata();
435   bool parseMDTuple(MDNode *&MD, bool IsDistinct);
436   bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
437   bool parseMetadata(Metadata *&MD);
438 
439   bool
440   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
441   bool parseBasicBlock(MachineBasicBlock &MBB,
442                        MachineBasicBlock *&AddFalthroughFrom);
443   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
444   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
445 
446   bool parseNamedRegister(Register &Reg);
447   bool parseVirtualRegister(VRegInfo *&Info);
448   bool parseNamedVirtualRegister(VRegInfo *&Info);
449   bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
450   bool parseRegisterFlag(unsigned &Flags);
451   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
452   bool parseSubRegisterIndex(unsigned &SubReg);
453   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
454   bool parseRegisterOperand(MachineOperand &Dest,
455                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
456   bool parseImmediateOperand(MachineOperand &Dest);
457   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
458                        const Constant *&C);
459   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
460   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
461   bool parseTypedImmediateOperand(MachineOperand &Dest);
462   bool parseFPImmediateOperand(MachineOperand &Dest);
463   bool parseMBBReference(MachineBasicBlock *&MBB);
464   bool parseMBBOperand(MachineOperand &Dest);
465   bool parseStackFrameIndex(int &FI);
466   bool parseStackObjectOperand(MachineOperand &Dest);
467   bool parseFixedStackFrameIndex(int &FI);
468   bool parseFixedStackObjectOperand(MachineOperand &Dest);
469   bool parseGlobalValue(GlobalValue *&GV);
470   bool parseGlobalAddressOperand(MachineOperand &Dest);
471   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
472   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
473   bool parseJumpTableIndexOperand(MachineOperand &Dest);
474   bool parseExternalSymbolOperand(MachineOperand &Dest);
475   bool parseMCSymbolOperand(MachineOperand &Dest);
476   bool parseMDNode(MDNode *&Node);
477   bool parseDIExpression(MDNode *&Expr);
478   bool parseDILocation(MDNode *&Expr);
479   bool parseMetadataOperand(MachineOperand &Dest);
480   bool parseCFIOffset(int &Offset);
481   bool parseCFIRegister(Register &Reg);
482   bool parseCFIAddressSpace(unsigned &AddressSpace);
483   bool parseCFIEscapeValues(std::string& Values);
484   bool parseCFIOperand(MachineOperand &Dest);
485   bool parseIRBlock(BasicBlock *&BB, const Function &F);
486   bool parseBlockAddressOperand(MachineOperand &Dest);
487   bool parseIntrinsicOperand(MachineOperand &Dest);
488   bool parsePredicateOperand(MachineOperand &Dest);
489   bool parseShuffleMaskOperand(MachineOperand &Dest);
490   bool parseTargetIndexOperand(MachineOperand &Dest);
491   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
492   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
493   bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
494                            MachineOperand &Dest,
495                            Optional<unsigned> &TiedDefIdx);
496   bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
497                                          const unsigned OpIdx,
498                                          MachineOperand &Dest,
499                                          Optional<unsigned> &TiedDefIdx);
500   bool parseOffset(int64_t &Offset);
501   bool parseAlignment(uint64_t &Alignment);
502   bool parseAddrspace(unsigned &Addrspace);
503   bool parseSectionID(Optional<MBBSectionID> &SID);
504   bool parseOperandsOffset(MachineOperand &Op);
505   bool parseIRValue(const Value *&V);
506   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
507   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
508   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
509   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
510   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
511   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
512   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
513   bool parseHeapAllocMarker(MDNode *&Node);
514 
515   bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
516                               MachineOperand &Dest, const MIRFormatter &MF);
517 
518 private:
519   /// Convert the integer literal in the current token into an unsigned integer.
520   ///
521   /// Return true if an error occurred.
522   bool getUnsigned(unsigned &Result);
523 
524   /// Convert the integer literal in the current token into an uint64.
525   ///
526   /// Return true if an error occurred.
527   bool getUint64(uint64_t &Result);
528 
529   /// Convert the hexadecimal literal in the current token into an unsigned
530   ///  APInt with a minimum bitwidth required to represent the value.
531   ///
532   /// Return true if the literal does not represent an integer value.
533   bool getHexUint(APInt &Result);
534 
535   /// If the current token is of the given kind, consume it and return false.
536   /// Otherwise report an error and return true.
537   bool expectAndConsume(MIToken::TokenKind TokenKind);
538 
539   /// If the current token is of the given kind, consume it and return true.
540   /// Otherwise return false.
541   bool consumeIfPresent(MIToken::TokenKind TokenKind);
542 
543   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
544 
545   bool assignRegisterTies(MachineInstr &MI,
546                           ArrayRef<ParsedMachineOperand> Operands);
547 
548   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
549                               const MCInstrDesc &MCID);
550 
551   const BasicBlock *getIRBlock(unsigned Slot);
552   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
553 
554   /// Get or create an MCSymbol for a given name.
555   MCSymbol *getOrCreateMCSymbol(StringRef Name);
556 
557   /// parseStringConstant
558   ///   ::= StringConstant
559   bool parseStringConstant(std::string &Result);
560 
561   /// Map the location in the MI string to the corresponding location specified
562   /// in `SourceRange`.
563   SMLoc mapSMLoc(StringRef::iterator Loc);
564 };
565 
566 } // end anonymous namespace
567 
568 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
569                    StringRef Source)
570     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
571 {}
572 
573 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
574                    StringRef Source, SMRange SourceRange)
575     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source),
576       SourceRange(SourceRange), PFS(PFS) {}
577 
578 void MIParser::lex(unsigned SkipChar) {
579   CurrentSource = lexMIToken(
580       CurrentSource.slice(SkipChar, StringRef::npos), Token,
581       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
582 }
583 
584 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
585 
586 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
587   const SourceMgr &SM = *PFS.SM;
588   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
589   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
590   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
591     // Create an ordinary diagnostic when the source manager's buffer is the
592     // source string.
593     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
594     return true;
595   }
596   // Create a diagnostic for a YAML string literal.
597   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
598                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
599                        Source, None, None);
600   return true;
601 }
602 
603 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) {
604   assert(SourceRange.isValid() && "Invalid source range");
605   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
606   return SMLoc::getFromPointer(SourceRange.Start.getPointer() +
607                                (Loc - Source.data()));
608 }
609 
610 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
611     ErrorCallbackType;
612 
613 static const char *toString(MIToken::TokenKind TokenKind) {
614   switch (TokenKind) {
615   case MIToken::comma:
616     return "','";
617   case MIToken::equal:
618     return "'='";
619   case MIToken::colon:
620     return "':'";
621   case MIToken::lparen:
622     return "'('";
623   case MIToken::rparen:
624     return "')'";
625   default:
626     return "<unknown token>";
627   }
628 }
629 
630 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
631   if (Token.isNot(TokenKind))
632     return error(Twine("expected ") + toString(TokenKind));
633   lex();
634   return false;
635 }
636 
637 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
638   if (Token.isNot(TokenKind))
639     return false;
640   lex();
641   return true;
642 }
643 
644 // Parse Machine Basic Block Section ID.
645 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) {
646   assert(Token.is(MIToken::kw_bbsections));
647   lex();
648   if (Token.is(MIToken::IntegerLiteral)) {
649     unsigned Value = 0;
650     if (getUnsigned(Value))
651       return error("Unknown Section ID");
652     SID = MBBSectionID{Value};
653   } else {
654     const StringRef &S = Token.stringValue();
655     if (S == "Exception")
656       SID = MBBSectionID::ExceptionSectionID;
657     else if (S == "Cold")
658       SID = MBBSectionID::ColdSectionID;
659     else
660       return error("Unknown Section ID");
661   }
662   lex();
663   return false;
664 }
665 
666 bool MIParser::parseBasicBlockDefinition(
667     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
668   assert(Token.is(MIToken::MachineBasicBlockLabel));
669   unsigned ID = 0;
670   if (getUnsigned(ID))
671     return true;
672   auto Loc = Token.location();
673   auto Name = Token.stringValue();
674   lex();
675   bool HasAddressTaken = false;
676   bool IsLandingPad = false;
677   bool IsInlineAsmBrIndirectTarget = false;
678   bool IsEHFuncletEntry = false;
679   Optional<MBBSectionID> SectionID;
680   uint64_t Alignment = 0;
681   BasicBlock *BB = nullptr;
682   if (consumeIfPresent(MIToken::lparen)) {
683     do {
684       // TODO: Report an error when multiple same attributes are specified.
685       switch (Token.kind()) {
686       case MIToken::kw_address_taken:
687         HasAddressTaken = true;
688         lex();
689         break;
690       case MIToken::kw_landing_pad:
691         IsLandingPad = true;
692         lex();
693         break;
694       case MIToken::kw_inlineasm_br_indirect_target:
695         IsInlineAsmBrIndirectTarget = true;
696         lex();
697         break;
698       case MIToken::kw_ehfunclet_entry:
699         IsEHFuncletEntry = true;
700         lex();
701         break;
702       case MIToken::kw_align:
703         if (parseAlignment(Alignment))
704           return true;
705         break;
706       case MIToken::IRBlock:
707         // TODO: Report an error when both name and ir block are specified.
708         if (parseIRBlock(BB, MF.getFunction()))
709           return true;
710         lex();
711         break;
712       case MIToken::kw_bbsections:
713         if (parseSectionID(SectionID))
714           return true;
715         break;
716       default:
717         break;
718       }
719     } while (consumeIfPresent(MIToken::comma));
720     if (expectAndConsume(MIToken::rparen))
721       return true;
722   }
723   if (expectAndConsume(MIToken::colon))
724     return true;
725 
726   if (!Name.empty()) {
727     BB = dyn_cast_or_null<BasicBlock>(
728         MF.getFunction().getValueSymbolTable()->lookup(Name));
729     if (!BB)
730       return error(Loc, Twine("basic block '") + Name +
731                             "' is not defined in the function '" +
732                             MF.getName() + "'");
733   }
734   auto *MBB = MF.CreateMachineBasicBlock(BB);
735   MF.insert(MF.end(), MBB);
736   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
737   if (!WasInserted)
738     return error(Loc, Twine("redefinition of machine basic block with id #") +
739                           Twine(ID));
740   if (Alignment)
741     MBB->setAlignment(Align(Alignment));
742   if (HasAddressTaken)
743     MBB->setHasAddressTaken();
744   MBB->setIsEHPad(IsLandingPad);
745   MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget);
746   MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
747   if (SectionID.hasValue()) {
748     MBB->setSectionID(SectionID.getValue());
749     MF.setBBSectionsType(BasicBlockSection::List);
750   }
751   return false;
752 }
753 
754 bool MIParser::parseBasicBlockDefinitions(
755     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
756   lex();
757   // Skip until the first machine basic block.
758   while (Token.is(MIToken::Newline))
759     lex();
760   if (Token.isErrorOrEOF())
761     return Token.isError();
762   if (Token.isNot(MIToken::MachineBasicBlockLabel))
763     return error("expected a basic block definition before instructions");
764   unsigned BraceDepth = 0;
765   do {
766     if (parseBasicBlockDefinition(MBBSlots))
767       return true;
768     bool IsAfterNewline = false;
769     // Skip until the next machine basic block.
770     while (true) {
771       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
772           Token.isErrorOrEOF())
773         break;
774       else if (Token.is(MIToken::MachineBasicBlockLabel))
775         return error("basic block definition should be located at the start of "
776                      "the line");
777       else if (consumeIfPresent(MIToken::Newline)) {
778         IsAfterNewline = true;
779         continue;
780       }
781       IsAfterNewline = false;
782       if (Token.is(MIToken::lbrace))
783         ++BraceDepth;
784       if (Token.is(MIToken::rbrace)) {
785         if (!BraceDepth)
786           return error("extraneous closing brace ('}')");
787         --BraceDepth;
788       }
789       lex();
790     }
791     // Verify that we closed all of the '{' at the end of a file or a block.
792     if (!Token.isError() && BraceDepth)
793       return error("expected '}'"); // FIXME: Report a note that shows '{'.
794   } while (!Token.isErrorOrEOF());
795   return Token.isError();
796 }
797 
798 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
799   assert(Token.is(MIToken::kw_liveins));
800   lex();
801   if (expectAndConsume(MIToken::colon))
802     return true;
803   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
804     return false;
805   do {
806     if (Token.isNot(MIToken::NamedRegister))
807       return error("expected a named register");
808     Register Reg;
809     if (parseNamedRegister(Reg))
810       return true;
811     lex();
812     LaneBitmask Mask = LaneBitmask::getAll();
813     if (consumeIfPresent(MIToken::colon)) {
814       // Parse lane mask.
815       if (Token.isNot(MIToken::IntegerLiteral) &&
816           Token.isNot(MIToken::HexLiteral))
817         return error("expected a lane mask");
818       static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
819                     "Use correct get-function for lane mask");
820       LaneBitmask::Type V;
821       if (getUint64(V))
822         return error("invalid lane mask value");
823       Mask = LaneBitmask(V);
824       lex();
825     }
826     MBB.addLiveIn(Reg, Mask);
827   } while (consumeIfPresent(MIToken::comma));
828   return false;
829 }
830 
831 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
832   assert(Token.is(MIToken::kw_successors));
833   lex();
834   if (expectAndConsume(MIToken::colon))
835     return true;
836   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
837     return false;
838   do {
839     if (Token.isNot(MIToken::MachineBasicBlock))
840       return error("expected a machine basic block reference");
841     MachineBasicBlock *SuccMBB = nullptr;
842     if (parseMBBReference(SuccMBB))
843       return true;
844     lex();
845     unsigned Weight = 0;
846     if (consumeIfPresent(MIToken::lparen)) {
847       if (Token.isNot(MIToken::IntegerLiteral) &&
848           Token.isNot(MIToken::HexLiteral))
849         return error("expected an integer literal after '('");
850       if (getUnsigned(Weight))
851         return true;
852       lex();
853       if (expectAndConsume(MIToken::rparen))
854         return true;
855     }
856     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
857   } while (consumeIfPresent(MIToken::comma));
858   MBB.normalizeSuccProbs();
859   return false;
860 }
861 
862 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
863                                MachineBasicBlock *&AddFalthroughFrom) {
864   // Skip the definition.
865   assert(Token.is(MIToken::MachineBasicBlockLabel));
866   lex();
867   if (consumeIfPresent(MIToken::lparen)) {
868     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
869       lex();
870     consumeIfPresent(MIToken::rparen);
871   }
872   consumeIfPresent(MIToken::colon);
873 
874   // Parse the liveins and successors.
875   // N.B: Multiple lists of successors and liveins are allowed and they're
876   // merged into one.
877   // Example:
878   //   liveins: $edi
879   //   liveins: $esi
880   //
881   // is equivalent to
882   //   liveins: $edi, $esi
883   bool ExplicitSuccessors = false;
884   while (true) {
885     if (Token.is(MIToken::kw_successors)) {
886       if (parseBasicBlockSuccessors(MBB))
887         return true;
888       ExplicitSuccessors = true;
889     } else if (Token.is(MIToken::kw_liveins)) {
890       if (parseBasicBlockLiveins(MBB))
891         return true;
892     } else if (consumeIfPresent(MIToken::Newline)) {
893       continue;
894     } else
895       break;
896     if (!Token.isNewlineOrEOF())
897       return error("expected line break at the end of a list");
898     lex();
899   }
900 
901   // Parse the instructions.
902   bool IsInBundle = false;
903   MachineInstr *PrevMI = nullptr;
904   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
905          !Token.is(MIToken::Eof)) {
906     if (consumeIfPresent(MIToken::Newline))
907       continue;
908     if (consumeIfPresent(MIToken::rbrace)) {
909       // The first parsing pass should verify that all closing '}' have an
910       // opening '{'.
911       assert(IsInBundle);
912       IsInBundle = false;
913       continue;
914     }
915     MachineInstr *MI = nullptr;
916     if (parse(MI))
917       return true;
918     MBB.insert(MBB.end(), MI);
919     if (IsInBundle) {
920       PrevMI->setFlag(MachineInstr::BundledSucc);
921       MI->setFlag(MachineInstr::BundledPred);
922     }
923     PrevMI = MI;
924     if (Token.is(MIToken::lbrace)) {
925       if (IsInBundle)
926         return error("nested instruction bundles are not allowed");
927       lex();
928       // This instruction is the start of the bundle.
929       MI->setFlag(MachineInstr::BundledSucc);
930       IsInBundle = true;
931       if (!Token.is(MIToken::Newline))
932         // The next instruction can be on the same line.
933         continue;
934     }
935     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
936     lex();
937   }
938 
939   // Construct successor list by searching for basic block machine operands.
940   if (!ExplicitSuccessors) {
941     SmallVector<MachineBasicBlock*,4> Successors;
942     bool IsFallthrough;
943     guessSuccessors(MBB, Successors, IsFallthrough);
944     for (MachineBasicBlock *Succ : Successors)
945       MBB.addSuccessor(Succ);
946 
947     if (IsFallthrough) {
948       AddFalthroughFrom = &MBB;
949     } else {
950       MBB.normalizeSuccProbs();
951     }
952   }
953 
954   return false;
955 }
956 
957 bool MIParser::parseBasicBlocks() {
958   lex();
959   // Skip until the first machine basic block.
960   while (Token.is(MIToken::Newline))
961     lex();
962   if (Token.isErrorOrEOF())
963     return Token.isError();
964   // The first parsing pass should have verified that this token is a MBB label
965   // in the 'parseBasicBlockDefinitions' method.
966   assert(Token.is(MIToken::MachineBasicBlockLabel));
967   MachineBasicBlock *AddFalthroughFrom = nullptr;
968   do {
969     MachineBasicBlock *MBB = nullptr;
970     if (parseMBBReference(MBB))
971       return true;
972     if (AddFalthroughFrom) {
973       if (!AddFalthroughFrom->isSuccessor(MBB))
974         AddFalthroughFrom->addSuccessor(MBB);
975       AddFalthroughFrom->normalizeSuccProbs();
976       AddFalthroughFrom = nullptr;
977     }
978     if (parseBasicBlock(*MBB, AddFalthroughFrom))
979       return true;
980     // The method 'parseBasicBlock' should parse the whole block until the next
981     // block or the end of file.
982     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
983   } while (Token.isNot(MIToken::Eof));
984   return false;
985 }
986 
987 bool MIParser::parse(MachineInstr *&MI) {
988   // Parse any register operands before '='
989   MachineOperand MO = MachineOperand::CreateImm(0);
990   SmallVector<ParsedMachineOperand, 8> Operands;
991   while (Token.isRegister() || Token.isRegisterFlag()) {
992     auto Loc = Token.location();
993     Optional<unsigned> TiedDefIdx;
994     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
995       return true;
996     Operands.push_back(
997         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
998     if (Token.isNot(MIToken::comma))
999       break;
1000     lex();
1001   }
1002   if (!Operands.empty() && expectAndConsume(MIToken::equal))
1003     return true;
1004 
1005   unsigned OpCode, Flags = 0;
1006   if (Token.isError() || parseInstruction(OpCode, Flags))
1007     return true;
1008 
1009   // Parse the remaining machine operands.
1010   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
1011          Token.isNot(MIToken::kw_post_instr_symbol) &&
1012          Token.isNot(MIToken::kw_heap_alloc_marker) &&
1013          Token.isNot(MIToken::kw_debug_location) &&
1014          Token.isNot(MIToken::kw_debug_instr_number) &&
1015          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
1016     auto Loc = Token.location();
1017     Optional<unsigned> TiedDefIdx;
1018     if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
1019       return true;
1020     Operands.push_back(
1021         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1022     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
1023         Token.is(MIToken::lbrace))
1024       break;
1025     if (Token.isNot(MIToken::comma))
1026       return error("expected ',' before the next machine operand");
1027     lex();
1028   }
1029 
1030   MCSymbol *PreInstrSymbol = nullptr;
1031   if (Token.is(MIToken::kw_pre_instr_symbol))
1032     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1033       return true;
1034   MCSymbol *PostInstrSymbol = nullptr;
1035   if (Token.is(MIToken::kw_post_instr_symbol))
1036     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1037       return true;
1038   MDNode *HeapAllocMarker = nullptr;
1039   if (Token.is(MIToken::kw_heap_alloc_marker))
1040     if (parseHeapAllocMarker(HeapAllocMarker))
1041       return true;
1042 
1043   unsigned InstrNum = 0;
1044   if (Token.is(MIToken::kw_debug_instr_number)) {
1045     lex();
1046     if (Token.isNot(MIToken::IntegerLiteral))
1047       return error("expected an integer literal after 'debug-instr-number'");
1048     if (getUnsigned(InstrNum))
1049       return true;
1050     lex();
1051     // Lex past trailing comma if present.
1052     if (Token.is(MIToken::comma))
1053       lex();
1054   }
1055 
1056   DebugLoc DebugLocation;
1057   if (Token.is(MIToken::kw_debug_location)) {
1058     lex();
1059     MDNode *Node = nullptr;
1060     if (Token.is(MIToken::exclaim)) {
1061       if (parseMDNode(Node))
1062         return true;
1063     } else if (Token.is(MIToken::md_dilocation)) {
1064       if (parseDILocation(Node))
1065         return true;
1066     } else
1067       return error("expected a metadata node after 'debug-location'");
1068     if (!isa<DILocation>(Node))
1069       return error("referenced metadata is not a DILocation");
1070     DebugLocation = DebugLoc(Node);
1071   }
1072 
1073   // Parse the machine memory operands.
1074   SmallVector<MachineMemOperand *, 2> MemOperands;
1075   if (Token.is(MIToken::coloncolon)) {
1076     lex();
1077     while (!Token.isNewlineOrEOF()) {
1078       MachineMemOperand *MemOp = nullptr;
1079       if (parseMachineMemoryOperand(MemOp))
1080         return true;
1081       MemOperands.push_back(MemOp);
1082       if (Token.isNewlineOrEOF())
1083         break;
1084       if (Token.isNot(MIToken::comma))
1085         return error("expected ',' before the next machine memory operand");
1086       lex();
1087     }
1088   }
1089 
1090   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1091   if (!MCID.isVariadic()) {
1092     // FIXME: Move the implicit operand verification to the machine verifier.
1093     if (verifyImplicitOperands(Operands, MCID))
1094       return true;
1095   }
1096 
1097   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1098   MI->setFlags(Flags);
1099 
1100   unsigned NumExplicitOps = 0;
1101   for (const auto &Operand : Operands) {
1102     bool IsImplicitOp = Operand.Operand.isReg() && Operand.Operand.isImplicit();
1103     if (!IsImplicitOp) {
1104       if (!MCID.isVariadic() && NumExplicitOps >= MCID.getNumOperands() &&
1105           !Operand.Operand.isValidExcessOperand())
1106         return error("too many operands for instruction");
1107 
1108       ++NumExplicitOps;
1109     }
1110 
1111     MI->addOperand(MF, Operand.Operand);
1112   }
1113 
1114   if (assignRegisterTies(*MI, Operands))
1115     return true;
1116   if (PreInstrSymbol)
1117     MI->setPreInstrSymbol(MF, PreInstrSymbol);
1118   if (PostInstrSymbol)
1119     MI->setPostInstrSymbol(MF, PostInstrSymbol);
1120   if (HeapAllocMarker)
1121     MI->setHeapAllocMarker(MF, HeapAllocMarker);
1122   if (!MemOperands.empty())
1123     MI->setMemRefs(MF, MemOperands);
1124   if (InstrNum)
1125     MI->setDebugInstrNum(InstrNum);
1126   return false;
1127 }
1128 
1129 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1130   lex();
1131   if (Token.isNot(MIToken::MachineBasicBlock))
1132     return error("expected a machine basic block reference");
1133   if (parseMBBReference(MBB))
1134     return true;
1135   lex();
1136   if (Token.isNot(MIToken::Eof))
1137     return error(
1138         "expected end of string after the machine basic block reference");
1139   return false;
1140 }
1141 
1142 bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1143   lex();
1144   if (Token.isNot(MIToken::NamedRegister))
1145     return error("expected a named register");
1146   if (parseNamedRegister(Reg))
1147     return true;
1148   lex();
1149   if (Token.isNot(MIToken::Eof))
1150     return error("expected end of string after the register reference");
1151   return false;
1152 }
1153 
1154 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1155   lex();
1156   if (Token.isNot(MIToken::VirtualRegister))
1157     return error("expected a virtual register");
1158   if (parseVirtualRegister(Info))
1159     return true;
1160   lex();
1161   if (Token.isNot(MIToken::Eof))
1162     return error("expected end of string after the register reference");
1163   return false;
1164 }
1165 
1166 bool MIParser::parseStandaloneRegister(Register &Reg) {
1167   lex();
1168   if (Token.isNot(MIToken::NamedRegister) &&
1169       Token.isNot(MIToken::VirtualRegister))
1170     return error("expected either a named or virtual register");
1171 
1172   VRegInfo *Info;
1173   if (parseRegister(Reg, Info))
1174     return true;
1175 
1176   lex();
1177   if (Token.isNot(MIToken::Eof))
1178     return error("expected end of string after the register reference");
1179   return false;
1180 }
1181 
1182 bool MIParser::parseStandaloneStackObject(int &FI) {
1183   lex();
1184   if (Token.isNot(MIToken::StackObject))
1185     return error("expected a stack object");
1186   if (parseStackFrameIndex(FI))
1187     return true;
1188   if (Token.isNot(MIToken::Eof))
1189     return error("expected end of string after the stack object reference");
1190   return false;
1191 }
1192 
1193 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1194   lex();
1195   if (Token.is(MIToken::exclaim)) {
1196     if (parseMDNode(Node))
1197       return true;
1198   } else if (Token.is(MIToken::md_diexpr)) {
1199     if (parseDIExpression(Node))
1200       return true;
1201   } else if (Token.is(MIToken::md_dilocation)) {
1202     if (parseDILocation(Node))
1203       return true;
1204   } else
1205     return error("expected a metadata node");
1206   if (Token.isNot(MIToken::Eof))
1207     return error("expected end of string after the metadata node");
1208   return false;
1209 }
1210 
1211 bool MIParser::parseMachineMetadata() {
1212   lex();
1213   if (Token.isNot(MIToken::exclaim))
1214     return error("expected a metadata node");
1215 
1216   lex();
1217   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1218     return error("expected metadata id after '!'");
1219   unsigned ID = 0;
1220   if (getUnsigned(ID))
1221     return true;
1222   lex();
1223   if (expectAndConsume(MIToken::equal))
1224     return true;
1225   bool IsDistinct = Token.is(MIToken::kw_distinct);
1226   if (IsDistinct)
1227     lex();
1228   if (Token.isNot(MIToken::exclaim))
1229     return error("expected a metadata node");
1230   lex();
1231 
1232   MDNode *MD;
1233   if (parseMDTuple(MD, IsDistinct))
1234     return true;
1235 
1236   auto FI = PFS.MachineForwardRefMDNodes.find(ID);
1237   if (FI != PFS.MachineForwardRefMDNodes.end()) {
1238     FI->second.first->replaceAllUsesWith(MD);
1239     PFS.MachineForwardRefMDNodes.erase(FI);
1240 
1241     assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work");
1242   } else {
1243     if (PFS.MachineMetadataNodes.count(ID))
1244       return error("Metadata id is already used");
1245     PFS.MachineMetadataNodes[ID].reset(MD);
1246   }
1247 
1248   return false;
1249 }
1250 
1251 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
1252   SmallVector<Metadata *, 16> Elts;
1253   if (parseMDNodeVector(Elts))
1254     return true;
1255   MD = (IsDistinct ? MDTuple::getDistinct
1256                    : MDTuple::get)(MF.getFunction().getContext(), Elts);
1257   return false;
1258 }
1259 
1260 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
1261   if (Token.isNot(MIToken::lbrace))
1262     return error("expected '{' here");
1263   lex();
1264 
1265   if (Token.is(MIToken::rbrace)) {
1266     lex();
1267     return false;
1268   }
1269 
1270   do {
1271     Metadata *MD;
1272     if (parseMetadata(MD))
1273       return true;
1274 
1275     Elts.push_back(MD);
1276 
1277     if (Token.isNot(MIToken::comma))
1278       break;
1279     lex();
1280   } while (true);
1281 
1282   if (Token.isNot(MIToken::rbrace))
1283     return error("expected end of metadata node");
1284   lex();
1285 
1286   return false;
1287 }
1288 
1289 // ::= !42
1290 // ::= !"string"
1291 bool MIParser::parseMetadata(Metadata *&MD) {
1292   if (Token.isNot(MIToken::exclaim))
1293     return error("expected '!' here");
1294   lex();
1295 
1296   if (Token.is(MIToken::StringConstant)) {
1297     std::string Str;
1298     if (parseStringConstant(Str))
1299       return true;
1300     MD = MDString::get(MF.getFunction().getContext(), Str);
1301     return false;
1302   }
1303 
1304   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1305     return error("expected metadata id after '!'");
1306 
1307   SMLoc Loc = mapSMLoc(Token.location());
1308 
1309   unsigned ID = 0;
1310   if (getUnsigned(ID))
1311     return true;
1312   lex();
1313 
1314   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1315   if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) {
1316     MD = NodeInfo->second.get();
1317     return false;
1318   }
1319   // Check machine metadata.
1320   NodeInfo = PFS.MachineMetadataNodes.find(ID);
1321   if (NodeInfo != PFS.MachineMetadataNodes.end()) {
1322     MD = NodeInfo->second.get();
1323     return false;
1324   }
1325   // Forward reference.
1326   auto &FwdRef = PFS.MachineForwardRefMDNodes[ID];
1327   FwdRef = std::make_pair(
1328       MDTuple::getTemporary(MF.getFunction().getContext(), None), Loc);
1329   PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get());
1330   MD = FwdRef.first.get();
1331 
1332   return false;
1333 }
1334 
1335 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1336   assert(MO.isImplicit());
1337   return MO.isDef() ? "implicit-def" : "implicit";
1338 }
1339 
1340 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1341                                    Register Reg) {
1342   assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1343   return StringRef(TRI->getName(Reg)).lower();
1344 }
1345 
1346 /// Return true if the parsed machine operands contain a given machine operand.
1347 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1348                                 ArrayRef<ParsedMachineOperand> Operands) {
1349   for (const auto &I : Operands) {
1350     if (ImplicitOperand.isIdenticalTo(I.Operand))
1351       return true;
1352   }
1353   return false;
1354 }
1355 
1356 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1357                                       const MCInstrDesc &MCID) {
1358   if (MCID.isCall())
1359     // We can't verify call instructions as they can contain arbitrary implicit
1360     // register and register mask operands.
1361     return false;
1362 
1363   // Gather all the expected implicit operands.
1364   SmallVector<MachineOperand, 4> ImplicitOperands;
1365   if (MCID.ImplicitDefs)
1366     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1367       ImplicitOperands.push_back(
1368           MachineOperand::CreateReg(*ImpDefs, true, true));
1369   if (MCID.ImplicitUses)
1370     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1371       ImplicitOperands.push_back(
1372           MachineOperand::CreateReg(*ImpUses, false, true));
1373 
1374   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1375   assert(TRI && "Expected target register info");
1376   for (const auto &I : ImplicitOperands) {
1377     if (isImplicitOperandIn(I, Operands))
1378       continue;
1379     return error(Operands.empty() ? Token.location() : Operands.back().End,
1380                  Twine("missing implicit register operand '") +
1381                      printImplicitRegisterFlag(I) + " $" +
1382                      getRegisterName(TRI, I.getReg()) + "'");
1383   }
1384   return false;
1385 }
1386 
1387 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1388   // Allow frame and fast math flags for OPCODE
1389   while (Token.is(MIToken::kw_frame_setup) ||
1390          Token.is(MIToken::kw_frame_destroy) ||
1391          Token.is(MIToken::kw_nnan) ||
1392          Token.is(MIToken::kw_ninf) ||
1393          Token.is(MIToken::kw_nsz) ||
1394          Token.is(MIToken::kw_arcp) ||
1395          Token.is(MIToken::kw_contract) ||
1396          Token.is(MIToken::kw_afn) ||
1397          Token.is(MIToken::kw_reassoc) ||
1398          Token.is(MIToken::kw_nuw) ||
1399          Token.is(MIToken::kw_nsw) ||
1400          Token.is(MIToken::kw_exact) ||
1401          Token.is(MIToken::kw_nofpexcept)) {
1402     // Mine frame and fast math flags
1403     if (Token.is(MIToken::kw_frame_setup))
1404       Flags |= MachineInstr::FrameSetup;
1405     if (Token.is(MIToken::kw_frame_destroy))
1406       Flags |= MachineInstr::FrameDestroy;
1407     if (Token.is(MIToken::kw_nnan))
1408       Flags |= MachineInstr::FmNoNans;
1409     if (Token.is(MIToken::kw_ninf))
1410       Flags |= MachineInstr::FmNoInfs;
1411     if (Token.is(MIToken::kw_nsz))
1412       Flags |= MachineInstr::FmNsz;
1413     if (Token.is(MIToken::kw_arcp))
1414       Flags |= MachineInstr::FmArcp;
1415     if (Token.is(MIToken::kw_contract))
1416       Flags |= MachineInstr::FmContract;
1417     if (Token.is(MIToken::kw_afn))
1418       Flags |= MachineInstr::FmAfn;
1419     if (Token.is(MIToken::kw_reassoc))
1420       Flags |= MachineInstr::FmReassoc;
1421     if (Token.is(MIToken::kw_nuw))
1422       Flags |= MachineInstr::NoUWrap;
1423     if (Token.is(MIToken::kw_nsw))
1424       Flags |= MachineInstr::NoSWrap;
1425     if (Token.is(MIToken::kw_exact))
1426       Flags |= MachineInstr::IsExact;
1427     if (Token.is(MIToken::kw_nofpexcept))
1428       Flags |= MachineInstr::NoFPExcept;
1429 
1430     lex();
1431   }
1432   if (Token.isNot(MIToken::Identifier))
1433     return error("expected a machine instruction");
1434   StringRef InstrName = Token.stringValue();
1435   if (PFS.Target.parseInstrName(InstrName, OpCode))
1436     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1437   lex();
1438   return false;
1439 }
1440 
1441 bool MIParser::parseNamedRegister(Register &Reg) {
1442   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1443   StringRef Name = Token.stringValue();
1444   if (PFS.Target.getRegisterByName(Name, Reg))
1445     return error(Twine("unknown register name '") + Name + "'");
1446   return false;
1447 }
1448 
1449 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1450   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1451   StringRef Name = Token.stringValue();
1452   // TODO: Check that the VReg name is not the same as a physical register name.
1453   //       If it is, then print a warning (when warnings are implemented).
1454   Info = &PFS.getVRegInfoNamed(Name);
1455   return false;
1456 }
1457 
1458 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1459   if (Token.is(MIToken::NamedVirtualRegister))
1460     return parseNamedVirtualRegister(Info);
1461   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1462   unsigned ID;
1463   if (getUnsigned(ID))
1464     return true;
1465   Info = &PFS.getVRegInfo(ID);
1466   return false;
1467 }
1468 
1469 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1470   switch (Token.kind()) {
1471   case MIToken::underscore:
1472     Reg = 0;
1473     return false;
1474   case MIToken::NamedRegister:
1475     return parseNamedRegister(Reg);
1476   case MIToken::NamedVirtualRegister:
1477   case MIToken::VirtualRegister:
1478     if (parseVirtualRegister(Info))
1479       return true;
1480     Reg = Info->VReg;
1481     return false;
1482   // TODO: Parse other register kinds.
1483   default:
1484     llvm_unreachable("The current token should be a register");
1485   }
1486 }
1487 
1488 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1489   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1490     return error("expected '_', register class, or register bank name");
1491   StringRef::iterator Loc = Token.location();
1492   StringRef Name = Token.stringValue();
1493 
1494   // Was it a register class?
1495   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1496   if (RC) {
1497     lex();
1498 
1499     switch (RegInfo.Kind) {
1500     case VRegInfo::UNKNOWN:
1501     case VRegInfo::NORMAL:
1502       RegInfo.Kind = VRegInfo::NORMAL;
1503       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1504         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1505         return error(Loc, Twine("conflicting register classes, previously: ") +
1506                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1507       }
1508       RegInfo.D.RC = RC;
1509       RegInfo.Explicit = true;
1510       return false;
1511 
1512     case VRegInfo::GENERIC:
1513     case VRegInfo::REGBANK:
1514       return error(Loc, "register class specification on generic register");
1515     }
1516     llvm_unreachable("Unexpected register kind");
1517   }
1518 
1519   // Should be a register bank or a generic register.
1520   const RegisterBank *RegBank = nullptr;
1521   if (Name != "_") {
1522     RegBank = PFS.Target.getRegBank(Name);
1523     if (!RegBank)
1524       return error(Loc, "expected '_', register class, or register bank name");
1525   }
1526 
1527   lex();
1528 
1529   switch (RegInfo.Kind) {
1530   case VRegInfo::UNKNOWN:
1531   case VRegInfo::GENERIC:
1532   case VRegInfo::REGBANK:
1533     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1534     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1535       return error(Loc, "conflicting generic register banks");
1536     RegInfo.D.RegBank = RegBank;
1537     RegInfo.Explicit = true;
1538     return false;
1539 
1540   case VRegInfo::NORMAL:
1541     return error(Loc, "register bank specification on normal register");
1542   }
1543   llvm_unreachable("Unexpected register kind");
1544 }
1545 
1546 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1547   const unsigned OldFlags = Flags;
1548   switch (Token.kind()) {
1549   case MIToken::kw_implicit:
1550     Flags |= RegState::Implicit;
1551     break;
1552   case MIToken::kw_implicit_define:
1553     Flags |= RegState::ImplicitDefine;
1554     break;
1555   case MIToken::kw_def:
1556     Flags |= RegState::Define;
1557     break;
1558   case MIToken::kw_dead:
1559     Flags |= RegState::Dead;
1560     break;
1561   case MIToken::kw_killed:
1562     Flags |= RegState::Kill;
1563     break;
1564   case MIToken::kw_undef:
1565     Flags |= RegState::Undef;
1566     break;
1567   case MIToken::kw_internal:
1568     Flags |= RegState::InternalRead;
1569     break;
1570   case MIToken::kw_early_clobber:
1571     Flags |= RegState::EarlyClobber;
1572     break;
1573   case MIToken::kw_debug_use:
1574     Flags |= RegState::Debug;
1575     break;
1576   case MIToken::kw_renamable:
1577     Flags |= RegState::Renamable;
1578     break;
1579   default:
1580     llvm_unreachable("The current token should be a register flag");
1581   }
1582   if (OldFlags == Flags)
1583     // We know that the same flag is specified more than once when the flags
1584     // weren't modified.
1585     return error("duplicate '" + Token.stringValue() + "' register flag");
1586   lex();
1587   return false;
1588 }
1589 
1590 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1591   assert(Token.is(MIToken::dot));
1592   lex();
1593   if (Token.isNot(MIToken::Identifier))
1594     return error("expected a subregister index after '.'");
1595   auto Name = Token.stringValue();
1596   SubReg = PFS.Target.getSubRegIndex(Name);
1597   if (!SubReg)
1598     return error(Twine("use of unknown subregister index '") + Name + "'");
1599   lex();
1600   return false;
1601 }
1602 
1603 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1604   if (!consumeIfPresent(MIToken::kw_tied_def))
1605     return true;
1606   if (Token.isNot(MIToken::IntegerLiteral))
1607     return error("expected an integer literal after 'tied-def'");
1608   if (getUnsigned(TiedDefIdx))
1609     return true;
1610   lex();
1611   if (expectAndConsume(MIToken::rparen))
1612     return true;
1613   return false;
1614 }
1615 
1616 bool MIParser::assignRegisterTies(MachineInstr &MI,
1617                                   ArrayRef<ParsedMachineOperand> Operands) {
1618   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1619   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1620     if (!Operands[I].TiedDefIdx)
1621       continue;
1622     // The parser ensures that this operand is a register use, so we just have
1623     // to check the tied-def operand.
1624     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1625     if (DefIdx >= E)
1626       return error(Operands[I].Begin,
1627                    Twine("use of invalid tied-def operand index '" +
1628                          Twine(DefIdx) + "'; instruction has only ") +
1629                        Twine(E) + " operands");
1630     const auto &DefOperand = Operands[DefIdx].Operand;
1631     if (!DefOperand.isReg() || !DefOperand.isDef())
1632       // FIXME: add note with the def operand.
1633       return error(Operands[I].Begin,
1634                    Twine("use of invalid tied-def operand index '") +
1635                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1636                        " isn't a defined register");
1637     // Check that the tied-def operand wasn't tied elsewhere.
1638     for (const auto &TiedPair : TiedRegisterPairs) {
1639       if (TiedPair.first == DefIdx)
1640         return error(Operands[I].Begin,
1641                      Twine("the tied-def operand #") + Twine(DefIdx) +
1642                          " is already tied with another register operand");
1643     }
1644     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1645   }
1646   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1647   // indices must be less than tied max.
1648   for (const auto &TiedPair : TiedRegisterPairs)
1649     MI.tieOperands(TiedPair.first, TiedPair.second);
1650   return false;
1651 }
1652 
1653 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1654                                     Optional<unsigned> &TiedDefIdx,
1655                                     bool IsDef) {
1656   unsigned Flags = IsDef ? RegState::Define : 0;
1657   while (Token.isRegisterFlag()) {
1658     if (parseRegisterFlag(Flags))
1659       return true;
1660   }
1661   if (!Token.isRegister())
1662     return error("expected a register after register flags");
1663   Register Reg;
1664   VRegInfo *RegInfo;
1665   if (parseRegister(Reg, RegInfo))
1666     return true;
1667   lex();
1668   unsigned SubReg = 0;
1669   if (Token.is(MIToken::dot)) {
1670     if (parseSubRegisterIndex(SubReg))
1671       return true;
1672     if (!Register::isVirtualRegister(Reg))
1673       return error("subregister index expects a virtual register");
1674   }
1675   if (Token.is(MIToken::colon)) {
1676     if (!Register::isVirtualRegister(Reg))
1677       return error("register class specification expects a virtual register");
1678     lex();
1679     if (parseRegisterClassOrBank(*RegInfo))
1680         return true;
1681   }
1682   MachineRegisterInfo &MRI = MF.getRegInfo();
1683   if ((Flags & RegState::Define) == 0) {
1684     if (consumeIfPresent(MIToken::lparen)) {
1685       unsigned Idx;
1686       if (!parseRegisterTiedDefIndex(Idx))
1687         TiedDefIdx = Idx;
1688       else {
1689         // Try a redundant low-level type.
1690         LLT Ty;
1691         if (parseLowLevelType(Token.location(), Ty))
1692           return error("expected tied-def or low-level type after '('");
1693 
1694         if (expectAndConsume(MIToken::rparen))
1695           return true;
1696 
1697         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1698           return error("inconsistent type for generic virtual register");
1699 
1700         MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1701         MRI.setType(Reg, Ty);
1702       }
1703     }
1704   } else if (consumeIfPresent(MIToken::lparen)) {
1705     // Virtual registers may have a tpe with GlobalISel.
1706     if (!Register::isVirtualRegister(Reg))
1707       return error("unexpected type on physical register");
1708 
1709     LLT Ty;
1710     if (parseLowLevelType(Token.location(), Ty))
1711       return true;
1712 
1713     if (expectAndConsume(MIToken::rparen))
1714       return true;
1715 
1716     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1717       return error("inconsistent type for generic virtual register");
1718 
1719     MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1720     MRI.setType(Reg, Ty);
1721   } else if (Register::isVirtualRegister(Reg)) {
1722     // Generic virtual registers must have a type.
1723     // If we end up here this means the type hasn't been specified and
1724     // this is bad!
1725     if (RegInfo->Kind == VRegInfo::GENERIC ||
1726         RegInfo->Kind == VRegInfo::REGBANK)
1727       return error("generic virtual registers must have a type");
1728   }
1729   Dest = MachineOperand::CreateReg(
1730       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1731       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1732       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1733       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1734 
1735   return false;
1736 }
1737 
1738 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1739   assert(Token.is(MIToken::IntegerLiteral));
1740   const APSInt &Int = Token.integerValue();
1741   if (Int.getMinSignedBits() > 64)
1742     return error("integer literal is too large to be an immediate operand");
1743   Dest = MachineOperand::CreateImm(Int.getExtValue());
1744   lex();
1745   return false;
1746 }
1747 
1748 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1749                                       const unsigned OpIdx,
1750                                       MachineOperand &Dest,
1751                                       const MIRFormatter &MF) {
1752   assert(Token.is(MIToken::dot));
1753   auto Loc = Token.location(); // record start position
1754   size_t Len = 1;              // for "."
1755   lex();
1756 
1757   // Handle the case that mnemonic starts with number.
1758   if (Token.is(MIToken::IntegerLiteral)) {
1759     Len += Token.range().size();
1760     lex();
1761   }
1762 
1763   StringRef Src;
1764   if (Token.is(MIToken::comma))
1765     Src = StringRef(Loc, Len);
1766   else {
1767     assert(Token.is(MIToken::Identifier));
1768     Src = StringRef(Loc, Len + Token.stringValue().size());
1769   }
1770   int64_t Val;
1771   if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1772                           [this](StringRef::iterator Loc, const Twine &Msg)
1773                               -> bool { return error(Loc, Msg); }))
1774     return true;
1775 
1776   Dest = MachineOperand::CreateImm(Val);
1777   if (!Token.is(MIToken::comma))
1778     lex();
1779   return false;
1780 }
1781 
1782 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1783                             PerFunctionMIParsingState &PFS, const Constant *&C,
1784                             ErrorCallbackType ErrCB) {
1785   auto Source = StringValue.str(); // The source has to be null terminated.
1786   SMDiagnostic Err;
1787   C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1788                          &PFS.IRSlots);
1789   if (!C)
1790     return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1791   return false;
1792 }
1793 
1794 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1795                                const Constant *&C) {
1796   return ::parseIRConstant(
1797       Loc, StringValue, PFS, C,
1798       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1799         return error(Loc, Msg);
1800       });
1801 }
1802 
1803 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1804   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1805     return true;
1806   lex();
1807   return false;
1808 }
1809 
1810 // See LLT implemntation for bit size limits.
1811 static bool verifyScalarSize(uint64_t Size) {
1812   return Size != 0 && isUInt<16>(Size);
1813 }
1814 
1815 static bool verifyVectorElementCount(uint64_t NumElts) {
1816   return NumElts != 0 && isUInt<16>(NumElts);
1817 }
1818 
1819 static bool verifyAddrSpace(uint64_t AddrSpace) {
1820   return isUInt<24>(AddrSpace);
1821 }
1822 
1823 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1824   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1825     StringRef SizeStr = Token.range().drop_front();
1826     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1827       return error("expected integers after 's'/'p' type character");
1828   }
1829 
1830   if (Token.range().front() == 's') {
1831     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1832     if (!verifyScalarSize(ScalarSize))
1833       return error("invalid size for scalar type");
1834 
1835     Ty = LLT::scalar(ScalarSize);
1836     lex();
1837     return false;
1838   } else if (Token.range().front() == 'p') {
1839     const DataLayout &DL = MF.getDataLayout();
1840     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1841     if (!verifyAddrSpace(AS))
1842       return error("invalid address space number");
1843 
1844     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1845     lex();
1846     return false;
1847   }
1848 
1849   // Now we're looking for a vector.
1850   if (Token.isNot(MIToken::less))
1851     return error(Loc,
1852                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1853   lex();
1854 
1855   if (Token.isNot(MIToken::IntegerLiteral))
1856     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1857   uint64_t NumElements = Token.integerValue().getZExtValue();
1858   if (!verifyVectorElementCount(NumElements))
1859     return error("invalid number of vector elements");
1860 
1861   lex();
1862 
1863   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1864     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1865   lex();
1866 
1867   if (Token.range().front() != 's' && Token.range().front() != 'p')
1868     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1869   StringRef SizeStr = Token.range().drop_front();
1870   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1871     return error("expected integers after 's'/'p' type character");
1872 
1873   if (Token.range().front() == 's') {
1874     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1875     if (!verifyScalarSize(ScalarSize))
1876       return error("invalid size for scalar type");
1877     Ty = LLT::scalar(ScalarSize);
1878   } else if (Token.range().front() == 'p') {
1879     const DataLayout &DL = MF.getDataLayout();
1880     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1881     if (!verifyAddrSpace(AS))
1882       return error("invalid address space number");
1883 
1884     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1885   } else
1886     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1887   lex();
1888 
1889   if (Token.isNot(MIToken::greater))
1890     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1891   lex();
1892 
1893   Ty = LLT::fixed_vector(NumElements, Ty);
1894   return false;
1895 }
1896 
1897 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1898   assert(Token.is(MIToken::Identifier));
1899   StringRef TypeStr = Token.range();
1900   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1901       TypeStr.front() != 'p')
1902     return error(
1903         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1904   StringRef SizeStr = Token.range().drop_front();
1905   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1906     return error("expected integers after 'i'/'s'/'p' type character");
1907 
1908   auto Loc = Token.location();
1909   lex();
1910   if (Token.isNot(MIToken::IntegerLiteral)) {
1911     if (Token.isNot(MIToken::Identifier) ||
1912         !(Token.range() == "true" || Token.range() == "false"))
1913       return error("expected an integer literal");
1914   }
1915   const Constant *C = nullptr;
1916   if (parseIRConstant(Loc, C))
1917     return true;
1918   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1919   return false;
1920 }
1921 
1922 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1923   auto Loc = Token.location();
1924   lex();
1925   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1926       Token.isNot(MIToken::HexLiteral))
1927     return error("expected a floating point literal");
1928   const Constant *C = nullptr;
1929   if (parseIRConstant(Loc, C))
1930     return true;
1931   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1932   return false;
1933 }
1934 
1935 static bool getHexUint(const MIToken &Token, APInt &Result) {
1936   assert(Token.is(MIToken::HexLiteral));
1937   StringRef S = Token.range();
1938   assert(S[0] == '0' && tolower(S[1]) == 'x');
1939   // This could be a floating point literal with a special prefix.
1940   if (!isxdigit(S[2]))
1941     return true;
1942   StringRef V = S.substr(2);
1943   APInt A(V.size()*4, V, 16);
1944 
1945   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
1946   // sure it isn't the case before constructing result.
1947   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
1948   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1949   return false;
1950 }
1951 
1952 static bool getUnsigned(const MIToken &Token, unsigned &Result,
1953                         ErrorCallbackType ErrCB) {
1954   if (Token.hasIntegerValue()) {
1955     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1956     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1957     if (Val64 == Limit)
1958       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1959     Result = Val64;
1960     return false;
1961   }
1962   if (Token.is(MIToken::HexLiteral)) {
1963     APInt A;
1964     if (getHexUint(Token, A))
1965       return true;
1966     if (A.getBitWidth() > 32)
1967       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1968     Result = A.getZExtValue();
1969     return false;
1970   }
1971   return true;
1972 }
1973 
1974 bool MIParser::getUnsigned(unsigned &Result) {
1975   return ::getUnsigned(
1976       Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1977         return error(Loc, Msg);
1978       });
1979 }
1980 
1981 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1982   assert(Token.is(MIToken::MachineBasicBlock) ||
1983          Token.is(MIToken::MachineBasicBlockLabel));
1984   unsigned Number;
1985   if (getUnsigned(Number))
1986     return true;
1987   auto MBBInfo = PFS.MBBSlots.find(Number);
1988   if (MBBInfo == PFS.MBBSlots.end())
1989     return error(Twine("use of undefined machine basic block #") +
1990                  Twine(Number));
1991   MBB = MBBInfo->second;
1992   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1993   // we drop the <irname> from the bb.<id>.<irname> format.
1994   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1995     return error(Twine("the name of machine basic block #") + Twine(Number) +
1996                  " isn't '" + Token.stringValue() + "'");
1997   return false;
1998 }
1999 
2000 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
2001   MachineBasicBlock *MBB;
2002   if (parseMBBReference(MBB))
2003     return true;
2004   Dest = MachineOperand::CreateMBB(MBB);
2005   lex();
2006   return false;
2007 }
2008 
2009 bool MIParser::parseStackFrameIndex(int &FI) {
2010   assert(Token.is(MIToken::StackObject));
2011   unsigned ID;
2012   if (getUnsigned(ID))
2013     return true;
2014   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
2015   if (ObjectInfo == PFS.StackObjectSlots.end())
2016     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
2017                  "'");
2018   StringRef Name;
2019   if (const auto *Alloca =
2020           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
2021     Name = Alloca->getName();
2022   if (!Token.stringValue().empty() && Token.stringValue() != Name)
2023     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
2024                  "' isn't '" + Token.stringValue() + "'");
2025   lex();
2026   FI = ObjectInfo->second;
2027   return false;
2028 }
2029 
2030 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
2031   int FI;
2032   if (parseStackFrameIndex(FI))
2033     return true;
2034   Dest = MachineOperand::CreateFI(FI);
2035   return false;
2036 }
2037 
2038 bool MIParser::parseFixedStackFrameIndex(int &FI) {
2039   assert(Token.is(MIToken::FixedStackObject));
2040   unsigned ID;
2041   if (getUnsigned(ID))
2042     return true;
2043   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
2044   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
2045     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
2046                  Twine(ID) + "'");
2047   lex();
2048   FI = ObjectInfo->second;
2049   return false;
2050 }
2051 
2052 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
2053   int FI;
2054   if (parseFixedStackFrameIndex(FI))
2055     return true;
2056   Dest = MachineOperand::CreateFI(FI);
2057   return false;
2058 }
2059 
2060 static bool parseGlobalValue(const MIToken &Token,
2061                              PerFunctionMIParsingState &PFS, GlobalValue *&GV,
2062                              ErrorCallbackType ErrCB) {
2063   switch (Token.kind()) {
2064   case MIToken::NamedGlobalValue: {
2065     const Module *M = PFS.MF.getFunction().getParent();
2066     GV = M->getNamedValue(Token.stringValue());
2067     if (!GV)
2068       return ErrCB(Token.location(), Twine("use of undefined global value '") +
2069                                          Token.range() + "'");
2070     break;
2071   }
2072   case MIToken::GlobalValue: {
2073     unsigned GVIdx;
2074     if (getUnsigned(Token, GVIdx, ErrCB))
2075       return true;
2076     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
2077       return ErrCB(Token.location(), Twine("use of undefined global value '@") +
2078                                          Twine(GVIdx) + "'");
2079     GV = PFS.IRSlots.GlobalValues[GVIdx];
2080     break;
2081   }
2082   default:
2083     llvm_unreachable("The current token should be a global value");
2084   }
2085   return false;
2086 }
2087 
2088 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
2089   return ::parseGlobalValue(
2090       Token, PFS, GV,
2091       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2092         return error(Loc, Msg);
2093       });
2094 }
2095 
2096 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
2097   GlobalValue *GV = nullptr;
2098   if (parseGlobalValue(GV))
2099     return true;
2100   lex();
2101   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
2102   if (parseOperandsOffset(Dest))
2103     return true;
2104   return false;
2105 }
2106 
2107 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
2108   assert(Token.is(MIToken::ConstantPoolItem));
2109   unsigned ID;
2110   if (getUnsigned(ID))
2111     return true;
2112   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
2113   if (ConstantInfo == PFS.ConstantPoolSlots.end())
2114     return error("use of undefined constant '%const." + Twine(ID) + "'");
2115   lex();
2116   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
2117   if (parseOperandsOffset(Dest))
2118     return true;
2119   return false;
2120 }
2121 
2122 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
2123   assert(Token.is(MIToken::JumpTableIndex));
2124   unsigned ID;
2125   if (getUnsigned(ID))
2126     return true;
2127   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
2128   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
2129     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
2130   lex();
2131   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
2132   return false;
2133 }
2134 
2135 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
2136   assert(Token.is(MIToken::ExternalSymbol));
2137   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
2138   lex();
2139   Dest = MachineOperand::CreateES(Symbol);
2140   if (parseOperandsOffset(Dest))
2141     return true;
2142   return false;
2143 }
2144 
2145 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
2146   assert(Token.is(MIToken::MCSymbol));
2147   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
2148   lex();
2149   Dest = MachineOperand::CreateMCSymbol(Symbol);
2150   if (parseOperandsOffset(Dest))
2151     return true;
2152   return false;
2153 }
2154 
2155 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
2156   assert(Token.is(MIToken::SubRegisterIndex));
2157   StringRef Name = Token.stringValue();
2158   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
2159   if (SubRegIndex == 0)
2160     return error(Twine("unknown subregister index '") + Name + "'");
2161   lex();
2162   Dest = MachineOperand::CreateImm(SubRegIndex);
2163   return false;
2164 }
2165 
2166 bool MIParser::parseMDNode(MDNode *&Node) {
2167   assert(Token.is(MIToken::exclaim));
2168 
2169   auto Loc = Token.location();
2170   lex();
2171   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2172     return error("expected metadata id after '!'");
2173   unsigned ID;
2174   if (getUnsigned(ID))
2175     return true;
2176   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2177   if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) {
2178     NodeInfo = PFS.MachineMetadataNodes.find(ID);
2179     if (NodeInfo == PFS.MachineMetadataNodes.end())
2180       return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2181   }
2182   lex();
2183   Node = NodeInfo->second.get();
2184   return false;
2185 }
2186 
2187 bool MIParser::parseDIExpression(MDNode *&Expr) {
2188   assert(Token.is(MIToken::md_diexpr));
2189   lex();
2190 
2191   // FIXME: Share this parsing with the IL parser.
2192   SmallVector<uint64_t, 8> Elements;
2193 
2194   if (expectAndConsume(MIToken::lparen))
2195     return true;
2196 
2197   if (Token.isNot(MIToken::rparen)) {
2198     do {
2199       if (Token.is(MIToken::Identifier)) {
2200         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2201           lex();
2202           Elements.push_back(Op);
2203           continue;
2204         }
2205         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2206           lex();
2207           Elements.push_back(Enc);
2208           continue;
2209         }
2210         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2211       }
2212 
2213       if (Token.isNot(MIToken::IntegerLiteral) ||
2214           Token.integerValue().isSigned())
2215         return error("expected unsigned integer");
2216 
2217       auto &U = Token.integerValue();
2218       if (U.ugt(UINT64_MAX))
2219         return error("element too large, limit is " + Twine(UINT64_MAX));
2220       Elements.push_back(U.getZExtValue());
2221       lex();
2222 
2223     } while (consumeIfPresent(MIToken::comma));
2224   }
2225 
2226   if (expectAndConsume(MIToken::rparen))
2227     return true;
2228 
2229   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2230   return false;
2231 }
2232 
2233 bool MIParser::parseDILocation(MDNode *&Loc) {
2234   assert(Token.is(MIToken::md_dilocation));
2235   lex();
2236 
2237   bool HaveLine = false;
2238   unsigned Line = 0;
2239   unsigned Column = 0;
2240   MDNode *Scope = nullptr;
2241   MDNode *InlinedAt = nullptr;
2242   bool ImplicitCode = false;
2243 
2244   if (expectAndConsume(MIToken::lparen))
2245     return true;
2246 
2247   if (Token.isNot(MIToken::rparen)) {
2248     do {
2249       if (Token.is(MIToken::Identifier)) {
2250         if (Token.stringValue() == "line") {
2251           lex();
2252           if (expectAndConsume(MIToken::colon))
2253             return true;
2254           if (Token.isNot(MIToken::IntegerLiteral) ||
2255               Token.integerValue().isSigned())
2256             return error("expected unsigned integer");
2257           Line = Token.integerValue().getZExtValue();
2258           HaveLine = true;
2259           lex();
2260           continue;
2261         }
2262         if (Token.stringValue() == "column") {
2263           lex();
2264           if (expectAndConsume(MIToken::colon))
2265             return true;
2266           if (Token.isNot(MIToken::IntegerLiteral) ||
2267               Token.integerValue().isSigned())
2268             return error("expected unsigned integer");
2269           Column = Token.integerValue().getZExtValue();
2270           lex();
2271           continue;
2272         }
2273         if (Token.stringValue() == "scope") {
2274           lex();
2275           if (expectAndConsume(MIToken::colon))
2276             return true;
2277           if (parseMDNode(Scope))
2278             return error("expected metadata node");
2279           if (!isa<DIScope>(Scope))
2280             return error("expected DIScope node");
2281           continue;
2282         }
2283         if (Token.stringValue() == "inlinedAt") {
2284           lex();
2285           if (expectAndConsume(MIToken::colon))
2286             return true;
2287           if (Token.is(MIToken::exclaim)) {
2288             if (parseMDNode(InlinedAt))
2289               return true;
2290           } else if (Token.is(MIToken::md_dilocation)) {
2291             if (parseDILocation(InlinedAt))
2292               return true;
2293           } else
2294             return error("expected metadata node");
2295           if (!isa<DILocation>(InlinedAt))
2296             return error("expected DILocation node");
2297           continue;
2298         }
2299         if (Token.stringValue() == "isImplicitCode") {
2300           lex();
2301           if (expectAndConsume(MIToken::colon))
2302             return true;
2303           if (!Token.is(MIToken::Identifier))
2304             return error("expected true/false");
2305           // As far as I can see, we don't have any existing need for parsing
2306           // true/false in MIR yet. Do it ad-hoc until there's something else
2307           // that needs it.
2308           if (Token.stringValue() == "true")
2309             ImplicitCode = true;
2310           else if (Token.stringValue() == "false")
2311             ImplicitCode = false;
2312           else
2313             return error("expected true/false");
2314           lex();
2315           continue;
2316         }
2317       }
2318       return error(Twine("invalid DILocation argument '") +
2319                    Token.stringValue() + "'");
2320     } while (consumeIfPresent(MIToken::comma));
2321   }
2322 
2323   if (expectAndConsume(MIToken::rparen))
2324     return true;
2325 
2326   if (!HaveLine)
2327     return error("DILocation requires line number");
2328   if (!Scope)
2329     return error("DILocation requires a scope");
2330 
2331   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2332                         InlinedAt, ImplicitCode);
2333   return false;
2334 }
2335 
2336 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2337   MDNode *Node = nullptr;
2338   if (Token.is(MIToken::exclaim)) {
2339     if (parseMDNode(Node))
2340       return true;
2341   } else if (Token.is(MIToken::md_diexpr)) {
2342     if (parseDIExpression(Node))
2343       return true;
2344   }
2345   Dest = MachineOperand::CreateMetadata(Node);
2346   return false;
2347 }
2348 
2349 bool MIParser::parseCFIOffset(int &Offset) {
2350   if (Token.isNot(MIToken::IntegerLiteral))
2351     return error("expected a cfi offset");
2352   if (Token.integerValue().getMinSignedBits() > 32)
2353     return error("expected a 32 bit integer (the cfi offset is too large)");
2354   Offset = (int)Token.integerValue().getExtValue();
2355   lex();
2356   return false;
2357 }
2358 
2359 bool MIParser::parseCFIRegister(Register &Reg) {
2360   if (Token.isNot(MIToken::NamedRegister))
2361     return error("expected a cfi register");
2362   Register LLVMReg;
2363   if (parseNamedRegister(LLVMReg))
2364     return true;
2365   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2366   assert(TRI && "Expected target register info");
2367   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2368   if (DwarfReg < 0)
2369     return error("invalid DWARF register");
2370   Reg = (unsigned)DwarfReg;
2371   lex();
2372   return false;
2373 }
2374 
2375 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) {
2376   if (Token.isNot(MIToken::IntegerLiteral))
2377     return error("expected a cfi address space literal");
2378   if (Token.integerValue().isSigned())
2379     return error("expected an unsigned integer (cfi address space)");
2380   AddressSpace = Token.integerValue().getZExtValue();
2381   lex();
2382   return false;
2383 }
2384 
2385 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2386   do {
2387     if (Token.isNot(MIToken::HexLiteral))
2388       return error("expected a hexadecimal literal");
2389     unsigned Value;
2390     if (getUnsigned(Value))
2391       return true;
2392     if (Value > UINT8_MAX)
2393       return error("expected a 8-bit integer (too large)");
2394     Values.push_back(static_cast<uint8_t>(Value));
2395     lex();
2396   } while (consumeIfPresent(MIToken::comma));
2397   return false;
2398 }
2399 
2400 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2401   auto Kind = Token.kind();
2402   lex();
2403   int Offset;
2404   Register Reg;
2405   unsigned AddressSpace;
2406   unsigned CFIIndex;
2407   switch (Kind) {
2408   case MIToken::kw_cfi_same_value:
2409     if (parseCFIRegister(Reg))
2410       return true;
2411     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2412     break;
2413   case MIToken::kw_cfi_offset:
2414     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2415         parseCFIOffset(Offset))
2416       return true;
2417     CFIIndex =
2418         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2419     break;
2420   case MIToken::kw_cfi_rel_offset:
2421     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2422         parseCFIOffset(Offset))
2423       return true;
2424     CFIIndex = MF.addFrameInst(
2425         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2426     break;
2427   case MIToken::kw_cfi_def_cfa_register:
2428     if (parseCFIRegister(Reg))
2429       return true;
2430     CFIIndex =
2431         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2432     break;
2433   case MIToken::kw_cfi_def_cfa_offset:
2434     if (parseCFIOffset(Offset))
2435       return true;
2436     CFIIndex =
2437         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2438     break;
2439   case MIToken::kw_cfi_adjust_cfa_offset:
2440     if (parseCFIOffset(Offset))
2441       return true;
2442     CFIIndex = MF.addFrameInst(
2443         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2444     break;
2445   case MIToken::kw_cfi_def_cfa:
2446     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2447         parseCFIOffset(Offset))
2448       return true;
2449     CFIIndex =
2450         MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2451     break;
2452   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2453     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2454         parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) ||
2455         parseCFIAddressSpace(AddressSpace))
2456       return true;
2457     CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa(
2458         nullptr, Reg, Offset, AddressSpace));
2459     break;
2460   case MIToken::kw_cfi_remember_state:
2461     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2462     break;
2463   case MIToken::kw_cfi_restore:
2464     if (parseCFIRegister(Reg))
2465       return true;
2466     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2467     break;
2468   case MIToken::kw_cfi_restore_state:
2469     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2470     break;
2471   case MIToken::kw_cfi_undefined:
2472     if (parseCFIRegister(Reg))
2473       return true;
2474     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2475     break;
2476   case MIToken::kw_cfi_register: {
2477     Register Reg2;
2478     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2479         parseCFIRegister(Reg2))
2480       return true;
2481 
2482     CFIIndex =
2483         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2484     break;
2485   }
2486   case MIToken::kw_cfi_window_save:
2487     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2488     break;
2489   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2490     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2491     break;
2492   case MIToken::kw_cfi_escape: {
2493     std::string Values;
2494     if (parseCFIEscapeValues(Values))
2495       return true;
2496     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2497     break;
2498   }
2499   default:
2500     // TODO: Parse the other CFI operands.
2501     llvm_unreachable("The current token should be a cfi operand");
2502   }
2503   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2504   return false;
2505 }
2506 
2507 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2508   switch (Token.kind()) {
2509   case MIToken::NamedIRBlock: {
2510     BB = dyn_cast_or_null<BasicBlock>(
2511         F.getValueSymbolTable()->lookup(Token.stringValue()));
2512     if (!BB)
2513       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2514     break;
2515   }
2516   case MIToken::IRBlock: {
2517     unsigned SlotNumber = 0;
2518     if (getUnsigned(SlotNumber))
2519       return true;
2520     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2521     if (!BB)
2522       return error(Twine("use of undefined IR block '%ir-block.") +
2523                    Twine(SlotNumber) + "'");
2524     break;
2525   }
2526   default:
2527     llvm_unreachable("The current token should be an IR block reference");
2528   }
2529   return false;
2530 }
2531 
2532 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2533   assert(Token.is(MIToken::kw_blockaddress));
2534   lex();
2535   if (expectAndConsume(MIToken::lparen))
2536     return true;
2537   if (Token.isNot(MIToken::GlobalValue) &&
2538       Token.isNot(MIToken::NamedGlobalValue))
2539     return error("expected a global value");
2540   GlobalValue *GV = nullptr;
2541   if (parseGlobalValue(GV))
2542     return true;
2543   auto *F = dyn_cast<Function>(GV);
2544   if (!F)
2545     return error("expected an IR function reference");
2546   lex();
2547   if (expectAndConsume(MIToken::comma))
2548     return true;
2549   BasicBlock *BB = nullptr;
2550   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2551     return error("expected an IR block reference");
2552   if (parseIRBlock(BB, *F))
2553     return true;
2554   lex();
2555   if (expectAndConsume(MIToken::rparen))
2556     return true;
2557   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2558   if (parseOperandsOffset(Dest))
2559     return true;
2560   return false;
2561 }
2562 
2563 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2564   assert(Token.is(MIToken::kw_intrinsic));
2565   lex();
2566   if (expectAndConsume(MIToken::lparen))
2567     return error("expected syntax intrinsic(@llvm.whatever)");
2568 
2569   if (Token.isNot(MIToken::NamedGlobalValue))
2570     return error("expected syntax intrinsic(@llvm.whatever)");
2571 
2572   std::string Name = std::string(Token.stringValue());
2573   lex();
2574 
2575   if (expectAndConsume(MIToken::rparen))
2576     return error("expected ')' to terminate intrinsic name");
2577 
2578   // Find out what intrinsic we're dealing with, first try the global namespace
2579   // and then the target's private intrinsics if that fails.
2580   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2581   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2582   if (ID == Intrinsic::not_intrinsic && TII)
2583     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2584 
2585   if (ID == Intrinsic::not_intrinsic)
2586     return error("unknown intrinsic name");
2587   Dest = MachineOperand::CreateIntrinsicID(ID);
2588 
2589   return false;
2590 }
2591 
2592 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2593   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2594   bool IsFloat = Token.is(MIToken::kw_floatpred);
2595   lex();
2596 
2597   if (expectAndConsume(MIToken::lparen))
2598     return error("expected syntax intpred(whatever) or floatpred(whatever");
2599 
2600   if (Token.isNot(MIToken::Identifier))
2601     return error("whatever");
2602 
2603   CmpInst::Predicate Pred;
2604   if (IsFloat) {
2605     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2606                .Case("false", CmpInst::FCMP_FALSE)
2607                .Case("oeq", CmpInst::FCMP_OEQ)
2608                .Case("ogt", CmpInst::FCMP_OGT)
2609                .Case("oge", CmpInst::FCMP_OGE)
2610                .Case("olt", CmpInst::FCMP_OLT)
2611                .Case("ole", CmpInst::FCMP_OLE)
2612                .Case("one", CmpInst::FCMP_ONE)
2613                .Case("ord", CmpInst::FCMP_ORD)
2614                .Case("uno", CmpInst::FCMP_UNO)
2615                .Case("ueq", CmpInst::FCMP_UEQ)
2616                .Case("ugt", CmpInst::FCMP_UGT)
2617                .Case("uge", CmpInst::FCMP_UGE)
2618                .Case("ult", CmpInst::FCMP_ULT)
2619                .Case("ule", CmpInst::FCMP_ULE)
2620                .Case("une", CmpInst::FCMP_UNE)
2621                .Case("true", CmpInst::FCMP_TRUE)
2622                .Default(CmpInst::BAD_FCMP_PREDICATE);
2623     if (!CmpInst::isFPPredicate(Pred))
2624       return error("invalid floating-point predicate");
2625   } else {
2626     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2627                .Case("eq", CmpInst::ICMP_EQ)
2628                .Case("ne", CmpInst::ICMP_NE)
2629                .Case("sgt", CmpInst::ICMP_SGT)
2630                .Case("sge", CmpInst::ICMP_SGE)
2631                .Case("slt", CmpInst::ICMP_SLT)
2632                .Case("sle", CmpInst::ICMP_SLE)
2633                .Case("ugt", CmpInst::ICMP_UGT)
2634                .Case("uge", CmpInst::ICMP_UGE)
2635                .Case("ult", CmpInst::ICMP_ULT)
2636                .Case("ule", CmpInst::ICMP_ULE)
2637                .Default(CmpInst::BAD_ICMP_PREDICATE);
2638     if (!CmpInst::isIntPredicate(Pred))
2639       return error("invalid integer predicate");
2640   }
2641 
2642   lex();
2643   Dest = MachineOperand::CreatePredicate(Pred);
2644   if (expectAndConsume(MIToken::rparen))
2645     return error("predicate should be terminated by ')'.");
2646 
2647   return false;
2648 }
2649 
2650 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2651   assert(Token.is(MIToken::kw_shufflemask));
2652 
2653   lex();
2654   if (expectAndConsume(MIToken::lparen))
2655     return error("expected syntax shufflemask(<integer or undef>, ...)");
2656 
2657   SmallVector<int, 32> ShufMask;
2658   do {
2659     if (Token.is(MIToken::kw_undef)) {
2660       ShufMask.push_back(-1);
2661     } else if (Token.is(MIToken::IntegerLiteral)) {
2662       const APSInt &Int = Token.integerValue();
2663       ShufMask.push_back(Int.getExtValue());
2664     } else
2665       return error("expected integer constant");
2666 
2667     lex();
2668   } while (consumeIfPresent(MIToken::comma));
2669 
2670   if (expectAndConsume(MIToken::rparen))
2671     return error("shufflemask should be terminated by ')'.");
2672 
2673   ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2674   Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2675   return false;
2676 }
2677 
2678 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2679   assert(Token.is(MIToken::kw_target_index));
2680   lex();
2681   if (expectAndConsume(MIToken::lparen))
2682     return true;
2683   if (Token.isNot(MIToken::Identifier))
2684     return error("expected the name of the target index");
2685   int Index = 0;
2686   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2687     return error("use of undefined target index '" + Token.stringValue() + "'");
2688   lex();
2689   if (expectAndConsume(MIToken::rparen))
2690     return true;
2691   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2692   if (parseOperandsOffset(Dest))
2693     return true;
2694   return false;
2695 }
2696 
2697 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2698   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2699   lex();
2700   if (expectAndConsume(MIToken::lparen))
2701     return true;
2702 
2703   uint32_t *Mask = MF.allocateRegMask();
2704   while (true) {
2705     if (Token.isNot(MIToken::NamedRegister))
2706       return error("expected a named register");
2707     Register Reg;
2708     if (parseNamedRegister(Reg))
2709       return true;
2710     lex();
2711     Mask[Reg / 32] |= 1U << (Reg % 32);
2712     // TODO: Report an error if the same register is used more than once.
2713     if (Token.isNot(MIToken::comma))
2714       break;
2715     lex();
2716   }
2717 
2718   if (expectAndConsume(MIToken::rparen))
2719     return true;
2720   Dest = MachineOperand::CreateRegMask(Mask);
2721   return false;
2722 }
2723 
2724 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2725   assert(Token.is(MIToken::kw_liveout));
2726   uint32_t *Mask = MF.allocateRegMask();
2727   lex();
2728   if (expectAndConsume(MIToken::lparen))
2729     return true;
2730   while (true) {
2731     if (Token.isNot(MIToken::NamedRegister))
2732       return error("expected a named register");
2733     Register Reg;
2734     if (parseNamedRegister(Reg))
2735       return true;
2736     lex();
2737     Mask[Reg / 32] |= 1U << (Reg % 32);
2738     // TODO: Report an error if the same register is used more than once.
2739     if (Token.isNot(MIToken::comma))
2740       break;
2741     lex();
2742   }
2743   if (expectAndConsume(MIToken::rparen))
2744     return true;
2745   Dest = MachineOperand::CreateRegLiveOut(Mask);
2746   return false;
2747 }
2748 
2749 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2750                                    MachineOperand &Dest,
2751                                    Optional<unsigned> &TiedDefIdx) {
2752   switch (Token.kind()) {
2753   case MIToken::kw_implicit:
2754   case MIToken::kw_implicit_define:
2755   case MIToken::kw_def:
2756   case MIToken::kw_dead:
2757   case MIToken::kw_killed:
2758   case MIToken::kw_undef:
2759   case MIToken::kw_internal:
2760   case MIToken::kw_early_clobber:
2761   case MIToken::kw_debug_use:
2762   case MIToken::kw_renamable:
2763   case MIToken::underscore:
2764   case MIToken::NamedRegister:
2765   case MIToken::VirtualRegister:
2766   case MIToken::NamedVirtualRegister:
2767     return parseRegisterOperand(Dest, TiedDefIdx);
2768   case MIToken::IntegerLiteral:
2769     return parseImmediateOperand(Dest);
2770   case MIToken::kw_half:
2771   case MIToken::kw_float:
2772   case MIToken::kw_double:
2773   case MIToken::kw_x86_fp80:
2774   case MIToken::kw_fp128:
2775   case MIToken::kw_ppc_fp128:
2776     return parseFPImmediateOperand(Dest);
2777   case MIToken::MachineBasicBlock:
2778     return parseMBBOperand(Dest);
2779   case MIToken::StackObject:
2780     return parseStackObjectOperand(Dest);
2781   case MIToken::FixedStackObject:
2782     return parseFixedStackObjectOperand(Dest);
2783   case MIToken::GlobalValue:
2784   case MIToken::NamedGlobalValue:
2785     return parseGlobalAddressOperand(Dest);
2786   case MIToken::ConstantPoolItem:
2787     return parseConstantPoolIndexOperand(Dest);
2788   case MIToken::JumpTableIndex:
2789     return parseJumpTableIndexOperand(Dest);
2790   case MIToken::ExternalSymbol:
2791     return parseExternalSymbolOperand(Dest);
2792   case MIToken::MCSymbol:
2793     return parseMCSymbolOperand(Dest);
2794   case MIToken::SubRegisterIndex:
2795     return parseSubRegisterIndexOperand(Dest);
2796   case MIToken::md_diexpr:
2797   case MIToken::exclaim:
2798     return parseMetadataOperand(Dest);
2799   case MIToken::kw_cfi_same_value:
2800   case MIToken::kw_cfi_offset:
2801   case MIToken::kw_cfi_rel_offset:
2802   case MIToken::kw_cfi_def_cfa_register:
2803   case MIToken::kw_cfi_def_cfa_offset:
2804   case MIToken::kw_cfi_adjust_cfa_offset:
2805   case MIToken::kw_cfi_escape:
2806   case MIToken::kw_cfi_def_cfa:
2807   case MIToken::kw_cfi_llvm_def_aspace_cfa:
2808   case MIToken::kw_cfi_register:
2809   case MIToken::kw_cfi_remember_state:
2810   case MIToken::kw_cfi_restore:
2811   case MIToken::kw_cfi_restore_state:
2812   case MIToken::kw_cfi_undefined:
2813   case MIToken::kw_cfi_window_save:
2814   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2815     return parseCFIOperand(Dest);
2816   case MIToken::kw_blockaddress:
2817     return parseBlockAddressOperand(Dest);
2818   case MIToken::kw_intrinsic:
2819     return parseIntrinsicOperand(Dest);
2820   case MIToken::kw_target_index:
2821     return parseTargetIndexOperand(Dest);
2822   case MIToken::kw_liveout:
2823     return parseLiveoutRegisterMaskOperand(Dest);
2824   case MIToken::kw_floatpred:
2825   case MIToken::kw_intpred:
2826     return parsePredicateOperand(Dest);
2827   case MIToken::kw_shufflemask:
2828     return parseShuffleMaskOperand(Dest);
2829   case MIToken::Error:
2830     return true;
2831   case MIToken::Identifier:
2832     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2833       Dest = MachineOperand::CreateRegMask(RegMask);
2834       lex();
2835       break;
2836     } else if (Token.stringValue() == "CustomRegMask") {
2837       return parseCustomRegisterMaskOperand(Dest);
2838     } else
2839       return parseTypedImmediateOperand(Dest);
2840   case MIToken::dot: {
2841     const auto *TII = MF.getSubtarget().getInstrInfo();
2842     if (const auto *Formatter = TII->getMIRFormatter()) {
2843       return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2844     }
2845     LLVM_FALLTHROUGH;
2846   }
2847   default:
2848     // FIXME: Parse the MCSymbol machine operand.
2849     return error("expected a machine operand");
2850   }
2851   return false;
2852 }
2853 
2854 bool MIParser::parseMachineOperandAndTargetFlags(
2855     const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2856     Optional<unsigned> &TiedDefIdx) {
2857   unsigned TF = 0;
2858   bool HasTargetFlags = false;
2859   if (Token.is(MIToken::kw_target_flags)) {
2860     HasTargetFlags = true;
2861     lex();
2862     if (expectAndConsume(MIToken::lparen))
2863       return true;
2864     if (Token.isNot(MIToken::Identifier))
2865       return error("expected the name of the target flag");
2866     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2867       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2868         return error("use of undefined target flag '" + Token.stringValue() +
2869                      "'");
2870     }
2871     lex();
2872     while (Token.is(MIToken::comma)) {
2873       lex();
2874       if (Token.isNot(MIToken::Identifier))
2875         return error("expected the name of the target flag");
2876       unsigned BitFlag = 0;
2877       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2878         return error("use of undefined target flag '" + Token.stringValue() +
2879                      "'");
2880       // TODO: Report an error when using a duplicate bit target flag.
2881       TF |= BitFlag;
2882       lex();
2883     }
2884     if (expectAndConsume(MIToken::rparen))
2885       return true;
2886   }
2887   auto Loc = Token.location();
2888   if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2889     return true;
2890   if (!HasTargetFlags)
2891     return false;
2892   if (Dest.isReg())
2893     return error(Loc, "register operands can't have target flags");
2894   Dest.setTargetFlags(TF);
2895   return false;
2896 }
2897 
2898 bool MIParser::parseOffset(int64_t &Offset) {
2899   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2900     return false;
2901   StringRef Sign = Token.range();
2902   bool IsNegative = Token.is(MIToken::minus);
2903   lex();
2904   if (Token.isNot(MIToken::IntegerLiteral))
2905     return error("expected an integer literal after '" + Sign + "'");
2906   if (Token.integerValue().getMinSignedBits() > 64)
2907     return error("expected 64-bit integer (too large)");
2908   Offset = Token.integerValue().getExtValue();
2909   if (IsNegative)
2910     Offset = -Offset;
2911   lex();
2912   return false;
2913 }
2914 
2915 bool MIParser::parseAlignment(uint64_t &Alignment) {
2916   assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
2917   lex();
2918   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2919     return error("expected an integer literal after 'align'");
2920   if (getUint64(Alignment))
2921     return true;
2922   lex();
2923 
2924   if (!isPowerOf2_64(Alignment))
2925     return error("expected a power-of-2 literal after 'align'");
2926 
2927   return false;
2928 }
2929 
2930 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2931   assert(Token.is(MIToken::kw_addrspace));
2932   lex();
2933   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2934     return error("expected an integer literal after 'addrspace'");
2935   if (getUnsigned(Addrspace))
2936     return true;
2937   lex();
2938   return false;
2939 }
2940 
2941 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2942   int64_t Offset = 0;
2943   if (parseOffset(Offset))
2944     return true;
2945   Op.setOffset(Offset);
2946   return false;
2947 }
2948 
2949 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
2950                          const Value *&V, ErrorCallbackType ErrCB) {
2951   switch (Token.kind()) {
2952   case MIToken::NamedIRValue: {
2953     V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2954     break;
2955   }
2956   case MIToken::IRValue: {
2957     unsigned SlotNumber = 0;
2958     if (getUnsigned(Token, SlotNumber, ErrCB))
2959       return true;
2960     V = PFS.getIRValue(SlotNumber);
2961     break;
2962   }
2963   case MIToken::NamedGlobalValue:
2964   case MIToken::GlobalValue: {
2965     GlobalValue *GV = nullptr;
2966     if (parseGlobalValue(Token, PFS, GV, ErrCB))
2967       return true;
2968     V = GV;
2969     break;
2970   }
2971   case MIToken::QuotedIRValue: {
2972     const Constant *C = nullptr;
2973     if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
2974       return true;
2975     V = C;
2976     break;
2977   }
2978   case MIToken::kw_unknown_address:
2979     V = nullptr;
2980     return false;
2981   default:
2982     llvm_unreachable("The current token should be an IR block reference");
2983   }
2984   if (!V)
2985     return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
2986   return false;
2987 }
2988 
2989 bool MIParser::parseIRValue(const Value *&V) {
2990   return ::parseIRValue(
2991       Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2992         return error(Loc, Msg);
2993       });
2994 }
2995 
2996 bool MIParser::getUint64(uint64_t &Result) {
2997   if (Token.hasIntegerValue()) {
2998     if (Token.integerValue().getActiveBits() > 64)
2999       return error("expected 64-bit integer (too large)");
3000     Result = Token.integerValue().getZExtValue();
3001     return false;
3002   }
3003   if (Token.is(MIToken::HexLiteral)) {
3004     APInt A;
3005     if (getHexUint(A))
3006       return true;
3007     if (A.getBitWidth() > 64)
3008       return error("expected 64-bit integer (too large)");
3009     Result = A.getZExtValue();
3010     return false;
3011   }
3012   return true;
3013 }
3014 
3015 bool MIParser::getHexUint(APInt &Result) {
3016   return ::getHexUint(Token, Result);
3017 }
3018 
3019 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
3020   const auto OldFlags = Flags;
3021   switch (Token.kind()) {
3022   case MIToken::kw_volatile:
3023     Flags |= MachineMemOperand::MOVolatile;
3024     break;
3025   case MIToken::kw_non_temporal:
3026     Flags |= MachineMemOperand::MONonTemporal;
3027     break;
3028   case MIToken::kw_dereferenceable:
3029     Flags |= MachineMemOperand::MODereferenceable;
3030     break;
3031   case MIToken::kw_invariant:
3032     Flags |= MachineMemOperand::MOInvariant;
3033     break;
3034   case MIToken::StringConstant: {
3035     MachineMemOperand::Flags TF;
3036     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
3037       return error("use of undefined target MMO flag '" + Token.stringValue() +
3038                    "'");
3039     Flags |= TF;
3040     break;
3041   }
3042   default:
3043     llvm_unreachable("The current token should be a memory operand flag");
3044   }
3045   if (OldFlags == Flags)
3046     // We know that the same flag is specified more than once when the flags
3047     // weren't modified.
3048     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
3049   lex();
3050   return false;
3051 }
3052 
3053 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
3054   switch (Token.kind()) {
3055   case MIToken::kw_stack:
3056     PSV = MF.getPSVManager().getStack();
3057     break;
3058   case MIToken::kw_got:
3059     PSV = MF.getPSVManager().getGOT();
3060     break;
3061   case MIToken::kw_jump_table:
3062     PSV = MF.getPSVManager().getJumpTable();
3063     break;
3064   case MIToken::kw_constant_pool:
3065     PSV = MF.getPSVManager().getConstantPool();
3066     break;
3067   case MIToken::FixedStackObject: {
3068     int FI;
3069     if (parseFixedStackFrameIndex(FI))
3070       return true;
3071     PSV = MF.getPSVManager().getFixedStack(FI);
3072     // The token was already consumed, so use return here instead of break.
3073     return false;
3074   }
3075   case MIToken::StackObject: {
3076     int FI;
3077     if (parseStackFrameIndex(FI))
3078       return true;
3079     PSV = MF.getPSVManager().getFixedStack(FI);
3080     // The token was already consumed, so use return here instead of break.
3081     return false;
3082   }
3083   case MIToken::kw_call_entry:
3084     lex();
3085     switch (Token.kind()) {
3086     case MIToken::GlobalValue:
3087     case MIToken::NamedGlobalValue: {
3088       GlobalValue *GV = nullptr;
3089       if (parseGlobalValue(GV))
3090         return true;
3091       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
3092       break;
3093     }
3094     case MIToken::ExternalSymbol:
3095       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
3096           MF.createExternalSymbolName(Token.stringValue()));
3097       break;
3098     default:
3099       return error(
3100           "expected a global value or an external symbol after 'call-entry'");
3101     }
3102     break;
3103   case MIToken::kw_custom: {
3104     lex();
3105     const auto *TII = MF.getSubtarget().getInstrInfo();
3106     if (const auto *Formatter = TII->getMIRFormatter()) {
3107       if (Formatter->parseCustomPseudoSourceValue(
3108               Token.stringValue(), MF, PFS, PSV,
3109               [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3110                 return error(Loc, Msg);
3111               }))
3112         return true;
3113     } else
3114       return error("unable to parse target custom pseudo source value");
3115     break;
3116   }
3117   default:
3118     llvm_unreachable("The current token should be pseudo source value");
3119   }
3120   lex();
3121   return false;
3122 }
3123 
3124 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
3125   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
3126       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
3127       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
3128       Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
3129     const PseudoSourceValue *PSV = nullptr;
3130     if (parseMemoryPseudoSourceValue(PSV))
3131       return true;
3132     int64_t Offset = 0;
3133     if (parseOffset(Offset))
3134       return true;
3135     Dest = MachinePointerInfo(PSV, Offset);
3136     return false;
3137   }
3138   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
3139       Token.isNot(MIToken::GlobalValue) &&
3140       Token.isNot(MIToken::NamedGlobalValue) &&
3141       Token.isNot(MIToken::QuotedIRValue) &&
3142       Token.isNot(MIToken::kw_unknown_address))
3143     return error("expected an IR value reference");
3144   const Value *V = nullptr;
3145   if (parseIRValue(V))
3146     return true;
3147   if (V && !V->getType()->isPointerTy())
3148     return error("expected a pointer IR value");
3149   lex();
3150   int64_t Offset = 0;
3151   if (parseOffset(Offset))
3152     return true;
3153   Dest = MachinePointerInfo(V, Offset);
3154   return false;
3155 }
3156 
3157 bool MIParser::parseOptionalScope(LLVMContext &Context,
3158                                   SyncScope::ID &SSID) {
3159   SSID = SyncScope::System;
3160   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
3161     lex();
3162     if (expectAndConsume(MIToken::lparen))
3163       return error("expected '(' in syncscope");
3164 
3165     std::string SSN;
3166     if (parseStringConstant(SSN))
3167       return true;
3168 
3169     SSID = Context.getOrInsertSyncScopeID(SSN);
3170     if (expectAndConsume(MIToken::rparen))
3171       return error("expected ')' in syncscope");
3172   }
3173 
3174   return false;
3175 }
3176 
3177 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
3178   Order = AtomicOrdering::NotAtomic;
3179   if (Token.isNot(MIToken::Identifier))
3180     return false;
3181 
3182   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
3183               .Case("unordered", AtomicOrdering::Unordered)
3184               .Case("monotonic", AtomicOrdering::Monotonic)
3185               .Case("acquire", AtomicOrdering::Acquire)
3186               .Case("release", AtomicOrdering::Release)
3187               .Case("acq_rel", AtomicOrdering::AcquireRelease)
3188               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
3189               .Default(AtomicOrdering::NotAtomic);
3190 
3191   if (Order != AtomicOrdering::NotAtomic) {
3192     lex();
3193     return false;
3194   }
3195 
3196   return error("expected an atomic scope, ordering or a size specification");
3197 }
3198 
3199 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3200   if (expectAndConsume(MIToken::lparen))
3201     return true;
3202   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
3203   while (Token.isMemoryOperandFlag()) {
3204     if (parseMemoryOperandFlag(Flags))
3205       return true;
3206   }
3207   if (Token.isNot(MIToken::Identifier) ||
3208       (Token.stringValue() != "load" && Token.stringValue() != "store"))
3209     return error("expected 'load' or 'store' memory operation");
3210   if (Token.stringValue() == "load")
3211     Flags |= MachineMemOperand::MOLoad;
3212   else
3213     Flags |= MachineMemOperand::MOStore;
3214   lex();
3215 
3216   // Optional 'store' for operands that both load and store.
3217   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3218     Flags |= MachineMemOperand::MOStore;
3219     lex();
3220   }
3221 
3222   // Optional synchronization scope.
3223   SyncScope::ID SSID;
3224   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3225     return true;
3226 
3227   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3228   AtomicOrdering Order, FailureOrder;
3229   if (parseOptionalAtomicOrdering(Order))
3230     return true;
3231 
3232   if (parseOptionalAtomicOrdering(FailureOrder))
3233     return true;
3234 
3235   LLT MemoryType;
3236   if (Token.isNot(MIToken::IntegerLiteral) &&
3237       Token.isNot(MIToken::kw_unknown_size) &&
3238       Token.isNot(MIToken::lparen))
3239     return error("expected memory LLT, the size integer literal or 'unknown-size' after "
3240                  "memory operation");
3241 
3242   uint64_t Size = MemoryLocation::UnknownSize;
3243   if (Token.is(MIToken::IntegerLiteral)) {
3244     if (getUint64(Size))
3245       return true;
3246 
3247     // Convert from bytes to bits for storage.
3248     MemoryType = LLT::scalar(8 * Size);
3249     lex();
3250   } else if (Token.is(MIToken::kw_unknown_size)) {
3251     Size = MemoryLocation::UnknownSize;
3252     lex();
3253   } else {
3254     if (expectAndConsume(MIToken::lparen))
3255       return true;
3256     if (parseLowLevelType(Token.location(), MemoryType))
3257       return true;
3258     if (expectAndConsume(MIToken::rparen))
3259       return true;
3260 
3261     Size = MemoryType.getSizeInBytes();
3262   }
3263 
3264   MachinePointerInfo Ptr = MachinePointerInfo();
3265   if (Token.is(MIToken::Identifier)) {
3266     const char *Word =
3267         ((Flags & MachineMemOperand::MOLoad) &&
3268          (Flags & MachineMemOperand::MOStore))
3269             ? "on"
3270             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3271     if (Token.stringValue() != Word)
3272       return error(Twine("expected '") + Word + "'");
3273     lex();
3274 
3275     if (parseMachinePointerInfo(Ptr))
3276       return true;
3277   }
3278   uint64_t BaseAlignment =
3279       (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1);
3280   AAMDNodes AAInfo;
3281   MDNode *Range = nullptr;
3282   while (consumeIfPresent(MIToken::comma)) {
3283     switch (Token.kind()) {
3284     case MIToken::kw_align: {
3285       // align is printed if it is different than size.
3286       uint64_t Alignment;
3287       if (parseAlignment(Alignment))
3288         return true;
3289       if (Ptr.Offset & (Alignment - 1)) {
3290         // MachineMemOperand::getAlign never returns a value greater than the
3291         // alignment of offset, so this just guards against hand-written MIR
3292         // that specifies a large "align" value when it should probably use
3293         // "basealign" instead.
3294         return error("specified alignment is more aligned than offset");
3295       }
3296       BaseAlignment = Alignment;
3297       break;
3298     }
3299     case MIToken::kw_basealign:
3300       // basealign is printed if it is different than align.
3301       if (parseAlignment(BaseAlignment))
3302         return true;
3303       break;
3304     case MIToken::kw_addrspace:
3305       if (parseAddrspace(Ptr.AddrSpace))
3306         return true;
3307       break;
3308     case MIToken::md_tbaa:
3309       lex();
3310       if (parseMDNode(AAInfo.TBAA))
3311         return true;
3312       break;
3313     case MIToken::md_alias_scope:
3314       lex();
3315       if (parseMDNode(AAInfo.Scope))
3316         return true;
3317       break;
3318     case MIToken::md_noalias:
3319       lex();
3320       if (parseMDNode(AAInfo.NoAlias))
3321         return true;
3322       break;
3323     case MIToken::md_range:
3324       lex();
3325       if (parseMDNode(Range))
3326         return true;
3327       break;
3328     // TODO: Report an error on duplicate metadata nodes.
3329     default:
3330       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3331                    "'!noalias' or '!range'");
3332     }
3333   }
3334   if (expectAndConsume(MIToken::rparen))
3335     return true;
3336   Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment),
3337                                  AAInfo, Range, SSID, Order, FailureOrder);
3338   return false;
3339 }
3340 
3341 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3342   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3343           Token.is(MIToken::kw_post_instr_symbol)) &&
3344          "Invalid token for a pre- post-instruction symbol!");
3345   lex();
3346   if (Token.isNot(MIToken::MCSymbol))
3347     return error("expected a symbol after 'pre-instr-symbol'");
3348   Symbol = getOrCreateMCSymbol(Token.stringValue());
3349   lex();
3350   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3351       Token.is(MIToken::lbrace))
3352     return false;
3353   if (Token.isNot(MIToken::comma))
3354     return error("expected ',' before the next machine operand");
3355   lex();
3356   return false;
3357 }
3358 
3359 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3360   assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3361          "Invalid token for a heap alloc marker!");
3362   lex();
3363   parseMDNode(Node);
3364   if (!Node)
3365     return error("expected a MDNode after 'heap-alloc-marker'");
3366   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3367       Token.is(MIToken::lbrace))
3368     return false;
3369   if (Token.isNot(MIToken::comma))
3370     return error("expected ',' before the next machine operand");
3371   lex();
3372   return false;
3373 }
3374 
3375 static void initSlots2BasicBlocks(
3376     const Function &F,
3377     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3378   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3379   MST.incorporateFunction(F);
3380   for (auto &BB : F) {
3381     if (BB.hasName())
3382       continue;
3383     int Slot = MST.getLocalSlot(&BB);
3384     if (Slot == -1)
3385       continue;
3386     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3387   }
3388 }
3389 
3390 static const BasicBlock *getIRBlockFromSlot(
3391     unsigned Slot,
3392     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3393   return Slots2BasicBlocks.lookup(Slot);
3394 }
3395 
3396 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3397   if (Slots2BasicBlocks.empty())
3398     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3399   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3400 }
3401 
3402 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3403   if (&F == &MF.getFunction())
3404     return getIRBlock(Slot);
3405   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3406   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3407   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3408 }
3409 
3410 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3411   // FIXME: Currently we can't recognize temporary or local symbols and call all
3412   // of the appropriate forms to create them. However, this handles basic cases
3413   // well as most of the special aspects are recognized by a prefix on their
3414   // name, and the input names should already be unique. For test cases, keeping
3415   // the symbol name out of the symbol table isn't terribly important.
3416   return MF.getContext().getOrCreateSymbol(Name);
3417 }
3418 
3419 bool MIParser::parseStringConstant(std::string &Result) {
3420   if (Token.isNot(MIToken::StringConstant))
3421     return error("expected string constant");
3422   Result = std::string(Token.stringValue());
3423   lex();
3424   return false;
3425 }
3426 
3427 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3428                                              StringRef Src,
3429                                              SMDiagnostic &Error) {
3430   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3431 }
3432 
3433 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3434                                     StringRef Src, SMDiagnostic &Error) {
3435   return MIParser(PFS, Error, Src).parseBasicBlocks();
3436 }
3437 
3438 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3439                              MachineBasicBlock *&MBB, StringRef Src,
3440                              SMDiagnostic &Error) {
3441   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3442 }
3443 
3444 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3445                                   Register &Reg, StringRef Src,
3446                                   SMDiagnostic &Error) {
3447   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3448 }
3449 
3450 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3451                                        Register &Reg, StringRef Src,
3452                                        SMDiagnostic &Error) {
3453   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3454 }
3455 
3456 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3457                                          VRegInfo *&Info, StringRef Src,
3458                                          SMDiagnostic &Error) {
3459   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3460 }
3461 
3462 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3463                                      int &FI, StringRef Src,
3464                                      SMDiagnostic &Error) {
3465   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3466 }
3467 
3468 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3469                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3470   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3471 }
3472 
3473 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src,
3474                                 SMRange SrcRange, SMDiagnostic &Error) {
3475   return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata();
3476 }
3477 
3478 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3479                                 PerFunctionMIParsingState &PFS, const Value *&V,
3480                                 ErrorCallbackType ErrorCallback) {
3481   MIToken Token;
3482   Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3483     ErrorCallback(Loc, Msg);
3484   });
3485   V = nullptr;
3486 
3487   return ::parseIRValue(Token, PFS, V, ErrorCallback);
3488 }
3489