1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueSymbolTable.h" 56 #include "llvm/MC/LaneBitmask.h" 57 #include "llvm/MC/MCDwarf.h" 58 #include "llvm/MC/MCInstrDesc.h" 59 #include "llvm/MC/MCRegisterInfo.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MemoryBuffer.h" 66 #include "llvm/Support/SMLoc.h" 67 #include "llvm/Support/SourceMgr.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cctype> 74 #include <cstddef> 75 #include <cstdint> 76 #include <limits> 77 #include <string> 78 #include <utility> 79 80 using namespace llvm; 81 82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 83 SourceMgr &SM, const SlotMapping &IRSlots, 84 const Name2RegClassMap &Names2RegClasses, 85 const Name2RegBankMap &Names2RegBanks) 86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 87 Names2RegBanks(Names2RegBanks) { 88 } 89 90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 92 if (I.second) { 93 MachineRegisterInfo &MRI = MF.getRegInfo(); 94 VRegInfo *Info = new (Allocator) VRegInfo; 95 Info->VReg = MRI.createIncompleteVirtualRegister(); 96 I.first->second = Info; 97 } 98 return *I.first->second; 99 } 100 101 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 102 assert(RegName != "" && "Expected named reg."); 103 104 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 105 if (I.second) { 106 VRegInfo *Info = new (Allocator) VRegInfo; 107 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 108 I.first->second = Info; 109 } 110 return *I.first->second; 111 } 112 113 namespace { 114 115 /// A wrapper struct around the 'MachineOperand' struct that includes a source 116 /// range and other attributes. 117 struct ParsedMachineOperand { 118 MachineOperand Operand; 119 StringRef::iterator Begin; 120 StringRef::iterator End; 121 Optional<unsigned> TiedDefIdx; 122 123 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 124 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 125 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 126 if (TiedDefIdx) 127 assert(Operand.isReg() && Operand.isUse() && 128 "Only used register operands can be tied"); 129 } 130 }; 131 132 class MIParser { 133 MachineFunction &MF; 134 SMDiagnostic &Error; 135 StringRef Source, CurrentSource; 136 MIToken Token; 137 PerFunctionMIParsingState &PFS; 138 /// Maps from instruction names to op codes. 139 StringMap<unsigned> Names2InstrOpCodes; 140 /// Maps from register names to registers. 141 StringMap<unsigned> Names2Regs; 142 /// Maps from register mask names to register masks. 143 StringMap<const uint32_t *> Names2RegMasks; 144 /// Maps from subregister names to subregister indices. 145 StringMap<unsigned> Names2SubRegIndices; 146 /// Maps from slot numbers to function's unnamed basic blocks. 147 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 148 /// Maps from slot numbers to function's unnamed values. 149 DenseMap<unsigned, const Value *> Slots2Values; 150 /// Maps from target index names to target indices. 151 StringMap<int> Names2TargetIndices; 152 /// Maps from direct target flag names to the direct target flag values. 153 StringMap<unsigned> Names2DirectTargetFlags; 154 /// Maps from direct target flag names to the bitmask target flag values. 155 StringMap<unsigned> Names2BitmaskTargetFlags; 156 /// Maps from MMO target flag names to MMO target flag values. 157 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 158 159 public: 160 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 161 StringRef Source); 162 163 /// \p SkipChar gives the number of characters to skip before looking 164 /// for the next token. 165 void lex(unsigned SkipChar = 0); 166 167 /// Report an error at the current location with the given message. 168 /// 169 /// This function always return true. 170 bool error(const Twine &Msg); 171 172 /// Report an error at the given location with the given message. 173 /// 174 /// This function always return true. 175 bool error(StringRef::iterator Loc, const Twine &Msg); 176 177 bool 178 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 179 bool parseBasicBlocks(); 180 bool parse(MachineInstr *&MI); 181 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 182 bool parseStandaloneNamedRegister(unsigned &Reg); 183 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 184 bool parseStandaloneRegister(unsigned &Reg); 185 bool parseStandaloneStackObject(int &FI); 186 bool parseStandaloneMDNode(MDNode *&Node); 187 188 bool 189 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 190 bool parseBasicBlock(MachineBasicBlock &MBB, 191 MachineBasicBlock *&AddFalthroughFrom); 192 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 193 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 194 195 bool parseNamedRegister(unsigned &Reg); 196 bool parseVirtualRegister(VRegInfo *&Info); 197 bool parseNamedVirtualRegister(VRegInfo *&Info); 198 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 199 bool parseRegisterFlag(unsigned &Flags); 200 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 201 bool parseSubRegisterIndex(unsigned &SubReg); 202 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 203 bool parseRegisterOperand(MachineOperand &Dest, 204 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 205 bool parseImmediateOperand(MachineOperand &Dest); 206 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 207 const Constant *&C); 208 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 209 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 210 bool parseTypedImmediateOperand(MachineOperand &Dest); 211 bool parseFPImmediateOperand(MachineOperand &Dest); 212 bool parseMBBReference(MachineBasicBlock *&MBB); 213 bool parseMBBOperand(MachineOperand &Dest); 214 bool parseStackFrameIndex(int &FI); 215 bool parseStackObjectOperand(MachineOperand &Dest); 216 bool parseFixedStackFrameIndex(int &FI); 217 bool parseFixedStackObjectOperand(MachineOperand &Dest); 218 bool parseGlobalValue(GlobalValue *&GV); 219 bool parseGlobalAddressOperand(MachineOperand &Dest); 220 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 221 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 222 bool parseJumpTableIndexOperand(MachineOperand &Dest); 223 bool parseExternalSymbolOperand(MachineOperand &Dest); 224 bool parseMDNode(MDNode *&Node); 225 bool parseDIExpression(MDNode *&Node); 226 bool parseMetadataOperand(MachineOperand &Dest); 227 bool parseCFIOffset(int &Offset); 228 bool parseCFIRegister(unsigned &Reg); 229 bool parseCFIEscapeValues(std::string& Values); 230 bool parseCFIOperand(MachineOperand &Dest); 231 bool parseIRBlock(BasicBlock *&BB, const Function &F); 232 bool parseBlockAddressOperand(MachineOperand &Dest); 233 bool parseIntrinsicOperand(MachineOperand &Dest); 234 bool parsePredicateOperand(MachineOperand &Dest); 235 bool parseTargetIndexOperand(MachineOperand &Dest); 236 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 237 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 238 bool parseMachineOperand(MachineOperand &Dest, 239 Optional<unsigned> &TiedDefIdx); 240 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 241 Optional<unsigned> &TiedDefIdx); 242 bool parseOffset(int64_t &Offset); 243 bool parseAlignment(unsigned &Alignment); 244 bool parseAddrspace(unsigned &Addrspace); 245 bool parseOperandsOffset(MachineOperand &Op); 246 bool parseIRValue(const Value *&V); 247 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 248 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 249 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 250 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 251 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 252 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 253 254 private: 255 /// Convert the integer literal in the current token into an unsigned integer. 256 /// 257 /// Return true if an error occurred. 258 bool getUnsigned(unsigned &Result); 259 260 /// Convert the integer literal in the current token into an uint64. 261 /// 262 /// Return true if an error occurred. 263 bool getUint64(uint64_t &Result); 264 265 /// Convert the hexadecimal literal in the current token into an unsigned 266 /// APInt with a minimum bitwidth required to represent the value. 267 /// 268 /// Return true if the literal does not represent an integer value. 269 bool getHexUint(APInt &Result); 270 271 /// If the current token is of the given kind, consume it and return false. 272 /// Otherwise report an error and return true. 273 bool expectAndConsume(MIToken::TokenKind TokenKind); 274 275 /// If the current token is of the given kind, consume it and return true. 276 /// Otherwise return false. 277 bool consumeIfPresent(MIToken::TokenKind TokenKind); 278 279 void initNames2InstrOpCodes(); 280 281 /// Try to convert an instruction name to an opcode. Return true if the 282 /// instruction name is invalid. 283 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 284 285 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 286 287 bool assignRegisterTies(MachineInstr &MI, 288 ArrayRef<ParsedMachineOperand> Operands); 289 290 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 291 const MCInstrDesc &MCID); 292 293 void initNames2Regs(); 294 295 /// Try to convert a register name to a register number. Return true if the 296 /// register name is invalid. 297 bool getRegisterByName(StringRef RegName, unsigned &Reg); 298 299 void initNames2RegMasks(); 300 301 /// Check if the given identifier is a name of a register mask. 302 /// 303 /// Return null if the identifier isn't a register mask. 304 const uint32_t *getRegMask(StringRef Identifier); 305 306 void initNames2SubRegIndices(); 307 308 /// Check if the given identifier is a name of a subregister index. 309 /// 310 /// Return 0 if the name isn't a subregister index class. 311 unsigned getSubRegIndex(StringRef Name); 312 313 const BasicBlock *getIRBlock(unsigned Slot); 314 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 315 316 const Value *getIRValue(unsigned Slot); 317 318 void initNames2TargetIndices(); 319 320 /// Try to convert a name of target index to the corresponding target index. 321 /// 322 /// Return true if the name isn't a name of a target index. 323 bool getTargetIndex(StringRef Name, int &Index); 324 325 void initNames2DirectTargetFlags(); 326 327 /// Try to convert a name of a direct target flag to the corresponding 328 /// target flag. 329 /// 330 /// Return true if the name isn't a name of a direct flag. 331 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 332 333 void initNames2BitmaskTargetFlags(); 334 335 /// Try to convert a name of a bitmask target flag to the corresponding 336 /// target flag. 337 /// 338 /// Return true if the name isn't a name of a bitmask target flag. 339 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 340 341 void initNames2MMOTargetFlags(); 342 343 /// Try to convert a name of a MachineMemOperand target flag to the 344 /// corresponding target flag. 345 /// 346 /// Return true if the name isn't a name of a target MMO flag. 347 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 348 349 /// parseStringConstant 350 /// ::= StringConstant 351 bool parseStringConstant(std::string &Result); 352 }; 353 354 } // end anonymous namespace 355 356 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 357 StringRef Source) 358 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 359 {} 360 361 void MIParser::lex(unsigned SkipChar) { 362 CurrentSource = lexMIToken( 363 CurrentSource.data() + SkipChar, Token, 364 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 365 } 366 367 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 368 369 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 370 const SourceMgr &SM = *PFS.SM; 371 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 372 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 373 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 374 // Create an ordinary diagnostic when the source manager's buffer is the 375 // source string. 376 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 377 return true; 378 } 379 // Create a diagnostic for a YAML string literal. 380 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 381 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 382 Source, None, None); 383 return true; 384 } 385 386 static const char *toString(MIToken::TokenKind TokenKind) { 387 switch (TokenKind) { 388 case MIToken::comma: 389 return "','"; 390 case MIToken::equal: 391 return "'='"; 392 case MIToken::colon: 393 return "':'"; 394 case MIToken::lparen: 395 return "'('"; 396 case MIToken::rparen: 397 return "')'"; 398 default: 399 return "<unknown token>"; 400 } 401 } 402 403 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 404 if (Token.isNot(TokenKind)) 405 return error(Twine("expected ") + toString(TokenKind)); 406 lex(); 407 return false; 408 } 409 410 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 411 if (Token.isNot(TokenKind)) 412 return false; 413 lex(); 414 return true; 415 } 416 417 bool MIParser::parseBasicBlockDefinition( 418 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 419 assert(Token.is(MIToken::MachineBasicBlockLabel)); 420 unsigned ID = 0; 421 if (getUnsigned(ID)) 422 return true; 423 auto Loc = Token.location(); 424 auto Name = Token.stringValue(); 425 lex(); 426 bool HasAddressTaken = false; 427 bool IsLandingPad = false; 428 unsigned Alignment = 0; 429 BasicBlock *BB = nullptr; 430 if (consumeIfPresent(MIToken::lparen)) { 431 do { 432 // TODO: Report an error when multiple same attributes are specified. 433 switch (Token.kind()) { 434 case MIToken::kw_address_taken: 435 HasAddressTaken = true; 436 lex(); 437 break; 438 case MIToken::kw_landing_pad: 439 IsLandingPad = true; 440 lex(); 441 break; 442 case MIToken::kw_align: 443 if (parseAlignment(Alignment)) 444 return true; 445 break; 446 case MIToken::IRBlock: 447 // TODO: Report an error when both name and ir block are specified. 448 if (parseIRBlock(BB, MF.getFunction())) 449 return true; 450 lex(); 451 break; 452 default: 453 break; 454 } 455 } while (consumeIfPresent(MIToken::comma)); 456 if (expectAndConsume(MIToken::rparen)) 457 return true; 458 } 459 if (expectAndConsume(MIToken::colon)) 460 return true; 461 462 if (!Name.empty()) { 463 BB = dyn_cast_or_null<BasicBlock>( 464 MF.getFunction().getValueSymbolTable()->lookup(Name)); 465 if (!BB) 466 return error(Loc, Twine("basic block '") + Name + 467 "' is not defined in the function '" + 468 MF.getName() + "'"); 469 } 470 auto *MBB = MF.CreateMachineBasicBlock(BB); 471 MF.insert(MF.end(), MBB); 472 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 473 if (!WasInserted) 474 return error(Loc, Twine("redefinition of machine basic block with id #") + 475 Twine(ID)); 476 if (Alignment) 477 MBB->setAlignment(Alignment); 478 if (HasAddressTaken) 479 MBB->setHasAddressTaken(); 480 MBB->setIsEHPad(IsLandingPad); 481 return false; 482 } 483 484 bool MIParser::parseBasicBlockDefinitions( 485 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 486 lex(); 487 // Skip until the first machine basic block. 488 while (Token.is(MIToken::Newline)) 489 lex(); 490 if (Token.isErrorOrEOF()) 491 return Token.isError(); 492 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 493 return error("expected a basic block definition before instructions"); 494 unsigned BraceDepth = 0; 495 do { 496 if (parseBasicBlockDefinition(MBBSlots)) 497 return true; 498 bool IsAfterNewline = false; 499 // Skip until the next machine basic block. 500 while (true) { 501 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 502 Token.isErrorOrEOF()) 503 break; 504 else if (Token.is(MIToken::MachineBasicBlockLabel)) 505 return error("basic block definition should be located at the start of " 506 "the line"); 507 else if (consumeIfPresent(MIToken::Newline)) { 508 IsAfterNewline = true; 509 continue; 510 } 511 IsAfterNewline = false; 512 if (Token.is(MIToken::lbrace)) 513 ++BraceDepth; 514 if (Token.is(MIToken::rbrace)) { 515 if (!BraceDepth) 516 return error("extraneous closing brace ('}')"); 517 --BraceDepth; 518 } 519 lex(); 520 } 521 // Verify that we closed all of the '{' at the end of a file or a block. 522 if (!Token.isError() && BraceDepth) 523 return error("expected '}'"); // FIXME: Report a note that shows '{'. 524 } while (!Token.isErrorOrEOF()); 525 return Token.isError(); 526 } 527 528 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 529 assert(Token.is(MIToken::kw_liveins)); 530 lex(); 531 if (expectAndConsume(MIToken::colon)) 532 return true; 533 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 534 return false; 535 do { 536 if (Token.isNot(MIToken::NamedRegister)) 537 return error("expected a named register"); 538 unsigned Reg = 0; 539 if (parseNamedRegister(Reg)) 540 return true; 541 lex(); 542 LaneBitmask Mask = LaneBitmask::getAll(); 543 if (consumeIfPresent(MIToken::colon)) { 544 // Parse lane mask. 545 if (Token.isNot(MIToken::IntegerLiteral) && 546 Token.isNot(MIToken::HexLiteral)) 547 return error("expected a lane mask"); 548 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 549 "Use correct get-function for lane mask"); 550 LaneBitmask::Type V; 551 if (getUnsigned(V)) 552 return error("invalid lane mask value"); 553 Mask = LaneBitmask(V); 554 lex(); 555 } 556 MBB.addLiveIn(Reg, Mask); 557 } while (consumeIfPresent(MIToken::comma)); 558 return false; 559 } 560 561 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 562 assert(Token.is(MIToken::kw_successors)); 563 lex(); 564 if (expectAndConsume(MIToken::colon)) 565 return true; 566 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 567 return false; 568 do { 569 if (Token.isNot(MIToken::MachineBasicBlock)) 570 return error("expected a machine basic block reference"); 571 MachineBasicBlock *SuccMBB = nullptr; 572 if (parseMBBReference(SuccMBB)) 573 return true; 574 lex(); 575 unsigned Weight = 0; 576 if (consumeIfPresent(MIToken::lparen)) { 577 if (Token.isNot(MIToken::IntegerLiteral) && 578 Token.isNot(MIToken::HexLiteral)) 579 return error("expected an integer literal after '('"); 580 if (getUnsigned(Weight)) 581 return true; 582 lex(); 583 if (expectAndConsume(MIToken::rparen)) 584 return true; 585 } 586 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 587 } while (consumeIfPresent(MIToken::comma)); 588 MBB.normalizeSuccProbs(); 589 return false; 590 } 591 592 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 593 MachineBasicBlock *&AddFalthroughFrom) { 594 // Skip the definition. 595 assert(Token.is(MIToken::MachineBasicBlockLabel)); 596 lex(); 597 if (consumeIfPresent(MIToken::lparen)) { 598 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 599 lex(); 600 consumeIfPresent(MIToken::rparen); 601 } 602 consumeIfPresent(MIToken::colon); 603 604 // Parse the liveins and successors. 605 // N.B: Multiple lists of successors and liveins are allowed and they're 606 // merged into one. 607 // Example: 608 // liveins: %edi 609 // liveins: %esi 610 // 611 // is equivalent to 612 // liveins: %edi, %esi 613 bool ExplicitSuccessors = false; 614 while (true) { 615 if (Token.is(MIToken::kw_successors)) { 616 if (parseBasicBlockSuccessors(MBB)) 617 return true; 618 ExplicitSuccessors = true; 619 } else if (Token.is(MIToken::kw_liveins)) { 620 if (parseBasicBlockLiveins(MBB)) 621 return true; 622 } else if (consumeIfPresent(MIToken::Newline)) { 623 continue; 624 } else 625 break; 626 if (!Token.isNewlineOrEOF()) 627 return error("expected line break at the end of a list"); 628 lex(); 629 } 630 631 // Parse the instructions. 632 bool IsInBundle = false; 633 MachineInstr *PrevMI = nullptr; 634 while (!Token.is(MIToken::MachineBasicBlockLabel) && 635 !Token.is(MIToken::Eof)) { 636 if (consumeIfPresent(MIToken::Newline)) 637 continue; 638 if (consumeIfPresent(MIToken::rbrace)) { 639 // The first parsing pass should verify that all closing '}' have an 640 // opening '{'. 641 assert(IsInBundle); 642 IsInBundle = false; 643 continue; 644 } 645 MachineInstr *MI = nullptr; 646 if (parse(MI)) 647 return true; 648 MBB.insert(MBB.end(), MI); 649 if (IsInBundle) { 650 PrevMI->setFlag(MachineInstr::BundledSucc); 651 MI->setFlag(MachineInstr::BundledPred); 652 } 653 PrevMI = MI; 654 if (Token.is(MIToken::lbrace)) { 655 if (IsInBundle) 656 return error("nested instruction bundles are not allowed"); 657 lex(); 658 // This instruction is the start of the bundle. 659 MI->setFlag(MachineInstr::BundledSucc); 660 IsInBundle = true; 661 if (!Token.is(MIToken::Newline)) 662 // The next instruction can be on the same line. 663 continue; 664 } 665 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 666 lex(); 667 } 668 669 // Construct successor list by searching for basic block machine operands. 670 if (!ExplicitSuccessors) { 671 SmallVector<MachineBasicBlock*,4> Successors; 672 bool IsFallthrough; 673 guessSuccessors(MBB, Successors, IsFallthrough); 674 for (MachineBasicBlock *Succ : Successors) 675 MBB.addSuccessor(Succ); 676 677 if (IsFallthrough) { 678 AddFalthroughFrom = &MBB; 679 } else { 680 MBB.normalizeSuccProbs(); 681 } 682 } 683 684 return false; 685 } 686 687 bool MIParser::parseBasicBlocks() { 688 lex(); 689 // Skip until the first machine basic block. 690 while (Token.is(MIToken::Newline)) 691 lex(); 692 if (Token.isErrorOrEOF()) 693 return Token.isError(); 694 // The first parsing pass should have verified that this token is a MBB label 695 // in the 'parseBasicBlockDefinitions' method. 696 assert(Token.is(MIToken::MachineBasicBlockLabel)); 697 MachineBasicBlock *AddFalthroughFrom = nullptr; 698 do { 699 MachineBasicBlock *MBB = nullptr; 700 if (parseMBBReference(MBB)) 701 return true; 702 if (AddFalthroughFrom) { 703 if (!AddFalthroughFrom->isSuccessor(MBB)) 704 AddFalthroughFrom->addSuccessor(MBB); 705 AddFalthroughFrom->normalizeSuccProbs(); 706 AddFalthroughFrom = nullptr; 707 } 708 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 709 return true; 710 // The method 'parseBasicBlock' should parse the whole block until the next 711 // block or the end of file. 712 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 713 } while (Token.isNot(MIToken::Eof)); 714 return false; 715 } 716 717 bool MIParser::parse(MachineInstr *&MI) { 718 // Parse any register operands before '=' 719 MachineOperand MO = MachineOperand::CreateImm(0); 720 SmallVector<ParsedMachineOperand, 8> Operands; 721 while (Token.isRegister() || Token.isRegisterFlag()) { 722 auto Loc = Token.location(); 723 Optional<unsigned> TiedDefIdx; 724 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 725 return true; 726 Operands.push_back( 727 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 728 if (Token.isNot(MIToken::comma)) 729 break; 730 lex(); 731 } 732 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 733 return true; 734 735 unsigned OpCode, Flags = 0; 736 if (Token.isError() || parseInstruction(OpCode, Flags)) 737 return true; 738 739 // Parse the remaining machine operands. 740 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 741 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 742 auto Loc = Token.location(); 743 Optional<unsigned> TiedDefIdx; 744 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 745 return true; 746 Operands.push_back( 747 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 748 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 749 Token.is(MIToken::lbrace)) 750 break; 751 if (Token.isNot(MIToken::comma)) 752 return error("expected ',' before the next machine operand"); 753 lex(); 754 } 755 756 DebugLoc DebugLocation; 757 if (Token.is(MIToken::kw_debug_location)) { 758 lex(); 759 if (Token.isNot(MIToken::exclaim)) 760 return error("expected a metadata node after 'debug-location'"); 761 MDNode *Node = nullptr; 762 if (parseMDNode(Node)) 763 return true; 764 DebugLocation = DebugLoc(Node); 765 } 766 767 // Parse the machine memory operands. 768 SmallVector<MachineMemOperand *, 2> MemOperands; 769 if (Token.is(MIToken::coloncolon)) { 770 lex(); 771 while (!Token.isNewlineOrEOF()) { 772 MachineMemOperand *MemOp = nullptr; 773 if (parseMachineMemoryOperand(MemOp)) 774 return true; 775 MemOperands.push_back(MemOp); 776 if (Token.isNewlineOrEOF()) 777 break; 778 if (Token.isNot(MIToken::comma)) 779 return error("expected ',' before the next machine memory operand"); 780 lex(); 781 } 782 } 783 784 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 785 if (!MCID.isVariadic()) { 786 // FIXME: Move the implicit operand verification to the machine verifier. 787 if (verifyImplicitOperands(Operands, MCID)) 788 return true; 789 } 790 791 // TODO: Check for extraneous machine operands. 792 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 793 MI->setFlags(Flags); 794 for (const auto &Operand : Operands) 795 MI->addOperand(MF, Operand.Operand); 796 if (assignRegisterTies(*MI, Operands)) 797 return true; 798 if (MemOperands.empty()) 799 return false; 800 MachineInstr::mmo_iterator MemRefs = 801 MF.allocateMemRefsArray(MemOperands.size()); 802 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 803 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 804 return false; 805 } 806 807 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 808 lex(); 809 if (Token.isNot(MIToken::MachineBasicBlock)) 810 return error("expected a machine basic block reference"); 811 if (parseMBBReference(MBB)) 812 return true; 813 lex(); 814 if (Token.isNot(MIToken::Eof)) 815 return error( 816 "expected end of string after the machine basic block reference"); 817 return false; 818 } 819 820 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 821 lex(); 822 if (Token.isNot(MIToken::NamedRegister)) 823 return error("expected a named register"); 824 if (parseNamedRegister(Reg)) 825 return true; 826 lex(); 827 if (Token.isNot(MIToken::Eof)) 828 return error("expected end of string after the register reference"); 829 return false; 830 } 831 832 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 833 lex(); 834 if (Token.isNot(MIToken::VirtualRegister)) 835 return error("expected a virtual register"); 836 if (parseVirtualRegister(Info)) 837 return true; 838 lex(); 839 if (Token.isNot(MIToken::Eof)) 840 return error("expected end of string after the register reference"); 841 return false; 842 } 843 844 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 845 lex(); 846 if (Token.isNot(MIToken::NamedRegister) && 847 Token.isNot(MIToken::VirtualRegister)) 848 return error("expected either a named or virtual register"); 849 850 VRegInfo *Info; 851 if (parseRegister(Reg, Info)) 852 return true; 853 854 lex(); 855 if (Token.isNot(MIToken::Eof)) 856 return error("expected end of string after the register reference"); 857 return false; 858 } 859 860 bool MIParser::parseStandaloneStackObject(int &FI) { 861 lex(); 862 if (Token.isNot(MIToken::StackObject)) 863 return error("expected a stack object"); 864 if (parseStackFrameIndex(FI)) 865 return true; 866 if (Token.isNot(MIToken::Eof)) 867 return error("expected end of string after the stack object reference"); 868 return false; 869 } 870 871 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 872 lex(); 873 if (Token.is(MIToken::exclaim)) { 874 if (parseMDNode(Node)) 875 return true; 876 } else if (Token.is(MIToken::md_diexpr)) { 877 if (parseDIExpression(Node)) 878 return true; 879 } else 880 return error("expected a metadata node"); 881 if (Token.isNot(MIToken::Eof)) 882 return error("expected end of string after the metadata node"); 883 return false; 884 } 885 886 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 887 assert(MO.isImplicit()); 888 return MO.isDef() ? "implicit-def" : "implicit"; 889 } 890 891 static std::string getRegisterName(const TargetRegisterInfo *TRI, 892 unsigned Reg) { 893 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 894 return StringRef(TRI->getName(Reg)).lower(); 895 } 896 897 /// Return true if the parsed machine operands contain a given machine operand. 898 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 899 ArrayRef<ParsedMachineOperand> Operands) { 900 for (const auto &I : Operands) { 901 if (ImplicitOperand.isIdenticalTo(I.Operand)) 902 return true; 903 } 904 return false; 905 } 906 907 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 908 const MCInstrDesc &MCID) { 909 if (MCID.isCall()) 910 // We can't verify call instructions as they can contain arbitrary implicit 911 // register and register mask operands. 912 return false; 913 914 // Gather all the expected implicit operands. 915 SmallVector<MachineOperand, 4> ImplicitOperands; 916 if (MCID.ImplicitDefs) 917 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 918 ImplicitOperands.push_back( 919 MachineOperand::CreateReg(*ImpDefs, true, true)); 920 if (MCID.ImplicitUses) 921 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 922 ImplicitOperands.push_back( 923 MachineOperand::CreateReg(*ImpUses, false, true)); 924 925 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 926 assert(TRI && "Expected target register info"); 927 for (const auto &I : ImplicitOperands) { 928 if (isImplicitOperandIn(I, Operands)) 929 continue; 930 return error(Operands.empty() ? Token.location() : Operands.back().End, 931 Twine("missing implicit register operand '") + 932 printImplicitRegisterFlag(I) + " $" + 933 getRegisterName(TRI, I.getReg()) + "'"); 934 } 935 return false; 936 } 937 938 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 939 // Allow frame and fast math flags for OPCODE 940 while (Token.is(MIToken::kw_frame_setup) || 941 Token.is(MIToken::kw_frame_destroy) || 942 Token.is(MIToken::kw_nnan) || 943 Token.is(MIToken::kw_ninf) || 944 Token.is(MIToken::kw_nsz) || 945 Token.is(MIToken::kw_arcp) || 946 Token.is(MIToken::kw_contract) || 947 Token.is(MIToken::kw_afn) || 948 Token.is(MIToken::kw_reassoc)) { 949 // Mine frame and fast math flags 950 if (Token.is(MIToken::kw_frame_setup)) 951 Flags |= MachineInstr::FrameSetup; 952 if (Token.is(MIToken::kw_frame_destroy)) 953 Flags |= MachineInstr::FrameDestroy; 954 if (Token.is(MIToken::kw_nnan)) 955 Flags |= MachineInstr::FmNoNans; 956 if (Token.is(MIToken::kw_ninf)) 957 Flags |= MachineInstr::FmNoInfs; 958 if (Token.is(MIToken::kw_nsz)) 959 Flags |= MachineInstr::FmNsz; 960 if (Token.is(MIToken::kw_arcp)) 961 Flags |= MachineInstr::FmArcp; 962 if (Token.is(MIToken::kw_contract)) 963 Flags |= MachineInstr::FmContract; 964 if (Token.is(MIToken::kw_afn)) 965 Flags |= MachineInstr::FmAfn; 966 if (Token.is(MIToken::kw_reassoc)) 967 Flags |= MachineInstr::FmReassoc; 968 969 lex(); 970 } 971 if (Token.isNot(MIToken::Identifier)) 972 return error("expected a machine instruction"); 973 StringRef InstrName = Token.stringValue(); 974 if (parseInstrName(InstrName, OpCode)) 975 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 976 lex(); 977 return false; 978 } 979 980 bool MIParser::parseNamedRegister(unsigned &Reg) { 981 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 982 StringRef Name = Token.stringValue(); 983 if (getRegisterByName(Name, Reg)) 984 return error(Twine("unknown register name '") + Name + "'"); 985 return false; 986 } 987 988 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 989 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 990 StringRef Name = Token.stringValue(); 991 // TODO: Check that the VReg name is not the same as a physical register name. 992 // If it is, then print a warning (when warnings are implemented). 993 Info = &PFS.getVRegInfoNamed(Name); 994 return false; 995 } 996 997 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 998 if (Token.is(MIToken::NamedVirtualRegister)) 999 return parseNamedVirtualRegister(Info); 1000 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1001 unsigned ID; 1002 if (getUnsigned(ID)) 1003 return true; 1004 Info = &PFS.getVRegInfo(ID); 1005 return false; 1006 } 1007 1008 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1009 switch (Token.kind()) { 1010 case MIToken::underscore: 1011 Reg = 0; 1012 return false; 1013 case MIToken::NamedRegister: 1014 return parseNamedRegister(Reg); 1015 case MIToken::NamedVirtualRegister: 1016 case MIToken::VirtualRegister: 1017 if (parseVirtualRegister(Info)) 1018 return true; 1019 Reg = Info->VReg; 1020 return false; 1021 // TODO: Parse other register kinds. 1022 default: 1023 llvm_unreachable("The current token should be a register"); 1024 } 1025 } 1026 1027 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1028 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1029 return error("expected '_', register class, or register bank name"); 1030 StringRef::iterator Loc = Token.location(); 1031 StringRef Name = Token.stringValue(); 1032 1033 // Was it a register class? 1034 auto RCNameI = PFS.Names2RegClasses.find(Name); 1035 if (RCNameI != PFS.Names2RegClasses.end()) { 1036 lex(); 1037 const TargetRegisterClass &RC = *RCNameI->getValue(); 1038 1039 switch (RegInfo.Kind) { 1040 case VRegInfo::UNKNOWN: 1041 case VRegInfo::NORMAL: 1042 RegInfo.Kind = VRegInfo::NORMAL; 1043 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 1044 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1045 return error(Loc, Twine("conflicting register classes, previously: ") + 1046 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1047 } 1048 RegInfo.D.RC = &RC; 1049 RegInfo.Explicit = true; 1050 return false; 1051 1052 case VRegInfo::GENERIC: 1053 case VRegInfo::REGBANK: 1054 return error(Loc, "register class specification on generic register"); 1055 } 1056 llvm_unreachable("Unexpected register kind"); 1057 } 1058 1059 // Should be a register bank or a generic register. 1060 const RegisterBank *RegBank = nullptr; 1061 if (Name != "_") { 1062 auto RBNameI = PFS.Names2RegBanks.find(Name); 1063 if (RBNameI == PFS.Names2RegBanks.end()) 1064 return error(Loc, "expected '_', register class, or register bank name"); 1065 RegBank = RBNameI->getValue(); 1066 } 1067 1068 lex(); 1069 1070 switch (RegInfo.Kind) { 1071 case VRegInfo::UNKNOWN: 1072 case VRegInfo::GENERIC: 1073 case VRegInfo::REGBANK: 1074 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1075 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1076 return error(Loc, "conflicting generic register banks"); 1077 RegInfo.D.RegBank = RegBank; 1078 RegInfo.Explicit = true; 1079 return false; 1080 1081 case VRegInfo::NORMAL: 1082 return error(Loc, "register bank specification on normal register"); 1083 } 1084 llvm_unreachable("Unexpected register kind"); 1085 } 1086 1087 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1088 const unsigned OldFlags = Flags; 1089 switch (Token.kind()) { 1090 case MIToken::kw_implicit: 1091 Flags |= RegState::Implicit; 1092 break; 1093 case MIToken::kw_implicit_define: 1094 Flags |= RegState::ImplicitDefine; 1095 break; 1096 case MIToken::kw_def: 1097 Flags |= RegState::Define; 1098 break; 1099 case MIToken::kw_dead: 1100 Flags |= RegState::Dead; 1101 break; 1102 case MIToken::kw_killed: 1103 Flags |= RegState::Kill; 1104 break; 1105 case MIToken::kw_undef: 1106 Flags |= RegState::Undef; 1107 break; 1108 case MIToken::kw_internal: 1109 Flags |= RegState::InternalRead; 1110 break; 1111 case MIToken::kw_early_clobber: 1112 Flags |= RegState::EarlyClobber; 1113 break; 1114 case MIToken::kw_debug_use: 1115 Flags |= RegState::Debug; 1116 break; 1117 case MIToken::kw_renamable: 1118 Flags |= RegState::Renamable; 1119 break; 1120 default: 1121 llvm_unreachable("The current token should be a register flag"); 1122 } 1123 if (OldFlags == Flags) 1124 // We know that the same flag is specified more than once when the flags 1125 // weren't modified. 1126 return error("duplicate '" + Token.stringValue() + "' register flag"); 1127 lex(); 1128 return false; 1129 } 1130 1131 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1132 assert(Token.is(MIToken::dot)); 1133 lex(); 1134 if (Token.isNot(MIToken::Identifier)) 1135 return error("expected a subregister index after '.'"); 1136 auto Name = Token.stringValue(); 1137 SubReg = getSubRegIndex(Name); 1138 if (!SubReg) 1139 return error(Twine("use of unknown subregister index '") + Name + "'"); 1140 lex(); 1141 return false; 1142 } 1143 1144 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1145 if (!consumeIfPresent(MIToken::kw_tied_def)) 1146 return true; 1147 if (Token.isNot(MIToken::IntegerLiteral)) 1148 return error("expected an integer literal after 'tied-def'"); 1149 if (getUnsigned(TiedDefIdx)) 1150 return true; 1151 lex(); 1152 if (expectAndConsume(MIToken::rparen)) 1153 return true; 1154 return false; 1155 } 1156 1157 bool MIParser::assignRegisterTies(MachineInstr &MI, 1158 ArrayRef<ParsedMachineOperand> Operands) { 1159 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1160 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1161 if (!Operands[I].TiedDefIdx) 1162 continue; 1163 // The parser ensures that this operand is a register use, so we just have 1164 // to check the tied-def operand. 1165 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1166 if (DefIdx >= E) 1167 return error(Operands[I].Begin, 1168 Twine("use of invalid tied-def operand index '" + 1169 Twine(DefIdx) + "'; instruction has only ") + 1170 Twine(E) + " operands"); 1171 const auto &DefOperand = Operands[DefIdx].Operand; 1172 if (!DefOperand.isReg() || !DefOperand.isDef()) 1173 // FIXME: add note with the def operand. 1174 return error(Operands[I].Begin, 1175 Twine("use of invalid tied-def operand index '") + 1176 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1177 " isn't a defined register"); 1178 // Check that the tied-def operand wasn't tied elsewhere. 1179 for (const auto &TiedPair : TiedRegisterPairs) { 1180 if (TiedPair.first == DefIdx) 1181 return error(Operands[I].Begin, 1182 Twine("the tied-def operand #") + Twine(DefIdx) + 1183 " is already tied with another register operand"); 1184 } 1185 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1186 } 1187 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1188 // indices must be less than tied max. 1189 for (const auto &TiedPair : TiedRegisterPairs) 1190 MI.tieOperands(TiedPair.first, TiedPair.second); 1191 return false; 1192 } 1193 1194 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1195 Optional<unsigned> &TiedDefIdx, 1196 bool IsDef) { 1197 unsigned Flags = IsDef ? RegState::Define : 0; 1198 while (Token.isRegisterFlag()) { 1199 if (parseRegisterFlag(Flags)) 1200 return true; 1201 } 1202 if (!Token.isRegister()) 1203 return error("expected a register after register flags"); 1204 unsigned Reg; 1205 VRegInfo *RegInfo; 1206 if (parseRegister(Reg, RegInfo)) 1207 return true; 1208 lex(); 1209 unsigned SubReg = 0; 1210 if (Token.is(MIToken::dot)) { 1211 if (parseSubRegisterIndex(SubReg)) 1212 return true; 1213 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1214 return error("subregister index expects a virtual register"); 1215 } 1216 if (Token.is(MIToken::colon)) { 1217 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1218 return error("register class specification expects a virtual register"); 1219 lex(); 1220 if (parseRegisterClassOrBank(*RegInfo)) 1221 return true; 1222 } 1223 MachineRegisterInfo &MRI = MF.getRegInfo(); 1224 if ((Flags & RegState::Define) == 0) { 1225 if (consumeIfPresent(MIToken::lparen)) { 1226 unsigned Idx; 1227 if (!parseRegisterTiedDefIndex(Idx)) 1228 TiedDefIdx = Idx; 1229 else { 1230 // Try a redundant low-level type. 1231 LLT Ty; 1232 if (parseLowLevelType(Token.location(), Ty)) 1233 return error("expected tied-def or low-level type after '('"); 1234 1235 if (expectAndConsume(MIToken::rparen)) 1236 return true; 1237 1238 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1239 return error("inconsistent type for generic virtual register"); 1240 1241 MRI.setType(Reg, Ty); 1242 } 1243 } 1244 } else if (consumeIfPresent(MIToken::lparen)) { 1245 // Virtual registers may have a tpe with GlobalISel. 1246 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1247 return error("unexpected type on physical register"); 1248 1249 LLT Ty; 1250 if (parseLowLevelType(Token.location(), Ty)) 1251 return true; 1252 1253 if (expectAndConsume(MIToken::rparen)) 1254 return true; 1255 1256 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1257 return error("inconsistent type for generic virtual register"); 1258 1259 MRI.setType(Reg, Ty); 1260 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1261 // Generic virtual registers must have a type. 1262 // If we end up here this means the type hasn't been specified and 1263 // this is bad! 1264 if (RegInfo->Kind == VRegInfo::GENERIC || 1265 RegInfo->Kind == VRegInfo::REGBANK) 1266 return error("generic virtual registers must have a type"); 1267 } 1268 Dest = MachineOperand::CreateReg( 1269 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1270 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1271 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1272 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1273 1274 return false; 1275 } 1276 1277 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1278 assert(Token.is(MIToken::IntegerLiteral)); 1279 const APSInt &Int = Token.integerValue(); 1280 if (Int.getMinSignedBits() > 64) 1281 return error("integer literal is too large to be an immediate operand"); 1282 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1283 lex(); 1284 return false; 1285 } 1286 1287 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1288 const Constant *&C) { 1289 auto Source = StringValue.str(); // The source has to be null terminated. 1290 SMDiagnostic Err; 1291 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1292 &PFS.IRSlots); 1293 if (!C) 1294 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1295 return false; 1296 } 1297 1298 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1299 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1300 return true; 1301 lex(); 1302 return false; 1303 } 1304 1305 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1306 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1307 StringRef SizeStr = Token.range().drop_front(); 1308 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1309 return error("expected integers after 's'/'p' type character"); 1310 } 1311 1312 if (Token.range().front() == 's') { 1313 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1314 lex(); 1315 return false; 1316 } else if (Token.range().front() == 'p') { 1317 const DataLayout &DL = MF.getDataLayout(); 1318 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1319 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1320 lex(); 1321 return false; 1322 } 1323 1324 // Now we're looking for a vector. 1325 if (Token.isNot(MIToken::less)) 1326 return error(Loc, 1327 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1328 lex(); 1329 1330 if (Token.isNot(MIToken::IntegerLiteral)) 1331 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1332 uint64_t NumElements = Token.integerValue().getZExtValue(); 1333 lex(); 1334 1335 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1336 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1337 lex(); 1338 1339 if (Token.range().front() != 's' && Token.range().front() != 'p') 1340 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1341 StringRef SizeStr = Token.range().drop_front(); 1342 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1343 return error("expected integers after 's'/'p' type character"); 1344 1345 if (Token.range().front() == 's') 1346 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1347 else if (Token.range().front() == 'p') { 1348 const DataLayout &DL = MF.getDataLayout(); 1349 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1350 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1351 } else 1352 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1353 lex(); 1354 1355 if (Token.isNot(MIToken::greater)) 1356 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1357 lex(); 1358 1359 Ty = LLT::vector(NumElements, Ty); 1360 return false; 1361 } 1362 1363 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1364 assert(Token.is(MIToken::Identifier)); 1365 StringRef TypeStr = Token.range(); 1366 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1367 TypeStr.front() != 'p') 1368 return error( 1369 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1370 StringRef SizeStr = Token.range().drop_front(); 1371 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1372 return error("expected integers after 'i'/'s'/'p' type character"); 1373 1374 auto Loc = Token.location(); 1375 lex(); 1376 if (Token.isNot(MIToken::IntegerLiteral)) { 1377 if (Token.isNot(MIToken::Identifier) || 1378 !(Token.range() == "true" || Token.range() == "false")) 1379 return error("expected an integer literal"); 1380 } 1381 const Constant *C = nullptr; 1382 if (parseIRConstant(Loc, C)) 1383 return true; 1384 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1385 return false; 1386 } 1387 1388 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1389 auto Loc = Token.location(); 1390 lex(); 1391 if (Token.isNot(MIToken::FloatingPointLiteral) && 1392 Token.isNot(MIToken::HexLiteral)) 1393 return error("expected a floating point literal"); 1394 const Constant *C = nullptr; 1395 if (parseIRConstant(Loc, C)) 1396 return true; 1397 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1398 return false; 1399 } 1400 1401 bool MIParser::getUnsigned(unsigned &Result) { 1402 if (Token.hasIntegerValue()) { 1403 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1404 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1405 if (Val64 == Limit) 1406 return error("expected 32-bit integer (too large)"); 1407 Result = Val64; 1408 return false; 1409 } 1410 if (Token.is(MIToken::HexLiteral)) { 1411 APInt A; 1412 if (getHexUint(A)) 1413 return true; 1414 if (A.getBitWidth() > 32) 1415 return error("expected 32-bit integer (too large)"); 1416 Result = A.getZExtValue(); 1417 return false; 1418 } 1419 return true; 1420 } 1421 1422 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1423 assert(Token.is(MIToken::MachineBasicBlock) || 1424 Token.is(MIToken::MachineBasicBlockLabel)); 1425 unsigned Number; 1426 if (getUnsigned(Number)) 1427 return true; 1428 auto MBBInfo = PFS.MBBSlots.find(Number); 1429 if (MBBInfo == PFS.MBBSlots.end()) 1430 return error(Twine("use of undefined machine basic block #") + 1431 Twine(Number)); 1432 MBB = MBBInfo->second; 1433 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1434 // we drop the <irname> from the bb.<id>.<irname> format. 1435 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1436 return error(Twine("the name of machine basic block #") + Twine(Number) + 1437 " isn't '" + Token.stringValue() + "'"); 1438 return false; 1439 } 1440 1441 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1442 MachineBasicBlock *MBB; 1443 if (parseMBBReference(MBB)) 1444 return true; 1445 Dest = MachineOperand::CreateMBB(MBB); 1446 lex(); 1447 return false; 1448 } 1449 1450 bool MIParser::parseStackFrameIndex(int &FI) { 1451 assert(Token.is(MIToken::StackObject)); 1452 unsigned ID; 1453 if (getUnsigned(ID)) 1454 return true; 1455 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1456 if (ObjectInfo == PFS.StackObjectSlots.end()) 1457 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1458 "'"); 1459 StringRef Name; 1460 if (const auto *Alloca = 1461 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1462 Name = Alloca->getName(); 1463 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1464 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1465 "' isn't '" + Token.stringValue() + "'"); 1466 lex(); 1467 FI = ObjectInfo->second; 1468 return false; 1469 } 1470 1471 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1472 int FI; 1473 if (parseStackFrameIndex(FI)) 1474 return true; 1475 Dest = MachineOperand::CreateFI(FI); 1476 return false; 1477 } 1478 1479 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1480 assert(Token.is(MIToken::FixedStackObject)); 1481 unsigned ID; 1482 if (getUnsigned(ID)) 1483 return true; 1484 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1485 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1486 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1487 Twine(ID) + "'"); 1488 lex(); 1489 FI = ObjectInfo->second; 1490 return false; 1491 } 1492 1493 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1494 int FI; 1495 if (parseFixedStackFrameIndex(FI)) 1496 return true; 1497 Dest = MachineOperand::CreateFI(FI); 1498 return false; 1499 } 1500 1501 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1502 switch (Token.kind()) { 1503 case MIToken::NamedGlobalValue: { 1504 const Module *M = MF.getFunction().getParent(); 1505 GV = M->getNamedValue(Token.stringValue()); 1506 if (!GV) 1507 return error(Twine("use of undefined global value '") + Token.range() + 1508 "'"); 1509 break; 1510 } 1511 case MIToken::GlobalValue: { 1512 unsigned GVIdx; 1513 if (getUnsigned(GVIdx)) 1514 return true; 1515 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1516 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1517 "'"); 1518 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1519 break; 1520 } 1521 default: 1522 llvm_unreachable("The current token should be a global value"); 1523 } 1524 return false; 1525 } 1526 1527 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1528 GlobalValue *GV = nullptr; 1529 if (parseGlobalValue(GV)) 1530 return true; 1531 lex(); 1532 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1533 if (parseOperandsOffset(Dest)) 1534 return true; 1535 return false; 1536 } 1537 1538 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1539 assert(Token.is(MIToken::ConstantPoolItem)); 1540 unsigned ID; 1541 if (getUnsigned(ID)) 1542 return true; 1543 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1544 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1545 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1546 lex(); 1547 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1548 if (parseOperandsOffset(Dest)) 1549 return true; 1550 return false; 1551 } 1552 1553 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1554 assert(Token.is(MIToken::JumpTableIndex)); 1555 unsigned ID; 1556 if (getUnsigned(ID)) 1557 return true; 1558 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1559 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1560 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1561 lex(); 1562 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1563 return false; 1564 } 1565 1566 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1567 assert(Token.is(MIToken::ExternalSymbol)); 1568 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1569 lex(); 1570 Dest = MachineOperand::CreateES(Symbol); 1571 if (parseOperandsOffset(Dest)) 1572 return true; 1573 return false; 1574 } 1575 1576 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1577 assert(Token.is(MIToken::SubRegisterIndex)); 1578 StringRef Name = Token.stringValue(); 1579 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1580 if (SubRegIndex == 0) 1581 return error(Twine("unknown subregister index '") + Name + "'"); 1582 lex(); 1583 Dest = MachineOperand::CreateImm(SubRegIndex); 1584 return false; 1585 } 1586 1587 bool MIParser::parseMDNode(MDNode *&Node) { 1588 assert(Token.is(MIToken::exclaim)); 1589 1590 auto Loc = Token.location(); 1591 lex(); 1592 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1593 return error("expected metadata id after '!'"); 1594 unsigned ID; 1595 if (getUnsigned(ID)) 1596 return true; 1597 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1598 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1599 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1600 lex(); 1601 Node = NodeInfo->second.get(); 1602 return false; 1603 } 1604 1605 bool MIParser::parseDIExpression(MDNode *&Expr) { 1606 assert(Token.is(MIToken::md_diexpr)); 1607 lex(); 1608 1609 // FIXME: Share this parsing with the IL parser. 1610 SmallVector<uint64_t, 8> Elements; 1611 1612 if (expectAndConsume(MIToken::lparen)) 1613 return true; 1614 1615 if (Token.isNot(MIToken::rparen)) { 1616 do { 1617 if (Token.is(MIToken::Identifier)) { 1618 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1619 lex(); 1620 Elements.push_back(Op); 1621 continue; 1622 } 1623 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1624 } 1625 1626 if (Token.isNot(MIToken::IntegerLiteral) || 1627 Token.integerValue().isSigned()) 1628 return error("expected unsigned integer"); 1629 1630 auto &U = Token.integerValue(); 1631 if (U.ugt(UINT64_MAX)) 1632 return error("element too large, limit is " + Twine(UINT64_MAX)); 1633 Elements.push_back(U.getZExtValue()); 1634 lex(); 1635 1636 } while (consumeIfPresent(MIToken::comma)); 1637 } 1638 1639 if (expectAndConsume(MIToken::rparen)) 1640 return true; 1641 1642 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1643 return false; 1644 } 1645 1646 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1647 MDNode *Node = nullptr; 1648 if (Token.is(MIToken::exclaim)) { 1649 if (parseMDNode(Node)) 1650 return true; 1651 } else if (Token.is(MIToken::md_diexpr)) { 1652 if (parseDIExpression(Node)) 1653 return true; 1654 } 1655 Dest = MachineOperand::CreateMetadata(Node); 1656 return false; 1657 } 1658 1659 bool MIParser::parseCFIOffset(int &Offset) { 1660 if (Token.isNot(MIToken::IntegerLiteral)) 1661 return error("expected a cfi offset"); 1662 if (Token.integerValue().getMinSignedBits() > 32) 1663 return error("expected a 32 bit integer (the cfi offset is too large)"); 1664 Offset = (int)Token.integerValue().getExtValue(); 1665 lex(); 1666 return false; 1667 } 1668 1669 bool MIParser::parseCFIRegister(unsigned &Reg) { 1670 if (Token.isNot(MIToken::NamedRegister)) 1671 return error("expected a cfi register"); 1672 unsigned LLVMReg; 1673 if (parseNamedRegister(LLVMReg)) 1674 return true; 1675 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1676 assert(TRI && "Expected target register info"); 1677 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1678 if (DwarfReg < 0) 1679 return error("invalid DWARF register"); 1680 Reg = (unsigned)DwarfReg; 1681 lex(); 1682 return false; 1683 } 1684 1685 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1686 do { 1687 if (Token.isNot(MIToken::HexLiteral)) 1688 return error("expected a hexadecimal literal"); 1689 unsigned Value; 1690 if (getUnsigned(Value)) 1691 return true; 1692 if (Value > UINT8_MAX) 1693 return error("expected a 8-bit integer (too large)"); 1694 Values.push_back(static_cast<uint8_t>(Value)); 1695 lex(); 1696 } while (consumeIfPresent(MIToken::comma)); 1697 return false; 1698 } 1699 1700 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1701 auto Kind = Token.kind(); 1702 lex(); 1703 int Offset; 1704 unsigned Reg; 1705 unsigned CFIIndex; 1706 switch (Kind) { 1707 case MIToken::kw_cfi_same_value: 1708 if (parseCFIRegister(Reg)) 1709 return true; 1710 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1711 break; 1712 case MIToken::kw_cfi_offset: 1713 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1714 parseCFIOffset(Offset)) 1715 return true; 1716 CFIIndex = 1717 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1718 break; 1719 case MIToken::kw_cfi_rel_offset: 1720 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1721 parseCFIOffset(Offset)) 1722 return true; 1723 CFIIndex = MF.addFrameInst( 1724 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1725 break; 1726 case MIToken::kw_cfi_def_cfa_register: 1727 if (parseCFIRegister(Reg)) 1728 return true; 1729 CFIIndex = 1730 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1731 break; 1732 case MIToken::kw_cfi_def_cfa_offset: 1733 if (parseCFIOffset(Offset)) 1734 return true; 1735 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1736 CFIIndex = MF.addFrameInst( 1737 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1738 break; 1739 case MIToken::kw_cfi_adjust_cfa_offset: 1740 if (parseCFIOffset(Offset)) 1741 return true; 1742 CFIIndex = MF.addFrameInst( 1743 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1744 break; 1745 case MIToken::kw_cfi_def_cfa: 1746 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1747 parseCFIOffset(Offset)) 1748 return true; 1749 // NB: MCCFIInstruction::createDefCfa negates the offset. 1750 CFIIndex = 1751 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1752 break; 1753 case MIToken::kw_cfi_remember_state: 1754 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1755 break; 1756 case MIToken::kw_cfi_restore: 1757 if (parseCFIRegister(Reg)) 1758 return true; 1759 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1760 break; 1761 case MIToken::kw_cfi_restore_state: 1762 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1763 break; 1764 case MIToken::kw_cfi_undefined: 1765 if (parseCFIRegister(Reg)) 1766 return true; 1767 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1768 break; 1769 case MIToken::kw_cfi_register: { 1770 unsigned Reg2; 1771 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1772 parseCFIRegister(Reg2)) 1773 return true; 1774 1775 CFIIndex = 1776 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1777 break; 1778 } 1779 case MIToken::kw_cfi_window_save: 1780 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1781 break; 1782 case MIToken::kw_cfi_escape: { 1783 std::string Values; 1784 if (parseCFIEscapeValues(Values)) 1785 return true; 1786 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1787 break; 1788 } 1789 default: 1790 // TODO: Parse the other CFI operands. 1791 llvm_unreachable("The current token should be a cfi operand"); 1792 } 1793 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1794 return false; 1795 } 1796 1797 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1798 switch (Token.kind()) { 1799 case MIToken::NamedIRBlock: { 1800 BB = dyn_cast_or_null<BasicBlock>( 1801 F.getValueSymbolTable()->lookup(Token.stringValue())); 1802 if (!BB) 1803 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1804 break; 1805 } 1806 case MIToken::IRBlock: { 1807 unsigned SlotNumber = 0; 1808 if (getUnsigned(SlotNumber)) 1809 return true; 1810 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1811 if (!BB) 1812 return error(Twine("use of undefined IR block '%ir-block.") + 1813 Twine(SlotNumber) + "'"); 1814 break; 1815 } 1816 default: 1817 llvm_unreachable("The current token should be an IR block reference"); 1818 } 1819 return false; 1820 } 1821 1822 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1823 assert(Token.is(MIToken::kw_blockaddress)); 1824 lex(); 1825 if (expectAndConsume(MIToken::lparen)) 1826 return true; 1827 if (Token.isNot(MIToken::GlobalValue) && 1828 Token.isNot(MIToken::NamedGlobalValue)) 1829 return error("expected a global value"); 1830 GlobalValue *GV = nullptr; 1831 if (parseGlobalValue(GV)) 1832 return true; 1833 auto *F = dyn_cast<Function>(GV); 1834 if (!F) 1835 return error("expected an IR function reference"); 1836 lex(); 1837 if (expectAndConsume(MIToken::comma)) 1838 return true; 1839 BasicBlock *BB = nullptr; 1840 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1841 return error("expected an IR block reference"); 1842 if (parseIRBlock(BB, *F)) 1843 return true; 1844 lex(); 1845 if (expectAndConsume(MIToken::rparen)) 1846 return true; 1847 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1848 if (parseOperandsOffset(Dest)) 1849 return true; 1850 return false; 1851 } 1852 1853 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1854 assert(Token.is(MIToken::kw_intrinsic)); 1855 lex(); 1856 if (expectAndConsume(MIToken::lparen)) 1857 return error("expected syntax intrinsic(@llvm.whatever)"); 1858 1859 if (Token.isNot(MIToken::NamedGlobalValue)) 1860 return error("expected syntax intrinsic(@llvm.whatever)"); 1861 1862 std::string Name = Token.stringValue(); 1863 lex(); 1864 1865 if (expectAndConsume(MIToken::rparen)) 1866 return error("expected ')' to terminate intrinsic name"); 1867 1868 // Find out what intrinsic we're dealing with, first try the global namespace 1869 // and then the target's private intrinsics if that fails. 1870 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1871 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1872 if (ID == Intrinsic::not_intrinsic && TII) 1873 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1874 1875 if (ID == Intrinsic::not_intrinsic) 1876 return error("unknown intrinsic name"); 1877 Dest = MachineOperand::CreateIntrinsicID(ID); 1878 1879 return false; 1880 } 1881 1882 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1883 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1884 bool IsFloat = Token.is(MIToken::kw_floatpred); 1885 lex(); 1886 1887 if (expectAndConsume(MIToken::lparen)) 1888 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1889 1890 if (Token.isNot(MIToken::Identifier)) 1891 return error("whatever"); 1892 1893 CmpInst::Predicate Pred; 1894 if (IsFloat) { 1895 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1896 .Case("false", CmpInst::FCMP_FALSE) 1897 .Case("oeq", CmpInst::FCMP_OEQ) 1898 .Case("ogt", CmpInst::FCMP_OGT) 1899 .Case("oge", CmpInst::FCMP_OGE) 1900 .Case("olt", CmpInst::FCMP_OLT) 1901 .Case("ole", CmpInst::FCMP_OLE) 1902 .Case("one", CmpInst::FCMP_ONE) 1903 .Case("ord", CmpInst::FCMP_ORD) 1904 .Case("uno", CmpInst::FCMP_UNO) 1905 .Case("ueq", CmpInst::FCMP_UEQ) 1906 .Case("ugt", CmpInst::FCMP_UGT) 1907 .Case("uge", CmpInst::FCMP_UGE) 1908 .Case("ult", CmpInst::FCMP_ULT) 1909 .Case("ule", CmpInst::FCMP_ULE) 1910 .Case("une", CmpInst::FCMP_UNE) 1911 .Case("true", CmpInst::FCMP_TRUE) 1912 .Default(CmpInst::BAD_FCMP_PREDICATE); 1913 if (!CmpInst::isFPPredicate(Pred)) 1914 return error("invalid floating-point predicate"); 1915 } else { 1916 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1917 .Case("eq", CmpInst::ICMP_EQ) 1918 .Case("ne", CmpInst::ICMP_NE) 1919 .Case("sgt", CmpInst::ICMP_SGT) 1920 .Case("sge", CmpInst::ICMP_SGE) 1921 .Case("slt", CmpInst::ICMP_SLT) 1922 .Case("sle", CmpInst::ICMP_SLE) 1923 .Case("ugt", CmpInst::ICMP_UGT) 1924 .Case("uge", CmpInst::ICMP_UGE) 1925 .Case("ult", CmpInst::ICMP_ULT) 1926 .Case("ule", CmpInst::ICMP_ULE) 1927 .Default(CmpInst::BAD_ICMP_PREDICATE); 1928 if (!CmpInst::isIntPredicate(Pred)) 1929 return error("invalid integer predicate"); 1930 } 1931 1932 lex(); 1933 Dest = MachineOperand::CreatePredicate(Pred); 1934 if (expectAndConsume(MIToken::rparen)) 1935 return error("predicate should be terminated by ')'."); 1936 1937 return false; 1938 } 1939 1940 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1941 assert(Token.is(MIToken::kw_target_index)); 1942 lex(); 1943 if (expectAndConsume(MIToken::lparen)) 1944 return true; 1945 if (Token.isNot(MIToken::Identifier)) 1946 return error("expected the name of the target index"); 1947 int Index = 0; 1948 if (getTargetIndex(Token.stringValue(), Index)) 1949 return error("use of undefined target index '" + Token.stringValue() + "'"); 1950 lex(); 1951 if (expectAndConsume(MIToken::rparen)) 1952 return true; 1953 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1954 if (parseOperandsOffset(Dest)) 1955 return true; 1956 return false; 1957 } 1958 1959 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1960 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1961 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1962 assert(TRI && "Expected target register info"); 1963 lex(); 1964 if (expectAndConsume(MIToken::lparen)) 1965 return true; 1966 1967 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1968 while (true) { 1969 if (Token.isNot(MIToken::NamedRegister)) 1970 return error("expected a named register"); 1971 unsigned Reg; 1972 if (parseNamedRegister(Reg)) 1973 return true; 1974 lex(); 1975 Mask[Reg / 32] |= 1U << (Reg % 32); 1976 // TODO: Report an error if the same register is used more than once. 1977 if (Token.isNot(MIToken::comma)) 1978 break; 1979 lex(); 1980 } 1981 1982 if (expectAndConsume(MIToken::rparen)) 1983 return true; 1984 Dest = MachineOperand::CreateRegMask(Mask); 1985 return false; 1986 } 1987 1988 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1989 assert(Token.is(MIToken::kw_liveout)); 1990 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1991 assert(TRI && "Expected target register info"); 1992 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1993 lex(); 1994 if (expectAndConsume(MIToken::lparen)) 1995 return true; 1996 while (true) { 1997 if (Token.isNot(MIToken::NamedRegister)) 1998 return error("expected a named register"); 1999 unsigned Reg; 2000 if (parseNamedRegister(Reg)) 2001 return true; 2002 lex(); 2003 Mask[Reg / 32] |= 1U << (Reg % 32); 2004 // TODO: Report an error if the same register is used more than once. 2005 if (Token.isNot(MIToken::comma)) 2006 break; 2007 lex(); 2008 } 2009 if (expectAndConsume(MIToken::rparen)) 2010 return true; 2011 Dest = MachineOperand::CreateRegLiveOut(Mask); 2012 return false; 2013 } 2014 2015 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2016 Optional<unsigned> &TiedDefIdx) { 2017 switch (Token.kind()) { 2018 case MIToken::kw_implicit: 2019 case MIToken::kw_implicit_define: 2020 case MIToken::kw_def: 2021 case MIToken::kw_dead: 2022 case MIToken::kw_killed: 2023 case MIToken::kw_undef: 2024 case MIToken::kw_internal: 2025 case MIToken::kw_early_clobber: 2026 case MIToken::kw_debug_use: 2027 case MIToken::kw_renamable: 2028 case MIToken::underscore: 2029 case MIToken::NamedRegister: 2030 case MIToken::VirtualRegister: 2031 case MIToken::NamedVirtualRegister: 2032 return parseRegisterOperand(Dest, TiedDefIdx); 2033 case MIToken::IntegerLiteral: 2034 return parseImmediateOperand(Dest); 2035 case MIToken::kw_half: 2036 case MIToken::kw_float: 2037 case MIToken::kw_double: 2038 case MIToken::kw_x86_fp80: 2039 case MIToken::kw_fp128: 2040 case MIToken::kw_ppc_fp128: 2041 return parseFPImmediateOperand(Dest); 2042 case MIToken::MachineBasicBlock: 2043 return parseMBBOperand(Dest); 2044 case MIToken::StackObject: 2045 return parseStackObjectOperand(Dest); 2046 case MIToken::FixedStackObject: 2047 return parseFixedStackObjectOperand(Dest); 2048 case MIToken::GlobalValue: 2049 case MIToken::NamedGlobalValue: 2050 return parseGlobalAddressOperand(Dest); 2051 case MIToken::ConstantPoolItem: 2052 return parseConstantPoolIndexOperand(Dest); 2053 case MIToken::JumpTableIndex: 2054 return parseJumpTableIndexOperand(Dest); 2055 case MIToken::ExternalSymbol: 2056 return parseExternalSymbolOperand(Dest); 2057 case MIToken::SubRegisterIndex: 2058 return parseSubRegisterIndexOperand(Dest); 2059 case MIToken::md_diexpr: 2060 case MIToken::exclaim: 2061 return parseMetadataOperand(Dest); 2062 case MIToken::kw_cfi_same_value: 2063 case MIToken::kw_cfi_offset: 2064 case MIToken::kw_cfi_rel_offset: 2065 case MIToken::kw_cfi_def_cfa_register: 2066 case MIToken::kw_cfi_def_cfa_offset: 2067 case MIToken::kw_cfi_adjust_cfa_offset: 2068 case MIToken::kw_cfi_escape: 2069 case MIToken::kw_cfi_def_cfa: 2070 case MIToken::kw_cfi_register: 2071 case MIToken::kw_cfi_remember_state: 2072 case MIToken::kw_cfi_restore: 2073 case MIToken::kw_cfi_restore_state: 2074 case MIToken::kw_cfi_undefined: 2075 case MIToken::kw_cfi_window_save: 2076 return parseCFIOperand(Dest); 2077 case MIToken::kw_blockaddress: 2078 return parseBlockAddressOperand(Dest); 2079 case MIToken::kw_intrinsic: 2080 return parseIntrinsicOperand(Dest); 2081 case MIToken::kw_target_index: 2082 return parseTargetIndexOperand(Dest); 2083 case MIToken::kw_liveout: 2084 return parseLiveoutRegisterMaskOperand(Dest); 2085 case MIToken::kw_floatpred: 2086 case MIToken::kw_intpred: 2087 return parsePredicateOperand(Dest); 2088 case MIToken::Error: 2089 return true; 2090 case MIToken::Identifier: 2091 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2092 Dest = MachineOperand::CreateRegMask(RegMask); 2093 lex(); 2094 break; 2095 } else if (Token.stringValue() == "CustomRegMask") { 2096 return parseCustomRegisterMaskOperand(Dest); 2097 } else 2098 return parseTypedImmediateOperand(Dest); 2099 default: 2100 // FIXME: Parse the MCSymbol machine operand. 2101 return error("expected a machine operand"); 2102 } 2103 return false; 2104 } 2105 2106 bool MIParser::parseMachineOperandAndTargetFlags( 2107 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2108 unsigned TF = 0; 2109 bool HasTargetFlags = false; 2110 if (Token.is(MIToken::kw_target_flags)) { 2111 HasTargetFlags = true; 2112 lex(); 2113 if (expectAndConsume(MIToken::lparen)) 2114 return true; 2115 if (Token.isNot(MIToken::Identifier)) 2116 return error("expected the name of the target flag"); 2117 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2118 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2119 return error("use of undefined target flag '" + Token.stringValue() + 2120 "'"); 2121 } 2122 lex(); 2123 while (Token.is(MIToken::comma)) { 2124 lex(); 2125 if (Token.isNot(MIToken::Identifier)) 2126 return error("expected the name of the target flag"); 2127 unsigned BitFlag = 0; 2128 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2129 return error("use of undefined target flag '" + Token.stringValue() + 2130 "'"); 2131 // TODO: Report an error when using a duplicate bit target flag. 2132 TF |= BitFlag; 2133 lex(); 2134 } 2135 if (expectAndConsume(MIToken::rparen)) 2136 return true; 2137 } 2138 auto Loc = Token.location(); 2139 if (parseMachineOperand(Dest, TiedDefIdx)) 2140 return true; 2141 if (!HasTargetFlags) 2142 return false; 2143 if (Dest.isReg()) 2144 return error(Loc, "register operands can't have target flags"); 2145 Dest.setTargetFlags(TF); 2146 return false; 2147 } 2148 2149 bool MIParser::parseOffset(int64_t &Offset) { 2150 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2151 return false; 2152 StringRef Sign = Token.range(); 2153 bool IsNegative = Token.is(MIToken::minus); 2154 lex(); 2155 if (Token.isNot(MIToken::IntegerLiteral)) 2156 return error("expected an integer literal after '" + Sign + "'"); 2157 if (Token.integerValue().getMinSignedBits() > 64) 2158 return error("expected 64-bit integer (too large)"); 2159 Offset = Token.integerValue().getExtValue(); 2160 if (IsNegative) 2161 Offset = -Offset; 2162 lex(); 2163 return false; 2164 } 2165 2166 bool MIParser::parseAlignment(unsigned &Alignment) { 2167 assert(Token.is(MIToken::kw_align)); 2168 lex(); 2169 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2170 return error("expected an integer literal after 'align'"); 2171 if (getUnsigned(Alignment)) 2172 return true; 2173 lex(); 2174 return false; 2175 } 2176 2177 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2178 assert(Token.is(MIToken::kw_addrspace)); 2179 lex(); 2180 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2181 return error("expected an integer literal after 'addrspace'"); 2182 if (getUnsigned(Addrspace)) 2183 return true; 2184 lex(); 2185 return false; 2186 } 2187 2188 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2189 int64_t Offset = 0; 2190 if (parseOffset(Offset)) 2191 return true; 2192 Op.setOffset(Offset); 2193 return false; 2194 } 2195 2196 bool MIParser::parseIRValue(const Value *&V) { 2197 switch (Token.kind()) { 2198 case MIToken::NamedIRValue: { 2199 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2200 break; 2201 } 2202 case MIToken::IRValue: { 2203 unsigned SlotNumber = 0; 2204 if (getUnsigned(SlotNumber)) 2205 return true; 2206 V = getIRValue(SlotNumber); 2207 break; 2208 } 2209 case MIToken::NamedGlobalValue: 2210 case MIToken::GlobalValue: { 2211 GlobalValue *GV = nullptr; 2212 if (parseGlobalValue(GV)) 2213 return true; 2214 V = GV; 2215 break; 2216 } 2217 case MIToken::QuotedIRValue: { 2218 const Constant *C = nullptr; 2219 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2220 return true; 2221 V = C; 2222 break; 2223 } 2224 default: 2225 llvm_unreachable("The current token should be an IR block reference"); 2226 } 2227 if (!V) 2228 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2229 return false; 2230 } 2231 2232 bool MIParser::getUint64(uint64_t &Result) { 2233 if (Token.hasIntegerValue()) { 2234 if (Token.integerValue().getActiveBits() > 64) 2235 return error("expected 64-bit integer (too large)"); 2236 Result = Token.integerValue().getZExtValue(); 2237 return false; 2238 } 2239 if (Token.is(MIToken::HexLiteral)) { 2240 APInt A; 2241 if (getHexUint(A)) 2242 return true; 2243 if (A.getBitWidth() > 64) 2244 return error("expected 64-bit integer (too large)"); 2245 Result = A.getZExtValue(); 2246 return false; 2247 } 2248 return true; 2249 } 2250 2251 bool MIParser::getHexUint(APInt &Result) { 2252 assert(Token.is(MIToken::HexLiteral)); 2253 StringRef S = Token.range(); 2254 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2255 // This could be a floating point literal with a special prefix. 2256 if (!isxdigit(S[2])) 2257 return true; 2258 StringRef V = S.substr(2); 2259 APInt A(V.size()*4, V, 16); 2260 2261 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2262 // sure it isn't the case before constructing result. 2263 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2264 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2265 return false; 2266 } 2267 2268 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2269 const auto OldFlags = Flags; 2270 switch (Token.kind()) { 2271 case MIToken::kw_volatile: 2272 Flags |= MachineMemOperand::MOVolatile; 2273 break; 2274 case MIToken::kw_non_temporal: 2275 Flags |= MachineMemOperand::MONonTemporal; 2276 break; 2277 case MIToken::kw_dereferenceable: 2278 Flags |= MachineMemOperand::MODereferenceable; 2279 break; 2280 case MIToken::kw_invariant: 2281 Flags |= MachineMemOperand::MOInvariant; 2282 break; 2283 case MIToken::StringConstant: { 2284 MachineMemOperand::Flags TF; 2285 if (getMMOTargetFlag(Token.stringValue(), TF)) 2286 return error("use of undefined target MMO flag '" + Token.stringValue() + 2287 "'"); 2288 Flags |= TF; 2289 break; 2290 } 2291 default: 2292 llvm_unreachable("The current token should be a memory operand flag"); 2293 } 2294 if (OldFlags == Flags) 2295 // We know that the same flag is specified more than once when the flags 2296 // weren't modified. 2297 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2298 lex(); 2299 return false; 2300 } 2301 2302 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2303 switch (Token.kind()) { 2304 case MIToken::kw_stack: 2305 PSV = MF.getPSVManager().getStack(); 2306 break; 2307 case MIToken::kw_got: 2308 PSV = MF.getPSVManager().getGOT(); 2309 break; 2310 case MIToken::kw_jump_table: 2311 PSV = MF.getPSVManager().getJumpTable(); 2312 break; 2313 case MIToken::kw_constant_pool: 2314 PSV = MF.getPSVManager().getConstantPool(); 2315 break; 2316 case MIToken::FixedStackObject: { 2317 int FI; 2318 if (parseFixedStackFrameIndex(FI)) 2319 return true; 2320 PSV = MF.getPSVManager().getFixedStack(FI); 2321 // The token was already consumed, so use return here instead of break. 2322 return false; 2323 } 2324 case MIToken::StackObject: { 2325 int FI; 2326 if (parseStackFrameIndex(FI)) 2327 return true; 2328 PSV = MF.getPSVManager().getFixedStack(FI); 2329 // The token was already consumed, so use return here instead of break. 2330 return false; 2331 } 2332 case MIToken::kw_call_entry: 2333 lex(); 2334 switch (Token.kind()) { 2335 case MIToken::GlobalValue: 2336 case MIToken::NamedGlobalValue: { 2337 GlobalValue *GV = nullptr; 2338 if (parseGlobalValue(GV)) 2339 return true; 2340 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2341 break; 2342 } 2343 case MIToken::ExternalSymbol: 2344 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2345 MF.createExternalSymbolName(Token.stringValue())); 2346 break; 2347 default: 2348 return error( 2349 "expected a global value or an external symbol after 'call-entry'"); 2350 } 2351 break; 2352 default: 2353 llvm_unreachable("The current token should be pseudo source value"); 2354 } 2355 lex(); 2356 return false; 2357 } 2358 2359 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2360 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2361 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2362 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2363 Token.is(MIToken::kw_call_entry)) { 2364 const PseudoSourceValue *PSV = nullptr; 2365 if (parseMemoryPseudoSourceValue(PSV)) 2366 return true; 2367 int64_t Offset = 0; 2368 if (parseOffset(Offset)) 2369 return true; 2370 Dest = MachinePointerInfo(PSV, Offset); 2371 return false; 2372 } 2373 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2374 Token.isNot(MIToken::GlobalValue) && 2375 Token.isNot(MIToken::NamedGlobalValue) && 2376 Token.isNot(MIToken::QuotedIRValue)) 2377 return error("expected an IR value reference"); 2378 const Value *V = nullptr; 2379 if (parseIRValue(V)) 2380 return true; 2381 if (!V->getType()->isPointerTy()) 2382 return error("expected a pointer IR value"); 2383 lex(); 2384 int64_t Offset = 0; 2385 if (parseOffset(Offset)) 2386 return true; 2387 Dest = MachinePointerInfo(V, Offset); 2388 return false; 2389 } 2390 2391 bool MIParser::parseOptionalScope(LLVMContext &Context, 2392 SyncScope::ID &SSID) { 2393 SSID = SyncScope::System; 2394 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2395 lex(); 2396 if (expectAndConsume(MIToken::lparen)) 2397 return error("expected '(' in syncscope"); 2398 2399 std::string SSN; 2400 if (parseStringConstant(SSN)) 2401 return true; 2402 2403 SSID = Context.getOrInsertSyncScopeID(SSN); 2404 if (expectAndConsume(MIToken::rparen)) 2405 return error("expected ')' in syncscope"); 2406 } 2407 2408 return false; 2409 } 2410 2411 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2412 Order = AtomicOrdering::NotAtomic; 2413 if (Token.isNot(MIToken::Identifier)) 2414 return false; 2415 2416 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2417 .Case("unordered", AtomicOrdering::Unordered) 2418 .Case("monotonic", AtomicOrdering::Monotonic) 2419 .Case("acquire", AtomicOrdering::Acquire) 2420 .Case("release", AtomicOrdering::Release) 2421 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2422 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2423 .Default(AtomicOrdering::NotAtomic); 2424 2425 if (Order != AtomicOrdering::NotAtomic) { 2426 lex(); 2427 return false; 2428 } 2429 2430 return error("expected an atomic scope, ordering or a size integer literal"); 2431 } 2432 2433 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2434 if (expectAndConsume(MIToken::lparen)) 2435 return true; 2436 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2437 while (Token.isMemoryOperandFlag()) { 2438 if (parseMemoryOperandFlag(Flags)) 2439 return true; 2440 } 2441 if (Token.isNot(MIToken::Identifier) || 2442 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2443 return error("expected 'load' or 'store' memory operation"); 2444 if (Token.stringValue() == "load") 2445 Flags |= MachineMemOperand::MOLoad; 2446 else 2447 Flags |= MachineMemOperand::MOStore; 2448 lex(); 2449 2450 // Optional 'store' for operands that both load and store. 2451 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2452 Flags |= MachineMemOperand::MOStore; 2453 lex(); 2454 } 2455 2456 // Optional synchronization scope. 2457 SyncScope::ID SSID; 2458 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2459 return true; 2460 2461 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2462 AtomicOrdering Order, FailureOrder; 2463 if (parseOptionalAtomicOrdering(Order)) 2464 return true; 2465 2466 if (parseOptionalAtomicOrdering(FailureOrder)) 2467 return true; 2468 2469 if (Token.isNot(MIToken::IntegerLiteral)) 2470 return error("expected the size integer literal after memory operation"); 2471 uint64_t Size; 2472 if (getUint64(Size)) 2473 return true; 2474 lex(); 2475 2476 MachinePointerInfo Ptr = MachinePointerInfo(); 2477 if (Token.is(MIToken::Identifier)) { 2478 const char *Word = 2479 ((Flags & MachineMemOperand::MOLoad) && 2480 (Flags & MachineMemOperand::MOStore)) 2481 ? "on" 2482 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2483 if (Token.stringValue() != Word) 2484 return error(Twine("expected '") + Word + "'"); 2485 lex(); 2486 2487 if (parseMachinePointerInfo(Ptr)) 2488 return true; 2489 } 2490 unsigned BaseAlignment = Size; 2491 AAMDNodes AAInfo; 2492 MDNode *Range = nullptr; 2493 while (consumeIfPresent(MIToken::comma)) { 2494 switch (Token.kind()) { 2495 case MIToken::kw_align: 2496 if (parseAlignment(BaseAlignment)) 2497 return true; 2498 break; 2499 case MIToken::kw_addrspace: 2500 if (parseAddrspace(Ptr.AddrSpace)) 2501 return true; 2502 break; 2503 case MIToken::md_tbaa: 2504 lex(); 2505 if (parseMDNode(AAInfo.TBAA)) 2506 return true; 2507 break; 2508 case MIToken::md_alias_scope: 2509 lex(); 2510 if (parseMDNode(AAInfo.Scope)) 2511 return true; 2512 break; 2513 case MIToken::md_noalias: 2514 lex(); 2515 if (parseMDNode(AAInfo.NoAlias)) 2516 return true; 2517 break; 2518 case MIToken::md_range: 2519 lex(); 2520 if (parseMDNode(Range)) 2521 return true; 2522 break; 2523 // TODO: Report an error on duplicate metadata nodes. 2524 default: 2525 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2526 "'!noalias' or '!range'"); 2527 } 2528 } 2529 if (expectAndConsume(MIToken::rparen)) 2530 return true; 2531 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2532 SSID, Order, FailureOrder); 2533 return false; 2534 } 2535 2536 void MIParser::initNames2InstrOpCodes() { 2537 if (!Names2InstrOpCodes.empty()) 2538 return; 2539 const auto *TII = MF.getSubtarget().getInstrInfo(); 2540 assert(TII && "Expected target instruction info"); 2541 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2542 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2543 } 2544 2545 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2546 initNames2InstrOpCodes(); 2547 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2548 if (InstrInfo == Names2InstrOpCodes.end()) 2549 return true; 2550 OpCode = InstrInfo->getValue(); 2551 return false; 2552 } 2553 2554 void MIParser::initNames2Regs() { 2555 if (!Names2Regs.empty()) 2556 return; 2557 // The '%noreg' register is the register 0. 2558 Names2Regs.insert(std::make_pair("noreg", 0)); 2559 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2560 assert(TRI && "Expected target register info"); 2561 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2562 bool WasInserted = 2563 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2564 .second; 2565 (void)WasInserted; 2566 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2567 } 2568 } 2569 2570 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2571 initNames2Regs(); 2572 auto RegInfo = Names2Regs.find(RegName); 2573 if (RegInfo == Names2Regs.end()) 2574 return true; 2575 Reg = RegInfo->getValue(); 2576 return false; 2577 } 2578 2579 void MIParser::initNames2RegMasks() { 2580 if (!Names2RegMasks.empty()) 2581 return; 2582 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2583 assert(TRI && "Expected target register info"); 2584 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2585 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2586 assert(RegMasks.size() == RegMaskNames.size()); 2587 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2588 Names2RegMasks.insert( 2589 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2590 } 2591 2592 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2593 initNames2RegMasks(); 2594 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2595 if (RegMaskInfo == Names2RegMasks.end()) 2596 return nullptr; 2597 return RegMaskInfo->getValue(); 2598 } 2599 2600 void MIParser::initNames2SubRegIndices() { 2601 if (!Names2SubRegIndices.empty()) 2602 return; 2603 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2604 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2605 Names2SubRegIndices.insert( 2606 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2607 } 2608 2609 unsigned MIParser::getSubRegIndex(StringRef Name) { 2610 initNames2SubRegIndices(); 2611 auto SubRegInfo = Names2SubRegIndices.find(Name); 2612 if (SubRegInfo == Names2SubRegIndices.end()) 2613 return 0; 2614 return SubRegInfo->getValue(); 2615 } 2616 2617 static void initSlots2BasicBlocks( 2618 const Function &F, 2619 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2620 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2621 MST.incorporateFunction(F); 2622 for (auto &BB : F) { 2623 if (BB.hasName()) 2624 continue; 2625 int Slot = MST.getLocalSlot(&BB); 2626 if (Slot == -1) 2627 continue; 2628 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2629 } 2630 } 2631 2632 static const BasicBlock *getIRBlockFromSlot( 2633 unsigned Slot, 2634 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2635 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2636 if (BlockInfo == Slots2BasicBlocks.end()) 2637 return nullptr; 2638 return BlockInfo->second; 2639 } 2640 2641 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2642 if (Slots2BasicBlocks.empty()) 2643 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2644 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2645 } 2646 2647 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2648 if (&F == &MF.getFunction()) 2649 return getIRBlock(Slot); 2650 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2651 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2652 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2653 } 2654 2655 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2656 DenseMap<unsigned, const Value *> &Slots2Values) { 2657 int Slot = MST.getLocalSlot(V); 2658 if (Slot == -1) 2659 return; 2660 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2661 } 2662 2663 /// Creates the mapping from slot numbers to function's unnamed IR values. 2664 static void initSlots2Values(const Function &F, 2665 DenseMap<unsigned, const Value *> &Slots2Values) { 2666 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2667 MST.incorporateFunction(F); 2668 for (const auto &Arg : F.args()) 2669 mapValueToSlot(&Arg, MST, Slots2Values); 2670 for (const auto &BB : F) { 2671 mapValueToSlot(&BB, MST, Slots2Values); 2672 for (const auto &I : BB) 2673 mapValueToSlot(&I, MST, Slots2Values); 2674 } 2675 } 2676 2677 const Value *MIParser::getIRValue(unsigned Slot) { 2678 if (Slots2Values.empty()) 2679 initSlots2Values(MF.getFunction(), Slots2Values); 2680 auto ValueInfo = Slots2Values.find(Slot); 2681 if (ValueInfo == Slots2Values.end()) 2682 return nullptr; 2683 return ValueInfo->second; 2684 } 2685 2686 void MIParser::initNames2TargetIndices() { 2687 if (!Names2TargetIndices.empty()) 2688 return; 2689 const auto *TII = MF.getSubtarget().getInstrInfo(); 2690 assert(TII && "Expected target instruction info"); 2691 auto Indices = TII->getSerializableTargetIndices(); 2692 for (const auto &I : Indices) 2693 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2694 } 2695 2696 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2697 initNames2TargetIndices(); 2698 auto IndexInfo = Names2TargetIndices.find(Name); 2699 if (IndexInfo == Names2TargetIndices.end()) 2700 return true; 2701 Index = IndexInfo->second; 2702 return false; 2703 } 2704 2705 void MIParser::initNames2DirectTargetFlags() { 2706 if (!Names2DirectTargetFlags.empty()) 2707 return; 2708 const auto *TII = MF.getSubtarget().getInstrInfo(); 2709 assert(TII && "Expected target instruction info"); 2710 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2711 for (const auto &I : Flags) 2712 Names2DirectTargetFlags.insert( 2713 std::make_pair(StringRef(I.second), I.first)); 2714 } 2715 2716 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2717 initNames2DirectTargetFlags(); 2718 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2719 if (FlagInfo == Names2DirectTargetFlags.end()) 2720 return true; 2721 Flag = FlagInfo->second; 2722 return false; 2723 } 2724 2725 void MIParser::initNames2BitmaskTargetFlags() { 2726 if (!Names2BitmaskTargetFlags.empty()) 2727 return; 2728 const auto *TII = MF.getSubtarget().getInstrInfo(); 2729 assert(TII && "Expected target instruction info"); 2730 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2731 for (const auto &I : Flags) 2732 Names2BitmaskTargetFlags.insert( 2733 std::make_pair(StringRef(I.second), I.first)); 2734 } 2735 2736 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2737 initNames2BitmaskTargetFlags(); 2738 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2739 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2740 return true; 2741 Flag = FlagInfo->second; 2742 return false; 2743 } 2744 2745 void MIParser::initNames2MMOTargetFlags() { 2746 if (!Names2MMOTargetFlags.empty()) 2747 return; 2748 const auto *TII = MF.getSubtarget().getInstrInfo(); 2749 assert(TII && "Expected target instruction info"); 2750 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2751 for (const auto &I : Flags) 2752 Names2MMOTargetFlags.insert( 2753 std::make_pair(StringRef(I.second), I.first)); 2754 } 2755 2756 bool MIParser::getMMOTargetFlag(StringRef Name, 2757 MachineMemOperand::Flags &Flag) { 2758 initNames2MMOTargetFlags(); 2759 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2760 if (FlagInfo == Names2MMOTargetFlags.end()) 2761 return true; 2762 Flag = FlagInfo->second; 2763 return false; 2764 } 2765 2766 bool MIParser::parseStringConstant(std::string &Result) { 2767 if (Token.isNot(MIToken::StringConstant)) 2768 return error("expected string constant"); 2769 Result = Token.stringValue(); 2770 lex(); 2771 return false; 2772 } 2773 2774 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2775 StringRef Src, 2776 SMDiagnostic &Error) { 2777 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2778 } 2779 2780 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2781 StringRef Src, SMDiagnostic &Error) { 2782 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2783 } 2784 2785 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2786 MachineBasicBlock *&MBB, StringRef Src, 2787 SMDiagnostic &Error) { 2788 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2789 } 2790 2791 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2792 unsigned &Reg, StringRef Src, 2793 SMDiagnostic &Error) { 2794 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2795 } 2796 2797 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2798 unsigned &Reg, StringRef Src, 2799 SMDiagnostic &Error) { 2800 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2801 } 2802 2803 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2804 VRegInfo *&Info, StringRef Src, 2805 SMDiagnostic &Error) { 2806 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2807 } 2808 2809 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2810 int &FI, StringRef Src, 2811 SMDiagnostic &Error) { 2812 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2813 } 2814 2815 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2816 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2817 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2818 } 2819