1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRFormatter.h" 32 #include "llvm/CodeGen/MIRPrinter.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 Register &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 auto ValueInfo = Slots2Values.find(Slot); 373 if (ValueInfo == Slots2Values.end()) 374 return nullptr; 375 return ValueInfo->second; 376 } 377 378 namespace { 379 380 /// A wrapper struct around the 'MachineOperand' struct that includes a source 381 /// range and other attributes. 382 struct ParsedMachineOperand { 383 MachineOperand Operand; 384 StringRef::iterator Begin; 385 StringRef::iterator End; 386 Optional<unsigned> TiedDefIdx; 387 388 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 389 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 390 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 391 if (TiedDefIdx) 392 assert(Operand.isReg() && Operand.isUse() && 393 "Only used register operands can be tied"); 394 } 395 }; 396 397 class MIParser { 398 MachineFunction &MF; 399 SMDiagnostic &Error; 400 StringRef Source, CurrentSource; 401 MIToken Token; 402 PerFunctionMIParsingState &PFS; 403 /// Maps from slot numbers to function's unnamed basic blocks. 404 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 405 406 public: 407 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 408 StringRef Source); 409 410 /// \p SkipChar gives the number of characters to skip before looking 411 /// for the next token. 412 void lex(unsigned SkipChar = 0); 413 414 /// Report an error at the current location with the given message. 415 /// 416 /// This function always return true. 417 bool error(const Twine &Msg); 418 419 /// Report an error at the given location with the given message. 420 /// 421 /// This function always return true. 422 bool error(StringRef::iterator Loc, const Twine &Msg); 423 424 bool 425 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 426 bool parseBasicBlocks(); 427 bool parse(MachineInstr *&MI); 428 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 429 bool parseStandaloneNamedRegister(Register &Reg); 430 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 431 bool parseStandaloneRegister(Register &Reg); 432 bool parseStandaloneStackObject(int &FI); 433 bool parseStandaloneMDNode(MDNode *&Node); 434 435 bool 436 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 437 bool parseBasicBlock(MachineBasicBlock &MBB, 438 MachineBasicBlock *&AddFalthroughFrom); 439 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 440 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 441 442 bool parseNamedRegister(Register &Reg); 443 bool parseVirtualRegister(VRegInfo *&Info); 444 bool parseNamedVirtualRegister(VRegInfo *&Info); 445 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 446 bool parseRegisterFlag(unsigned &Flags); 447 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 448 bool parseSubRegisterIndex(unsigned &SubReg); 449 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 450 bool parseRegisterOperand(MachineOperand &Dest, 451 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 452 bool parseImmediateOperand(MachineOperand &Dest); 453 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 454 const Constant *&C); 455 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 456 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 457 bool parseTypedImmediateOperand(MachineOperand &Dest); 458 bool parseFPImmediateOperand(MachineOperand &Dest); 459 bool parseMBBReference(MachineBasicBlock *&MBB); 460 bool parseMBBOperand(MachineOperand &Dest); 461 bool parseStackFrameIndex(int &FI); 462 bool parseStackObjectOperand(MachineOperand &Dest); 463 bool parseFixedStackFrameIndex(int &FI); 464 bool parseFixedStackObjectOperand(MachineOperand &Dest); 465 bool parseGlobalValue(GlobalValue *&GV); 466 bool parseGlobalAddressOperand(MachineOperand &Dest); 467 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 468 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 469 bool parseJumpTableIndexOperand(MachineOperand &Dest); 470 bool parseExternalSymbolOperand(MachineOperand &Dest); 471 bool parseMCSymbolOperand(MachineOperand &Dest); 472 bool parseMDNode(MDNode *&Node); 473 bool parseDIExpression(MDNode *&Expr); 474 bool parseDILocation(MDNode *&Expr); 475 bool parseMetadataOperand(MachineOperand &Dest); 476 bool parseCFIOffset(int &Offset); 477 bool parseCFIRegister(Register &Reg); 478 bool parseCFIEscapeValues(std::string& Values); 479 bool parseCFIOperand(MachineOperand &Dest); 480 bool parseIRBlock(BasicBlock *&BB, const Function &F); 481 bool parseBlockAddressOperand(MachineOperand &Dest); 482 bool parseIntrinsicOperand(MachineOperand &Dest); 483 bool parsePredicateOperand(MachineOperand &Dest); 484 bool parseShuffleMaskOperand(MachineOperand &Dest); 485 bool parseTargetIndexOperand(MachineOperand &Dest); 486 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 487 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 488 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 489 MachineOperand &Dest, 490 Optional<unsigned> &TiedDefIdx); 491 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 492 const unsigned OpIdx, 493 MachineOperand &Dest, 494 Optional<unsigned> &TiedDefIdx); 495 bool parseOffset(int64_t &Offset); 496 bool parseAlignment(unsigned &Alignment); 497 bool parseAddrspace(unsigned &Addrspace); 498 bool parseMBBS(MachineBasicBlockSection &T); 499 bool parseOperandsOffset(MachineOperand &Op); 500 bool parseIRValue(const Value *&V); 501 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 502 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 503 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 504 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 505 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 506 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 507 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 508 bool parseHeapAllocMarker(MDNode *&Node); 509 510 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 511 MachineOperand &Dest, const MIRFormatter &MF); 512 513 private: 514 /// Convert the integer literal in the current token into an unsigned integer. 515 /// 516 /// Return true if an error occurred. 517 bool getUnsigned(unsigned &Result); 518 519 /// Convert the integer literal in the current token into an uint64. 520 /// 521 /// Return true if an error occurred. 522 bool getUint64(uint64_t &Result); 523 524 /// Convert the hexadecimal literal in the current token into an unsigned 525 /// APInt with a minimum bitwidth required to represent the value. 526 /// 527 /// Return true if the literal does not represent an integer value. 528 bool getHexUint(APInt &Result); 529 530 /// If the current token is of the given kind, consume it and return false. 531 /// Otherwise report an error and return true. 532 bool expectAndConsume(MIToken::TokenKind TokenKind); 533 534 /// If the current token is of the given kind, consume it and return true. 535 /// Otherwise return false. 536 bool consumeIfPresent(MIToken::TokenKind TokenKind); 537 538 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 539 540 bool assignRegisterTies(MachineInstr &MI, 541 ArrayRef<ParsedMachineOperand> Operands); 542 543 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 544 const MCInstrDesc &MCID); 545 546 const BasicBlock *getIRBlock(unsigned Slot); 547 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 548 549 /// Get or create an MCSymbol for a given name. 550 MCSymbol *getOrCreateMCSymbol(StringRef Name); 551 552 /// parseStringConstant 553 /// ::= StringConstant 554 bool parseStringConstant(std::string &Result); 555 }; 556 557 } // end anonymous namespace 558 559 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 560 StringRef Source) 561 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 562 {} 563 564 void MIParser::lex(unsigned SkipChar) { 565 CurrentSource = lexMIToken( 566 CurrentSource.data() + SkipChar, Token, 567 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 568 } 569 570 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 571 572 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 573 const SourceMgr &SM = *PFS.SM; 574 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 575 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 576 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 577 // Create an ordinary diagnostic when the source manager's buffer is the 578 // source string. 579 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 580 return true; 581 } 582 // Create a diagnostic for a YAML string literal. 583 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 584 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 585 Source, None, None); 586 return true; 587 } 588 589 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 590 ErrorCallbackType; 591 592 static const char *toString(MIToken::TokenKind TokenKind) { 593 switch (TokenKind) { 594 case MIToken::comma: 595 return "','"; 596 case MIToken::equal: 597 return "'='"; 598 case MIToken::colon: 599 return "':'"; 600 case MIToken::lparen: 601 return "'('"; 602 case MIToken::rparen: 603 return "')'"; 604 default: 605 return "<unknown token>"; 606 } 607 } 608 609 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 610 if (Token.isNot(TokenKind)) 611 return error(Twine("expected ") + toString(TokenKind)); 612 lex(); 613 return false; 614 } 615 616 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 617 if (Token.isNot(TokenKind)) 618 return false; 619 lex(); 620 return true; 621 } 622 623 // Parse Machine Basic Block Section Type. 624 bool MIParser::parseMBBS(MachineBasicBlockSection &T) { 625 assert(Token.is(MIToken::kw_bbsections)); 626 lex(); 627 const StringRef &S = Token.stringValue(); 628 if (S == "Entry") 629 T = MBBS_Entry; 630 else if (S == "Exception") 631 T = MBBS_Exception; 632 else if (S == "Cold") 633 T = MBBS_Cold; 634 else if (S == "Unique") 635 T = MBBS_Unique; 636 else 637 return error("Unknown Section Type"); 638 lex(); 639 return false; 640 } 641 642 bool MIParser::parseBasicBlockDefinition( 643 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 644 assert(Token.is(MIToken::MachineBasicBlockLabel)); 645 unsigned ID = 0; 646 if (getUnsigned(ID)) 647 return true; 648 auto Loc = Token.location(); 649 auto Name = Token.stringValue(); 650 lex(); 651 bool HasAddressTaken = false; 652 bool IsLandingPad = false; 653 bool IsEHFuncletEntry = false; 654 MachineBasicBlockSection SectionType = MBBS_None; 655 unsigned Alignment = 0; 656 BasicBlock *BB = nullptr; 657 if (consumeIfPresent(MIToken::lparen)) { 658 do { 659 // TODO: Report an error when multiple same attributes are specified. 660 switch (Token.kind()) { 661 case MIToken::kw_address_taken: 662 HasAddressTaken = true; 663 lex(); 664 break; 665 case MIToken::kw_landing_pad: 666 IsLandingPad = true; 667 lex(); 668 break; 669 case MIToken::kw_ehfunclet_entry: 670 IsEHFuncletEntry = true; 671 lex(); 672 break; 673 case MIToken::kw_align: 674 if (parseAlignment(Alignment)) 675 return true; 676 break; 677 case MIToken::IRBlock: 678 // TODO: Report an error when both name and ir block are specified. 679 if (parseIRBlock(BB, MF.getFunction())) 680 return true; 681 lex(); 682 break; 683 case MIToken::kw_bbsections: 684 if (parseMBBS(SectionType)) 685 return true; 686 break; 687 default: 688 break; 689 } 690 } while (consumeIfPresent(MIToken::comma)); 691 if (expectAndConsume(MIToken::rparen)) 692 return true; 693 } 694 if (expectAndConsume(MIToken::colon)) 695 return true; 696 697 if (!Name.empty()) { 698 BB = dyn_cast_or_null<BasicBlock>( 699 MF.getFunction().getValueSymbolTable()->lookup(Name)); 700 if (!BB) 701 return error(Loc, Twine("basic block '") + Name + 702 "' is not defined in the function '" + 703 MF.getName() + "'"); 704 } 705 auto *MBB = MF.CreateMachineBasicBlock(BB); 706 MF.insert(MF.end(), MBB); 707 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 708 if (!WasInserted) 709 return error(Loc, Twine("redefinition of machine basic block with id #") + 710 Twine(ID)); 711 if (Alignment) 712 MBB->setAlignment(Align(Alignment)); 713 if (HasAddressTaken) 714 MBB->setHasAddressTaken(); 715 MBB->setIsEHPad(IsLandingPad); 716 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 717 if (SectionType != MBBS_None) { 718 MBB->setSectionType(SectionType); 719 MF.setBBSectionsType(BasicBlockSection::List); 720 } 721 return false; 722 } 723 724 bool MIParser::parseBasicBlockDefinitions( 725 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 726 lex(); 727 // Skip until the first machine basic block. 728 while (Token.is(MIToken::Newline)) 729 lex(); 730 if (Token.isErrorOrEOF()) 731 return Token.isError(); 732 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 733 return error("expected a basic block definition before instructions"); 734 unsigned BraceDepth = 0; 735 do { 736 if (parseBasicBlockDefinition(MBBSlots)) 737 return true; 738 bool IsAfterNewline = false; 739 // Skip until the next machine basic block. 740 while (true) { 741 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 742 Token.isErrorOrEOF()) 743 break; 744 else if (Token.is(MIToken::MachineBasicBlockLabel)) 745 return error("basic block definition should be located at the start of " 746 "the line"); 747 else if (consumeIfPresent(MIToken::Newline)) { 748 IsAfterNewline = true; 749 continue; 750 } 751 IsAfterNewline = false; 752 if (Token.is(MIToken::lbrace)) 753 ++BraceDepth; 754 if (Token.is(MIToken::rbrace)) { 755 if (!BraceDepth) 756 return error("extraneous closing brace ('}')"); 757 --BraceDepth; 758 } 759 lex(); 760 } 761 // Verify that we closed all of the '{' at the end of a file or a block. 762 if (!Token.isError() && BraceDepth) 763 return error("expected '}'"); // FIXME: Report a note that shows '{'. 764 } while (!Token.isErrorOrEOF()); 765 return Token.isError(); 766 } 767 768 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 769 assert(Token.is(MIToken::kw_liveins)); 770 lex(); 771 if (expectAndConsume(MIToken::colon)) 772 return true; 773 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 774 return false; 775 do { 776 if (Token.isNot(MIToken::NamedRegister)) 777 return error("expected a named register"); 778 Register Reg; 779 if (parseNamedRegister(Reg)) 780 return true; 781 lex(); 782 LaneBitmask Mask = LaneBitmask::getAll(); 783 if (consumeIfPresent(MIToken::colon)) { 784 // Parse lane mask. 785 if (Token.isNot(MIToken::IntegerLiteral) && 786 Token.isNot(MIToken::HexLiteral)) 787 return error("expected a lane mask"); 788 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 789 "Use correct get-function for lane mask"); 790 LaneBitmask::Type V; 791 if (getUint64(V)) 792 return error("invalid lane mask value"); 793 Mask = LaneBitmask(V); 794 lex(); 795 } 796 MBB.addLiveIn(Reg, Mask); 797 } while (consumeIfPresent(MIToken::comma)); 798 return false; 799 } 800 801 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 802 assert(Token.is(MIToken::kw_successors)); 803 lex(); 804 if (expectAndConsume(MIToken::colon)) 805 return true; 806 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 807 return false; 808 do { 809 if (Token.isNot(MIToken::MachineBasicBlock)) 810 return error("expected a machine basic block reference"); 811 MachineBasicBlock *SuccMBB = nullptr; 812 if (parseMBBReference(SuccMBB)) 813 return true; 814 lex(); 815 unsigned Weight = 0; 816 if (consumeIfPresent(MIToken::lparen)) { 817 if (Token.isNot(MIToken::IntegerLiteral) && 818 Token.isNot(MIToken::HexLiteral)) 819 return error("expected an integer literal after '('"); 820 if (getUnsigned(Weight)) 821 return true; 822 lex(); 823 if (expectAndConsume(MIToken::rparen)) 824 return true; 825 } 826 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 827 } while (consumeIfPresent(MIToken::comma)); 828 MBB.normalizeSuccProbs(); 829 return false; 830 } 831 832 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 833 MachineBasicBlock *&AddFalthroughFrom) { 834 // Skip the definition. 835 assert(Token.is(MIToken::MachineBasicBlockLabel)); 836 lex(); 837 if (consumeIfPresent(MIToken::lparen)) { 838 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 839 lex(); 840 consumeIfPresent(MIToken::rparen); 841 } 842 consumeIfPresent(MIToken::colon); 843 844 // Parse the liveins and successors. 845 // N.B: Multiple lists of successors and liveins are allowed and they're 846 // merged into one. 847 // Example: 848 // liveins: %edi 849 // liveins: %esi 850 // 851 // is equivalent to 852 // liveins: %edi, %esi 853 bool ExplicitSuccessors = false; 854 while (true) { 855 if (Token.is(MIToken::kw_successors)) { 856 if (parseBasicBlockSuccessors(MBB)) 857 return true; 858 ExplicitSuccessors = true; 859 } else if (Token.is(MIToken::kw_liveins)) { 860 if (parseBasicBlockLiveins(MBB)) 861 return true; 862 } else if (consumeIfPresent(MIToken::Newline)) { 863 continue; 864 } else 865 break; 866 if (!Token.isNewlineOrEOF()) 867 return error("expected line break at the end of a list"); 868 lex(); 869 } 870 871 // Parse the instructions. 872 bool IsInBundle = false; 873 MachineInstr *PrevMI = nullptr; 874 while (!Token.is(MIToken::MachineBasicBlockLabel) && 875 !Token.is(MIToken::Eof)) { 876 if (consumeIfPresent(MIToken::Newline)) 877 continue; 878 if (consumeIfPresent(MIToken::rbrace)) { 879 // The first parsing pass should verify that all closing '}' have an 880 // opening '{'. 881 assert(IsInBundle); 882 IsInBundle = false; 883 continue; 884 } 885 MachineInstr *MI = nullptr; 886 if (parse(MI)) 887 return true; 888 MBB.insert(MBB.end(), MI); 889 if (IsInBundle) { 890 PrevMI->setFlag(MachineInstr::BundledSucc); 891 MI->setFlag(MachineInstr::BundledPred); 892 } 893 PrevMI = MI; 894 if (Token.is(MIToken::lbrace)) { 895 if (IsInBundle) 896 return error("nested instruction bundles are not allowed"); 897 lex(); 898 // This instruction is the start of the bundle. 899 MI->setFlag(MachineInstr::BundledSucc); 900 IsInBundle = true; 901 if (!Token.is(MIToken::Newline)) 902 // The next instruction can be on the same line. 903 continue; 904 } 905 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 906 lex(); 907 } 908 909 // Construct successor list by searching for basic block machine operands. 910 if (!ExplicitSuccessors) { 911 SmallVector<MachineBasicBlock*,4> Successors; 912 bool IsFallthrough; 913 guessSuccessors(MBB, Successors, IsFallthrough); 914 for (MachineBasicBlock *Succ : Successors) 915 MBB.addSuccessor(Succ); 916 917 if (IsFallthrough) { 918 AddFalthroughFrom = &MBB; 919 } else { 920 MBB.normalizeSuccProbs(); 921 } 922 } 923 924 return false; 925 } 926 927 bool MIParser::parseBasicBlocks() { 928 lex(); 929 // Skip until the first machine basic block. 930 while (Token.is(MIToken::Newline)) 931 lex(); 932 if (Token.isErrorOrEOF()) 933 return Token.isError(); 934 // The first parsing pass should have verified that this token is a MBB label 935 // in the 'parseBasicBlockDefinitions' method. 936 assert(Token.is(MIToken::MachineBasicBlockLabel)); 937 MachineBasicBlock *AddFalthroughFrom = nullptr; 938 do { 939 MachineBasicBlock *MBB = nullptr; 940 if (parseMBBReference(MBB)) 941 return true; 942 if (AddFalthroughFrom) { 943 if (!AddFalthroughFrom->isSuccessor(MBB)) 944 AddFalthroughFrom->addSuccessor(MBB); 945 AddFalthroughFrom->normalizeSuccProbs(); 946 AddFalthroughFrom = nullptr; 947 } 948 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 949 return true; 950 // The method 'parseBasicBlock' should parse the whole block until the next 951 // block or the end of file. 952 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 953 } while (Token.isNot(MIToken::Eof)); 954 return false; 955 } 956 957 bool MIParser::parse(MachineInstr *&MI) { 958 // Parse any register operands before '=' 959 MachineOperand MO = MachineOperand::CreateImm(0); 960 SmallVector<ParsedMachineOperand, 8> Operands; 961 while (Token.isRegister() || Token.isRegisterFlag()) { 962 auto Loc = Token.location(); 963 Optional<unsigned> TiedDefIdx; 964 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 965 return true; 966 Operands.push_back( 967 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 968 if (Token.isNot(MIToken::comma)) 969 break; 970 lex(); 971 } 972 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 973 return true; 974 975 unsigned OpCode, Flags = 0; 976 if (Token.isError() || parseInstruction(OpCode, Flags)) 977 return true; 978 979 // Parse the remaining machine operands. 980 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 981 Token.isNot(MIToken::kw_post_instr_symbol) && 982 Token.isNot(MIToken::kw_heap_alloc_marker) && 983 Token.isNot(MIToken::kw_debug_location) && 984 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 985 auto Loc = Token.location(); 986 Optional<unsigned> TiedDefIdx; 987 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 988 return true; 989 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 990 MO.setIsDebug(); 991 Operands.push_back( 992 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 993 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 994 Token.is(MIToken::lbrace)) 995 break; 996 if (Token.isNot(MIToken::comma)) 997 return error("expected ',' before the next machine operand"); 998 lex(); 999 } 1000 1001 MCSymbol *PreInstrSymbol = nullptr; 1002 if (Token.is(MIToken::kw_pre_instr_symbol)) 1003 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1004 return true; 1005 MCSymbol *PostInstrSymbol = nullptr; 1006 if (Token.is(MIToken::kw_post_instr_symbol)) 1007 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1008 return true; 1009 MDNode *HeapAllocMarker = nullptr; 1010 if (Token.is(MIToken::kw_heap_alloc_marker)) 1011 if (parseHeapAllocMarker(HeapAllocMarker)) 1012 return true; 1013 1014 DebugLoc DebugLocation; 1015 if (Token.is(MIToken::kw_debug_location)) { 1016 lex(); 1017 MDNode *Node = nullptr; 1018 if (Token.is(MIToken::exclaim)) { 1019 if (parseMDNode(Node)) 1020 return true; 1021 } else if (Token.is(MIToken::md_dilocation)) { 1022 if (parseDILocation(Node)) 1023 return true; 1024 } else 1025 return error("expected a metadata node after 'debug-location'"); 1026 if (!isa<DILocation>(Node)) 1027 return error("referenced metadata is not a DILocation"); 1028 DebugLocation = DebugLoc(Node); 1029 } 1030 1031 // Parse the machine memory operands. 1032 SmallVector<MachineMemOperand *, 2> MemOperands; 1033 if (Token.is(MIToken::coloncolon)) { 1034 lex(); 1035 while (!Token.isNewlineOrEOF()) { 1036 MachineMemOperand *MemOp = nullptr; 1037 if (parseMachineMemoryOperand(MemOp)) 1038 return true; 1039 MemOperands.push_back(MemOp); 1040 if (Token.isNewlineOrEOF()) 1041 break; 1042 if (Token.isNot(MIToken::comma)) 1043 return error("expected ',' before the next machine memory operand"); 1044 lex(); 1045 } 1046 } 1047 1048 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1049 if (!MCID.isVariadic()) { 1050 // FIXME: Move the implicit operand verification to the machine verifier. 1051 if (verifyImplicitOperands(Operands, MCID)) 1052 return true; 1053 } 1054 1055 // TODO: Check for extraneous machine operands. 1056 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1057 MI->setFlags(Flags); 1058 for (const auto &Operand : Operands) 1059 MI->addOperand(MF, Operand.Operand); 1060 if (assignRegisterTies(*MI, Operands)) 1061 return true; 1062 if (PreInstrSymbol) 1063 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1064 if (PostInstrSymbol) 1065 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1066 if (HeapAllocMarker) 1067 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1068 if (!MemOperands.empty()) 1069 MI->setMemRefs(MF, MemOperands); 1070 return false; 1071 } 1072 1073 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1074 lex(); 1075 if (Token.isNot(MIToken::MachineBasicBlock)) 1076 return error("expected a machine basic block reference"); 1077 if (parseMBBReference(MBB)) 1078 return true; 1079 lex(); 1080 if (Token.isNot(MIToken::Eof)) 1081 return error( 1082 "expected end of string after the machine basic block reference"); 1083 return false; 1084 } 1085 1086 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1087 lex(); 1088 if (Token.isNot(MIToken::NamedRegister)) 1089 return error("expected a named register"); 1090 if (parseNamedRegister(Reg)) 1091 return true; 1092 lex(); 1093 if (Token.isNot(MIToken::Eof)) 1094 return error("expected end of string after the register reference"); 1095 return false; 1096 } 1097 1098 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1099 lex(); 1100 if (Token.isNot(MIToken::VirtualRegister)) 1101 return error("expected a virtual register"); 1102 if (parseVirtualRegister(Info)) 1103 return true; 1104 lex(); 1105 if (Token.isNot(MIToken::Eof)) 1106 return error("expected end of string after the register reference"); 1107 return false; 1108 } 1109 1110 bool MIParser::parseStandaloneRegister(Register &Reg) { 1111 lex(); 1112 if (Token.isNot(MIToken::NamedRegister) && 1113 Token.isNot(MIToken::VirtualRegister)) 1114 return error("expected either a named or virtual register"); 1115 1116 VRegInfo *Info; 1117 if (parseRegister(Reg, Info)) 1118 return true; 1119 1120 lex(); 1121 if (Token.isNot(MIToken::Eof)) 1122 return error("expected end of string after the register reference"); 1123 return false; 1124 } 1125 1126 bool MIParser::parseStandaloneStackObject(int &FI) { 1127 lex(); 1128 if (Token.isNot(MIToken::StackObject)) 1129 return error("expected a stack object"); 1130 if (parseStackFrameIndex(FI)) 1131 return true; 1132 if (Token.isNot(MIToken::Eof)) 1133 return error("expected end of string after the stack object reference"); 1134 return false; 1135 } 1136 1137 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1138 lex(); 1139 if (Token.is(MIToken::exclaim)) { 1140 if (parseMDNode(Node)) 1141 return true; 1142 } else if (Token.is(MIToken::md_diexpr)) { 1143 if (parseDIExpression(Node)) 1144 return true; 1145 } else if (Token.is(MIToken::md_dilocation)) { 1146 if (parseDILocation(Node)) 1147 return true; 1148 } else 1149 return error("expected a metadata node"); 1150 if (Token.isNot(MIToken::Eof)) 1151 return error("expected end of string after the metadata node"); 1152 return false; 1153 } 1154 1155 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1156 assert(MO.isImplicit()); 1157 return MO.isDef() ? "implicit-def" : "implicit"; 1158 } 1159 1160 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1161 Register Reg) { 1162 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1163 return StringRef(TRI->getName(Reg)).lower(); 1164 } 1165 1166 /// Return true if the parsed machine operands contain a given machine operand. 1167 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1168 ArrayRef<ParsedMachineOperand> Operands) { 1169 for (const auto &I : Operands) { 1170 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1171 return true; 1172 } 1173 return false; 1174 } 1175 1176 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1177 const MCInstrDesc &MCID) { 1178 if (MCID.isCall()) 1179 // We can't verify call instructions as they can contain arbitrary implicit 1180 // register and register mask operands. 1181 return false; 1182 1183 // Gather all the expected implicit operands. 1184 SmallVector<MachineOperand, 4> ImplicitOperands; 1185 if (MCID.ImplicitDefs) 1186 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1187 ImplicitOperands.push_back( 1188 MachineOperand::CreateReg(*ImpDefs, true, true)); 1189 if (MCID.ImplicitUses) 1190 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1191 ImplicitOperands.push_back( 1192 MachineOperand::CreateReg(*ImpUses, false, true)); 1193 1194 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1195 assert(TRI && "Expected target register info"); 1196 for (const auto &I : ImplicitOperands) { 1197 if (isImplicitOperandIn(I, Operands)) 1198 continue; 1199 return error(Operands.empty() ? Token.location() : Operands.back().End, 1200 Twine("missing implicit register operand '") + 1201 printImplicitRegisterFlag(I) + " $" + 1202 getRegisterName(TRI, I.getReg()) + "'"); 1203 } 1204 return false; 1205 } 1206 1207 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1208 // Allow frame and fast math flags for OPCODE 1209 while (Token.is(MIToken::kw_frame_setup) || 1210 Token.is(MIToken::kw_frame_destroy) || 1211 Token.is(MIToken::kw_nnan) || 1212 Token.is(MIToken::kw_ninf) || 1213 Token.is(MIToken::kw_nsz) || 1214 Token.is(MIToken::kw_arcp) || 1215 Token.is(MIToken::kw_contract) || 1216 Token.is(MIToken::kw_afn) || 1217 Token.is(MIToken::kw_reassoc) || 1218 Token.is(MIToken::kw_nuw) || 1219 Token.is(MIToken::kw_nsw) || 1220 Token.is(MIToken::kw_exact) || 1221 Token.is(MIToken::kw_nofpexcept)) { 1222 // Mine frame and fast math flags 1223 if (Token.is(MIToken::kw_frame_setup)) 1224 Flags |= MachineInstr::FrameSetup; 1225 if (Token.is(MIToken::kw_frame_destroy)) 1226 Flags |= MachineInstr::FrameDestroy; 1227 if (Token.is(MIToken::kw_nnan)) 1228 Flags |= MachineInstr::FmNoNans; 1229 if (Token.is(MIToken::kw_ninf)) 1230 Flags |= MachineInstr::FmNoInfs; 1231 if (Token.is(MIToken::kw_nsz)) 1232 Flags |= MachineInstr::FmNsz; 1233 if (Token.is(MIToken::kw_arcp)) 1234 Flags |= MachineInstr::FmArcp; 1235 if (Token.is(MIToken::kw_contract)) 1236 Flags |= MachineInstr::FmContract; 1237 if (Token.is(MIToken::kw_afn)) 1238 Flags |= MachineInstr::FmAfn; 1239 if (Token.is(MIToken::kw_reassoc)) 1240 Flags |= MachineInstr::FmReassoc; 1241 if (Token.is(MIToken::kw_nuw)) 1242 Flags |= MachineInstr::NoUWrap; 1243 if (Token.is(MIToken::kw_nsw)) 1244 Flags |= MachineInstr::NoSWrap; 1245 if (Token.is(MIToken::kw_exact)) 1246 Flags |= MachineInstr::IsExact; 1247 if (Token.is(MIToken::kw_nofpexcept)) 1248 Flags |= MachineInstr::NoFPExcept; 1249 1250 lex(); 1251 } 1252 if (Token.isNot(MIToken::Identifier)) 1253 return error("expected a machine instruction"); 1254 StringRef InstrName = Token.stringValue(); 1255 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1256 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1257 lex(); 1258 return false; 1259 } 1260 1261 bool MIParser::parseNamedRegister(Register &Reg) { 1262 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1263 StringRef Name = Token.stringValue(); 1264 if (PFS.Target.getRegisterByName(Name, Reg)) 1265 return error(Twine("unknown register name '") + Name + "'"); 1266 return false; 1267 } 1268 1269 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1270 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1271 StringRef Name = Token.stringValue(); 1272 // TODO: Check that the VReg name is not the same as a physical register name. 1273 // If it is, then print a warning (when warnings are implemented). 1274 Info = &PFS.getVRegInfoNamed(Name); 1275 return false; 1276 } 1277 1278 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1279 if (Token.is(MIToken::NamedVirtualRegister)) 1280 return parseNamedVirtualRegister(Info); 1281 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1282 unsigned ID; 1283 if (getUnsigned(ID)) 1284 return true; 1285 Info = &PFS.getVRegInfo(ID); 1286 return false; 1287 } 1288 1289 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1290 switch (Token.kind()) { 1291 case MIToken::underscore: 1292 Reg = 0; 1293 return false; 1294 case MIToken::NamedRegister: 1295 return parseNamedRegister(Reg); 1296 case MIToken::NamedVirtualRegister: 1297 case MIToken::VirtualRegister: 1298 if (parseVirtualRegister(Info)) 1299 return true; 1300 Reg = Info->VReg; 1301 return false; 1302 // TODO: Parse other register kinds. 1303 default: 1304 llvm_unreachable("The current token should be a register"); 1305 } 1306 } 1307 1308 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1309 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1310 return error("expected '_', register class, or register bank name"); 1311 StringRef::iterator Loc = Token.location(); 1312 StringRef Name = Token.stringValue(); 1313 1314 // Was it a register class? 1315 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1316 if (RC) { 1317 lex(); 1318 1319 switch (RegInfo.Kind) { 1320 case VRegInfo::UNKNOWN: 1321 case VRegInfo::NORMAL: 1322 RegInfo.Kind = VRegInfo::NORMAL; 1323 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1324 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1325 return error(Loc, Twine("conflicting register classes, previously: ") + 1326 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1327 } 1328 RegInfo.D.RC = RC; 1329 RegInfo.Explicit = true; 1330 return false; 1331 1332 case VRegInfo::GENERIC: 1333 case VRegInfo::REGBANK: 1334 return error(Loc, "register class specification on generic register"); 1335 } 1336 llvm_unreachable("Unexpected register kind"); 1337 } 1338 1339 // Should be a register bank or a generic register. 1340 const RegisterBank *RegBank = nullptr; 1341 if (Name != "_") { 1342 RegBank = PFS.Target.getRegBank(Name); 1343 if (!RegBank) 1344 return error(Loc, "expected '_', register class, or register bank name"); 1345 } 1346 1347 lex(); 1348 1349 switch (RegInfo.Kind) { 1350 case VRegInfo::UNKNOWN: 1351 case VRegInfo::GENERIC: 1352 case VRegInfo::REGBANK: 1353 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1354 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1355 return error(Loc, "conflicting generic register banks"); 1356 RegInfo.D.RegBank = RegBank; 1357 RegInfo.Explicit = true; 1358 return false; 1359 1360 case VRegInfo::NORMAL: 1361 return error(Loc, "register bank specification on normal register"); 1362 } 1363 llvm_unreachable("Unexpected register kind"); 1364 } 1365 1366 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1367 const unsigned OldFlags = Flags; 1368 switch (Token.kind()) { 1369 case MIToken::kw_implicit: 1370 Flags |= RegState::Implicit; 1371 break; 1372 case MIToken::kw_implicit_define: 1373 Flags |= RegState::ImplicitDefine; 1374 break; 1375 case MIToken::kw_def: 1376 Flags |= RegState::Define; 1377 break; 1378 case MIToken::kw_dead: 1379 Flags |= RegState::Dead; 1380 break; 1381 case MIToken::kw_killed: 1382 Flags |= RegState::Kill; 1383 break; 1384 case MIToken::kw_undef: 1385 Flags |= RegState::Undef; 1386 break; 1387 case MIToken::kw_internal: 1388 Flags |= RegState::InternalRead; 1389 break; 1390 case MIToken::kw_early_clobber: 1391 Flags |= RegState::EarlyClobber; 1392 break; 1393 case MIToken::kw_debug_use: 1394 Flags |= RegState::Debug; 1395 break; 1396 case MIToken::kw_renamable: 1397 Flags |= RegState::Renamable; 1398 break; 1399 default: 1400 llvm_unreachable("The current token should be a register flag"); 1401 } 1402 if (OldFlags == Flags) 1403 // We know that the same flag is specified more than once when the flags 1404 // weren't modified. 1405 return error("duplicate '" + Token.stringValue() + "' register flag"); 1406 lex(); 1407 return false; 1408 } 1409 1410 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1411 assert(Token.is(MIToken::dot)); 1412 lex(); 1413 if (Token.isNot(MIToken::Identifier)) 1414 return error("expected a subregister index after '.'"); 1415 auto Name = Token.stringValue(); 1416 SubReg = PFS.Target.getSubRegIndex(Name); 1417 if (!SubReg) 1418 return error(Twine("use of unknown subregister index '") + Name + "'"); 1419 lex(); 1420 return false; 1421 } 1422 1423 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1424 if (!consumeIfPresent(MIToken::kw_tied_def)) 1425 return true; 1426 if (Token.isNot(MIToken::IntegerLiteral)) 1427 return error("expected an integer literal after 'tied-def'"); 1428 if (getUnsigned(TiedDefIdx)) 1429 return true; 1430 lex(); 1431 if (expectAndConsume(MIToken::rparen)) 1432 return true; 1433 return false; 1434 } 1435 1436 bool MIParser::assignRegisterTies(MachineInstr &MI, 1437 ArrayRef<ParsedMachineOperand> Operands) { 1438 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1439 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1440 if (!Operands[I].TiedDefIdx) 1441 continue; 1442 // The parser ensures that this operand is a register use, so we just have 1443 // to check the tied-def operand. 1444 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1445 if (DefIdx >= E) 1446 return error(Operands[I].Begin, 1447 Twine("use of invalid tied-def operand index '" + 1448 Twine(DefIdx) + "'; instruction has only ") + 1449 Twine(E) + " operands"); 1450 const auto &DefOperand = Operands[DefIdx].Operand; 1451 if (!DefOperand.isReg() || !DefOperand.isDef()) 1452 // FIXME: add note with the def operand. 1453 return error(Operands[I].Begin, 1454 Twine("use of invalid tied-def operand index '") + 1455 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1456 " isn't a defined register"); 1457 // Check that the tied-def operand wasn't tied elsewhere. 1458 for (const auto &TiedPair : TiedRegisterPairs) { 1459 if (TiedPair.first == DefIdx) 1460 return error(Operands[I].Begin, 1461 Twine("the tied-def operand #") + Twine(DefIdx) + 1462 " is already tied with another register operand"); 1463 } 1464 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1465 } 1466 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1467 // indices must be less than tied max. 1468 for (const auto &TiedPair : TiedRegisterPairs) 1469 MI.tieOperands(TiedPair.first, TiedPair.second); 1470 return false; 1471 } 1472 1473 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1474 Optional<unsigned> &TiedDefIdx, 1475 bool IsDef) { 1476 unsigned Flags = IsDef ? RegState::Define : 0; 1477 while (Token.isRegisterFlag()) { 1478 if (parseRegisterFlag(Flags)) 1479 return true; 1480 } 1481 if (!Token.isRegister()) 1482 return error("expected a register after register flags"); 1483 Register Reg; 1484 VRegInfo *RegInfo; 1485 if (parseRegister(Reg, RegInfo)) 1486 return true; 1487 lex(); 1488 unsigned SubReg = 0; 1489 if (Token.is(MIToken::dot)) { 1490 if (parseSubRegisterIndex(SubReg)) 1491 return true; 1492 if (!Register::isVirtualRegister(Reg)) 1493 return error("subregister index expects a virtual register"); 1494 } 1495 if (Token.is(MIToken::colon)) { 1496 if (!Register::isVirtualRegister(Reg)) 1497 return error("register class specification expects a virtual register"); 1498 lex(); 1499 if (parseRegisterClassOrBank(*RegInfo)) 1500 return true; 1501 } 1502 MachineRegisterInfo &MRI = MF.getRegInfo(); 1503 if ((Flags & RegState::Define) == 0) { 1504 if (consumeIfPresent(MIToken::lparen)) { 1505 unsigned Idx; 1506 if (!parseRegisterTiedDefIndex(Idx)) 1507 TiedDefIdx = Idx; 1508 else { 1509 // Try a redundant low-level type. 1510 LLT Ty; 1511 if (parseLowLevelType(Token.location(), Ty)) 1512 return error("expected tied-def or low-level type after '('"); 1513 1514 if (expectAndConsume(MIToken::rparen)) 1515 return true; 1516 1517 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1518 return error("inconsistent type for generic virtual register"); 1519 1520 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1521 MRI.setType(Reg, Ty); 1522 } 1523 } 1524 } else if (consumeIfPresent(MIToken::lparen)) { 1525 // Virtual registers may have a tpe with GlobalISel. 1526 if (!Register::isVirtualRegister(Reg)) 1527 return error("unexpected type on physical register"); 1528 1529 LLT Ty; 1530 if (parseLowLevelType(Token.location(), Ty)) 1531 return true; 1532 1533 if (expectAndConsume(MIToken::rparen)) 1534 return true; 1535 1536 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1537 return error("inconsistent type for generic virtual register"); 1538 1539 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1540 MRI.setType(Reg, Ty); 1541 } else if (Register::isVirtualRegister(Reg)) { 1542 // Generic virtual registers must have a type. 1543 // If we end up here this means the type hasn't been specified and 1544 // this is bad! 1545 if (RegInfo->Kind == VRegInfo::GENERIC || 1546 RegInfo->Kind == VRegInfo::REGBANK) 1547 return error("generic virtual registers must have a type"); 1548 } 1549 Dest = MachineOperand::CreateReg( 1550 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1551 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1552 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1553 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1554 1555 return false; 1556 } 1557 1558 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1559 assert(Token.is(MIToken::IntegerLiteral)); 1560 const APSInt &Int = Token.integerValue(); 1561 if (Int.getMinSignedBits() > 64) 1562 return error("integer literal is too large to be an immediate operand"); 1563 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1564 lex(); 1565 return false; 1566 } 1567 1568 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1569 const unsigned OpIdx, 1570 MachineOperand &Dest, 1571 const MIRFormatter &MF) { 1572 assert(Token.is(MIToken::dot)); 1573 auto Loc = Token.location(); // record start position 1574 size_t Len = 1; // for "." 1575 lex(); 1576 1577 // Handle the case that mnemonic starts with number. 1578 if (Token.is(MIToken::IntegerLiteral)) { 1579 Len += Token.range().size(); 1580 lex(); 1581 } 1582 1583 StringRef Src; 1584 if (Token.is(MIToken::comma)) 1585 Src = StringRef(Loc, Len); 1586 else { 1587 assert(Token.is(MIToken::Identifier)); 1588 Src = StringRef(Loc, Len + Token.stringValue().size()); 1589 } 1590 int64_t Val; 1591 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1592 [this](StringRef::iterator Loc, const Twine &Msg) 1593 -> bool { return error(Loc, Msg); })) 1594 return true; 1595 1596 Dest = MachineOperand::CreateImm(Val); 1597 if (!Token.is(MIToken::comma)) 1598 lex(); 1599 return false; 1600 } 1601 1602 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1603 PerFunctionMIParsingState &PFS, const Constant *&C, 1604 ErrorCallbackType ErrCB) { 1605 auto Source = StringValue.str(); // The source has to be null terminated. 1606 SMDiagnostic Err; 1607 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1608 &PFS.IRSlots); 1609 if (!C) 1610 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1611 return false; 1612 } 1613 1614 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1615 const Constant *&C) { 1616 return ::parseIRConstant( 1617 Loc, StringValue, PFS, C, 1618 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1619 return error(Loc, Msg); 1620 }); 1621 } 1622 1623 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1624 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1625 return true; 1626 lex(); 1627 return false; 1628 } 1629 1630 // See LLT implemntation for bit size limits. 1631 static bool verifyScalarSize(uint64_t Size) { 1632 return Size != 0 && isUInt<16>(Size); 1633 } 1634 1635 static bool verifyVectorElementCount(uint64_t NumElts) { 1636 return NumElts != 0 && isUInt<16>(NumElts); 1637 } 1638 1639 static bool verifyAddrSpace(uint64_t AddrSpace) { 1640 return isUInt<24>(AddrSpace); 1641 } 1642 1643 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1644 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1645 StringRef SizeStr = Token.range().drop_front(); 1646 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1647 return error("expected integers after 's'/'p' type character"); 1648 } 1649 1650 if (Token.range().front() == 's') { 1651 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1652 if (!verifyScalarSize(ScalarSize)) 1653 return error("invalid size for scalar type"); 1654 1655 Ty = LLT::scalar(ScalarSize); 1656 lex(); 1657 return false; 1658 } else if (Token.range().front() == 'p') { 1659 const DataLayout &DL = MF.getDataLayout(); 1660 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1661 if (!verifyAddrSpace(AS)) 1662 return error("invalid address space number"); 1663 1664 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1665 lex(); 1666 return false; 1667 } 1668 1669 // Now we're looking for a vector. 1670 if (Token.isNot(MIToken::less)) 1671 return error(Loc, 1672 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1673 lex(); 1674 1675 if (Token.isNot(MIToken::IntegerLiteral)) 1676 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1677 uint64_t NumElements = Token.integerValue().getZExtValue(); 1678 if (!verifyVectorElementCount(NumElements)) 1679 return error("invalid number of vector elements"); 1680 1681 lex(); 1682 1683 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1684 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1685 lex(); 1686 1687 if (Token.range().front() != 's' && Token.range().front() != 'p') 1688 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1689 StringRef SizeStr = Token.range().drop_front(); 1690 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1691 return error("expected integers after 's'/'p' type character"); 1692 1693 if (Token.range().front() == 's') { 1694 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1695 if (!verifyScalarSize(ScalarSize)) 1696 return error("invalid size for scalar type"); 1697 Ty = LLT::scalar(ScalarSize); 1698 } else if (Token.range().front() == 'p') { 1699 const DataLayout &DL = MF.getDataLayout(); 1700 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1701 if (!verifyAddrSpace(AS)) 1702 return error("invalid address space number"); 1703 1704 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1705 } else 1706 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1707 lex(); 1708 1709 if (Token.isNot(MIToken::greater)) 1710 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1711 lex(); 1712 1713 Ty = LLT::vector(NumElements, Ty); 1714 return false; 1715 } 1716 1717 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1718 assert(Token.is(MIToken::Identifier)); 1719 StringRef TypeStr = Token.range(); 1720 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1721 TypeStr.front() != 'p') 1722 return error( 1723 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1724 StringRef SizeStr = Token.range().drop_front(); 1725 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1726 return error("expected integers after 'i'/'s'/'p' type character"); 1727 1728 auto Loc = Token.location(); 1729 lex(); 1730 if (Token.isNot(MIToken::IntegerLiteral)) { 1731 if (Token.isNot(MIToken::Identifier) || 1732 !(Token.range() == "true" || Token.range() == "false")) 1733 return error("expected an integer literal"); 1734 } 1735 const Constant *C = nullptr; 1736 if (parseIRConstant(Loc, C)) 1737 return true; 1738 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1739 return false; 1740 } 1741 1742 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1743 auto Loc = Token.location(); 1744 lex(); 1745 if (Token.isNot(MIToken::FloatingPointLiteral) && 1746 Token.isNot(MIToken::HexLiteral)) 1747 return error("expected a floating point literal"); 1748 const Constant *C = nullptr; 1749 if (parseIRConstant(Loc, C)) 1750 return true; 1751 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1752 return false; 1753 } 1754 1755 static bool getHexUint(const MIToken &Token, APInt &Result) { 1756 assert(Token.is(MIToken::HexLiteral)); 1757 StringRef S = Token.range(); 1758 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1759 // This could be a floating point literal with a special prefix. 1760 if (!isxdigit(S[2])) 1761 return true; 1762 StringRef V = S.substr(2); 1763 APInt A(V.size()*4, V, 16); 1764 1765 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1766 // sure it isn't the case before constructing result. 1767 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1768 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1769 return false; 1770 } 1771 1772 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1773 ErrorCallbackType ErrCB) { 1774 if (Token.hasIntegerValue()) { 1775 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1776 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1777 if (Val64 == Limit) 1778 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1779 Result = Val64; 1780 return false; 1781 } 1782 if (Token.is(MIToken::HexLiteral)) { 1783 APInt A; 1784 if (getHexUint(Token, A)) 1785 return true; 1786 if (A.getBitWidth() > 32) 1787 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1788 Result = A.getZExtValue(); 1789 return false; 1790 } 1791 return true; 1792 } 1793 1794 bool MIParser::getUnsigned(unsigned &Result) { 1795 return ::getUnsigned( 1796 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1797 return error(Loc, Msg); 1798 }); 1799 } 1800 1801 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1802 assert(Token.is(MIToken::MachineBasicBlock) || 1803 Token.is(MIToken::MachineBasicBlockLabel)); 1804 unsigned Number; 1805 if (getUnsigned(Number)) 1806 return true; 1807 auto MBBInfo = PFS.MBBSlots.find(Number); 1808 if (MBBInfo == PFS.MBBSlots.end()) 1809 return error(Twine("use of undefined machine basic block #") + 1810 Twine(Number)); 1811 MBB = MBBInfo->second; 1812 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1813 // we drop the <irname> from the bb.<id>.<irname> format. 1814 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1815 return error(Twine("the name of machine basic block #") + Twine(Number) + 1816 " isn't '" + Token.stringValue() + "'"); 1817 return false; 1818 } 1819 1820 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1821 MachineBasicBlock *MBB; 1822 if (parseMBBReference(MBB)) 1823 return true; 1824 Dest = MachineOperand::CreateMBB(MBB); 1825 lex(); 1826 return false; 1827 } 1828 1829 bool MIParser::parseStackFrameIndex(int &FI) { 1830 assert(Token.is(MIToken::StackObject)); 1831 unsigned ID; 1832 if (getUnsigned(ID)) 1833 return true; 1834 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1835 if (ObjectInfo == PFS.StackObjectSlots.end()) 1836 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1837 "'"); 1838 StringRef Name; 1839 if (const auto *Alloca = 1840 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1841 Name = Alloca->getName(); 1842 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1843 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1844 "' isn't '" + Token.stringValue() + "'"); 1845 lex(); 1846 FI = ObjectInfo->second; 1847 return false; 1848 } 1849 1850 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1851 int FI; 1852 if (parseStackFrameIndex(FI)) 1853 return true; 1854 Dest = MachineOperand::CreateFI(FI); 1855 return false; 1856 } 1857 1858 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1859 assert(Token.is(MIToken::FixedStackObject)); 1860 unsigned ID; 1861 if (getUnsigned(ID)) 1862 return true; 1863 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1864 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1865 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1866 Twine(ID) + "'"); 1867 lex(); 1868 FI = ObjectInfo->second; 1869 return false; 1870 } 1871 1872 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1873 int FI; 1874 if (parseFixedStackFrameIndex(FI)) 1875 return true; 1876 Dest = MachineOperand::CreateFI(FI); 1877 return false; 1878 } 1879 1880 static bool parseGlobalValue(const MIToken &Token, 1881 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 1882 ErrorCallbackType ErrCB) { 1883 switch (Token.kind()) { 1884 case MIToken::NamedGlobalValue: { 1885 const Module *M = PFS.MF.getFunction().getParent(); 1886 GV = M->getNamedValue(Token.stringValue()); 1887 if (!GV) 1888 return ErrCB(Token.location(), Twine("use of undefined global value '") + 1889 Token.range() + "'"); 1890 break; 1891 } 1892 case MIToken::GlobalValue: { 1893 unsigned GVIdx; 1894 if (getUnsigned(Token, GVIdx, ErrCB)) 1895 return true; 1896 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1897 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 1898 Twine(GVIdx) + "'"); 1899 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1900 break; 1901 } 1902 default: 1903 llvm_unreachable("The current token should be a global value"); 1904 } 1905 return false; 1906 } 1907 1908 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1909 return ::parseGlobalValue( 1910 Token, PFS, GV, 1911 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1912 return error(Loc, Msg); 1913 }); 1914 } 1915 1916 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1917 GlobalValue *GV = nullptr; 1918 if (parseGlobalValue(GV)) 1919 return true; 1920 lex(); 1921 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1922 if (parseOperandsOffset(Dest)) 1923 return true; 1924 return false; 1925 } 1926 1927 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1928 assert(Token.is(MIToken::ConstantPoolItem)); 1929 unsigned ID; 1930 if (getUnsigned(ID)) 1931 return true; 1932 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1933 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1934 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1935 lex(); 1936 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1937 if (parseOperandsOffset(Dest)) 1938 return true; 1939 return false; 1940 } 1941 1942 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1943 assert(Token.is(MIToken::JumpTableIndex)); 1944 unsigned ID; 1945 if (getUnsigned(ID)) 1946 return true; 1947 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1948 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1949 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1950 lex(); 1951 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1952 return false; 1953 } 1954 1955 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1956 assert(Token.is(MIToken::ExternalSymbol)); 1957 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1958 lex(); 1959 Dest = MachineOperand::CreateES(Symbol); 1960 if (parseOperandsOffset(Dest)) 1961 return true; 1962 return false; 1963 } 1964 1965 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1966 assert(Token.is(MIToken::MCSymbol)); 1967 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1968 lex(); 1969 Dest = MachineOperand::CreateMCSymbol(Symbol); 1970 if (parseOperandsOffset(Dest)) 1971 return true; 1972 return false; 1973 } 1974 1975 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1976 assert(Token.is(MIToken::SubRegisterIndex)); 1977 StringRef Name = Token.stringValue(); 1978 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1979 if (SubRegIndex == 0) 1980 return error(Twine("unknown subregister index '") + Name + "'"); 1981 lex(); 1982 Dest = MachineOperand::CreateImm(SubRegIndex); 1983 return false; 1984 } 1985 1986 bool MIParser::parseMDNode(MDNode *&Node) { 1987 assert(Token.is(MIToken::exclaim)); 1988 1989 auto Loc = Token.location(); 1990 lex(); 1991 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1992 return error("expected metadata id after '!'"); 1993 unsigned ID; 1994 if (getUnsigned(ID)) 1995 return true; 1996 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1997 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1998 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1999 lex(); 2000 Node = NodeInfo->second.get(); 2001 return false; 2002 } 2003 2004 bool MIParser::parseDIExpression(MDNode *&Expr) { 2005 assert(Token.is(MIToken::md_diexpr)); 2006 lex(); 2007 2008 // FIXME: Share this parsing with the IL parser. 2009 SmallVector<uint64_t, 8> Elements; 2010 2011 if (expectAndConsume(MIToken::lparen)) 2012 return true; 2013 2014 if (Token.isNot(MIToken::rparen)) { 2015 do { 2016 if (Token.is(MIToken::Identifier)) { 2017 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2018 lex(); 2019 Elements.push_back(Op); 2020 continue; 2021 } 2022 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2023 lex(); 2024 Elements.push_back(Enc); 2025 continue; 2026 } 2027 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2028 } 2029 2030 if (Token.isNot(MIToken::IntegerLiteral) || 2031 Token.integerValue().isSigned()) 2032 return error("expected unsigned integer"); 2033 2034 auto &U = Token.integerValue(); 2035 if (U.ugt(UINT64_MAX)) 2036 return error("element too large, limit is " + Twine(UINT64_MAX)); 2037 Elements.push_back(U.getZExtValue()); 2038 lex(); 2039 2040 } while (consumeIfPresent(MIToken::comma)); 2041 } 2042 2043 if (expectAndConsume(MIToken::rparen)) 2044 return true; 2045 2046 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2047 return false; 2048 } 2049 2050 bool MIParser::parseDILocation(MDNode *&Loc) { 2051 assert(Token.is(MIToken::md_dilocation)); 2052 lex(); 2053 2054 bool HaveLine = false; 2055 unsigned Line = 0; 2056 unsigned Column = 0; 2057 MDNode *Scope = nullptr; 2058 MDNode *InlinedAt = nullptr; 2059 bool ImplicitCode = false; 2060 2061 if (expectAndConsume(MIToken::lparen)) 2062 return true; 2063 2064 if (Token.isNot(MIToken::rparen)) { 2065 do { 2066 if (Token.is(MIToken::Identifier)) { 2067 if (Token.stringValue() == "line") { 2068 lex(); 2069 if (expectAndConsume(MIToken::colon)) 2070 return true; 2071 if (Token.isNot(MIToken::IntegerLiteral) || 2072 Token.integerValue().isSigned()) 2073 return error("expected unsigned integer"); 2074 Line = Token.integerValue().getZExtValue(); 2075 HaveLine = true; 2076 lex(); 2077 continue; 2078 } 2079 if (Token.stringValue() == "column") { 2080 lex(); 2081 if (expectAndConsume(MIToken::colon)) 2082 return true; 2083 if (Token.isNot(MIToken::IntegerLiteral) || 2084 Token.integerValue().isSigned()) 2085 return error("expected unsigned integer"); 2086 Column = Token.integerValue().getZExtValue(); 2087 lex(); 2088 continue; 2089 } 2090 if (Token.stringValue() == "scope") { 2091 lex(); 2092 if (expectAndConsume(MIToken::colon)) 2093 return true; 2094 if (parseMDNode(Scope)) 2095 return error("expected metadata node"); 2096 if (!isa<DIScope>(Scope)) 2097 return error("expected DIScope node"); 2098 continue; 2099 } 2100 if (Token.stringValue() == "inlinedAt") { 2101 lex(); 2102 if (expectAndConsume(MIToken::colon)) 2103 return true; 2104 if (Token.is(MIToken::exclaim)) { 2105 if (parseMDNode(InlinedAt)) 2106 return true; 2107 } else if (Token.is(MIToken::md_dilocation)) { 2108 if (parseDILocation(InlinedAt)) 2109 return true; 2110 } else 2111 return error("expected metadata node"); 2112 if (!isa<DILocation>(InlinedAt)) 2113 return error("expected DILocation node"); 2114 continue; 2115 } 2116 if (Token.stringValue() == "isImplicitCode") { 2117 lex(); 2118 if (expectAndConsume(MIToken::colon)) 2119 return true; 2120 if (!Token.is(MIToken::Identifier)) 2121 return error("expected true/false"); 2122 // As far as I can see, we don't have any existing need for parsing 2123 // true/false in MIR yet. Do it ad-hoc until there's something else 2124 // that needs it. 2125 if (Token.stringValue() == "true") 2126 ImplicitCode = true; 2127 else if (Token.stringValue() == "false") 2128 ImplicitCode = false; 2129 else 2130 return error("expected true/false"); 2131 lex(); 2132 continue; 2133 } 2134 } 2135 return error(Twine("invalid DILocation argument '") + 2136 Token.stringValue() + "'"); 2137 } while (consumeIfPresent(MIToken::comma)); 2138 } 2139 2140 if (expectAndConsume(MIToken::rparen)) 2141 return true; 2142 2143 if (!HaveLine) 2144 return error("DILocation requires line number"); 2145 if (!Scope) 2146 return error("DILocation requires a scope"); 2147 2148 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2149 InlinedAt, ImplicitCode); 2150 return false; 2151 } 2152 2153 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2154 MDNode *Node = nullptr; 2155 if (Token.is(MIToken::exclaim)) { 2156 if (parseMDNode(Node)) 2157 return true; 2158 } else if (Token.is(MIToken::md_diexpr)) { 2159 if (parseDIExpression(Node)) 2160 return true; 2161 } 2162 Dest = MachineOperand::CreateMetadata(Node); 2163 return false; 2164 } 2165 2166 bool MIParser::parseCFIOffset(int &Offset) { 2167 if (Token.isNot(MIToken::IntegerLiteral)) 2168 return error("expected a cfi offset"); 2169 if (Token.integerValue().getMinSignedBits() > 32) 2170 return error("expected a 32 bit integer (the cfi offset is too large)"); 2171 Offset = (int)Token.integerValue().getExtValue(); 2172 lex(); 2173 return false; 2174 } 2175 2176 bool MIParser::parseCFIRegister(Register &Reg) { 2177 if (Token.isNot(MIToken::NamedRegister)) 2178 return error("expected a cfi register"); 2179 Register LLVMReg; 2180 if (parseNamedRegister(LLVMReg)) 2181 return true; 2182 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2183 assert(TRI && "Expected target register info"); 2184 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2185 if (DwarfReg < 0) 2186 return error("invalid DWARF register"); 2187 Reg = (unsigned)DwarfReg; 2188 lex(); 2189 return false; 2190 } 2191 2192 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2193 do { 2194 if (Token.isNot(MIToken::HexLiteral)) 2195 return error("expected a hexadecimal literal"); 2196 unsigned Value; 2197 if (getUnsigned(Value)) 2198 return true; 2199 if (Value > UINT8_MAX) 2200 return error("expected a 8-bit integer (too large)"); 2201 Values.push_back(static_cast<uint8_t>(Value)); 2202 lex(); 2203 } while (consumeIfPresent(MIToken::comma)); 2204 return false; 2205 } 2206 2207 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2208 auto Kind = Token.kind(); 2209 lex(); 2210 int Offset; 2211 Register Reg; 2212 unsigned CFIIndex; 2213 switch (Kind) { 2214 case MIToken::kw_cfi_same_value: 2215 if (parseCFIRegister(Reg)) 2216 return true; 2217 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2218 break; 2219 case MIToken::kw_cfi_offset: 2220 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2221 parseCFIOffset(Offset)) 2222 return true; 2223 CFIIndex = 2224 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2225 break; 2226 case MIToken::kw_cfi_rel_offset: 2227 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2228 parseCFIOffset(Offset)) 2229 return true; 2230 CFIIndex = MF.addFrameInst( 2231 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2232 break; 2233 case MIToken::kw_cfi_def_cfa_register: 2234 if (parseCFIRegister(Reg)) 2235 return true; 2236 CFIIndex = 2237 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2238 break; 2239 case MIToken::kw_cfi_def_cfa_offset: 2240 if (parseCFIOffset(Offset)) 2241 return true; 2242 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 2243 CFIIndex = MF.addFrameInst( 2244 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 2245 break; 2246 case MIToken::kw_cfi_adjust_cfa_offset: 2247 if (parseCFIOffset(Offset)) 2248 return true; 2249 CFIIndex = MF.addFrameInst( 2250 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2251 break; 2252 case MIToken::kw_cfi_def_cfa: 2253 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2254 parseCFIOffset(Offset)) 2255 return true; 2256 // NB: MCCFIInstruction::createDefCfa negates the offset. 2257 CFIIndex = 2258 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 2259 break; 2260 case MIToken::kw_cfi_remember_state: 2261 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2262 break; 2263 case MIToken::kw_cfi_restore: 2264 if (parseCFIRegister(Reg)) 2265 return true; 2266 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2267 break; 2268 case MIToken::kw_cfi_restore_state: 2269 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2270 break; 2271 case MIToken::kw_cfi_undefined: 2272 if (parseCFIRegister(Reg)) 2273 return true; 2274 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2275 break; 2276 case MIToken::kw_cfi_register: { 2277 Register Reg2; 2278 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2279 parseCFIRegister(Reg2)) 2280 return true; 2281 2282 CFIIndex = 2283 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2284 break; 2285 } 2286 case MIToken::kw_cfi_window_save: 2287 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2288 break; 2289 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2290 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2291 break; 2292 case MIToken::kw_cfi_escape: { 2293 std::string Values; 2294 if (parseCFIEscapeValues(Values)) 2295 return true; 2296 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2297 break; 2298 } 2299 default: 2300 // TODO: Parse the other CFI operands. 2301 llvm_unreachable("The current token should be a cfi operand"); 2302 } 2303 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2304 return false; 2305 } 2306 2307 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2308 switch (Token.kind()) { 2309 case MIToken::NamedIRBlock: { 2310 BB = dyn_cast_or_null<BasicBlock>( 2311 F.getValueSymbolTable()->lookup(Token.stringValue())); 2312 if (!BB) 2313 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2314 break; 2315 } 2316 case MIToken::IRBlock: { 2317 unsigned SlotNumber = 0; 2318 if (getUnsigned(SlotNumber)) 2319 return true; 2320 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2321 if (!BB) 2322 return error(Twine("use of undefined IR block '%ir-block.") + 2323 Twine(SlotNumber) + "'"); 2324 break; 2325 } 2326 default: 2327 llvm_unreachable("The current token should be an IR block reference"); 2328 } 2329 return false; 2330 } 2331 2332 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2333 assert(Token.is(MIToken::kw_blockaddress)); 2334 lex(); 2335 if (expectAndConsume(MIToken::lparen)) 2336 return true; 2337 if (Token.isNot(MIToken::GlobalValue) && 2338 Token.isNot(MIToken::NamedGlobalValue)) 2339 return error("expected a global value"); 2340 GlobalValue *GV = nullptr; 2341 if (parseGlobalValue(GV)) 2342 return true; 2343 auto *F = dyn_cast<Function>(GV); 2344 if (!F) 2345 return error("expected an IR function reference"); 2346 lex(); 2347 if (expectAndConsume(MIToken::comma)) 2348 return true; 2349 BasicBlock *BB = nullptr; 2350 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2351 return error("expected an IR block reference"); 2352 if (parseIRBlock(BB, *F)) 2353 return true; 2354 lex(); 2355 if (expectAndConsume(MIToken::rparen)) 2356 return true; 2357 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2358 if (parseOperandsOffset(Dest)) 2359 return true; 2360 return false; 2361 } 2362 2363 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2364 assert(Token.is(MIToken::kw_intrinsic)); 2365 lex(); 2366 if (expectAndConsume(MIToken::lparen)) 2367 return error("expected syntax intrinsic(@llvm.whatever)"); 2368 2369 if (Token.isNot(MIToken::NamedGlobalValue)) 2370 return error("expected syntax intrinsic(@llvm.whatever)"); 2371 2372 std::string Name = std::string(Token.stringValue()); 2373 lex(); 2374 2375 if (expectAndConsume(MIToken::rparen)) 2376 return error("expected ')' to terminate intrinsic name"); 2377 2378 // Find out what intrinsic we're dealing with, first try the global namespace 2379 // and then the target's private intrinsics if that fails. 2380 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2381 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2382 if (ID == Intrinsic::not_intrinsic && TII) 2383 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2384 2385 if (ID == Intrinsic::not_intrinsic) 2386 return error("unknown intrinsic name"); 2387 Dest = MachineOperand::CreateIntrinsicID(ID); 2388 2389 return false; 2390 } 2391 2392 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2393 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2394 bool IsFloat = Token.is(MIToken::kw_floatpred); 2395 lex(); 2396 2397 if (expectAndConsume(MIToken::lparen)) 2398 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2399 2400 if (Token.isNot(MIToken::Identifier)) 2401 return error("whatever"); 2402 2403 CmpInst::Predicate Pred; 2404 if (IsFloat) { 2405 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2406 .Case("false", CmpInst::FCMP_FALSE) 2407 .Case("oeq", CmpInst::FCMP_OEQ) 2408 .Case("ogt", CmpInst::FCMP_OGT) 2409 .Case("oge", CmpInst::FCMP_OGE) 2410 .Case("olt", CmpInst::FCMP_OLT) 2411 .Case("ole", CmpInst::FCMP_OLE) 2412 .Case("one", CmpInst::FCMP_ONE) 2413 .Case("ord", CmpInst::FCMP_ORD) 2414 .Case("uno", CmpInst::FCMP_UNO) 2415 .Case("ueq", CmpInst::FCMP_UEQ) 2416 .Case("ugt", CmpInst::FCMP_UGT) 2417 .Case("uge", CmpInst::FCMP_UGE) 2418 .Case("ult", CmpInst::FCMP_ULT) 2419 .Case("ule", CmpInst::FCMP_ULE) 2420 .Case("une", CmpInst::FCMP_UNE) 2421 .Case("true", CmpInst::FCMP_TRUE) 2422 .Default(CmpInst::BAD_FCMP_PREDICATE); 2423 if (!CmpInst::isFPPredicate(Pred)) 2424 return error("invalid floating-point predicate"); 2425 } else { 2426 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2427 .Case("eq", CmpInst::ICMP_EQ) 2428 .Case("ne", CmpInst::ICMP_NE) 2429 .Case("sgt", CmpInst::ICMP_SGT) 2430 .Case("sge", CmpInst::ICMP_SGE) 2431 .Case("slt", CmpInst::ICMP_SLT) 2432 .Case("sle", CmpInst::ICMP_SLE) 2433 .Case("ugt", CmpInst::ICMP_UGT) 2434 .Case("uge", CmpInst::ICMP_UGE) 2435 .Case("ult", CmpInst::ICMP_ULT) 2436 .Case("ule", CmpInst::ICMP_ULE) 2437 .Default(CmpInst::BAD_ICMP_PREDICATE); 2438 if (!CmpInst::isIntPredicate(Pred)) 2439 return error("invalid integer predicate"); 2440 } 2441 2442 lex(); 2443 Dest = MachineOperand::CreatePredicate(Pred); 2444 if (expectAndConsume(MIToken::rparen)) 2445 return error("predicate should be terminated by ')'."); 2446 2447 return false; 2448 } 2449 2450 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2451 assert(Token.is(MIToken::kw_shufflemask)); 2452 2453 lex(); 2454 if (expectAndConsume(MIToken::lparen)) 2455 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2456 2457 SmallVector<int, 32> ShufMask; 2458 do { 2459 if (Token.is(MIToken::kw_undef)) { 2460 ShufMask.push_back(-1); 2461 } else if (Token.is(MIToken::IntegerLiteral)) { 2462 const APSInt &Int = Token.integerValue(); 2463 ShufMask.push_back(Int.getExtValue()); 2464 } else 2465 return error("expected integer constant"); 2466 2467 lex(); 2468 } while (consumeIfPresent(MIToken::comma)); 2469 2470 if (expectAndConsume(MIToken::rparen)) 2471 return error("shufflemask should be terminated by ')'."); 2472 2473 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2474 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2475 return false; 2476 } 2477 2478 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2479 assert(Token.is(MIToken::kw_target_index)); 2480 lex(); 2481 if (expectAndConsume(MIToken::lparen)) 2482 return true; 2483 if (Token.isNot(MIToken::Identifier)) 2484 return error("expected the name of the target index"); 2485 int Index = 0; 2486 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2487 return error("use of undefined target index '" + Token.stringValue() + "'"); 2488 lex(); 2489 if (expectAndConsume(MIToken::rparen)) 2490 return true; 2491 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2492 if (parseOperandsOffset(Dest)) 2493 return true; 2494 return false; 2495 } 2496 2497 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2498 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2499 lex(); 2500 if (expectAndConsume(MIToken::lparen)) 2501 return true; 2502 2503 uint32_t *Mask = MF.allocateRegMask(); 2504 while (true) { 2505 if (Token.isNot(MIToken::NamedRegister)) 2506 return error("expected a named register"); 2507 Register Reg; 2508 if (parseNamedRegister(Reg)) 2509 return true; 2510 lex(); 2511 Mask[Reg / 32] |= 1U << (Reg % 32); 2512 // TODO: Report an error if the same register is used more than once. 2513 if (Token.isNot(MIToken::comma)) 2514 break; 2515 lex(); 2516 } 2517 2518 if (expectAndConsume(MIToken::rparen)) 2519 return true; 2520 Dest = MachineOperand::CreateRegMask(Mask); 2521 return false; 2522 } 2523 2524 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2525 assert(Token.is(MIToken::kw_liveout)); 2526 uint32_t *Mask = MF.allocateRegMask(); 2527 lex(); 2528 if (expectAndConsume(MIToken::lparen)) 2529 return true; 2530 while (true) { 2531 if (Token.isNot(MIToken::NamedRegister)) 2532 return error("expected a named register"); 2533 Register Reg; 2534 if (parseNamedRegister(Reg)) 2535 return true; 2536 lex(); 2537 Mask[Reg / 32] |= 1U << (Reg % 32); 2538 // TODO: Report an error if the same register is used more than once. 2539 if (Token.isNot(MIToken::comma)) 2540 break; 2541 lex(); 2542 } 2543 if (expectAndConsume(MIToken::rparen)) 2544 return true; 2545 Dest = MachineOperand::CreateRegLiveOut(Mask); 2546 return false; 2547 } 2548 2549 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2550 MachineOperand &Dest, 2551 Optional<unsigned> &TiedDefIdx) { 2552 switch (Token.kind()) { 2553 case MIToken::kw_implicit: 2554 case MIToken::kw_implicit_define: 2555 case MIToken::kw_def: 2556 case MIToken::kw_dead: 2557 case MIToken::kw_killed: 2558 case MIToken::kw_undef: 2559 case MIToken::kw_internal: 2560 case MIToken::kw_early_clobber: 2561 case MIToken::kw_debug_use: 2562 case MIToken::kw_renamable: 2563 case MIToken::underscore: 2564 case MIToken::NamedRegister: 2565 case MIToken::VirtualRegister: 2566 case MIToken::NamedVirtualRegister: 2567 return parseRegisterOperand(Dest, TiedDefIdx); 2568 case MIToken::IntegerLiteral: 2569 return parseImmediateOperand(Dest); 2570 case MIToken::kw_half: 2571 case MIToken::kw_float: 2572 case MIToken::kw_double: 2573 case MIToken::kw_x86_fp80: 2574 case MIToken::kw_fp128: 2575 case MIToken::kw_ppc_fp128: 2576 return parseFPImmediateOperand(Dest); 2577 case MIToken::MachineBasicBlock: 2578 return parseMBBOperand(Dest); 2579 case MIToken::StackObject: 2580 return parseStackObjectOperand(Dest); 2581 case MIToken::FixedStackObject: 2582 return parseFixedStackObjectOperand(Dest); 2583 case MIToken::GlobalValue: 2584 case MIToken::NamedGlobalValue: 2585 return parseGlobalAddressOperand(Dest); 2586 case MIToken::ConstantPoolItem: 2587 return parseConstantPoolIndexOperand(Dest); 2588 case MIToken::JumpTableIndex: 2589 return parseJumpTableIndexOperand(Dest); 2590 case MIToken::ExternalSymbol: 2591 return parseExternalSymbolOperand(Dest); 2592 case MIToken::MCSymbol: 2593 return parseMCSymbolOperand(Dest); 2594 case MIToken::SubRegisterIndex: 2595 return parseSubRegisterIndexOperand(Dest); 2596 case MIToken::md_diexpr: 2597 case MIToken::exclaim: 2598 return parseMetadataOperand(Dest); 2599 case MIToken::kw_cfi_same_value: 2600 case MIToken::kw_cfi_offset: 2601 case MIToken::kw_cfi_rel_offset: 2602 case MIToken::kw_cfi_def_cfa_register: 2603 case MIToken::kw_cfi_def_cfa_offset: 2604 case MIToken::kw_cfi_adjust_cfa_offset: 2605 case MIToken::kw_cfi_escape: 2606 case MIToken::kw_cfi_def_cfa: 2607 case MIToken::kw_cfi_register: 2608 case MIToken::kw_cfi_remember_state: 2609 case MIToken::kw_cfi_restore: 2610 case MIToken::kw_cfi_restore_state: 2611 case MIToken::kw_cfi_undefined: 2612 case MIToken::kw_cfi_window_save: 2613 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2614 return parseCFIOperand(Dest); 2615 case MIToken::kw_blockaddress: 2616 return parseBlockAddressOperand(Dest); 2617 case MIToken::kw_intrinsic: 2618 return parseIntrinsicOperand(Dest); 2619 case MIToken::kw_target_index: 2620 return parseTargetIndexOperand(Dest); 2621 case MIToken::kw_liveout: 2622 return parseLiveoutRegisterMaskOperand(Dest); 2623 case MIToken::kw_floatpred: 2624 case MIToken::kw_intpred: 2625 return parsePredicateOperand(Dest); 2626 case MIToken::kw_shufflemask: 2627 return parseShuffleMaskOperand(Dest); 2628 case MIToken::Error: 2629 return true; 2630 case MIToken::Identifier: 2631 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2632 Dest = MachineOperand::CreateRegMask(RegMask); 2633 lex(); 2634 break; 2635 } else if (Token.stringValue() == "CustomRegMask") { 2636 return parseCustomRegisterMaskOperand(Dest); 2637 } else 2638 return parseTypedImmediateOperand(Dest); 2639 case MIToken::dot: { 2640 const auto *TII = MF.getSubtarget().getInstrInfo(); 2641 if (const auto *Formatter = TII->getMIRFormatter()) { 2642 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2643 } 2644 LLVM_FALLTHROUGH; 2645 } 2646 default: 2647 // FIXME: Parse the MCSymbol machine operand. 2648 return error("expected a machine operand"); 2649 } 2650 return false; 2651 } 2652 2653 bool MIParser::parseMachineOperandAndTargetFlags( 2654 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2655 Optional<unsigned> &TiedDefIdx) { 2656 unsigned TF = 0; 2657 bool HasTargetFlags = false; 2658 if (Token.is(MIToken::kw_target_flags)) { 2659 HasTargetFlags = true; 2660 lex(); 2661 if (expectAndConsume(MIToken::lparen)) 2662 return true; 2663 if (Token.isNot(MIToken::Identifier)) 2664 return error("expected the name of the target flag"); 2665 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2666 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2667 return error("use of undefined target flag '" + Token.stringValue() + 2668 "'"); 2669 } 2670 lex(); 2671 while (Token.is(MIToken::comma)) { 2672 lex(); 2673 if (Token.isNot(MIToken::Identifier)) 2674 return error("expected the name of the target flag"); 2675 unsigned BitFlag = 0; 2676 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2677 return error("use of undefined target flag '" + Token.stringValue() + 2678 "'"); 2679 // TODO: Report an error when using a duplicate bit target flag. 2680 TF |= BitFlag; 2681 lex(); 2682 } 2683 if (expectAndConsume(MIToken::rparen)) 2684 return true; 2685 } 2686 auto Loc = Token.location(); 2687 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2688 return true; 2689 if (!HasTargetFlags) 2690 return false; 2691 if (Dest.isReg()) 2692 return error(Loc, "register operands can't have target flags"); 2693 Dest.setTargetFlags(TF); 2694 return false; 2695 } 2696 2697 bool MIParser::parseOffset(int64_t &Offset) { 2698 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2699 return false; 2700 StringRef Sign = Token.range(); 2701 bool IsNegative = Token.is(MIToken::minus); 2702 lex(); 2703 if (Token.isNot(MIToken::IntegerLiteral)) 2704 return error("expected an integer literal after '" + Sign + "'"); 2705 if (Token.integerValue().getMinSignedBits() > 64) 2706 return error("expected 64-bit integer (too large)"); 2707 Offset = Token.integerValue().getExtValue(); 2708 if (IsNegative) 2709 Offset = -Offset; 2710 lex(); 2711 return false; 2712 } 2713 2714 bool MIParser::parseAlignment(unsigned &Alignment) { 2715 assert(Token.is(MIToken::kw_align)); 2716 lex(); 2717 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2718 return error("expected an integer literal after 'align'"); 2719 if (getUnsigned(Alignment)) 2720 return true; 2721 lex(); 2722 2723 if (!isPowerOf2_32(Alignment)) 2724 return error("expected a power-of-2 literal after 'align'"); 2725 2726 return false; 2727 } 2728 2729 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2730 assert(Token.is(MIToken::kw_addrspace)); 2731 lex(); 2732 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2733 return error("expected an integer literal after 'addrspace'"); 2734 if (getUnsigned(Addrspace)) 2735 return true; 2736 lex(); 2737 return false; 2738 } 2739 2740 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2741 int64_t Offset = 0; 2742 if (parseOffset(Offset)) 2743 return true; 2744 Op.setOffset(Offset); 2745 return false; 2746 } 2747 2748 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2749 const Value *&V, ErrorCallbackType ErrCB) { 2750 switch (Token.kind()) { 2751 case MIToken::NamedIRValue: { 2752 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2753 break; 2754 } 2755 case MIToken::IRValue: { 2756 unsigned SlotNumber = 0; 2757 if (getUnsigned(Token, SlotNumber, ErrCB)) 2758 return true; 2759 V = PFS.getIRValue(SlotNumber); 2760 break; 2761 } 2762 case MIToken::NamedGlobalValue: 2763 case MIToken::GlobalValue: { 2764 GlobalValue *GV = nullptr; 2765 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2766 return true; 2767 V = GV; 2768 break; 2769 } 2770 case MIToken::QuotedIRValue: { 2771 const Constant *C = nullptr; 2772 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2773 return true; 2774 V = C; 2775 break; 2776 } 2777 default: 2778 llvm_unreachable("The current token should be an IR block reference"); 2779 } 2780 if (!V) 2781 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2782 return false; 2783 } 2784 2785 bool MIParser::parseIRValue(const Value *&V) { 2786 return ::parseIRValue( 2787 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2788 return error(Loc, Msg); 2789 }); 2790 } 2791 2792 bool MIParser::getUint64(uint64_t &Result) { 2793 if (Token.hasIntegerValue()) { 2794 if (Token.integerValue().getActiveBits() > 64) 2795 return error("expected 64-bit integer (too large)"); 2796 Result = Token.integerValue().getZExtValue(); 2797 return false; 2798 } 2799 if (Token.is(MIToken::HexLiteral)) { 2800 APInt A; 2801 if (getHexUint(A)) 2802 return true; 2803 if (A.getBitWidth() > 64) 2804 return error("expected 64-bit integer (too large)"); 2805 Result = A.getZExtValue(); 2806 return false; 2807 } 2808 return true; 2809 } 2810 2811 bool MIParser::getHexUint(APInt &Result) { 2812 return ::getHexUint(Token, Result); 2813 } 2814 2815 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2816 const auto OldFlags = Flags; 2817 switch (Token.kind()) { 2818 case MIToken::kw_volatile: 2819 Flags |= MachineMemOperand::MOVolatile; 2820 break; 2821 case MIToken::kw_non_temporal: 2822 Flags |= MachineMemOperand::MONonTemporal; 2823 break; 2824 case MIToken::kw_dereferenceable: 2825 Flags |= MachineMemOperand::MODereferenceable; 2826 break; 2827 case MIToken::kw_invariant: 2828 Flags |= MachineMemOperand::MOInvariant; 2829 break; 2830 case MIToken::StringConstant: { 2831 MachineMemOperand::Flags TF; 2832 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2833 return error("use of undefined target MMO flag '" + Token.stringValue() + 2834 "'"); 2835 Flags |= TF; 2836 break; 2837 } 2838 default: 2839 llvm_unreachable("The current token should be a memory operand flag"); 2840 } 2841 if (OldFlags == Flags) 2842 // We know that the same flag is specified more than once when the flags 2843 // weren't modified. 2844 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2845 lex(); 2846 return false; 2847 } 2848 2849 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2850 switch (Token.kind()) { 2851 case MIToken::kw_stack: 2852 PSV = MF.getPSVManager().getStack(); 2853 break; 2854 case MIToken::kw_got: 2855 PSV = MF.getPSVManager().getGOT(); 2856 break; 2857 case MIToken::kw_jump_table: 2858 PSV = MF.getPSVManager().getJumpTable(); 2859 break; 2860 case MIToken::kw_constant_pool: 2861 PSV = MF.getPSVManager().getConstantPool(); 2862 break; 2863 case MIToken::FixedStackObject: { 2864 int FI; 2865 if (parseFixedStackFrameIndex(FI)) 2866 return true; 2867 PSV = MF.getPSVManager().getFixedStack(FI); 2868 // The token was already consumed, so use return here instead of break. 2869 return false; 2870 } 2871 case MIToken::StackObject: { 2872 int FI; 2873 if (parseStackFrameIndex(FI)) 2874 return true; 2875 PSV = MF.getPSVManager().getFixedStack(FI); 2876 // The token was already consumed, so use return here instead of break. 2877 return false; 2878 } 2879 case MIToken::kw_call_entry: 2880 lex(); 2881 switch (Token.kind()) { 2882 case MIToken::GlobalValue: 2883 case MIToken::NamedGlobalValue: { 2884 GlobalValue *GV = nullptr; 2885 if (parseGlobalValue(GV)) 2886 return true; 2887 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2888 break; 2889 } 2890 case MIToken::ExternalSymbol: 2891 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2892 MF.createExternalSymbolName(Token.stringValue())); 2893 break; 2894 default: 2895 return error( 2896 "expected a global value or an external symbol after 'call-entry'"); 2897 } 2898 break; 2899 case MIToken::kw_custom: { 2900 lex(); 2901 const auto *TII = MF.getSubtarget().getInstrInfo(); 2902 if (const auto *Formatter = TII->getMIRFormatter()) { 2903 if (Formatter->parseCustomPseudoSourceValue( 2904 Token.stringValue(), MF, PFS, PSV, 2905 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2906 return error(Loc, Msg); 2907 })) 2908 return true; 2909 } else 2910 return error("unable to parse target custom pseudo source value"); 2911 break; 2912 } 2913 default: 2914 llvm_unreachable("The current token should be pseudo source value"); 2915 } 2916 lex(); 2917 return false; 2918 } 2919 2920 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2921 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2922 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2923 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2924 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 2925 const PseudoSourceValue *PSV = nullptr; 2926 if (parseMemoryPseudoSourceValue(PSV)) 2927 return true; 2928 int64_t Offset = 0; 2929 if (parseOffset(Offset)) 2930 return true; 2931 Dest = MachinePointerInfo(PSV, Offset); 2932 return false; 2933 } 2934 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2935 Token.isNot(MIToken::GlobalValue) && 2936 Token.isNot(MIToken::NamedGlobalValue) && 2937 Token.isNot(MIToken::QuotedIRValue)) 2938 return error("expected an IR value reference"); 2939 const Value *V = nullptr; 2940 if (parseIRValue(V)) 2941 return true; 2942 if (!V->getType()->isPointerTy()) 2943 return error("expected a pointer IR value"); 2944 lex(); 2945 int64_t Offset = 0; 2946 if (parseOffset(Offset)) 2947 return true; 2948 Dest = MachinePointerInfo(V, Offset); 2949 return false; 2950 } 2951 2952 bool MIParser::parseOptionalScope(LLVMContext &Context, 2953 SyncScope::ID &SSID) { 2954 SSID = SyncScope::System; 2955 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2956 lex(); 2957 if (expectAndConsume(MIToken::lparen)) 2958 return error("expected '(' in syncscope"); 2959 2960 std::string SSN; 2961 if (parseStringConstant(SSN)) 2962 return true; 2963 2964 SSID = Context.getOrInsertSyncScopeID(SSN); 2965 if (expectAndConsume(MIToken::rparen)) 2966 return error("expected ')' in syncscope"); 2967 } 2968 2969 return false; 2970 } 2971 2972 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2973 Order = AtomicOrdering::NotAtomic; 2974 if (Token.isNot(MIToken::Identifier)) 2975 return false; 2976 2977 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2978 .Case("unordered", AtomicOrdering::Unordered) 2979 .Case("monotonic", AtomicOrdering::Monotonic) 2980 .Case("acquire", AtomicOrdering::Acquire) 2981 .Case("release", AtomicOrdering::Release) 2982 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2983 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2984 .Default(AtomicOrdering::NotAtomic); 2985 2986 if (Order != AtomicOrdering::NotAtomic) { 2987 lex(); 2988 return false; 2989 } 2990 2991 return error("expected an atomic scope, ordering or a size specification"); 2992 } 2993 2994 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2995 if (expectAndConsume(MIToken::lparen)) 2996 return true; 2997 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2998 while (Token.isMemoryOperandFlag()) { 2999 if (parseMemoryOperandFlag(Flags)) 3000 return true; 3001 } 3002 if (Token.isNot(MIToken::Identifier) || 3003 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3004 return error("expected 'load' or 'store' memory operation"); 3005 if (Token.stringValue() == "load") 3006 Flags |= MachineMemOperand::MOLoad; 3007 else 3008 Flags |= MachineMemOperand::MOStore; 3009 lex(); 3010 3011 // Optional 'store' for operands that both load and store. 3012 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3013 Flags |= MachineMemOperand::MOStore; 3014 lex(); 3015 } 3016 3017 // Optional synchronization scope. 3018 SyncScope::ID SSID; 3019 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3020 return true; 3021 3022 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3023 AtomicOrdering Order, FailureOrder; 3024 if (parseOptionalAtomicOrdering(Order)) 3025 return true; 3026 3027 if (parseOptionalAtomicOrdering(FailureOrder)) 3028 return true; 3029 3030 if (Token.isNot(MIToken::IntegerLiteral) && 3031 Token.isNot(MIToken::kw_unknown_size)) 3032 return error("expected the size integer literal or 'unknown-size' after " 3033 "memory operation"); 3034 uint64_t Size; 3035 if (Token.is(MIToken::IntegerLiteral)) { 3036 if (getUint64(Size)) 3037 return true; 3038 } else if (Token.is(MIToken::kw_unknown_size)) { 3039 Size = MemoryLocation::UnknownSize; 3040 } 3041 lex(); 3042 3043 MachinePointerInfo Ptr = MachinePointerInfo(); 3044 if (Token.is(MIToken::Identifier)) { 3045 const char *Word = 3046 ((Flags & MachineMemOperand::MOLoad) && 3047 (Flags & MachineMemOperand::MOStore)) 3048 ? "on" 3049 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3050 if (Token.stringValue() != Word) 3051 return error(Twine("expected '") + Word + "'"); 3052 lex(); 3053 3054 if (parseMachinePointerInfo(Ptr)) 3055 return true; 3056 } 3057 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 3058 AAMDNodes AAInfo; 3059 MDNode *Range = nullptr; 3060 while (consumeIfPresent(MIToken::comma)) { 3061 switch (Token.kind()) { 3062 case MIToken::kw_align: 3063 if (parseAlignment(BaseAlignment)) 3064 return true; 3065 break; 3066 case MIToken::kw_addrspace: 3067 if (parseAddrspace(Ptr.AddrSpace)) 3068 return true; 3069 break; 3070 case MIToken::md_tbaa: 3071 lex(); 3072 if (parseMDNode(AAInfo.TBAA)) 3073 return true; 3074 break; 3075 case MIToken::md_alias_scope: 3076 lex(); 3077 if (parseMDNode(AAInfo.Scope)) 3078 return true; 3079 break; 3080 case MIToken::md_noalias: 3081 lex(); 3082 if (parseMDNode(AAInfo.NoAlias)) 3083 return true; 3084 break; 3085 case MIToken::md_range: 3086 lex(); 3087 if (parseMDNode(Range)) 3088 return true; 3089 break; 3090 // TODO: Report an error on duplicate metadata nodes. 3091 default: 3092 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3093 "'!noalias' or '!range'"); 3094 } 3095 } 3096 if (expectAndConsume(MIToken::rparen)) 3097 return true; 3098 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, Align(BaseAlignment), AAInfo, 3099 Range, SSID, Order, FailureOrder); 3100 return false; 3101 } 3102 3103 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3104 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3105 Token.is(MIToken::kw_post_instr_symbol)) && 3106 "Invalid token for a pre- post-instruction symbol!"); 3107 lex(); 3108 if (Token.isNot(MIToken::MCSymbol)) 3109 return error("expected a symbol after 'pre-instr-symbol'"); 3110 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3111 lex(); 3112 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3113 Token.is(MIToken::lbrace)) 3114 return false; 3115 if (Token.isNot(MIToken::comma)) 3116 return error("expected ',' before the next machine operand"); 3117 lex(); 3118 return false; 3119 } 3120 3121 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3122 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3123 "Invalid token for a heap alloc marker!"); 3124 lex(); 3125 parseMDNode(Node); 3126 if (!Node) 3127 return error("expected a MDNode after 'heap-alloc-marker'"); 3128 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3129 Token.is(MIToken::lbrace)) 3130 return false; 3131 if (Token.isNot(MIToken::comma)) 3132 return error("expected ',' before the next machine operand"); 3133 lex(); 3134 return false; 3135 } 3136 3137 static void initSlots2BasicBlocks( 3138 const Function &F, 3139 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3140 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3141 MST.incorporateFunction(F); 3142 for (auto &BB : F) { 3143 if (BB.hasName()) 3144 continue; 3145 int Slot = MST.getLocalSlot(&BB); 3146 if (Slot == -1) 3147 continue; 3148 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3149 } 3150 } 3151 3152 static const BasicBlock *getIRBlockFromSlot( 3153 unsigned Slot, 3154 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3155 auto BlockInfo = Slots2BasicBlocks.find(Slot); 3156 if (BlockInfo == Slots2BasicBlocks.end()) 3157 return nullptr; 3158 return BlockInfo->second; 3159 } 3160 3161 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3162 if (Slots2BasicBlocks.empty()) 3163 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3164 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3165 } 3166 3167 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3168 if (&F == &MF.getFunction()) 3169 return getIRBlock(Slot); 3170 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3171 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3172 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3173 } 3174 3175 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3176 // FIXME: Currently we can't recognize temporary or local symbols and call all 3177 // of the appropriate forms to create them. However, this handles basic cases 3178 // well as most of the special aspects are recognized by a prefix on their 3179 // name, and the input names should already be unique. For test cases, keeping 3180 // the symbol name out of the symbol table isn't terribly important. 3181 return MF.getContext().getOrCreateSymbol(Name); 3182 } 3183 3184 bool MIParser::parseStringConstant(std::string &Result) { 3185 if (Token.isNot(MIToken::StringConstant)) 3186 return error("expected string constant"); 3187 Result = std::string(Token.stringValue()); 3188 lex(); 3189 return false; 3190 } 3191 3192 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3193 StringRef Src, 3194 SMDiagnostic &Error) { 3195 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3196 } 3197 3198 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3199 StringRef Src, SMDiagnostic &Error) { 3200 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3201 } 3202 3203 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3204 MachineBasicBlock *&MBB, StringRef Src, 3205 SMDiagnostic &Error) { 3206 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3207 } 3208 3209 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3210 Register &Reg, StringRef Src, 3211 SMDiagnostic &Error) { 3212 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3213 } 3214 3215 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3216 Register &Reg, StringRef Src, 3217 SMDiagnostic &Error) { 3218 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3219 } 3220 3221 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3222 VRegInfo *&Info, StringRef Src, 3223 SMDiagnostic &Error) { 3224 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3225 } 3226 3227 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3228 int &FI, StringRef Src, 3229 SMDiagnostic &Error) { 3230 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3231 } 3232 3233 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3234 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3235 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3236 } 3237 3238 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3239 PerFunctionMIParsingState &PFS, const Value *&V, 3240 ErrorCallbackType ErrorCallback) { 3241 MIToken Token; 3242 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3243 ErrorCallback(Loc, Msg); 3244 }); 3245 V = nullptr; 3246 3247 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3248 } 3249