1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cctype> 40 41 using namespace llvm; 42 43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 44 SourceMgr &SM, const SlotMapping &IRSlots, 45 const Name2RegClassMap &Names2RegClasses, 46 const Name2RegBankMap &Names2RegBanks) 47 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 48 Names2RegBanks(Names2RegBanks) { 49 } 50 51 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 52 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 53 if (I.second) { 54 MachineRegisterInfo &MRI = MF.getRegInfo(); 55 VRegInfo *Info = new (Allocator) VRegInfo; 56 Info->VReg = MRI.createIncompleteVirtualRegister(); 57 I.first->second = Info; 58 } 59 return *I.first->second; 60 } 61 62 namespace { 63 64 /// A wrapper struct around the 'MachineOperand' struct that includes a source 65 /// range and other attributes. 66 struct ParsedMachineOperand { 67 MachineOperand Operand; 68 StringRef::iterator Begin; 69 StringRef::iterator End; 70 Optional<unsigned> TiedDefIdx; 71 72 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 73 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 74 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 75 if (TiedDefIdx) 76 assert(Operand.isReg() && Operand.isUse() && 77 "Only used register operands can be tied"); 78 } 79 }; 80 81 class MIParser { 82 MachineFunction &MF; 83 SMDiagnostic &Error; 84 StringRef Source, CurrentSource; 85 MIToken Token; 86 PerFunctionMIParsingState &PFS; 87 /// Maps from instruction names to op codes. 88 StringMap<unsigned> Names2InstrOpCodes; 89 /// Maps from register names to registers. 90 StringMap<unsigned> Names2Regs; 91 /// Maps from register mask names to register masks. 92 StringMap<const uint32_t *> Names2RegMasks; 93 /// Maps from subregister names to subregister indices. 94 StringMap<unsigned> Names2SubRegIndices; 95 /// Maps from slot numbers to function's unnamed basic blocks. 96 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 97 /// Maps from slot numbers to function's unnamed values. 98 DenseMap<unsigned, const Value *> Slots2Values; 99 /// Maps from target index names to target indices. 100 StringMap<int> Names2TargetIndices; 101 /// Maps from direct target flag names to the direct target flag values. 102 StringMap<unsigned> Names2DirectTargetFlags; 103 /// Maps from direct target flag names to the bitmask target flag values. 104 StringMap<unsigned> Names2BitmaskTargetFlags; 105 106 public: 107 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 108 StringRef Source); 109 110 /// \p SkipChar gives the number of characters to skip before looking 111 /// for the next token. 112 void lex(unsigned SkipChar = 0); 113 114 /// Report an error at the current location with the given message. 115 /// 116 /// This function always return true. 117 bool error(const Twine &Msg); 118 119 /// Report an error at the given location with the given message. 120 /// 121 /// This function always return true. 122 bool error(StringRef::iterator Loc, const Twine &Msg); 123 124 bool 125 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 126 bool parseBasicBlocks(); 127 bool parse(MachineInstr *&MI); 128 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 129 bool parseStandaloneNamedRegister(unsigned &Reg); 130 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 131 bool parseStandaloneRegister(unsigned &Reg); 132 bool parseStandaloneStackObject(int &FI); 133 bool parseStandaloneMDNode(MDNode *&Node); 134 135 bool 136 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 137 bool parseBasicBlock(MachineBasicBlock &MBB); 138 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 139 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 140 141 bool parseNamedRegister(unsigned &Reg); 142 bool parseVirtualRegister(VRegInfo *&Info); 143 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 144 bool parseRegisterFlag(unsigned &Flags); 145 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 146 bool parseSubRegisterIndex(unsigned &SubReg); 147 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 148 bool parseRegisterOperand(MachineOperand &Dest, 149 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 150 bool parseImmediateOperand(MachineOperand &Dest); 151 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 152 const Constant *&C); 153 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 154 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 155 bool parseTypedImmediateOperand(MachineOperand &Dest); 156 bool parseFPImmediateOperand(MachineOperand &Dest); 157 bool parseMBBReference(MachineBasicBlock *&MBB); 158 bool parseMBBOperand(MachineOperand &Dest); 159 bool parseStackFrameIndex(int &FI); 160 bool parseStackObjectOperand(MachineOperand &Dest); 161 bool parseFixedStackFrameIndex(int &FI); 162 bool parseFixedStackObjectOperand(MachineOperand &Dest); 163 bool parseGlobalValue(GlobalValue *&GV); 164 bool parseGlobalAddressOperand(MachineOperand &Dest); 165 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 166 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 167 bool parseJumpTableIndexOperand(MachineOperand &Dest); 168 bool parseExternalSymbolOperand(MachineOperand &Dest); 169 bool parseMDNode(MDNode *&Node); 170 bool parseMetadataOperand(MachineOperand &Dest); 171 bool parseCFIOffset(int &Offset); 172 bool parseCFIRegister(unsigned &Reg); 173 bool parseCFIOperand(MachineOperand &Dest); 174 bool parseIRBlock(BasicBlock *&BB, const Function &F); 175 bool parseBlockAddressOperand(MachineOperand &Dest); 176 bool parseIntrinsicOperand(MachineOperand &Dest); 177 bool parsePredicateOperand(MachineOperand &Dest); 178 bool parseTargetIndexOperand(MachineOperand &Dest); 179 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 180 bool parseMachineOperand(MachineOperand &Dest, 181 Optional<unsigned> &TiedDefIdx); 182 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 183 Optional<unsigned> &TiedDefIdx); 184 bool parseOffset(int64_t &Offset); 185 bool parseAlignment(unsigned &Alignment); 186 bool parseOperandsOffset(MachineOperand &Op); 187 bool parseIRValue(const Value *&V); 188 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 189 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 190 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 191 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 192 193 private: 194 /// Convert the integer literal in the current token into an unsigned integer. 195 /// 196 /// Return true if an error occurred. 197 bool getUnsigned(unsigned &Result); 198 199 /// Convert the integer literal in the current token into an uint64. 200 /// 201 /// Return true if an error occurred. 202 bool getUint64(uint64_t &Result); 203 204 /// Convert the hexadecimal literal in the current token into an unsigned 205 /// APInt with a minimum bitwidth required to represent the value. 206 /// 207 /// Return true if the literal does not represent an integer value. 208 bool getHexUint(APInt &Result); 209 210 /// If the current token is of the given kind, consume it and return false. 211 /// Otherwise report an error and return true. 212 bool expectAndConsume(MIToken::TokenKind TokenKind); 213 214 /// If the current token is of the given kind, consume it and return true. 215 /// Otherwise return false. 216 bool consumeIfPresent(MIToken::TokenKind TokenKind); 217 218 void initNames2InstrOpCodes(); 219 220 /// Try to convert an instruction name to an opcode. Return true if the 221 /// instruction name is invalid. 222 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 223 224 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 225 226 bool assignRegisterTies(MachineInstr &MI, 227 ArrayRef<ParsedMachineOperand> Operands); 228 229 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 230 const MCInstrDesc &MCID); 231 232 void initNames2Regs(); 233 234 /// Try to convert a register name to a register number. Return true if the 235 /// register name is invalid. 236 bool getRegisterByName(StringRef RegName, unsigned &Reg); 237 238 void initNames2RegMasks(); 239 240 /// Check if the given identifier is a name of a register mask. 241 /// 242 /// Return null if the identifier isn't a register mask. 243 const uint32_t *getRegMask(StringRef Identifier); 244 245 void initNames2SubRegIndices(); 246 247 /// Check if the given identifier is a name of a subregister index. 248 /// 249 /// Return 0 if the name isn't a subregister index class. 250 unsigned getSubRegIndex(StringRef Name); 251 252 const BasicBlock *getIRBlock(unsigned Slot); 253 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 254 255 const Value *getIRValue(unsigned Slot); 256 257 void initNames2TargetIndices(); 258 259 /// Try to convert a name of target index to the corresponding target index. 260 /// 261 /// Return true if the name isn't a name of a target index. 262 bool getTargetIndex(StringRef Name, int &Index); 263 264 void initNames2DirectTargetFlags(); 265 266 /// Try to convert a name of a direct target flag to the corresponding 267 /// target flag. 268 /// 269 /// Return true if the name isn't a name of a direct flag. 270 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 271 272 void initNames2BitmaskTargetFlags(); 273 274 /// Try to convert a name of a bitmask target flag to the corresponding 275 /// target flag. 276 /// 277 /// Return true if the name isn't a name of a bitmask target flag. 278 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 279 }; 280 281 } // end anonymous namespace 282 283 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 284 StringRef Source) 285 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 286 {} 287 288 void MIParser::lex(unsigned SkipChar) { 289 CurrentSource = lexMIToken( 290 CurrentSource.data() + SkipChar, Token, 291 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 292 } 293 294 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 295 296 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 297 const SourceMgr &SM = *PFS.SM; 298 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 299 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 300 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 301 // Create an ordinary diagnostic when the source manager's buffer is the 302 // source string. 303 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 304 return true; 305 } 306 // Create a diagnostic for a YAML string literal. 307 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 308 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 309 Source, None, None); 310 return true; 311 } 312 313 static const char *toString(MIToken::TokenKind TokenKind) { 314 switch (TokenKind) { 315 case MIToken::comma: 316 return "','"; 317 case MIToken::equal: 318 return "'='"; 319 case MIToken::colon: 320 return "':'"; 321 case MIToken::lparen: 322 return "'('"; 323 case MIToken::rparen: 324 return "')'"; 325 default: 326 return "<unknown token>"; 327 } 328 } 329 330 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 331 if (Token.isNot(TokenKind)) 332 return error(Twine("expected ") + toString(TokenKind)); 333 lex(); 334 return false; 335 } 336 337 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 338 if (Token.isNot(TokenKind)) 339 return false; 340 lex(); 341 return true; 342 } 343 344 bool MIParser::parseBasicBlockDefinition( 345 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 346 assert(Token.is(MIToken::MachineBasicBlockLabel)); 347 unsigned ID = 0; 348 if (getUnsigned(ID)) 349 return true; 350 auto Loc = Token.location(); 351 auto Name = Token.stringValue(); 352 lex(); 353 bool HasAddressTaken = false; 354 bool IsLandingPad = false; 355 unsigned Alignment = 0; 356 BasicBlock *BB = nullptr; 357 if (consumeIfPresent(MIToken::lparen)) { 358 do { 359 // TODO: Report an error when multiple same attributes are specified. 360 switch (Token.kind()) { 361 case MIToken::kw_address_taken: 362 HasAddressTaken = true; 363 lex(); 364 break; 365 case MIToken::kw_landing_pad: 366 IsLandingPad = true; 367 lex(); 368 break; 369 case MIToken::kw_align: 370 if (parseAlignment(Alignment)) 371 return true; 372 break; 373 case MIToken::IRBlock: 374 // TODO: Report an error when both name and ir block are specified. 375 if (parseIRBlock(BB, *MF.getFunction())) 376 return true; 377 lex(); 378 break; 379 default: 380 break; 381 } 382 } while (consumeIfPresent(MIToken::comma)); 383 if (expectAndConsume(MIToken::rparen)) 384 return true; 385 } 386 if (expectAndConsume(MIToken::colon)) 387 return true; 388 389 if (!Name.empty()) { 390 BB = dyn_cast_or_null<BasicBlock>( 391 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 392 if (!BB) 393 return error(Loc, Twine("basic block '") + Name + 394 "' is not defined in the function '" + 395 MF.getName() + "'"); 396 } 397 auto *MBB = MF.CreateMachineBasicBlock(BB); 398 MF.insert(MF.end(), MBB); 399 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 400 if (!WasInserted) 401 return error(Loc, Twine("redefinition of machine basic block with id #") + 402 Twine(ID)); 403 if (Alignment) 404 MBB->setAlignment(Alignment); 405 if (HasAddressTaken) 406 MBB->setHasAddressTaken(); 407 MBB->setIsEHPad(IsLandingPad); 408 return false; 409 } 410 411 bool MIParser::parseBasicBlockDefinitions( 412 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 413 lex(); 414 // Skip until the first machine basic block. 415 while (Token.is(MIToken::Newline)) 416 lex(); 417 if (Token.isErrorOrEOF()) 418 return Token.isError(); 419 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 420 return error("expected a basic block definition before instructions"); 421 unsigned BraceDepth = 0; 422 do { 423 if (parseBasicBlockDefinition(MBBSlots)) 424 return true; 425 bool IsAfterNewline = false; 426 // Skip until the next machine basic block. 427 while (true) { 428 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 429 Token.isErrorOrEOF()) 430 break; 431 else if (Token.is(MIToken::MachineBasicBlockLabel)) 432 return error("basic block definition should be located at the start of " 433 "the line"); 434 else if (consumeIfPresent(MIToken::Newline)) { 435 IsAfterNewline = true; 436 continue; 437 } 438 IsAfterNewline = false; 439 if (Token.is(MIToken::lbrace)) 440 ++BraceDepth; 441 if (Token.is(MIToken::rbrace)) { 442 if (!BraceDepth) 443 return error("extraneous closing brace ('}')"); 444 --BraceDepth; 445 } 446 lex(); 447 } 448 // Verify that we closed all of the '{' at the end of a file or a block. 449 if (!Token.isError() && BraceDepth) 450 return error("expected '}'"); // FIXME: Report a note that shows '{'. 451 } while (!Token.isErrorOrEOF()); 452 return Token.isError(); 453 } 454 455 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 456 assert(Token.is(MIToken::kw_liveins)); 457 lex(); 458 if (expectAndConsume(MIToken::colon)) 459 return true; 460 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 461 return false; 462 do { 463 if (Token.isNot(MIToken::NamedRegister)) 464 return error("expected a named register"); 465 unsigned Reg = 0; 466 if (parseNamedRegister(Reg)) 467 return true; 468 lex(); 469 LaneBitmask Mask = LaneBitmask::getAll(); 470 if (consumeIfPresent(MIToken::colon)) { 471 // Parse lane mask. 472 if (Token.isNot(MIToken::IntegerLiteral) && 473 Token.isNot(MIToken::HexLiteral)) 474 return error("expected a lane mask"); 475 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 476 "Use correct get-function for lane mask"); 477 LaneBitmask::Type V; 478 if (getUnsigned(V)) 479 return error("invalid lane mask value"); 480 Mask = LaneBitmask(V); 481 lex(); 482 } 483 MBB.addLiveIn(Reg, Mask); 484 } while (consumeIfPresent(MIToken::comma)); 485 return false; 486 } 487 488 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 489 assert(Token.is(MIToken::kw_successors)); 490 lex(); 491 if (expectAndConsume(MIToken::colon)) 492 return true; 493 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 494 return false; 495 do { 496 if (Token.isNot(MIToken::MachineBasicBlock)) 497 return error("expected a machine basic block reference"); 498 MachineBasicBlock *SuccMBB = nullptr; 499 if (parseMBBReference(SuccMBB)) 500 return true; 501 lex(); 502 unsigned Weight = 0; 503 if (consumeIfPresent(MIToken::lparen)) { 504 if (Token.isNot(MIToken::IntegerLiteral) && 505 Token.isNot(MIToken::HexLiteral)) 506 return error("expected an integer literal after '('"); 507 if (getUnsigned(Weight)) 508 return true; 509 lex(); 510 if (expectAndConsume(MIToken::rparen)) 511 return true; 512 } 513 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 514 } while (consumeIfPresent(MIToken::comma)); 515 MBB.normalizeSuccProbs(); 516 return false; 517 } 518 519 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 520 // Skip the definition. 521 assert(Token.is(MIToken::MachineBasicBlockLabel)); 522 lex(); 523 if (consumeIfPresent(MIToken::lparen)) { 524 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 525 lex(); 526 consumeIfPresent(MIToken::rparen); 527 } 528 consumeIfPresent(MIToken::colon); 529 530 // Parse the liveins and successors. 531 // N.B: Multiple lists of successors and liveins are allowed and they're 532 // merged into one. 533 // Example: 534 // liveins: %edi 535 // liveins: %esi 536 // 537 // is equivalent to 538 // liveins: %edi, %esi 539 while (true) { 540 if (Token.is(MIToken::kw_successors)) { 541 if (parseBasicBlockSuccessors(MBB)) 542 return true; 543 } else if (Token.is(MIToken::kw_liveins)) { 544 if (parseBasicBlockLiveins(MBB)) 545 return true; 546 } else if (consumeIfPresent(MIToken::Newline)) { 547 continue; 548 } else 549 break; 550 if (!Token.isNewlineOrEOF()) 551 return error("expected line break at the end of a list"); 552 lex(); 553 } 554 555 // Parse the instructions. 556 bool IsInBundle = false; 557 MachineInstr *PrevMI = nullptr; 558 while (true) { 559 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 560 return false; 561 else if (consumeIfPresent(MIToken::Newline)) 562 continue; 563 if (consumeIfPresent(MIToken::rbrace)) { 564 // The first parsing pass should verify that all closing '}' have an 565 // opening '{'. 566 assert(IsInBundle); 567 IsInBundle = false; 568 continue; 569 } 570 MachineInstr *MI = nullptr; 571 if (parse(MI)) 572 return true; 573 MBB.insert(MBB.end(), MI); 574 if (IsInBundle) { 575 PrevMI->setFlag(MachineInstr::BundledSucc); 576 MI->setFlag(MachineInstr::BundledPred); 577 } 578 PrevMI = MI; 579 if (Token.is(MIToken::lbrace)) { 580 if (IsInBundle) 581 return error("nested instruction bundles are not allowed"); 582 lex(); 583 // This instruction is the start of the bundle. 584 MI->setFlag(MachineInstr::BundledSucc); 585 IsInBundle = true; 586 if (!Token.is(MIToken::Newline)) 587 // The next instruction can be on the same line. 588 continue; 589 } 590 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 591 lex(); 592 } 593 return false; 594 } 595 596 bool MIParser::parseBasicBlocks() { 597 lex(); 598 // Skip until the first machine basic block. 599 while (Token.is(MIToken::Newline)) 600 lex(); 601 if (Token.isErrorOrEOF()) 602 return Token.isError(); 603 // The first parsing pass should have verified that this token is a MBB label 604 // in the 'parseBasicBlockDefinitions' method. 605 assert(Token.is(MIToken::MachineBasicBlockLabel)); 606 do { 607 MachineBasicBlock *MBB = nullptr; 608 if (parseMBBReference(MBB)) 609 return true; 610 if (parseBasicBlock(*MBB)) 611 return true; 612 // The method 'parseBasicBlock' should parse the whole block until the next 613 // block or the end of file. 614 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 615 } while (Token.isNot(MIToken::Eof)); 616 return false; 617 } 618 619 bool MIParser::parse(MachineInstr *&MI) { 620 // Parse any register operands before '=' 621 MachineOperand MO = MachineOperand::CreateImm(0); 622 SmallVector<ParsedMachineOperand, 8> Operands; 623 while (Token.isRegister() || Token.isRegisterFlag()) { 624 auto Loc = Token.location(); 625 Optional<unsigned> TiedDefIdx; 626 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 627 return true; 628 Operands.push_back( 629 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 630 if (Token.isNot(MIToken::comma)) 631 break; 632 lex(); 633 } 634 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 635 return true; 636 637 unsigned OpCode, Flags = 0; 638 if (Token.isError() || parseInstruction(OpCode, Flags)) 639 return true; 640 641 // Parse the remaining machine operands. 642 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 643 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 644 auto Loc = Token.location(); 645 Optional<unsigned> TiedDefIdx; 646 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 647 return true; 648 Operands.push_back( 649 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 650 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 651 Token.is(MIToken::lbrace)) 652 break; 653 if (Token.isNot(MIToken::comma)) 654 return error("expected ',' before the next machine operand"); 655 lex(); 656 } 657 658 DebugLoc DebugLocation; 659 if (Token.is(MIToken::kw_debug_location)) { 660 lex(); 661 if (Token.isNot(MIToken::exclaim)) 662 return error("expected a metadata node after 'debug-location'"); 663 MDNode *Node = nullptr; 664 if (parseMDNode(Node)) 665 return true; 666 DebugLocation = DebugLoc(Node); 667 } 668 669 // Parse the machine memory operands. 670 SmallVector<MachineMemOperand *, 2> MemOperands; 671 if (Token.is(MIToken::coloncolon)) { 672 lex(); 673 while (!Token.isNewlineOrEOF()) { 674 MachineMemOperand *MemOp = nullptr; 675 if (parseMachineMemoryOperand(MemOp)) 676 return true; 677 MemOperands.push_back(MemOp); 678 if (Token.isNewlineOrEOF()) 679 break; 680 if (Token.isNot(MIToken::comma)) 681 return error("expected ',' before the next machine memory operand"); 682 lex(); 683 } 684 } 685 686 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 687 if (!MCID.isVariadic()) { 688 // FIXME: Move the implicit operand verification to the machine verifier. 689 if (verifyImplicitOperands(Operands, MCID)) 690 return true; 691 } 692 693 // TODO: Check for extraneous machine operands. 694 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 695 MI->setFlags(Flags); 696 for (const auto &Operand : Operands) 697 MI->addOperand(MF, Operand.Operand); 698 if (assignRegisterTies(*MI, Operands)) 699 return true; 700 if (MemOperands.empty()) 701 return false; 702 MachineInstr::mmo_iterator MemRefs = 703 MF.allocateMemRefsArray(MemOperands.size()); 704 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 705 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 706 return false; 707 } 708 709 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 710 lex(); 711 if (Token.isNot(MIToken::MachineBasicBlock)) 712 return error("expected a machine basic block reference"); 713 if (parseMBBReference(MBB)) 714 return true; 715 lex(); 716 if (Token.isNot(MIToken::Eof)) 717 return error( 718 "expected end of string after the machine basic block reference"); 719 return false; 720 } 721 722 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 723 lex(); 724 if (Token.isNot(MIToken::NamedRegister)) 725 return error("expected a named register"); 726 if (parseNamedRegister(Reg)) 727 return true; 728 lex(); 729 if (Token.isNot(MIToken::Eof)) 730 return error("expected end of string after the register reference"); 731 return false; 732 } 733 734 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 735 lex(); 736 if (Token.isNot(MIToken::VirtualRegister)) 737 return error("expected a virtual register"); 738 if (parseVirtualRegister(Info)) 739 return true; 740 lex(); 741 if (Token.isNot(MIToken::Eof)) 742 return error("expected end of string after the register reference"); 743 return false; 744 } 745 746 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 747 lex(); 748 if (Token.isNot(MIToken::NamedRegister) && 749 Token.isNot(MIToken::VirtualRegister)) 750 return error("expected either a named or virtual register"); 751 752 VRegInfo *Info; 753 if (parseRegister(Reg, Info)) 754 return true; 755 756 lex(); 757 if (Token.isNot(MIToken::Eof)) 758 return error("expected end of string after the register reference"); 759 return false; 760 } 761 762 bool MIParser::parseStandaloneStackObject(int &FI) { 763 lex(); 764 if (Token.isNot(MIToken::StackObject)) 765 return error("expected a stack object"); 766 if (parseStackFrameIndex(FI)) 767 return true; 768 if (Token.isNot(MIToken::Eof)) 769 return error("expected end of string after the stack object reference"); 770 return false; 771 } 772 773 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 774 lex(); 775 if (Token.isNot(MIToken::exclaim)) 776 return error("expected a metadata node"); 777 if (parseMDNode(Node)) 778 return true; 779 if (Token.isNot(MIToken::Eof)) 780 return error("expected end of string after the metadata node"); 781 return false; 782 } 783 784 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 785 assert(MO.isImplicit()); 786 return MO.isDef() ? "implicit-def" : "implicit"; 787 } 788 789 static std::string getRegisterName(const TargetRegisterInfo *TRI, 790 unsigned Reg) { 791 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 792 return StringRef(TRI->getName(Reg)).lower(); 793 } 794 795 /// Return true if the parsed machine operands contain a given machine operand. 796 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 797 ArrayRef<ParsedMachineOperand> Operands) { 798 for (const auto &I : Operands) { 799 if (ImplicitOperand.isIdenticalTo(I.Operand)) 800 return true; 801 } 802 return false; 803 } 804 805 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 806 const MCInstrDesc &MCID) { 807 if (MCID.isCall()) 808 // We can't verify call instructions as they can contain arbitrary implicit 809 // register and register mask operands. 810 return false; 811 812 // Gather all the expected implicit operands. 813 SmallVector<MachineOperand, 4> ImplicitOperands; 814 if (MCID.ImplicitDefs) 815 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 816 ImplicitOperands.push_back( 817 MachineOperand::CreateReg(*ImpDefs, true, true)); 818 if (MCID.ImplicitUses) 819 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 820 ImplicitOperands.push_back( 821 MachineOperand::CreateReg(*ImpUses, false, true)); 822 823 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 824 assert(TRI && "Expected target register info"); 825 for (const auto &I : ImplicitOperands) { 826 if (isImplicitOperandIn(I, Operands)) 827 continue; 828 return error(Operands.empty() ? Token.location() : Operands.back().End, 829 Twine("missing implicit register operand '") + 830 printImplicitRegisterFlag(I) + " %" + 831 getRegisterName(TRI, I.getReg()) + "'"); 832 } 833 return false; 834 } 835 836 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 837 if (Token.is(MIToken::kw_frame_setup)) { 838 Flags |= MachineInstr::FrameSetup; 839 lex(); 840 } 841 if (Token.isNot(MIToken::Identifier)) 842 return error("expected a machine instruction"); 843 StringRef InstrName = Token.stringValue(); 844 if (parseInstrName(InstrName, OpCode)) 845 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 846 lex(); 847 return false; 848 } 849 850 bool MIParser::parseNamedRegister(unsigned &Reg) { 851 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 852 StringRef Name = Token.stringValue(); 853 if (getRegisterByName(Name, Reg)) 854 return error(Twine("unknown register name '") + Name + "'"); 855 return false; 856 } 857 858 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 859 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 860 unsigned ID; 861 if (getUnsigned(ID)) 862 return true; 863 Info = &PFS.getVRegInfo(ID); 864 return false; 865 } 866 867 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 868 switch (Token.kind()) { 869 case MIToken::underscore: 870 Reg = 0; 871 return false; 872 case MIToken::NamedRegister: 873 return parseNamedRegister(Reg); 874 case MIToken::VirtualRegister: 875 if (parseVirtualRegister(Info)) 876 return true; 877 Reg = Info->VReg; 878 return false; 879 // TODO: Parse other register kinds. 880 default: 881 llvm_unreachable("The current token should be a register"); 882 } 883 } 884 885 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 886 if (Token.isNot(MIToken::Identifier)) 887 return error("expected a register class or register bank name"); 888 StringRef::iterator Loc = Token.location(); 889 StringRef Name = Token.stringValue(); 890 891 // Was it a register class? 892 auto RCNameI = PFS.Names2RegClasses.find(Name); 893 if (RCNameI != PFS.Names2RegClasses.end()) { 894 lex(); 895 const TargetRegisterClass &RC = *RCNameI->getValue(); 896 897 switch (RegInfo.Kind) { 898 case VRegInfo::UNKNOWN: 899 case VRegInfo::NORMAL: 900 RegInfo.Kind = VRegInfo::NORMAL; 901 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 902 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 903 return error(Loc, Twine("conflicting register classes, previously: ") + 904 Twine(TRI.getRegClassName(RegInfo.D.RC))); 905 } 906 RegInfo.D.RC = &RC; 907 RegInfo.Explicit = true; 908 return false; 909 910 case VRegInfo::GENERIC: 911 case VRegInfo::REGBANK: 912 return error(Loc, "register class specification on generic register"); 913 } 914 llvm_unreachable("Unexpected register kind"); 915 } 916 917 // Should be a register bank. 918 auto RBNameI = PFS.Names2RegBanks.find(Name); 919 lex(); 920 if (RBNameI == PFS.Names2RegBanks.end()) 921 return error(Loc, "expected a register class or register bank name"); 922 923 const RegisterBank &RegBank = *RBNameI->getValue(); 924 switch (RegInfo.Kind) { 925 case VRegInfo::UNKNOWN: 926 case VRegInfo::GENERIC: 927 case VRegInfo::REGBANK: 928 RegInfo.Kind = VRegInfo::REGBANK; 929 if (RegInfo.Explicit && RegInfo.D.RegBank != &RegBank) 930 return error(Loc, "conflicting register banks"); 931 RegInfo.D.RegBank = &RegBank; 932 RegInfo.Explicit = true; 933 return false; 934 935 case VRegInfo::NORMAL: 936 return error(Loc, "register class specification on normal register"); 937 } 938 llvm_unreachable("Unexpected register kind"); 939 } 940 941 bool MIParser::parseRegisterFlag(unsigned &Flags) { 942 const unsigned OldFlags = Flags; 943 switch (Token.kind()) { 944 case MIToken::kw_implicit: 945 Flags |= RegState::Implicit; 946 break; 947 case MIToken::kw_implicit_define: 948 Flags |= RegState::ImplicitDefine; 949 break; 950 case MIToken::kw_def: 951 Flags |= RegState::Define; 952 break; 953 case MIToken::kw_dead: 954 Flags |= RegState::Dead; 955 break; 956 case MIToken::kw_killed: 957 Flags |= RegState::Kill; 958 break; 959 case MIToken::kw_undef: 960 Flags |= RegState::Undef; 961 break; 962 case MIToken::kw_internal: 963 Flags |= RegState::InternalRead; 964 break; 965 case MIToken::kw_early_clobber: 966 Flags |= RegState::EarlyClobber; 967 break; 968 case MIToken::kw_debug_use: 969 Flags |= RegState::Debug; 970 break; 971 default: 972 llvm_unreachable("The current token should be a register flag"); 973 } 974 if (OldFlags == Flags) 975 // We know that the same flag is specified more than once when the flags 976 // weren't modified. 977 return error("duplicate '" + Token.stringValue() + "' register flag"); 978 lex(); 979 return false; 980 } 981 982 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 983 assert(Token.is(MIToken::dot)); 984 lex(); 985 if (Token.isNot(MIToken::Identifier)) 986 return error("expected a subregister index after '.'"); 987 auto Name = Token.stringValue(); 988 SubReg = getSubRegIndex(Name); 989 if (!SubReg) 990 return error(Twine("use of unknown subregister index '") + Name + "'"); 991 lex(); 992 return false; 993 } 994 995 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 996 if (!consumeIfPresent(MIToken::kw_tied_def)) 997 return true; 998 if (Token.isNot(MIToken::IntegerLiteral)) 999 return error("expected an integer literal after 'tied-def'"); 1000 if (getUnsigned(TiedDefIdx)) 1001 return true; 1002 lex(); 1003 if (expectAndConsume(MIToken::rparen)) 1004 return true; 1005 return false; 1006 } 1007 1008 bool MIParser::assignRegisterTies(MachineInstr &MI, 1009 ArrayRef<ParsedMachineOperand> Operands) { 1010 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1011 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1012 if (!Operands[I].TiedDefIdx) 1013 continue; 1014 // The parser ensures that this operand is a register use, so we just have 1015 // to check the tied-def operand. 1016 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1017 if (DefIdx >= E) 1018 return error(Operands[I].Begin, 1019 Twine("use of invalid tied-def operand index '" + 1020 Twine(DefIdx) + "'; instruction has only ") + 1021 Twine(E) + " operands"); 1022 const auto &DefOperand = Operands[DefIdx].Operand; 1023 if (!DefOperand.isReg() || !DefOperand.isDef()) 1024 // FIXME: add note with the def operand. 1025 return error(Operands[I].Begin, 1026 Twine("use of invalid tied-def operand index '") + 1027 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1028 " isn't a defined register"); 1029 // Check that the tied-def operand wasn't tied elsewhere. 1030 for (const auto &TiedPair : TiedRegisterPairs) { 1031 if (TiedPair.first == DefIdx) 1032 return error(Operands[I].Begin, 1033 Twine("the tied-def operand #") + Twine(DefIdx) + 1034 " is already tied with another register operand"); 1035 } 1036 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1037 } 1038 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1039 // indices must be less than tied max. 1040 for (const auto &TiedPair : TiedRegisterPairs) 1041 MI.tieOperands(TiedPair.first, TiedPair.second); 1042 return false; 1043 } 1044 1045 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1046 Optional<unsigned> &TiedDefIdx, 1047 bool IsDef) { 1048 unsigned Flags = IsDef ? RegState::Define : 0; 1049 while (Token.isRegisterFlag()) { 1050 if (parseRegisterFlag(Flags)) 1051 return true; 1052 } 1053 if (!Token.isRegister()) 1054 return error("expected a register after register flags"); 1055 unsigned Reg; 1056 VRegInfo *RegInfo; 1057 if (parseRegister(Reg, RegInfo)) 1058 return true; 1059 lex(); 1060 unsigned SubReg = 0; 1061 if (Token.is(MIToken::dot)) { 1062 if (parseSubRegisterIndex(SubReg)) 1063 return true; 1064 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1065 return error("subregister index expects a virtual register"); 1066 } 1067 if (Token.is(MIToken::colon)) { 1068 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1069 return error("register class specification expects a virtual register"); 1070 lex(); 1071 if (parseRegisterClassOrBank(*RegInfo)) 1072 return true; 1073 } 1074 MachineRegisterInfo &MRI = MF.getRegInfo(); 1075 if ((Flags & RegState::Define) == 0) { 1076 if (consumeIfPresent(MIToken::lparen)) { 1077 unsigned Idx; 1078 if (!parseRegisterTiedDefIndex(Idx)) 1079 TiedDefIdx = Idx; 1080 else { 1081 // Try a redundant low-level type. 1082 LLT Ty; 1083 if (parseLowLevelType(Token.location(), Ty)) 1084 return error("expected tied-def or low-level type after '('"); 1085 1086 if (expectAndConsume(MIToken::rparen)) 1087 return true; 1088 1089 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1090 return error("inconsistent type for generic virtual register"); 1091 1092 MRI.setType(Reg, Ty); 1093 } 1094 } 1095 } else if (consumeIfPresent(MIToken::lparen)) { 1096 // Virtual registers may have a tpe with GlobalISel. 1097 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1098 return error("unexpected type on physical register"); 1099 1100 LLT Ty; 1101 if (parseLowLevelType(Token.location(), Ty)) 1102 return true; 1103 1104 if (expectAndConsume(MIToken::rparen)) 1105 return true; 1106 1107 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1108 return error("inconsistent type for generic virtual register"); 1109 1110 MRI.setType(Reg, Ty); 1111 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1112 // Generic virtual registers must have a type. 1113 // If we end up here this means the type hasn't been specified and 1114 // this is bad! 1115 if (RegInfo->Kind == VRegInfo::GENERIC || 1116 RegInfo->Kind == VRegInfo::REGBANK) 1117 return error("generic virtual registers must have a type"); 1118 } 1119 Dest = MachineOperand::CreateReg( 1120 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1121 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1122 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1123 Flags & RegState::InternalRead); 1124 return false; 1125 } 1126 1127 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1128 assert(Token.is(MIToken::IntegerLiteral)); 1129 const APSInt &Int = Token.integerValue(); 1130 if (Int.getMinSignedBits() > 64) 1131 return error("integer literal is too large to be an immediate operand"); 1132 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1133 lex(); 1134 return false; 1135 } 1136 1137 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1138 const Constant *&C) { 1139 auto Source = StringValue.str(); // The source has to be null terminated. 1140 SMDiagnostic Err; 1141 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1142 &PFS.IRSlots); 1143 if (!C) 1144 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1145 return false; 1146 } 1147 1148 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1149 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1150 return true; 1151 lex(); 1152 return false; 1153 } 1154 1155 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1156 if (Token.is(MIToken::ScalarType)) { 1157 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1158 lex(); 1159 return false; 1160 } else if (Token.is(MIToken::PointerType)) { 1161 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1162 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1163 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1164 lex(); 1165 return false; 1166 } 1167 1168 // Now we're looking for a vector. 1169 if (Token.isNot(MIToken::less)) 1170 return error(Loc, 1171 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1172 1173 lex(); 1174 1175 if (Token.isNot(MIToken::IntegerLiteral)) 1176 return error(Loc, "expected <N x sM> for vctor type"); 1177 uint64_t NumElements = Token.integerValue().getZExtValue(); 1178 lex(); 1179 1180 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1181 return error(Loc, "expected '<N x sM>' for vector type"); 1182 lex(); 1183 1184 if (Token.isNot(MIToken::ScalarType)) 1185 return error(Loc, "expected '<N x sM>' for vector type"); 1186 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1187 lex(); 1188 1189 if (Token.isNot(MIToken::greater)) 1190 return error(Loc, "expected '<N x sM>' for vector type"); 1191 lex(); 1192 1193 Ty = LLT::vector(NumElements, ScalarSize); 1194 return false; 1195 } 1196 1197 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1198 assert(Token.is(MIToken::IntegerType)); 1199 auto Loc = Token.location(); 1200 lex(); 1201 if (Token.isNot(MIToken::IntegerLiteral)) 1202 return error("expected an integer literal"); 1203 const Constant *C = nullptr; 1204 if (parseIRConstant(Loc, C)) 1205 return true; 1206 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1207 return false; 1208 } 1209 1210 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1211 auto Loc = Token.location(); 1212 lex(); 1213 if (Token.isNot(MIToken::FloatingPointLiteral) && 1214 Token.isNot(MIToken::HexLiteral)) 1215 return error("expected a floating point literal"); 1216 const Constant *C = nullptr; 1217 if (parseIRConstant(Loc, C)) 1218 return true; 1219 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1220 return false; 1221 } 1222 1223 bool MIParser::getUnsigned(unsigned &Result) { 1224 if (Token.hasIntegerValue()) { 1225 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1226 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1227 if (Val64 == Limit) 1228 return error("expected 32-bit integer (too large)"); 1229 Result = Val64; 1230 return false; 1231 } 1232 if (Token.is(MIToken::HexLiteral)) { 1233 APInt A; 1234 if (getHexUint(A)) 1235 return true; 1236 if (A.getBitWidth() > 32) 1237 return error("expected 32-bit integer (too large)"); 1238 Result = A.getZExtValue(); 1239 return false; 1240 } 1241 return true; 1242 } 1243 1244 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1245 assert(Token.is(MIToken::MachineBasicBlock) || 1246 Token.is(MIToken::MachineBasicBlockLabel)); 1247 unsigned Number; 1248 if (getUnsigned(Number)) 1249 return true; 1250 auto MBBInfo = PFS.MBBSlots.find(Number); 1251 if (MBBInfo == PFS.MBBSlots.end()) 1252 return error(Twine("use of undefined machine basic block #") + 1253 Twine(Number)); 1254 MBB = MBBInfo->second; 1255 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1256 return error(Twine("the name of machine basic block #") + Twine(Number) + 1257 " isn't '" + Token.stringValue() + "'"); 1258 return false; 1259 } 1260 1261 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1262 MachineBasicBlock *MBB; 1263 if (parseMBBReference(MBB)) 1264 return true; 1265 Dest = MachineOperand::CreateMBB(MBB); 1266 lex(); 1267 return false; 1268 } 1269 1270 bool MIParser::parseStackFrameIndex(int &FI) { 1271 assert(Token.is(MIToken::StackObject)); 1272 unsigned ID; 1273 if (getUnsigned(ID)) 1274 return true; 1275 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1276 if (ObjectInfo == PFS.StackObjectSlots.end()) 1277 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1278 "'"); 1279 StringRef Name; 1280 if (const auto *Alloca = 1281 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1282 Name = Alloca->getName(); 1283 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1284 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1285 "' isn't '" + Token.stringValue() + "'"); 1286 lex(); 1287 FI = ObjectInfo->second; 1288 return false; 1289 } 1290 1291 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1292 int FI; 1293 if (parseStackFrameIndex(FI)) 1294 return true; 1295 Dest = MachineOperand::CreateFI(FI); 1296 return false; 1297 } 1298 1299 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1300 assert(Token.is(MIToken::FixedStackObject)); 1301 unsigned ID; 1302 if (getUnsigned(ID)) 1303 return true; 1304 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1305 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1306 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1307 Twine(ID) + "'"); 1308 lex(); 1309 FI = ObjectInfo->second; 1310 return false; 1311 } 1312 1313 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1314 int FI; 1315 if (parseFixedStackFrameIndex(FI)) 1316 return true; 1317 Dest = MachineOperand::CreateFI(FI); 1318 return false; 1319 } 1320 1321 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1322 switch (Token.kind()) { 1323 case MIToken::NamedGlobalValue: { 1324 const Module *M = MF.getFunction()->getParent(); 1325 GV = M->getNamedValue(Token.stringValue()); 1326 if (!GV) 1327 return error(Twine("use of undefined global value '") + Token.range() + 1328 "'"); 1329 break; 1330 } 1331 case MIToken::GlobalValue: { 1332 unsigned GVIdx; 1333 if (getUnsigned(GVIdx)) 1334 return true; 1335 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1336 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1337 "'"); 1338 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1339 break; 1340 } 1341 default: 1342 llvm_unreachable("The current token should be a global value"); 1343 } 1344 return false; 1345 } 1346 1347 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1348 GlobalValue *GV = nullptr; 1349 if (parseGlobalValue(GV)) 1350 return true; 1351 lex(); 1352 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1353 if (parseOperandsOffset(Dest)) 1354 return true; 1355 return false; 1356 } 1357 1358 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1359 assert(Token.is(MIToken::ConstantPoolItem)); 1360 unsigned ID; 1361 if (getUnsigned(ID)) 1362 return true; 1363 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1364 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1365 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1366 lex(); 1367 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1368 if (parseOperandsOffset(Dest)) 1369 return true; 1370 return false; 1371 } 1372 1373 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1374 assert(Token.is(MIToken::JumpTableIndex)); 1375 unsigned ID; 1376 if (getUnsigned(ID)) 1377 return true; 1378 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1379 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1380 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1381 lex(); 1382 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1383 return false; 1384 } 1385 1386 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1387 assert(Token.is(MIToken::ExternalSymbol)); 1388 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1389 lex(); 1390 Dest = MachineOperand::CreateES(Symbol); 1391 if (parseOperandsOffset(Dest)) 1392 return true; 1393 return false; 1394 } 1395 1396 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1397 assert(Token.is(MIToken::SubRegisterIndex)); 1398 StringRef Name = Token.stringValue(); 1399 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1400 if (SubRegIndex == 0) 1401 return error(Twine("unknown subregister index '") + Name + "'"); 1402 lex(); 1403 Dest = MachineOperand::CreateImm(SubRegIndex); 1404 return false; 1405 } 1406 1407 bool MIParser::parseMDNode(MDNode *&Node) { 1408 assert(Token.is(MIToken::exclaim)); 1409 auto Loc = Token.location(); 1410 lex(); 1411 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1412 return error("expected metadata id after '!'"); 1413 unsigned ID; 1414 if (getUnsigned(ID)) 1415 return true; 1416 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1417 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1418 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1419 lex(); 1420 Node = NodeInfo->second.get(); 1421 return false; 1422 } 1423 1424 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1425 MDNode *Node = nullptr; 1426 if (parseMDNode(Node)) 1427 return true; 1428 Dest = MachineOperand::CreateMetadata(Node); 1429 return false; 1430 } 1431 1432 bool MIParser::parseCFIOffset(int &Offset) { 1433 if (Token.isNot(MIToken::IntegerLiteral)) 1434 return error("expected a cfi offset"); 1435 if (Token.integerValue().getMinSignedBits() > 32) 1436 return error("expected a 32 bit integer (the cfi offset is too large)"); 1437 Offset = (int)Token.integerValue().getExtValue(); 1438 lex(); 1439 return false; 1440 } 1441 1442 bool MIParser::parseCFIRegister(unsigned &Reg) { 1443 if (Token.isNot(MIToken::NamedRegister)) 1444 return error("expected a cfi register"); 1445 unsigned LLVMReg; 1446 if (parseNamedRegister(LLVMReg)) 1447 return true; 1448 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1449 assert(TRI && "Expected target register info"); 1450 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1451 if (DwarfReg < 0) 1452 return error("invalid DWARF register"); 1453 Reg = (unsigned)DwarfReg; 1454 lex(); 1455 return false; 1456 } 1457 1458 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1459 auto Kind = Token.kind(); 1460 lex(); 1461 int Offset; 1462 unsigned Reg; 1463 unsigned CFIIndex; 1464 switch (Kind) { 1465 case MIToken::kw_cfi_same_value: 1466 if (parseCFIRegister(Reg)) 1467 return true; 1468 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1469 break; 1470 case MIToken::kw_cfi_offset: 1471 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1472 parseCFIOffset(Offset)) 1473 return true; 1474 CFIIndex = 1475 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1476 break; 1477 case MIToken::kw_cfi_def_cfa_register: 1478 if (parseCFIRegister(Reg)) 1479 return true; 1480 CFIIndex = 1481 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1482 break; 1483 case MIToken::kw_cfi_def_cfa_offset: 1484 if (parseCFIOffset(Offset)) 1485 return true; 1486 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1487 CFIIndex = MF.addFrameInst( 1488 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1489 break; 1490 case MIToken::kw_cfi_def_cfa: 1491 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1492 parseCFIOffset(Offset)) 1493 return true; 1494 // NB: MCCFIInstruction::createDefCfa negates the offset. 1495 CFIIndex = 1496 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1497 break; 1498 default: 1499 // TODO: Parse the other CFI operands. 1500 llvm_unreachable("The current token should be a cfi operand"); 1501 } 1502 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1503 return false; 1504 } 1505 1506 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1507 switch (Token.kind()) { 1508 case MIToken::NamedIRBlock: { 1509 BB = dyn_cast_or_null<BasicBlock>( 1510 F.getValueSymbolTable()->lookup(Token.stringValue())); 1511 if (!BB) 1512 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1513 break; 1514 } 1515 case MIToken::IRBlock: { 1516 unsigned SlotNumber = 0; 1517 if (getUnsigned(SlotNumber)) 1518 return true; 1519 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1520 if (!BB) 1521 return error(Twine("use of undefined IR block '%ir-block.") + 1522 Twine(SlotNumber) + "'"); 1523 break; 1524 } 1525 default: 1526 llvm_unreachable("The current token should be an IR block reference"); 1527 } 1528 return false; 1529 } 1530 1531 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1532 assert(Token.is(MIToken::kw_blockaddress)); 1533 lex(); 1534 if (expectAndConsume(MIToken::lparen)) 1535 return true; 1536 if (Token.isNot(MIToken::GlobalValue) && 1537 Token.isNot(MIToken::NamedGlobalValue)) 1538 return error("expected a global value"); 1539 GlobalValue *GV = nullptr; 1540 if (parseGlobalValue(GV)) 1541 return true; 1542 auto *F = dyn_cast<Function>(GV); 1543 if (!F) 1544 return error("expected an IR function reference"); 1545 lex(); 1546 if (expectAndConsume(MIToken::comma)) 1547 return true; 1548 BasicBlock *BB = nullptr; 1549 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1550 return error("expected an IR block reference"); 1551 if (parseIRBlock(BB, *F)) 1552 return true; 1553 lex(); 1554 if (expectAndConsume(MIToken::rparen)) 1555 return true; 1556 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1557 if (parseOperandsOffset(Dest)) 1558 return true; 1559 return false; 1560 } 1561 1562 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1563 assert(Token.is(MIToken::kw_intrinsic)); 1564 lex(); 1565 if (expectAndConsume(MIToken::lparen)) 1566 return error("expected syntax intrinsic(@llvm.whatever)"); 1567 1568 if (Token.isNot(MIToken::NamedGlobalValue)) 1569 return error("expected syntax intrinsic(@llvm.whatever)"); 1570 1571 std::string Name = Token.stringValue(); 1572 lex(); 1573 1574 if (expectAndConsume(MIToken::rparen)) 1575 return error("expected ')' to terminate intrinsic name"); 1576 1577 // Find out what intrinsic we're dealing with, first try the global namespace 1578 // and then the target's private intrinsics if that fails. 1579 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1580 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1581 if (ID == Intrinsic::not_intrinsic && TII) 1582 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1583 1584 if (ID == Intrinsic::not_intrinsic) 1585 return error("unknown intrinsic name"); 1586 Dest = MachineOperand::CreateIntrinsicID(ID); 1587 1588 return false; 1589 } 1590 1591 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1592 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1593 bool IsFloat = Token.is(MIToken::kw_floatpred); 1594 lex(); 1595 1596 if (expectAndConsume(MIToken::lparen)) 1597 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1598 1599 if (Token.isNot(MIToken::Identifier)) 1600 return error("whatever"); 1601 1602 CmpInst::Predicate Pred; 1603 if (IsFloat) { 1604 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1605 .Case("false", CmpInst::FCMP_FALSE) 1606 .Case("oeq", CmpInst::FCMP_OEQ) 1607 .Case("ogt", CmpInst::FCMP_OGT) 1608 .Case("oge", CmpInst::FCMP_OGE) 1609 .Case("olt", CmpInst::FCMP_OLT) 1610 .Case("ole", CmpInst::FCMP_OLE) 1611 .Case("one", CmpInst::FCMP_ONE) 1612 .Case("ord", CmpInst::FCMP_ORD) 1613 .Case("uno", CmpInst::FCMP_UNO) 1614 .Case("ueq", CmpInst::FCMP_UEQ) 1615 .Case("ugt", CmpInst::FCMP_UGT) 1616 .Case("uge", CmpInst::FCMP_UGE) 1617 .Case("ult", CmpInst::FCMP_ULT) 1618 .Case("ule", CmpInst::FCMP_ULE) 1619 .Case("une", CmpInst::FCMP_UNE) 1620 .Case("true", CmpInst::FCMP_TRUE) 1621 .Default(CmpInst::BAD_FCMP_PREDICATE); 1622 if (!CmpInst::isFPPredicate(Pred)) 1623 return error("invalid floating-point predicate"); 1624 } else { 1625 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1626 .Case("eq", CmpInst::ICMP_EQ) 1627 .Case("ne", CmpInst::ICMP_NE) 1628 .Case("sgt", CmpInst::ICMP_SGT) 1629 .Case("sge", CmpInst::ICMP_SGE) 1630 .Case("slt", CmpInst::ICMP_SLT) 1631 .Case("sle", CmpInst::ICMP_SLE) 1632 .Case("ugt", CmpInst::ICMP_UGT) 1633 .Case("uge", CmpInst::ICMP_UGE) 1634 .Case("ult", CmpInst::ICMP_ULT) 1635 .Case("ule", CmpInst::ICMP_ULE) 1636 .Default(CmpInst::BAD_ICMP_PREDICATE); 1637 if (!CmpInst::isIntPredicate(Pred)) 1638 return error("invalid integer predicate"); 1639 } 1640 1641 lex(); 1642 Dest = MachineOperand::CreatePredicate(Pred); 1643 if (expectAndConsume(MIToken::rparen)) 1644 return error("predicate should be terminated by ')'."); 1645 1646 return false; 1647 } 1648 1649 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1650 assert(Token.is(MIToken::kw_target_index)); 1651 lex(); 1652 if (expectAndConsume(MIToken::lparen)) 1653 return true; 1654 if (Token.isNot(MIToken::Identifier)) 1655 return error("expected the name of the target index"); 1656 int Index = 0; 1657 if (getTargetIndex(Token.stringValue(), Index)) 1658 return error("use of undefined target index '" + Token.stringValue() + "'"); 1659 lex(); 1660 if (expectAndConsume(MIToken::rparen)) 1661 return true; 1662 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1663 if (parseOperandsOffset(Dest)) 1664 return true; 1665 return false; 1666 } 1667 1668 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1669 assert(Token.is(MIToken::kw_liveout)); 1670 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1671 assert(TRI && "Expected target register info"); 1672 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1673 lex(); 1674 if (expectAndConsume(MIToken::lparen)) 1675 return true; 1676 while (true) { 1677 if (Token.isNot(MIToken::NamedRegister)) 1678 return error("expected a named register"); 1679 unsigned Reg; 1680 if (parseNamedRegister(Reg)) 1681 return true; 1682 lex(); 1683 Mask[Reg / 32] |= 1U << (Reg % 32); 1684 // TODO: Report an error if the same register is used more than once. 1685 if (Token.isNot(MIToken::comma)) 1686 break; 1687 lex(); 1688 } 1689 if (expectAndConsume(MIToken::rparen)) 1690 return true; 1691 Dest = MachineOperand::CreateRegLiveOut(Mask); 1692 return false; 1693 } 1694 1695 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1696 Optional<unsigned> &TiedDefIdx) { 1697 switch (Token.kind()) { 1698 case MIToken::kw_implicit: 1699 case MIToken::kw_implicit_define: 1700 case MIToken::kw_def: 1701 case MIToken::kw_dead: 1702 case MIToken::kw_killed: 1703 case MIToken::kw_undef: 1704 case MIToken::kw_internal: 1705 case MIToken::kw_early_clobber: 1706 case MIToken::kw_debug_use: 1707 case MIToken::underscore: 1708 case MIToken::NamedRegister: 1709 case MIToken::VirtualRegister: 1710 return parseRegisterOperand(Dest, TiedDefIdx); 1711 case MIToken::IntegerLiteral: 1712 return parseImmediateOperand(Dest); 1713 case MIToken::IntegerType: 1714 return parseTypedImmediateOperand(Dest); 1715 case MIToken::kw_half: 1716 case MIToken::kw_float: 1717 case MIToken::kw_double: 1718 case MIToken::kw_x86_fp80: 1719 case MIToken::kw_fp128: 1720 case MIToken::kw_ppc_fp128: 1721 return parseFPImmediateOperand(Dest); 1722 case MIToken::MachineBasicBlock: 1723 return parseMBBOperand(Dest); 1724 case MIToken::StackObject: 1725 return parseStackObjectOperand(Dest); 1726 case MIToken::FixedStackObject: 1727 return parseFixedStackObjectOperand(Dest); 1728 case MIToken::GlobalValue: 1729 case MIToken::NamedGlobalValue: 1730 return parseGlobalAddressOperand(Dest); 1731 case MIToken::ConstantPoolItem: 1732 return parseConstantPoolIndexOperand(Dest); 1733 case MIToken::JumpTableIndex: 1734 return parseJumpTableIndexOperand(Dest); 1735 case MIToken::ExternalSymbol: 1736 return parseExternalSymbolOperand(Dest); 1737 case MIToken::SubRegisterIndex: 1738 return parseSubRegisterIndexOperand(Dest); 1739 case MIToken::exclaim: 1740 return parseMetadataOperand(Dest); 1741 case MIToken::kw_cfi_same_value: 1742 case MIToken::kw_cfi_offset: 1743 case MIToken::kw_cfi_def_cfa_register: 1744 case MIToken::kw_cfi_def_cfa_offset: 1745 case MIToken::kw_cfi_def_cfa: 1746 return parseCFIOperand(Dest); 1747 case MIToken::kw_blockaddress: 1748 return parseBlockAddressOperand(Dest); 1749 case MIToken::kw_intrinsic: 1750 return parseIntrinsicOperand(Dest); 1751 case MIToken::kw_target_index: 1752 return parseTargetIndexOperand(Dest); 1753 case MIToken::kw_liveout: 1754 return parseLiveoutRegisterMaskOperand(Dest); 1755 case MIToken::kw_floatpred: 1756 case MIToken::kw_intpred: 1757 return parsePredicateOperand(Dest); 1758 case MIToken::Error: 1759 return true; 1760 case MIToken::Identifier: 1761 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1762 Dest = MachineOperand::CreateRegMask(RegMask); 1763 lex(); 1764 break; 1765 } 1766 LLVM_FALLTHROUGH; 1767 default: 1768 // FIXME: Parse the MCSymbol machine operand. 1769 return error("expected a machine operand"); 1770 } 1771 return false; 1772 } 1773 1774 bool MIParser::parseMachineOperandAndTargetFlags( 1775 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1776 unsigned TF = 0; 1777 bool HasTargetFlags = false; 1778 if (Token.is(MIToken::kw_target_flags)) { 1779 HasTargetFlags = true; 1780 lex(); 1781 if (expectAndConsume(MIToken::lparen)) 1782 return true; 1783 if (Token.isNot(MIToken::Identifier)) 1784 return error("expected the name of the target flag"); 1785 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1786 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1787 return error("use of undefined target flag '" + Token.stringValue() + 1788 "'"); 1789 } 1790 lex(); 1791 while (Token.is(MIToken::comma)) { 1792 lex(); 1793 if (Token.isNot(MIToken::Identifier)) 1794 return error("expected the name of the target flag"); 1795 unsigned BitFlag = 0; 1796 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1797 return error("use of undefined target flag '" + Token.stringValue() + 1798 "'"); 1799 // TODO: Report an error when using a duplicate bit target flag. 1800 TF |= BitFlag; 1801 lex(); 1802 } 1803 if (expectAndConsume(MIToken::rparen)) 1804 return true; 1805 } 1806 auto Loc = Token.location(); 1807 if (parseMachineOperand(Dest, TiedDefIdx)) 1808 return true; 1809 if (!HasTargetFlags) 1810 return false; 1811 if (Dest.isReg()) 1812 return error(Loc, "register operands can't have target flags"); 1813 Dest.setTargetFlags(TF); 1814 return false; 1815 } 1816 1817 bool MIParser::parseOffset(int64_t &Offset) { 1818 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1819 return false; 1820 StringRef Sign = Token.range(); 1821 bool IsNegative = Token.is(MIToken::minus); 1822 lex(); 1823 if (Token.isNot(MIToken::IntegerLiteral)) 1824 return error("expected an integer literal after '" + Sign + "'"); 1825 if (Token.integerValue().getMinSignedBits() > 64) 1826 return error("expected 64-bit integer (too large)"); 1827 Offset = Token.integerValue().getExtValue(); 1828 if (IsNegative) 1829 Offset = -Offset; 1830 lex(); 1831 return false; 1832 } 1833 1834 bool MIParser::parseAlignment(unsigned &Alignment) { 1835 assert(Token.is(MIToken::kw_align)); 1836 lex(); 1837 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1838 return error("expected an integer literal after 'align'"); 1839 if (getUnsigned(Alignment)) 1840 return true; 1841 lex(); 1842 return false; 1843 } 1844 1845 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1846 int64_t Offset = 0; 1847 if (parseOffset(Offset)) 1848 return true; 1849 Op.setOffset(Offset); 1850 return false; 1851 } 1852 1853 bool MIParser::parseIRValue(const Value *&V) { 1854 switch (Token.kind()) { 1855 case MIToken::NamedIRValue: { 1856 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1857 break; 1858 } 1859 case MIToken::IRValue: { 1860 unsigned SlotNumber = 0; 1861 if (getUnsigned(SlotNumber)) 1862 return true; 1863 V = getIRValue(SlotNumber); 1864 break; 1865 } 1866 case MIToken::NamedGlobalValue: 1867 case MIToken::GlobalValue: { 1868 GlobalValue *GV = nullptr; 1869 if (parseGlobalValue(GV)) 1870 return true; 1871 V = GV; 1872 break; 1873 } 1874 case MIToken::QuotedIRValue: { 1875 const Constant *C = nullptr; 1876 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1877 return true; 1878 V = C; 1879 break; 1880 } 1881 default: 1882 llvm_unreachable("The current token should be an IR block reference"); 1883 } 1884 if (!V) 1885 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1886 return false; 1887 } 1888 1889 bool MIParser::getUint64(uint64_t &Result) { 1890 if (Token.hasIntegerValue()) { 1891 if (Token.integerValue().getActiveBits() > 64) 1892 return error("expected 64-bit integer (too large)"); 1893 Result = Token.integerValue().getZExtValue(); 1894 return false; 1895 } 1896 if (Token.is(MIToken::HexLiteral)) { 1897 APInt A; 1898 if (getHexUint(A)) 1899 return true; 1900 if (A.getBitWidth() > 64) 1901 return error("expected 64-bit integer (too large)"); 1902 Result = A.getZExtValue(); 1903 return false; 1904 } 1905 return true; 1906 } 1907 1908 bool MIParser::getHexUint(APInt &Result) { 1909 assert(Token.is(MIToken::HexLiteral)); 1910 StringRef S = Token.range(); 1911 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1912 // This could be a floating point literal with a special prefix. 1913 if (!isxdigit(S[2])) 1914 return true; 1915 StringRef V = S.substr(2); 1916 APInt A(V.size()*4, V, 16); 1917 Result = APInt(A.getActiveBits(), 1918 ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1919 return false; 1920 } 1921 1922 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1923 const auto OldFlags = Flags; 1924 switch (Token.kind()) { 1925 case MIToken::kw_volatile: 1926 Flags |= MachineMemOperand::MOVolatile; 1927 break; 1928 case MIToken::kw_non_temporal: 1929 Flags |= MachineMemOperand::MONonTemporal; 1930 break; 1931 case MIToken::kw_dereferenceable: 1932 Flags |= MachineMemOperand::MODereferenceable; 1933 break; 1934 case MIToken::kw_invariant: 1935 Flags |= MachineMemOperand::MOInvariant; 1936 break; 1937 // TODO: parse the target specific memory operand flags. 1938 default: 1939 llvm_unreachable("The current token should be a memory operand flag"); 1940 } 1941 if (OldFlags == Flags) 1942 // We know that the same flag is specified more than once when the flags 1943 // weren't modified. 1944 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1945 lex(); 1946 return false; 1947 } 1948 1949 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1950 switch (Token.kind()) { 1951 case MIToken::kw_stack: 1952 PSV = MF.getPSVManager().getStack(); 1953 break; 1954 case MIToken::kw_got: 1955 PSV = MF.getPSVManager().getGOT(); 1956 break; 1957 case MIToken::kw_jump_table: 1958 PSV = MF.getPSVManager().getJumpTable(); 1959 break; 1960 case MIToken::kw_constant_pool: 1961 PSV = MF.getPSVManager().getConstantPool(); 1962 break; 1963 case MIToken::FixedStackObject: { 1964 int FI; 1965 if (parseFixedStackFrameIndex(FI)) 1966 return true; 1967 PSV = MF.getPSVManager().getFixedStack(FI); 1968 // The token was already consumed, so use return here instead of break. 1969 return false; 1970 } 1971 case MIToken::StackObject: { 1972 int FI; 1973 if (parseStackFrameIndex(FI)) 1974 return true; 1975 PSV = MF.getPSVManager().getFixedStack(FI); 1976 // The token was already consumed, so use return here instead of break. 1977 return false; 1978 } 1979 case MIToken::kw_call_entry: { 1980 lex(); 1981 switch (Token.kind()) { 1982 case MIToken::GlobalValue: 1983 case MIToken::NamedGlobalValue: { 1984 GlobalValue *GV = nullptr; 1985 if (parseGlobalValue(GV)) 1986 return true; 1987 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1988 break; 1989 } 1990 case MIToken::ExternalSymbol: 1991 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1992 MF.createExternalSymbolName(Token.stringValue())); 1993 break; 1994 default: 1995 return error( 1996 "expected a global value or an external symbol after 'call-entry'"); 1997 } 1998 break; 1999 } 2000 default: 2001 llvm_unreachable("The current token should be pseudo source value"); 2002 } 2003 lex(); 2004 return false; 2005 } 2006 2007 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2008 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2009 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2010 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2011 Token.is(MIToken::kw_call_entry)) { 2012 const PseudoSourceValue *PSV = nullptr; 2013 if (parseMemoryPseudoSourceValue(PSV)) 2014 return true; 2015 int64_t Offset = 0; 2016 if (parseOffset(Offset)) 2017 return true; 2018 Dest = MachinePointerInfo(PSV, Offset); 2019 return false; 2020 } 2021 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2022 Token.isNot(MIToken::GlobalValue) && 2023 Token.isNot(MIToken::NamedGlobalValue) && 2024 Token.isNot(MIToken::QuotedIRValue)) 2025 return error("expected an IR value reference"); 2026 const Value *V = nullptr; 2027 if (parseIRValue(V)) 2028 return true; 2029 if (!V->getType()->isPointerTy()) 2030 return error("expected a pointer IR value"); 2031 lex(); 2032 int64_t Offset = 0; 2033 if (parseOffset(Offset)) 2034 return true; 2035 Dest = MachinePointerInfo(V, Offset); 2036 return false; 2037 } 2038 2039 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2040 if (expectAndConsume(MIToken::lparen)) 2041 return true; 2042 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2043 while (Token.isMemoryOperandFlag()) { 2044 if (parseMemoryOperandFlag(Flags)) 2045 return true; 2046 } 2047 if (Token.isNot(MIToken::Identifier) || 2048 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2049 return error("expected 'load' or 'store' memory operation"); 2050 if (Token.stringValue() == "load") 2051 Flags |= MachineMemOperand::MOLoad; 2052 else 2053 Flags |= MachineMemOperand::MOStore; 2054 lex(); 2055 2056 if (Token.isNot(MIToken::IntegerLiteral)) 2057 return error("expected the size integer literal after memory operation"); 2058 uint64_t Size; 2059 if (getUint64(Size)) 2060 return true; 2061 lex(); 2062 2063 MachinePointerInfo Ptr = MachinePointerInfo(); 2064 if (Token.is(MIToken::Identifier)) { 2065 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2066 if (Token.stringValue() != Word) 2067 return error(Twine("expected '") + Word + "'"); 2068 lex(); 2069 2070 if (parseMachinePointerInfo(Ptr)) 2071 return true; 2072 } 2073 unsigned BaseAlignment = Size; 2074 AAMDNodes AAInfo; 2075 MDNode *Range = nullptr; 2076 while (consumeIfPresent(MIToken::comma)) { 2077 switch (Token.kind()) { 2078 case MIToken::kw_align: 2079 if (parseAlignment(BaseAlignment)) 2080 return true; 2081 break; 2082 case MIToken::md_tbaa: 2083 lex(); 2084 if (parseMDNode(AAInfo.TBAA)) 2085 return true; 2086 break; 2087 case MIToken::md_alias_scope: 2088 lex(); 2089 if (parseMDNode(AAInfo.Scope)) 2090 return true; 2091 break; 2092 case MIToken::md_noalias: 2093 lex(); 2094 if (parseMDNode(AAInfo.NoAlias)) 2095 return true; 2096 break; 2097 case MIToken::md_range: 2098 lex(); 2099 if (parseMDNode(Range)) 2100 return true; 2101 break; 2102 // TODO: Report an error on duplicate metadata nodes. 2103 default: 2104 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2105 "'!noalias' or '!range'"); 2106 } 2107 } 2108 if (expectAndConsume(MIToken::rparen)) 2109 return true; 2110 Dest = 2111 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 2112 return false; 2113 } 2114 2115 void MIParser::initNames2InstrOpCodes() { 2116 if (!Names2InstrOpCodes.empty()) 2117 return; 2118 const auto *TII = MF.getSubtarget().getInstrInfo(); 2119 assert(TII && "Expected target instruction info"); 2120 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2121 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2122 } 2123 2124 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2125 initNames2InstrOpCodes(); 2126 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2127 if (InstrInfo == Names2InstrOpCodes.end()) 2128 return true; 2129 OpCode = InstrInfo->getValue(); 2130 return false; 2131 } 2132 2133 void MIParser::initNames2Regs() { 2134 if (!Names2Regs.empty()) 2135 return; 2136 // The '%noreg' register is the register 0. 2137 Names2Regs.insert(std::make_pair("noreg", 0)); 2138 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2139 assert(TRI && "Expected target register info"); 2140 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2141 bool WasInserted = 2142 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2143 .second; 2144 (void)WasInserted; 2145 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2146 } 2147 } 2148 2149 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2150 initNames2Regs(); 2151 auto RegInfo = Names2Regs.find(RegName); 2152 if (RegInfo == Names2Regs.end()) 2153 return true; 2154 Reg = RegInfo->getValue(); 2155 return false; 2156 } 2157 2158 void MIParser::initNames2RegMasks() { 2159 if (!Names2RegMasks.empty()) 2160 return; 2161 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2162 assert(TRI && "Expected target register info"); 2163 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2164 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2165 assert(RegMasks.size() == RegMaskNames.size()); 2166 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2167 Names2RegMasks.insert( 2168 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2169 } 2170 2171 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2172 initNames2RegMasks(); 2173 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2174 if (RegMaskInfo == Names2RegMasks.end()) 2175 return nullptr; 2176 return RegMaskInfo->getValue(); 2177 } 2178 2179 void MIParser::initNames2SubRegIndices() { 2180 if (!Names2SubRegIndices.empty()) 2181 return; 2182 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2183 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2184 Names2SubRegIndices.insert( 2185 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2186 } 2187 2188 unsigned MIParser::getSubRegIndex(StringRef Name) { 2189 initNames2SubRegIndices(); 2190 auto SubRegInfo = Names2SubRegIndices.find(Name); 2191 if (SubRegInfo == Names2SubRegIndices.end()) 2192 return 0; 2193 return SubRegInfo->getValue(); 2194 } 2195 2196 static void initSlots2BasicBlocks( 2197 const Function &F, 2198 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2199 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2200 MST.incorporateFunction(F); 2201 for (auto &BB : F) { 2202 if (BB.hasName()) 2203 continue; 2204 int Slot = MST.getLocalSlot(&BB); 2205 if (Slot == -1) 2206 continue; 2207 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2208 } 2209 } 2210 2211 static const BasicBlock *getIRBlockFromSlot( 2212 unsigned Slot, 2213 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2214 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2215 if (BlockInfo == Slots2BasicBlocks.end()) 2216 return nullptr; 2217 return BlockInfo->second; 2218 } 2219 2220 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2221 if (Slots2BasicBlocks.empty()) 2222 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2223 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2224 } 2225 2226 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2227 if (&F == MF.getFunction()) 2228 return getIRBlock(Slot); 2229 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2230 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2231 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2232 } 2233 2234 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2235 DenseMap<unsigned, const Value *> &Slots2Values) { 2236 int Slot = MST.getLocalSlot(V); 2237 if (Slot == -1) 2238 return; 2239 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2240 } 2241 2242 /// Creates the mapping from slot numbers to function's unnamed IR values. 2243 static void initSlots2Values(const Function &F, 2244 DenseMap<unsigned, const Value *> &Slots2Values) { 2245 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2246 MST.incorporateFunction(F); 2247 for (const auto &Arg : F.args()) 2248 mapValueToSlot(&Arg, MST, Slots2Values); 2249 for (const auto &BB : F) { 2250 mapValueToSlot(&BB, MST, Slots2Values); 2251 for (const auto &I : BB) 2252 mapValueToSlot(&I, MST, Slots2Values); 2253 } 2254 } 2255 2256 const Value *MIParser::getIRValue(unsigned Slot) { 2257 if (Slots2Values.empty()) 2258 initSlots2Values(*MF.getFunction(), Slots2Values); 2259 auto ValueInfo = Slots2Values.find(Slot); 2260 if (ValueInfo == Slots2Values.end()) 2261 return nullptr; 2262 return ValueInfo->second; 2263 } 2264 2265 void MIParser::initNames2TargetIndices() { 2266 if (!Names2TargetIndices.empty()) 2267 return; 2268 const auto *TII = MF.getSubtarget().getInstrInfo(); 2269 assert(TII && "Expected target instruction info"); 2270 auto Indices = TII->getSerializableTargetIndices(); 2271 for (const auto &I : Indices) 2272 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2273 } 2274 2275 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2276 initNames2TargetIndices(); 2277 auto IndexInfo = Names2TargetIndices.find(Name); 2278 if (IndexInfo == Names2TargetIndices.end()) 2279 return true; 2280 Index = IndexInfo->second; 2281 return false; 2282 } 2283 2284 void MIParser::initNames2DirectTargetFlags() { 2285 if (!Names2DirectTargetFlags.empty()) 2286 return; 2287 const auto *TII = MF.getSubtarget().getInstrInfo(); 2288 assert(TII && "Expected target instruction info"); 2289 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2290 for (const auto &I : Flags) 2291 Names2DirectTargetFlags.insert( 2292 std::make_pair(StringRef(I.second), I.first)); 2293 } 2294 2295 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2296 initNames2DirectTargetFlags(); 2297 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2298 if (FlagInfo == Names2DirectTargetFlags.end()) 2299 return true; 2300 Flag = FlagInfo->second; 2301 return false; 2302 } 2303 2304 void MIParser::initNames2BitmaskTargetFlags() { 2305 if (!Names2BitmaskTargetFlags.empty()) 2306 return; 2307 const auto *TII = MF.getSubtarget().getInstrInfo(); 2308 assert(TII && "Expected target instruction info"); 2309 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2310 for (const auto &I : Flags) 2311 Names2BitmaskTargetFlags.insert( 2312 std::make_pair(StringRef(I.second), I.first)); 2313 } 2314 2315 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2316 initNames2BitmaskTargetFlags(); 2317 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2318 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2319 return true; 2320 Flag = FlagInfo->second; 2321 return false; 2322 } 2323 2324 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2325 StringRef Src, 2326 SMDiagnostic &Error) { 2327 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2328 } 2329 2330 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2331 StringRef Src, SMDiagnostic &Error) { 2332 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2333 } 2334 2335 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2336 MachineBasicBlock *&MBB, StringRef Src, 2337 SMDiagnostic &Error) { 2338 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2339 } 2340 2341 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2342 unsigned &Reg, StringRef Src, 2343 SMDiagnostic &Error) { 2344 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2345 } 2346 2347 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2348 unsigned &Reg, StringRef Src, 2349 SMDiagnostic &Error) { 2350 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2351 } 2352 2353 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2354 VRegInfo *&Info, StringRef Src, 2355 SMDiagnostic &Error) { 2356 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2357 } 2358 2359 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2360 int &FI, StringRef Src, 2361 SMDiagnostic &Error) { 2362 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2363 } 2364 2365 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2366 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2367 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2368 } 2369