1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cctype>
40 
41 using namespace llvm;
42 
43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
44     SourceMgr &SM, const SlotMapping &IRSlots,
45     const Name2RegClassMap &Names2RegClasses,
46     const Name2RegBankMap &Names2RegBanks)
47   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
48     Names2RegBanks(Names2RegBanks) {
49 }
50 
51 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
52   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
53   if (I.second) {
54     MachineRegisterInfo &MRI = MF.getRegInfo();
55     VRegInfo *Info = new (Allocator) VRegInfo;
56     Info->VReg = MRI.createIncompleteVirtualRegister();
57     I.first->second = Info;
58   }
59   return *I.first->second;
60 }
61 
62 namespace {
63 
64 /// A wrapper struct around the 'MachineOperand' struct that includes a source
65 /// range and other attributes.
66 struct ParsedMachineOperand {
67   MachineOperand Operand;
68   StringRef::iterator Begin;
69   StringRef::iterator End;
70   Optional<unsigned> TiedDefIdx;
71 
72   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
73                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
74       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
75     if (TiedDefIdx)
76       assert(Operand.isReg() && Operand.isUse() &&
77              "Only used register operands can be tied");
78   }
79 };
80 
81 class MIParser {
82   MachineFunction &MF;
83   SMDiagnostic &Error;
84   StringRef Source, CurrentSource;
85   MIToken Token;
86   PerFunctionMIParsingState &PFS;
87   /// Maps from instruction names to op codes.
88   StringMap<unsigned> Names2InstrOpCodes;
89   /// Maps from register names to registers.
90   StringMap<unsigned> Names2Regs;
91   /// Maps from register mask names to register masks.
92   StringMap<const uint32_t *> Names2RegMasks;
93   /// Maps from subregister names to subregister indices.
94   StringMap<unsigned> Names2SubRegIndices;
95   /// Maps from slot numbers to function's unnamed basic blocks.
96   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
97   /// Maps from slot numbers to function's unnamed values.
98   DenseMap<unsigned, const Value *> Slots2Values;
99   /// Maps from target index names to target indices.
100   StringMap<int> Names2TargetIndices;
101   /// Maps from direct target flag names to the direct target flag values.
102   StringMap<unsigned> Names2DirectTargetFlags;
103   /// Maps from direct target flag names to the bitmask target flag values.
104   StringMap<unsigned> Names2BitmaskTargetFlags;
105 
106 public:
107   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
108            StringRef Source);
109 
110   /// \p SkipChar gives the number of characters to skip before looking
111   /// for the next token.
112   void lex(unsigned SkipChar = 0);
113 
114   /// Report an error at the current location with the given message.
115   ///
116   /// This function always return true.
117   bool error(const Twine &Msg);
118 
119   /// Report an error at the given location with the given message.
120   ///
121   /// This function always return true.
122   bool error(StringRef::iterator Loc, const Twine &Msg);
123 
124   bool
125   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
126   bool parseBasicBlocks();
127   bool parse(MachineInstr *&MI);
128   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
129   bool parseStandaloneNamedRegister(unsigned &Reg);
130   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
131   bool parseStandaloneRegister(unsigned &Reg);
132   bool parseStandaloneStackObject(int &FI);
133   bool parseStandaloneMDNode(MDNode *&Node);
134 
135   bool
136   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
137   bool parseBasicBlock(MachineBasicBlock &MBB);
138   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
139   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
140 
141   bool parseNamedRegister(unsigned &Reg);
142   bool parseVirtualRegister(VRegInfo *&Info);
143   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
144   bool parseRegisterFlag(unsigned &Flags);
145   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
146   bool parseSubRegisterIndex(unsigned &SubReg);
147   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
148   bool parseRegisterOperand(MachineOperand &Dest,
149                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
150   bool parseImmediateOperand(MachineOperand &Dest);
151   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
152                        const Constant *&C);
153   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
154   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
155   bool parseTypedImmediateOperand(MachineOperand &Dest);
156   bool parseFPImmediateOperand(MachineOperand &Dest);
157   bool parseMBBReference(MachineBasicBlock *&MBB);
158   bool parseMBBOperand(MachineOperand &Dest);
159   bool parseStackFrameIndex(int &FI);
160   bool parseStackObjectOperand(MachineOperand &Dest);
161   bool parseFixedStackFrameIndex(int &FI);
162   bool parseFixedStackObjectOperand(MachineOperand &Dest);
163   bool parseGlobalValue(GlobalValue *&GV);
164   bool parseGlobalAddressOperand(MachineOperand &Dest);
165   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
166   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
167   bool parseJumpTableIndexOperand(MachineOperand &Dest);
168   bool parseExternalSymbolOperand(MachineOperand &Dest);
169   bool parseMDNode(MDNode *&Node);
170   bool parseMetadataOperand(MachineOperand &Dest);
171   bool parseCFIOffset(int &Offset);
172   bool parseCFIRegister(unsigned &Reg);
173   bool parseCFIOperand(MachineOperand &Dest);
174   bool parseIRBlock(BasicBlock *&BB, const Function &F);
175   bool parseBlockAddressOperand(MachineOperand &Dest);
176   bool parseIntrinsicOperand(MachineOperand &Dest);
177   bool parsePredicateOperand(MachineOperand &Dest);
178   bool parseTargetIndexOperand(MachineOperand &Dest);
179   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
180   bool parseMachineOperand(MachineOperand &Dest,
181                            Optional<unsigned> &TiedDefIdx);
182   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
183                                          Optional<unsigned> &TiedDefIdx);
184   bool parseOffset(int64_t &Offset);
185   bool parseAlignment(unsigned &Alignment);
186   bool parseOperandsOffset(MachineOperand &Op);
187   bool parseIRValue(const Value *&V);
188   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
189   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
190   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
191   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
192 
193 private:
194   /// Convert the integer literal in the current token into an unsigned integer.
195   ///
196   /// Return true if an error occurred.
197   bool getUnsigned(unsigned &Result);
198 
199   /// Convert the integer literal in the current token into an uint64.
200   ///
201   /// Return true if an error occurred.
202   bool getUint64(uint64_t &Result);
203 
204   /// Convert the hexadecimal literal in the current token into an unsigned
205   ///  APInt with a minimum bitwidth required to represent the value.
206   ///
207   /// Return true if the literal does not represent an integer value.
208   bool getHexUint(APInt &Result);
209 
210   /// If the current token is of the given kind, consume it and return false.
211   /// Otherwise report an error and return true.
212   bool expectAndConsume(MIToken::TokenKind TokenKind);
213 
214   /// If the current token is of the given kind, consume it and return true.
215   /// Otherwise return false.
216   bool consumeIfPresent(MIToken::TokenKind TokenKind);
217 
218   void initNames2InstrOpCodes();
219 
220   /// Try to convert an instruction name to an opcode. Return true if the
221   /// instruction name is invalid.
222   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
223 
224   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
225 
226   bool assignRegisterTies(MachineInstr &MI,
227                           ArrayRef<ParsedMachineOperand> Operands);
228 
229   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
230                               const MCInstrDesc &MCID);
231 
232   void initNames2Regs();
233 
234   /// Try to convert a register name to a register number. Return true if the
235   /// register name is invalid.
236   bool getRegisterByName(StringRef RegName, unsigned &Reg);
237 
238   void initNames2RegMasks();
239 
240   /// Check if the given identifier is a name of a register mask.
241   ///
242   /// Return null if the identifier isn't a register mask.
243   const uint32_t *getRegMask(StringRef Identifier);
244 
245   void initNames2SubRegIndices();
246 
247   /// Check if the given identifier is a name of a subregister index.
248   ///
249   /// Return 0 if the name isn't a subregister index class.
250   unsigned getSubRegIndex(StringRef Name);
251 
252   const BasicBlock *getIRBlock(unsigned Slot);
253   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
254 
255   const Value *getIRValue(unsigned Slot);
256 
257   void initNames2TargetIndices();
258 
259   /// Try to convert a name of target index to the corresponding target index.
260   ///
261   /// Return true if the name isn't a name of a target index.
262   bool getTargetIndex(StringRef Name, int &Index);
263 
264   void initNames2DirectTargetFlags();
265 
266   /// Try to convert a name of a direct target flag to the corresponding
267   /// target flag.
268   ///
269   /// Return true if the name isn't a name of a direct flag.
270   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
271 
272   void initNames2BitmaskTargetFlags();
273 
274   /// Try to convert a name of a bitmask target flag to the corresponding
275   /// target flag.
276   ///
277   /// Return true if the name isn't a name of a bitmask target flag.
278   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
279 };
280 
281 } // end anonymous namespace
282 
283 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
284                    StringRef Source)
285     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
286 {}
287 
288 void MIParser::lex(unsigned SkipChar) {
289   CurrentSource = lexMIToken(
290       CurrentSource.data() + SkipChar, Token,
291       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
292 }
293 
294 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
295 
296 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
297   const SourceMgr &SM = *PFS.SM;
298   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
299   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
300   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
301     // Create an ordinary diagnostic when the source manager's buffer is the
302     // source string.
303     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
304     return true;
305   }
306   // Create a diagnostic for a YAML string literal.
307   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
308                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
309                        Source, None, None);
310   return true;
311 }
312 
313 static const char *toString(MIToken::TokenKind TokenKind) {
314   switch (TokenKind) {
315   case MIToken::comma:
316     return "','";
317   case MIToken::equal:
318     return "'='";
319   case MIToken::colon:
320     return "':'";
321   case MIToken::lparen:
322     return "'('";
323   case MIToken::rparen:
324     return "')'";
325   default:
326     return "<unknown token>";
327   }
328 }
329 
330 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
331   if (Token.isNot(TokenKind))
332     return error(Twine("expected ") + toString(TokenKind));
333   lex();
334   return false;
335 }
336 
337 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
338   if (Token.isNot(TokenKind))
339     return false;
340   lex();
341   return true;
342 }
343 
344 bool MIParser::parseBasicBlockDefinition(
345     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
346   assert(Token.is(MIToken::MachineBasicBlockLabel));
347   unsigned ID = 0;
348   if (getUnsigned(ID))
349     return true;
350   auto Loc = Token.location();
351   auto Name = Token.stringValue();
352   lex();
353   bool HasAddressTaken = false;
354   bool IsLandingPad = false;
355   unsigned Alignment = 0;
356   BasicBlock *BB = nullptr;
357   if (consumeIfPresent(MIToken::lparen)) {
358     do {
359       // TODO: Report an error when multiple same attributes are specified.
360       switch (Token.kind()) {
361       case MIToken::kw_address_taken:
362         HasAddressTaken = true;
363         lex();
364         break;
365       case MIToken::kw_landing_pad:
366         IsLandingPad = true;
367         lex();
368         break;
369       case MIToken::kw_align:
370         if (parseAlignment(Alignment))
371           return true;
372         break;
373       case MIToken::IRBlock:
374         // TODO: Report an error when both name and ir block are specified.
375         if (parseIRBlock(BB, *MF.getFunction()))
376           return true;
377         lex();
378         break;
379       default:
380         break;
381       }
382     } while (consumeIfPresent(MIToken::comma));
383     if (expectAndConsume(MIToken::rparen))
384       return true;
385   }
386   if (expectAndConsume(MIToken::colon))
387     return true;
388 
389   if (!Name.empty()) {
390     BB = dyn_cast_or_null<BasicBlock>(
391         MF.getFunction()->getValueSymbolTable()->lookup(Name));
392     if (!BB)
393       return error(Loc, Twine("basic block '") + Name +
394                             "' is not defined in the function '" +
395                             MF.getName() + "'");
396   }
397   auto *MBB = MF.CreateMachineBasicBlock(BB);
398   MF.insert(MF.end(), MBB);
399   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
400   if (!WasInserted)
401     return error(Loc, Twine("redefinition of machine basic block with id #") +
402                           Twine(ID));
403   if (Alignment)
404     MBB->setAlignment(Alignment);
405   if (HasAddressTaken)
406     MBB->setHasAddressTaken();
407   MBB->setIsEHPad(IsLandingPad);
408   return false;
409 }
410 
411 bool MIParser::parseBasicBlockDefinitions(
412     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
413   lex();
414   // Skip until the first machine basic block.
415   while (Token.is(MIToken::Newline))
416     lex();
417   if (Token.isErrorOrEOF())
418     return Token.isError();
419   if (Token.isNot(MIToken::MachineBasicBlockLabel))
420     return error("expected a basic block definition before instructions");
421   unsigned BraceDepth = 0;
422   do {
423     if (parseBasicBlockDefinition(MBBSlots))
424       return true;
425     bool IsAfterNewline = false;
426     // Skip until the next machine basic block.
427     while (true) {
428       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
429           Token.isErrorOrEOF())
430         break;
431       else if (Token.is(MIToken::MachineBasicBlockLabel))
432         return error("basic block definition should be located at the start of "
433                      "the line");
434       else if (consumeIfPresent(MIToken::Newline)) {
435         IsAfterNewline = true;
436         continue;
437       }
438       IsAfterNewline = false;
439       if (Token.is(MIToken::lbrace))
440         ++BraceDepth;
441       if (Token.is(MIToken::rbrace)) {
442         if (!BraceDepth)
443           return error("extraneous closing brace ('}')");
444         --BraceDepth;
445       }
446       lex();
447     }
448     // Verify that we closed all of the '{' at the end of a file or a block.
449     if (!Token.isError() && BraceDepth)
450       return error("expected '}'"); // FIXME: Report a note that shows '{'.
451   } while (!Token.isErrorOrEOF());
452   return Token.isError();
453 }
454 
455 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
456   assert(Token.is(MIToken::kw_liveins));
457   lex();
458   if (expectAndConsume(MIToken::colon))
459     return true;
460   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
461     return false;
462   do {
463     if (Token.isNot(MIToken::NamedRegister))
464       return error("expected a named register");
465     unsigned Reg = 0;
466     if (parseNamedRegister(Reg))
467       return true;
468     lex();
469     LaneBitmask Mask = LaneBitmask::getAll();
470     if (consumeIfPresent(MIToken::colon)) {
471       // Parse lane mask.
472       if (Token.isNot(MIToken::IntegerLiteral) &&
473           Token.isNot(MIToken::HexLiteral))
474         return error("expected a lane mask");
475       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
476                     "Use correct get-function for lane mask");
477       LaneBitmask::Type V;
478       if (getUnsigned(V))
479         return error("invalid lane mask value");
480       Mask = LaneBitmask(V);
481       lex();
482     }
483     MBB.addLiveIn(Reg, Mask);
484   } while (consumeIfPresent(MIToken::comma));
485   return false;
486 }
487 
488 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
489   assert(Token.is(MIToken::kw_successors));
490   lex();
491   if (expectAndConsume(MIToken::colon))
492     return true;
493   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
494     return false;
495   do {
496     if (Token.isNot(MIToken::MachineBasicBlock))
497       return error("expected a machine basic block reference");
498     MachineBasicBlock *SuccMBB = nullptr;
499     if (parseMBBReference(SuccMBB))
500       return true;
501     lex();
502     unsigned Weight = 0;
503     if (consumeIfPresent(MIToken::lparen)) {
504       if (Token.isNot(MIToken::IntegerLiteral) &&
505           Token.isNot(MIToken::HexLiteral))
506         return error("expected an integer literal after '('");
507       if (getUnsigned(Weight))
508         return true;
509       lex();
510       if (expectAndConsume(MIToken::rparen))
511         return true;
512     }
513     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
514   } while (consumeIfPresent(MIToken::comma));
515   MBB.normalizeSuccProbs();
516   return false;
517 }
518 
519 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
520   // Skip the definition.
521   assert(Token.is(MIToken::MachineBasicBlockLabel));
522   lex();
523   if (consumeIfPresent(MIToken::lparen)) {
524     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
525       lex();
526     consumeIfPresent(MIToken::rparen);
527   }
528   consumeIfPresent(MIToken::colon);
529 
530   // Parse the liveins and successors.
531   // N.B: Multiple lists of successors and liveins are allowed and they're
532   // merged into one.
533   // Example:
534   //   liveins: %edi
535   //   liveins: %esi
536   //
537   // is equivalent to
538   //   liveins: %edi, %esi
539   while (true) {
540     if (Token.is(MIToken::kw_successors)) {
541       if (parseBasicBlockSuccessors(MBB))
542         return true;
543     } else if (Token.is(MIToken::kw_liveins)) {
544       if (parseBasicBlockLiveins(MBB))
545         return true;
546     } else if (consumeIfPresent(MIToken::Newline)) {
547       continue;
548     } else
549       break;
550     if (!Token.isNewlineOrEOF())
551       return error("expected line break at the end of a list");
552     lex();
553   }
554 
555   // Parse the instructions.
556   bool IsInBundle = false;
557   MachineInstr *PrevMI = nullptr;
558   while (true) {
559     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
560       return false;
561     else if (consumeIfPresent(MIToken::Newline))
562       continue;
563     if (consumeIfPresent(MIToken::rbrace)) {
564       // The first parsing pass should verify that all closing '}' have an
565       // opening '{'.
566       assert(IsInBundle);
567       IsInBundle = false;
568       continue;
569     }
570     MachineInstr *MI = nullptr;
571     if (parse(MI))
572       return true;
573     MBB.insert(MBB.end(), MI);
574     if (IsInBundle) {
575       PrevMI->setFlag(MachineInstr::BundledSucc);
576       MI->setFlag(MachineInstr::BundledPred);
577     }
578     PrevMI = MI;
579     if (Token.is(MIToken::lbrace)) {
580       if (IsInBundle)
581         return error("nested instruction bundles are not allowed");
582       lex();
583       // This instruction is the start of the bundle.
584       MI->setFlag(MachineInstr::BundledSucc);
585       IsInBundle = true;
586       if (!Token.is(MIToken::Newline))
587         // The next instruction can be on the same line.
588         continue;
589     }
590     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
591     lex();
592   }
593   return false;
594 }
595 
596 bool MIParser::parseBasicBlocks() {
597   lex();
598   // Skip until the first machine basic block.
599   while (Token.is(MIToken::Newline))
600     lex();
601   if (Token.isErrorOrEOF())
602     return Token.isError();
603   // The first parsing pass should have verified that this token is a MBB label
604   // in the 'parseBasicBlockDefinitions' method.
605   assert(Token.is(MIToken::MachineBasicBlockLabel));
606   do {
607     MachineBasicBlock *MBB = nullptr;
608     if (parseMBBReference(MBB))
609       return true;
610     if (parseBasicBlock(*MBB))
611       return true;
612     // The method 'parseBasicBlock' should parse the whole block until the next
613     // block or the end of file.
614     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
615   } while (Token.isNot(MIToken::Eof));
616   return false;
617 }
618 
619 bool MIParser::parse(MachineInstr *&MI) {
620   // Parse any register operands before '='
621   MachineOperand MO = MachineOperand::CreateImm(0);
622   SmallVector<ParsedMachineOperand, 8> Operands;
623   while (Token.isRegister() || Token.isRegisterFlag()) {
624     auto Loc = Token.location();
625     Optional<unsigned> TiedDefIdx;
626     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
627       return true;
628     Operands.push_back(
629         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
630     if (Token.isNot(MIToken::comma))
631       break;
632     lex();
633   }
634   if (!Operands.empty() && expectAndConsume(MIToken::equal))
635     return true;
636 
637   unsigned OpCode, Flags = 0;
638   if (Token.isError() || parseInstruction(OpCode, Flags))
639     return true;
640 
641   // Parse the remaining machine operands.
642   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
643          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
644     auto Loc = Token.location();
645     Optional<unsigned> TiedDefIdx;
646     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
647       return true;
648     Operands.push_back(
649         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
650     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
651         Token.is(MIToken::lbrace))
652       break;
653     if (Token.isNot(MIToken::comma))
654       return error("expected ',' before the next machine operand");
655     lex();
656   }
657 
658   DebugLoc DebugLocation;
659   if (Token.is(MIToken::kw_debug_location)) {
660     lex();
661     if (Token.isNot(MIToken::exclaim))
662       return error("expected a metadata node after 'debug-location'");
663     MDNode *Node = nullptr;
664     if (parseMDNode(Node))
665       return true;
666     DebugLocation = DebugLoc(Node);
667   }
668 
669   // Parse the machine memory operands.
670   SmallVector<MachineMemOperand *, 2> MemOperands;
671   if (Token.is(MIToken::coloncolon)) {
672     lex();
673     while (!Token.isNewlineOrEOF()) {
674       MachineMemOperand *MemOp = nullptr;
675       if (parseMachineMemoryOperand(MemOp))
676         return true;
677       MemOperands.push_back(MemOp);
678       if (Token.isNewlineOrEOF())
679         break;
680       if (Token.isNot(MIToken::comma))
681         return error("expected ',' before the next machine memory operand");
682       lex();
683     }
684   }
685 
686   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
687   if (!MCID.isVariadic()) {
688     // FIXME: Move the implicit operand verification to the machine verifier.
689     if (verifyImplicitOperands(Operands, MCID))
690       return true;
691   }
692 
693   // TODO: Check for extraneous machine operands.
694   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
695   MI->setFlags(Flags);
696   for (const auto &Operand : Operands)
697     MI->addOperand(MF, Operand.Operand);
698   if (assignRegisterTies(*MI, Operands))
699     return true;
700   if (MemOperands.empty())
701     return false;
702   MachineInstr::mmo_iterator MemRefs =
703       MF.allocateMemRefsArray(MemOperands.size());
704   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
705   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
706   return false;
707 }
708 
709 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
710   lex();
711   if (Token.isNot(MIToken::MachineBasicBlock))
712     return error("expected a machine basic block reference");
713   if (parseMBBReference(MBB))
714     return true;
715   lex();
716   if (Token.isNot(MIToken::Eof))
717     return error(
718         "expected end of string after the machine basic block reference");
719   return false;
720 }
721 
722 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
723   lex();
724   if (Token.isNot(MIToken::NamedRegister))
725     return error("expected a named register");
726   if (parseNamedRegister(Reg))
727     return true;
728   lex();
729   if (Token.isNot(MIToken::Eof))
730     return error("expected end of string after the register reference");
731   return false;
732 }
733 
734 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
735   lex();
736   if (Token.isNot(MIToken::VirtualRegister))
737     return error("expected a virtual register");
738   if (parseVirtualRegister(Info))
739     return true;
740   lex();
741   if (Token.isNot(MIToken::Eof))
742     return error("expected end of string after the register reference");
743   return false;
744 }
745 
746 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
747   lex();
748   if (Token.isNot(MIToken::NamedRegister) &&
749       Token.isNot(MIToken::VirtualRegister))
750     return error("expected either a named or virtual register");
751 
752   VRegInfo *Info;
753   if (parseRegister(Reg, Info))
754     return true;
755 
756   lex();
757   if (Token.isNot(MIToken::Eof))
758     return error("expected end of string after the register reference");
759   return false;
760 }
761 
762 bool MIParser::parseStandaloneStackObject(int &FI) {
763   lex();
764   if (Token.isNot(MIToken::StackObject))
765     return error("expected a stack object");
766   if (parseStackFrameIndex(FI))
767     return true;
768   if (Token.isNot(MIToken::Eof))
769     return error("expected end of string after the stack object reference");
770   return false;
771 }
772 
773 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
774   lex();
775   if (Token.isNot(MIToken::exclaim))
776     return error("expected a metadata node");
777   if (parseMDNode(Node))
778     return true;
779   if (Token.isNot(MIToken::Eof))
780     return error("expected end of string after the metadata node");
781   return false;
782 }
783 
784 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
785   assert(MO.isImplicit());
786   return MO.isDef() ? "implicit-def" : "implicit";
787 }
788 
789 static std::string getRegisterName(const TargetRegisterInfo *TRI,
790                                    unsigned Reg) {
791   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
792   return StringRef(TRI->getName(Reg)).lower();
793 }
794 
795 /// Return true if the parsed machine operands contain a given machine operand.
796 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
797                                 ArrayRef<ParsedMachineOperand> Operands) {
798   for (const auto &I : Operands) {
799     if (ImplicitOperand.isIdenticalTo(I.Operand))
800       return true;
801   }
802   return false;
803 }
804 
805 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
806                                       const MCInstrDesc &MCID) {
807   if (MCID.isCall())
808     // We can't verify call instructions as they can contain arbitrary implicit
809     // register and register mask operands.
810     return false;
811 
812   // Gather all the expected implicit operands.
813   SmallVector<MachineOperand, 4> ImplicitOperands;
814   if (MCID.ImplicitDefs)
815     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
816       ImplicitOperands.push_back(
817           MachineOperand::CreateReg(*ImpDefs, true, true));
818   if (MCID.ImplicitUses)
819     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
820       ImplicitOperands.push_back(
821           MachineOperand::CreateReg(*ImpUses, false, true));
822 
823   const auto *TRI = MF.getSubtarget().getRegisterInfo();
824   assert(TRI && "Expected target register info");
825   for (const auto &I : ImplicitOperands) {
826     if (isImplicitOperandIn(I, Operands))
827       continue;
828     return error(Operands.empty() ? Token.location() : Operands.back().End,
829                  Twine("missing implicit register operand '") +
830                      printImplicitRegisterFlag(I) + " %" +
831                      getRegisterName(TRI, I.getReg()) + "'");
832   }
833   return false;
834 }
835 
836 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
837   if (Token.is(MIToken::kw_frame_setup)) {
838     Flags |= MachineInstr::FrameSetup;
839     lex();
840   }
841   if (Token.isNot(MIToken::Identifier))
842     return error("expected a machine instruction");
843   StringRef InstrName = Token.stringValue();
844   if (parseInstrName(InstrName, OpCode))
845     return error(Twine("unknown machine instruction name '") + InstrName + "'");
846   lex();
847   return false;
848 }
849 
850 bool MIParser::parseNamedRegister(unsigned &Reg) {
851   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
852   StringRef Name = Token.stringValue();
853   if (getRegisterByName(Name, Reg))
854     return error(Twine("unknown register name '") + Name + "'");
855   return false;
856 }
857 
858 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
859   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
860   unsigned ID;
861   if (getUnsigned(ID))
862     return true;
863   Info = &PFS.getVRegInfo(ID);
864   return false;
865 }
866 
867 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
868   switch (Token.kind()) {
869   case MIToken::underscore:
870     Reg = 0;
871     return false;
872   case MIToken::NamedRegister:
873     return parseNamedRegister(Reg);
874   case MIToken::VirtualRegister:
875     if (parseVirtualRegister(Info))
876       return true;
877     Reg = Info->VReg;
878     return false;
879   // TODO: Parse other register kinds.
880   default:
881     llvm_unreachable("The current token should be a register");
882   }
883 }
884 
885 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
886   if (Token.isNot(MIToken::Identifier))
887     return error("expected a register class or register bank name");
888   StringRef::iterator Loc = Token.location();
889   StringRef Name = Token.stringValue();
890 
891   // Was it a register class?
892   auto RCNameI = PFS.Names2RegClasses.find(Name);
893   if (RCNameI != PFS.Names2RegClasses.end()) {
894     lex();
895     const TargetRegisterClass &RC = *RCNameI->getValue();
896 
897     switch (RegInfo.Kind) {
898     case VRegInfo::UNKNOWN:
899     case VRegInfo::NORMAL:
900       RegInfo.Kind = VRegInfo::NORMAL;
901       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
902         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
903         return error(Loc, Twine("conflicting register classes, previously: ") +
904                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
905       }
906       RegInfo.D.RC = &RC;
907       RegInfo.Explicit = true;
908       return false;
909 
910     case VRegInfo::GENERIC:
911     case VRegInfo::REGBANK:
912       return error(Loc, "register class specification on generic register");
913     }
914     llvm_unreachable("Unexpected register kind");
915   }
916 
917   // Should be a register bank.
918   auto RBNameI = PFS.Names2RegBanks.find(Name);
919   lex();
920   if (RBNameI == PFS.Names2RegBanks.end())
921     return error(Loc, "expected a register class or register bank name");
922 
923   const RegisterBank &RegBank = *RBNameI->getValue();
924   switch (RegInfo.Kind) {
925   case VRegInfo::UNKNOWN:
926   case VRegInfo::GENERIC:
927   case VRegInfo::REGBANK:
928     RegInfo.Kind = VRegInfo::REGBANK;
929     if (RegInfo.Explicit && RegInfo.D.RegBank != &RegBank)
930       return error(Loc, "conflicting register banks");
931     RegInfo.D.RegBank = &RegBank;
932     RegInfo.Explicit = true;
933     return false;
934 
935   case VRegInfo::NORMAL:
936     return error(Loc, "register class specification on normal register");
937   }
938   llvm_unreachable("Unexpected register kind");
939 }
940 
941 bool MIParser::parseRegisterFlag(unsigned &Flags) {
942   const unsigned OldFlags = Flags;
943   switch (Token.kind()) {
944   case MIToken::kw_implicit:
945     Flags |= RegState::Implicit;
946     break;
947   case MIToken::kw_implicit_define:
948     Flags |= RegState::ImplicitDefine;
949     break;
950   case MIToken::kw_def:
951     Flags |= RegState::Define;
952     break;
953   case MIToken::kw_dead:
954     Flags |= RegState::Dead;
955     break;
956   case MIToken::kw_killed:
957     Flags |= RegState::Kill;
958     break;
959   case MIToken::kw_undef:
960     Flags |= RegState::Undef;
961     break;
962   case MIToken::kw_internal:
963     Flags |= RegState::InternalRead;
964     break;
965   case MIToken::kw_early_clobber:
966     Flags |= RegState::EarlyClobber;
967     break;
968   case MIToken::kw_debug_use:
969     Flags |= RegState::Debug;
970     break;
971   default:
972     llvm_unreachable("The current token should be a register flag");
973   }
974   if (OldFlags == Flags)
975     // We know that the same flag is specified more than once when the flags
976     // weren't modified.
977     return error("duplicate '" + Token.stringValue() + "' register flag");
978   lex();
979   return false;
980 }
981 
982 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
983   assert(Token.is(MIToken::dot));
984   lex();
985   if (Token.isNot(MIToken::Identifier))
986     return error("expected a subregister index after '.'");
987   auto Name = Token.stringValue();
988   SubReg = getSubRegIndex(Name);
989   if (!SubReg)
990     return error(Twine("use of unknown subregister index '") + Name + "'");
991   lex();
992   return false;
993 }
994 
995 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
996   if (!consumeIfPresent(MIToken::kw_tied_def))
997     return true;
998   if (Token.isNot(MIToken::IntegerLiteral))
999     return error("expected an integer literal after 'tied-def'");
1000   if (getUnsigned(TiedDefIdx))
1001     return true;
1002   lex();
1003   if (expectAndConsume(MIToken::rparen))
1004     return true;
1005   return false;
1006 }
1007 
1008 bool MIParser::assignRegisterTies(MachineInstr &MI,
1009                                   ArrayRef<ParsedMachineOperand> Operands) {
1010   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1011   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1012     if (!Operands[I].TiedDefIdx)
1013       continue;
1014     // The parser ensures that this operand is a register use, so we just have
1015     // to check the tied-def operand.
1016     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1017     if (DefIdx >= E)
1018       return error(Operands[I].Begin,
1019                    Twine("use of invalid tied-def operand index '" +
1020                          Twine(DefIdx) + "'; instruction has only ") +
1021                        Twine(E) + " operands");
1022     const auto &DefOperand = Operands[DefIdx].Operand;
1023     if (!DefOperand.isReg() || !DefOperand.isDef())
1024       // FIXME: add note with the def operand.
1025       return error(Operands[I].Begin,
1026                    Twine("use of invalid tied-def operand index '") +
1027                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1028                        " isn't a defined register");
1029     // Check that the tied-def operand wasn't tied elsewhere.
1030     for (const auto &TiedPair : TiedRegisterPairs) {
1031       if (TiedPair.first == DefIdx)
1032         return error(Operands[I].Begin,
1033                      Twine("the tied-def operand #") + Twine(DefIdx) +
1034                          " is already tied with another register operand");
1035     }
1036     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1037   }
1038   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1039   // indices must be less than tied max.
1040   for (const auto &TiedPair : TiedRegisterPairs)
1041     MI.tieOperands(TiedPair.first, TiedPair.second);
1042   return false;
1043 }
1044 
1045 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1046                                     Optional<unsigned> &TiedDefIdx,
1047                                     bool IsDef) {
1048   unsigned Flags = IsDef ? RegState::Define : 0;
1049   while (Token.isRegisterFlag()) {
1050     if (parseRegisterFlag(Flags))
1051       return true;
1052   }
1053   if (!Token.isRegister())
1054     return error("expected a register after register flags");
1055   unsigned Reg;
1056   VRegInfo *RegInfo;
1057   if (parseRegister(Reg, RegInfo))
1058     return true;
1059   lex();
1060   unsigned SubReg = 0;
1061   if (Token.is(MIToken::dot)) {
1062     if (parseSubRegisterIndex(SubReg))
1063       return true;
1064     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1065       return error("subregister index expects a virtual register");
1066   }
1067   if (Token.is(MIToken::colon)) {
1068     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1069       return error("register class specification expects a virtual register");
1070     lex();
1071     if (parseRegisterClassOrBank(*RegInfo))
1072         return true;
1073   }
1074   MachineRegisterInfo &MRI = MF.getRegInfo();
1075   if ((Flags & RegState::Define) == 0) {
1076     if (consumeIfPresent(MIToken::lparen)) {
1077       unsigned Idx;
1078       if (!parseRegisterTiedDefIndex(Idx))
1079         TiedDefIdx = Idx;
1080       else {
1081         // Try a redundant low-level type.
1082         LLT Ty;
1083         if (parseLowLevelType(Token.location(), Ty))
1084           return error("expected tied-def or low-level type after '('");
1085 
1086         if (expectAndConsume(MIToken::rparen))
1087           return true;
1088 
1089         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1090           return error("inconsistent type for generic virtual register");
1091 
1092         MRI.setType(Reg, Ty);
1093       }
1094     }
1095   } else if (consumeIfPresent(MIToken::lparen)) {
1096     // Virtual registers may have a tpe with GlobalISel.
1097     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1098       return error("unexpected type on physical register");
1099 
1100     LLT Ty;
1101     if (parseLowLevelType(Token.location(), Ty))
1102       return true;
1103 
1104     if (expectAndConsume(MIToken::rparen))
1105       return true;
1106 
1107     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1108       return error("inconsistent type for generic virtual register");
1109 
1110     MRI.setType(Reg, Ty);
1111   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1112     // Generic virtual registers must have a type.
1113     // If we end up here this means the type hasn't been specified and
1114     // this is bad!
1115     if (RegInfo->Kind == VRegInfo::GENERIC ||
1116         RegInfo->Kind == VRegInfo::REGBANK)
1117       return error("generic virtual registers must have a type");
1118   }
1119   Dest = MachineOperand::CreateReg(
1120       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1121       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1122       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1123       Flags & RegState::InternalRead);
1124   return false;
1125 }
1126 
1127 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1128   assert(Token.is(MIToken::IntegerLiteral));
1129   const APSInt &Int = Token.integerValue();
1130   if (Int.getMinSignedBits() > 64)
1131     return error("integer literal is too large to be an immediate operand");
1132   Dest = MachineOperand::CreateImm(Int.getExtValue());
1133   lex();
1134   return false;
1135 }
1136 
1137 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1138                                const Constant *&C) {
1139   auto Source = StringValue.str(); // The source has to be null terminated.
1140   SMDiagnostic Err;
1141   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1142                          &PFS.IRSlots);
1143   if (!C)
1144     return error(Loc + Err.getColumnNo(), Err.getMessage());
1145   return false;
1146 }
1147 
1148 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1149   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1150     return true;
1151   lex();
1152   return false;
1153 }
1154 
1155 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1156   if (Token.is(MIToken::ScalarType)) {
1157     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1158     lex();
1159     return false;
1160   } else if (Token.is(MIToken::PointerType)) {
1161     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1162     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1163     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1164     lex();
1165     return false;
1166   }
1167 
1168   // Now we're looking for a vector.
1169   if (Token.isNot(MIToken::less))
1170     return error(Loc,
1171                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1172 
1173   lex();
1174 
1175   if (Token.isNot(MIToken::IntegerLiteral))
1176     return error(Loc, "expected <N x sM> for vctor type");
1177   uint64_t NumElements = Token.integerValue().getZExtValue();
1178   lex();
1179 
1180   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1181     return error(Loc, "expected '<N x sM>' for vector type");
1182   lex();
1183 
1184   if (Token.isNot(MIToken::ScalarType))
1185     return error(Loc, "expected '<N x sM>' for vector type");
1186   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1187   lex();
1188 
1189   if (Token.isNot(MIToken::greater))
1190     return error(Loc, "expected '<N x sM>' for vector type");
1191   lex();
1192 
1193   Ty = LLT::vector(NumElements, ScalarSize);
1194   return false;
1195 }
1196 
1197 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1198   assert(Token.is(MIToken::IntegerType));
1199   auto Loc = Token.location();
1200   lex();
1201   if (Token.isNot(MIToken::IntegerLiteral))
1202     return error("expected an integer literal");
1203   const Constant *C = nullptr;
1204   if (parseIRConstant(Loc, C))
1205     return true;
1206   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1207   return false;
1208 }
1209 
1210 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1211   auto Loc = Token.location();
1212   lex();
1213   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1214       Token.isNot(MIToken::HexLiteral))
1215     return error("expected a floating point literal");
1216   const Constant *C = nullptr;
1217   if (parseIRConstant(Loc, C))
1218     return true;
1219   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1220   return false;
1221 }
1222 
1223 bool MIParser::getUnsigned(unsigned &Result) {
1224   if (Token.hasIntegerValue()) {
1225     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1226     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1227     if (Val64 == Limit)
1228       return error("expected 32-bit integer (too large)");
1229     Result = Val64;
1230     return false;
1231   }
1232   if (Token.is(MIToken::HexLiteral)) {
1233     APInt A;
1234     if (getHexUint(A))
1235       return true;
1236     if (A.getBitWidth() > 32)
1237       return error("expected 32-bit integer (too large)");
1238     Result = A.getZExtValue();
1239     return false;
1240   }
1241   return true;
1242 }
1243 
1244 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1245   assert(Token.is(MIToken::MachineBasicBlock) ||
1246          Token.is(MIToken::MachineBasicBlockLabel));
1247   unsigned Number;
1248   if (getUnsigned(Number))
1249     return true;
1250   auto MBBInfo = PFS.MBBSlots.find(Number);
1251   if (MBBInfo == PFS.MBBSlots.end())
1252     return error(Twine("use of undefined machine basic block #") +
1253                  Twine(Number));
1254   MBB = MBBInfo->second;
1255   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1256     return error(Twine("the name of machine basic block #") + Twine(Number) +
1257                  " isn't '" + Token.stringValue() + "'");
1258   return false;
1259 }
1260 
1261 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1262   MachineBasicBlock *MBB;
1263   if (parseMBBReference(MBB))
1264     return true;
1265   Dest = MachineOperand::CreateMBB(MBB);
1266   lex();
1267   return false;
1268 }
1269 
1270 bool MIParser::parseStackFrameIndex(int &FI) {
1271   assert(Token.is(MIToken::StackObject));
1272   unsigned ID;
1273   if (getUnsigned(ID))
1274     return true;
1275   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1276   if (ObjectInfo == PFS.StackObjectSlots.end())
1277     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1278                  "'");
1279   StringRef Name;
1280   if (const auto *Alloca =
1281           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1282     Name = Alloca->getName();
1283   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1284     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1285                  "' isn't '" + Token.stringValue() + "'");
1286   lex();
1287   FI = ObjectInfo->second;
1288   return false;
1289 }
1290 
1291 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1292   int FI;
1293   if (parseStackFrameIndex(FI))
1294     return true;
1295   Dest = MachineOperand::CreateFI(FI);
1296   return false;
1297 }
1298 
1299 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1300   assert(Token.is(MIToken::FixedStackObject));
1301   unsigned ID;
1302   if (getUnsigned(ID))
1303     return true;
1304   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1305   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1306     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1307                  Twine(ID) + "'");
1308   lex();
1309   FI = ObjectInfo->second;
1310   return false;
1311 }
1312 
1313 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1314   int FI;
1315   if (parseFixedStackFrameIndex(FI))
1316     return true;
1317   Dest = MachineOperand::CreateFI(FI);
1318   return false;
1319 }
1320 
1321 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1322   switch (Token.kind()) {
1323   case MIToken::NamedGlobalValue: {
1324     const Module *M = MF.getFunction()->getParent();
1325     GV = M->getNamedValue(Token.stringValue());
1326     if (!GV)
1327       return error(Twine("use of undefined global value '") + Token.range() +
1328                    "'");
1329     break;
1330   }
1331   case MIToken::GlobalValue: {
1332     unsigned GVIdx;
1333     if (getUnsigned(GVIdx))
1334       return true;
1335     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1336       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1337                    "'");
1338     GV = PFS.IRSlots.GlobalValues[GVIdx];
1339     break;
1340   }
1341   default:
1342     llvm_unreachable("The current token should be a global value");
1343   }
1344   return false;
1345 }
1346 
1347 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1348   GlobalValue *GV = nullptr;
1349   if (parseGlobalValue(GV))
1350     return true;
1351   lex();
1352   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1353   if (parseOperandsOffset(Dest))
1354     return true;
1355   return false;
1356 }
1357 
1358 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1359   assert(Token.is(MIToken::ConstantPoolItem));
1360   unsigned ID;
1361   if (getUnsigned(ID))
1362     return true;
1363   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1364   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1365     return error("use of undefined constant '%const." + Twine(ID) + "'");
1366   lex();
1367   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1368   if (parseOperandsOffset(Dest))
1369     return true;
1370   return false;
1371 }
1372 
1373 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1374   assert(Token.is(MIToken::JumpTableIndex));
1375   unsigned ID;
1376   if (getUnsigned(ID))
1377     return true;
1378   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1379   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1380     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1381   lex();
1382   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1383   return false;
1384 }
1385 
1386 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1387   assert(Token.is(MIToken::ExternalSymbol));
1388   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1389   lex();
1390   Dest = MachineOperand::CreateES(Symbol);
1391   if (parseOperandsOffset(Dest))
1392     return true;
1393   return false;
1394 }
1395 
1396 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1397   assert(Token.is(MIToken::SubRegisterIndex));
1398   StringRef Name = Token.stringValue();
1399   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1400   if (SubRegIndex == 0)
1401     return error(Twine("unknown subregister index '") + Name + "'");
1402   lex();
1403   Dest = MachineOperand::CreateImm(SubRegIndex);
1404   return false;
1405 }
1406 
1407 bool MIParser::parseMDNode(MDNode *&Node) {
1408   assert(Token.is(MIToken::exclaim));
1409   auto Loc = Token.location();
1410   lex();
1411   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1412     return error("expected metadata id after '!'");
1413   unsigned ID;
1414   if (getUnsigned(ID))
1415     return true;
1416   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1417   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1418     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1419   lex();
1420   Node = NodeInfo->second.get();
1421   return false;
1422 }
1423 
1424 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1425   MDNode *Node = nullptr;
1426   if (parseMDNode(Node))
1427     return true;
1428   Dest = MachineOperand::CreateMetadata(Node);
1429   return false;
1430 }
1431 
1432 bool MIParser::parseCFIOffset(int &Offset) {
1433   if (Token.isNot(MIToken::IntegerLiteral))
1434     return error("expected a cfi offset");
1435   if (Token.integerValue().getMinSignedBits() > 32)
1436     return error("expected a 32 bit integer (the cfi offset is too large)");
1437   Offset = (int)Token.integerValue().getExtValue();
1438   lex();
1439   return false;
1440 }
1441 
1442 bool MIParser::parseCFIRegister(unsigned &Reg) {
1443   if (Token.isNot(MIToken::NamedRegister))
1444     return error("expected a cfi register");
1445   unsigned LLVMReg;
1446   if (parseNamedRegister(LLVMReg))
1447     return true;
1448   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1449   assert(TRI && "Expected target register info");
1450   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1451   if (DwarfReg < 0)
1452     return error("invalid DWARF register");
1453   Reg = (unsigned)DwarfReg;
1454   lex();
1455   return false;
1456 }
1457 
1458 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1459   auto Kind = Token.kind();
1460   lex();
1461   int Offset;
1462   unsigned Reg;
1463   unsigned CFIIndex;
1464   switch (Kind) {
1465   case MIToken::kw_cfi_same_value:
1466     if (parseCFIRegister(Reg))
1467       return true;
1468     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1469     break;
1470   case MIToken::kw_cfi_offset:
1471     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1472         parseCFIOffset(Offset))
1473       return true;
1474     CFIIndex =
1475         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1476     break;
1477   case MIToken::kw_cfi_def_cfa_register:
1478     if (parseCFIRegister(Reg))
1479       return true;
1480     CFIIndex =
1481         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1482     break;
1483   case MIToken::kw_cfi_def_cfa_offset:
1484     if (parseCFIOffset(Offset))
1485       return true;
1486     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1487     CFIIndex = MF.addFrameInst(
1488         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1489     break;
1490   case MIToken::kw_cfi_def_cfa:
1491     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1492         parseCFIOffset(Offset))
1493       return true;
1494     // NB: MCCFIInstruction::createDefCfa negates the offset.
1495     CFIIndex =
1496         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1497     break;
1498   default:
1499     // TODO: Parse the other CFI operands.
1500     llvm_unreachable("The current token should be a cfi operand");
1501   }
1502   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1503   return false;
1504 }
1505 
1506 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1507   switch (Token.kind()) {
1508   case MIToken::NamedIRBlock: {
1509     BB = dyn_cast_or_null<BasicBlock>(
1510         F.getValueSymbolTable()->lookup(Token.stringValue()));
1511     if (!BB)
1512       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1513     break;
1514   }
1515   case MIToken::IRBlock: {
1516     unsigned SlotNumber = 0;
1517     if (getUnsigned(SlotNumber))
1518       return true;
1519     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1520     if (!BB)
1521       return error(Twine("use of undefined IR block '%ir-block.") +
1522                    Twine(SlotNumber) + "'");
1523     break;
1524   }
1525   default:
1526     llvm_unreachable("The current token should be an IR block reference");
1527   }
1528   return false;
1529 }
1530 
1531 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1532   assert(Token.is(MIToken::kw_blockaddress));
1533   lex();
1534   if (expectAndConsume(MIToken::lparen))
1535     return true;
1536   if (Token.isNot(MIToken::GlobalValue) &&
1537       Token.isNot(MIToken::NamedGlobalValue))
1538     return error("expected a global value");
1539   GlobalValue *GV = nullptr;
1540   if (parseGlobalValue(GV))
1541     return true;
1542   auto *F = dyn_cast<Function>(GV);
1543   if (!F)
1544     return error("expected an IR function reference");
1545   lex();
1546   if (expectAndConsume(MIToken::comma))
1547     return true;
1548   BasicBlock *BB = nullptr;
1549   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1550     return error("expected an IR block reference");
1551   if (parseIRBlock(BB, *F))
1552     return true;
1553   lex();
1554   if (expectAndConsume(MIToken::rparen))
1555     return true;
1556   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1557   if (parseOperandsOffset(Dest))
1558     return true;
1559   return false;
1560 }
1561 
1562 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1563   assert(Token.is(MIToken::kw_intrinsic));
1564   lex();
1565   if (expectAndConsume(MIToken::lparen))
1566     return error("expected syntax intrinsic(@llvm.whatever)");
1567 
1568   if (Token.isNot(MIToken::NamedGlobalValue))
1569     return error("expected syntax intrinsic(@llvm.whatever)");
1570 
1571   std::string Name = Token.stringValue();
1572   lex();
1573 
1574   if (expectAndConsume(MIToken::rparen))
1575     return error("expected ')' to terminate intrinsic name");
1576 
1577   // Find out what intrinsic we're dealing with, first try the global namespace
1578   // and then the target's private intrinsics if that fails.
1579   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1580   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1581   if (ID == Intrinsic::not_intrinsic && TII)
1582     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1583 
1584   if (ID == Intrinsic::not_intrinsic)
1585     return error("unknown intrinsic name");
1586   Dest = MachineOperand::CreateIntrinsicID(ID);
1587 
1588   return false;
1589 }
1590 
1591 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1592   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1593   bool IsFloat = Token.is(MIToken::kw_floatpred);
1594   lex();
1595 
1596   if (expectAndConsume(MIToken::lparen))
1597     return error("expected syntax intpred(whatever) or floatpred(whatever");
1598 
1599   if (Token.isNot(MIToken::Identifier))
1600     return error("whatever");
1601 
1602   CmpInst::Predicate Pred;
1603   if (IsFloat) {
1604     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1605                .Case("false", CmpInst::FCMP_FALSE)
1606                .Case("oeq", CmpInst::FCMP_OEQ)
1607                .Case("ogt", CmpInst::FCMP_OGT)
1608                .Case("oge", CmpInst::FCMP_OGE)
1609                .Case("olt", CmpInst::FCMP_OLT)
1610                .Case("ole", CmpInst::FCMP_OLE)
1611                .Case("one", CmpInst::FCMP_ONE)
1612                .Case("ord", CmpInst::FCMP_ORD)
1613                .Case("uno", CmpInst::FCMP_UNO)
1614                .Case("ueq", CmpInst::FCMP_UEQ)
1615                .Case("ugt", CmpInst::FCMP_UGT)
1616                .Case("uge", CmpInst::FCMP_UGE)
1617                .Case("ult", CmpInst::FCMP_ULT)
1618                .Case("ule", CmpInst::FCMP_ULE)
1619                .Case("une", CmpInst::FCMP_UNE)
1620                .Case("true", CmpInst::FCMP_TRUE)
1621                .Default(CmpInst::BAD_FCMP_PREDICATE);
1622     if (!CmpInst::isFPPredicate(Pred))
1623       return error("invalid floating-point predicate");
1624   } else {
1625     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1626                .Case("eq", CmpInst::ICMP_EQ)
1627                .Case("ne", CmpInst::ICMP_NE)
1628                .Case("sgt", CmpInst::ICMP_SGT)
1629                .Case("sge", CmpInst::ICMP_SGE)
1630                .Case("slt", CmpInst::ICMP_SLT)
1631                .Case("sle", CmpInst::ICMP_SLE)
1632                .Case("ugt", CmpInst::ICMP_UGT)
1633                .Case("uge", CmpInst::ICMP_UGE)
1634                .Case("ult", CmpInst::ICMP_ULT)
1635                .Case("ule", CmpInst::ICMP_ULE)
1636                .Default(CmpInst::BAD_ICMP_PREDICATE);
1637     if (!CmpInst::isIntPredicate(Pred))
1638       return error("invalid integer predicate");
1639   }
1640 
1641   lex();
1642   Dest = MachineOperand::CreatePredicate(Pred);
1643   if (expectAndConsume(MIToken::rparen))
1644     return error("predicate should be terminated by ')'.");
1645 
1646   return false;
1647 }
1648 
1649 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1650   assert(Token.is(MIToken::kw_target_index));
1651   lex();
1652   if (expectAndConsume(MIToken::lparen))
1653     return true;
1654   if (Token.isNot(MIToken::Identifier))
1655     return error("expected the name of the target index");
1656   int Index = 0;
1657   if (getTargetIndex(Token.stringValue(), Index))
1658     return error("use of undefined target index '" + Token.stringValue() + "'");
1659   lex();
1660   if (expectAndConsume(MIToken::rparen))
1661     return true;
1662   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1663   if (parseOperandsOffset(Dest))
1664     return true;
1665   return false;
1666 }
1667 
1668 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1669   assert(Token.is(MIToken::kw_liveout));
1670   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1671   assert(TRI && "Expected target register info");
1672   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1673   lex();
1674   if (expectAndConsume(MIToken::lparen))
1675     return true;
1676   while (true) {
1677     if (Token.isNot(MIToken::NamedRegister))
1678       return error("expected a named register");
1679     unsigned Reg;
1680     if (parseNamedRegister(Reg))
1681       return true;
1682     lex();
1683     Mask[Reg / 32] |= 1U << (Reg % 32);
1684     // TODO: Report an error if the same register is used more than once.
1685     if (Token.isNot(MIToken::comma))
1686       break;
1687     lex();
1688   }
1689   if (expectAndConsume(MIToken::rparen))
1690     return true;
1691   Dest = MachineOperand::CreateRegLiveOut(Mask);
1692   return false;
1693 }
1694 
1695 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1696                                    Optional<unsigned> &TiedDefIdx) {
1697   switch (Token.kind()) {
1698   case MIToken::kw_implicit:
1699   case MIToken::kw_implicit_define:
1700   case MIToken::kw_def:
1701   case MIToken::kw_dead:
1702   case MIToken::kw_killed:
1703   case MIToken::kw_undef:
1704   case MIToken::kw_internal:
1705   case MIToken::kw_early_clobber:
1706   case MIToken::kw_debug_use:
1707   case MIToken::underscore:
1708   case MIToken::NamedRegister:
1709   case MIToken::VirtualRegister:
1710     return parseRegisterOperand(Dest, TiedDefIdx);
1711   case MIToken::IntegerLiteral:
1712     return parseImmediateOperand(Dest);
1713   case MIToken::IntegerType:
1714     return parseTypedImmediateOperand(Dest);
1715   case MIToken::kw_half:
1716   case MIToken::kw_float:
1717   case MIToken::kw_double:
1718   case MIToken::kw_x86_fp80:
1719   case MIToken::kw_fp128:
1720   case MIToken::kw_ppc_fp128:
1721     return parseFPImmediateOperand(Dest);
1722   case MIToken::MachineBasicBlock:
1723     return parseMBBOperand(Dest);
1724   case MIToken::StackObject:
1725     return parseStackObjectOperand(Dest);
1726   case MIToken::FixedStackObject:
1727     return parseFixedStackObjectOperand(Dest);
1728   case MIToken::GlobalValue:
1729   case MIToken::NamedGlobalValue:
1730     return parseGlobalAddressOperand(Dest);
1731   case MIToken::ConstantPoolItem:
1732     return parseConstantPoolIndexOperand(Dest);
1733   case MIToken::JumpTableIndex:
1734     return parseJumpTableIndexOperand(Dest);
1735   case MIToken::ExternalSymbol:
1736     return parseExternalSymbolOperand(Dest);
1737   case MIToken::SubRegisterIndex:
1738     return parseSubRegisterIndexOperand(Dest);
1739   case MIToken::exclaim:
1740     return parseMetadataOperand(Dest);
1741   case MIToken::kw_cfi_same_value:
1742   case MIToken::kw_cfi_offset:
1743   case MIToken::kw_cfi_def_cfa_register:
1744   case MIToken::kw_cfi_def_cfa_offset:
1745   case MIToken::kw_cfi_def_cfa:
1746     return parseCFIOperand(Dest);
1747   case MIToken::kw_blockaddress:
1748     return parseBlockAddressOperand(Dest);
1749   case MIToken::kw_intrinsic:
1750     return parseIntrinsicOperand(Dest);
1751   case MIToken::kw_target_index:
1752     return parseTargetIndexOperand(Dest);
1753   case MIToken::kw_liveout:
1754     return parseLiveoutRegisterMaskOperand(Dest);
1755   case MIToken::kw_floatpred:
1756   case MIToken::kw_intpred:
1757     return parsePredicateOperand(Dest);
1758   case MIToken::Error:
1759     return true;
1760   case MIToken::Identifier:
1761     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1762       Dest = MachineOperand::CreateRegMask(RegMask);
1763       lex();
1764       break;
1765     }
1766     LLVM_FALLTHROUGH;
1767   default:
1768     // FIXME: Parse the MCSymbol machine operand.
1769     return error("expected a machine operand");
1770   }
1771   return false;
1772 }
1773 
1774 bool MIParser::parseMachineOperandAndTargetFlags(
1775     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1776   unsigned TF = 0;
1777   bool HasTargetFlags = false;
1778   if (Token.is(MIToken::kw_target_flags)) {
1779     HasTargetFlags = true;
1780     lex();
1781     if (expectAndConsume(MIToken::lparen))
1782       return true;
1783     if (Token.isNot(MIToken::Identifier))
1784       return error("expected the name of the target flag");
1785     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1786       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1787         return error("use of undefined target flag '" + Token.stringValue() +
1788                      "'");
1789     }
1790     lex();
1791     while (Token.is(MIToken::comma)) {
1792       lex();
1793       if (Token.isNot(MIToken::Identifier))
1794         return error("expected the name of the target flag");
1795       unsigned BitFlag = 0;
1796       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1797         return error("use of undefined target flag '" + Token.stringValue() +
1798                      "'");
1799       // TODO: Report an error when using a duplicate bit target flag.
1800       TF |= BitFlag;
1801       lex();
1802     }
1803     if (expectAndConsume(MIToken::rparen))
1804       return true;
1805   }
1806   auto Loc = Token.location();
1807   if (parseMachineOperand(Dest, TiedDefIdx))
1808     return true;
1809   if (!HasTargetFlags)
1810     return false;
1811   if (Dest.isReg())
1812     return error(Loc, "register operands can't have target flags");
1813   Dest.setTargetFlags(TF);
1814   return false;
1815 }
1816 
1817 bool MIParser::parseOffset(int64_t &Offset) {
1818   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1819     return false;
1820   StringRef Sign = Token.range();
1821   bool IsNegative = Token.is(MIToken::minus);
1822   lex();
1823   if (Token.isNot(MIToken::IntegerLiteral))
1824     return error("expected an integer literal after '" + Sign + "'");
1825   if (Token.integerValue().getMinSignedBits() > 64)
1826     return error("expected 64-bit integer (too large)");
1827   Offset = Token.integerValue().getExtValue();
1828   if (IsNegative)
1829     Offset = -Offset;
1830   lex();
1831   return false;
1832 }
1833 
1834 bool MIParser::parseAlignment(unsigned &Alignment) {
1835   assert(Token.is(MIToken::kw_align));
1836   lex();
1837   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1838     return error("expected an integer literal after 'align'");
1839   if (getUnsigned(Alignment))
1840     return true;
1841   lex();
1842   return false;
1843 }
1844 
1845 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1846   int64_t Offset = 0;
1847   if (parseOffset(Offset))
1848     return true;
1849   Op.setOffset(Offset);
1850   return false;
1851 }
1852 
1853 bool MIParser::parseIRValue(const Value *&V) {
1854   switch (Token.kind()) {
1855   case MIToken::NamedIRValue: {
1856     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1857     break;
1858   }
1859   case MIToken::IRValue: {
1860     unsigned SlotNumber = 0;
1861     if (getUnsigned(SlotNumber))
1862       return true;
1863     V = getIRValue(SlotNumber);
1864     break;
1865   }
1866   case MIToken::NamedGlobalValue:
1867   case MIToken::GlobalValue: {
1868     GlobalValue *GV = nullptr;
1869     if (parseGlobalValue(GV))
1870       return true;
1871     V = GV;
1872     break;
1873   }
1874   case MIToken::QuotedIRValue: {
1875     const Constant *C = nullptr;
1876     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1877       return true;
1878     V = C;
1879     break;
1880   }
1881   default:
1882     llvm_unreachable("The current token should be an IR block reference");
1883   }
1884   if (!V)
1885     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1886   return false;
1887 }
1888 
1889 bool MIParser::getUint64(uint64_t &Result) {
1890   if (Token.hasIntegerValue()) {
1891     if (Token.integerValue().getActiveBits() > 64)
1892       return error("expected 64-bit integer (too large)");
1893     Result = Token.integerValue().getZExtValue();
1894     return false;
1895   }
1896   if (Token.is(MIToken::HexLiteral)) {
1897     APInt A;
1898     if (getHexUint(A))
1899       return true;
1900     if (A.getBitWidth() > 64)
1901       return error("expected 64-bit integer (too large)");
1902     Result = A.getZExtValue();
1903     return false;
1904   }
1905   return true;
1906 }
1907 
1908 bool MIParser::getHexUint(APInt &Result) {
1909   assert(Token.is(MIToken::HexLiteral));
1910   StringRef S = Token.range();
1911   assert(S[0] == '0' && tolower(S[1]) == 'x');
1912   // This could be a floating point literal with a special prefix.
1913   if (!isxdigit(S[2]))
1914     return true;
1915   StringRef V = S.substr(2);
1916   APInt A(V.size()*4, V, 16);
1917   Result = APInt(A.getActiveBits(),
1918                  ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1919   return false;
1920 }
1921 
1922 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1923   const auto OldFlags = Flags;
1924   switch (Token.kind()) {
1925   case MIToken::kw_volatile:
1926     Flags |= MachineMemOperand::MOVolatile;
1927     break;
1928   case MIToken::kw_non_temporal:
1929     Flags |= MachineMemOperand::MONonTemporal;
1930     break;
1931   case MIToken::kw_dereferenceable:
1932     Flags |= MachineMemOperand::MODereferenceable;
1933     break;
1934   case MIToken::kw_invariant:
1935     Flags |= MachineMemOperand::MOInvariant;
1936     break;
1937   // TODO: parse the target specific memory operand flags.
1938   default:
1939     llvm_unreachable("The current token should be a memory operand flag");
1940   }
1941   if (OldFlags == Flags)
1942     // We know that the same flag is specified more than once when the flags
1943     // weren't modified.
1944     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1945   lex();
1946   return false;
1947 }
1948 
1949 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1950   switch (Token.kind()) {
1951   case MIToken::kw_stack:
1952     PSV = MF.getPSVManager().getStack();
1953     break;
1954   case MIToken::kw_got:
1955     PSV = MF.getPSVManager().getGOT();
1956     break;
1957   case MIToken::kw_jump_table:
1958     PSV = MF.getPSVManager().getJumpTable();
1959     break;
1960   case MIToken::kw_constant_pool:
1961     PSV = MF.getPSVManager().getConstantPool();
1962     break;
1963   case MIToken::FixedStackObject: {
1964     int FI;
1965     if (parseFixedStackFrameIndex(FI))
1966       return true;
1967     PSV = MF.getPSVManager().getFixedStack(FI);
1968     // The token was already consumed, so use return here instead of break.
1969     return false;
1970   }
1971   case MIToken::StackObject: {
1972     int FI;
1973     if (parseStackFrameIndex(FI))
1974       return true;
1975     PSV = MF.getPSVManager().getFixedStack(FI);
1976     // The token was already consumed, so use return here instead of break.
1977     return false;
1978   }
1979   case MIToken::kw_call_entry: {
1980     lex();
1981     switch (Token.kind()) {
1982     case MIToken::GlobalValue:
1983     case MIToken::NamedGlobalValue: {
1984       GlobalValue *GV = nullptr;
1985       if (parseGlobalValue(GV))
1986         return true;
1987       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1988       break;
1989     }
1990     case MIToken::ExternalSymbol:
1991       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1992           MF.createExternalSymbolName(Token.stringValue()));
1993       break;
1994     default:
1995       return error(
1996           "expected a global value or an external symbol after 'call-entry'");
1997     }
1998     break;
1999   }
2000   default:
2001     llvm_unreachable("The current token should be pseudo source value");
2002   }
2003   lex();
2004   return false;
2005 }
2006 
2007 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2008   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2009       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2010       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2011       Token.is(MIToken::kw_call_entry)) {
2012     const PseudoSourceValue *PSV = nullptr;
2013     if (parseMemoryPseudoSourceValue(PSV))
2014       return true;
2015     int64_t Offset = 0;
2016     if (parseOffset(Offset))
2017       return true;
2018     Dest = MachinePointerInfo(PSV, Offset);
2019     return false;
2020   }
2021   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2022       Token.isNot(MIToken::GlobalValue) &&
2023       Token.isNot(MIToken::NamedGlobalValue) &&
2024       Token.isNot(MIToken::QuotedIRValue))
2025     return error("expected an IR value reference");
2026   const Value *V = nullptr;
2027   if (parseIRValue(V))
2028     return true;
2029   if (!V->getType()->isPointerTy())
2030     return error("expected a pointer IR value");
2031   lex();
2032   int64_t Offset = 0;
2033   if (parseOffset(Offset))
2034     return true;
2035   Dest = MachinePointerInfo(V, Offset);
2036   return false;
2037 }
2038 
2039 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2040   if (expectAndConsume(MIToken::lparen))
2041     return true;
2042   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2043   while (Token.isMemoryOperandFlag()) {
2044     if (parseMemoryOperandFlag(Flags))
2045       return true;
2046   }
2047   if (Token.isNot(MIToken::Identifier) ||
2048       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2049     return error("expected 'load' or 'store' memory operation");
2050   if (Token.stringValue() == "load")
2051     Flags |= MachineMemOperand::MOLoad;
2052   else
2053     Flags |= MachineMemOperand::MOStore;
2054   lex();
2055 
2056   if (Token.isNot(MIToken::IntegerLiteral))
2057     return error("expected the size integer literal after memory operation");
2058   uint64_t Size;
2059   if (getUint64(Size))
2060     return true;
2061   lex();
2062 
2063   MachinePointerInfo Ptr = MachinePointerInfo();
2064   if (Token.is(MIToken::Identifier)) {
2065     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
2066     if (Token.stringValue() != Word)
2067       return error(Twine("expected '") + Word + "'");
2068     lex();
2069 
2070     if (parseMachinePointerInfo(Ptr))
2071       return true;
2072   }
2073   unsigned BaseAlignment = Size;
2074   AAMDNodes AAInfo;
2075   MDNode *Range = nullptr;
2076   while (consumeIfPresent(MIToken::comma)) {
2077     switch (Token.kind()) {
2078     case MIToken::kw_align:
2079       if (parseAlignment(BaseAlignment))
2080         return true;
2081       break;
2082     case MIToken::md_tbaa:
2083       lex();
2084       if (parseMDNode(AAInfo.TBAA))
2085         return true;
2086       break;
2087     case MIToken::md_alias_scope:
2088       lex();
2089       if (parseMDNode(AAInfo.Scope))
2090         return true;
2091       break;
2092     case MIToken::md_noalias:
2093       lex();
2094       if (parseMDNode(AAInfo.NoAlias))
2095         return true;
2096       break;
2097     case MIToken::md_range:
2098       lex();
2099       if (parseMDNode(Range))
2100         return true;
2101       break;
2102     // TODO: Report an error on duplicate metadata nodes.
2103     default:
2104       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2105                    "'!noalias' or '!range'");
2106     }
2107   }
2108   if (expectAndConsume(MIToken::rparen))
2109     return true;
2110   Dest =
2111       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
2112   return false;
2113 }
2114 
2115 void MIParser::initNames2InstrOpCodes() {
2116   if (!Names2InstrOpCodes.empty())
2117     return;
2118   const auto *TII = MF.getSubtarget().getInstrInfo();
2119   assert(TII && "Expected target instruction info");
2120   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2121     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2122 }
2123 
2124 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2125   initNames2InstrOpCodes();
2126   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2127   if (InstrInfo == Names2InstrOpCodes.end())
2128     return true;
2129   OpCode = InstrInfo->getValue();
2130   return false;
2131 }
2132 
2133 void MIParser::initNames2Regs() {
2134   if (!Names2Regs.empty())
2135     return;
2136   // The '%noreg' register is the register 0.
2137   Names2Regs.insert(std::make_pair("noreg", 0));
2138   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2139   assert(TRI && "Expected target register info");
2140   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2141     bool WasInserted =
2142         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2143             .second;
2144     (void)WasInserted;
2145     assert(WasInserted && "Expected registers to be unique case-insensitively");
2146   }
2147 }
2148 
2149 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2150   initNames2Regs();
2151   auto RegInfo = Names2Regs.find(RegName);
2152   if (RegInfo == Names2Regs.end())
2153     return true;
2154   Reg = RegInfo->getValue();
2155   return false;
2156 }
2157 
2158 void MIParser::initNames2RegMasks() {
2159   if (!Names2RegMasks.empty())
2160     return;
2161   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2162   assert(TRI && "Expected target register info");
2163   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2164   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2165   assert(RegMasks.size() == RegMaskNames.size());
2166   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2167     Names2RegMasks.insert(
2168         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2169 }
2170 
2171 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2172   initNames2RegMasks();
2173   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2174   if (RegMaskInfo == Names2RegMasks.end())
2175     return nullptr;
2176   return RegMaskInfo->getValue();
2177 }
2178 
2179 void MIParser::initNames2SubRegIndices() {
2180   if (!Names2SubRegIndices.empty())
2181     return;
2182   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2183   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2184     Names2SubRegIndices.insert(
2185         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2186 }
2187 
2188 unsigned MIParser::getSubRegIndex(StringRef Name) {
2189   initNames2SubRegIndices();
2190   auto SubRegInfo = Names2SubRegIndices.find(Name);
2191   if (SubRegInfo == Names2SubRegIndices.end())
2192     return 0;
2193   return SubRegInfo->getValue();
2194 }
2195 
2196 static void initSlots2BasicBlocks(
2197     const Function &F,
2198     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2199   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2200   MST.incorporateFunction(F);
2201   for (auto &BB : F) {
2202     if (BB.hasName())
2203       continue;
2204     int Slot = MST.getLocalSlot(&BB);
2205     if (Slot == -1)
2206       continue;
2207     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2208   }
2209 }
2210 
2211 static const BasicBlock *getIRBlockFromSlot(
2212     unsigned Slot,
2213     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2214   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2215   if (BlockInfo == Slots2BasicBlocks.end())
2216     return nullptr;
2217   return BlockInfo->second;
2218 }
2219 
2220 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2221   if (Slots2BasicBlocks.empty())
2222     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2223   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2224 }
2225 
2226 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2227   if (&F == MF.getFunction())
2228     return getIRBlock(Slot);
2229   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2230   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2231   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2232 }
2233 
2234 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2235                            DenseMap<unsigned, const Value *> &Slots2Values) {
2236   int Slot = MST.getLocalSlot(V);
2237   if (Slot == -1)
2238     return;
2239   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2240 }
2241 
2242 /// Creates the mapping from slot numbers to function's unnamed IR values.
2243 static void initSlots2Values(const Function &F,
2244                              DenseMap<unsigned, const Value *> &Slots2Values) {
2245   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2246   MST.incorporateFunction(F);
2247   for (const auto &Arg : F.args())
2248     mapValueToSlot(&Arg, MST, Slots2Values);
2249   for (const auto &BB : F) {
2250     mapValueToSlot(&BB, MST, Slots2Values);
2251     for (const auto &I : BB)
2252       mapValueToSlot(&I, MST, Slots2Values);
2253   }
2254 }
2255 
2256 const Value *MIParser::getIRValue(unsigned Slot) {
2257   if (Slots2Values.empty())
2258     initSlots2Values(*MF.getFunction(), Slots2Values);
2259   auto ValueInfo = Slots2Values.find(Slot);
2260   if (ValueInfo == Slots2Values.end())
2261     return nullptr;
2262   return ValueInfo->second;
2263 }
2264 
2265 void MIParser::initNames2TargetIndices() {
2266   if (!Names2TargetIndices.empty())
2267     return;
2268   const auto *TII = MF.getSubtarget().getInstrInfo();
2269   assert(TII && "Expected target instruction info");
2270   auto Indices = TII->getSerializableTargetIndices();
2271   for (const auto &I : Indices)
2272     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2273 }
2274 
2275 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2276   initNames2TargetIndices();
2277   auto IndexInfo = Names2TargetIndices.find(Name);
2278   if (IndexInfo == Names2TargetIndices.end())
2279     return true;
2280   Index = IndexInfo->second;
2281   return false;
2282 }
2283 
2284 void MIParser::initNames2DirectTargetFlags() {
2285   if (!Names2DirectTargetFlags.empty())
2286     return;
2287   const auto *TII = MF.getSubtarget().getInstrInfo();
2288   assert(TII && "Expected target instruction info");
2289   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2290   for (const auto &I : Flags)
2291     Names2DirectTargetFlags.insert(
2292         std::make_pair(StringRef(I.second), I.first));
2293 }
2294 
2295 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2296   initNames2DirectTargetFlags();
2297   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2298   if (FlagInfo == Names2DirectTargetFlags.end())
2299     return true;
2300   Flag = FlagInfo->second;
2301   return false;
2302 }
2303 
2304 void MIParser::initNames2BitmaskTargetFlags() {
2305   if (!Names2BitmaskTargetFlags.empty())
2306     return;
2307   const auto *TII = MF.getSubtarget().getInstrInfo();
2308   assert(TII && "Expected target instruction info");
2309   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2310   for (const auto &I : Flags)
2311     Names2BitmaskTargetFlags.insert(
2312         std::make_pair(StringRef(I.second), I.first));
2313 }
2314 
2315 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2316   initNames2BitmaskTargetFlags();
2317   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2318   if (FlagInfo == Names2BitmaskTargetFlags.end())
2319     return true;
2320   Flag = FlagInfo->second;
2321   return false;
2322 }
2323 
2324 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2325                                              StringRef Src,
2326                                              SMDiagnostic &Error) {
2327   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2328 }
2329 
2330 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2331                                     StringRef Src, SMDiagnostic &Error) {
2332   return MIParser(PFS, Error, Src).parseBasicBlocks();
2333 }
2334 
2335 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2336                              MachineBasicBlock *&MBB, StringRef Src,
2337                              SMDiagnostic &Error) {
2338   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2339 }
2340 
2341 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2342                                   unsigned &Reg, StringRef Src,
2343                                   SMDiagnostic &Error) {
2344   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2345 }
2346 
2347 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2348                                        unsigned &Reg, StringRef Src,
2349                                        SMDiagnostic &Error) {
2350   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2351 }
2352 
2353 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2354                                          VRegInfo *&Info, StringRef Src,
2355                                          SMDiagnostic &Error) {
2356   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2357 }
2358 
2359 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2360                                      int &FI, StringRef Src,
2361                                      SMDiagnostic &Error) {
2362   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2363 }
2364 
2365 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2366                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2367   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2368 }
2369