1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/AsmParser/Parser.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/SourceMgr.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 
37 using namespace llvm;
38 
39 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
40     SourceMgr &SM, const SlotMapping &IRSlots)
41   : MF(MF), SM(&SM), IRSlots(IRSlots) {
42 }
43 
44 namespace {
45 
46 /// A wrapper struct around the 'MachineOperand' struct that includes a source
47 /// range and other attributes.
48 struct ParsedMachineOperand {
49   MachineOperand Operand;
50   StringRef::iterator Begin;
51   StringRef::iterator End;
52   Optional<unsigned> TiedDefIdx;
53 
54   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
55                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
56       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
57     if (TiedDefIdx)
58       assert(Operand.isReg() && Operand.isUse() &&
59              "Only used register operands can be tied");
60   }
61 };
62 
63 class MIParser {
64   MachineFunction &MF;
65   SMDiagnostic &Error;
66   StringRef Source, CurrentSource;
67   MIToken Token;
68   const PerFunctionMIParsingState &PFS;
69   /// Maps from instruction names to op codes.
70   StringMap<unsigned> Names2InstrOpCodes;
71   /// Maps from register names to registers.
72   StringMap<unsigned> Names2Regs;
73   /// Maps from register mask names to register masks.
74   StringMap<const uint32_t *> Names2RegMasks;
75   /// Maps from subregister names to subregister indices.
76   StringMap<unsigned> Names2SubRegIndices;
77   /// Maps from slot numbers to function's unnamed basic blocks.
78   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
79   /// Maps from slot numbers to function's unnamed values.
80   DenseMap<unsigned, const Value *> Slots2Values;
81   /// Maps from target index names to target indices.
82   StringMap<int> Names2TargetIndices;
83   /// Maps from direct target flag names to the direct target flag values.
84   StringMap<unsigned> Names2DirectTargetFlags;
85   /// Maps from direct target flag names to the bitmask target flag values.
86   StringMap<unsigned> Names2BitmaskTargetFlags;
87 
88 public:
89   MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
90            StringRef Source);
91 
92   /// \p SkipChar gives the number of characters to skip before looking
93   /// for the next token.
94   void lex(unsigned SkipChar = 0);
95 
96   /// Report an error at the current location with the given message.
97   ///
98   /// This function always return true.
99   bool error(const Twine &Msg);
100 
101   /// Report an error at the given location with the given message.
102   ///
103   /// This function always return true.
104   bool error(StringRef::iterator Loc, const Twine &Msg);
105 
106   bool
107   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
108   bool parseBasicBlocks();
109   bool parse(MachineInstr *&MI);
110   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
111   bool parseStandaloneNamedRegister(unsigned &Reg);
112   bool parseStandaloneVirtualRegister(unsigned &Reg);
113   bool parseStandaloneStackObject(int &FI);
114   bool parseStandaloneMDNode(MDNode *&Node);
115 
116   bool
117   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
118   bool parseBasicBlock(MachineBasicBlock &MBB);
119   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
120   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
121 
122   bool parseRegister(unsigned &Reg);
123   bool parseRegisterFlag(unsigned &Flags);
124   bool parseSubRegisterIndex(unsigned &SubReg);
125   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
126   bool parseSize(unsigned &Size);
127   bool parseRegisterOperand(MachineOperand &Dest,
128                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
129   bool parseImmediateOperand(MachineOperand &Dest);
130   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
131                        const Constant *&C);
132   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
133   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty,
134                          bool MustBeSized = true);
135   bool parseTypedImmediateOperand(MachineOperand &Dest);
136   bool parseFPImmediateOperand(MachineOperand &Dest);
137   bool parseMBBReference(MachineBasicBlock *&MBB);
138   bool parseMBBOperand(MachineOperand &Dest);
139   bool parseStackFrameIndex(int &FI);
140   bool parseStackObjectOperand(MachineOperand &Dest);
141   bool parseFixedStackFrameIndex(int &FI);
142   bool parseFixedStackObjectOperand(MachineOperand &Dest);
143   bool parseGlobalValue(GlobalValue *&GV);
144   bool parseGlobalAddressOperand(MachineOperand &Dest);
145   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
146   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
147   bool parseJumpTableIndexOperand(MachineOperand &Dest);
148   bool parseExternalSymbolOperand(MachineOperand &Dest);
149   bool parseMDNode(MDNode *&Node);
150   bool parseMetadataOperand(MachineOperand &Dest);
151   bool parseCFIOffset(int &Offset);
152   bool parseCFIRegister(unsigned &Reg);
153   bool parseCFIOperand(MachineOperand &Dest);
154   bool parseIRBlock(BasicBlock *&BB, const Function &F);
155   bool parseBlockAddressOperand(MachineOperand &Dest);
156   bool parseTargetIndexOperand(MachineOperand &Dest);
157   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
158   bool parseMachineOperand(MachineOperand &Dest,
159                            Optional<unsigned> &TiedDefIdx);
160   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
161                                          Optional<unsigned> &TiedDefIdx);
162   bool parseOffset(int64_t &Offset);
163   bool parseAlignment(unsigned &Alignment);
164   bool parseOperandsOffset(MachineOperand &Op);
165   bool parseIRValue(const Value *&V);
166   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
167   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
168   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
169   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
170 
171 private:
172   /// Convert the integer literal in the current token into an unsigned integer.
173   ///
174   /// Return true if an error occurred.
175   bool getUnsigned(unsigned &Result);
176 
177   /// Convert the integer literal in the current token into an uint64.
178   ///
179   /// Return true if an error occurred.
180   bool getUint64(uint64_t &Result);
181 
182   /// If the current token is of the given kind, consume it and return false.
183   /// Otherwise report an error and return true.
184   bool expectAndConsume(MIToken::TokenKind TokenKind);
185 
186   /// If the current token is of the given kind, consume it and return true.
187   /// Otherwise return false.
188   bool consumeIfPresent(MIToken::TokenKind TokenKind);
189 
190   void initNames2InstrOpCodes();
191 
192   /// Try to convert an instruction name to an opcode. Return true if the
193   /// instruction name is invalid.
194   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
195 
196   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
197 
198   bool assignRegisterTies(MachineInstr &MI,
199                           ArrayRef<ParsedMachineOperand> Operands);
200 
201   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
202                               const MCInstrDesc &MCID);
203 
204   void initNames2Regs();
205 
206   /// Try to convert a register name to a register number. Return true if the
207   /// register name is invalid.
208   bool getRegisterByName(StringRef RegName, unsigned &Reg);
209 
210   void initNames2RegMasks();
211 
212   /// Check if the given identifier is a name of a register mask.
213   ///
214   /// Return null if the identifier isn't a register mask.
215   const uint32_t *getRegMask(StringRef Identifier);
216 
217   void initNames2SubRegIndices();
218 
219   /// Check if the given identifier is a name of a subregister index.
220   ///
221   /// Return 0 if the name isn't a subregister index class.
222   unsigned getSubRegIndex(StringRef Name);
223 
224   const BasicBlock *getIRBlock(unsigned Slot);
225   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
226 
227   const Value *getIRValue(unsigned Slot);
228 
229   void initNames2TargetIndices();
230 
231   /// Try to convert a name of target index to the corresponding target index.
232   ///
233   /// Return true if the name isn't a name of a target index.
234   bool getTargetIndex(StringRef Name, int &Index);
235 
236   void initNames2DirectTargetFlags();
237 
238   /// Try to convert a name of a direct target flag to the corresponding
239   /// target flag.
240   ///
241   /// Return true if the name isn't a name of a direct flag.
242   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
243 
244   void initNames2BitmaskTargetFlags();
245 
246   /// Try to convert a name of a bitmask target flag to the corresponding
247   /// target flag.
248   ///
249   /// Return true if the name isn't a name of a bitmask target flag.
250   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
251 };
252 
253 } // end anonymous namespace
254 
255 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
256                    StringRef Source)
257     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
258 {}
259 
260 void MIParser::lex(unsigned SkipChar) {
261   CurrentSource = lexMIToken(
262       CurrentSource.data() + SkipChar, Token,
263       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
264 }
265 
266 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
267 
268 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
269   const SourceMgr &SM = *PFS.SM;
270   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
271   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
272   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
273     // Create an ordinary diagnostic when the source manager's buffer is the
274     // source string.
275     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
276     return true;
277   }
278   // Create a diagnostic for a YAML string literal.
279   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
280                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
281                        Source, None, None);
282   return true;
283 }
284 
285 static const char *toString(MIToken::TokenKind TokenKind) {
286   switch (TokenKind) {
287   case MIToken::comma:
288     return "','";
289   case MIToken::equal:
290     return "'='";
291   case MIToken::colon:
292     return "':'";
293   case MIToken::lparen:
294     return "'('";
295   case MIToken::rparen:
296     return "')'";
297   default:
298     return "<unknown token>";
299   }
300 }
301 
302 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
303   if (Token.isNot(TokenKind))
304     return error(Twine("expected ") + toString(TokenKind));
305   lex();
306   return false;
307 }
308 
309 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
310   if (Token.isNot(TokenKind))
311     return false;
312   lex();
313   return true;
314 }
315 
316 bool MIParser::parseBasicBlockDefinition(
317     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
318   assert(Token.is(MIToken::MachineBasicBlockLabel));
319   unsigned ID = 0;
320   if (getUnsigned(ID))
321     return true;
322   auto Loc = Token.location();
323   auto Name = Token.stringValue();
324   lex();
325   bool HasAddressTaken = false;
326   bool IsLandingPad = false;
327   unsigned Alignment = 0;
328   BasicBlock *BB = nullptr;
329   if (consumeIfPresent(MIToken::lparen)) {
330     do {
331       // TODO: Report an error when multiple same attributes are specified.
332       switch (Token.kind()) {
333       case MIToken::kw_address_taken:
334         HasAddressTaken = true;
335         lex();
336         break;
337       case MIToken::kw_landing_pad:
338         IsLandingPad = true;
339         lex();
340         break;
341       case MIToken::kw_align:
342         if (parseAlignment(Alignment))
343           return true;
344         break;
345       case MIToken::IRBlock:
346         // TODO: Report an error when both name and ir block are specified.
347         if (parseIRBlock(BB, *MF.getFunction()))
348           return true;
349         lex();
350         break;
351       default:
352         break;
353       }
354     } while (consumeIfPresent(MIToken::comma));
355     if (expectAndConsume(MIToken::rparen))
356       return true;
357   }
358   if (expectAndConsume(MIToken::colon))
359     return true;
360 
361   if (!Name.empty()) {
362     BB = dyn_cast_or_null<BasicBlock>(
363         MF.getFunction()->getValueSymbolTable().lookup(Name));
364     if (!BB)
365       return error(Loc, Twine("basic block '") + Name +
366                             "' is not defined in the function '" +
367                             MF.getName() + "'");
368   }
369   auto *MBB = MF.CreateMachineBasicBlock(BB);
370   MF.insert(MF.end(), MBB);
371   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
372   if (!WasInserted)
373     return error(Loc, Twine("redefinition of machine basic block with id #") +
374                           Twine(ID));
375   if (Alignment)
376     MBB->setAlignment(Alignment);
377   if (HasAddressTaken)
378     MBB->setHasAddressTaken();
379   MBB->setIsEHPad(IsLandingPad);
380   return false;
381 }
382 
383 bool MIParser::parseBasicBlockDefinitions(
384     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
385   lex();
386   // Skip until the first machine basic block.
387   while (Token.is(MIToken::Newline))
388     lex();
389   if (Token.isErrorOrEOF())
390     return Token.isError();
391   if (Token.isNot(MIToken::MachineBasicBlockLabel))
392     return error("expected a basic block definition before instructions");
393   unsigned BraceDepth = 0;
394   do {
395     if (parseBasicBlockDefinition(MBBSlots))
396       return true;
397     bool IsAfterNewline = false;
398     // Skip until the next machine basic block.
399     while (true) {
400       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
401           Token.isErrorOrEOF())
402         break;
403       else if (Token.is(MIToken::MachineBasicBlockLabel))
404         return error("basic block definition should be located at the start of "
405                      "the line");
406       else if (consumeIfPresent(MIToken::Newline)) {
407         IsAfterNewline = true;
408         continue;
409       }
410       IsAfterNewline = false;
411       if (Token.is(MIToken::lbrace))
412         ++BraceDepth;
413       if (Token.is(MIToken::rbrace)) {
414         if (!BraceDepth)
415           return error("extraneous closing brace ('}')");
416         --BraceDepth;
417       }
418       lex();
419     }
420     // Verify that we closed all of the '{' at the end of a file or a block.
421     if (!Token.isError() && BraceDepth)
422       return error("expected '}'"); // FIXME: Report a note that shows '{'.
423   } while (!Token.isErrorOrEOF());
424   return Token.isError();
425 }
426 
427 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
428   assert(Token.is(MIToken::kw_liveins));
429   lex();
430   if (expectAndConsume(MIToken::colon))
431     return true;
432   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
433     return false;
434   do {
435     if (Token.isNot(MIToken::NamedRegister))
436       return error("expected a named register");
437     unsigned Reg = 0;
438     if (parseRegister(Reg))
439       return true;
440     MBB.addLiveIn(Reg);
441     lex();
442   } while (consumeIfPresent(MIToken::comma));
443   return false;
444 }
445 
446 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
447   assert(Token.is(MIToken::kw_successors));
448   lex();
449   if (expectAndConsume(MIToken::colon))
450     return true;
451   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
452     return false;
453   do {
454     if (Token.isNot(MIToken::MachineBasicBlock))
455       return error("expected a machine basic block reference");
456     MachineBasicBlock *SuccMBB = nullptr;
457     if (parseMBBReference(SuccMBB))
458       return true;
459     lex();
460     unsigned Weight = 0;
461     if (consumeIfPresent(MIToken::lparen)) {
462       if (Token.isNot(MIToken::IntegerLiteral))
463         return error("expected an integer literal after '('");
464       if (getUnsigned(Weight))
465         return true;
466       lex();
467       if (expectAndConsume(MIToken::rparen))
468         return true;
469     }
470     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
471   } while (consumeIfPresent(MIToken::comma));
472   MBB.normalizeSuccProbs();
473   return false;
474 }
475 
476 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
477   // Skip the definition.
478   assert(Token.is(MIToken::MachineBasicBlockLabel));
479   lex();
480   if (consumeIfPresent(MIToken::lparen)) {
481     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
482       lex();
483     consumeIfPresent(MIToken::rparen);
484   }
485   consumeIfPresent(MIToken::colon);
486 
487   // Parse the liveins and successors.
488   // N.B: Multiple lists of successors and liveins are allowed and they're
489   // merged into one.
490   // Example:
491   //   liveins: %edi
492   //   liveins: %esi
493   //
494   // is equivalent to
495   //   liveins: %edi, %esi
496   while (true) {
497     if (Token.is(MIToken::kw_successors)) {
498       if (parseBasicBlockSuccessors(MBB))
499         return true;
500     } else if (Token.is(MIToken::kw_liveins)) {
501       if (parseBasicBlockLiveins(MBB))
502         return true;
503     } else if (consumeIfPresent(MIToken::Newline)) {
504       continue;
505     } else
506       break;
507     if (!Token.isNewlineOrEOF())
508       return error("expected line break at the end of a list");
509     lex();
510   }
511 
512   // Parse the instructions.
513   bool IsInBundle = false;
514   MachineInstr *PrevMI = nullptr;
515   while (true) {
516     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
517       return false;
518     else if (consumeIfPresent(MIToken::Newline))
519       continue;
520     if (consumeIfPresent(MIToken::rbrace)) {
521       // The first parsing pass should verify that all closing '}' have an
522       // opening '{'.
523       assert(IsInBundle);
524       IsInBundle = false;
525       continue;
526     }
527     MachineInstr *MI = nullptr;
528     if (parse(MI))
529       return true;
530     MBB.insert(MBB.end(), MI);
531     if (IsInBundle) {
532       PrevMI->setFlag(MachineInstr::BundledSucc);
533       MI->setFlag(MachineInstr::BundledPred);
534     }
535     PrevMI = MI;
536     if (Token.is(MIToken::lbrace)) {
537       if (IsInBundle)
538         return error("nested instruction bundles are not allowed");
539       lex();
540       // This instruction is the start of the bundle.
541       MI->setFlag(MachineInstr::BundledSucc);
542       IsInBundle = true;
543       if (!Token.is(MIToken::Newline))
544         // The next instruction can be on the same line.
545         continue;
546     }
547     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
548     lex();
549   }
550   return false;
551 }
552 
553 bool MIParser::parseBasicBlocks() {
554   lex();
555   // Skip until the first machine basic block.
556   while (Token.is(MIToken::Newline))
557     lex();
558   if (Token.isErrorOrEOF())
559     return Token.isError();
560   // The first parsing pass should have verified that this token is a MBB label
561   // in the 'parseBasicBlockDefinitions' method.
562   assert(Token.is(MIToken::MachineBasicBlockLabel));
563   do {
564     MachineBasicBlock *MBB = nullptr;
565     if (parseMBBReference(MBB))
566       return true;
567     if (parseBasicBlock(*MBB))
568       return true;
569     // The method 'parseBasicBlock' should parse the whole block until the next
570     // block or the end of file.
571     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
572   } while (Token.isNot(MIToken::Eof));
573   return false;
574 }
575 
576 bool MIParser::parse(MachineInstr *&MI) {
577   // Parse any register operands before '='
578   MachineOperand MO = MachineOperand::CreateImm(0);
579   SmallVector<ParsedMachineOperand, 8> Operands;
580   while (Token.isRegister() || Token.isRegisterFlag()) {
581     auto Loc = Token.location();
582     Optional<unsigned> TiedDefIdx;
583     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
584       return true;
585     Operands.push_back(
586         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
587     if (Token.isNot(MIToken::comma))
588       break;
589     lex();
590   }
591   if (!Operands.empty() && expectAndConsume(MIToken::equal))
592     return true;
593 
594   unsigned OpCode, Flags = 0;
595   if (Token.isError() || parseInstruction(OpCode, Flags))
596     return true;
597 
598   SmallVector<LLT, 1> Tys;
599   if (isPreISelGenericOpcode(OpCode)) {
600     // For generic opcode, at least one type is mandatory.
601     auto Loc = Token.location();
602     bool ManyTypes = Token.is(MIToken::lbrace);
603     if (ManyTypes)
604       lex();
605 
606     // Now actually parse the type(s).
607     do {
608       Tys.resize(Tys.size() + 1);
609       if (parseLowLevelType(Loc, Tys[Tys.size() - 1]))
610         return true;
611     } while (ManyTypes && consumeIfPresent(MIToken::comma));
612 
613     if (ManyTypes)
614       expectAndConsume(MIToken::rbrace);
615   }
616 
617   // Parse the remaining machine operands.
618   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
619          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
620     auto Loc = Token.location();
621     Optional<unsigned> TiedDefIdx;
622     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
623       return true;
624     Operands.push_back(
625         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
626     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
627         Token.is(MIToken::lbrace))
628       break;
629     if (Token.isNot(MIToken::comma))
630       return error("expected ',' before the next machine operand");
631     lex();
632   }
633 
634   DebugLoc DebugLocation;
635   if (Token.is(MIToken::kw_debug_location)) {
636     lex();
637     if (Token.isNot(MIToken::exclaim))
638       return error("expected a metadata node after 'debug-location'");
639     MDNode *Node = nullptr;
640     if (parseMDNode(Node))
641       return true;
642     DebugLocation = DebugLoc(Node);
643   }
644 
645   // Parse the machine memory operands.
646   SmallVector<MachineMemOperand *, 2> MemOperands;
647   if (Token.is(MIToken::coloncolon)) {
648     lex();
649     while (!Token.isNewlineOrEOF()) {
650       MachineMemOperand *MemOp = nullptr;
651       if (parseMachineMemoryOperand(MemOp))
652         return true;
653       MemOperands.push_back(MemOp);
654       if (Token.isNewlineOrEOF())
655         break;
656       if (Token.isNot(MIToken::comma))
657         return error("expected ',' before the next machine memory operand");
658       lex();
659     }
660   }
661 
662   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
663   if (!MCID.isVariadic()) {
664     // FIXME: Move the implicit operand verification to the machine verifier.
665     if (verifyImplicitOperands(Operands, MCID))
666       return true;
667   }
668 
669   // TODO: Check for extraneous machine operands.
670   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
671   MI->setFlags(Flags);
672   if (Tys.size() > 0) {
673     for (unsigned i = 0; i < Tys.size(); ++i)
674       MI->setType(Tys[i], i);
675   }
676   for (const auto &Operand : Operands)
677     MI->addOperand(MF, Operand.Operand);
678   if (assignRegisterTies(*MI, Operands))
679     return true;
680   if (MemOperands.empty())
681     return false;
682   MachineInstr::mmo_iterator MemRefs =
683       MF.allocateMemRefsArray(MemOperands.size());
684   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
685   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
686   return false;
687 }
688 
689 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
690   lex();
691   if (Token.isNot(MIToken::MachineBasicBlock))
692     return error("expected a machine basic block reference");
693   if (parseMBBReference(MBB))
694     return true;
695   lex();
696   if (Token.isNot(MIToken::Eof))
697     return error(
698         "expected end of string after the machine basic block reference");
699   return false;
700 }
701 
702 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
703   lex();
704   if (Token.isNot(MIToken::NamedRegister))
705     return error("expected a named register");
706   if (parseRegister(Reg))
707     return true;
708   lex();
709   if (Token.isNot(MIToken::Eof))
710     return error("expected end of string after the register reference");
711   return false;
712 }
713 
714 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
715   lex();
716   if (Token.isNot(MIToken::VirtualRegister))
717     return error("expected a virtual register");
718   if (parseRegister(Reg))
719     return true;
720   lex();
721   if (Token.isNot(MIToken::Eof))
722     return error("expected end of string after the register reference");
723   return false;
724 }
725 
726 bool MIParser::parseStandaloneStackObject(int &FI) {
727   lex();
728   if (Token.isNot(MIToken::StackObject))
729     return error("expected a stack object");
730   if (parseStackFrameIndex(FI))
731     return true;
732   if (Token.isNot(MIToken::Eof))
733     return error("expected end of string after the stack object reference");
734   return false;
735 }
736 
737 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
738   lex();
739   if (Token.isNot(MIToken::exclaim))
740     return error("expected a metadata node");
741   if (parseMDNode(Node))
742     return true;
743   if (Token.isNot(MIToken::Eof))
744     return error("expected end of string after the metadata node");
745   return false;
746 }
747 
748 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
749   assert(MO.isImplicit());
750   return MO.isDef() ? "implicit-def" : "implicit";
751 }
752 
753 static std::string getRegisterName(const TargetRegisterInfo *TRI,
754                                    unsigned Reg) {
755   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
756   return StringRef(TRI->getName(Reg)).lower();
757 }
758 
759 /// Return true if the parsed machine operands contain a given machine operand.
760 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
761                                 ArrayRef<ParsedMachineOperand> Operands) {
762   for (const auto &I : Operands) {
763     if (ImplicitOperand.isIdenticalTo(I.Operand))
764       return true;
765   }
766   return false;
767 }
768 
769 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
770                                       const MCInstrDesc &MCID) {
771   if (MCID.isCall())
772     // We can't verify call instructions as they can contain arbitrary implicit
773     // register and register mask operands.
774     return false;
775 
776   // Gather all the expected implicit operands.
777   SmallVector<MachineOperand, 4> ImplicitOperands;
778   if (MCID.ImplicitDefs)
779     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
780       ImplicitOperands.push_back(
781           MachineOperand::CreateReg(*ImpDefs, true, true));
782   if (MCID.ImplicitUses)
783     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
784       ImplicitOperands.push_back(
785           MachineOperand::CreateReg(*ImpUses, false, true));
786 
787   const auto *TRI = MF.getSubtarget().getRegisterInfo();
788   assert(TRI && "Expected target register info");
789   for (const auto &I : ImplicitOperands) {
790     if (isImplicitOperandIn(I, Operands))
791       continue;
792     return error(Operands.empty() ? Token.location() : Operands.back().End,
793                  Twine("missing implicit register operand '") +
794                      printImplicitRegisterFlag(I) + " %" +
795                      getRegisterName(TRI, I.getReg()) + "'");
796   }
797   return false;
798 }
799 
800 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
801   if (Token.is(MIToken::kw_frame_setup)) {
802     Flags |= MachineInstr::FrameSetup;
803     lex();
804   }
805   if (Token.isNot(MIToken::Identifier))
806     return error("expected a machine instruction");
807   StringRef InstrName = Token.stringValue();
808   if (parseInstrName(InstrName, OpCode))
809     return error(Twine("unknown machine instruction name '") + InstrName + "'");
810   lex();
811   return false;
812 }
813 
814 bool MIParser::parseRegister(unsigned &Reg) {
815   switch (Token.kind()) {
816   case MIToken::underscore:
817     Reg = 0;
818     break;
819   case MIToken::NamedRegister: {
820     StringRef Name = Token.stringValue();
821     if (getRegisterByName(Name, Reg))
822       return error(Twine("unknown register name '") + Name + "'");
823     break;
824   }
825   case MIToken::VirtualRegister: {
826     unsigned ID;
827     if (getUnsigned(ID))
828       return true;
829     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
830     if (RegInfo == PFS.VirtualRegisterSlots.end())
831       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
832                    "'");
833     Reg = RegInfo->second;
834     break;
835   }
836   // TODO: Parse other register kinds.
837   default:
838     llvm_unreachable("The current token should be a register");
839   }
840   return false;
841 }
842 
843 bool MIParser::parseRegisterFlag(unsigned &Flags) {
844   const unsigned OldFlags = Flags;
845   switch (Token.kind()) {
846   case MIToken::kw_implicit:
847     Flags |= RegState::Implicit;
848     break;
849   case MIToken::kw_implicit_define:
850     Flags |= RegState::ImplicitDefine;
851     break;
852   case MIToken::kw_def:
853     Flags |= RegState::Define;
854     break;
855   case MIToken::kw_dead:
856     Flags |= RegState::Dead;
857     break;
858   case MIToken::kw_killed:
859     Flags |= RegState::Kill;
860     break;
861   case MIToken::kw_undef:
862     Flags |= RegState::Undef;
863     break;
864   case MIToken::kw_internal:
865     Flags |= RegState::InternalRead;
866     break;
867   case MIToken::kw_early_clobber:
868     Flags |= RegState::EarlyClobber;
869     break;
870   case MIToken::kw_debug_use:
871     Flags |= RegState::Debug;
872     break;
873   default:
874     llvm_unreachable("The current token should be a register flag");
875   }
876   if (OldFlags == Flags)
877     // We know that the same flag is specified more than once when the flags
878     // weren't modified.
879     return error("duplicate '" + Token.stringValue() + "' register flag");
880   lex();
881   return false;
882 }
883 
884 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
885   assert(Token.is(MIToken::dot));
886   lex();
887   if (Token.isNot(MIToken::Identifier))
888     return error("expected a subregister index after '.'");
889   auto Name = Token.stringValue();
890   SubReg = getSubRegIndex(Name);
891   if (!SubReg)
892     return error(Twine("use of unknown subregister index '") + Name + "'");
893   lex();
894   return false;
895 }
896 
897 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
898   if (!consumeIfPresent(MIToken::kw_tied_def))
899     return error("expected 'tied-def' after '('");
900   if (Token.isNot(MIToken::IntegerLiteral))
901     return error("expected an integer literal after 'tied-def'");
902   if (getUnsigned(TiedDefIdx))
903     return true;
904   lex();
905   if (expectAndConsume(MIToken::rparen))
906     return true;
907   return false;
908 }
909 
910 bool MIParser::parseSize(unsigned &Size) {
911   if (Token.isNot(MIToken::IntegerLiteral))
912     return error("expected an integer literal for the size");
913   if (getUnsigned(Size))
914     return true;
915   lex();
916   if (expectAndConsume(MIToken::rparen))
917     return true;
918   return false;
919 }
920 
921 bool MIParser::assignRegisterTies(MachineInstr &MI,
922                                   ArrayRef<ParsedMachineOperand> Operands) {
923   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
924   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
925     if (!Operands[I].TiedDefIdx)
926       continue;
927     // The parser ensures that this operand is a register use, so we just have
928     // to check the tied-def operand.
929     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
930     if (DefIdx >= E)
931       return error(Operands[I].Begin,
932                    Twine("use of invalid tied-def operand index '" +
933                          Twine(DefIdx) + "'; instruction has only ") +
934                        Twine(E) + " operands");
935     const auto &DefOperand = Operands[DefIdx].Operand;
936     if (!DefOperand.isReg() || !DefOperand.isDef())
937       // FIXME: add note with the def operand.
938       return error(Operands[I].Begin,
939                    Twine("use of invalid tied-def operand index '") +
940                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
941                        " isn't a defined register");
942     // Check that the tied-def operand wasn't tied elsewhere.
943     for (const auto &TiedPair : TiedRegisterPairs) {
944       if (TiedPair.first == DefIdx)
945         return error(Operands[I].Begin,
946                      Twine("the tied-def operand #") + Twine(DefIdx) +
947                          " is already tied with another register operand");
948     }
949     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
950   }
951   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
952   // indices must be less than tied max.
953   for (const auto &TiedPair : TiedRegisterPairs)
954     MI.tieOperands(TiedPair.first, TiedPair.second);
955   return false;
956 }
957 
958 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
959                                     Optional<unsigned> &TiedDefIdx,
960                                     bool IsDef) {
961   unsigned Reg;
962   unsigned Flags = IsDef ? RegState::Define : 0;
963   while (Token.isRegisterFlag()) {
964     if (parseRegisterFlag(Flags))
965       return true;
966   }
967   if (!Token.isRegister())
968     return error("expected a register after register flags");
969   if (parseRegister(Reg))
970     return true;
971   lex();
972   unsigned SubReg = 0;
973   if (Token.is(MIToken::dot)) {
974     if (parseSubRegisterIndex(SubReg))
975       return true;
976     if (!TargetRegisterInfo::isVirtualRegister(Reg))
977       return error("subregister index expects a virtual register");
978   }
979   if ((Flags & RegState::Define) == 0) {
980     if (consumeIfPresent(MIToken::lparen)) {
981       unsigned Idx;
982       if (parseRegisterTiedDefIndex(Idx))
983         return true;
984       TiedDefIdx = Idx;
985     }
986   } else if (consumeIfPresent(MIToken::lparen)) {
987     MachineRegisterInfo &MRI = MF.getRegInfo();
988 
989     // Virtual registers may have a size with GlobalISel.
990     if (!TargetRegisterInfo::isVirtualRegister(Reg))
991       return error("unexpected size on physical register");
992     if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>())
993       return error("unexpected size on non-generic virtual register");
994 
995     unsigned Size;
996     if (parseSize(Size))
997       return true;
998 
999     MRI.setSize(Reg, Size);
1000   } else if (PFS.GenericVRegs.count(Reg)) {
1001     // Generic virtual registers must have a size.
1002     // If we end up here this means the size hasn't been specified and
1003     // this is bad!
1004     return error("generic virtual registers must have a size");
1005   }
1006   Dest = MachineOperand::CreateReg(
1007       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1008       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1009       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1010       Flags & RegState::InternalRead);
1011   return false;
1012 }
1013 
1014 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1015   assert(Token.is(MIToken::IntegerLiteral));
1016   const APSInt &Int = Token.integerValue();
1017   if (Int.getMinSignedBits() > 64)
1018     return error("integer literal is too large to be an immediate operand");
1019   Dest = MachineOperand::CreateImm(Int.getExtValue());
1020   lex();
1021   return false;
1022 }
1023 
1024 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1025                                const Constant *&C) {
1026   auto Source = StringValue.str(); // The source has to be null terminated.
1027   SMDiagnostic Err;
1028   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1029                          &PFS.IRSlots);
1030   if (!C)
1031     return error(Loc + Err.getColumnNo(), Err.getMessage());
1032   return false;
1033 }
1034 
1035 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1036   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1037     return true;
1038   lex();
1039   return false;
1040 }
1041 
1042 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty,
1043                                  bool MustBeSized) {
1044   if (Token.is(MIToken::Identifier) && Token.stringValue() == "unsized") {
1045     if (MustBeSized)
1046       return error(Loc, "expected pN, sN or <N x sM> for sized GlobalISel type");
1047     lex();
1048     Ty = LLT::unsized();
1049     return false;
1050   } else if (Token.is(MIToken::ScalarType)) {
1051     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1052     lex();
1053     return false;
1054   } else if (Token.is(MIToken::PointerType)) {
1055     Ty = LLT::pointer(APSInt(Token.range().drop_front()).getZExtValue());
1056     lex();
1057     return false;
1058   }
1059 
1060   // Now we're looking for a vector.
1061   if (Token.isNot(MIToken::less))
1062     return error(Loc,
1063                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1064 
1065   lex();
1066 
1067   if (Token.isNot(MIToken::IntegerLiteral))
1068     return error(Loc, "expected <N x sM> for vctor type");
1069   uint64_t NumElements = Token.integerValue().getZExtValue();
1070   lex();
1071 
1072   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1073     return error(Loc, "expected '<N x sM>' for vector type");
1074   lex();
1075 
1076   if (Token.isNot(MIToken::ScalarType))
1077     return error(Loc, "expected '<N x sM>' for vector type");
1078   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1079   lex();
1080 
1081   if (Token.isNot(MIToken::greater))
1082     return error(Loc, "expected '<N x sM>' for vector type");
1083   lex();
1084 
1085   Ty = LLT::vector(NumElements, ScalarSize);
1086   return false;
1087 }
1088 
1089 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1090   assert(Token.is(MIToken::IntegerType));
1091   auto Loc = Token.location();
1092   lex();
1093   if (Token.isNot(MIToken::IntegerLiteral))
1094     return error("expected an integer literal");
1095   const Constant *C = nullptr;
1096   if (parseIRConstant(Loc, C))
1097     return true;
1098   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1099   return false;
1100 }
1101 
1102 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1103   auto Loc = Token.location();
1104   lex();
1105   if (Token.isNot(MIToken::FloatingPointLiteral))
1106     return error("expected a floating point literal");
1107   const Constant *C = nullptr;
1108   if (parseIRConstant(Loc, C))
1109     return true;
1110   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1111   return false;
1112 }
1113 
1114 bool MIParser::getUnsigned(unsigned &Result) {
1115   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1116   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1117   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1118   if (Val64 == Limit)
1119     return error("expected 32-bit integer (too large)");
1120   Result = Val64;
1121   return false;
1122 }
1123 
1124 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1125   assert(Token.is(MIToken::MachineBasicBlock) ||
1126          Token.is(MIToken::MachineBasicBlockLabel));
1127   unsigned Number;
1128   if (getUnsigned(Number))
1129     return true;
1130   auto MBBInfo = PFS.MBBSlots.find(Number);
1131   if (MBBInfo == PFS.MBBSlots.end())
1132     return error(Twine("use of undefined machine basic block #") +
1133                  Twine(Number));
1134   MBB = MBBInfo->second;
1135   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1136     return error(Twine("the name of machine basic block #") + Twine(Number) +
1137                  " isn't '" + Token.stringValue() + "'");
1138   return false;
1139 }
1140 
1141 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1142   MachineBasicBlock *MBB;
1143   if (parseMBBReference(MBB))
1144     return true;
1145   Dest = MachineOperand::CreateMBB(MBB);
1146   lex();
1147   return false;
1148 }
1149 
1150 bool MIParser::parseStackFrameIndex(int &FI) {
1151   assert(Token.is(MIToken::StackObject));
1152   unsigned ID;
1153   if (getUnsigned(ID))
1154     return true;
1155   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1156   if (ObjectInfo == PFS.StackObjectSlots.end())
1157     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1158                  "'");
1159   StringRef Name;
1160   if (const auto *Alloca =
1161           MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second))
1162     Name = Alloca->getName();
1163   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1164     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1165                  "' isn't '" + Token.stringValue() + "'");
1166   lex();
1167   FI = ObjectInfo->second;
1168   return false;
1169 }
1170 
1171 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1172   int FI;
1173   if (parseStackFrameIndex(FI))
1174     return true;
1175   Dest = MachineOperand::CreateFI(FI);
1176   return false;
1177 }
1178 
1179 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1180   assert(Token.is(MIToken::FixedStackObject));
1181   unsigned ID;
1182   if (getUnsigned(ID))
1183     return true;
1184   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1185   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1186     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1187                  Twine(ID) + "'");
1188   lex();
1189   FI = ObjectInfo->second;
1190   return false;
1191 }
1192 
1193 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1194   int FI;
1195   if (parseFixedStackFrameIndex(FI))
1196     return true;
1197   Dest = MachineOperand::CreateFI(FI);
1198   return false;
1199 }
1200 
1201 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1202   switch (Token.kind()) {
1203   case MIToken::NamedGlobalValue: {
1204     const Module *M = MF.getFunction()->getParent();
1205     GV = M->getNamedValue(Token.stringValue());
1206     if (!GV)
1207       return error(Twine("use of undefined global value '") + Token.range() +
1208                    "'");
1209     break;
1210   }
1211   case MIToken::GlobalValue: {
1212     unsigned GVIdx;
1213     if (getUnsigned(GVIdx))
1214       return true;
1215     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1216       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1217                    "'");
1218     GV = PFS.IRSlots.GlobalValues[GVIdx];
1219     break;
1220   }
1221   default:
1222     llvm_unreachable("The current token should be a global value");
1223   }
1224   return false;
1225 }
1226 
1227 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1228   GlobalValue *GV = nullptr;
1229   if (parseGlobalValue(GV))
1230     return true;
1231   lex();
1232   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1233   if (parseOperandsOffset(Dest))
1234     return true;
1235   return false;
1236 }
1237 
1238 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1239   assert(Token.is(MIToken::ConstantPoolItem));
1240   unsigned ID;
1241   if (getUnsigned(ID))
1242     return true;
1243   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1244   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1245     return error("use of undefined constant '%const." + Twine(ID) + "'");
1246   lex();
1247   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1248   if (parseOperandsOffset(Dest))
1249     return true;
1250   return false;
1251 }
1252 
1253 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1254   assert(Token.is(MIToken::JumpTableIndex));
1255   unsigned ID;
1256   if (getUnsigned(ID))
1257     return true;
1258   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1259   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1260     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1261   lex();
1262   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1263   return false;
1264 }
1265 
1266 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1267   assert(Token.is(MIToken::ExternalSymbol));
1268   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1269   lex();
1270   Dest = MachineOperand::CreateES(Symbol);
1271   if (parseOperandsOffset(Dest))
1272     return true;
1273   return false;
1274 }
1275 
1276 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1277   assert(Token.is(MIToken::SubRegisterIndex));
1278   StringRef Name = Token.stringValue();
1279   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1280   if (SubRegIndex == 0)
1281     return error(Twine("unknown subregister index '") + Name + "'");
1282   lex();
1283   Dest = MachineOperand::CreateImm(SubRegIndex);
1284   return false;
1285 }
1286 
1287 bool MIParser::parseMDNode(MDNode *&Node) {
1288   assert(Token.is(MIToken::exclaim));
1289   auto Loc = Token.location();
1290   lex();
1291   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1292     return error("expected metadata id after '!'");
1293   unsigned ID;
1294   if (getUnsigned(ID))
1295     return true;
1296   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1297   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1298     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1299   lex();
1300   Node = NodeInfo->second.get();
1301   return false;
1302 }
1303 
1304 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1305   MDNode *Node = nullptr;
1306   if (parseMDNode(Node))
1307     return true;
1308   Dest = MachineOperand::CreateMetadata(Node);
1309   return false;
1310 }
1311 
1312 bool MIParser::parseCFIOffset(int &Offset) {
1313   if (Token.isNot(MIToken::IntegerLiteral))
1314     return error("expected a cfi offset");
1315   if (Token.integerValue().getMinSignedBits() > 32)
1316     return error("expected a 32 bit integer (the cfi offset is too large)");
1317   Offset = (int)Token.integerValue().getExtValue();
1318   lex();
1319   return false;
1320 }
1321 
1322 bool MIParser::parseCFIRegister(unsigned &Reg) {
1323   if (Token.isNot(MIToken::NamedRegister))
1324     return error("expected a cfi register");
1325   unsigned LLVMReg;
1326   if (parseRegister(LLVMReg))
1327     return true;
1328   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1329   assert(TRI && "Expected target register info");
1330   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1331   if (DwarfReg < 0)
1332     return error("invalid DWARF register");
1333   Reg = (unsigned)DwarfReg;
1334   lex();
1335   return false;
1336 }
1337 
1338 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1339   auto Kind = Token.kind();
1340   lex();
1341   auto &MMI = MF.getMMI();
1342   int Offset;
1343   unsigned Reg;
1344   unsigned CFIIndex;
1345   switch (Kind) {
1346   case MIToken::kw_cfi_same_value:
1347     if (parseCFIRegister(Reg))
1348       return true;
1349     CFIIndex =
1350         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1351     break;
1352   case MIToken::kw_cfi_offset:
1353     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1354         parseCFIOffset(Offset))
1355       return true;
1356     CFIIndex =
1357         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1358     break;
1359   case MIToken::kw_cfi_def_cfa_register:
1360     if (parseCFIRegister(Reg))
1361       return true;
1362     CFIIndex =
1363         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1364     break;
1365   case MIToken::kw_cfi_def_cfa_offset:
1366     if (parseCFIOffset(Offset))
1367       return true;
1368     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1369     CFIIndex = MMI.addFrameInst(
1370         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1371     break;
1372   case MIToken::kw_cfi_def_cfa:
1373     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1374         parseCFIOffset(Offset))
1375       return true;
1376     // NB: MCCFIInstruction::createDefCfa negates the offset.
1377     CFIIndex =
1378         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1379     break;
1380   default:
1381     // TODO: Parse the other CFI operands.
1382     llvm_unreachable("The current token should be a cfi operand");
1383   }
1384   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1385   return false;
1386 }
1387 
1388 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1389   switch (Token.kind()) {
1390   case MIToken::NamedIRBlock: {
1391     BB = dyn_cast_or_null<BasicBlock>(
1392         F.getValueSymbolTable().lookup(Token.stringValue()));
1393     if (!BB)
1394       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1395     break;
1396   }
1397   case MIToken::IRBlock: {
1398     unsigned SlotNumber = 0;
1399     if (getUnsigned(SlotNumber))
1400       return true;
1401     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1402     if (!BB)
1403       return error(Twine("use of undefined IR block '%ir-block.") +
1404                    Twine(SlotNumber) + "'");
1405     break;
1406   }
1407   default:
1408     llvm_unreachable("The current token should be an IR block reference");
1409   }
1410   return false;
1411 }
1412 
1413 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1414   assert(Token.is(MIToken::kw_blockaddress));
1415   lex();
1416   if (expectAndConsume(MIToken::lparen))
1417     return true;
1418   if (Token.isNot(MIToken::GlobalValue) &&
1419       Token.isNot(MIToken::NamedGlobalValue))
1420     return error("expected a global value");
1421   GlobalValue *GV = nullptr;
1422   if (parseGlobalValue(GV))
1423     return true;
1424   auto *F = dyn_cast<Function>(GV);
1425   if (!F)
1426     return error("expected an IR function reference");
1427   lex();
1428   if (expectAndConsume(MIToken::comma))
1429     return true;
1430   BasicBlock *BB = nullptr;
1431   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1432     return error("expected an IR block reference");
1433   if (parseIRBlock(BB, *F))
1434     return true;
1435   lex();
1436   if (expectAndConsume(MIToken::rparen))
1437     return true;
1438   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1439   if (parseOperandsOffset(Dest))
1440     return true;
1441   return false;
1442 }
1443 
1444 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1445   assert(Token.is(MIToken::kw_target_index));
1446   lex();
1447   if (expectAndConsume(MIToken::lparen))
1448     return true;
1449   if (Token.isNot(MIToken::Identifier))
1450     return error("expected the name of the target index");
1451   int Index = 0;
1452   if (getTargetIndex(Token.stringValue(), Index))
1453     return error("use of undefined target index '" + Token.stringValue() + "'");
1454   lex();
1455   if (expectAndConsume(MIToken::rparen))
1456     return true;
1457   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1458   if (parseOperandsOffset(Dest))
1459     return true;
1460   return false;
1461 }
1462 
1463 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1464   assert(Token.is(MIToken::kw_liveout));
1465   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1466   assert(TRI && "Expected target register info");
1467   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1468   lex();
1469   if (expectAndConsume(MIToken::lparen))
1470     return true;
1471   while (true) {
1472     if (Token.isNot(MIToken::NamedRegister))
1473       return error("expected a named register");
1474     unsigned Reg = 0;
1475     if (parseRegister(Reg))
1476       return true;
1477     lex();
1478     Mask[Reg / 32] |= 1U << (Reg % 32);
1479     // TODO: Report an error if the same register is used more than once.
1480     if (Token.isNot(MIToken::comma))
1481       break;
1482     lex();
1483   }
1484   if (expectAndConsume(MIToken::rparen))
1485     return true;
1486   Dest = MachineOperand::CreateRegLiveOut(Mask);
1487   return false;
1488 }
1489 
1490 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1491                                    Optional<unsigned> &TiedDefIdx) {
1492   switch (Token.kind()) {
1493   case MIToken::kw_implicit:
1494   case MIToken::kw_implicit_define:
1495   case MIToken::kw_def:
1496   case MIToken::kw_dead:
1497   case MIToken::kw_killed:
1498   case MIToken::kw_undef:
1499   case MIToken::kw_internal:
1500   case MIToken::kw_early_clobber:
1501   case MIToken::kw_debug_use:
1502   case MIToken::underscore:
1503   case MIToken::NamedRegister:
1504   case MIToken::VirtualRegister:
1505     return parseRegisterOperand(Dest, TiedDefIdx);
1506   case MIToken::IntegerLiteral:
1507     return parseImmediateOperand(Dest);
1508   case MIToken::IntegerType:
1509     return parseTypedImmediateOperand(Dest);
1510   case MIToken::kw_half:
1511   case MIToken::kw_float:
1512   case MIToken::kw_double:
1513   case MIToken::kw_x86_fp80:
1514   case MIToken::kw_fp128:
1515   case MIToken::kw_ppc_fp128:
1516     return parseFPImmediateOperand(Dest);
1517   case MIToken::MachineBasicBlock:
1518     return parseMBBOperand(Dest);
1519   case MIToken::StackObject:
1520     return parseStackObjectOperand(Dest);
1521   case MIToken::FixedStackObject:
1522     return parseFixedStackObjectOperand(Dest);
1523   case MIToken::GlobalValue:
1524   case MIToken::NamedGlobalValue:
1525     return parseGlobalAddressOperand(Dest);
1526   case MIToken::ConstantPoolItem:
1527     return parseConstantPoolIndexOperand(Dest);
1528   case MIToken::JumpTableIndex:
1529     return parseJumpTableIndexOperand(Dest);
1530   case MIToken::ExternalSymbol:
1531     return parseExternalSymbolOperand(Dest);
1532   case MIToken::SubRegisterIndex:
1533     return parseSubRegisterIndexOperand(Dest);
1534   case MIToken::exclaim:
1535     return parseMetadataOperand(Dest);
1536   case MIToken::kw_cfi_same_value:
1537   case MIToken::kw_cfi_offset:
1538   case MIToken::kw_cfi_def_cfa_register:
1539   case MIToken::kw_cfi_def_cfa_offset:
1540   case MIToken::kw_cfi_def_cfa:
1541     return parseCFIOperand(Dest);
1542   case MIToken::kw_blockaddress:
1543     return parseBlockAddressOperand(Dest);
1544   case MIToken::kw_target_index:
1545     return parseTargetIndexOperand(Dest);
1546   case MIToken::kw_liveout:
1547     return parseLiveoutRegisterMaskOperand(Dest);
1548   case MIToken::Error:
1549     return true;
1550   case MIToken::Identifier:
1551     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1552       Dest = MachineOperand::CreateRegMask(RegMask);
1553       lex();
1554       break;
1555     }
1556   // fallthrough
1557   default:
1558     // FIXME: Parse the MCSymbol machine operand.
1559     return error("expected a machine operand");
1560   }
1561   return false;
1562 }
1563 
1564 bool MIParser::parseMachineOperandAndTargetFlags(
1565     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1566   unsigned TF = 0;
1567   bool HasTargetFlags = false;
1568   if (Token.is(MIToken::kw_target_flags)) {
1569     HasTargetFlags = true;
1570     lex();
1571     if (expectAndConsume(MIToken::lparen))
1572       return true;
1573     if (Token.isNot(MIToken::Identifier))
1574       return error("expected the name of the target flag");
1575     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1576       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1577         return error("use of undefined target flag '" + Token.stringValue() +
1578                      "'");
1579     }
1580     lex();
1581     while (Token.is(MIToken::comma)) {
1582       lex();
1583       if (Token.isNot(MIToken::Identifier))
1584         return error("expected the name of the target flag");
1585       unsigned BitFlag = 0;
1586       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1587         return error("use of undefined target flag '" + Token.stringValue() +
1588                      "'");
1589       // TODO: Report an error when using a duplicate bit target flag.
1590       TF |= BitFlag;
1591       lex();
1592     }
1593     if (expectAndConsume(MIToken::rparen))
1594       return true;
1595   }
1596   auto Loc = Token.location();
1597   if (parseMachineOperand(Dest, TiedDefIdx))
1598     return true;
1599   if (!HasTargetFlags)
1600     return false;
1601   if (Dest.isReg())
1602     return error(Loc, "register operands can't have target flags");
1603   Dest.setTargetFlags(TF);
1604   return false;
1605 }
1606 
1607 bool MIParser::parseOffset(int64_t &Offset) {
1608   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1609     return false;
1610   StringRef Sign = Token.range();
1611   bool IsNegative = Token.is(MIToken::minus);
1612   lex();
1613   if (Token.isNot(MIToken::IntegerLiteral))
1614     return error("expected an integer literal after '" + Sign + "'");
1615   if (Token.integerValue().getMinSignedBits() > 64)
1616     return error("expected 64-bit integer (too large)");
1617   Offset = Token.integerValue().getExtValue();
1618   if (IsNegative)
1619     Offset = -Offset;
1620   lex();
1621   return false;
1622 }
1623 
1624 bool MIParser::parseAlignment(unsigned &Alignment) {
1625   assert(Token.is(MIToken::kw_align));
1626   lex();
1627   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1628     return error("expected an integer literal after 'align'");
1629   if (getUnsigned(Alignment))
1630     return true;
1631   lex();
1632   return false;
1633 }
1634 
1635 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1636   int64_t Offset = 0;
1637   if (parseOffset(Offset))
1638     return true;
1639   Op.setOffset(Offset);
1640   return false;
1641 }
1642 
1643 bool MIParser::parseIRValue(const Value *&V) {
1644   switch (Token.kind()) {
1645   case MIToken::NamedIRValue: {
1646     V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1647     break;
1648   }
1649   case MIToken::IRValue: {
1650     unsigned SlotNumber = 0;
1651     if (getUnsigned(SlotNumber))
1652       return true;
1653     V = getIRValue(SlotNumber);
1654     break;
1655   }
1656   case MIToken::NamedGlobalValue:
1657   case MIToken::GlobalValue: {
1658     GlobalValue *GV = nullptr;
1659     if (parseGlobalValue(GV))
1660       return true;
1661     V = GV;
1662     break;
1663   }
1664   case MIToken::QuotedIRValue: {
1665     const Constant *C = nullptr;
1666     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1667       return true;
1668     V = C;
1669     break;
1670   }
1671   default:
1672     llvm_unreachable("The current token should be an IR block reference");
1673   }
1674   if (!V)
1675     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1676   return false;
1677 }
1678 
1679 bool MIParser::getUint64(uint64_t &Result) {
1680   assert(Token.hasIntegerValue());
1681   if (Token.integerValue().getActiveBits() > 64)
1682     return error("expected 64-bit integer (too large)");
1683   Result = Token.integerValue().getZExtValue();
1684   return false;
1685 }
1686 
1687 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1688   const auto OldFlags = Flags;
1689   switch (Token.kind()) {
1690   case MIToken::kw_volatile:
1691     Flags |= MachineMemOperand::MOVolatile;
1692     break;
1693   case MIToken::kw_non_temporal:
1694     Flags |= MachineMemOperand::MONonTemporal;
1695     break;
1696   case MIToken::kw_invariant:
1697     Flags |= MachineMemOperand::MOInvariant;
1698     break;
1699   // TODO: parse the target specific memory operand flags.
1700   default:
1701     llvm_unreachable("The current token should be a memory operand flag");
1702   }
1703   if (OldFlags == Flags)
1704     // We know that the same flag is specified more than once when the flags
1705     // weren't modified.
1706     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1707   lex();
1708   return false;
1709 }
1710 
1711 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1712   switch (Token.kind()) {
1713   case MIToken::kw_stack:
1714     PSV = MF.getPSVManager().getStack();
1715     break;
1716   case MIToken::kw_got:
1717     PSV = MF.getPSVManager().getGOT();
1718     break;
1719   case MIToken::kw_jump_table:
1720     PSV = MF.getPSVManager().getJumpTable();
1721     break;
1722   case MIToken::kw_constant_pool:
1723     PSV = MF.getPSVManager().getConstantPool();
1724     break;
1725   case MIToken::FixedStackObject: {
1726     int FI;
1727     if (parseFixedStackFrameIndex(FI))
1728       return true;
1729     PSV = MF.getPSVManager().getFixedStack(FI);
1730     // The token was already consumed, so use return here instead of break.
1731     return false;
1732   }
1733   case MIToken::StackObject: {
1734     int FI;
1735     if (parseStackFrameIndex(FI))
1736       return true;
1737     PSV = MF.getPSVManager().getFixedStack(FI);
1738     // The token was already consumed, so use return here instead of break.
1739     return false;
1740   }
1741   case MIToken::kw_call_entry: {
1742     lex();
1743     switch (Token.kind()) {
1744     case MIToken::GlobalValue:
1745     case MIToken::NamedGlobalValue: {
1746       GlobalValue *GV = nullptr;
1747       if (parseGlobalValue(GV))
1748         return true;
1749       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1750       break;
1751     }
1752     case MIToken::ExternalSymbol:
1753       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1754           MF.createExternalSymbolName(Token.stringValue()));
1755       break;
1756     default:
1757       return error(
1758           "expected a global value or an external symbol after 'call-entry'");
1759     }
1760     break;
1761   }
1762   default:
1763     llvm_unreachable("The current token should be pseudo source value");
1764   }
1765   lex();
1766   return false;
1767 }
1768 
1769 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1770   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1771       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1772       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1773       Token.is(MIToken::kw_call_entry)) {
1774     const PseudoSourceValue *PSV = nullptr;
1775     if (parseMemoryPseudoSourceValue(PSV))
1776       return true;
1777     int64_t Offset = 0;
1778     if (parseOffset(Offset))
1779       return true;
1780     Dest = MachinePointerInfo(PSV, Offset);
1781     return false;
1782   }
1783   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1784       Token.isNot(MIToken::GlobalValue) &&
1785       Token.isNot(MIToken::NamedGlobalValue) &&
1786       Token.isNot(MIToken::QuotedIRValue))
1787     return error("expected an IR value reference");
1788   const Value *V = nullptr;
1789   if (parseIRValue(V))
1790     return true;
1791   if (!V->getType()->isPointerTy())
1792     return error("expected a pointer IR value");
1793   lex();
1794   int64_t Offset = 0;
1795   if (parseOffset(Offset))
1796     return true;
1797   Dest = MachinePointerInfo(V, Offset);
1798   return false;
1799 }
1800 
1801 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1802   if (expectAndConsume(MIToken::lparen))
1803     return true;
1804   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1805   while (Token.isMemoryOperandFlag()) {
1806     if (parseMemoryOperandFlag(Flags))
1807       return true;
1808   }
1809   if (Token.isNot(MIToken::Identifier) ||
1810       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1811     return error("expected 'load' or 'store' memory operation");
1812   if (Token.stringValue() == "load")
1813     Flags |= MachineMemOperand::MOLoad;
1814   else
1815     Flags |= MachineMemOperand::MOStore;
1816   lex();
1817 
1818   if (Token.isNot(MIToken::IntegerLiteral))
1819     return error("expected the size integer literal after memory operation");
1820   uint64_t Size;
1821   if (getUint64(Size))
1822     return true;
1823   lex();
1824 
1825   MachinePointerInfo Ptr = MachinePointerInfo();
1826   if (Token.is(MIToken::Identifier)) {
1827     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1828     if (Token.stringValue() != Word)
1829       return error(Twine("expected '") + Word + "'");
1830     lex();
1831 
1832     if (parseMachinePointerInfo(Ptr))
1833       return true;
1834   }
1835   unsigned BaseAlignment = Size;
1836   AAMDNodes AAInfo;
1837   MDNode *Range = nullptr;
1838   while (consumeIfPresent(MIToken::comma)) {
1839     switch (Token.kind()) {
1840     case MIToken::kw_align:
1841       if (parseAlignment(BaseAlignment))
1842         return true;
1843       break;
1844     case MIToken::md_tbaa:
1845       lex();
1846       if (parseMDNode(AAInfo.TBAA))
1847         return true;
1848       break;
1849     case MIToken::md_alias_scope:
1850       lex();
1851       if (parseMDNode(AAInfo.Scope))
1852         return true;
1853       break;
1854     case MIToken::md_noalias:
1855       lex();
1856       if (parseMDNode(AAInfo.NoAlias))
1857         return true;
1858       break;
1859     case MIToken::md_range:
1860       lex();
1861       if (parseMDNode(Range))
1862         return true;
1863       break;
1864     // TODO: Report an error on duplicate metadata nodes.
1865     default:
1866       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1867                    "'!noalias' or '!range'");
1868     }
1869   }
1870   if (expectAndConsume(MIToken::rparen))
1871     return true;
1872   Dest =
1873       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1874   return false;
1875 }
1876 
1877 void MIParser::initNames2InstrOpCodes() {
1878   if (!Names2InstrOpCodes.empty())
1879     return;
1880   const auto *TII = MF.getSubtarget().getInstrInfo();
1881   assert(TII && "Expected target instruction info");
1882   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1883     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1884 }
1885 
1886 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1887   initNames2InstrOpCodes();
1888   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1889   if (InstrInfo == Names2InstrOpCodes.end())
1890     return true;
1891   OpCode = InstrInfo->getValue();
1892   return false;
1893 }
1894 
1895 void MIParser::initNames2Regs() {
1896   if (!Names2Regs.empty())
1897     return;
1898   // The '%noreg' register is the register 0.
1899   Names2Regs.insert(std::make_pair("noreg", 0));
1900   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1901   assert(TRI && "Expected target register info");
1902   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1903     bool WasInserted =
1904         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1905             .second;
1906     (void)WasInserted;
1907     assert(WasInserted && "Expected registers to be unique case-insensitively");
1908   }
1909 }
1910 
1911 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
1912   initNames2Regs();
1913   auto RegInfo = Names2Regs.find(RegName);
1914   if (RegInfo == Names2Regs.end())
1915     return true;
1916   Reg = RegInfo->getValue();
1917   return false;
1918 }
1919 
1920 void MIParser::initNames2RegMasks() {
1921   if (!Names2RegMasks.empty())
1922     return;
1923   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1924   assert(TRI && "Expected target register info");
1925   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
1926   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
1927   assert(RegMasks.size() == RegMaskNames.size());
1928   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
1929     Names2RegMasks.insert(
1930         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
1931 }
1932 
1933 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
1934   initNames2RegMasks();
1935   auto RegMaskInfo = Names2RegMasks.find(Identifier);
1936   if (RegMaskInfo == Names2RegMasks.end())
1937     return nullptr;
1938   return RegMaskInfo->getValue();
1939 }
1940 
1941 void MIParser::initNames2SubRegIndices() {
1942   if (!Names2SubRegIndices.empty())
1943     return;
1944   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1945   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
1946     Names2SubRegIndices.insert(
1947         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
1948 }
1949 
1950 unsigned MIParser::getSubRegIndex(StringRef Name) {
1951   initNames2SubRegIndices();
1952   auto SubRegInfo = Names2SubRegIndices.find(Name);
1953   if (SubRegInfo == Names2SubRegIndices.end())
1954     return 0;
1955   return SubRegInfo->getValue();
1956 }
1957 
1958 static void initSlots2BasicBlocks(
1959     const Function &F,
1960     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1961   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1962   MST.incorporateFunction(F);
1963   for (auto &BB : F) {
1964     if (BB.hasName())
1965       continue;
1966     int Slot = MST.getLocalSlot(&BB);
1967     if (Slot == -1)
1968       continue;
1969     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
1970   }
1971 }
1972 
1973 static const BasicBlock *getIRBlockFromSlot(
1974     unsigned Slot,
1975     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1976   auto BlockInfo = Slots2BasicBlocks.find(Slot);
1977   if (BlockInfo == Slots2BasicBlocks.end())
1978     return nullptr;
1979   return BlockInfo->second;
1980 }
1981 
1982 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
1983   if (Slots2BasicBlocks.empty())
1984     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
1985   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
1986 }
1987 
1988 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
1989   if (&F == MF.getFunction())
1990     return getIRBlock(Slot);
1991   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
1992   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
1993   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
1994 }
1995 
1996 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
1997                            DenseMap<unsigned, const Value *> &Slots2Values) {
1998   int Slot = MST.getLocalSlot(V);
1999   if (Slot == -1)
2000     return;
2001   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2002 }
2003 
2004 /// Creates the mapping from slot numbers to function's unnamed IR values.
2005 static void initSlots2Values(const Function &F,
2006                              DenseMap<unsigned, const Value *> &Slots2Values) {
2007   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2008   MST.incorporateFunction(F);
2009   for (const auto &Arg : F.args())
2010     mapValueToSlot(&Arg, MST, Slots2Values);
2011   for (const auto &BB : F) {
2012     mapValueToSlot(&BB, MST, Slots2Values);
2013     for (const auto &I : BB)
2014       mapValueToSlot(&I, MST, Slots2Values);
2015   }
2016 }
2017 
2018 const Value *MIParser::getIRValue(unsigned Slot) {
2019   if (Slots2Values.empty())
2020     initSlots2Values(*MF.getFunction(), Slots2Values);
2021   auto ValueInfo = Slots2Values.find(Slot);
2022   if (ValueInfo == Slots2Values.end())
2023     return nullptr;
2024   return ValueInfo->second;
2025 }
2026 
2027 void MIParser::initNames2TargetIndices() {
2028   if (!Names2TargetIndices.empty())
2029     return;
2030   const auto *TII = MF.getSubtarget().getInstrInfo();
2031   assert(TII && "Expected target instruction info");
2032   auto Indices = TII->getSerializableTargetIndices();
2033   for (const auto &I : Indices)
2034     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2035 }
2036 
2037 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2038   initNames2TargetIndices();
2039   auto IndexInfo = Names2TargetIndices.find(Name);
2040   if (IndexInfo == Names2TargetIndices.end())
2041     return true;
2042   Index = IndexInfo->second;
2043   return false;
2044 }
2045 
2046 void MIParser::initNames2DirectTargetFlags() {
2047   if (!Names2DirectTargetFlags.empty())
2048     return;
2049   const auto *TII = MF.getSubtarget().getInstrInfo();
2050   assert(TII && "Expected target instruction info");
2051   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2052   for (const auto &I : Flags)
2053     Names2DirectTargetFlags.insert(
2054         std::make_pair(StringRef(I.second), I.first));
2055 }
2056 
2057 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2058   initNames2DirectTargetFlags();
2059   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2060   if (FlagInfo == Names2DirectTargetFlags.end())
2061     return true;
2062   Flag = FlagInfo->second;
2063   return false;
2064 }
2065 
2066 void MIParser::initNames2BitmaskTargetFlags() {
2067   if (!Names2BitmaskTargetFlags.empty())
2068     return;
2069   const auto *TII = MF.getSubtarget().getInstrInfo();
2070   assert(TII && "Expected target instruction info");
2071   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2072   for (const auto &I : Flags)
2073     Names2BitmaskTargetFlags.insert(
2074         std::make_pair(StringRef(I.second), I.first));
2075 }
2076 
2077 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2078   initNames2BitmaskTargetFlags();
2079   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2080   if (FlagInfo == Names2BitmaskTargetFlags.end())
2081     return true;
2082   Flag = FlagInfo->second;
2083   return false;
2084 }
2085 
2086 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2087                                              StringRef Src,
2088                                              SMDiagnostic &Error) {
2089   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2090 }
2091 
2092 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS,
2093                                     StringRef Src, SMDiagnostic &Error) {
2094   return MIParser(PFS, Error, Src).parseBasicBlocks();
2095 }
2096 
2097 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS,
2098                              MachineBasicBlock *&MBB, StringRef Src,
2099                              SMDiagnostic &Error) {
2100   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2101 }
2102 
2103 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
2104                                        unsigned &Reg, StringRef Src,
2105                                        SMDiagnostic &Error) {
2106   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2107 }
2108 
2109 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
2110                                          unsigned &Reg, StringRef Src,
2111                                          SMDiagnostic &Error) {
2112   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg);
2113 }
2114 
2115 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS,
2116                                      int &FI, StringRef Src,
2117                                      SMDiagnostic &Error) {
2118   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2119 }
2120 
2121 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS,
2122                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2123   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2124 }
2125