1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueSymbolTable.h" 56 #include "llvm/MC/LaneBitmask.h" 57 #include "llvm/MC/MCDwarf.h" 58 #include "llvm/MC/MCInstrDesc.h" 59 #include "llvm/MC/MCRegisterInfo.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MemoryBuffer.h" 66 #include "llvm/Support/SMLoc.h" 67 #include "llvm/Support/SourceMgr.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cctype> 74 #include <cstddef> 75 #include <cstdint> 76 #include <limits> 77 #include <string> 78 #include <utility> 79 80 using namespace llvm; 81 82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 83 SourceMgr &SM, const SlotMapping &IRSlots, 84 const Name2RegClassMap &Names2RegClasses, 85 const Name2RegBankMap &Names2RegBanks) 86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 87 Names2RegBanks(Names2RegBanks) { 88 } 89 90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 92 if (I.second) { 93 MachineRegisterInfo &MRI = MF.getRegInfo(); 94 VRegInfo *Info = new (Allocator) VRegInfo; 95 Info->VReg = MRI.createIncompleteVirtualRegister(); 96 I.first->second = Info; 97 } 98 return *I.first->second; 99 } 100 101 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 102 assert(RegName != "" && "Expected named reg."); 103 104 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 105 if (I.second) { 106 VRegInfo *Info = new (Allocator) VRegInfo; 107 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 108 I.first->second = Info; 109 } 110 return *I.first->second; 111 } 112 113 namespace { 114 115 /// A wrapper struct around the 'MachineOperand' struct that includes a source 116 /// range and other attributes. 117 struct ParsedMachineOperand { 118 MachineOperand Operand; 119 StringRef::iterator Begin; 120 StringRef::iterator End; 121 Optional<unsigned> TiedDefIdx; 122 123 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 124 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 125 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 126 if (TiedDefIdx) 127 assert(Operand.isReg() && Operand.isUse() && 128 "Only used register operands can be tied"); 129 } 130 }; 131 132 class MIParser { 133 MachineFunction &MF; 134 SMDiagnostic &Error; 135 StringRef Source, CurrentSource; 136 MIToken Token; 137 PerFunctionMIParsingState &PFS; 138 /// Maps from instruction names to op codes. 139 StringMap<unsigned> Names2InstrOpCodes; 140 /// Maps from register names to registers. 141 StringMap<unsigned> Names2Regs; 142 /// Maps from register mask names to register masks. 143 StringMap<const uint32_t *> Names2RegMasks; 144 /// Maps from subregister names to subregister indices. 145 StringMap<unsigned> Names2SubRegIndices; 146 /// Maps from slot numbers to function's unnamed basic blocks. 147 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 148 /// Maps from slot numbers to function's unnamed values. 149 DenseMap<unsigned, const Value *> Slots2Values; 150 /// Maps from target index names to target indices. 151 StringMap<int> Names2TargetIndices; 152 /// Maps from direct target flag names to the direct target flag values. 153 StringMap<unsigned> Names2DirectTargetFlags; 154 /// Maps from direct target flag names to the bitmask target flag values. 155 StringMap<unsigned> Names2BitmaskTargetFlags; 156 /// Maps from MMO target flag names to MMO target flag values. 157 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 158 159 public: 160 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 161 StringRef Source); 162 163 /// \p SkipChar gives the number of characters to skip before looking 164 /// for the next token. 165 void lex(unsigned SkipChar = 0); 166 167 /// Report an error at the current location with the given message. 168 /// 169 /// This function always return true. 170 bool error(const Twine &Msg); 171 172 /// Report an error at the given location with the given message. 173 /// 174 /// This function always return true. 175 bool error(StringRef::iterator Loc, const Twine &Msg); 176 177 bool 178 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 179 bool parseBasicBlocks(); 180 bool parse(MachineInstr *&MI); 181 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 182 bool parseStandaloneNamedRegister(unsigned &Reg); 183 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 184 bool parseStandaloneRegister(unsigned &Reg); 185 bool parseStandaloneStackObject(int &FI); 186 bool parseStandaloneMDNode(MDNode *&Node); 187 188 bool 189 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 190 bool parseBasicBlock(MachineBasicBlock &MBB, 191 MachineBasicBlock *&AddFalthroughFrom); 192 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 193 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 194 195 bool parseNamedRegister(unsigned &Reg); 196 bool parseVirtualRegister(VRegInfo *&Info); 197 bool parseNamedVirtualRegister(VRegInfo *&Info); 198 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 199 bool parseRegisterFlag(unsigned &Flags); 200 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 201 bool parseSubRegisterIndex(unsigned &SubReg); 202 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 203 bool parseRegisterOperand(MachineOperand &Dest, 204 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 205 bool parseImmediateOperand(MachineOperand &Dest); 206 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 207 const Constant *&C); 208 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 209 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 210 bool parseTypedImmediateOperand(MachineOperand &Dest); 211 bool parseFPImmediateOperand(MachineOperand &Dest); 212 bool parseMBBReference(MachineBasicBlock *&MBB); 213 bool parseMBBOperand(MachineOperand &Dest); 214 bool parseStackFrameIndex(int &FI); 215 bool parseStackObjectOperand(MachineOperand &Dest); 216 bool parseFixedStackFrameIndex(int &FI); 217 bool parseFixedStackObjectOperand(MachineOperand &Dest); 218 bool parseGlobalValue(GlobalValue *&GV); 219 bool parseGlobalAddressOperand(MachineOperand &Dest); 220 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 221 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 222 bool parseJumpTableIndexOperand(MachineOperand &Dest); 223 bool parseExternalSymbolOperand(MachineOperand &Dest); 224 bool parseMDNode(MDNode *&Node); 225 bool parseDIExpression(MDNode *&Node); 226 bool parseMetadataOperand(MachineOperand &Dest); 227 bool parseCFIOffset(int &Offset); 228 bool parseCFIRegister(unsigned &Reg); 229 bool parseCFIEscapeValues(std::string& Values); 230 bool parseCFIOperand(MachineOperand &Dest); 231 bool parseIRBlock(BasicBlock *&BB, const Function &F); 232 bool parseBlockAddressOperand(MachineOperand &Dest); 233 bool parseIntrinsicOperand(MachineOperand &Dest); 234 bool parsePredicateOperand(MachineOperand &Dest); 235 bool parseTargetIndexOperand(MachineOperand &Dest); 236 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 237 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 238 bool parseMachineOperand(MachineOperand &Dest, 239 Optional<unsigned> &TiedDefIdx); 240 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 241 Optional<unsigned> &TiedDefIdx); 242 bool parseOffset(int64_t &Offset); 243 bool parseAlignment(unsigned &Alignment); 244 bool parseAddrspace(unsigned &Addrspace); 245 bool parseOperandsOffset(MachineOperand &Op); 246 bool parseIRValue(const Value *&V); 247 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 248 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 249 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 250 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 251 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 252 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 253 254 private: 255 /// Convert the integer literal in the current token into an unsigned integer. 256 /// 257 /// Return true if an error occurred. 258 bool getUnsigned(unsigned &Result); 259 260 /// Convert the integer literal in the current token into an uint64. 261 /// 262 /// Return true if an error occurred. 263 bool getUint64(uint64_t &Result); 264 265 /// Convert the hexadecimal literal in the current token into an unsigned 266 /// APInt with a minimum bitwidth required to represent the value. 267 /// 268 /// Return true if the literal does not represent an integer value. 269 bool getHexUint(APInt &Result); 270 271 /// If the current token is of the given kind, consume it and return false. 272 /// Otherwise report an error and return true. 273 bool expectAndConsume(MIToken::TokenKind TokenKind); 274 275 /// If the current token is of the given kind, consume it and return true. 276 /// Otherwise return false. 277 bool consumeIfPresent(MIToken::TokenKind TokenKind); 278 279 void initNames2InstrOpCodes(); 280 281 /// Try to convert an instruction name to an opcode. Return true if the 282 /// instruction name is invalid. 283 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 284 285 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 286 287 bool assignRegisterTies(MachineInstr &MI, 288 ArrayRef<ParsedMachineOperand> Operands); 289 290 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 291 const MCInstrDesc &MCID); 292 293 void initNames2Regs(); 294 295 /// Try to convert a register name to a register number. Return true if the 296 /// register name is invalid. 297 bool getRegisterByName(StringRef RegName, unsigned &Reg); 298 299 void initNames2RegMasks(); 300 301 /// Check if the given identifier is a name of a register mask. 302 /// 303 /// Return null if the identifier isn't a register mask. 304 const uint32_t *getRegMask(StringRef Identifier); 305 306 void initNames2SubRegIndices(); 307 308 /// Check if the given identifier is a name of a subregister index. 309 /// 310 /// Return 0 if the name isn't a subregister index class. 311 unsigned getSubRegIndex(StringRef Name); 312 313 const BasicBlock *getIRBlock(unsigned Slot); 314 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 315 316 const Value *getIRValue(unsigned Slot); 317 318 void initNames2TargetIndices(); 319 320 /// Try to convert a name of target index to the corresponding target index. 321 /// 322 /// Return true if the name isn't a name of a target index. 323 bool getTargetIndex(StringRef Name, int &Index); 324 325 void initNames2DirectTargetFlags(); 326 327 /// Try to convert a name of a direct target flag to the corresponding 328 /// target flag. 329 /// 330 /// Return true if the name isn't a name of a direct flag. 331 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 332 333 void initNames2BitmaskTargetFlags(); 334 335 /// Try to convert a name of a bitmask target flag to the corresponding 336 /// target flag. 337 /// 338 /// Return true if the name isn't a name of a bitmask target flag. 339 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 340 341 void initNames2MMOTargetFlags(); 342 343 /// Try to convert a name of a MachineMemOperand target flag to the 344 /// corresponding target flag. 345 /// 346 /// Return true if the name isn't a name of a target MMO flag. 347 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 348 349 /// parseStringConstant 350 /// ::= StringConstant 351 bool parseStringConstant(std::string &Result); 352 }; 353 354 } // end anonymous namespace 355 356 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 357 StringRef Source) 358 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 359 {} 360 361 void MIParser::lex(unsigned SkipChar) { 362 CurrentSource = lexMIToken( 363 CurrentSource.data() + SkipChar, Token, 364 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 365 } 366 367 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 368 369 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 370 const SourceMgr &SM = *PFS.SM; 371 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 372 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 373 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 374 // Create an ordinary diagnostic when the source manager's buffer is the 375 // source string. 376 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 377 return true; 378 } 379 // Create a diagnostic for a YAML string literal. 380 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 381 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 382 Source, None, None); 383 return true; 384 } 385 386 static const char *toString(MIToken::TokenKind TokenKind) { 387 switch (TokenKind) { 388 case MIToken::comma: 389 return "','"; 390 case MIToken::equal: 391 return "'='"; 392 case MIToken::colon: 393 return "':'"; 394 case MIToken::lparen: 395 return "'('"; 396 case MIToken::rparen: 397 return "')'"; 398 default: 399 return "<unknown token>"; 400 } 401 } 402 403 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 404 if (Token.isNot(TokenKind)) 405 return error(Twine("expected ") + toString(TokenKind)); 406 lex(); 407 return false; 408 } 409 410 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 411 if (Token.isNot(TokenKind)) 412 return false; 413 lex(); 414 return true; 415 } 416 417 bool MIParser::parseBasicBlockDefinition( 418 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 419 assert(Token.is(MIToken::MachineBasicBlockLabel)); 420 unsigned ID = 0; 421 if (getUnsigned(ID)) 422 return true; 423 auto Loc = Token.location(); 424 auto Name = Token.stringValue(); 425 lex(); 426 bool HasAddressTaken = false; 427 bool IsLandingPad = false; 428 unsigned Alignment = 0; 429 BasicBlock *BB = nullptr; 430 if (consumeIfPresent(MIToken::lparen)) { 431 do { 432 // TODO: Report an error when multiple same attributes are specified. 433 switch (Token.kind()) { 434 case MIToken::kw_address_taken: 435 HasAddressTaken = true; 436 lex(); 437 break; 438 case MIToken::kw_landing_pad: 439 IsLandingPad = true; 440 lex(); 441 break; 442 case MIToken::kw_align: 443 if (parseAlignment(Alignment)) 444 return true; 445 break; 446 case MIToken::IRBlock: 447 // TODO: Report an error when both name and ir block are specified. 448 if (parseIRBlock(BB, MF.getFunction())) 449 return true; 450 lex(); 451 break; 452 default: 453 break; 454 } 455 } while (consumeIfPresent(MIToken::comma)); 456 if (expectAndConsume(MIToken::rparen)) 457 return true; 458 } 459 if (expectAndConsume(MIToken::colon)) 460 return true; 461 462 if (!Name.empty()) { 463 BB = dyn_cast_or_null<BasicBlock>( 464 MF.getFunction().getValueSymbolTable()->lookup(Name)); 465 if (!BB) 466 return error(Loc, Twine("basic block '") + Name + 467 "' is not defined in the function '" + 468 MF.getName() + "'"); 469 } 470 auto *MBB = MF.CreateMachineBasicBlock(BB); 471 MF.insert(MF.end(), MBB); 472 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 473 if (!WasInserted) 474 return error(Loc, Twine("redefinition of machine basic block with id #") + 475 Twine(ID)); 476 if (Alignment) 477 MBB->setAlignment(Alignment); 478 if (HasAddressTaken) 479 MBB->setHasAddressTaken(); 480 MBB->setIsEHPad(IsLandingPad); 481 return false; 482 } 483 484 bool MIParser::parseBasicBlockDefinitions( 485 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 486 lex(); 487 // Skip until the first machine basic block. 488 while (Token.is(MIToken::Newline)) 489 lex(); 490 if (Token.isErrorOrEOF()) 491 return Token.isError(); 492 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 493 return error("expected a basic block definition before instructions"); 494 unsigned BraceDepth = 0; 495 do { 496 if (parseBasicBlockDefinition(MBBSlots)) 497 return true; 498 bool IsAfterNewline = false; 499 // Skip until the next machine basic block. 500 while (true) { 501 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 502 Token.isErrorOrEOF()) 503 break; 504 else if (Token.is(MIToken::MachineBasicBlockLabel)) 505 return error("basic block definition should be located at the start of " 506 "the line"); 507 else if (consumeIfPresent(MIToken::Newline)) { 508 IsAfterNewline = true; 509 continue; 510 } 511 IsAfterNewline = false; 512 if (Token.is(MIToken::lbrace)) 513 ++BraceDepth; 514 if (Token.is(MIToken::rbrace)) { 515 if (!BraceDepth) 516 return error("extraneous closing brace ('}')"); 517 --BraceDepth; 518 } 519 lex(); 520 } 521 // Verify that we closed all of the '{' at the end of a file or a block. 522 if (!Token.isError() && BraceDepth) 523 return error("expected '}'"); // FIXME: Report a note that shows '{'. 524 } while (!Token.isErrorOrEOF()); 525 return Token.isError(); 526 } 527 528 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 529 assert(Token.is(MIToken::kw_liveins)); 530 lex(); 531 if (expectAndConsume(MIToken::colon)) 532 return true; 533 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 534 return false; 535 do { 536 if (Token.isNot(MIToken::NamedRegister)) 537 return error("expected a named register"); 538 unsigned Reg = 0; 539 if (parseNamedRegister(Reg)) 540 return true; 541 lex(); 542 LaneBitmask Mask = LaneBitmask::getAll(); 543 if (consumeIfPresent(MIToken::colon)) { 544 // Parse lane mask. 545 if (Token.isNot(MIToken::IntegerLiteral) && 546 Token.isNot(MIToken::HexLiteral)) 547 return error("expected a lane mask"); 548 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 549 "Use correct get-function for lane mask"); 550 LaneBitmask::Type V; 551 if (getUnsigned(V)) 552 return error("invalid lane mask value"); 553 Mask = LaneBitmask(V); 554 lex(); 555 } 556 MBB.addLiveIn(Reg, Mask); 557 } while (consumeIfPresent(MIToken::comma)); 558 return false; 559 } 560 561 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 562 assert(Token.is(MIToken::kw_successors)); 563 lex(); 564 if (expectAndConsume(MIToken::colon)) 565 return true; 566 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 567 return false; 568 do { 569 if (Token.isNot(MIToken::MachineBasicBlock)) 570 return error("expected a machine basic block reference"); 571 MachineBasicBlock *SuccMBB = nullptr; 572 if (parseMBBReference(SuccMBB)) 573 return true; 574 lex(); 575 unsigned Weight = 0; 576 if (consumeIfPresent(MIToken::lparen)) { 577 if (Token.isNot(MIToken::IntegerLiteral) && 578 Token.isNot(MIToken::HexLiteral)) 579 return error("expected an integer literal after '('"); 580 if (getUnsigned(Weight)) 581 return true; 582 lex(); 583 if (expectAndConsume(MIToken::rparen)) 584 return true; 585 } 586 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 587 } while (consumeIfPresent(MIToken::comma)); 588 MBB.normalizeSuccProbs(); 589 return false; 590 } 591 592 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 593 MachineBasicBlock *&AddFalthroughFrom) { 594 // Skip the definition. 595 assert(Token.is(MIToken::MachineBasicBlockLabel)); 596 lex(); 597 if (consumeIfPresent(MIToken::lparen)) { 598 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 599 lex(); 600 consumeIfPresent(MIToken::rparen); 601 } 602 consumeIfPresent(MIToken::colon); 603 604 // Parse the liveins and successors. 605 // N.B: Multiple lists of successors and liveins are allowed and they're 606 // merged into one. 607 // Example: 608 // liveins: %edi 609 // liveins: %esi 610 // 611 // is equivalent to 612 // liveins: %edi, %esi 613 bool ExplicitSuccessors = false; 614 while (true) { 615 if (Token.is(MIToken::kw_successors)) { 616 if (parseBasicBlockSuccessors(MBB)) 617 return true; 618 ExplicitSuccessors = true; 619 } else if (Token.is(MIToken::kw_liveins)) { 620 if (parseBasicBlockLiveins(MBB)) 621 return true; 622 } else if (consumeIfPresent(MIToken::Newline)) { 623 continue; 624 } else 625 break; 626 if (!Token.isNewlineOrEOF()) 627 return error("expected line break at the end of a list"); 628 lex(); 629 } 630 631 // Parse the instructions. 632 bool IsInBundle = false; 633 MachineInstr *PrevMI = nullptr; 634 while (!Token.is(MIToken::MachineBasicBlockLabel) && 635 !Token.is(MIToken::Eof)) { 636 if (consumeIfPresent(MIToken::Newline)) 637 continue; 638 if (consumeIfPresent(MIToken::rbrace)) { 639 // The first parsing pass should verify that all closing '}' have an 640 // opening '{'. 641 assert(IsInBundle); 642 IsInBundle = false; 643 continue; 644 } 645 MachineInstr *MI = nullptr; 646 if (parse(MI)) 647 return true; 648 MBB.insert(MBB.end(), MI); 649 if (IsInBundle) { 650 PrevMI->setFlag(MachineInstr::BundledSucc); 651 MI->setFlag(MachineInstr::BundledPred); 652 } 653 PrevMI = MI; 654 if (Token.is(MIToken::lbrace)) { 655 if (IsInBundle) 656 return error("nested instruction bundles are not allowed"); 657 lex(); 658 // This instruction is the start of the bundle. 659 MI->setFlag(MachineInstr::BundledSucc); 660 IsInBundle = true; 661 if (!Token.is(MIToken::Newline)) 662 // The next instruction can be on the same line. 663 continue; 664 } 665 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 666 lex(); 667 } 668 669 // Construct successor list by searching for basic block machine operands. 670 if (!ExplicitSuccessors) { 671 SmallVector<MachineBasicBlock*,4> Successors; 672 bool IsFallthrough; 673 guessSuccessors(MBB, Successors, IsFallthrough); 674 for (MachineBasicBlock *Succ : Successors) 675 MBB.addSuccessor(Succ); 676 677 if (IsFallthrough) { 678 AddFalthroughFrom = &MBB; 679 } else { 680 MBB.normalizeSuccProbs(); 681 } 682 } 683 684 return false; 685 } 686 687 bool MIParser::parseBasicBlocks() { 688 lex(); 689 // Skip until the first machine basic block. 690 while (Token.is(MIToken::Newline)) 691 lex(); 692 if (Token.isErrorOrEOF()) 693 return Token.isError(); 694 // The first parsing pass should have verified that this token is a MBB label 695 // in the 'parseBasicBlockDefinitions' method. 696 assert(Token.is(MIToken::MachineBasicBlockLabel)); 697 MachineBasicBlock *AddFalthroughFrom = nullptr; 698 do { 699 MachineBasicBlock *MBB = nullptr; 700 if (parseMBBReference(MBB)) 701 return true; 702 if (AddFalthroughFrom) { 703 if (!AddFalthroughFrom->isSuccessor(MBB)) 704 AddFalthroughFrom->addSuccessor(MBB); 705 AddFalthroughFrom->normalizeSuccProbs(); 706 AddFalthroughFrom = nullptr; 707 } 708 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 709 return true; 710 // The method 'parseBasicBlock' should parse the whole block until the next 711 // block or the end of file. 712 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 713 } while (Token.isNot(MIToken::Eof)); 714 return false; 715 } 716 717 bool MIParser::parse(MachineInstr *&MI) { 718 // Parse any register operands before '=' 719 MachineOperand MO = MachineOperand::CreateImm(0); 720 SmallVector<ParsedMachineOperand, 8> Operands; 721 while (Token.isRegister() || Token.isRegisterFlag()) { 722 auto Loc = Token.location(); 723 Optional<unsigned> TiedDefIdx; 724 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 725 return true; 726 Operands.push_back( 727 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 728 if (Token.isNot(MIToken::comma)) 729 break; 730 lex(); 731 } 732 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 733 return true; 734 735 unsigned OpCode, Flags = 0; 736 if (Token.isError() || parseInstruction(OpCode, Flags)) 737 return true; 738 739 // Parse the remaining machine operands. 740 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 741 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 742 auto Loc = Token.location(); 743 Optional<unsigned> TiedDefIdx; 744 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 745 return true; 746 Operands.push_back( 747 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 748 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 749 Token.is(MIToken::lbrace)) 750 break; 751 if (Token.isNot(MIToken::comma)) 752 return error("expected ',' before the next machine operand"); 753 lex(); 754 } 755 756 DebugLoc DebugLocation; 757 if (Token.is(MIToken::kw_debug_location)) { 758 lex(); 759 if (Token.isNot(MIToken::exclaim)) 760 return error("expected a metadata node after 'debug-location'"); 761 MDNode *Node = nullptr; 762 if (parseMDNode(Node)) 763 return true; 764 DebugLocation = DebugLoc(Node); 765 } 766 767 // Parse the machine memory operands. 768 SmallVector<MachineMemOperand *, 2> MemOperands; 769 if (Token.is(MIToken::coloncolon)) { 770 lex(); 771 while (!Token.isNewlineOrEOF()) { 772 MachineMemOperand *MemOp = nullptr; 773 if (parseMachineMemoryOperand(MemOp)) 774 return true; 775 MemOperands.push_back(MemOp); 776 if (Token.isNewlineOrEOF()) 777 break; 778 if (Token.isNot(MIToken::comma)) 779 return error("expected ',' before the next machine memory operand"); 780 lex(); 781 } 782 } 783 784 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 785 if (!MCID.isVariadic()) { 786 // FIXME: Move the implicit operand verification to the machine verifier. 787 if (verifyImplicitOperands(Operands, MCID)) 788 return true; 789 } 790 791 // TODO: Check for extraneous machine operands. 792 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 793 MI->setFlags(Flags); 794 for (const auto &Operand : Operands) 795 MI->addOperand(MF, Operand.Operand); 796 if (assignRegisterTies(*MI, Operands)) 797 return true; 798 if (MemOperands.empty()) 799 return false; 800 MachineInstr::mmo_iterator MemRefs = 801 MF.allocateMemRefsArray(MemOperands.size()); 802 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 803 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 804 return false; 805 } 806 807 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 808 lex(); 809 if (Token.isNot(MIToken::MachineBasicBlock)) 810 return error("expected a machine basic block reference"); 811 if (parseMBBReference(MBB)) 812 return true; 813 lex(); 814 if (Token.isNot(MIToken::Eof)) 815 return error( 816 "expected end of string after the machine basic block reference"); 817 return false; 818 } 819 820 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 821 lex(); 822 if (Token.isNot(MIToken::NamedRegister)) 823 return error("expected a named register"); 824 if (parseNamedRegister(Reg)) 825 return true; 826 lex(); 827 if (Token.isNot(MIToken::Eof)) 828 return error("expected end of string after the register reference"); 829 return false; 830 } 831 832 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 833 lex(); 834 if (Token.isNot(MIToken::VirtualRegister)) 835 return error("expected a virtual register"); 836 if (parseVirtualRegister(Info)) 837 return true; 838 lex(); 839 if (Token.isNot(MIToken::Eof)) 840 return error("expected end of string after the register reference"); 841 return false; 842 } 843 844 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 845 lex(); 846 if (Token.isNot(MIToken::NamedRegister) && 847 Token.isNot(MIToken::VirtualRegister)) 848 return error("expected either a named or virtual register"); 849 850 VRegInfo *Info; 851 if (parseRegister(Reg, Info)) 852 return true; 853 854 lex(); 855 if (Token.isNot(MIToken::Eof)) 856 return error("expected end of string after the register reference"); 857 return false; 858 } 859 860 bool MIParser::parseStandaloneStackObject(int &FI) { 861 lex(); 862 if (Token.isNot(MIToken::StackObject)) 863 return error("expected a stack object"); 864 if (parseStackFrameIndex(FI)) 865 return true; 866 if (Token.isNot(MIToken::Eof)) 867 return error("expected end of string after the stack object reference"); 868 return false; 869 } 870 871 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 872 lex(); 873 if (Token.is(MIToken::exclaim)) { 874 if (parseMDNode(Node)) 875 return true; 876 } else if (Token.is(MIToken::md_diexpr)) { 877 if (parseDIExpression(Node)) 878 return true; 879 } else 880 return error("expected a metadata node"); 881 if (Token.isNot(MIToken::Eof)) 882 return error("expected end of string after the metadata node"); 883 return false; 884 } 885 886 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 887 assert(MO.isImplicit()); 888 return MO.isDef() ? "implicit-def" : "implicit"; 889 } 890 891 static std::string getRegisterName(const TargetRegisterInfo *TRI, 892 unsigned Reg) { 893 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 894 return StringRef(TRI->getName(Reg)).lower(); 895 } 896 897 /// Return true if the parsed machine operands contain a given machine operand. 898 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 899 ArrayRef<ParsedMachineOperand> Operands) { 900 for (const auto &I : Operands) { 901 if (ImplicitOperand.isIdenticalTo(I.Operand)) 902 return true; 903 } 904 return false; 905 } 906 907 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 908 const MCInstrDesc &MCID) { 909 if (MCID.isCall()) 910 // We can't verify call instructions as they can contain arbitrary implicit 911 // register and register mask operands. 912 return false; 913 914 // Gather all the expected implicit operands. 915 SmallVector<MachineOperand, 4> ImplicitOperands; 916 if (MCID.ImplicitDefs) 917 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 918 ImplicitOperands.push_back( 919 MachineOperand::CreateReg(*ImpDefs, true, true)); 920 if (MCID.ImplicitUses) 921 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 922 ImplicitOperands.push_back( 923 MachineOperand::CreateReg(*ImpUses, false, true)); 924 925 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 926 assert(TRI && "Expected target register info"); 927 for (const auto &I : ImplicitOperands) { 928 if (isImplicitOperandIn(I, Operands)) 929 continue; 930 return error(Operands.empty() ? Token.location() : Operands.back().End, 931 Twine("missing implicit register operand '") + 932 printImplicitRegisterFlag(I) + " %" + 933 getRegisterName(TRI, I.getReg()) + "'"); 934 } 935 return false; 936 } 937 938 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 939 // Allow frame and fast math flags for OPCODE 940 while (Token.is(MIToken::kw_frame_setup) || 941 Token.is(MIToken::kw_frame_destroy) || 942 Token.is(MIToken::kw_nnan) || 943 Token.is(MIToken::kw_ninf) || 944 Token.is(MIToken::kw_nsz) || 945 Token.is(MIToken::kw_arcp) || 946 Token.is(MIToken::kw_contract) || 947 Token.is(MIToken::kw_afn) || 948 Token.is(MIToken::kw_reassoc)) { 949 // Mine frame and fast math flags 950 if (Token.is(MIToken::kw_frame_setup)) 951 Flags |= MachineInstr::FrameSetup; 952 if (Token.is(MIToken::kw_frame_destroy)) 953 Flags |= MachineInstr::FrameDestroy; 954 if (Token.is(MIToken::kw_nnan)) 955 Flags |= MachineInstr::FmNoNans; 956 if (Token.is(MIToken::kw_ninf)) 957 Flags |= MachineInstr::FmNoInfs; 958 if (Token.is(MIToken::kw_nsz)) 959 Flags |= MachineInstr::FmNsz; 960 if (Token.is(MIToken::kw_arcp)) 961 Flags |= MachineInstr::FmArcp; 962 if (Token.is(MIToken::kw_contract)) 963 Flags |= MachineInstr::FmContract; 964 if (Token.is(MIToken::kw_afn)) 965 Flags |= MachineInstr::FmAfn; 966 if (Token.is(MIToken::kw_reassoc)) 967 Flags |= MachineInstr::FmReassoc; 968 969 lex(); 970 } 971 if (Token.isNot(MIToken::Identifier)) 972 return error("expected a machine instruction"); 973 StringRef InstrName = Token.stringValue(); 974 if (parseInstrName(InstrName, OpCode)) 975 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 976 lex(); 977 return false; 978 } 979 980 bool MIParser::parseNamedRegister(unsigned &Reg) { 981 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 982 StringRef Name = Token.stringValue(); 983 if (getRegisterByName(Name, Reg)) 984 return error(Twine("unknown register name '") + Name + "'"); 985 return false; 986 } 987 988 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 989 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 990 StringRef Name = Token.stringValue(); 991 // TODO: Check that the VReg name is not the same as a physical register name. 992 // If it is, then print a warning (when warnings are implemented). 993 Info = &PFS.getVRegInfoNamed(Name); 994 return false; 995 } 996 997 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 998 if (Token.is(MIToken::NamedVirtualRegister)) 999 return parseNamedVirtualRegister(Info); 1000 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1001 unsigned ID; 1002 if (getUnsigned(ID)) 1003 return true; 1004 Info = &PFS.getVRegInfo(ID); 1005 return false; 1006 } 1007 1008 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1009 switch (Token.kind()) { 1010 case MIToken::underscore: 1011 Reg = 0; 1012 return false; 1013 case MIToken::NamedRegister: 1014 return parseNamedRegister(Reg); 1015 case MIToken::NamedVirtualRegister: 1016 case MIToken::VirtualRegister: 1017 if (parseVirtualRegister(Info)) 1018 return true; 1019 Reg = Info->VReg; 1020 return false; 1021 // TODO: Parse other register kinds. 1022 default: 1023 llvm_unreachable("The current token should be a register"); 1024 } 1025 } 1026 1027 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1028 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1029 return error("expected '_', register class, or register bank name"); 1030 StringRef::iterator Loc = Token.location(); 1031 StringRef Name = Token.stringValue(); 1032 1033 // Was it a register class? 1034 auto RCNameI = PFS.Names2RegClasses.find(Name); 1035 if (RCNameI != PFS.Names2RegClasses.end()) { 1036 lex(); 1037 const TargetRegisterClass &RC = *RCNameI->getValue(); 1038 1039 switch (RegInfo.Kind) { 1040 case VRegInfo::UNKNOWN: 1041 case VRegInfo::NORMAL: 1042 RegInfo.Kind = VRegInfo::NORMAL; 1043 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 1044 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1045 return error(Loc, Twine("conflicting register classes, previously: ") + 1046 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1047 } 1048 RegInfo.D.RC = &RC; 1049 RegInfo.Explicit = true; 1050 return false; 1051 1052 case VRegInfo::GENERIC: 1053 case VRegInfo::REGBANK: 1054 return error(Loc, "register class specification on generic register"); 1055 } 1056 llvm_unreachable("Unexpected register kind"); 1057 } 1058 1059 // Should be a register bank or a generic register. 1060 const RegisterBank *RegBank = nullptr; 1061 if (Name != "_") { 1062 auto RBNameI = PFS.Names2RegBanks.find(Name); 1063 if (RBNameI == PFS.Names2RegBanks.end()) 1064 return error(Loc, "expected '_', register class, or register bank name"); 1065 RegBank = RBNameI->getValue(); 1066 } 1067 1068 lex(); 1069 1070 switch (RegInfo.Kind) { 1071 case VRegInfo::UNKNOWN: 1072 case VRegInfo::GENERIC: 1073 case VRegInfo::REGBANK: 1074 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1075 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1076 return error(Loc, "conflicting generic register banks"); 1077 RegInfo.D.RegBank = RegBank; 1078 RegInfo.Explicit = true; 1079 return false; 1080 1081 case VRegInfo::NORMAL: 1082 return error(Loc, "register bank specification on normal register"); 1083 } 1084 llvm_unreachable("Unexpected register kind"); 1085 } 1086 1087 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1088 const unsigned OldFlags = Flags; 1089 switch (Token.kind()) { 1090 case MIToken::kw_implicit: 1091 Flags |= RegState::Implicit; 1092 break; 1093 case MIToken::kw_implicit_define: 1094 Flags |= RegState::ImplicitDefine; 1095 break; 1096 case MIToken::kw_def: 1097 Flags |= RegState::Define; 1098 break; 1099 case MIToken::kw_dead: 1100 Flags |= RegState::Dead; 1101 break; 1102 case MIToken::kw_killed: 1103 Flags |= RegState::Kill; 1104 break; 1105 case MIToken::kw_undef: 1106 Flags |= RegState::Undef; 1107 break; 1108 case MIToken::kw_internal: 1109 Flags |= RegState::InternalRead; 1110 break; 1111 case MIToken::kw_early_clobber: 1112 Flags |= RegState::EarlyClobber; 1113 break; 1114 case MIToken::kw_debug_use: 1115 Flags |= RegState::Debug; 1116 break; 1117 case MIToken::kw_renamable: 1118 Flags |= RegState::Renamable; 1119 break; 1120 default: 1121 llvm_unreachable("The current token should be a register flag"); 1122 } 1123 if (OldFlags == Flags) 1124 // We know that the same flag is specified more than once when the flags 1125 // weren't modified. 1126 return error("duplicate '" + Token.stringValue() + "' register flag"); 1127 lex(); 1128 return false; 1129 } 1130 1131 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1132 assert(Token.is(MIToken::dot)); 1133 lex(); 1134 if (Token.isNot(MIToken::Identifier)) 1135 return error("expected a subregister index after '.'"); 1136 auto Name = Token.stringValue(); 1137 SubReg = getSubRegIndex(Name); 1138 if (!SubReg) 1139 return error(Twine("use of unknown subregister index '") + Name + "'"); 1140 lex(); 1141 return false; 1142 } 1143 1144 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1145 if (!consumeIfPresent(MIToken::kw_tied_def)) 1146 return true; 1147 if (Token.isNot(MIToken::IntegerLiteral)) 1148 return error("expected an integer literal after 'tied-def'"); 1149 if (getUnsigned(TiedDefIdx)) 1150 return true; 1151 lex(); 1152 if (expectAndConsume(MIToken::rparen)) 1153 return true; 1154 return false; 1155 } 1156 1157 bool MIParser::assignRegisterTies(MachineInstr &MI, 1158 ArrayRef<ParsedMachineOperand> Operands) { 1159 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1160 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1161 if (!Operands[I].TiedDefIdx) 1162 continue; 1163 // The parser ensures that this operand is a register use, so we just have 1164 // to check the tied-def operand. 1165 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1166 if (DefIdx >= E) 1167 return error(Operands[I].Begin, 1168 Twine("use of invalid tied-def operand index '" + 1169 Twine(DefIdx) + "'; instruction has only ") + 1170 Twine(E) + " operands"); 1171 const auto &DefOperand = Operands[DefIdx].Operand; 1172 if (!DefOperand.isReg() || !DefOperand.isDef()) 1173 // FIXME: add note with the def operand. 1174 return error(Operands[I].Begin, 1175 Twine("use of invalid tied-def operand index '") + 1176 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1177 " isn't a defined register"); 1178 // Check that the tied-def operand wasn't tied elsewhere. 1179 for (const auto &TiedPair : TiedRegisterPairs) { 1180 if (TiedPair.first == DefIdx) 1181 return error(Operands[I].Begin, 1182 Twine("the tied-def operand #") + Twine(DefIdx) + 1183 " is already tied with another register operand"); 1184 } 1185 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1186 } 1187 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1188 // indices must be less than tied max. 1189 for (const auto &TiedPair : TiedRegisterPairs) 1190 MI.tieOperands(TiedPair.first, TiedPair.second); 1191 return false; 1192 } 1193 1194 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1195 Optional<unsigned> &TiedDefIdx, 1196 bool IsDef) { 1197 unsigned Flags = IsDef ? RegState::Define : 0; 1198 while (Token.isRegisterFlag()) { 1199 if (parseRegisterFlag(Flags)) 1200 return true; 1201 } 1202 if (!Token.isRegister()) 1203 return error("expected a register after register flags"); 1204 unsigned Reg; 1205 VRegInfo *RegInfo; 1206 if (parseRegister(Reg, RegInfo)) 1207 return true; 1208 lex(); 1209 unsigned SubReg = 0; 1210 if (Token.is(MIToken::dot)) { 1211 if (parseSubRegisterIndex(SubReg)) 1212 return true; 1213 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1214 return error("subregister index expects a virtual register"); 1215 } 1216 if (Token.is(MIToken::colon)) { 1217 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1218 return error("register class specification expects a virtual register"); 1219 lex(); 1220 if (parseRegisterClassOrBank(*RegInfo)) 1221 return true; 1222 } 1223 MachineRegisterInfo &MRI = MF.getRegInfo(); 1224 if ((Flags & RegState::Define) == 0) { 1225 if (consumeIfPresent(MIToken::lparen)) { 1226 unsigned Idx; 1227 if (!parseRegisterTiedDefIndex(Idx)) 1228 TiedDefIdx = Idx; 1229 else { 1230 // Try a redundant low-level type. 1231 LLT Ty; 1232 if (parseLowLevelType(Token.location(), Ty)) 1233 return error("expected tied-def or low-level type after '('"); 1234 1235 if (expectAndConsume(MIToken::rparen)) 1236 return true; 1237 1238 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1239 return error("inconsistent type for generic virtual register"); 1240 1241 MRI.setType(Reg, Ty); 1242 } 1243 } 1244 } else if (consumeIfPresent(MIToken::lparen)) { 1245 // Virtual registers may have a tpe with GlobalISel. 1246 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1247 return error("unexpected type on physical register"); 1248 1249 LLT Ty; 1250 if (parseLowLevelType(Token.location(), Ty)) 1251 return true; 1252 1253 if (expectAndConsume(MIToken::rparen)) 1254 return true; 1255 1256 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1257 return error("inconsistent type for generic virtual register"); 1258 1259 MRI.setType(Reg, Ty); 1260 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1261 // Generic virtual registers must have a type. 1262 // If we end up here this means the type hasn't been specified and 1263 // this is bad! 1264 if (RegInfo->Kind == VRegInfo::GENERIC || 1265 RegInfo->Kind == VRegInfo::REGBANK) 1266 return error("generic virtual registers must have a type"); 1267 } 1268 Dest = MachineOperand::CreateReg( 1269 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1270 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1271 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1272 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1273 1274 return false; 1275 } 1276 1277 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1278 assert(Token.is(MIToken::IntegerLiteral)); 1279 const APSInt &Int = Token.integerValue(); 1280 if (Int.getMinSignedBits() > 64) 1281 return error("integer literal is too large to be an immediate operand"); 1282 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1283 lex(); 1284 return false; 1285 } 1286 1287 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1288 const Constant *&C) { 1289 auto Source = StringValue.str(); // The source has to be null terminated. 1290 SMDiagnostic Err; 1291 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1292 &PFS.IRSlots); 1293 if (!C) 1294 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1295 return false; 1296 } 1297 1298 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1299 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1300 return true; 1301 lex(); 1302 return false; 1303 } 1304 1305 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1306 if (Token.is(MIToken::ScalarType)) { 1307 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1308 lex(); 1309 return false; 1310 } else if (Token.is(MIToken::PointerType)) { 1311 const DataLayout &DL = MF.getDataLayout(); 1312 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1313 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1314 lex(); 1315 return false; 1316 } 1317 1318 // Now we're looking for a vector. 1319 if (Token.isNot(MIToken::less)) 1320 return error(Loc, 1321 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1322 1323 lex(); 1324 1325 if (Token.isNot(MIToken::IntegerLiteral)) 1326 return error(Loc, "expected <N x sM> for vctor type"); 1327 uint64_t NumElements = Token.integerValue().getZExtValue(); 1328 lex(); 1329 1330 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1331 return error(Loc, "expected '<N x sM>' for vector type"); 1332 lex(); 1333 1334 if (Token.isNot(MIToken::ScalarType)) 1335 return error(Loc, "expected '<N x sM>' for vector type"); 1336 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1337 lex(); 1338 1339 if (Token.isNot(MIToken::greater)) 1340 return error(Loc, "expected '<N x sM>' for vector type"); 1341 lex(); 1342 1343 Ty = LLT::vector(NumElements, ScalarSize); 1344 return false; 1345 } 1346 1347 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1348 assert(Token.is(MIToken::IntegerType)); 1349 auto Loc = Token.location(); 1350 lex(); 1351 if (Token.isNot(MIToken::IntegerLiteral)) 1352 return error("expected an integer literal"); 1353 const Constant *C = nullptr; 1354 if (parseIRConstant(Loc, C)) 1355 return true; 1356 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1357 return false; 1358 } 1359 1360 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1361 auto Loc = Token.location(); 1362 lex(); 1363 if (Token.isNot(MIToken::FloatingPointLiteral) && 1364 Token.isNot(MIToken::HexLiteral)) 1365 return error("expected a floating point literal"); 1366 const Constant *C = nullptr; 1367 if (parseIRConstant(Loc, C)) 1368 return true; 1369 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1370 return false; 1371 } 1372 1373 bool MIParser::getUnsigned(unsigned &Result) { 1374 if (Token.hasIntegerValue()) { 1375 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1376 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1377 if (Val64 == Limit) 1378 return error("expected 32-bit integer (too large)"); 1379 Result = Val64; 1380 return false; 1381 } 1382 if (Token.is(MIToken::HexLiteral)) { 1383 APInt A; 1384 if (getHexUint(A)) 1385 return true; 1386 if (A.getBitWidth() > 32) 1387 return error("expected 32-bit integer (too large)"); 1388 Result = A.getZExtValue(); 1389 return false; 1390 } 1391 return true; 1392 } 1393 1394 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1395 assert(Token.is(MIToken::MachineBasicBlock) || 1396 Token.is(MIToken::MachineBasicBlockLabel)); 1397 unsigned Number; 1398 if (getUnsigned(Number)) 1399 return true; 1400 auto MBBInfo = PFS.MBBSlots.find(Number); 1401 if (MBBInfo == PFS.MBBSlots.end()) 1402 return error(Twine("use of undefined machine basic block #") + 1403 Twine(Number)); 1404 MBB = MBBInfo->second; 1405 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1406 // we drop the <irname> from the bb.<id>.<irname> format. 1407 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1408 return error(Twine("the name of machine basic block #") + Twine(Number) + 1409 " isn't '" + Token.stringValue() + "'"); 1410 return false; 1411 } 1412 1413 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1414 MachineBasicBlock *MBB; 1415 if (parseMBBReference(MBB)) 1416 return true; 1417 Dest = MachineOperand::CreateMBB(MBB); 1418 lex(); 1419 return false; 1420 } 1421 1422 bool MIParser::parseStackFrameIndex(int &FI) { 1423 assert(Token.is(MIToken::StackObject)); 1424 unsigned ID; 1425 if (getUnsigned(ID)) 1426 return true; 1427 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1428 if (ObjectInfo == PFS.StackObjectSlots.end()) 1429 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1430 "'"); 1431 StringRef Name; 1432 if (const auto *Alloca = 1433 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1434 Name = Alloca->getName(); 1435 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1436 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1437 "' isn't '" + Token.stringValue() + "'"); 1438 lex(); 1439 FI = ObjectInfo->second; 1440 return false; 1441 } 1442 1443 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1444 int FI; 1445 if (parseStackFrameIndex(FI)) 1446 return true; 1447 Dest = MachineOperand::CreateFI(FI); 1448 return false; 1449 } 1450 1451 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1452 assert(Token.is(MIToken::FixedStackObject)); 1453 unsigned ID; 1454 if (getUnsigned(ID)) 1455 return true; 1456 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1457 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1458 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1459 Twine(ID) + "'"); 1460 lex(); 1461 FI = ObjectInfo->second; 1462 return false; 1463 } 1464 1465 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1466 int FI; 1467 if (parseFixedStackFrameIndex(FI)) 1468 return true; 1469 Dest = MachineOperand::CreateFI(FI); 1470 return false; 1471 } 1472 1473 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1474 switch (Token.kind()) { 1475 case MIToken::NamedGlobalValue: { 1476 const Module *M = MF.getFunction().getParent(); 1477 GV = M->getNamedValue(Token.stringValue()); 1478 if (!GV) 1479 return error(Twine("use of undefined global value '") + Token.range() + 1480 "'"); 1481 break; 1482 } 1483 case MIToken::GlobalValue: { 1484 unsigned GVIdx; 1485 if (getUnsigned(GVIdx)) 1486 return true; 1487 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1488 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1489 "'"); 1490 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1491 break; 1492 } 1493 default: 1494 llvm_unreachable("The current token should be a global value"); 1495 } 1496 return false; 1497 } 1498 1499 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1500 GlobalValue *GV = nullptr; 1501 if (parseGlobalValue(GV)) 1502 return true; 1503 lex(); 1504 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1505 if (parseOperandsOffset(Dest)) 1506 return true; 1507 return false; 1508 } 1509 1510 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1511 assert(Token.is(MIToken::ConstantPoolItem)); 1512 unsigned ID; 1513 if (getUnsigned(ID)) 1514 return true; 1515 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1516 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1517 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1518 lex(); 1519 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1520 if (parseOperandsOffset(Dest)) 1521 return true; 1522 return false; 1523 } 1524 1525 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1526 assert(Token.is(MIToken::JumpTableIndex)); 1527 unsigned ID; 1528 if (getUnsigned(ID)) 1529 return true; 1530 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1531 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1532 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1533 lex(); 1534 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1535 return false; 1536 } 1537 1538 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1539 assert(Token.is(MIToken::ExternalSymbol)); 1540 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1541 lex(); 1542 Dest = MachineOperand::CreateES(Symbol); 1543 if (parseOperandsOffset(Dest)) 1544 return true; 1545 return false; 1546 } 1547 1548 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1549 assert(Token.is(MIToken::SubRegisterIndex)); 1550 StringRef Name = Token.stringValue(); 1551 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1552 if (SubRegIndex == 0) 1553 return error(Twine("unknown subregister index '") + Name + "'"); 1554 lex(); 1555 Dest = MachineOperand::CreateImm(SubRegIndex); 1556 return false; 1557 } 1558 1559 bool MIParser::parseMDNode(MDNode *&Node) { 1560 assert(Token.is(MIToken::exclaim)); 1561 1562 auto Loc = Token.location(); 1563 lex(); 1564 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1565 return error("expected metadata id after '!'"); 1566 unsigned ID; 1567 if (getUnsigned(ID)) 1568 return true; 1569 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1570 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1571 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1572 lex(); 1573 Node = NodeInfo->second.get(); 1574 return false; 1575 } 1576 1577 bool MIParser::parseDIExpression(MDNode *&Expr) { 1578 assert(Token.is(MIToken::md_diexpr)); 1579 lex(); 1580 1581 // FIXME: Share this parsing with the IL parser. 1582 SmallVector<uint64_t, 8> Elements; 1583 1584 if (expectAndConsume(MIToken::lparen)) 1585 return true; 1586 1587 if (Token.isNot(MIToken::rparen)) { 1588 do { 1589 if (Token.is(MIToken::Identifier)) { 1590 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1591 lex(); 1592 Elements.push_back(Op); 1593 continue; 1594 } 1595 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1596 } 1597 1598 if (Token.isNot(MIToken::IntegerLiteral) || 1599 Token.integerValue().isSigned()) 1600 return error("expected unsigned integer"); 1601 1602 auto &U = Token.integerValue(); 1603 if (U.ugt(UINT64_MAX)) 1604 return error("element too large, limit is " + Twine(UINT64_MAX)); 1605 Elements.push_back(U.getZExtValue()); 1606 lex(); 1607 1608 } while (consumeIfPresent(MIToken::comma)); 1609 } 1610 1611 if (expectAndConsume(MIToken::rparen)) 1612 return true; 1613 1614 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1615 return false; 1616 } 1617 1618 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1619 MDNode *Node = nullptr; 1620 if (Token.is(MIToken::exclaim)) { 1621 if (parseMDNode(Node)) 1622 return true; 1623 } else if (Token.is(MIToken::md_diexpr)) { 1624 if (parseDIExpression(Node)) 1625 return true; 1626 } 1627 Dest = MachineOperand::CreateMetadata(Node); 1628 return false; 1629 } 1630 1631 bool MIParser::parseCFIOffset(int &Offset) { 1632 if (Token.isNot(MIToken::IntegerLiteral)) 1633 return error("expected a cfi offset"); 1634 if (Token.integerValue().getMinSignedBits() > 32) 1635 return error("expected a 32 bit integer (the cfi offset is too large)"); 1636 Offset = (int)Token.integerValue().getExtValue(); 1637 lex(); 1638 return false; 1639 } 1640 1641 bool MIParser::parseCFIRegister(unsigned &Reg) { 1642 if (Token.isNot(MIToken::NamedRegister)) 1643 return error("expected a cfi register"); 1644 unsigned LLVMReg; 1645 if (parseNamedRegister(LLVMReg)) 1646 return true; 1647 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1648 assert(TRI && "Expected target register info"); 1649 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1650 if (DwarfReg < 0) 1651 return error("invalid DWARF register"); 1652 Reg = (unsigned)DwarfReg; 1653 lex(); 1654 return false; 1655 } 1656 1657 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1658 do { 1659 if (Token.isNot(MIToken::HexLiteral)) 1660 return error("expected a hexadecimal literal"); 1661 unsigned Value; 1662 if (getUnsigned(Value)) 1663 return true; 1664 if (Value > UINT8_MAX) 1665 return error("expected a 8-bit integer (too large)"); 1666 Values.push_back(static_cast<uint8_t>(Value)); 1667 lex(); 1668 } while (consumeIfPresent(MIToken::comma)); 1669 return false; 1670 } 1671 1672 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1673 auto Kind = Token.kind(); 1674 lex(); 1675 int Offset; 1676 unsigned Reg; 1677 unsigned CFIIndex; 1678 switch (Kind) { 1679 case MIToken::kw_cfi_same_value: 1680 if (parseCFIRegister(Reg)) 1681 return true; 1682 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1683 break; 1684 case MIToken::kw_cfi_offset: 1685 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1686 parseCFIOffset(Offset)) 1687 return true; 1688 CFIIndex = 1689 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1690 break; 1691 case MIToken::kw_cfi_rel_offset: 1692 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1693 parseCFIOffset(Offset)) 1694 return true; 1695 CFIIndex = MF.addFrameInst( 1696 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1697 break; 1698 case MIToken::kw_cfi_def_cfa_register: 1699 if (parseCFIRegister(Reg)) 1700 return true; 1701 CFIIndex = 1702 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1703 break; 1704 case MIToken::kw_cfi_def_cfa_offset: 1705 if (parseCFIOffset(Offset)) 1706 return true; 1707 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1708 CFIIndex = MF.addFrameInst( 1709 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1710 break; 1711 case MIToken::kw_cfi_adjust_cfa_offset: 1712 if (parseCFIOffset(Offset)) 1713 return true; 1714 CFIIndex = MF.addFrameInst( 1715 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1716 break; 1717 case MIToken::kw_cfi_def_cfa: 1718 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1719 parseCFIOffset(Offset)) 1720 return true; 1721 // NB: MCCFIInstruction::createDefCfa negates the offset. 1722 CFIIndex = 1723 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1724 break; 1725 case MIToken::kw_cfi_remember_state: 1726 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1727 break; 1728 case MIToken::kw_cfi_restore: 1729 if (parseCFIRegister(Reg)) 1730 return true; 1731 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1732 break; 1733 case MIToken::kw_cfi_restore_state: 1734 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1735 break; 1736 case MIToken::kw_cfi_undefined: 1737 if (parseCFIRegister(Reg)) 1738 return true; 1739 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1740 break; 1741 case MIToken::kw_cfi_register: { 1742 unsigned Reg2; 1743 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1744 parseCFIRegister(Reg2)) 1745 return true; 1746 1747 CFIIndex = 1748 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1749 break; 1750 } 1751 case MIToken::kw_cfi_window_save: 1752 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1753 break; 1754 case MIToken::kw_cfi_escape: { 1755 std::string Values; 1756 if (parseCFIEscapeValues(Values)) 1757 return true; 1758 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1759 break; 1760 } 1761 default: 1762 // TODO: Parse the other CFI operands. 1763 llvm_unreachable("The current token should be a cfi operand"); 1764 } 1765 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1766 return false; 1767 } 1768 1769 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1770 switch (Token.kind()) { 1771 case MIToken::NamedIRBlock: { 1772 BB = dyn_cast_or_null<BasicBlock>( 1773 F.getValueSymbolTable()->lookup(Token.stringValue())); 1774 if (!BB) 1775 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1776 break; 1777 } 1778 case MIToken::IRBlock: { 1779 unsigned SlotNumber = 0; 1780 if (getUnsigned(SlotNumber)) 1781 return true; 1782 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1783 if (!BB) 1784 return error(Twine("use of undefined IR block '%ir-block.") + 1785 Twine(SlotNumber) + "'"); 1786 break; 1787 } 1788 default: 1789 llvm_unreachable("The current token should be an IR block reference"); 1790 } 1791 return false; 1792 } 1793 1794 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1795 assert(Token.is(MIToken::kw_blockaddress)); 1796 lex(); 1797 if (expectAndConsume(MIToken::lparen)) 1798 return true; 1799 if (Token.isNot(MIToken::GlobalValue) && 1800 Token.isNot(MIToken::NamedGlobalValue)) 1801 return error("expected a global value"); 1802 GlobalValue *GV = nullptr; 1803 if (parseGlobalValue(GV)) 1804 return true; 1805 auto *F = dyn_cast<Function>(GV); 1806 if (!F) 1807 return error("expected an IR function reference"); 1808 lex(); 1809 if (expectAndConsume(MIToken::comma)) 1810 return true; 1811 BasicBlock *BB = nullptr; 1812 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1813 return error("expected an IR block reference"); 1814 if (parseIRBlock(BB, *F)) 1815 return true; 1816 lex(); 1817 if (expectAndConsume(MIToken::rparen)) 1818 return true; 1819 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1820 if (parseOperandsOffset(Dest)) 1821 return true; 1822 return false; 1823 } 1824 1825 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1826 assert(Token.is(MIToken::kw_intrinsic)); 1827 lex(); 1828 if (expectAndConsume(MIToken::lparen)) 1829 return error("expected syntax intrinsic(@llvm.whatever)"); 1830 1831 if (Token.isNot(MIToken::NamedGlobalValue)) 1832 return error("expected syntax intrinsic(@llvm.whatever)"); 1833 1834 std::string Name = Token.stringValue(); 1835 lex(); 1836 1837 if (expectAndConsume(MIToken::rparen)) 1838 return error("expected ')' to terminate intrinsic name"); 1839 1840 // Find out what intrinsic we're dealing with, first try the global namespace 1841 // and then the target's private intrinsics if that fails. 1842 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1843 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1844 if (ID == Intrinsic::not_intrinsic && TII) 1845 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1846 1847 if (ID == Intrinsic::not_intrinsic) 1848 return error("unknown intrinsic name"); 1849 Dest = MachineOperand::CreateIntrinsicID(ID); 1850 1851 return false; 1852 } 1853 1854 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1855 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1856 bool IsFloat = Token.is(MIToken::kw_floatpred); 1857 lex(); 1858 1859 if (expectAndConsume(MIToken::lparen)) 1860 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1861 1862 if (Token.isNot(MIToken::Identifier)) 1863 return error("whatever"); 1864 1865 CmpInst::Predicate Pred; 1866 if (IsFloat) { 1867 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1868 .Case("false", CmpInst::FCMP_FALSE) 1869 .Case("oeq", CmpInst::FCMP_OEQ) 1870 .Case("ogt", CmpInst::FCMP_OGT) 1871 .Case("oge", CmpInst::FCMP_OGE) 1872 .Case("olt", CmpInst::FCMP_OLT) 1873 .Case("ole", CmpInst::FCMP_OLE) 1874 .Case("one", CmpInst::FCMP_ONE) 1875 .Case("ord", CmpInst::FCMP_ORD) 1876 .Case("uno", CmpInst::FCMP_UNO) 1877 .Case("ueq", CmpInst::FCMP_UEQ) 1878 .Case("ugt", CmpInst::FCMP_UGT) 1879 .Case("uge", CmpInst::FCMP_UGE) 1880 .Case("ult", CmpInst::FCMP_ULT) 1881 .Case("ule", CmpInst::FCMP_ULE) 1882 .Case("une", CmpInst::FCMP_UNE) 1883 .Case("true", CmpInst::FCMP_TRUE) 1884 .Default(CmpInst::BAD_FCMP_PREDICATE); 1885 if (!CmpInst::isFPPredicate(Pred)) 1886 return error("invalid floating-point predicate"); 1887 } else { 1888 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1889 .Case("eq", CmpInst::ICMP_EQ) 1890 .Case("ne", CmpInst::ICMP_NE) 1891 .Case("sgt", CmpInst::ICMP_SGT) 1892 .Case("sge", CmpInst::ICMP_SGE) 1893 .Case("slt", CmpInst::ICMP_SLT) 1894 .Case("sle", CmpInst::ICMP_SLE) 1895 .Case("ugt", CmpInst::ICMP_UGT) 1896 .Case("uge", CmpInst::ICMP_UGE) 1897 .Case("ult", CmpInst::ICMP_ULT) 1898 .Case("ule", CmpInst::ICMP_ULE) 1899 .Default(CmpInst::BAD_ICMP_PREDICATE); 1900 if (!CmpInst::isIntPredicate(Pred)) 1901 return error("invalid integer predicate"); 1902 } 1903 1904 lex(); 1905 Dest = MachineOperand::CreatePredicate(Pred); 1906 if (expectAndConsume(MIToken::rparen)) 1907 return error("predicate should be terminated by ')'."); 1908 1909 return false; 1910 } 1911 1912 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1913 assert(Token.is(MIToken::kw_target_index)); 1914 lex(); 1915 if (expectAndConsume(MIToken::lparen)) 1916 return true; 1917 if (Token.isNot(MIToken::Identifier)) 1918 return error("expected the name of the target index"); 1919 int Index = 0; 1920 if (getTargetIndex(Token.stringValue(), Index)) 1921 return error("use of undefined target index '" + Token.stringValue() + "'"); 1922 lex(); 1923 if (expectAndConsume(MIToken::rparen)) 1924 return true; 1925 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1926 if (parseOperandsOffset(Dest)) 1927 return true; 1928 return false; 1929 } 1930 1931 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1932 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1933 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1934 assert(TRI && "Expected target register info"); 1935 lex(); 1936 if (expectAndConsume(MIToken::lparen)) 1937 return true; 1938 1939 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1940 while (true) { 1941 if (Token.isNot(MIToken::NamedRegister)) 1942 return error("expected a named register"); 1943 unsigned Reg; 1944 if (parseNamedRegister(Reg)) 1945 return true; 1946 lex(); 1947 Mask[Reg / 32] |= 1U << (Reg % 32); 1948 // TODO: Report an error if the same register is used more than once. 1949 if (Token.isNot(MIToken::comma)) 1950 break; 1951 lex(); 1952 } 1953 1954 if (expectAndConsume(MIToken::rparen)) 1955 return true; 1956 Dest = MachineOperand::CreateRegMask(Mask); 1957 return false; 1958 } 1959 1960 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1961 assert(Token.is(MIToken::kw_liveout)); 1962 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1963 assert(TRI && "Expected target register info"); 1964 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1965 lex(); 1966 if (expectAndConsume(MIToken::lparen)) 1967 return true; 1968 while (true) { 1969 if (Token.isNot(MIToken::NamedRegister)) 1970 return error("expected a named register"); 1971 unsigned Reg; 1972 if (parseNamedRegister(Reg)) 1973 return true; 1974 lex(); 1975 Mask[Reg / 32] |= 1U << (Reg % 32); 1976 // TODO: Report an error if the same register is used more than once. 1977 if (Token.isNot(MIToken::comma)) 1978 break; 1979 lex(); 1980 } 1981 if (expectAndConsume(MIToken::rparen)) 1982 return true; 1983 Dest = MachineOperand::CreateRegLiveOut(Mask); 1984 return false; 1985 } 1986 1987 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1988 Optional<unsigned> &TiedDefIdx) { 1989 switch (Token.kind()) { 1990 case MIToken::kw_implicit: 1991 case MIToken::kw_implicit_define: 1992 case MIToken::kw_def: 1993 case MIToken::kw_dead: 1994 case MIToken::kw_killed: 1995 case MIToken::kw_undef: 1996 case MIToken::kw_internal: 1997 case MIToken::kw_early_clobber: 1998 case MIToken::kw_debug_use: 1999 case MIToken::kw_renamable: 2000 case MIToken::underscore: 2001 case MIToken::NamedRegister: 2002 case MIToken::VirtualRegister: 2003 case MIToken::NamedVirtualRegister: 2004 return parseRegisterOperand(Dest, TiedDefIdx); 2005 case MIToken::IntegerLiteral: 2006 return parseImmediateOperand(Dest); 2007 case MIToken::IntegerType: 2008 return parseTypedImmediateOperand(Dest); 2009 case MIToken::kw_half: 2010 case MIToken::kw_float: 2011 case MIToken::kw_double: 2012 case MIToken::kw_x86_fp80: 2013 case MIToken::kw_fp128: 2014 case MIToken::kw_ppc_fp128: 2015 return parseFPImmediateOperand(Dest); 2016 case MIToken::MachineBasicBlock: 2017 return parseMBBOperand(Dest); 2018 case MIToken::StackObject: 2019 return parseStackObjectOperand(Dest); 2020 case MIToken::FixedStackObject: 2021 return parseFixedStackObjectOperand(Dest); 2022 case MIToken::GlobalValue: 2023 case MIToken::NamedGlobalValue: 2024 return parseGlobalAddressOperand(Dest); 2025 case MIToken::ConstantPoolItem: 2026 return parseConstantPoolIndexOperand(Dest); 2027 case MIToken::JumpTableIndex: 2028 return parseJumpTableIndexOperand(Dest); 2029 case MIToken::ExternalSymbol: 2030 return parseExternalSymbolOperand(Dest); 2031 case MIToken::SubRegisterIndex: 2032 return parseSubRegisterIndexOperand(Dest); 2033 case MIToken::md_diexpr: 2034 case MIToken::exclaim: 2035 return parseMetadataOperand(Dest); 2036 case MIToken::kw_cfi_same_value: 2037 case MIToken::kw_cfi_offset: 2038 case MIToken::kw_cfi_rel_offset: 2039 case MIToken::kw_cfi_def_cfa_register: 2040 case MIToken::kw_cfi_def_cfa_offset: 2041 case MIToken::kw_cfi_adjust_cfa_offset: 2042 case MIToken::kw_cfi_escape: 2043 case MIToken::kw_cfi_def_cfa: 2044 case MIToken::kw_cfi_register: 2045 case MIToken::kw_cfi_remember_state: 2046 case MIToken::kw_cfi_restore: 2047 case MIToken::kw_cfi_restore_state: 2048 case MIToken::kw_cfi_undefined: 2049 case MIToken::kw_cfi_window_save: 2050 return parseCFIOperand(Dest); 2051 case MIToken::kw_blockaddress: 2052 return parseBlockAddressOperand(Dest); 2053 case MIToken::kw_intrinsic: 2054 return parseIntrinsicOperand(Dest); 2055 case MIToken::kw_target_index: 2056 return parseTargetIndexOperand(Dest); 2057 case MIToken::kw_liveout: 2058 return parseLiveoutRegisterMaskOperand(Dest); 2059 case MIToken::kw_floatpred: 2060 case MIToken::kw_intpred: 2061 return parsePredicateOperand(Dest); 2062 case MIToken::Error: 2063 return true; 2064 case MIToken::Identifier: 2065 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2066 Dest = MachineOperand::CreateRegMask(RegMask); 2067 lex(); 2068 break; 2069 } else 2070 return parseCustomRegisterMaskOperand(Dest); 2071 default: 2072 // FIXME: Parse the MCSymbol machine operand. 2073 return error("expected a machine operand"); 2074 } 2075 return false; 2076 } 2077 2078 bool MIParser::parseMachineOperandAndTargetFlags( 2079 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2080 unsigned TF = 0; 2081 bool HasTargetFlags = false; 2082 if (Token.is(MIToken::kw_target_flags)) { 2083 HasTargetFlags = true; 2084 lex(); 2085 if (expectAndConsume(MIToken::lparen)) 2086 return true; 2087 if (Token.isNot(MIToken::Identifier)) 2088 return error("expected the name of the target flag"); 2089 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2090 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2091 return error("use of undefined target flag '" + Token.stringValue() + 2092 "'"); 2093 } 2094 lex(); 2095 while (Token.is(MIToken::comma)) { 2096 lex(); 2097 if (Token.isNot(MIToken::Identifier)) 2098 return error("expected the name of the target flag"); 2099 unsigned BitFlag = 0; 2100 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2101 return error("use of undefined target flag '" + Token.stringValue() + 2102 "'"); 2103 // TODO: Report an error when using a duplicate bit target flag. 2104 TF |= BitFlag; 2105 lex(); 2106 } 2107 if (expectAndConsume(MIToken::rparen)) 2108 return true; 2109 } 2110 auto Loc = Token.location(); 2111 if (parseMachineOperand(Dest, TiedDefIdx)) 2112 return true; 2113 if (!HasTargetFlags) 2114 return false; 2115 if (Dest.isReg()) 2116 return error(Loc, "register operands can't have target flags"); 2117 Dest.setTargetFlags(TF); 2118 return false; 2119 } 2120 2121 bool MIParser::parseOffset(int64_t &Offset) { 2122 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2123 return false; 2124 StringRef Sign = Token.range(); 2125 bool IsNegative = Token.is(MIToken::minus); 2126 lex(); 2127 if (Token.isNot(MIToken::IntegerLiteral)) 2128 return error("expected an integer literal after '" + Sign + "'"); 2129 if (Token.integerValue().getMinSignedBits() > 64) 2130 return error("expected 64-bit integer (too large)"); 2131 Offset = Token.integerValue().getExtValue(); 2132 if (IsNegative) 2133 Offset = -Offset; 2134 lex(); 2135 return false; 2136 } 2137 2138 bool MIParser::parseAlignment(unsigned &Alignment) { 2139 assert(Token.is(MIToken::kw_align)); 2140 lex(); 2141 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2142 return error("expected an integer literal after 'align'"); 2143 if (getUnsigned(Alignment)) 2144 return true; 2145 lex(); 2146 return false; 2147 } 2148 2149 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2150 assert(Token.is(MIToken::kw_addrspace)); 2151 lex(); 2152 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2153 return error("expected an integer literal after 'addrspace'"); 2154 if (getUnsigned(Addrspace)) 2155 return true; 2156 lex(); 2157 return false; 2158 } 2159 2160 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2161 int64_t Offset = 0; 2162 if (parseOffset(Offset)) 2163 return true; 2164 Op.setOffset(Offset); 2165 return false; 2166 } 2167 2168 bool MIParser::parseIRValue(const Value *&V) { 2169 switch (Token.kind()) { 2170 case MIToken::NamedIRValue: { 2171 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2172 break; 2173 } 2174 case MIToken::IRValue: { 2175 unsigned SlotNumber = 0; 2176 if (getUnsigned(SlotNumber)) 2177 return true; 2178 V = getIRValue(SlotNumber); 2179 break; 2180 } 2181 case MIToken::NamedGlobalValue: 2182 case MIToken::GlobalValue: { 2183 GlobalValue *GV = nullptr; 2184 if (parseGlobalValue(GV)) 2185 return true; 2186 V = GV; 2187 break; 2188 } 2189 case MIToken::QuotedIRValue: { 2190 const Constant *C = nullptr; 2191 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2192 return true; 2193 V = C; 2194 break; 2195 } 2196 default: 2197 llvm_unreachable("The current token should be an IR block reference"); 2198 } 2199 if (!V) 2200 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2201 return false; 2202 } 2203 2204 bool MIParser::getUint64(uint64_t &Result) { 2205 if (Token.hasIntegerValue()) { 2206 if (Token.integerValue().getActiveBits() > 64) 2207 return error("expected 64-bit integer (too large)"); 2208 Result = Token.integerValue().getZExtValue(); 2209 return false; 2210 } 2211 if (Token.is(MIToken::HexLiteral)) { 2212 APInt A; 2213 if (getHexUint(A)) 2214 return true; 2215 if (A.getBitWidth() > 64) 2216 return error("expected 64-bit integer (too large)"); 2217 Result = A.getZExtValue(); 2218 return false; 2219 } 2220 return true; 2221 } 2222 2223 bool MIParser::getHexUint(APInt &Result) { 2224 assert(Token.is(MIToken::HexLiteral)); 2225 StringRef S = Token.range(); 2226 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2227 // This could be a floating point literal with a special prefix. 2228 if (!isxdigit(S[2])) 2229 return true; 2230 StringRef V = S.substr(2); 2231 APInt A(V.size()*4, V, 16); 2232 2233 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2234 // sure it isn't the case before constructing result. 2235 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2236 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2237 return false; 2238 } 2239 2240 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2241 const auto OldFlags = Flags; 2242 switch (Token.kind()) { 2243 case MIToken::kw_volatile: 2244 Flags |= MachineMemOperand::MOVolatile; 2245 break; 2246 case MIToken::kw_non_temporal: 2247 Flags |= MachineMemOperand::MONonTemporal; 2248 break; 2249 case MIToken::kw_dereferenceable: 2250 Flags |= MachineMemOperand::MODereferenceable; 2251 break; 2252 case MIToken::kw_invariant: 2253 Flags |= MachineMemOperand::MOInvariant; 2254 break; 2255 case MIToken::StringConstant: { 2256 MachineMemOperand::Flags TF; 2257 if (getMMOTargetFlag(Token.stringValue(), TF)) 2258 return error("use of undefined target MMO flag '" + Token.stringValue() + 2259 "'"); 2260 Flags |= TF; 2261 break; 2262 } 2263 default: 2264 llvm_unreachable("The current token should be a memory operand flag"); 2265 } 2266 if (OldFlags == Flags) 2267 // We know that the same flag is specified more than once when the flags 2268 // weren't modified. 2269 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2270 lex(); 2271 return false; 2272 } 2273 2274 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2275 switch (Token.kind()) { 2276 case MIToken::kw_stack: 2277 PSV = MF.getPSVManager().getStack(); 2278 break; 2279 case MIToken::kw_got: 2280 PSV = MF.getPSVManager().getGOT(); 2281 break; 2282 case MIToken::kw_jump_table: 2283 PSV = MF.getPSVManager().getJumpTable(); 2284 break; 2285 case MIToken::kw_constant_pool: 2286 PSV = MF.getPSVManager().getConstantPool(); 2287 break; 2288 case MIToken::FixedStackObject: { 2289 int FI; 2290 if (parseFixedStackFrameIndex(FI)) 2291 return true; 2292 PSV = MF.getPSVManager().getFixedStack(FI); 2293 // The token was already consumed, so use return here instead of break. 2294 return false; 2295 } 2296 case MIToken::StackObject: { 2297 int FI; 2298 if (parseStackFrameIndex(FI)) 2299 return true; 2300 PSV = MF.getPSVManager().getFixedStack(FI); 2301 // The token was already consumed, so use return here instead of break. 2302 return false; 2303 } 2304 case MIToken::kw_call_entry: 2305 lex(); 2306 switch (Token.kind()) { 2307 case MIToken::GlobalValue: 2308 case MIToken::NamedGlobalValue: { 2309 GlobalValue *GV = nullptr; 2310 if (parseGlobalValue(GV)) 2311 return true; 2312 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2313 break; 2314 } 2315 case MIToken::ExternalSymbol: 2316 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2317 MF.createExternalSymbolName(Token.stringValue())); 2318 break; 2319 default: 2320 return error( 2321 "expected a global value or an external symbol after 'call-entry'"); 2322 } 2323 break; 2324 default: 2325 llvm_unreachable("The current token should be pseudo source value"); 2326 } 2327 lex(); 2328 return false; 2329 } 2330 2331 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2332 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2333 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2334 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2335 Token.is(MIToken::kw_call_entry)) { 2336 const PseudoSourceValue *PSV = nullptr; 2337 if (parseMemoryPseudoSourceValue(PSV)) 2338 return true; 2339 int64_t Offset = 0; 2340 if (parseOffset(Offset)) 2341 return true; 2342 Dest = MachinePointerInfo(PSV, Offset); 2343 return false; 2344 } 2345 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2346 Token.isNot(MIToken::GlobalValue) && 2347 Token.isNot(MIToken::NamedGlobalValue) && 2348 Token.isNot(MIToken::QuotedIRValue)) 2349 return error("expected an IR value reference"); 2350 const Value *V = nullptr; 2351 if (parseIRValue(V)) 2352 return true; 2353 if (!V->getType()->isPointerTy()) 2354 return error("expected a pointer IR value"); 2355 lex(); 2356 int64_t Offset = 0; 2357 if (parseOffset(Offset)) 2358 return true; 2359 Dest = MachinePointerInfo(V, Offset); 2360 return false; 2361 } 2362 2363 bool MIParser::parseOptionalScope(LLVMContext &Context, 2364 SyncScope::ID &SSID) { 2365 SSID = SyncScope::System; 2366 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2367 lex(); 2368 if (expectAndConsume(MIToken::lparen)) 2369 return error("expected '(' in syncscope"); 2370 2371 std::string SSN; 2372 if (parseStringConstant(SSN)) 2373 return true; 2374 2375 SSID = Context.getOrInsertSyncScopeID(SSN); 2376 if (expectAndConsume(MIToken::rparen)) 2377 return error("expected ')' in syncscope"); 2378 } 2379 2380 return false; 2381 } 2382 2383 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2384 Order = AtomicOrdering::NotAtomic; 2385 if (Token.isNot(MIToken::Identifier)) 2386 return false; 2387 2388 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2389 .Case("unordered", AtomicOrdering::Unordered) 2390 .Case("monotonic", AtomicOrdering::Monotonic) 2391 .Case("acquire", AtomicOrdering::Acquire) 2392 .Case("release", AtomicOrdering::Release) 2393 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2394 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2395 .Default(AtomicOrdering::NotAtomic); 2396 2397 if (Order != AtomicOrdering::NotAtomic) { 2398 lex(); 2399 return false; 2400 } 2401 2402 return error("expected an atomic scope, ordering or a size integer literal"); 2403 } 2404 2405 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2406 if (expectAndConsume(MIToken::lparen)) 2407 return true; 2408 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2409 while (Token.isMemoryOperandFlag()) { 2410 if (parseMemoryOperandFlag(Flags)) 2411 return true; 2412 } 2413 if (Token.isNot(MIToken::Identifier) || 2414 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2415 return error("expected 'load' or 'store' memory operation"); 2416 if (Token.stringValue() == "load") 2417 Flags |= MachineMemOperand::MOLoad; 2418 else 2419 Flags |= MachineMemOperand::MOStore; 2420 lex(); 2421 2422 // Optional 'store' for operands that both load and store. 2423 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2424 Flags |= MachineMemOperand::MOStore; 2425 lex(); 2426 } 2427 2428 // Optional synchronization scope. 2429 SyncScope::ID SSID; 2430 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2431 return true; 2432 2433 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2434 AtomicOrdering Order, FailureOrder; 2435 if (parseOptionalAtomicOrdering(Order)) 2436 return true; 2437 2438 if (parseOptionalAtomicOrdering(FailureOrder)) 2439 return true; 2440 2441 if (Token.isNot(MIToken::IntegerLiteral)) 2442 return error("expected the size integer literal after memory operation"); 2443 uint64_t Size; 2444 if (getUint64(Size)) 2445 return true; 2446 lex(); 2447 2448 MachinePointerInfo Ptr = MachinePointerInfo(); 2449 if (Token.is(MIToken::Identifier)) { 2450 const char *Word = 2451 ((Flags & MachineMemOperand::MOLoad) && 2452 (Flags & MachineMemOperand::MOStore)) 2453 ? "on" 2454 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2455 if (Token.stringValue() != Word) 2456 return error(Twine("expected '") + Word + "'"); 2457 lex(); 2458 2459 if (parseMachinePointerInfo(Ptr)) 2460 return true; 2461 } 2462 unsigned BaseAlignment = Size; 2463 AAMDNodes AAInfo; 2464 MDNode *Range = nullptr; 2465 while (consumeIfPresent(MIToken::comma)) { 2466 switch (Token.kind()) { 2467 case MIToken::kw_align: 2468 if (parseAlignment(BaseAlignment)) 2469 return true; 2470 break; 2471 case MIToken::kw_addrspace: 2472 if (parseAddrspace(Ptr.AddrSpace)) 2473 return true; 2474 break; 2475 case MIToken::md_tbaa: 2476 lex(); 2477 if (parseMDNode(AAInfo.TBAA)) 2478 return true; 2479 break; 2480 case MIToken::md_alias_scope: 2481 lex(); 2482 if (parseMDNode(AAInfo.Scope)) 2483 return true; 2484 break; 2485 case MIToken::md_noalias: 2486 lex(); 2487 if (parseMDNode(AAInfo.NoAlias)) 2488 return true; 2489 break; 2490 case MIToken::md_range: 2491 lex(); 2492 if (parseMDNode(Range)) 2493 return true; 2494 break; 2495 // TODO: Report an error on duplicate metadata nodes. 2496 default: 2497 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2498 "'!noalias' or '!range'"); 2499 } 2500 } 2501 if (expectAndConsume(MIToken::rparen)) 2502 return true; 2503 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2504 SSID, Order, FailureOrder); 2505 return false; 2506 } 2507 2508 void MIParser::initNames2InstrOpCodes() { 2509 if (!Names2InstrOpCodes.empty()) 2510 return; 2511 const auto *TII = MF.getSubtarget().getInstrInfo(); 2512 assert(TII && "Expected target instruction info"); 2513 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2514 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2515 } 2516 2517 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2518 initNames2InstrOpCodes(); 2519 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2520 if (InstrInfo == Names2InstrOpCodes.end()) 2521 return true; 2522 OpCode = InstrInfo->getValue(); 2523 return false; 2524 } 2525 2526 void MIParser::initNames2Regs() { 2527 if (!Names2Regs.empty()) 2528 return; 2529 // The '%noreg' register is the register 0. 2530 Names2Regs.insert(std::make_pair("noreg", 0)); 2531 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2532 assert(TRI && "Expected target register info"); 2533 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2534 bool WasInserted = 2535 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2536 .second; 2537 (void)WasInserted; 2538 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2539 } 2540 } 2541 2542 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2543 initNames2Regs(); 2544 auto RegInfo = Names2Regs.find(RegName); 2545 if (RegInfo == Names2Regs.end()) 2546 return true; 2547 Reg = RegInfo->getValue(); 2548 return false; 2549 } 2550 2551 void MIParser::initNames2RegMasks() { 2552 if (!Names2RegMasks.empty()) 2553 return; 2554 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2555 assert(TRI && "Expected target register info"); 2556 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2557 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2558 assert(RegMasks.size() == RegMaskNames.size()); 2559 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2560 Names2RegMasks.insert( 2561 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2562 } 2563 2564 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2565 initNames2RegMasks(); 2566 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2567 if (RegMaskInfo == Names2RegMasks.end()) 2568 return nullptr; 2569 return RegMaskInfo->getValue(); 2570 } 2571 2572 void MIParser::initNames2SubRegIndices() { 2573 if (!Names2SubRegIndices.empty()) 2574 return; 2575 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2576 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2577 Names2SubRegIndices.insert( 2578 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2579 } 2580 2581 unsigned MIParser::getSubRegIndex(StringRef Name) { 2582 initNames2SubRegIndices(); 2583 auto SubRegInfo = Names2SubRegIndices.find(Name); 2584 if (SubRegInfo == Names2SubRegIndices.end()) 2585 return 0; 2586 return SubRegInfo->getValue(); 2587 } 2588 2589 static void initSlots2BasicBlocks( 2590 const Function &F, 2591 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2592 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2593 MST.incorporateFunction(F); 2594 for (auto &BB : F) { 2595 if (BB.hasName()) 2596 continue; 2597 int Slot = MST.getLocalSlot(&BB); 2598 if (Slot == -1) 2599 continue; 2600 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2601 } 2602 } 2603 2604 static const BasicBlock *getIRBlockFromSlot( 2605 unsigned Slot, 2606 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2607 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2608 if (BlockInfo == Slots2BasicBlocks.end()) 2609 return nullptr; 2610 return BlockInfo->second; 2611 } 2612 2613 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2614 if (Slots2BasicBlocks.empty()) 2615 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2616 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2617 } 2618 2619 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2620 if (&F == &MF.getFunction()) 2621 return getIRBlock(Slot); 2622 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2623 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2624 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2625 } 2626 2627 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2628 DenseMap<unsigned, const Value *> &Slots2Values) { 2629 int Slot = MST.getLocalSlot(V); 2630 if (Slot == -1) 2631 return; 2632 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2633 } 2634 2635 /// Creates the mapping from slot numbers to function's unnamed IR values. 2636 static void initSlots2Values(const Function &F, 2637 DenseMap<unsigned, const Value *> &Slots2Values) { 2638 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2639 MST.incorporateFunction(F); 2640 for (const auto &Arg : F.args()) 2641 mapValueToSlot(&Arg, MST, Slots2Values); 2642 for (const auto &BB : F) { 2643 mapValueToSlot(&BB, MST, Slots2Values); 2644 for (const auto &I : BB) 2645 mapValueToSlot(&I, MST, Slots2Values); 2646 } 2647 } 2648 2649 const Value *MIParser::getIRValue(unsigned Slot) { 2650 if (Slots2Values.empty()) 2651 initSlots2Values(MF.getFunction(), Slots2Values); 2652 auto ValueInfo = Slots2Values.find(Slot); 2653 if (ValueInfo == Slots2Values.end()) 2654 return nullptr; 2655 return ValueInfo->second; 2656 } 2657 2658 void MIParser::initNames2TargetIndices() { 2659 if (!Names2TargetIndices.empty()) 2660 return; 2661 const auto *TII = MF.getSubtarget().getInstrInfo(); 2662 assert(TII && "Expected target instruction info"); 2663 auto Indices = TII->getSerializableTargetIndices(); 2664 for (const auto &I : Indices) 2665 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2666 } 2667 2668 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2669 initNames2TargetIndices(); 2670 auto IndexInfo = Names2TargetIndices.find(Name); 2671 if (IndexInfo == Names2TargetIndices.end()) 2672 return true; 2673 Index = IndexInfo->second; 2674 return false; 2675 } 2676 2677 void MIParser::initNames2DirectTargetFlags() { 2678 if (!Names2DirectTargetFlags.empty()) 2679 return; 2680 const auto *TII = MF.getSubtarget().getInstrInfo(); 2681 assert(TII && "Expected target instruction info"); 2682 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2683 for (const auto &I : Flags) 2684 Names2DirectTargetFlags.insert( 2685 std::make_pair(StringRef(I.second), I.first)); 2686 } 2687 2688 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2689 initNames2DirectTargetFlags(); 2690 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2691 if (FlagInfo == Names2DirectTargetFlags.end()) 2692 return true; 2693 Flag = FlagInfo->second; 2694 return false; 2695 } 2696 2697 void MIParser::initNames2BitmaskTargetFlags() { 2698 if (!Names2BitmaskTargetFlags.empty()) 2699 return; 2700 const auto *TII = MF.getSubtarget().getInstrInfo(); 2701 assert(TII && "Expected target instruction info"); 2702 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2703 for (const auto &I : Flags) 2704 Names2BitmaskTargetFlags.insert( 2705 std::make_pair(StringRef(I.second), I.first)); 2706 } 2707 2708 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2709 initNames2BitmaskTargetFlags(); 2710 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2711 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2712 return true; 2713 Flag = FlagInfo->second; 2714 return false; 2715 } 2716 2717 void MIParser::initNames2MMOTargetFlags() { 2718 if (!Names2MMOTargetFlags.empty()) 2719 return; 2720 const auto *TII = MF.getSubtarget().getInstrInfo(); 2721 assert(TII && "Expected target instruction info"); 2722 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2723 for (const auto &I : Flags) 2724 Names2MMOTargetFlags.insert( 2725 std::make_pair(StringRef(I.second), I.first)); 2726 } 2727 2728 bool MIParser::getMMOTargetFlag(StringRef Name, 2729 MachineMemOperand::Flags &Flag) { 2730 initNames2MMOTargetFlags(); 2731 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2732 if (FlagInfo == Names2MMOTargetFlags.end()) 2733 return true; 2734 Flag = FlagInfo->second; 2735 return false; 2736 } 2737 2738 bool MIParser::parseStringConstant(std::string &Result) { 2739 if (Token.isNot(MIToken::StringConstant)) 2740 return error("expected string constant"); 2741 Result = Token.stringValue(); 2742 lex(); 2743 return false; 2744 } 2745 2746 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2747 StringRef Src, 2748 SMDiagnostic &Error) { 2749 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2750 } 2751 2752 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2753 StringRef Src, SMDiagnostic &Error) { 2754 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2755 } 2756 2757 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2758 MachineBasicBlock *&MBB, StringRef Src, 2759 SMDiagnostic &Error) { 2760 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2761 } 2762 2763 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2764 unsigned &Reg, StringRef Src, 2765 SMDiagnostic &Error) { 2766 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2767 } 2768 2769 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2770 unsigned &Reg, StringRef Src, 2771 SMDiagnostic &Error) { 2772 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2773 } 2774 2775 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2776 VRegInfo *&Info, StringRef Src, 2777 SMDiagnostic &Error) { 2778 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2779 } 2780 2781 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2782 int &FI, StringRef Src, 2783 SMDiagnostic &Error) { 2784 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2785 } 2786 2787 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2788 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2789 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2790 } 2791