1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueSymbolTable.h" 57 #include "llvm/MC/LaneBitmask.h" 58 #include "llvm/MC/MCDwarf.h" 59 #include "llvm/MC/MCInstrDesc.h" 60 #include "llvm/MC/MCRegisterInfo.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/LowLevelTypeImpl.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/SMLoc.h" 68 #include "llvm/Support/SourceMgr.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetIntrinsicInfo.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cctype> 75 #include <cstddef> 76 #include <cstdint> 77 #include <limits> 78 #include <string> 79 #include <utility> 80 81 using namespace llvm; 82 83 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 84 SourceMgr &SM, const SlotMapping &IRSlots, 85 const Name2RegClassMap &Names2RegClasses, 86 const Name2RegBankMap &Names2RegBanks) 87 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 88 Names2RegBanks(Names2RegBanks) { 89 } 90 91 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 92 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 93 if (I.second) { 94 MachineRegisterInfo &MRI = MF.getRegInfo(); 95 VRegInfo *Info = new (Allocator) VRegInfo; 96 Info->VReg = MRI.createIncompleteVirtualRegister(); 97 I.first->second = Info; 98 } 99 return *I.first->second; 100 } 101 102 namespace { 103 104 /// A wrapper struct around the 'MachineOperand' struct that includes a source 105 /// range and other attributes. 106 struct ParsedMachineOperand { 107 MachineOperand Operand; 108 StringRef::iterator Begin; 109 StringRef::iterator End; 110 Optional<unsigned> TiedDefIdx; 111 112 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 113 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 114 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 115 if (TiedDefIdx) 116 assert(Operand.isReg() && Operand.isUse() && 117 "Only used register operands can be tied"); 118 } 119 }; 120 121 class MIParser { 122 MachineFunction &MF; 123 SMDiagnostic &Error; 124 StringRef Source, CurrentSource; 125 MIToken Token; 126 PerFunctionMIParsingState &PFS; 127 /// Maps from instruction names to op codes. 128 StringMap<unsigned> Names2InstrOpCodes; 129 /// Maps from register names to registers. 130 StringMap<unsigned> Names2Regs; 131 /// Maps from register mask names to register masks. 132 StringMap<const uint32_t *> Names2RegMasks; 133 /// Maps from subregister names to subregister indices. 134 StringMap<unsigned> Names2SubRegIndices; 135 /// Maps from slot numbers to function's unnamed basic blocks. 136 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 137 /// Maps from slot numbers to function's unnamed values. 138 DenseMap<unsigned, const Value *> Slots2Values; 139 /// Maps from target index names to target indices. 140 StringMap<int> Names2TargetIndices; 141 /// Maps from direct target flag names to the direct target flag values. 142 StringMap<unsigned> Names2DirectTargetFlags; 143 /// Maps from direct target flag names to the bitmask target flag values. 144 StringMap<unsigned> Names2BitmaskTargetFlags; 145 /// Maps from MMO target flag names to MMO target flag values. 146 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 147 148 public: 149 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 150 StringRef Source); 151 152 /// \p SkipChar gives the number of characters to skip before looking 153 /// for the next token. 154 void lex(unsigned SkipChar = 0); 155 156 /// Report an error at the current location with the given message. 157 /// 158 /// This function always return true. 159 bool error(const Twine &Msg); 160 161 /// Report an error at the given location with the given message. 162 /// 163 /// This function always return true. 164 bool error(StringRef::iterator Loc, const Twine &Msg); 165 166 bool 167 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 168 bool parseBasicBlocks(); 169 bool parse(MachineInstr *&MI); 170 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 171 bool parseStandaloneNamedRegister(unsigned &Reg); 172 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 173 bool parseStandaloneRegister(unsigned &Reg); 174 bool parseStandaloneStackObject(int &FI); 175 bool parseStandaloneMDNode(MDNode *&Node); 176 177 bool 178 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 179 bool parseBasicBlock(MachineBasicBlock &MBB, 180 MachineBasicBlock *&AddFalthroughFrom); 181 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 182 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 183 184 bool parseNamedRegister(unsigned &Reg); 185 bool parseVirtualRegister(VRegInfo *&Info); 186 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 187 bool parseRegisterFlag(unsigned &Flags); 188 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 189 bool parseSubRegisterIndex(unsigned &SubReg); 190 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 191 bool parseRegisterOperand(MachineOperand &Dest, 192 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 193 bool parseImmediateOperand(MachineOperand &Dest); 194 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 195 const Constant *&C); 196 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 197 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 198 bool parseTypedImmediateOperand(MachineOperand &Dest); 199 bool parseFPImmediateOperand(MachineOperand &Dest); 200 bool parseMBBReference(MachineBasicBlock *&MBB); 201 bool parseMBBOperand(MachineOperand &Dest); 202 bool parseStackFrameIndex(int &FI); 203 bool parseStackObjectOperand(MachineOperand &Dest); 204 bool parseFixedStackFrameIndex(int &FI); 205 bool parseFixedStackObjectOperand(MachineOperand &Dest); 206 bool parseGlobalValue(GlobalValue *&GV); 207 bool parseGlobalAddressOperand(MachineOperand &Dest); 208 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 209 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 210 bool parseJumpTableIndexOperand(MachineOperand &Dest); 211 bool parseExternalSymbolOperand(MachineOperand &Dest); 212 bool parseMDNode(MDNode *&Node); 213 bool parseDIExpression(MDNode *&Node); 214 bool parseMetadataOperand(MachineOperand &Dest); 215 bool parseCFIOffset(int &Offset); 216 bool parseCFIRegister(unsigned &Reg); 217 bool parseCFIOperand(MachineOperand &Dest); 218 bool parseIRBlock(BasicBlock *&BB, const Function &F); 219 bool parseBlockAddressOperand(MachineOperand &Dest); 220 bool parseIntrinsicOperand(MachineOperand &Dest); 221 bool parsePredicateOperand(MachineOperand &Dest); 222 bool parseTargetIndexOperand(MachineOperand &Dest); 223 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 224 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 225 bool parseMachineOperand(MachineOperand &Dest, 226 Optional<unsigned> &TiedDefIdx); 227 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 228 Optional<unsigned> &TiedDefIdx); 229 bool parseOffset(int64_t &Offset); 230 bool parseAlignment(unsigned &Alignment); 231 bool parseOperandsOffset(MachineOperand &Op); 232 bool parseIRValue(const Value *&V); 233 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 234 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 235 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 236 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 237 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 238 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 239 240 private: 241 /// Convert the integer literal in the current token into an unsigned integer. 242 /// 243 /// Return true if an error occurred. 244 bool getUnsigned(unsigned &Result); 245 246 /// Convert the integer literal in the current token into an uint64. 247 /// 248 /// Return true if an error occurred. 249 bool getUint64(uint64_t &Result); 250 251 /// Convert the hexadecimal literal in the current token into an unsigned 252 /// APInt with a minimum bitwidth required to represent the value. 253 /// 254 /// Return true if the literal does not represent an integer value. 255 bool getHexUint(APInt &Result); 256 257 /// If the current token is of the given kind, consume it and return false. 258 /// Otherwise report an error and return true. 259 bool expectAndConsume(MIToken::TokenKind TokenKind); 260 261 /// If the current token is of the given kind, consume it and return true. 262 /// Otherwise return false. 263 bool consumeIfPresent(MIToken::TokenKind TokenKind); 264 265 void initNames2InstrOpCodes(); 266 267 /// Try to convert an instruction name to an opcode. Return true if the 268 /// instruction name is invalid. 269 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 270 271 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 272 273 bool assignRegisterTies(MachineInstr &MI, 274 ArrayRef<ParsedMachineOperand> Operands); 275 276 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 277 const MCInstrDesc &MCID); 278 279 void initNames2Regs(); 280 281 /// Try to convert a register name to a register number. Return true if the 282 /// register name is invalid. 283 bool getRegisterByName(StringRef RegName, unsigned &Reg); 284 285 void initNames2RegMasks(); 286 287 /// Check if the given identifier is a name of a register mask. 288 /// 289 /// Return null if the identifier isn't a register mask. 290 const uint32_t *getRegMask(StringRef Identifier); 291 292 void initNames2SubRegIndices(); 293 294 /// Check if the given identifier is a name of a subregister index. 295 /// 296 /// Return 0 if the name isn't a subregister index class. 297 unsigned getSubRegIndex(StringRef Name); 298 299 const BasicBlock *getIRBlock(unsigned Slot); 300 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 301 302 const Value *getIRValue(unsigned Slot); 303 304 void initNames2TargetIndices(); 305 306 /// Try to convert a name of target index to the corresponding target index. 307 /// 308 /// Return true if the name isn't a name of a target index. 309 bool getTargetIndex(StringRef Name, int &Index); 310 311 void initNames2DirectTargetFlags(); 312 313 /// Try to convert a name of a direct target flag to the corresponding 314 /// target flag. 315 /// 316 /// Return true if the name isn't a name of a direct flag. 317 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 318 319 void initNames2BitmaskTargetFlags(); 320 321 /// Try to convert a name of a bitmask target flag to the corresponding 322 /// target flag. 323 /// 324 /// Return true if the name isn't a name of a bitmask target flag. 325 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 326 327 void initNames2MMOTargetFlags(); 328 329 /// Try to convert a name of a MachineMemOperand target flag to the 330 /// corresponding target flag. 331 /// 332 /// Return true if the name isn't a name of a target MMO flag. 333 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 334 335 /// parseStringConstant 336 /// ::= StringConstant 337 bool parseStringConstant(std::string &Result); 338 }; 339 340 } // end anonymous namespace 341 342 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 343 StringRef Source) 344 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 345 {} 346 347 void MIParser::lex(unsigned SkipChar) { 348 CurrentSource = lexMIToken( 349 CurrentSource.data() + SkipChar, Token, 350 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 351 } 352 353 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 354 355 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 356 const SourceMgr &SM = *PFS.SM; 357 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 358 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 359 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 360 // Create an ordinary diagnostic when the source manager's buffer is the 361 // source string. 362 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 363 return true; 364 } 365 // Create a diagnostic for a YAML string literal. 366 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 367 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 368 Source, None, None); 369 return true; 370 } 371 372 static const char *toString(MIToken::TokenKind TokenKind) { 373 switch (TokenKind) { 374 case MIToken::comma: 375 return "','"; 376 case MIToken::equal: 377 return "'='"; 378 case MIToken::colon: 379 return "':'"; 380 case MIToken::lparen: 381 return "'('"; 382 case MIToken::rparen: 383 return "')'"; 384 default: 385 return "<unknown token>"; 386 } 387 } 388 389 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 390 if (Token.isNot(TokenKind)) 391 return error(Twine("expected ") + toString(TokenKind)); 392 lex(); 393 return false; 394 } 395 396 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 397 if (Token.isNot(TokenKind)) 398 return false; 399 lex(); 400 return true; 401 } 402 403 bool MIParser::parseBasicBlockDefinition( 404 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 405 assert(Token.is(MIToken::MachineBasicBlockLabel)); 406 unsigned ID = 0; 407 if (getUnsigned(ID)) 408 return true; 409 auto Loc = Token.location(); 410 auto Name = Token.stringValue(); 411 lex(); 412 bool HasAddressTaken = false; 413 bool IsLandingPad = false; 414 unsigned Alignment = 0; 415 BasicBlock *BB = nullptr; 416 if (consumeIfPresent(MIToken::lparen)) { 417 do { 418 // TODO: Report an error when multiple same attributes are specified. 419 switch (Token.kind()) { 420 case MIToken::kw_address_taken: 421 HasAddressTaken = true; 422 lex(); 423 break; 424 case MIToken::kw_landing_pad: 425 IsLandingPad = true; 426 lex(); 427 break; 428 case MIToken::kw_align: 429 if (parseAlignment(Alignment)) 430 return true; 431 break; 432 case MIToken::IRBlock: 433 // TODO: Report an error when both name and ir block are specified. 434 if (parseIRBlock(BB, *MF.getFunction())) 435 return true; 436 lex(); 437 break; 438 default: 439 break; 440 } 441 } while (consumeIfPresent(MIToken::comma)); 442 if (expectAndConsume(MIToken::rparen)) 443 return true; 444 } 445 if (expectAndConsume(MIToken::colon)) 446 return true; 447 448 if (!Name.empty()) { 449 BB = dyn_cast_or_null<BasicBlock>( 450 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 451 if (!BB) 452 return error(Loc, Twine("basic block '") + Name + 453 "' is not defined in the function '" + 454 MF.getName() + "'"); 455 } 456 auto *MBB = MF.CreateMachineBasicBlock(BB); 457 MF.insert(MF.end(), MBB); 458 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 459 if (!WasInserted) 460 return error(Loc, Twine("redefinition of machine basic block with id #") + 461 Twine(ID)); 462 if (Alignment) 463 MBB->setAlignment(Alignment); 464 if (HasAddressTaken) 465 MBB->setHasAddressTaken(); 466 MBB->setIsEHPad(IsLandingPad); 467 return false; 468 } 469 470 bool MIParser::parseBasicBlockDefinitions( 471 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 472 lex(); 473 // Skip until the first machine basic block. 474 while (Token.is(MIToken::Newline)) 475 lex(); 476 if (Token.isErrorOrEOF()) 477 return Token.isError(); 478 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 479 return error("expected a basic block definition before instructions"); 480 unsigned BraceDepth = 0; 481 do { 482 if (parseBasicBlockDefinition(MBBSlots)) 483 return true; 484 bool IsAfterNewline = false; 485 // Skip until the next machine basic block. 486 while (true) { 487 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 488 Token.isErrorOrEOF()) 489 break; 490 else if (Token.is(MIToken::MachineBasicBlockLabel)) 491 return error("basic block definition should be located at the start of " 492 "the line"); 493 else if (consumeIfPresent(MIToken::Newline)) { 494 IsAfterNewline = true; 495 continue; 496 } 497 IsAfterNewline = false; 498 if (Token.is(MIToken::lbrace)) 499 ++BraceDepth; 500 if (Token.is(MIToken::rbrace)) { 501 if (!BraceDepth) 502 return error("extraneous closing brace ('}')"); 503 --BraceDepth; 504 } 505 lex(); 506 } 507 // Verify that we closed all of the '{' at the end of a file or a block. 508 if (!Token.isError() && BraceDepth) 509 return error("expected '}'"); // FIXME: Report a note that shows '{'. 510 } while (!Token.isErrorOrEOF()); 511 return Token.isError(); 512 } 513 514 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 515 assert(Token.is(MIToken::kw_liveins)); 516 lex(); 517 if (expectAndConsume(MIToken::colon)) 518 return true; 519 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 520 return false; 521 do { 522 if (Token.isNot(MIToken::NamedRegister)) 523 return error("expected a named register"); 524 unsigned Reg = 0; 525 if (parseNamedRegister(Reg)) 526 return true; 527 lex(); 528 LaneBitmask Mask = LaneBitmask::getAll(); 529 if (consumeIfPresent(MIToken::colon)) { 530 // Parse lane mask. 531 if (Token.isNot(MIToken::IntegerLiteral) && 532 Token.isNot(MIToken::HexLiteral)) 533 return error("expected a lane mask"); 534 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 535 "Use correct get-function for lane mask"); 536 LaneBitmask::Type V; 537 if (getUnsigned(V)) 538 return error("invalid lane mask value"); 539 Mask = LaneBitmask(V); 540 lex(); 541 } 542 MBB.addLiveIn(Reg, Mask); 543 } while (consumeIfPresent(MIToken::comma)); 544 return false; 545 } 546 547 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 548 assert(Token.is(MIToken::kw_successors)); 549 lex(); 550 if (expectAndConsume(MIToken::colon)) 551 return true; 552 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 553 return false; 554 do { 555 if (Token.isNot(MIToken::MachineBasicBlock)) 556 return error("expected a machine basic block reference"); 557 MachineBasicBlock *SuccMBB = nullptr; 558 if (parseMBBReference(SuccMBB)) 559 return true; 560 lex(); 561 unsigned Weight = 0; 562 if (consumeIfPresent(MIToken::lparen)) { 563 if (Token.isNot(MIToken::IntegerLiteral) && 564 Token.isNot(MIToken::HexLiteral)) 565 return error("expected an integer literal after '('"); 566 if (getUnsigned(Weight)) 567 return true; 568 lex(); 569 if (expectAndConsume(MIToken::rparen)) 570 return true; 571 } 572 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 573 } while (consumeIfPresent(MIToken::comma)); 574 MBB.normalizeSuccProbs(); 575 return false; 576 } 577 578 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 579 MachineBasicBlock *&AddFalthroughFrom) { 580 // Skip the definition. 581 assert(Token.is(MIToken::MachineBasicBlockLabel)); 582 lex(); 583 if (consumeIfPresent(MIToken::lparen)) { 584 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 585 lex(); 586 consumeIfPresent(MIToken::rparen); 587 } 588 consumeIfPresent(MIToken::colon); 589 590 // Parse the liveins and successors. 591 // N.B: Multiple lists of successors and liveins are allowed and they're 592 // merged into one. 593 // Example: 594 // liveins: %edi 595 // liveins: %esi 596 // 597 // is equivalent to 598 // liveins: %edi, %esi 599 bool ExplicitSuccessors = false; 600 while (true) { 601 if (Token.is(MIToken::kw_successors)) { 602 if (parseBasicBlockSuccessors(MBB)) 603 return true; 604 ExplicitSuccessors = true; 605 } else if (Token.is(MIToken::kw_liveins)) { 606 if (parseBasicBlockLiveins(MBB)) 607 return true; 608 } else if (consumeIfPresent(MIToken::Newline)) { 609 continue; 610 } else 611 break; 612 if (!Token.isNewlineOrEOF()) 613 return error("expected line break at the end of a list"); 614 lex(); 615 } 616 617 // Parse the instructions. 618 bool IsInBundle = false; 619 MachineInstr *PrevMI = nullptr; 620 while (!Token.is(MIToken::MachineBasicBlockLabel) && 621 !Token.is(MIToken::Eof)) { 622 if (consumeIfPresent(MIToken::Newline)) 623 continue; 624 if (consumeIfPresent(MIToken::rbrace)) { 625 // The first parsing pass should verify that all closing '}' have an 626 // opening '{'. 627 assert(IsInBundle); 628 IsInBundle = false; 629 continue; 630 } 631 MachineInstr *MI = nullptr; 632 if (parse(MI)) 633 return true; 634 MBB.insert(MBB.end(), MI); 635 if (IsInBundle) { 636 PrevMI->setFlag(MachineInstr::BundledSucc); 637 MI->setFlag(MachineInstr::BundledPred); 638 } 639 PrevMI = MI; 640 if (Token.is(MIToken::lbrace)) { 641 if (IsInBundle) 642 return error("nested instruction bundles are not allowed"); 643 lex(); 644 // This instruction is the start of the bundle. 645 MI->setFlag(MachineInstr::BundledSucc); 646 IsInBundle = true; 647 if (!Token.is(MIToken::Newline)) 648 // The next instruction can be on the same line. 649 continue; 650 } 651 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 652 lex(); 653 } 654 655 // Construct successor list by searching for basic block machine operands. 656 if (!ExplicitSuccessors) { 657 SmallVector<MachineBasicBlock*,4> Successors; 658 bool IsFallthrough; 659 guessSuccessors(MBB, Successors, IsFallthrough); 660 for (MachineBasicBlock *Succ : Successors) 661 MBB.addSuccessor(Succ); 662 663 if (IsFallthrough) { 664 AddFalthroughFrom = &MBB; 665 } else { 666 MBB.normalizeSuccProbs(); 667 } 668 } 669 670 return false; 671 } 672 673 bool MIParser::parseBasicBlocks() { 674 lex(); 675 // Skip until the first machine basic block. 676 while (Token.is(MIToken::Newline)) 677 lex(); 678 if (Token.isErrorOrEOF()) 679 return Token.isError(); 680 // The first parsing pass should have verified that this token is a MBB label 681 // in the 'parseBasicBlockDefinitions' method. 682 assert(Token.is(MIToken::MachineBasicBlockLabel)); 683 MachineBasicBlock *AddFalthroughFrom = nullptr; 684 do { 685 MachineBasicBlock *MBB = nullptr; 686 if (parseMBBReference(MBB)) 687 return true; 688 if (AddFalthroughFrom) { 689 if (!AddFalthroughFrom->isSuccessor(MBB)) 690 AddFalthroughFrom->addSuccessor(MBB); 691 AddFalthroughFrom->normalizeSuccProbs(); 692 AddFalthroughFrom = nullptr; 693 } 694 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 695 return true; 696 // The method 'parseBasicBlock' should parse the whole block until the next 697 // block or the end of file. 698 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 699 } while (Token.isNot(MIToken::Eof)); 700 return false; 701 } 702 703 bool MIParser::parse(MachineInstr *&MI) { 704 // Parse any register operands before '=' 705 MachineOperand MO = MachineOperand::CreateImm(0); 706 SmallVector<ParsedMachineOperand, 8> Operands; 707 while (Token.isRegister() || Token.isRegisterFlag()) { 708 auto Loc = Token.location(); 709 Optional<unsigned> TiedDefIdx; 710 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 711 return true; 712 Operands.push_back( 713 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 714 if (Token.isNot(MIToken::comma)) 715 break; 716 lex(); 717 } 718 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 719 return true; 720 721 unsigned OpCode, Flags = 0; 722 if (Token.isError() || parseInstruction(OpCode, Flags)) 723 return true; 724 725 // Parse the remaining machine operands. 726 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 727 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 728 auto Loc = Token.location(); 729 Optional<unsigned> TiedDefIdx; 730 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 731 return true; 732 Operands.push_back( 733 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 734 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 735 Token.is(MIToken::lbrace)) 736 break; 737 if (Token.isNot(MIToken::comma)) 738 return error("expected ',' before the next machine operand"); 739 lex(); 740 } 741 742 DebugLoc DebugLocation; 743 if (Token.is(MIToken::kw_debug_location)) { 744 lex(); 745 if (Token.isNot(MIToken::exclaim)) 746 return error("expected a metadata node after 'debug-location'"); 747 MDNode *Node = nullptr; 748 if (parseMDNode(Node)) 749 return true; 750 DebugLocation = DebugLoc(Node); 751 } 752 753 // Parse the machine memory operands. 754 SmallVector<MachineMemOperand *, 2> MemOperands; 755 if (Token.is(MIToken::coloncolon)) { 756 lex(); 757 while (!Token.isNewlineOrEOF()) { 758 MachineMemOperand *MemOp = nullptr; 759 if (parseMachineMemoryOperand(MemOp)) 760 return true; 761 MemOperands.push_back(MemOp); 762 if (Token.isNewlineOrEOF()) 763 break; 764 if (Token.isNot(MIToken::comma)) 765 return error("expected ',' before the next machine memory operand"); 766 lex(); 767 } 768 } 769 770 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 771 if (!MCID.isVariadic()) { 772 // FIXME: Move the implicit operand verification to the machine verifier. 773 if (verifyImplicitOperands(Operands, MCID)) 774 return true; 775 } 776 777 // TODO: Check for extraneous machine operands. 778 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 779 MI->setFlags(Flags); 780 for (const auto &Operand : Operands) 781 MI->addOperand(MF, Operand.Operand); 782 if (assignRegisterTies(*MI, Operands)) 783 return true; 784 if (MemOperands.empty()) 785 return false; 786 MachineInstr::mmo_iterator MemRefs = 787 MF.allocateMemRefsArray(MemOperands.size()); 788 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 789 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 790 return false; 791 } 792 793 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 794 lex(); 795 if (Token.isNot(MIToken::MachineBasicBlock)) 796 return error("expected a machine basic block reference"); 797 if (parseMBBReference(MBB)) 798 return true; 799 lex(); 800 if (Token.isNot(MIToken::Eof)) 801 return error( 802 "expected end of string after the machine basic block reference"); 803 return false; 804 } 805 806 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 807 lex(); 808 if (Token.isNot(MIToken::NamedRegister)) 809 return error("expected a named register"); 810 if (parseNamedRegister(Reg)) 811 return true; 812 lex(); 813 if (Token.isNot(MIToken::Eof)) 814 return error("expected end of string after the register reference"); 815 return false; 816 } 817 818 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 819 lex(); 820 if (Token.isNot(MIToken::VirtualRegister)) 821 return error("expected a virtual register"); 822 if (parseVirtualRegister(Info)) 823 return true; 824 lex(); 825 if (Token.isNot(MIToken::Eof)) 826 return error("expected end of string after the register reference"); 827 return false; 828 } 829 830 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 831 lex(); 832 if (Token.isNot(MIToken::NamedRegister) && 833 Token.isNot(MIToken::VirtualRegister)) 834 return error("expected either a named or virtual register"); 835 836 VRegInfo *Info; 837 if (parseRegister(Reg, Info)) 838 return true; 839 840 lex(); 841 if (Token.isNot(MIToken::Eof)) 842 return error("expected end of string after the register reference"); 843 return false; 844 } 845 846 bool MIParser::parseStandaloneStackObject(int &FI) { 847 lex(); 848 if (Token.isNot(MIToken::StackObject)) 849 return error("expected a stack object"); 850 if (parseStackFrameIndex(FI)) 851 return true; 852 if (Token.isNot(MIToken::Eof)) 853 return error("expected end of string after the stack object reference"); 854 return false; 855 } 856 857 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 858 lex(); 859 if (Token.is(MIToken::exclaim)) { 860 if (parseMDNode(Node)) 861 return true; 862 } else if (Token.is(MIToken::md_diexpr)) { 863 if (parseDIExpression(Node)) 864 return true; 865 } else 866 return error("expected a metadata node"); 867 if (Token.isNot(MIToken::Eof)) 868 return error("expected end of string after the metadata node"); 869 return false; 870 } 871 872 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 873 assert(MO.isImplicit()); 874 return MO.isDef() ? "implicit-def" : "implicit"; 875 } 876 877 static std::string getRegisterName(const TargetRegisterInfo *TRI, 878 unsigned Reg) { 879 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 880 return StringRef(TRI->getName(Reg)).lower(); 881 } 882 883 /// Return true if the parsed machine operands contain a given machine operand. 884 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 885 ArrayRef<ParsedMachineOperand> Operands) { 886 for (const auto &I : Operands) { 887 if (ImplicitOperand.isIdenticalTo(I.Operand)) 888 return true; 889 } 890 return false; 891 } 892 893 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 894 const MCInstrDesc &MCID) { 895 if (MCID.isCall()) 896 // We can't verify call instructions as they can contain arbitrary implicit 897 // register and register mask operands. 898 return false; 899 900 // Gather all the expected implicit operands. 901 SmallVector<MachineOperand, 4> ImplicitOperands; 902 if (MCID.ImplicitDefs) 903 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 904 ImplicitOperands.push_back( 905 MachineOperand::CreateReg(*ImpDefs, true, true)); 906 if (MCID.ImplicitUses) 907 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 908 ImplicitOperands.push_back( 909 MachineOperand::CreateReg(*ImpUses, false, true)); 910 911 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 912 assert(TRI && "Expected target register info"); 913 for (const auto &I : ImplicitOperands) { 914 if (isImplicitOperandIn(I, Operands)) 915 continue; 916 return error(Operands.empty() ? Token.location() : Operands.back().End, 917 Twine("missing implicit register operand '") + 918 printImplicitRegisterFlag(I) + " %" + 919 getRegisterName(TRI, I.getReg()) + "'"); 920 } 921 return false; 922 } 923 924 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 925 if (Token.is(MIToken::kw_frame_setup)) { 926 Flags |= MachineInstr::FrameSetup; 927 lex(); 928 } 929 if (Token.isNot(MIToken::Identifier)) 930 return error("expected a machine instruction"); 931 StringRef InstrName = Token.stringValue(); 932 if (parseInstrName(InstrName, OpCode)) 933 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 934 lex(); 935 return false; 936 } 937 938 bool MIParser::parseNamedRegister(unsigned &Reg) { 939 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 940 StringRef Name = Token.stringValue(); 941 if (getRegisterByName(Name, Reg)) 942 return error(Twine("unknown register name '") + Name + "'"); 943 return false; 944 } 945 946 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 947 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 948 unsigned ID; 949 if (getUnsigned(ID)) 950 return true; 951 Info = &PFS.getVRegInfo(ID); 952 return false; 953 } 954 955 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 956 switch (Token.kind()) { 957 case MIToken::underscore: 958 Reg = 0; 959 return false; 960 case MIToken::NamedRegister: 961 return parseNamedRegister(Reg); 962 case MIToken::VirtualRegister: 963 if (parseVirtualRegister(Info)) 964 return true; 965 Reg = Info->VReg; 966 return false; 967 // TODO: Parse other register kinds. 968 default: 969 llvm_unreachable("The current token should be a register"); 970 } 971 } 972 973 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 974 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 975 return error("expected '_', register class, or register bank name"); 976 StringRef::iterator Loc = Token.location(); 977 StringRef Name = Token.stringValue(); 978 979 // Was it a register class? 980 auto RCNameI = PFS.Names2RegClasses.find(Name); 981 if (RCNameI != PFS.Names2RegClasses.end()) { 982 lex(); 983 const TargetRegisterClass &RC = *RCNameI->getValue(); 984 985 switch (RegInfo.Kind) { 986 case VRegInfo::UNKNOWN: 987 case VRegInfo::NORMAL: 988 RegInfo.Kind = VRegInfo::NORMAL; 989 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 990 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 991 return error(Loc, Twine("conflicting register classes, previously: ") + 992 Twine(TRI.getRegClassName(RegInfo.D.RC))); 993 } 994 RegInfo.D.RC = &RC; 995 RegInfo.Explicit = true; 996 return false; 997 998 case VRegInfo::GENERIC: 999 case VRegInfo::REGBANK: 1000 return error(Loc, "register class specification on generic register"); 1001 } 1002 llvm_unreachable("Unexpected register kind"); 1003 } 1004 1005 // Should be a register bank or a generic register. 1006 const RegisterBank *RegBank = nullptr; 1007 if (Name != "_") { 1008 auto RBNameI = PFS.Names2RegBanks.find(Name); 1009 if (RBNameI == PFS.Names2RegBanks.end()) 1010 return error(Loc, "expected '_', register class, or register bank name"); 1011 RegBank = RBNameI->getValue(); 1012 } 1013 1014 lex(); 1015 1016 switch (RegInfo.Kind) { 1017 case VRegInfo::UNKNOWN: 1018 case VRegInfo::GENERIC: 1019 case VRegInfo::REGBANK: 1020 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1021 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1022 return error(Loc, "conflicting generic register banks"); 1023 RegInfo.D.RegBank = RegBank; 1024 RegInfo.Explicit = true; 1025 return false; 1026 1027 case VRegInfo::NORMAL: 1028 return error(Loc, "register bank specification on normal register"); 1029 } 1030 llvm_unreachable("Unexpected register kind"); 1031 } 1032 1033 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1034 const unsigned OldFlags = Flags; 1035 switch (Token.kind()) { 1036 case MIToken::kw_implicit: 1037 Flags |= RegState::Implicit; 1038 break; 1039 case MIToken::kw_implicit_define: 1040 Flags |= RegState::ImplicitDefine; 1041 break; 1042 case MIToken::kw_def: 1043 Flags |= RegState::Define; 1044 break; 1045 case MIToken::kw_dead: 1046 Flags |= RegState::Dead; 1047 break; 1048 case MIToken::kw_killed: 1049 Flags |= RegState::Kill; 1050 break; 1051 case MIToken::kw_undef: 1052 Flags |= RegState::Undef; 1053 break; 1054 case MIToken::kw_internal: 1055 Flags |= RegState::InternalRead; 1056 break; 1057 case MIToken::kw_early_clobber: 1058 Flags |= RegState::EarlyClobber; 1059 break; 1060 case MIToken::kw_debug_use: 1061 Flags |= RegState::Debug; 1062 break; 1063 default: 1064 llvm_unreachable("The current token should be a register flag"); 1065 } 1066 if (OldFlags == Flags) 1067 // We know that the same flag is specified more than once when the flags 1068 // weren't modified. 1069 return error("duplicate '" + Token.stringValue() + "' register flag"); 1070 lex(); 1071 return false; 1072 } 1073 1074 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1075 assert(Token.is(MIToken::dot)); 1076 lex(); 1077 if (Token.isNot(MIToken::Identifier)) 1078 return error("expected a subregister index after '.'"); 1079 auto Name = Token.stringValue(); 1080 SubReg = getSubRegIndex(Name); 1081 if (!SubReg) 1082 return error(Twine("use of unknown subregister index '") + Name + "'"); 1083 lex(); 1084 return false; 1085 } 1086 1087 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1088 if (!consumeIfPresent(MIToken::kw_tied_def)) 1089 return true; 1090 if (Token.isNot(MIToken::IntegerLiteral)) 1091 return error("expected an integer literal after 'tied-def'"); 1092 if (getUnsigned(TiedDefIdx)) 1093 return true; 1094 lex(); 1095 if (expectAndConsume(MIToken::rparen)) 1096 return true; 1097 return false; 1098 } 1099 1100 bool MIParser::assignRegisterTies(MachineInstr &MI, 1101 ArrayRef<ParsedMachineOperand> Operands) { 1102 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1103 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1104 if (!Operands[I].TiedDefIdx) 1105 continue; 1106 // The parser ensures that this operand is a register use, so we just have 1107 // to check the tied-def operand. 1108 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1109 if (DefIdx >= E) 1110 return error(Operands[I].Begin, 1111 Twine("use of invalid tied-def operand index '" + 1112 Twine(DefIdx) + "'; instruction has only ") + 1113 Twine(E) + " operands"); 1114 const auto &DefOperand = Operands[DefIdx].Operand; 1115 if (!DefOperand.isReg() || !DefOperand.isDef()) 1116 // FIXME: add note with the def operand. 1117 return error(Operands[I].Begin, 1118 Twine("use of invalid tied-def operand index '") + 1119 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1120 " isn't a defined register"); 1121 // Check that the tied-def operand wasn't tied elsewhere. 1122 for (const auto &TiedPair : TiedRegisterPairs) { 1123 if (TiedPair.first == DefIdx) 1124 return error(Operands[I].Begin, 1125 Twine("the tied-def operand #") + Twine(DefIdx) + 1126 " is already tied with another register operand"); 1127 } 1128 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1129 } 1130 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1131 // indices must be less than tied max. 1132 for (const auto &TiedPair : TiedRegisterPairs) 1133 MI.tieOperands(TiedPair.first, TiedPair.second); 1134 return false; 1135 } 1136 1137 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1138 Optional<unsigned> &TiedDefIdx, 1139 bool IsDef) { 1140 unsigned Flags = IsDef ? RegState::Define : 0; 1141 while (Token.isRegisterFlag()) { 1142 if (parseRegisterFlag(Flags)) 1143 return true; 1144 } 1145 if (!Token.isRegister()) 1146 return error("expected a register after register flags"); 1147 unsigned Reg; 1148 VRegInfo *RegInfo; 1149 if (parseRegister(Reg, RegInfo)) 1150 return true; 1151 lex(); 1152 unsigned SubReg = 0; 1153 if (Token.is(MIToken::dot)) { 1154 if (parseSubRegisterIndex(SubReg)) 1155 return true; 1156 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1157 return error("subregister index expects a virtual register"); 1158 } 1159 if (Token.is(MIToken::colon)) { 1160 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1161 return error("register class specification expects a virtual register"); 1162 lex(); 1163 if (parseRegisterClassOrBank(*RegInfo)) 1164 return true; 1165 } 1166 MachineRegisterInfo &MRI = MF.getRegInfo(); 1167 if ((Flags & RegState::Define) == 0) { 1168 if (consumeIfPresent(MIToken::lparen)) { 1169 unsigned Idx; 1170 if (!parseRegisterTiedDefIndex(Idx)) 1171 TiedDefIdx = Idx; 1172 else { 1173 // Try a redundant low-level type. 1174 LLT Ty; 1175 if (parseLowLevelType(Token.location(), Ty)) 1176 return error("expected tied-def or low-level type after '('"); 1177 1178 if (expectAndConsume(MIToken::rparen)) 1179 return true; 1180 1181 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1182 return error("inconsistent type for generic virtual register"); 1183 1184 MRI.setType(Reg, Ty); 1185 } 1186 } 1187 } else if (consumeIfPresent(MIToken::lparen)) { 1188 // Virtual registers may have a tpe with GlobalISel. 1189 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1190 return error("unexpected type on physical register"); 1191 1192 LLT Ty; 1193 if (parseLowLevelType(Token.location(), Ty)) 1194 return true; 1195 1196 if (expectAndConsume(MIToken::rparen)) 1197 return true; 1198 1199 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1200 return error("inconsistent type for generic virtual register"); 1201 1202 MRI.setType(Reg, Ty); 1203 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1204 // Generic virtual registers must have a type. 1205 // If we end up here this means the type hasn't been specified and 1206 // this is bad! 1207 if (RegInfo->Kind == VRegInfo::GENERIC || 1208 RegInfo->Kind == VRegInfo::REGBANK) 1209 return error("generic virtual registers must have a type"); 1210 } 1211 Dest = MachineOperand::CreateReg( 1212 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1213 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1214 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1215 Flags & RegState::InternalRead); 1216 return false; 1217 } 1218 1219 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1220 assert(Token.is(MIToken::IntegerLiteral)); 1221 const APSInt &Int = Token.integerValue(); 1222 if (Int.getMinSignedBits() > 64) 1223 return error("integer literal is too large to be an immediate operand"); 1224 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1225 lex(); 1226 return false; 1227 } 1228 1229 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1230 const Constant *&C) { 1231 auto Source = StringValue.str(); // The source has to be null terminated. 1232 SMDiagnostic Err; 1233 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1234 &PFS.IRSlots); 1235 if (!C) 1236 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1237 return false; 1238 } 1239 1240 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1241 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1242 return true; 1243 lex(); 1244 return false; 1245 } 1246 1247 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1248 if (Token.is(MIToken::ScalarType)) { 1249 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1250 lex(); 1251 return false; 1252 } else if (Token.is(MIToken::PointerType)) { 1253 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1254 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1255 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1256 lex(); 1257 return false; 1258 } 1259 1260 // Now we're looking for a vector. 1261 if (Token.isNot(MIToken::less)) 1262 return error(Loc, 1263 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1264 1265 lex(); 1266 1267 if (Token.isNot(MIToken::IntegerLiteral)) 1268 return error(Loc, "expected <N x sM> for vctor type"); 1269 uint64_t NumElements = Token.integerValue().getZExtValue(); 1270 lex(); 1271 1272 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1273 return error(Loc, "expected '<N x sM>' for vector type"); 1274 lex(); 1275 1276 if (Token.isNot(MIToken::ScalarType)) 1277 return error(Loc, "expected '<N x sM>' for vector type"); 1278 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1279 lex(); 1280 1281 if (Token.isNot(MIToken::greater)) 1282 return error(Loc, "expected '<N x sM>' for vector type"); 1283 lex(); 1284 1285 Ty = LLT::vector(NumElements, ScalarSize); 1286 return false; 1287 } 1288 1289 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1290 assert(Token.is(MIToken::IntegerType)); 1291 auto Loc = Token.location(); 1292 lex(); 1293 if (Token.isNot(MIToken::IntegerLiteral)) 1294 return error("expected an integer literal"); 1295 const Constant *C = nullptr; 1296 if (parseIRConstant(Loc, C)) 1297 return true; 1298 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1299 return false; 1300 } 1301 1302 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1303 auto Loc = Token.location(); 1304 lex(); 1305 if (Token.isNot(MIToken::FloatingPointLiteral) && 1306 Token.isNot(MIToken::HexLiteral)) 1307 return error("expected a floating point literal"); 1308 const Constant *C = nullptr; 1309 if (parseIRConstant(Loc, C)) 1310 return true; 1311 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1312 return false; 1313 } 1314 1315 bool MIParser::getUnsigned(unsigned &Result) { 1316 if (Token.hasIntegerValue()) { 1317 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1318 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1319 if (Val64 == Limit) 1320 return error("expected 32-bit integer (too large)"); 1321 Result = Val64; 1322 return false; 1323 } 1324 if (Token.is(MIToken::HexLiteral)) { 1325 APInt A; 1326 if (getHexUint(A)) 1327 return true; 1328 if (A.getBitWidth() > 32) 1329 return error("expected 32-bit integer (too large)"); 1330 Result = A.getZExtValue(); 1331 return false; 1332 } 1333 return true; 1334 } 1335 1336 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1337 assert(Token.is(MIToken::MachineBasicBlock) || 1338 Token.is(MIToken::MachineBasicBlockLabel)); 1339 unsigned Number; 1340 if (getUnsigned(Number)) 1341 return true; 1342 auto MBBInfo = PFS.MBBSlots.find(Number); 1343 if (MBBInfo == PFS.MBBSlots.end()) 1344 return error(Twine("use of undefined machine basic block #") + 1345 Twine(Number)); 1346 MBB = MBBInfo->second; 1347 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1348 // we drop the <irname> from the bb.<id>.<irname> format. 1349 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1350 return error(Twine("the name of machine basic block #") + Twine(Number) + 1351 " isn't '" + Token.stringValue() + "'"); 1352 return false; 1353 } 1354 1355 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1356 MachineBasicBlock *MBB; 1357 if (parseMBBReference(MBB)) 1358 return true; 1359 Dest = MachineOperand::CreateMBB(MBB); 1360 lex(); 1361 return false; 1362 } 1363 1364 bool MIParser::parseStackFrameIndex(int &FI) { 1365 assert(Token.is(MIToken::StackObject)); 1366 unsigned ID; 1367 if (getUnsigned(ID)) 1368 return true; 1369 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1370 if (ObjectInfo == PFS.StackObjectSlots.end()) 1371 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1372 "'"); 1373 StringRef Name; 1374 if (const auto *Alloca = 1375 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1376 Name = Alloca->getName(); 1377 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1378 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1379 "' isn't '" + Token.stringValue() + "'"); 1380 lex(); 1381 FI = ObjectInfo->second; 1382 return false; 1383 } 1384 1385 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1386 int FI; 1387 if (parseStackFrameIndex(FI)) 1388 return true; 1389 Dest = MachineOperand::CreateFI(FI); 1390 return false; 1391 } 1392 1393 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1394 assert(Token.is(MIToken::FixedStackObject)); 1395 unsigned ID; 1396 if (getUnsigned(ID)) 1397 return true; 1398 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1399 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1400 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1401 Twine(ID) + "'"); 1402 lex(); 1403 FI = ObjectInfo->second; 1404 return false; 1405 } 1406 1407 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1408 int FI; 1409 if (parseFixedStackFrameIndex(FI)) 1410 return true; 1411 Dest = MachineOperand::CreateFI(FI); 1412 return false; 1413 } 1414 1415 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1416 switch (Token.kind()) { 1417 case MIToken::NamedGlobalValue: { 1418 const Module *M = MF.getFunction()->getParent(); 1419 GV = M->getNamedValue(Token.stringValue()); 1420 if (!GV) 1421 return error(Twine("use of undefined global value '") + Token.range() + 1422 "'"); 1423 break; 1424 } 1425 case MIToken::GlobalValue: { 1426 unsigned GVIdx; 1427 if (getUnsigned(GVIdx)) 1428 return true; 1429 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1430 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1431 "'"); 1432 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1433 break; 1434 } 1435 default: 1436 llvm_unreachable("The current token should be a global value"); 1437 } 1438 return false; 1439 } 1440 1441 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1442 GlobalValue *GV = nullptr; 1443 if (parseGlobalValue(GV)) 1444 return true; 1445 lex(); 1446 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1447 if (parseOperandsOffset(Dest)) 1448 return true; 1449 return false; 1450 } 1451 1452 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1453 assert(Token.is(MIToken::ConstantPoolItem)); 1454 unsigned ID; 1455 if (getUnsigned(ID)) 1456 return true; 1457 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1458 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1459 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1460 lex(); 1461 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1462 if (parseOperandsOffset(Dest)) 1463 return true; 1464 return false; 1465 } 1466 1467 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1468 assert(Token.is(MIToken::JumpTableIndex)); 1469 unsigned ID; 1470 if (getUnsigned(ID)) 1471 return true; 1472 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1473 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1474 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1475 lex(); 1476 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1477 return false; 1478 } 1479 1480 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1481 assert(Token.is(MIToken::ExternalSymbol)); 1482 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1483 lex(); 1484 Dest = MachineOperand::CreateES(Symbol); 1485 if (parseOperandsOffset(Dest)) 1486 return true; 1487 return false; 1488 } 1489 1490 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1491 assert(Token.is(MIToken::SubRegisterIndex)); 1492 StringRef Name = Token.stringValue(); 1493 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1494 if (SubRegIndex == 0) 1495 return error(Twine("unknown subregister index '") + Name + "'"); 1496 lex(); 1497 Dest = MachineOperand::CreateImm(SubRegIndex); 1498 return false; 1499 } 1500 1501 bool MIParser::parseMDNode(MDNode *&Node) { 1502 assert(Token.is(MIToken::exclaim)); 1503 1504 auto Loc = Token.location(); 1505 lex(); 1506 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1507 return error("expected metadata id after '!'"); 1508 unsigned ID; 1509 if (getUnsigned(ID)) 1510 return true; 1511 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1512 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1513 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1514 lex(); 1515 Node = NodeInfo->second.get(); 1516 return false; 1517 } 1518 1519 bool MIParser::parseDIExpression(MDNode *&Expr) { 1520 assert(Token.is(MIToken::md_diexpr)); 1521 lex(); 1522 1523 // FIXME: Share this parsing with the IL parser. 1524 SmallVector<uint64_t, 8> Elements; 1525 1526 if (expectAndConsume(MIToken::lparen)) 1527 return true; 1528 1529 if (Token.isNot(MIToken::rparen)) { 1530 do { 1531 if (Token.is(MIToken::Identifier)) { 1532 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1533 lex(); 1534 Elements.push_back(Op); 1535 continue; 1536 } 1537 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1538 } 1539 1540 if (Token.isNot(MIToken::IntegerLiteral) || 1541 Token.integerValue().isSigned()) 1542 return error("expected unsigned integer"); 1543 1544 auto &U = Token.integerValue(); 1545 if (U.ugt(UINT64_MAX)) 1546 return error("element too large, limit is " + Twine(UINT64_MAX)); 1547 Elements.push_back(U.getZExtValue()); 1548 lex(); 1549 1550 } while (consumeIfPresent(MIToken::comma)); 1551 } 1552 1553 if (expectAndConsume(MIToken::rparen)) 1554 return true; 1555 1556 Expr = DIExpression::get(MF.getFunction()->getContext(), Elements); 1557 return false; 1558 } 1559 1560 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1561 MDNode *Node = nullptr; 1562 if (Token.is(MIToken::exclaim)) { 1563 if (parseMDNode(Node)) 1564 return true; 1565 } else if (Token.is(MIToken::md_diexpr)) { 1566 if (parseDIExpression(Node)) 1567 return true; 1568 } 1569 Dest = MachineOperand::CreateMetadata(Node); 1570 return false; 1571 } 1572 1573 bool MIParser::parseCFIOffset(int &Offset) { 1574 if (Token.isNot(MIToken::IntegerLiteral)) 1575 return error("expected a cfi offset"); 1576 if (Token.integerValue().getMinSignedBits() > 32) 1577 return error("expected a 32 bit integer (the cfi offset is too large)"); 1578 Offset = (int)Token.integerValue().getExtValue(); 1579 lex(); 1580 return false; 1581 } 1582 1583 bool MIParser::parseCFIRegister(unsigned &Reg) { 1584 if (Token.isNot(MIToken::NamedRegister)) 1585 return error("expected a cfi register"); 1586 unsigned LLVMReg; 1587 if (parseNamedRegister(LLVMReg)) 1588 return true; 1589 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1590 assert(TRI && "Expected target register info"); 1591 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1592 if (DwarfReg < 0) 1593 return error("invalid DWARF register"); 1594 Reg = (unsigned)DwarfReg; 1595 lex(); 1596 return false; 1597 } 1598 1599 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1600 auto Kind = Token.kind(); 1601 lex(); 1602 int Offset; 1603 unsigned Reg; 1604 unsigned CFIIndex; 1605 switch (Kind) { 1606 case MIToken::kw_cfi_same_value: 1607 if (parseCFIRegister(Reg)) 1608 return true; 1609 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1610 break; 1611 case MIToken::kw_cfi_offset: 1612 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1613 parseCFIOffset(Offset)) 1614 return true; 1615 CFIIndex = 1616 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1617 break; 1618 case MIToken::kw_cfi_def_cfa_register: 1619 if (parseCFIRegister(Reg)) 1620 return true; 1621 CFIIndex = 1622 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1623 break; 1624 case MIToken::kw_cfi_def_cfa_offset: 1625 if (parseCFIOffset(Offset)) 1626 return true; 1627 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1628 CFIIndex = MF.addFrameInst( 1629 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1630 break; 1631 case MIToken::kw_cfi_def_cfa: 1632 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1633 parseCFIOffset(Offset)) 1634 return true; 1635 // NB: MCCFIInstruction::createDefCfa negates the offset. 1636 CFIIndex = 1637 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1638 break; 1639 case MIToken::kw_cfi_restore: 1640 if (parseCFIRegister(Reg)) 1641 return true; 1642 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1643 break; 1644 1645 default: 1646 // TODO: Parse the other CFI operands. 1647 llvm_unreachable("The current token should be a cfi operand"); 1648 } 1649 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1650 return false; 1651 } 1652 1653 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1654 switch (Token.kind()) { 1655 case MIToken::NamedIRBlock: { 1656 BB = dyn_cast_or_null<BasicBlock>( 1657 F.getValueSymbolTable()->lookup(Token.stringValue())); 1658 if (!BB) 1659 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1660 break; 1661 } 1662 case MIToken::IRBlock: { 1663 unsigned SlotNumber = 0; 1664 if (getUnsigned(SlotNumber)) 1665 return true; 1666 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1667 if (!BB) 1668 return error(Twine("use of undefined IR block '%ir-block.") + 1669 Twine(SlotNumber) + "'"); 1670 break; 1671 } 1672 default: 1673 llvm_unreachable("The current token should be an IR block reference"); 1674 } 1675 return false; 1676 } 1677 1678 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1679 assert(Token.is(MIToken::kw_blockaddress)); 1680 lex(); 1681 if (expectAndConsume(MIToken::lparen)) 1682 return true; 1683 if (Token.isNot(MIToken::GlobalValue) && 1684 Token.isNot(MIToken::NamedGlobalValue)) 1685 return error("expected a global value"); 1686 GlobalValue *GV = nullptr; 1687 if (parseGlobalValue(GV)) 1688 return true; 1689 auto *F = dyn_cast<Function>(GV); 1690 if (!F) 1691 return error("expected an IR function reference"); 1692 lex(); 1693 if (expectAndConsume(MIToken::comma)) 1694 return true; 1695 BasicBlock *BB = nullptr; 1696 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1697 return error("expected an IR block reference"); 1698 if (parseIRBlock(BB, *F)) 1699 return true; 1700 lex(); 1701 if (expectAndConsume(MIToken::rparen)) 1702 return true; 1703 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1704 if (parseOperandsOffset(Dest)) 1705 return true; 1706 return false; 1707 } 1708 1709 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1710 assert(Token.is(MIToken::kw_intrinsic)); 1711 lex(); 1712 if (expectAndConsume(MIToken::lparen)) 1713 return error("expected syntax intrinsic(@llvm.whatever)"); 1714 1715 if (Token.isNot(MIToken::NamedGlobalValue)) 1716 return error("expected syntax intrinsic(@llvm.whatever)"); 1717 1718 std::string Name = Token.stringValue(); 1719 lex(); 1720 1721 if (expectAndConsume(MIToken::rparen)) 1722 return error("expected ')' to terminate intrinsic name"); 1723 1724 // Find out what intrinsic we're dealing with, first try the global namespace 1725 // and then the target's private intrinsics if that fails. 1726 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1727 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1728 if (ID == Intrinsic::not_intrinsic && TII) 1729 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1730 1731 if (ID == Intrinsic::not_intrinsic) 1732 return error("unknown intrinsic name"); 1733 Dest = MachineOperand::CreateIntrinsicID(ID); 1734 1735 return false; 1736 } 1737 1738 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1739 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1740 bool IsFloat = Token.is(MIToken::kw_floatpred); 1741 lex(); 1742 1743 if (expectAndConsume(MIToken::lparen)) 1744 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1745 1746 if (Token.isNot(MIToken::Identifier)) 1747 return error("whatever"); 1748 1749 CmpInst::Predicate Pred; 1750 if (IsFloat) { 1751 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1752 .Case("false", CmpInst::FCMP_FALSE) 1753 .Case("oeq", CmpInst::FCMP_OEQ) 1754 .Case("ogt", CmpInst::FCMP_OGT) 1755 .Case("oge", CmpInst::FCMP_OGE) 1756 .Case("olt", CmpInst::FCMP_OLT) 1757 .Case("ole", CmpInst::FCMP_OLE) 1758 .Case("one", CmpInst::FCMP_ONE) 1759 .Case("ord", CmpInst::FCMP_ORD) 1760 .Case("uno", CmpInst::FCMP_UNO) 1761 .Case("ueq", CmpInst::FCMP_UEQ) 1762 .Case("ugt", CmpInst::FCMP_UGT) 1763 .Case("uge", CmpInst::FCMP_UGE) 1764 .Case("ult", CmpInst::FCMP_ULT) 1765 .Case("ule", CmpInst::FCMP_ULE) 1766 .Case("une", CmpInst::FCMP_UNE) 1767 .Case("true", CmpInst::FCMP_TRUE) 1768 .Default(CmpInst::BAD_FCMP_PREDICATE); 1769 if (!CmpInst::isFPPredicate(Pred)) 1770 return error("invalid floating-point predicate"); 1771 } else { 1772 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1773 .Case("eq", CmpInst::ICMP_EQ) 1774 .Case("ne", CmpInst::ICMP_NE) 1775 .Case("sgt", CmpInst::ICMP_SGT) 1776 .Case("sge", CmpInst::ICMP_SGE) 1777 .Case("slt", CmpInst::ICMP_SLT) 1778 .Case("sle", CmpInst::ICMP_SLE) 1779 .Case("ugt", CmpInst::ICMP_UGT) 1780 .Case("uge", CmpInst::ICMP_UGE) 1781 .Case("ult", CmpInst::ICMP_ULT) 1782 .Case("ule", CmpInst::ICMP_ULE) 1783 .Default(CmpInst::BAD_ICMP_PREDICATE); 1784 if (!CmpInst::isIntPredicate(Pred)) 1785 return error("invalid integer predicate"); 1786 } 1787 1788 lex(); 1789 Dest = MachineOperand::CreatePredicate(Pred); 1790 if (expectAndConsume(MIToken::rparen)) 1791 return error("predicate should be terminated by ')'."); 1792 1793 return false; 1794 } 1795 1796 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1797 assert(Token.is(MIToken::kw_target_index)); 1798 lex(); 1799 if (expectAndConsume(MIToken::lparen)) 1800 return true; 1801 if (Token.isNot(MIToken::Identifier)) 1802 return error("expected the name of the target index"); 1803 int Index = 0; 1804 if (getTargetIndex(Token.stringValue(), Index)) 1805 return error("use of undefined target index '" + Token.stringValue() + "'"); 1806 lex(); 1807 if (expectAndConsume(MIToken::rparen)) 1808 return true; 1809 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1810 if (parseOperandsOffset(Dest)) 1811 return true; 1812 return false; 1813 } 1814 1815 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1816 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1817 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1818 assert(TRI && "Expected target register info"); 1819 lex(); 1820 if (expectAndConsume(MIToken::lparen)) 1821 return true; 1822 1823 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1824 while (true) { 1825 if (Token.isNot(MIToken::NamedRegister)) 1826 return error("expected a named register"); 1827 unsigned Reg; 1828 if (parseNamedRegister(Reg)) 1829 return true; 1830 lex(); 1831 Mask[Reg / 32] |= 1U << (Reg % 32); 1832 // TODO: Report an error if the same register is used more than once. 1833 if (Token.isNot(MIToken::comma)) 1834 break; 1835 lex(); 1836 } 1837 1838 if (expectAndConsume(MIToken::rparen)) 1839 return true; 1840 Dest = MachineOperand::CreateRegMask(Mask); 1841 return false; 1842 } 1843 1844 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1845 assert(Token.is(MIToken::kw_liveout)); 1846 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1847 assert(TRI && "Expected target register info"); 1848 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1849 lex(); 1850 if (expectAndConsume(MIToken::lparen)) 1851 return true; 1852 while (true) { 1853 if (Token.isNot(MIToken::NamedRegister)) 1854 return error("expected a named register"); 1855 unsigned Reg; 1856 if (parseNamedRegister(Reg)) 1857 return true; 1858 lex(); 1859 Mask[Reg / 32] |= 1U << (Reg % 32); 1860 // TODO: Report an error if the same register is used more than once. 1861 if (Token.isNot(MIToken::comma)) 1862 break; 1863 lex(); 1864 } 1865 if (expectAndConsume(MIToken::rparen)) 1866 return true; 1867 Dest = MachineOperand::CreateRegLiveOut(Mask); 1868 return false; 1869 } 1870 1871 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1872 Optional<unsigned> &TiedDefIdx) { 1873 switch (Token.kind()) { 1874 case MIToken::kw_implicit: 1875 case MIToken::kw_implicit_define: 1876 case MIToken::kw_def: 1877 case MIToken::kw_dead: 1878 case MIToken::kw_killed: 1879 case MIToken::kw_undef: 1880 case MIToken::kw_internal: 1881 case MIToken::kw_early_clobber: 1882 case MIToken::kw_debug_use: 1883 case MIToken::underscore: 1884 case MIToken::NamedRegister: 1885 case MIToken::VirtualRegister: 1886 return parseRegisterOperand(Dest, TiedDefIdx); 1887 case MIToken::IntegerLiteral: 1888 return parseImmediateOperand(Dest); 1889 case MIToken::IntegerType: 1890 return parseTypedImmediateOperand(Dest); 1891 case MIToken::kw_half: 1892 case MIToken::kw_float: 1893 case MIToken::kw_double: 1894 case MIToken::kw_x86_fp80: 1895 case MIToken::kw_fp128: 1896 case MIToken::kw_ppc_fp128: 1897 return parseFPImmediateOperand(Dest); 1898 case MIToken::MachineBasicBlock: 1899 return parseMBBOperand(Dest); 1900 case MIToken::StackObject: 1901 return parseStackObjectOperand(Dest); 1902 case MIToken::FixedStackObject: 1903 return parseFixedStackObjectOperand(Dest); 1904 case MIToken::GlobalValue: 1905 case MIToken::NamedGlobalValue: 1906 return parseGlobalAddressOperand(Dest); 1907 case MIToken::ConstantPoolItem: 1908 return parseConstantPoolIndexOperand(Dest); 1909 case MIToken::JumpTableIndex: 1910 return parseJumpTableIndexOperand(Dest); 1911 case MIToken::ExternalSymbol: 1912 return parseExternalSymbolOperand(Dest); 1913 case MIToken::SubRegisterIndex: 1914 return parseSubRegisterIndexOperand(Dest); 1915 case MIToken::md_diexpr: 1916 case MIToken::exclaim: 1917 return parseMetadataOperand(Dest); 1918 case MIToken::kw_cfi_same_value: 1919 case MIToken::kw_cfi_offset: 1920 case MIToken::kw_cfi_def_cfa_register: 1921 case MIToken::kw_cfi_def_cfa_offset: 1922 case MIToken::kw_cfi_def_cfa: 1923 case MIToken::kw_cfi_restore: 1924 return parseCFIOperand(Dest); 1925 case MIToken::kw_blockaddress: 1926 return parseBlockAddressOperand(Dest); 1927 case MIToken::kw_intrinsic: 1928 return parseIntrinsicOperand(Dest); 1929 case MIToken::kw_target_index: 1930 return parseTargetIndexOperand(Dest); 1931 case MIToken::kw_liveout: 1932 return parseLiveoutRegisterMaskOperand(Dest); 1933 case MIToken::kw_floatpred: 1934 case MIToken::kw_intpred: 1935 return parsePredicateOperand(Dest); 1936 case MIToken::Error: 1937 return true; 1938 case MIToken::Identifier: 1939 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1940 Dest = MachineOperand::CreateRegMask(RegMask); 1941 lex(); 1942 break; 1943 } else 1944 return parseCustomRegisterMaskOperand(Dest); 1945 default: 1946 // FIXME: Parse the MCSymbol machine operand. 1947 return error("expected a machine operand"); 1948 } 1949 return false; 1950 } 1951 1952 bool MIParser::parseMachineOperandAndTargetFlags( 1953 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1954 unsigned TF = 0; 1955 bool HasTargetFlags = false; 1956 if (Token.is(MIToken::kw_target_flags)) { 1957 HasTargetFlags = true; 1958 lex(); 1959 if (expectAndConsume(MIToken::lparen)) 1960 return true; 1961 if (Token.isNot(MIToken::Identifier)) 1962 return error("expected the name of the target flag"); 1963 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1964 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1965 return error("use of undefined target flag '" + Token.stringValue() + 1966 "'"); 1967 } 1968 lex(); 1969 while (Token.is(MIToken::comma)) { 1970 lex(); 1971 if (Token.isNot(MIToken::Identifier)) 1972 return error("expected the name of the target flag"); 1973 unsigned BitFlag = 0; 1974 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1975 return error("use of undefined target flag '" + Token.stringValue() + 1976 "'"); 1977 // TODO: Report an error when using a duplicate bit target flag. 1978 TF |= BitFlag; 1979 lex(); 1980 } 1981 if (expectAndConsume(MIToken::rparen)) 1982 return true; 1983 } 1984 auto Loc = Token.location(); 1985 if (parseMachineOperand(Dest, TiedDefIdx)) 1986 return true; 1987 if (!HasTargetFlags) 1988 return false; 1989 if (Dest.isReg()) 1990 return error(Loc, "register operands can't have target flags"); 1991 Dest.setTargetFlags(TF); 1992 return false; 1993 } 1994 1995 bool MIParser::parseOffset(int64_t &Offset) { 1996 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1997 return false; 1998 StringRef Sign = Token.range(); 1999 bool IsNegative = Token.is(MIToken::minus); 2000 lex(); 2001 if (Token.isNot(MIToken::IntegerLiteral)) 2002 return error("expected an integer literal after '" + Sign + "'"); 2003 if (Token.integerValue().getMinSignedBits() > 64) 2004 return error("expected 64-bit integer (too large)"); 2005 Offset = Token.integerValue().getExtValue(); 2006 if (IsNegative) 2007 Offset = -Offset; 2008 lex(); 2009 return false; 2010 } 2011 2012 bool MIParser::parseAlignment(unsigned &Alignment) { 2013 assert(Token.is(MIToken::kw_align)); 2014 lex(); 2015 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2016 return error("expected an integer literal after 'align'"); 2017 if (getUnsigned(Alignment)) 2018 return true; 2019 lex(); 2020 return false; 2021 } 2022 2023 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2024 int64_t Offset = 0; 2025 if (parseOffset(Offset)) 2026 return true; 2027 Op.setOffset(Offset); 2028 return false; 2029 } 2030 2031 bool MIParser::parseIRValue(const Value *&V) { 2032 switch (Token.kind()) { 2033 case MIToken::NamedIRValue: { 2034 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 2035 break; 2036 } 2037 case MIToken::IRValue: { 2038 unsigned SlotNumber = 0; 2039 if (getUnsigned(SlotNumber)) 2040 return true; 2041 V = getIRValue(SlotNumber); 2042 break; 2043 } 2044 case MIToken::NamedGlobalValue: 2045 case MIToken::GlobalValue: { 2046 GlobalValue *GV = nullptr; 2047 if (parseGlobalValue(GV)) 2048 return true; 2049 V = GV; 2050 break; 2051 } 2052 case MIToken::QuotedIRValue: { 2053 const Constant *C = nullptr; 2054 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2055 return true; 2056 V = C; 2057 break; 2058 } 2059 default: 2060 llvm_unreachable("The current token should be an IR block reference"); 2061 } 2062 if (!V) 2063 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2064 return false; 2065 } 2066 2067 bool MIParser::getUint64(uint64_t &Result) { 2068 if (Token.hasIntegerValue()) { 2069 if (Token.integerValue().getActiveBits() > 64) 2070 return error("expected 64-bit integer (too large)"); 2071 Result = Token.integerValue().getZExtValue(); 2072 return false; 2073 } 2074 if (Token.is(MIToken::HexLiteral)) { 2075 APInt A; 2076 if (getHexUint(A)) 2077 return true; 2078 if (A.getBitWidth() > 64) 2079 return error("expected 64-bit integer (too large)"); 2080 Result = A.getZExtValue(); 2081 return false; 2082 } 2083 return true; 2084 } 2085 2086 bool MIParser::getHexUint(APInt &Result) { 2087 assert(Token.is(MIToken::HexLiteral)); 2088 StringRef S = Token.range(); 2089 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2090 // This could be a floating point literal with a special prefix. 2091 if (!isxdigit(S[2])) 2092 return true; 2093 StringRef V = S.substr(2); 2094 APInt A(V.size()*4, V, 16); 2095 2096 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2097 // sure it isn't the case before constructing result. 2098 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2099 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2100 return false; 2101 } 2102 2103 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2104 const auto OldFlags = Flags; 2105 switch (Token.kind()) { 2106 case MIToken::kw_volatile: 2107 Flags |= MachineMemOperand::MOVolatile; 2108 break; 2109 case MIToken::kw_non_temporal: 2110 Flags |= MachineMemOperand::MONonTemporal; 2111 break; 2112 case MIToken::kw_dereferenceable: 2113 Flags |= MachineMemOperand::MODereferenceable; 2114 break; 2115 case MIToken::kw_invariant: 2116 Flags |= MachineMemOperand::MOInvariant; 2117 break; 2118 case MIToken::StringConstant: { 2119 MachineMemOperand::Flags TF; 2120 if (getMMOTargetFlag(Token.stringValue(), TF)) 2121 return error("use of undefined target MMO flag '" + Token.stringValue() + 2122 "'"); 2123 Flags |= TF; 2124 break; 2125 } 2126 default: 2127 llvm_unreachable("The current token should be a memory operand flag"); 2128 } 2129 if (OldFlags == Flags) 2130 // We know that the same flag is specified more than once when the flags 2131 // weren't modified. 2132 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2133 lex(); 2134 return false; 2135 } 2136 2137 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2138 switch (Token.kind()) { 2139 case MIToken::kw_stack: 2140 PSV = MF.getPSVManager().getStack(); 2141 break; 2142 case MIToken::kw_got: 2143 PSV = MF.getPSVManager().getGOT(); 2144 break; 2145 case MIToken::kw_jump_table: 2146 PSV = MF.getPSVManager().getJumpTable(); 2147 break; 2148 case MIToken::kw_constant_pool: 2149 PSV = MF.getPSVManager().getConstantPool(); 2150 break; 2151 case MIToken::FixedStackObject: { 2152 int FI; 2153 if (parseFixedStackFrameIndex(FI)) 2154 return true; 2155 PSV = MF.getPSVManager().getFixedStack(FI); 2156 // The token was already consumed, so use return here instead of break. 2157 return false; 2158 } 2159 case MIToken::StackObject: { 2160 int FI; 2161 if (parseStackFrameIndex(FI)) 2162 return true; 2163 PSV = MF.getPSVManager().getFixedStack(FI); 2164 // The token was already consumed, so use return here instead of break. 2165 return false; 2166 } 2167 case MIToken::kw_call_entry: 2168 lex(); 2169 switch (Token.kind()) { 2170 case MIToken::GlobalValue: 2171 case MIToken::NamedGlobalValue: { 2172 GlobalValue *GV = nullptr; 2173 if (parseGlobalValue(GV)) 2174 return true; 2175 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2176 break; 2177 } 2178 case MIToken::ExternalSymbol: 2179 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2180 MF.createExternalSymbolName(Token.stringValue())); 2181 break; 2182 default: 2183 return error( 2184 "expected a global value or an external symbol after 'call-entry'"); 2185 } 2186 break; 2187 default: 2188 llvm_unreachable("The current token should be pseudo source value"); 2189 } 2190 lex(); 2191 return false; 2192 } 2193 2194 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2195 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2196 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2197 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2198 Token.is(MIToken::kw_call_entry)) { 2199 const PseudoSourceValue *PSV = nullptr; 2200 if (parseMemoryPseudoSourceValue(PSV)) 2201 return true; 2202 int64_t Offset = 0; 2203 if (parseOffset(Offset)) 2204 return true; 2205 Dest = MachinePointerInfo(PSV, Offset); 2206 return false; 2207 } 2208 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2209 Token.isNot(MIToken::GlobalValue) && 2210 Token.isNot(MIToken::NamedGlobalValue) && 2211 Token.isNot(MIToken::QuotedIRValue)) 2212 return error("expected an IR value reference"); 2213 const Value *V = nullptr; 2214 if (parseIRValue(V)) 2215 return true; 2216 if (!V->getType()->isPointerTy()) 2217 return error("expected a pointer IR value"); 2218 lex(); 2219 int64_t Offset = 0; 2220 if (parseOffset(Offset)) 2221 return true; 2222 Dest = MachinePointerInfo(V, Offset); 2223 return false; 2224 } 2225 2226 bool MIParser::parseOptionalScope(LLVMContext &Context, 2227 SyncScope::ID &SSID) { 2228 SSID = SyncScope::System; 2229 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2230 lex(); 2231 if (expectAndConsume(MIToken::lparen)) 2232 return error("expected '(' in syncscope"); 2233 2234 std::string SSN; 2235 if (parseStringConstant(SSN)) 2236 return true; 2237 2238 SSID = Context.getOrInsertSyncScopeID(SSN); 2239 if (expectAndConsume(MIToken::rparen)) 2240 return error("expected ')' in syncscope"); 2241 } 2242 2243 return false; 2244 } 2245 2246 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2247 Order = AtomicOrdering::NotAtomic; 2248 if (Token.isNot(MIToken::Identifier)) 2249 return false; 2250 2251 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2252 .Case("unordered", AtomicOrdering::Unordered) 2253 .Case("monotonic", AtomicOrdering::Monotonic) 2254 .Case("acquire", AtomicOrdering::Acquire) 2255 .Case("release", AtomicOrdering::Release) 2256 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2257 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2258 .Default(AtomicOrdering::NotAtomic); 2259 2260 if (Order != AtomicOrdering::NotAtomic) { 2261 lex(); 2262 return false; 2263 } 2264 2265 return error("expected an atomic scope, ordering or a size integer literal"); 2266 } 2267 2268 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2269 if (expectAndConsume(MIToken::lparen)) 2270 return true; 2271 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2272 while (Token.isMemoryOperandFlag()) { 2273 if (parseMemoryOperandFlag(Flags)) 2274 return true; 2275 } 2276 if (Token.isNot(MIToken::Identifier) || 2277 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2278 return error("expected 'load' or 'store' memory operation"); 2279 if (Token.stringValue() == "load") 2280 Flags |= MachineMemOperand::MOLoad; 2281 else 2282 Flags |= MachineMemOperand::MOStore; 2283 lex(); 2284 2285 // Optional 'store' for operands that both load and store. 2286 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2287 Flags |= MachineMemOperand::MOStore; 2288 lex(); 2289 } 2290 2291 // Optional synchronization scope. 2292 SyncScope::ID SSID; 2293 if (parseOptionalScope(MF.getFunction()->getContext(), SSID)) 2294 return true; 2295 2296 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2297 AtomicOrdering Order, FailureOrder; 2298 if (parseOptionalAtomicOrdering(Order)) 2299 return true; 2300 2301 if (parseOptionalAtomicOrdering(FailureOrder)) 2302 return true; 2303 2304 if (Token.isNot(MIToken::IntegerLiteral)) 2305 return error("expected the size integer literal after memory operation"); 2306 uint64_t Size; 2307 if (getUint64(Size)) 2308 return true; 2309 lex(); 2310 2311 MachinePointerInfo Ptr = MachinePointerInfo(); 2312 if (Token.is(MIToken::Identifier)) { 2313 const char *Word = 2314 ((Flags & MachineMemOperand::MOLoad) && 2315 (Flags & MachineMemOperand::MOStore)) 2316 ? "on" 2317 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2318 if (Token.stringValue() != Word) 2319 return error(Twine("expected '") + Word + "'"); 2320 lex(); 2321 2322 if (parseMachinePointerInfo(Ptr)) 2323 return true; 2324 } 2325 unsigned BaseAlignment = Size; 2326 AAMDNodes AAInfo; 2327 MDNode *Range = nullptr; 2328 while (consumeIfPresent(MIToken::comma)) { 2329 switch (Token.kind()) { 2330 case MIToken::kw_align: 2331 if (parseAlignment(BaseAlignment)) 2332 return true; 2333 break; 2334 case MIToken::md_tbaa: 2335 lex(); 2336 if (parseMDNode(AAInfo.TBAA)) 2337 return true; 2338 break; 2339 case MIToken::md_alias_scope: 2340 lex(); 2341 if (parseMDNode(AAInfo.Scope)) 2342 return true; 2343 break; 2344 case MIToken::md_noalias: 2345 lex(); 2346 if (parseMDNode(AAInfo.NoAlias)) 2347 return true; 2348 break; 2349 case MIToken::md_range: 2350 lex(); 2351 if (parseMDNode(Range)) 2352 return true; 2353 break; 2354 // TODO: Report an error on duplicate metadata nodes. 2355 default: 2356 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2357 "'!noalias' or '!range'"); 2358 } 2359 } 2360 if (expectAndConsume(MIToken::rparen)) 2361 return true; 2362 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2363 SSID, Order, FailureOrder); 2364 return false; 2365 } 2366 2367 void MIParser::initNames2InstrOpCodes() { 2368 if (!Names2InstrOpCodes.empty()) 2369 return; 2370 const auto *TII = MF.getSubtarget().getInstrInfo(); 2371 assert(TII && "Expected target instruction info"); 2372 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2373 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2374 } 2375 2376 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2377 initNames2InstrOpCodes(); 2378 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2379 if (InstrInfo == Names2InstrOpCodes.end()) 2380 return true; 2381 OpCode = InstrInfo->getValue(); 2382 return false; 2383 } 2384 2385 void MIParser::initNames2Regs() { 2386 if (!Names2Regs.empty()) 2387 return; 2388 // The '%noreg' register is the register 0. 2389 Names2Regs.insert(std::make_pair("noreg", 0)); 2390 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2391 assert(TRI && "Expected target register info"); 2392 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2393 bool WasInserted = 2394 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2395 .second; 2396 (void)WasInserted; 2397 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2398 } 2399 } 2400 2401 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2402 initNames2Regs(); 2403 auto RegInfo = Names2Regs.find(RegName); 2404 if (RegInfo == Names2Regs.end()) 2405 return true; 2406 Reg = RegInfo->getValue(); 2407 return false; 2408 } 2409 2410 void MIParser::initNames2RegMasks() { 2411 if (!Names2RegMasks.empty()) 2412 return; 2413 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2414 assert(TRI && "Expected target register info"); 2415 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2416 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2417 assert(RegMasks.size() == RegMaskNames.size()); 2418 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2419 Names2RegMasks.insert( 2420 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2421 } 2422 2423 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2424 initNames2RegMasks(); 2425 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2426 if (RegMaskInfo == Names2RegMasks.end()) 2427 return nullptr; 2428 return RegMaskInfo->getValue(); 2429 } 2430 2431 void MIParser::initNames2SubRegIndices() { 2432 if (!Names2SubRegIndices.empty()) 2433 return; 2434 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2435 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2436 Names2SubRegIndices.insert( 2437 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2438 } 2439 2440 unsigned MIParser::getSubRegIndex(StringRef Name) { 2441 initNames2SubRegIndices(); 2442 auto SubRegInfo = Names2SubRegIndices.find(Name); 2443 if (SubRegInfo == Names2SubRegIndices.end()) 2444 return 0; 2445 return SubRegInfo->getValue(); 2446 } 2447 2448 static void initSlots2BasicBlocks( 2449 const Function &F, 2450 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2451 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2452 MST.incorporateFunction(F); 2453 for (auto &BB : F) { 2454 if (BB.hasName()) 2455 continue; 2456 int Slot = MST.getLocalSlot(&BB); 2457 if (Slot == -1) 2458 continue; 2459 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2460 } 2461 } 2462 2463 static const BasicBlock *getIRBlockFromSlot( 2464 unsigned Slot, 2465 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2466 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2467 if (BlockInfo == Slots2BasicBlocks.end()) 2468 return nullptr; 2469 return BlockInfo->second; 2470 } 2471 2472 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2473 if (Slots2BasicBlocks.empty()) 2474 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2475 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2476 } 2477 2478 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2479 if (&F == MF.getFunction()) 2480 return getIRBlock(Slot); 2481 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2482 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2483 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2484 } 2485 2486 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2487 DenseMap<unsigned, const Value *> &Slots2Values) { 2488 int Slot = MST.getLocalSlot(V); 2489 if (Slot == -1) 2490 return; 2491 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2492 } 2493 2494 /// Creates the mapping from slot numbers to function's unnamed IR values. 2495 static void initSlots2Values(const Function &F, 2496 DenseMap<unsigned, const Value *> &Slots2Values) { 2497 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2498 MST.incorporateFunction(F); 2499 for (const auto &Arg : F.args()) 2500 mapValueToSlot(&Arg, MST, Slots2Values); 2501 for (const auto &BB : F) { 2502 mapValueToSlot(&BB, MST, Slots2Values); 2503 for (const auto &I : BB) 2504 mapValueToSlot(&I, MST, Slots2Values); 2505 } 2506 } 2507 2508 const Value *MIParser::getIRValue(unsigned Slot) { 2509 if (Slots2Values.empty()) 2510 initSlots2Values(*MF.getFunction(), Slots2Values); 2511 auto ValueInfo = Slots2Values.find(Slot); 2512 if (ValueInfo == Slots2Values.end()) 2513 return nullptr; 2514 return ValueInfo->second; 2515 } 2516 2517 void MIParser::initNames2TargetIndices() { 2518 if (!Names2TargetIndices.empty()) 2519 return; 2520 const auto *TII = MF.getSubtarget().getInstrInfo(); 2521 assert(TII && "Expected target instruction info"); 2522 auto Indices = TII->getSerializableTargetIndices(); 2523 for (const auto &I : Indices) 2524 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2525 } 2526 2527 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2528 initNames2TargetIndices(); 2529 auto IndexInfo = Names2TargetIndices.find(Name); 2530 if (IndexInfo == Names2TargetIndices.end()) 2531 return true; 2532 Index = IndexInfo->second; 2533 return false; 2534 } 2535 2536 void MIParser::initNames2DirectTargetFlags() { 2537 if (!Names2DirectTargetFlags.empty()) 2538 return; 2539 const auto *TII = MF.getSubtarget().getInstrInfo(); 2540 assert(TII && "Expected target instruction info"); 2541 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2542 for (const auto &I : Flags) 2543 Names2DirectTargetFlags.insert( 2544 std::make_pair(StringRef(I.second), I.first)); 2545 } 2546 2547 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2548 initNames2DirectTargetFlags(); 2549 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2550 if (FlagInfo == Names2DirectTargetFlags.end()) 2551 return true; 2552 Flag = FlagInfo->second; 2553 return false; 2554 } 2555 2556 void MIParser::initNames2BitmaskTargetFlags() { 2557 if (!Names2BitmaskTargetFlags.empty()) 2558 return; 2559 const auto *TII = MF.getSubtarget().getInstrInfo(); 2560 assert(TII && "Expected target instruction info"); 2561 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2562 for (const auto &I : Flags) 2563 Names2BitmaskTargetFlags.insert( 2564 std::make_pair(StringRef(I.second), I.first)); 2565 } 2566 2567 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2568 initNames2BitmaskTargetFlags(); 2569 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2570 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2571 return true; 2572 Flag = FlagInfo->second; 2573 return false; 2574 } 2575 2576 void MIParser::initNames2MMOTargetFlags() { 2577 if (!Names2MMOTargetFlags.empty()) 2578 return; 2579 const auto *TII = MF.getSubtarget().getInstrInfo(); 2580 assert(TII && "Expected target instruction info"); 2581 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2582 for (const auto &I : Flags) 2583 Names2MMOTargetFlags.insert( 2584 std::make_pair(StringRef(I.second), I.first)); 2585 } 2586 2587 bool MIParser::getMMOTargetFlag(StringRef Name, 2588 MachineMemOperand::Flags &Flag) { 2589 initNames2MMOTargetFlags(); 2590 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2591 if (FlagInfo == Names2MMOTargetFlags.end()) 2592 return true; 2593 Flag = FlagInfo->second; 2594 return false; 2595 } 2596 2597 bool MIParser::parseStringConstant(std::string &Result) { 2598 if (Token.isNot(MIToken::StringConstant)) 2599 return error("expected string constant"); 2600 Result = Token.stringValue(); 2601 lex(); 2602 return false; 2603 } 2604 2605 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2606 StringRef Src, 2607 SMDiagnostic &Error) { 2608 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2609 } 2610 2611 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2612 StringRef Src, SMDiagnostic &Error) { 2613 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2614 } 2615 2616 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2617 MachineBasicBlock *&MBB, StringRef Src, 2618 SMDiagnostic &Error) { 2619 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2620 } 2621 2622 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2623 unsigned &Reg, StringRef Src, 2624 SMDiagnostic &Error) { 2625 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2626 } 2627 2628 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2629 unsigned &Reg, StringRef Src, 2630 SMDiagnostic &Error) { 2631 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2632 } 2633 2634 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2635 VRegInfo *&Info, StringRef Src, 2636 SMDiagnostic &Error) { 2637 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2638 } 2639 2640 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2641 int &FI, StringRef Src, 2642 SMDiagnostic &Error) { 2643 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2644 } 2645 2646 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2647 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2648 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2649 } 2650