1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueSymbolTable.h"
57 #include "llvm/MC/LaneBitmask.h"
58 #include "llvm/MC/MCDwarf.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/SMLoc.h"
68 #include "llvm/Support/SourceMgr.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetIntrinsicInfo.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cctype>
75 #include <cstddef>
76 #include <cstdint>
77 #include <limits>
78 #include <string>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
84     SourceMgr &SM, const SlotMapping &IRSlots,
85     const Name2RegClassMap &Names2RegClasses,
86     const Name2RegBankMap &Names2RegBanks)
87   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
88     Names2RegBanks(Names2RegBanks) {
89 }
90 
91 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
92   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
93   if (I.second) {
94     MachineRegisterInfo &MRI = MF.getRegInfo();
95     VRegInfo *Info = new (Allocator) VRegInfo;
96     Info->VReg = MRI.createIncompleteVirtualRegister();
97     I.first->second = Info;
98   }
99   return *I.first->second;
100 }
101 
102 namespace {
103 
104 /// A wrapper struct around the 'MachineOperand' struct that includes a source
105 /// range and other attributes.
106 struct ParsedMachineOperand {
107   MachineOperand Operand;
108   StringRef::iterator Begin;
109   StringRef::iterator End;
110   Optional<unsigned> TiedDefIdx;
111 
112   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
113                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
114       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
115     if (TiedDefIdx)
116       assert(Operand.isReg() && Operand.isUse() &&
117              "Only used register operands can be tied");
118   }
119 };
120 
121 class MIParser {
122   MachineFunction &MF;
123   SMDiagnostic &Error;
124   StringRef Source, CurrentSource;
125   MIToken Token;
126   PerFunctionMIParsingState &PFS;
127   /// Maps from instruction names to op codes.
128   StringMap<unsigned> Names2InstrOpCodes;
129   /// Maps from register names to registers.
130   StringMap<unsigned> Names2Regs;
131   /// Maps from register mask names to register masks.
132   StringMap<const uint32_t *> Names2RegMasks;
133   /// Maps from subregister names to subregister indices.
134   StringMap<unsigned> Names2SubRegIndices;
135   /// Maps from slot numbers to function's unnamed basic blocks.
136   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
137   /// Maps from slot numbers to function's unnamed values.
138   DenseMap<unsigned, const Value *> Slots2Values;
139   /// Maps from target index names to target indices.
140   StringMap<int> Names2TargetIndices;
141   /// Maps from direct target flag names to the direct target flag values.
142   StringMap<unsigned> Names2DirectTargetFlags;
143   /// Maps from direct target flag names to the bitmask target flag values.
144   StringMap<unsigned> Names2BitmaskTargetFlags;
145   /// Maps from MMO target flag names to MMO target flag values.
146   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
147 
148 public:
149   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
150            StringRef Source);
151 
152   /// \p SkipChar gives the number of characters to skip before looking
153   /// for the next token.
154   void lex(unsigned SkipChar = 0);
155 
156   /// Report an error at the current location with the given message.
157   ///
158   /// This function always return true.
159   bool error(const Twine &Msg);
160 
161   /// Report an error at the given location with the given message.
162   ///
163   /// This function always return true.
164   bool error(StringRef::iterator Loc, const Twine &Msg);
165 
166   bool
167   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
168   bool parseBasicBlocks();
169   bool parse(MachineInstr *&MI);
170   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
171   bool parseStandaloneNamedRegister(unsigned &Reg);
172   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
173   bool parseStandaloneRegister(unsigned &Reg);
174   bool parseStandaloneStackObject(int &FI);
175   bool parseStandaloneMDNode(MDNode *&Node);
176 
177   bool
178   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
179   bool parseBasicBlock(MachineBasicBlock &MBB,
180                        MachineBasicBlock *&AddFalthroughFrom);
181   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
182   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
183 
184   bool parseNamedRegister(unsigned &Reg);
185   bool parseVirtualRegister(VRegInfo *&Info);
186   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
187   bool parseRegisterFlag(unsigned &Flags);
188   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
189   bool parseSubRegisterIndex(unsigned &SubReg);
190   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
191   bool parseRegisterOperand(MachineOperand &Dest,
192                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
193   bool parseImmediateOperand(MachineOperand &Dest);
194   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
195                        const Constant *&C);
196   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
197   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
198   bool parseTypedImmediateOperand(MachineOperand &Dest);
199   bool parseFPImmediateOperand(MachineOperand &Dest);
200   bool parseMBBReference(MachineBasicBlock *&MBB);
201   bool parseMBBOperand(MachineOperand &Dest);
202   bool parseStackFrameIndex(int &FI);
203   bool parseStackObjectOperand(MachineOperand &Dest);
204   bool parseFixedStackFrameIndex(int &FI);
205   bool parseFixedStackObjectOperand(MachineOperand &Dest);
206   bool parseGlobalValue(GlobalValue *&GV);
207   bool parseGlobalAddressOperand(MachineOperand &Dest);
208   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
209   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
210   bool parseJumpTableIndexOperand(MachineOperand &Dest);
211   bool parseExternalSymbolOperand(MachineOperand &Dest);
212   bool parseMDNode(MDNode *&Node);
213   bool parseDIExpression(MDNode *&Node);
214   bool parseMetadataOperand(MachineOperand &Dest);
215   bool parseCFIOffset(int &Offset);
216   bool parseCFIRegister(unsigned &Reg);
217   bool parseCFIOperand(MachineOperand &Dest);
218   bool parseIRBlock(BasicBlock *&BB, const Function &F);
219   bool parseBlockAddressOperand(MachineOperand &Dest);
220   bool parseIntrinsicOperand(MachineOperand &Dest);
221   bool parsePredicateOperand(MachineOperand &Dest);
222   bool parseTargetIndexOperand(MachineOperand &Dest);
223   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
224   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
225   bool parseMachineOperand(MachineOperand &Dest,
226                            Optional<unsigned> &TiedDefIdx);
227   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
228                                          Optional<unsigned> &TiedDefIdx);
229   bool parseOffset(int64_t &Offset);
230   bool parseAlignment(unsigned &Alignment);
231   bool parseOperandsOffset(MachineOperand &Op);
232   bool parseIRValue(const Value *&V);
233   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
234   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
235   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
236   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
237   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
238   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
239 
240 private:
241   /// Convert the integer literal in the current token into an unsigned integer.
242   ///
243   /// Return true if an error occurred.
244   bool getUnsigned(unsigned &Result);
245 
246   /// Convert the integer literal in the current token into an uint64.
247   ///
248   /// Return true if an error occurred.
249   bool getUint64(uint64_t &Result);
250 
251   /// Convert the hexadecimal literal in the current token into an unsigned
252   ///  APInt with a minimum bitwidth required to represent the value.
253   ///
254   /// Return true if the literal does not represent an integer value.
255   bool getHexUint(APInt &Result);
256 
257   /// If the current token is of the given kind, consume it and return false.
258   /// Otherwise report an error and return true.
259   bool expectAndConsume(MIToken::TokenKind TokenKind);
260 
261   /// If the current token is of the given kind, consume it and return true.
262   /// Otherwise return false.
263   bool consumeIfPresent(MIToken::TokenKind TokenKind);
264 
265   void initNames2InstrOpCodes();
266 
267   /// Try to convert an instruction name to an opcode. Return true if the
268   /// instruction name is invalid.
269   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
270 
271   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
272 
273   bool assignRegisterTies(MachineInstr &MI,
274                           ArrayRef<ParsedMachineOperand> Operands);
275 
276   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
277                               const MCInstrDesc &MCID);
278 
279   void initNames2Regs();
280 
281   /// Try to convert a register name to a register number. Return true if the
282   /// register name is invalid.
283   bool getRegisterByName(StringRef RegName, unsigned &Reg);
284 
285   void initNames2RegMasks();
286 
287   /// Check if the given identifier is a name of a register mask.
288   ///
289   /// Return null if the identifier isn't a register mask.
290   const uint32_t *getRegMask(StringRef Identifier);
291 
292   void initNames2SubRegIndices();
293 
294   /// Check if the given identifier is a name of a subregister index.
295   ///
296   /// Return 0 if the name isn't a subregister index class.
297   unsigned getSubRegIndex(StringRef Name);
298 
299   const BasicBlock *getIRBlock(unsigned Slot);
300   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
301 
302   const Value *getIRValue(unsigned Slot);
303 
304   void initNames2TargetIndices();
305 
306   /// Try to convert a name of target index to the corresponding target index.
307   ///
308   /// Return true if the name isn't a name of a target index.
309   bool getTargetIndex(StringRef Name, int &Index);
310 
311   void initNames2DirectTargetFlags();
312 
313   /// Try to convert a name of a direct target flag to the corresponding
314   /// target flag.
315   ///
316   /// Return true if the name isn't a name of a direct flag.
317   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
318 
319   void initNames2BitmaskTargetFlags();
320 
321   /// Try to convert a name of a bitmask target flag to the corresponding
322   /// target flag.
323   ///
324   /// Return true if the name isn't a name of a bitmask target flag.
325   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
326 
327   void initNames2MMOTargetFlags();
328 
329   /// Try to convert a name of a MachineMemOperand target flag to the
330   /// corresponding target flag.
331   ///
332   /// Return true if the name isn't a name of a target MMO flag.
333   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
334 
335   /// parseStringConstant
336   ///   ::= StringConstant
337   bool parseStringConstant(std::string &Result);
338 };
339 
340 } // end anonymous namespace
341 
342 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
343                    StringRef Source)
344     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
345 {}
346 
347 void MIParser::lex(unsigned SkipChar) {
348   CurrentSource = lexMIToken(
349       CurrentSource.data() + SkipChar, Token,
350       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
351 }
352 
353 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
354 
355 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
356   const SourceMgr &SM = *PFS.SM;
357   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
358   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
359   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
360     // Create an ordinary diagnostic when the source manager's buffer is the
361     // source string.
362     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
363     return true;
364   }
365   // Create a diagnostic for a YAML string literal.
366   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
367                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
368                        Source, None, None);
369   return true;
370 }
371 
372 static const char *toString(MIToken::TokenKind TokenKind) {
373   switch (TokenKind) {
374   case MIToken::comma:
375     return "','";
376   case MIToken::equal:
377     return "'='";
378   case MIToken::colon:
379     return "':'";
380   case MIToken::lparen:
381     return "'('";
382   case MIToken::rparen:
383     return "')'";
384   default:
385     return "<unknown token>";
386   }
387 }
388 
389 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
390   if (Token.isNot(TokenKind))
391     return error(Twine("expected ") + toString(TokenKind));
392   lex();
393   return false;
394 }
395 
396 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
397   if (Token.isNot(TokenKind))
398     return false;
399   lex();
400   return true;
401 }
402 
403 bool MIParser::parseBasicBlockDefinition(
404     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
405   assert(Token.is(MIToken::MachineBasicBlockLabel));
406   unsigned ID = 0;
407   if (getUnsigned(ID))
408     return true;
409   auto Loc = Token.location();
410   auto Name = Token.stringValue();
411   lex();
412   bool HasAddressTaken = false;
413   bool IsLandingPad = false;
414   unsigned Alignment = 0;
415   BasicBlock *BB = nullptr;
416   if (consumeIfPresent(MIToken::lparen)) {
417     do {
418       // TODO: Report an error when multiple same attributes are specified.
419       switch (Token.kind()) {
420       case MIToken::kw_address_taken:
421         HasAddressTaken = true;
422         lex();
423         break;
424       case MIToken::kw_landing_pad:
425         IsLandingPad = true;
426         lex();
427         break;
428       case MIToken::kw_align:
429         if (parseAlignment(Alignment))
430           return true;
431         break;
432       case MIToken::IRBlock:
433         // TODO: Report an error when both name and ir block are specified.
434         if (parseIRBlock(BB, *MF.getFunction()))
435           return true;
436         lex();
437         break;
438       default:
439         break;
440       }
441     } while (consumeIfPresent(MIToken::comma));
442     if (expectAndConsume(MIToken::rparen))
443       return true;
444   }
445   if (expectAndConsume(MIToken::colon))
446     return true;
447 
448   if (!Name.empty()) {
449     BB = dyn_cast_or_null<BasicBlock>(
450         MF.getFunction()->getValueSymbolTable()->lookup(Name));
451     if (!BB)
452       return error(Loc, Twine("basic block '") + Name +
453                             "' is not defined in the function '" +
454                             MF.getName() + "'");
455   }
456   auto *MBB = MF.CreateMachineBasicBlock(BB);
457   MF.insert(MF.end(), MBB);
458   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
459   if (!WasInserted)
460     return error(Loc, Twine("redefinition of machine basic block with id #") +
461                           Twine(ID));
462   if (Alignment)
463     MBB->setAlignment(Alignment);
464   if (HasAddressTaken)
465     MBB->setHasAddressTaken();
466   MBB->setIsEHPad(IsLandingPad);
467   return false;
468 }
469 
470 bool MIParser::parseBasicBlockDefinitions(
471     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
472   lex();
473   // Skip until the first machine basic block.
474   while (Token.is(MIToken::Newline))
475     lex();
476   if (Token.isErrorOrEOF())
477     return Token.isError();
478   if (Token.isNot(MIToken::MachineBasicBlockLabel))
479     return error("expected a basic block definition before instructions");
480   unsigned BraceDepth = 0;
481   do {
482     if (parseBasicBlockDefinition(MBBSlots))
483       return true;
484     bool IsAfterNewline = false;
485     // Skip until the next machine basic block.
486     while (true) {
487       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
488           Token.isErrorOrEOF())
489         break;
490       else if (Token.is(MIToken::MachineBasicBlockLabel))
491         return error("basic block definition should be located at the start of "
492                      "the line");
493       else if (consumeIfPresent(MIToken::Newline)) {
494         IsAfterNewline = true;
495         continue;
496       }
497       IsAfterNewline = false;
498       if (Token.is(MIToken::lbrace))
499         ++BraceDepth;
500       if (Token.is(MIToken::rbrace)) {
501         if (!BraceDepth)
502           return error("extraneous closing brace ('}')");
503         --BraceDepth;
504       }
505       lex();
506     }
507     // Verify that we closed all of the '{' at the end of a file or a block.
508     if (!Token.isError() && BraceDepth)
509       return error("expected '}'"); // FIXME: Report a note that shows '{'.
510   } while (!Token.isErrorOrEOF());
511   return Token.isError();
512 }
513 
514 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
515   assert(Token.is(MIToken::kw_liveins));
516   lex();
517   if (expectAndConsume(MIToken::colon))
518     return true;
519   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
520     return false;
521   do {
522     if (Token.isNot(MIToken::NamedRegister))
523       return error("expected a named register");
524     unsigned Reg = 0;
525     if (parseNamedRegister(Reg))
526       return true;
527     lex();
528     LaneBitmask Mask = LaneBitmask::getAll();
529     if (consumeIfPresent(MIToken::colon)) {
530       // Parse lane mask.
531       if (Token.isNot(MIToken::IntegerLiteral) &&
532           Token.isNot(MIToken::HexLiteral))
533         return error("expected a lane mask");
534       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
535                     "Use correct get-function for lane mask");
536       LaneBitmask::Type V;
537       if (getUnsigned(V))
538         return error("invalid lane mask value");
539       Mask = LaneBitmask(V);
540       lex();
541     }
542     MBB.addLiveIn(Reg, Mask);
543   } while (consumeIfPresent(MIToken::comma));
544   return false;
545 }
546 
547 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
548   assert(Token.is(MIToken::kw_successors));
549   lex();
550   if (expectAndConsume(MIToken::colon))
551     return true;
552   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
553     return false;
554   do {
555     if (Token.isNot(MIToken::MachineBasicBlock))
556       return error("expected a machine basic block reference");
557     MachineBasicBlock *SuccMBB = nullptr;
558     if (parseMBBReference(SuccMBB))
559       return true;
560     lex();
561     unsigned Weight = 0;
562     if (consumeIfPresent(MIToken::lparen)) {
563       if (Token.isNot(MIToken::IntegerLiteral) &&
564           Token.isNot(MIToken::HexLiteral))
565         return error("expected an integer literal after '('");
566       if (getUnsigned(Weight))
567         return true;
568       lex();
569       if (expectAndConsume(MIToken::rparen))
570         return true;
571     }
572     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
573   } while (consumeIfPresent(MIToken::comma));
574   MBB.normalizeSuccProbs();
575   return false;
576 }
577 
578 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
579                                MachineBasicBlock *&AddFalthroughFrom) {
580   // Skip the definition.
581   assert(Token.is(MIToken::MachineBasicBlockLabel));
582   lex();
583   if (consumeIfPresent(MIToken::lparen)) {
584     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
585       lex();
586     consumeIfPresent(MIToken::rparen);
587   }
588   consumeIfPresent(MIToken::colon);
589 
590   // Parse the liveins and successors.
591   // N.B: Multiple lists of successors and liveins are allowed and they're
592   // merged into one.
593   // Example:
594   //   liveins: %edi
595   //   liveins: %esi
596   //
597   // is equivalent to
598   //   liveins: %edi, %esi
599   bool ExplicitSuccessors = false;
600   while (true) {
601     if (Token.is(MIToken::kw_successors)) {
602       if (parseBasicBlockSuccessors(MBB))
603         return true;
604       ExplicitSuccessors = true;
605     } else if (Token.is(MIToken::kw_liveins)) {
606       if (parseBasicBlockLiveins(MBB))
607         return true;
608     } else if (consumeIfPresent(MIToken::Newline)) {
609       continue;
610     } else
611       break;
612     if (!Token.isNewlineOrEOF())
613       return error("expected line break at the end of a list");
614     lex();
615   }
616 
617   // Parse the instructions.
618   bool IsInBundle = false;
619   MachineInstr *PrevMI = nullptr;
620   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
621          !Token.is(MIToken::Eof)) {
622     if (consumeIfPresent(MIToken::Newline))
623       continue;
624     if (consumeIfPresent(MIToken::rbrace)) {
625       // The first parsing pass should verify that all closing '}' have an
626       // opening '{'.
627       assert(IsInBundle);
628       IsInBundle = false;
629       continue;
630     }
631     MachineInstr *MI = nullptr;
632     if (parse(MI))
633       return true;
634     MBB.insert(MBB.end(), MI);
635     if (IsInBundle) {
636       PrevMI->setFlag(MachineInstr::BundledSucc);
637       MI->setFlag(MachineInstr::BundledPred);
638     }
639     PrevMI = MI;
640     if (Token.is(MIToken::lbrace)) {
641       if (IsInBundle)
642         return error("nested instruction bundles are not allowed");
643       lex();
644       // This instruction is the start of the bundle.
645       MI->setFlag(MachineInstr::BundledSucc);
646       IsInBundle = true;
647       if (!Token.is(MIToken::Newline))
648         // The next instruction can be on the same line.
649         continue;
650     }
651     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
652     lex();
653   }
654 
655   // Construct successor list by searching for basic block machine operands.
656   if (!ExplicitSuccessors) {
657     SmallVector<MachineBasicBlock*,4> Successors;
658     bool IsFallthrough;
659     guessSuccessors(MBB, Successors, IsFallthrough);
660     for (MachineBasicBlock *Succ : Successors)
661       MBB.addSuccessor(Succ);
662 
663     if (IsFallthrough) {
664       AddFalthroughFrom = &MBB;
665     } else {
666       MBB.normalizeSuccProbs();
667     }
668   }
669 
670   return false;
671 }
672 
673 bool MIParser::parseBasicBlocks() {
674   lex();
675   // Skip until the first machine basic block.
676   while (Token.is(MIToken::Newline))
677     lex();
678   if (Token.isErrorOrEOF())
679     return Token.isError();
680   // The first parsing pass should have verified that this token is a MBB label
681   // in the 'parseBasicBlockDefinitions' method.
682   assert(Token.is(MIToken::MachineBasicBlockLabel));
683   MachineBasicBlock *AddFalthroughFrom = nullptr;
684   do {
685     MachineBasicBlock *MBB = nullptr;
686     if (parseMBBReference(MBB))
687       return true;
688     if (AddFalthroughFrom) {
689       if (!AddFalthroughFrom->isSuccessor(MBB))
690         AddFalthroughFrom->addSuccessor(MBB);
691       AddFalthroughFrom->normalizeSuccProbs();
692       AddFalthroughFrom = nullptr;
693     }
694     if (parseBasicBlock(*MBB, AddFalthroughFrom))
695       return true;
696     // The method 'parseBasicBlock' should parse the whole block until the next
697     // block or the end of file.
698     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
699   } while (Token.isNot(MIToken::Eof));
700   return false;
701 }
702 
703 bool MIParser::parse(MachineInstr *&MI) {
704   // Parse any register operands before '='
705   MachineOperand MO = MachineOperand::CreateImm(0);
706   SmallVector<ParsedMachineOperand, 8> Operands;
707   while (Token.isRegister() || Token.isRegisterFlag()) {
708     auto Loc = Token.location();
709     Optional<unsigned> TiedDefIdx;
710     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
711       return true;
712     Operands.push_back(
713         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
714     if (Token.isNot(MIToken::comma))
715       break;
716     lex();
717   }
718   if (!Operands.empty() && expectAndConsume(MIToken::equal))
719     return true;
720 
721   unsigned OpCode, Flags = 0;
722   if (Token.isError() || parseInstruction(OpCode, Flags))
723     return true;
724 
725   // Parse the remaining machine operands.
726   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
727          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
728     auto Loc = Token.location();
729     Optional<unsigned> TiedDefIdx;
730     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
731       return true;
732     Operands.push_back(
733         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
734     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
735         Token.is(MIToken::lbrace))
736       break;
737     if (Token.isNot(MIToken::comma))
738       return error("expected ',' before the next machine operand");
739     lex();
740   }
741 
742   DebugLoc DebugLocation;
743   if (Token.is(MIToken::kw_debug_location)) {
744     lex();
745     if (Token.isNot(MIToken::exclaim))
746       return error("expected a metadata node after 'debug-location'");
747     MDNode *Node = nullptr;
748     if (parseMDNode(Node))
749       return true;
750     DebugLocation = DebugLoc(Node);
751   }
752 
753   // Parse the machine memory operands.
754   SmallVector<MachineMemOperand *, 2> MemOperands;
755   if (Token.is(MIToken::coloncolon)) {
756     lex();
757     while (!Token.isNewlineOrEOF()) {
758       MachineMemOperand *MemOp = nullptr;
759       if (parseMachineMemoryOperand(MemOp))
760         return true;
761       MemOperands.push_back(MemOp);
762       if (Token.isNewlineOrEOF())
763         break;
764       if (Token.isNot(MIToken::comma))
765         return error("expected ',' before the next machine memory operand");
766       lex();
767     }
768   }
769 
770   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
771   if (!MCID.isVariadic()) {
772     // FIXME: Move the implicit operand verification to the machine verifier.
773     if (verifyImplicitOperands(Operands, MCID))
774       return true;
775   }
776 
777   // TODO: Check for extraneous machine operands.
778   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
779   MI->setFlags(Flags);
780   for (const auto &Operand : Operands)
781     MI->addOperand(MF, Operand.Operand);
782   if (assignRegisterTies(*MI, Operands))
783     return true;
784   if (MemOperands.empty())
785     return false;
786   MachineInstr::mmo_iterator MemRefs =
787       MF.allocateMemRefsArray(MemOperands.size());
788   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
789   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
790   return false;
791 }
792 
793 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
794   lex();
795   if (Token.isNot(MIToken::MachineBasicBlock))
796     return error("expected a machine basic block reference");
797   if (parseMBBReference(MBB))
798     return true;
799   lex();
800   if (Token.isNot(MIToken::Eof))
801     return error(
802         "expected end of string after the machine basic block reference");
803   return false;
804 }
805 
806 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
807   lex();
808   if (Token.isNot(MIToken::NamedRegister))
809     return error("expected a named register");
810   if (parseNamedRegister(Reg))
811     return true;
812   lex();
813   if (Token.isNot(MIToken::Eof))
814     return error("expected end of string after the register reference");
815   return false;
816 }
817 
818 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
819   lex();
820   if (Token.isNot(MIToken::VirtualRegister))
821     return error("expected a virtual register");
822   if (parseVirtualRegister(Info))
823     return true;
824   lex();
825   if (Token.isNot(MIToken::Eof))
826     return error("expected end of string after the register reference");
827   return false;
828 }
829 
830 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
831   lex();
832   if (Token.isNot(MIToken::NamedRegister) &&
833       Token.isNot(MIToken::VirtualRegister))
834     return error("expected either a named or virtual register");
835 
836   VRegInfo *Info;
837   if (parseRegister(Reg, Info))
838     return true;
839 
840   lex();
841   if (Token.isNot(MIToken::Eof))
842     return error("expected end of string after the register reference");
843   return false;
844 }
845 
846 bool MIParser::parseStandaloneStackObject(int &FI) {
847   lex();
848   if (Token.isNot(MIToken::StackObject))
849     return error("expected a stack object");
850   if (parseStackFrameIndex(FI))
851     return true;
852   if (Token.isNot(MIToken::Eof))
853     return error("expected end of string after the stack object reference");
854   return false;
855 }
856 
857 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
858   lex();
859   if (Token.is(MIToken::exclaim)) {
860     if (parseMDNode(Node))
861       return true;
862   } else if (Token.is(MIToken::md_diexpr)) {
863     if (parseDIExpression(Node))
864       return true;
865   } else
866     return error("expected a metadata node");
867   if (Token.isNot(MIToken::Eof))
868     return error("expected end of string after the metadata node");
869   return false;
870 }
871 
872 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
873   assert(MO.isImplicit());
874   return MO.isDef() ? "implicit-def" : "implicit";
875 }
876 
877 static std::string getRegisterName(const TargetRegisterInfo *TRI,
878                                    unsigned Reg) {
879   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
880   return StringRef(TRI->getName(Reg)).lower();
881 }
882 
883 /// Return true if the parsed machine operands contain a given machine operand.
884 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
885                                 ArrayRef<ParsedMachineOperand> Operands) {
886   for (const auto &I : Operands) {
887     if (ImplicitOperand.isIdenticalTo(I.Operand))
888       return true;
889   }
890   return false;
891 }
892 
893 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
894                                       const MCInstrDesc &MCID) {
895   if (MCID.isCall())
896     // We can't verify call instructions as they can contain arbitrary implicit
897     // register and register mask operands.
898     return false;
899 
900   // Gather all the expected implicit operands.
901   SmallVector<MachineOperand, 4> ImplicitOperands;
902   if (MCID.ImplicitDefs)
903     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
904       ImplicitOperands.push_back(
905           MachineOperand::CreateReg(*ImpDefs, true, true));
906   if (MCID.ImplicitUses)
907     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
908       ImplicitOperands.push_back(
909           MachineOperand::CreateReg(*ImpUses, false, true));
910 
911   const auto *TRI = MF.getSubtarget().getRegisterInfo();
912   assert(TRI && "Expected target register info");
913   for (const auto &I : ImplicitOperands) {
914     if (isImplicitOperandIn(I, Operands))
915       continue;
916     return error(Operands.empty() ? Token.location() : Operands.back().End,
917                  Twine("missing implicit register operand '") +
918                      printImplicitRegisterFlag(I) + " %" +
919                      getRegisterName(TRI, I.getReg()) + "'");
920   }
921   return false;
922 }
923 
924 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
925   if (Token.is(MIToken::kw_frame_setup)) {
926     Flags |= MachineInstr::FrameSetup;
927     lex();
928   }
929   if (Token.isNot(MIToken::Identifier))
930     return error("expected a machine instruction");
931   StringRef InstrName = Token.stringValue();
932   if (parseInstrName(InstrName, OpCode))
933     return error(Twine("unknown machine instruction name '") + InstrName + "'");
934   lex();
935   return false;
936 }
937 
938 bool MIParser::parseNamedRegister(unsigned &Reg) {
939   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
940   StringRef Name = Token.stringValue();
941   if (getRegisterByName(Name, Reg))
942     return error(Twine("unknown register name '") + Name + "'");
943   return false;
944 }
945 
946 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
947   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
948   unsigned ID;
949   if (getUnsigned(ID))
950     return true;
951   Info = &PFS.getVRegInfo(ID);
952   return false;
953 }
954 
955 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
956   switch (Token.kind()) {
957   case MIToken::underscore:
958     Reg = 0;
959     return false;
960   case MIToken::NamedRegister:
961     return parseNamedRegister(Reg);
962   case MIToken::VirtualRegister:
963     if (parseVirtualRegister(Info))
964       return true;
965     Reg = Info->VReg;
966     return false;
967   // TODO: Parse other register kinds.
968   default:
969     llvm_unreachable("The current token should be a register");
970   }
971 }
972 
973 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
974   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
975     return error("expected '_', register class, or register bank name");
976   StringRef::iterator Loc = Token.location();
977   StringRef Name = Token.stringValue();
978 
979   // Was it a register class?
980   auto RCNameI = PFS.Names2RegClasses.find(Name);
981   if (RCNameI != PFS.Names2RegClasses.end()) {
982     lex();
983     const TargetRegisterClass &RC = *RCNameI->getValue();
984 
985     switch (RegInfo.Kind) {
986     case VRegInfo::UNKNOWN:
987     case VRegInfo::NORMAL:
988       RegInfo.Kind = VRegInfo::NORMAL;
989       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
990         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
991         return error(Loc, Twine("conflicting register classes, previously: ") +
992                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
993       }
994       RegInfo.D.RC = &RC;
995       RegInfo.Explicit = true;
996       return false;
997 
998     case VRegInfo::GENERIC:
999     case VRegInfo::REGBANK:
1000       return error(Loc, "register class specification on generic register");
1001     }
1002     llvm_unreachable("Unexpected register kind");
1003   }
1004 
1005   // Should be a register bank or a generic register.
1006   const RegisterBank *RegBank = nullptr;
1007   if (Name != "_") {
1008     auto RBNameI = PFS.Names2RegBanks.find(Name);
1009     if (RBNameI == PFS.Names2RegBanks.end())
1010       return error(Loc, "expected '_', register class, or register bank name");
1011     RegBank = RBNameI->getValue();
1012   }
1013 
1014   lex();
1015 
1016   switch (RegInfo.Kind) {
1017   case VRegInfo::UNKNOWN:
1018   case VRegInfo::GENERIC:
1019   case VRegInfo::REGBANK:
1020     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1021     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1022       return error(Loc, "conflicting generic register banks");
1023     RegInfo.D.RegBank = RegBank;
1024     RegInfo.Explicit = true;
1025     return false;
1026 
1027   case VRegInfo::NORMAL:
1028     return error(Loc, "register bank specification on normal register");
1029   }
1030   llvm_unreachable("Unexpected register kind");
1031 }
1032 
1033 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1034   const unsigned OldFlags = Flags;
1035   switch (Token.kind()) {
1036   case MIToken::kw_implicit:
1037     Flags |= RegState::Implicit;
1038     break;
1039   case MIToken::kw_implicit_define:
1040     Flags |= RegState::ImplicitDefine;
1041     break;
1042   case MIToken::kw_def:
1043     Flags |= RegState::Define;
1044     break;
1045   case MIToken::kw_dead:
1046     Flags |= RegState::Dead;
1047     break;
1048   case MIToken::kw_killed:
1049     Flags |= RegState::Kill;
1050     break;
1051   case MIToken::kw_undef:
1052     Flags |= RegState::Undef;
1053     break;
1054   case MIToken::kw_internal:
1055     Flags |= RegState::InternalRead;
1056     break;
1057   case MIToken::kw_early_clobber:
1058     Flags |= RegState::EarlyClobber;
1059     break;
1060   case MIToken::kw_debug_use:
1061     Flags |= RegState::Debug;
1062     break;
1063   default:
1064     llvm_unreachable("The current token should be a register flag");
1065   }
1066   if (OldFlags == Flags)
1067     // We know that the same flag is specified more than once when the flags
1068     // weren't modified.
1069     return error("duplicate '" + Token.stringValue() + "' register flag");
1070   lex();
1071   return false;
1072 }
1073 
1074 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1075   assert(Token.is(MIToken::dot));
1076   lex();
1077   if (Token.isNot(MIToken::Identifier))
1078     return error("expected a subregister index after '.'");
1079   auto Name = Token.stringValue();
1080   SubReg = getSubRegIndex(Name);
1081   if (!SubReg)
1082     return error(Twine("use of unknown subregister index '") + Name + "'");
1083   lex();
1084   return false;
1085 }
1086 
1087 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1088   if (!consumeIfPresent(MIToken::kw_tied_def))
1089     return true;
1090   if (Token.isNot(MIToken::IntegerLiteral))
1091     return error("expected an integer literal after 'tied-def'");
1092   if (getUnsigned(TiedDefIdx))
1093     return true;
1094   lex();
1095   if (expectAndConsume(MIToken::rparen))
1096     return true;
1097   return false;
1098 }
1099 
1100 bool MIParser::assignRegisterTies(MachineInstr &MI,
1101                                   ArrayRef<ParsedMachineOperand> Operands) {
1102   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1103   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1104     if (!Operands[I].TiedDefIdx)
1105       continue;
1106     // The parser ensures that this operand is a register use, so we just have
1107     // to check the tied-def operand.
1108     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1109     if (DefIdx >= E)
1110       return error(Operands[I].Begin,
1111                    Twine("use of invalid tied-def operand index '" +
1112                          Twine(DefIdx) + "'; instruction has only ") +
1113                        Twine(E) + " operands");
1114     const auto &DefOperand = Operands[DefIdx].Operand;
1115     if (!DefOperand.isReg() || !DefOperand.isDef())
1116       // FIXME: add note with the def operand.
1117       return error(Operands[I].Begin,
1118                    Twine("use of invalid tied-def operand index '") +
1119                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1120                        " isn't a defined register");
1121     // Check that the tied-def operand wasn't tied elsewhere.
1122     for (const auto &TiedPair : TiedRegisterPairs) {
1123       if (TiedPair.first == DefIdx)
1124         return error(Operands[I].Begin,
1125                      Twine("the tied-def operand #") + Twine(DefIdx) +
1126                          " is already tied with another register operand");
1127     }
1128     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1129   }
1130   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1131   // indices must be less than tied max.
1132   for (const auto &TiedPair : TiedRegisterPairs)
1133     MI.tieOperands(TiedPair.first, TiedPair.second);
1134   return false;
1135 }
1136 
1137 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1138                                     Optional<unsigned> &TiedDefIdx,
1139                                     bool IsDef) {
1140   unsigned Flags = IsDef ? RegState::Define : 0;
1141   while (Token.isRegisterFlag()) {
1142     if (parseRegisterFlag(Flags))
1143       return true;
1144   }
1145   if (!Token.isRegister())
1146     return error("expected a register after register flags");
1147   unsigned Reg;
1148   VRegInfo *RegInfo;
1149   if (parseRegister(Reg, RegInfo))
1150     return true;
1151   lex();
1152   unsigned SubReg = 0;
1153   if (Token.is(MIToken::dot)) {
1154     if (parseSubRegisterIndex(SubReg))
1155       return true;
1156     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1157       return error("subregister index expects a virtual register");
1158   }
1159   if (Token.is(MIToken::colon)) {
1160     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1161       return error("register class specification expects a virtual register");
1162     lex();
1163     if (parseRegisterClassOrBank(*RegInfo))
1164         return true;
1165   }
1166   MachineRegisterInfo &MRI = MF.getRegInfo();
1167   if ((Flags & RegState::Define) == 0) {
1168     if (consumeIfPresent(MIToken::lparen)) {
1169       unsigned Idx;
1170       if (!parseRegisterTiedDefIndex(Idx))
1171         TiedDefIdx = Idx;
1172       else {
1173         // Try a redundant low-level type.
1174         LLT Ty;
1175         if (parseLowLevelType(Token.location(), Ty))
1176           return error("expected tied-def or low-level type after '('");
1177 
1178         if (expectAndConsume(MIToken::rparen))
1179           return true;
1180 
1181         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1182           return error("inconsistent type for generic virtual register");
1183 
1184         MRI.setType(Reg, Ty);
1185       }
1186     }
1187   } else if (consumeIfPresent(MIToken::lparen)) {
1188     // Virtual registers may have a tpe with GlobalISel.
1189     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1190       return error("unexpected type on physical register");
1191 
1192     LLT Ty;
1193     if (parseLowLevelType(Token.location(), Ty))
1194       return true;
1195 
1196     if (expectAndConsume(MIToken::rparen))
1197       return true;
1198 
1199     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1200       return error("inconsistent type for generic virtual register");
1201 
1202     MRI.setType(Reg, Ty);
1203   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1204     // Generic virtual registers must have a type.
1205     // If we end up here this means the type hasn't been specified and
1206     // this is bad!
1207     if (RegInfo->Kind == VRegInfo::GENERIC ||
1208         RegInfo->Kind == VRegInfo::REGBANK)
1209       return error("generic virtual registers must have a type");
1210   }
1211   Dest = MachineOperand::CreateReg(
1212       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1213       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1214       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1215       Flags & RegState::InternalRead);
1216   return false;
1217 }
1218 
1219 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1220   assert(Token.is(MIToken::IntegerLiteral));
1221   const APSInt &Int = Token.integerValue();
1222   if (Int.getMinSignedBits() > 64)
1223     return error("integer literal is too large to be an immediate operand");
1224   Dest = MachineOperand::CreateImm(Int.getExtValue());
1225   lex();
1226   return false;
1227 }
1228 
1229 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1230                                const Constant *&C) {
1231   auto Source = StringValue.str(); // The source has to be null terminated.
1232   SMDiagnostic Err;
1233   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1234                          &PFS.IRSlots);
1235   if (!C)
1236     return error(Loc + Err.getColumnNo(), Err.getMessage());
1237   return false;
1238 }
1239 
1240 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1241   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1242     return true;
1243   lex();
1244   return false;
1245 }
1246 
1247 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1248   if (Token.is(MIToken::ScalarType)) {
1249     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1250     lex();
1251     return false;
1252   } else if (Token.is(MIToken::PointerType)) {
1253     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1254     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1255     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1256     lex();
1257     return false;
1258   }
1259 
1260   // Now we're looking for a vector.
1261   if (Token.isNot(MIToken::less))
1262     return error(Loc,
1263                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1264 
1265   lex();
1266 
1267   if (Token.isNot(MIToken::IntegerLiteral))
1268     return error(Loc, "expected <N x sM> for vctor type");
1269   uint64_t NumElements = Token.integerValue().getZExtValue();
1270   lex();
1271 
1272   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1273     return error(Loc, "expected '<N x sM>' for vector type");
1274   lex();
1275 
1276   if (Token.isNot(MIToken::ScalarType))
1277     return error(Loc, "expected '<N x sM>' for vector type");
1278   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1279   lex();
1280 
1281   if (Token.isNot(MIToken::greater))
1282     return error(Loc, "expected '<N x sM>' for vector type");
1283   lex();
1284 
1285   Ty = LLT::vector(NumElements, ScalarSize);
1286   return false;
1287 }
1288 
1289 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1290   assert(Token.is(MIToken::IntegerType));
1291   auto Loc = Token.location();
1292   lex();
1293   if (Token.isNot(MIToken::IntegerLiteral))
1294     return error("expected an integer literal");
1295   const Constant *C = nullptr;
1296   if (parseIRConstant(Loc, C))
1297     return true;
1298   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1299   return false;
1300 }
1301 
1302 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1303   auto Loc = Token.location();
1304   lex();
1305   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1306       Token.isNot(MIToken::HexLiteral))
1307     return error("expected a floating point literal");
1308   const Constant *C = nullptr;
1309   if (parseIRConstant(Loc, C))
1310     return true;
1311   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1312   return false;
1313 }
1314 
1315 bool MIParser::getUnsigned(unsigned &Result) {
1316   if (Token.hasIntegerValue()) {
1317     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1318     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1319     if (Val64 == Limit)
1320       return error("expected 32-bit integer (too large)");
1321     Result = Val64;
1322     return false;
1323   }
1324   if (Token.is(MIToken::HexLiteral)) {
1325     APInt A;
1326     if (getHexUint(A))
1327       return true;
1328     if (A.getBitWidth() > 32)
1329       return error("expected 32-bit integer (too large)");
1330     Result = A.getZExtValue();
1331     return false;
1332   }
1333   return true;
1334 }
1335 
1336 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1337   assert(Token.is(MIToken::MachineBasicBlock) ||
1338          Token.is(MIToken::MachineBasicBlockLabel));
1339   unsigned Number;
1340   if (getUnsigned(Number))
1341     return true;
1342   auto MBBInfo = PFS.MBBSlots.find(Number);
1343   if (MBBInfo == PFS.MBBSlots.end())
1344     return error(Twine("use of undefined machine basic block #") +
1345                  Twine(Number));
1346   MBB = MBBInfo->second;
1347   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1348   // we drop the <irname> from the bb.<id>.<irname> format.
1349   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1350     return error(Twine("the name of machine basic block #") + Twine(Number) +
1351                  " isn't '" + Token.stringValue() + "'");
1352   return false;
1353 }
1354 
1355 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1356   MachineBasicBlock *MBB;
1357   if (parseMBBReference(MBB))
1358     return true;
1359   Dest = MachineOperand::CreateMBB(MBB);
1360   lex();
1361   return false;
1362 }
1363 
1364 bool MIParser::parseStackFrameIndex(int &FI) {
1365   assert(Token.is(MIToken::StackObject));
1366   unsigned ID;
1367   if (getUnsigned(ID))
1368     return true;
1369   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1370   if (ObjectInfo == PFS.StackObjectSlots.end())
1371     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1372                  "'");
1373   StringRef Name;
1374   if (const auto *Alloca =
1375           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1376     Name = Alloca->getName();
1377   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1378     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1379                  "' isn't '" + Token.stringValue() + "'");
1380   lex();
1381   FI = ObjectInfo->second;
1382   return false;
1383 }
1384 
1385 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1386   int FI;
1387   if (parseStackFrameIndex(FI))
1388     return true;
1389   Dest = MachineOperand::CreateFI(FI);
1390   return false;
1391 }
1392 
1393 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1394   assert(Token.is(MIToken::FixedStackObject));
1395   unsigned ID;
1396   if (getUnsigned(ID))
1397     return true;
1398   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1399   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1400     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1401                  Twine(ID) + "'");
1402   lex();
1403   FI = ObjectInfo->second;
1404   return false;
1405 }
1406 
1407 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1408   int FI;
1409   if (parseFixedStackFrameIndex(FI))
1410     return true;
1411   Dest = MachineOperand::CreateFI(FI);
1412   return false;
1413 }
1414 
1415 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1416   switch (Token.kind()) {
1417   case MIToken::NamedGlobalValue: {
1418     const Module *M = MF.getFunction()->getParent();
1419     GV = M->getNamedValue(Token.stringValue());
1420     if (!GV)
1421       return error(Twine("use of undefined global value '") + Token.range() +
1422                    "'");
1423     break;
1424   }
1425   case MIToken::GlobalValue: {
1426     unsigned GVIdx;
1427     if (getUnsigned(GVIdx))
1428       return true;
1429     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1430       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1431                    "'");
1432     GV = PFS.IRSlots.GlobalValues[GVIdx];
1433     break;
1434   }
1435   default:
1436     llvm_unreachable("The current token should be a global value");
1437   }
1438   return false;
1439 }
1440 
1441 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1442   GlobalValue *GV = nullptr;
1443   if (parseGlobalValue(GV))
1444     return true;
1445   lex();
1446   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1447   if (parseOperandsOffset(Dest))
1448     return true;
1449   return false;
1450 }
1451 
1452 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1453   assert(Token.is(MIToken::ConstantPoolItem));
1454   unsigned ID;
1455   if (getUnsigned(ID))
1456     return true;
1457   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1458   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1459     return error("use of undefined constant '%const." + Twine(ID) + "'");
1460   lex();
1461   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1462   if (parseOperandsOffset(Dest))
1463     return true;
1464   return false;
1465 }
1466 
1467 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1468   assert(Token.is(MIToken::JumpTableIndex));
1469   unsigned ID;
1470   if (getUnsigned(ID))
1471     return true;
1472   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1473   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1474     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1475   lex();
1476   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1477   return false;
1478 }
1479 
1480 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1481   assert(Token.is(MIToken::ExternalSymbol));
1482   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1483   lex();
1484   Dest = MachineOperand::CreateES(Symbol);
1485   if (parseOperandsOffset(Dest))
1486     return true;
1487   return false;
1488 }
1489 
1490 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1491   assert(Token.is(MIToken::SubRegisterIndex));
1492   StringRef Name = Token.stringValue();
1493   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1494   if (SubRegIndex == 0)
1495     return error(Twine("unknown subregister index '") + Name + "'");
1496   lex();
1497   Dest = MachineOperand::CreateImm(SubRegIndex);
1498   return false;
1499 }
1500 
1501 bool MIParser::parseMDNode(MDNode *&Node) {
1502   assert(Token.is(MIToken::exclaim));
1503 
1504   auto Loc = Token.location();
1505   lex();
1506   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1507     return error("expected metadata id after '!'");
1508   unsigned ID;
1509   if (getUnsigned(ID))
1510     return true;
1511   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1512   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1513     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1514   lex();
1515   Node = NodeInfo->second.get();
1516   return false;
1517 }
1518 
1519 bool MIParser::parseDIExpression(MDNode *&Expr) {
1520   assert(Token.is(MIToken::md_diexpr));
1521   lex();
1522 
1523   // FIXME: Share this parsing with the IL parser.
1524   SmallVector<uint64_t, 8> Elements;
1525 
1526   if (expectAndConsume(MIToken::lparen))
1527     return true;
1528 
1529   if (Token.isNot(MIToken::rparen)) {
1530     do {
1531       if (Token.is(MIToken::Identifier)) {
1532         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1533           lex();
1534           Elements.push_back(Op);
1535           continue;
1536         }
1537         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1538       }
1539 
1540       if (Token.isNot(MIToken::IntegerLiteral) ||
1541           Token.integerValue().isSigned())
1542         return error("expected unsigned integer");
1543 
1544       auto &U = Token.integerValue();
1545       if (U.ugt(UINT64_MAX))
1546         return error("element too large, limit is " + Twine(UINT64_MAX));
1547       Elements.push_back(U.getZExtValue());
1548       lex();
1549 
1550     } while (consumeIfPresent(MIToken::comma));
1551   }
1552 
1553   if (expectAndConsume(MIToken::rparen))
1554     return true;
1555 
1556   Expr = DIExpression::get(MF.getFunction()->getContext(), Elements);
1557   return false;
1558 }
1559 
1560 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1561   MDNode *Node = nullptr;
1562   if (Token.is(MIToken::exclaim)) {
1563     if (parseMDNode(Node))
1564       return true;
1565   } else if (Token.is(MIToken::md_diexpr)) {
1566     if (parseDIExpression(Node))
1567       return true;
1568   }
1569   Dest = MachineOperand::CreateMetadata(Node);
1570   return false;
1571 }
1572 
1573 bool MIParser::parseCFIOffset(int &Offset) {
1574   if (Token.isNot(MIToken::IntegerLiteral))
1575     return error("expected a cfi offset");
1576   if (Token.integerValue().getMinSignedBits() > 32)
1577     return error("expected a 32 bit integer (the cfi offset is too large)");
1578   Offset = (int)Token.integerValue().getExtValue();
1579   lex();
1580   return false;
1581 }
1582 
1583 bool MIParser::parseCFIRegister(unsigned &Reg) {
1584   if (Token.isNot(MIToken::NamedRegister))
1585     return error("expected a cfi register");
1586   unsigned LLVMReg;
1587   if (parseNamedRegister(LLVMReg))
1588     return true;
1589   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1590   assert(TRI && "Expected target register info");
1591   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1592   if (DwarfReg < 0)
1593     return error("invalid DWARF register");
1594   Reg = (unsigned)DwarfReg;
1595   lex();
1596   return false;
1597 }
1598 
1599 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1600   auto Kind = Token.kind();
1601   lex();
1602   int Offset;
1603   unsigned Reg;
1604   unsigned CFIIndex;
1605   switch (Kind) {
1606   case MIToken::kw_cfi_same_value:
1607     if (parseCFIRegister(Reg))
1608       return true;
1609     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1610     break;
1611   case MIToken::kw_cfi_offset:
1612     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1613         parseCFIOffset(Offset))
1614       return true;
1615     CFIIndex =
1616         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1617     break;
1618   case MIToken::kw_cfi_def_cfa_register:
1619     if (parseCFIRegister(Reg))
1620       return true;
1621     CFIIndex =
1622         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1623     break;
1624   case MIToken::kw_cfi_def_cfa_offset:
1625     if (parseCFIOffset(Offset))
1626       return true;
1627     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1628     CFIIndex = MF.addFrameInst(
1629         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1630     break;
1631   case MIToken::kw_cfi_def_cfa:
1632     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1633         parseCFIOffset(Offset))
1634       return true;
1635     // NB: MCCFIInstruction::createDefCfa negates the offset.
1636     CFIIndex =
1637         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1638     break;
1639   case MIToken::kw_cfi_restore:
1640     if (parseCFIRegister(Reg))
1641       return true;
1642     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1643     break;
1644 
1645   default:
1646     // TODO: Parse the other CFI operands.
1647     llvm_unreachable("The current token should be a cfi operand");
1648   }
1649   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1650   return false;
1651 }
1652 
1653 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1654   switch (Token.kind()) {
1655   case MIToken::NamedIRBlock: {
1656     BB = dyn_cast_or_null<BasicBlock>(
1657         F.getValueSymbolTable()->lookup(Token.stringValue()));
1658     if (!BB)
1659       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1660     break;
1661   }
1662   case MIToken::IRBlock: {
1663     unsigned SlotNumber = 0;
1664     if (getUnsigned(SlotNumber))
1665       return true;
1666     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1667     if (!BB)
1668       return error(Twine("use of undefined IR block '%ir-block.") +
1669                    Twine(SlotNumber) + "'");
1670     break;
1671   }
1672   default:
1673     llvm_unreachable("The current token should be an IR block reference");
1674   }
1675   return false;
1676 }
1677 
1678 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1679   assert(Token.is(MIToken::kw_blockaddress));
1680   lex();
1681   if (expectAndConsume(MIToken::lparen))
1682     return true;
1683   if (Token.isNot(MIToken::GlobalValue) &&
1684       Token.isNot(MIToken::NamedGlobalValue))
1685     return error("expected a global value");
1686   GlobalValue *GV = nullptr;
1687   if (parseGlobalValue(GV))
1688     return true;
1689   auto *F = dyn_cast<Function>(GV);
1690   if (!F)
1691     return error("expected an IR function reference");
1692   lex();
1693   if (expectAndConsume(MIToken::comma))
1694     return true;
1695   BasicBlock *BB = nullptr;
1696   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1697     return error("expected an IR block reference");
1698   if (parseIRBlock(BB, *F))
1699     return true;
1700   lex();
1701   if (expectAndConsume(MIToken::rparen))
1702     return true;
1703   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1704   if (parseOperandsOffset(Dest))
1705     return true;
1706   return false;
1707 }
1708 
1709 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1710   assert(Token.is(MIToken::kw_intrinsic));
1711   lex();
1712   if (expectAndConsume(MIToken::lparen))
1713     return error("expected syntax intrinsic(@llvm.whatever)");
1714 
1715   if (Token.isNot(MIToken::NamedGlobalValue))
1716     return error("expected syntax intrinsic(@llvm.whatever)");
1717 
1718   std::string Name = Token.stringValue();
1719   lex();
1720 
1721   if (expectAndConsume(MIToken::rparen))
1722     return error("expected ')' to terminate intrinsic name");
1723 
1724   // Find out what intrinsic we're dealing with, first try the global namespace
1725   // and then the target's private intrinsics if that fails.
1726   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1727   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1728   if (ID == Intrinsic::not_intrinsic && TII)
1729     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1730 
1731   if (ID == Intrinsic::not_intrinsic)
1732     return error("unknown intrinsic name");
1733   Dest = MachineOperand::CreateIntrinsicID(ID);
1734 
1735   return false;
1736 }
1737 
1738 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1739   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1740   bool IsFloat = Token.is(MIToken::kw_floatpred);
1741   lex();
1742 
1743   if (expectAndConsume(MIToken::lparen))
1744     return error("expected syntax intpred(whatever) or floatpred(whatever");
1745 
1746   if (Token.isNot(MIToken::Identifier))
1747     return error("whatever");
1748 
1749   CmpInst::Predicate Pred;
1750   if (IsFloat) {
1751     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1752                .Case("false", CmpInst::FCMP_FALSE)
1753                .Case("oeq", CmpInst::FCMP_OEQ)
1754                .Case("ogt", CmpInst::FCMP_OGT)
1755                .Case("oge", CmpInst::FCMP_OGE)
1756                .Case("olt", CmpInst::FCMP_OLT)
1757                .Case("ole", CmpInst::FCMP_OLE)
1758                .Case("one", CmpInst::FCMP_ONE)
1759                .Case("ord", CmpInst::FCMP_ORD)
1760                .Case("uno", CmpInst::FCMP_UNO)
1761                .Case("ueq", CmpInst::FCMP_UEQ)
1762                .Case("ugt", CmpInst::FCMP_UGT)
1763                .Case("uge", CmpInst::FCMP_UGE)
1764                .Case("ult", CmpInst::FCMP_ULT)
1765                .Case("ule", CmpInst::FCMP_ULE)
1766                .Case("une", CmpInst::FCMP_UNE)
1767                .Case("true", CmpInst::FCMP_TRUE)
1768                .Default(CmpInst::BAD_FCMP_PREDICATE);
1769     if (!CmpInst::isFPPredicate(Pred))
1770       return error("invalid floating-point predicate");
1771   } else {
1772     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1773                .Case("eq", CmpInst::ICMP_EQ)
1774                .Case("ne", CmpInst::ICMP_NE)
1775                .Case("sgt", CmpInst::ICMP_SGT)
1776                .Case("sge", CmpInst::ICMP_SGE)
1777                .Case("slt", CmpInst::ICMP_SLT)
1778                .Case("sle", CmpInst::ICMP_SLE)
1779                .Case("ugt", CmpInst::ICMP_UGT)
1780                .Case("uge", CmpInst::ICMP_UGE)
1781                .Case("ult", CmpInst::ICMP_ULT)
1782                .Case("ule", CmpInst::ICMP_ULE)
1783                .Default(CmpInst::BAD_ICMP_PREDICATE);
1784     if (!CmpInst::isIntPredicate(Pred))
1785       return error("invalid integer predicate");
1786   }
1787 
1788   lex();
1789   Dest = MachineOperand::CreatePredicate(Pred);
1790   if (expectAndConsume(MIToken::rparen))
1791     return error("predicate should be terminated by ')'.");
1792 
1793   return false;
1794 }
1795 
1796 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1797   assert(Token.is(MIToken::kw_target_index));
1798   lex();
1799   if (expectAndConsume(MIToken::lparen))
1800     return true;
1801   if (Token.isNot(MIToken::Identifier))
1802     return error("expected the name of the target index");
1803   int Index = 0;
1804   if (getTargetIndex(Token.stringValue(), Index))
1805     return error("use of undefined target index '" + Token.stringValue() + "'");
1806   lex();
1807   if (expectAndConsume(MIToken::rparen))
1808     return true;
1809   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1810   if (parseOperandsOffset(Dest))
1811     return true;
1812   return false;
1813 }
1814 
1815 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1816   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1817   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1818   assert(TRI && "Expected target register info");
1819   lex();
1820   if (expectAndConsume(MIToken::lparen))
1821     return true;
1822 
1823   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1824   while (true) {
1825     if (Token.isNot(MIToken::NamedRegister))
1826       return error("expected a named register");
1827     unsigned Reg;
1828     if (parseNamedRegister(Reg))
1829       return true;
1830     lex();
1831     Mask[Reg / 32] |= 1U << (Reg % 32);
1832     // TODO: Report an error if the same register is used more than once.
1833     if (Token.isNot(MIToken::comma))
1834       break;
1835     lex();
1836   }
1837 
1838   if (expectAndConsume(MIToken::rparen))
1839     return true;
1840   Dest = MachineOperand::CreateRegMask(Mask);
1841   return false;
1842 }
1843 
1844 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1845   assert(Token.is(MIToken::kw_liveout));
1846   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1847   assert(TRI && "Expected target register info");
1848   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1849   lex();
1850   if (expectAndConsume(MIToken::lparen))
1851     return true;
1852   while (true) {
1853     if (Token.isNot(MIToken::NamedRegister))
1854       return error("expected a named register");
1855     unsigned Reg;
1856     if (parseNamedRegister(Reg))
1857       return true;
1858     lex();
1859     Mask[Reg / 32] |= 1U << (Reg % 32);
1860     // TODO: Report an error if the same register is used more than once.
1861     if (Token.isNot(MIToken::comma))
1862       break;
1863     lex();
1864   }
1865   if (expectAndConsume(MIToken::rparen))
1866     return true;
1867   Dest = MachineOperand::CreateRegLiveOut(Mask);
1868   return false;
1869 }
1870 
1871 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1872                                    Optional<unsigned> &TiedDefIdx) {
1873   switch (Token.kind()) {
1874   case MIToken::kw_implicit:
1875   case MIToken::kw_implicit_define:
1876   case MIToken::kw_def:
1877   case MIToken::kw_dead:
1878   case MIToken::kw_killed:
1879   case MIToken::kw_undef:
1880   case MIToken::kw_internal:
1881   case MIToken::kw_early_clobber:
1882   case MIToken::kw_debug_use:
1883   case MIToken::underscore:
1884   case MIToken::NamedRegister:
1885   case MIToken::VirtualRegister:
1886     return parseRegisterOperand(Dest, TiedDefIdx);
1887   case MIToken::IntegerLiteral:
1888     return parseImmediateOperand(Dest);
1889   case MIToken::IntegerType:
1890     return parseTypedImmediateOperand(Dest);
1891   case MIToken::kw_half:
1892   case MIToken::kw_float:
1893   case MIToken::kw_double:
1894   case MIToken::kw_x86_fp80:
1895   case MIToken::kw_fp128:
1896   case MIToken::kw_ppc_fp128:
1897     return parseFPImmediateOperand(Dest);
1898   case MIToken::MachineBasicBlock:
1899     return parseMBBOperand(Dest);
1900   case MIToken::StackObject:
1901     return parseStackObjectOperand(Dest);
1902   case MIToken::FixedStackObject:
1903     return parseFixedStackObjectOperand(Dest);
1904   case MIToken::GlobalValue:
1905   case MIToken::NamedGlobalValue:
1906     return parseGlobalAddressOperand(Dest);
1907   case MIToken::ConstantPoolItem:
1908     return parseConstantPoolIndexOperand(Dest);
1909   case MIToken::JumpTableIndex:
1910     return parseJumpTableIndexOperand(Dest);
1911   case MIToken::ExternalSymbol:
1912     return parseExternalSymbolOperand(Dest);
1913   case MIToken::SubRegisterIndex:
1914     return parseSubRegisterIndexOperand(Dest);
1915   case MIToken::md_diexpr:
1916   case MIToken::exclaim:
1917     return parseMetadataOperand(Dest);
1918   case MIToken::kw_cfi_same_value:
1919   case MIToken::kw_cfi_offset:
1920   case MIToken::kw_cfi_def_cfa_register:
1921   case MIToken::kw_cfi_def_cfa_offset:
1922   case MIToken::kw_cfi_def_cfa:
1923   case MIToken::kw_cfi_restore:
1924     return parseCFIOperand(Dest);
1925   case MIToken::kw_blockaddress:
1926     return parseBlockAddressOperand(Dest);
1927   case MIToken::kw_intrinsic:
1928     return parseIntrinsicOperand(Dest);
1929   case MIToken::kw_target_index:
1930     return parseTargetIndexOperand(Dest);
1931   case MIToken::kw_liveout:
1932     return parseLiveoutRegisterMaskOperand(Dest);
1933   case MIToken::kw_floatpred:
1934   case MIToken::kw_intpred:
1935     return parsePredicateOperand(Dest);
1936   case MIToken::Error:
1937     return true;
1938   case MIToken::Identifier:
1939     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1940       Dest = MachineOperand::CreateRegMask(RegMask);
1941       lex();
1942       break;
1943     } else
1944       return parseCustomRegisterMaskOperand(Dest);
1945   default:
1946     // FIXME: Parse the MCSymbol machine operand.
1947     return error("expected a machine operand");
1948   }
1949   return false;
1950 }
1951 
1952 bool MIParser::parseMachineOperandAndTargetFlags(
1953     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1954   unsigned TF = 0;
1955   bool HasTargetFlags = false;
1956   if (Token.is(MIToken::kw_target_flags)) {
1957     HasTargetFlags = true;
1958     lex();
1959     if (expectAndConsume(MIToken::lparen))
1960       return true;
1961     if (Token.isNot(MIToken::Identifier))
1962       return error("expected the name of the target flag");
1963     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1964       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1965         return error("use of undefined target flag '" + Token.stringValue() +
1966                      "'");
1967     }
1968     lex();
1969     while (Token.is(MIToken::comma)) {
1970       lex();
1971       if (Token.isNot(MIToken::Identifier))
1972         return error("expected the name of the target flag");
1973       unsigned BitFlag = 0;
1974       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1975         return error("use of undefined target flag '" + Token.stringValue() +
1976                      "'");
1977       // TODO: Report an error when using a duplicate bit target flag.
1978       TF |= BitFlag;
1979       lex();
1980     }
1981     if (expectAndConsume(MIToken::rparen))
1982       return true;
1983   }
1984   auto Loc = Token.location();
1985   if (parseMachineOperand(Dest, TiedDefIdx))
1986     return true;
1987   if (!HasTargetFlags)
1988     return false;
1989   if (Dest.isReg())
1990     return error(Loc, "register operands can't have target flags");
1991   Dest.setTargetFlags(TF);
1992   return false;
1993 }
1994 
1995 bool MIParser::parseOffset(int64_t &Offset) {
1996   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1997     return false;
1998   StringRef Sign = Token.range();
1999   bool IsNegative = Token.is(MIToken::minus);
2000   lex();
2001   if (Token.isNot(MIToken::IntegerLiteral))
2002     return error("expected an integer literal after '" + Sign + "'");
2003   if (Token.integerValue().getMinSignedBits() > 64)
2004     return error("expected 64-bit integer (too large)");
2005   Offset = Token.integerValue().getExtValue();
2006   if (IsNegative)
2007     Offset = -Offset;
2008   lex();
2009   return false;
2010 }
2011 
2012 bool MIParser::parseAlignment(unsigned &Alignment) {
2013   assert(Token.is(MIToken::kw_align));
2014   lex();
2015   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2016     return error("expected an integer literal after 'align'");
2017   if (getUnsigned(Alignment))
2018     return true;
2019   lex();
2020   return false;
2021 }
2022 
2023 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2024   int64_t Offset = 0;
2025   if (parseOffset(Offset))
2026     return true;
2027   Op.setOffset(Offset);
2028   return false;
2029 }
2030 
2031 bool MIParser::parseIRValue(const Value *&V) {
2032   switch (Token.kind()) {
2033   case MIToken::NamedIRValue: {
2034     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
2035     break;
2036   }
2037   case MIToken::IRValue: {
2038     unsigned SlotNumber = 0;
2039     if (getUnsigned(SlotNumber))
2040       return true;
2041     V = getIRValue(SlotNumber);
2042     break;
2043   }
2044   case MIToken::NamedGlobalValue:
2045   case MIToken::GlobalValue: {
2046     GlobalValue *GV = nullptr;
2047     if (parseGlobalValue(GV))
2048       return true;
2049     V = GV;
2050     break;
2051   }
2052   case MIToken::QuotedIRValue: {
2053     const Constant *C = nullptr;
2054     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2055       return true;
2056     V = C;
2057     break;
2058   }
2059   default:
2060     llvm_unreachable("The current token should be an IR block reference");
2061   }
2062   if (!V)
2063     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2064   return false;
2065 }
2066 
2067 bool MIParser::getUint64(uint64_t &Result) {
2068   if (Token.hasIntegerValue()) {
2069     if (Token.integerValue().getActiveBits() > 64)
2070       return error("expected 64-bit integer (too large)");
2071     Result = Token.integerValue().getZExtValue();
2072     return false;
2073   }
2074   if (Token.is(MIToken::HexLiteral)) {
2075     APInt A;
2076     if (getHexUint(A))
2077       return true;
2078     if (A.getBitWidth() > 64)
2079       return error("expected 64-bit integer (too large)");
2080     Result = A.getZExtValue();
2081     return false;
2082   }
2083   return true;
2084 }
2085 
2086 bool MIParser::getHexUint(APInt &Result) {
2087   assert(Token.is(MIToken::HexLiteral));
2088   StringRef S = Token.range();
2089   assert(S[0] == '0' && tolower(S[1]) == 'x');
2090   // This could be a floating point literal with a special prefix.
2091   if (!isxdigit(S[2]))
2092     return true;
2093   StringRef V = S.substr(2);
2094   APInt A(V.size()*4, V, 16);
2095 
2096   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2097   // sure it isn't the case before constructing result.
2098   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2099   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2100   return false;
2101 }
2102 
2103 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2104   const auto OldFlags = Flags;
2105   switch (Token.kind()) {
2106   case MIToken::kw_volatile:
2107     Flags |= MachineMemOperand::MOVolatile;
2108     break;
2109   case MIToken::kw_non_temporal:
2110     Flags |= MachineMemOperand::MONonTemporal;
2111     break;
2112   case MIToken::kw_dereferenceable:
2113     Flags |= MachineMemOperand::MODereferenceable;
2114     break;
2115   case MIToken::kw_invariant:
2116     Flags |= MachineMemOperand::MOInvariant;
2117     break;
2118   case MIToken::StringConstant: {
2119     MachineMemOperand::Flags TF;
2120     if (getMMOTargetFlag(Token.stringValue(), TF))
2121       return error("use of undefined target MMO flag '" + Token.stringValue() +
2122                    "'");
2123     Flags |= TF;
2124     break;
2125   }
2126   default:
2127     llvm_unreachable("The current token should be a memory operand flag");
2128   }
2129   if (OldFlags == Flags)
2130     // We know that the same flag is specified more than once when the flags
2131     // weren't modified.
2132     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2133   lex();
2134   return false;
2135 }
2136 
2137 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2138   switch (Token.kind()) {
2139   case MIToken::kw_stack:
2140     PSV = MF.getPSVManager().getStack();
2141     break;
2142   case MIToken::kw_got:
2143     PSV = MF.getPSVManager().getGOT();
2144     break;
2145   case MIToken::kw_jump_table:
2146     PSV = MF.getPSVManager().getJumpTable();
2147     break;
2148   case MIToken::kw_constant_pool:
2149     PSV = MF.getPSVManager().getConstantPool();
2150     break;
2151   case MIToken::FixedStackObject: {
2152     int FI;
2153     if (parseFixedStackFrameIndex(FI))
2154       return true;
2155     PSV = MF.getPSVManager().getFixedStack(FI);
2156     // The token was already consumed, so use return here instead of break.
2157     return false;
2158   }
2159   case MIToken::StackObject: {
2160     int FI;
2161     if (parseStackFrameIndex(FI))
2162       return true;
2163     PSV = MF.getPSVManager().getFixedStack(FI);
2164     // The token was already consumed, so use return here instead of break.
2165     return false;
2166   }
2167   case MIToken::kw_call_entry:
2168     lex();
2169     switch (Token.kind()) {
2170     case MIToken::GlobalValue:
2171     case MIToken::NamedGlobalValue: {
2172       GlobalValue *GV = nullptr;
2173       if (parseGlobalValue(GV))
2174         return true;
2175       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2176       break;
2177     }
2178     case MIToken::ExternalSymbol:
2179       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2180           MF.createExternalSymbolName(Token.stringValue()));
2181       break;
2182     default:
2183       return error(
2184           "expected a global value or an external symbol after 'call-entry'");
2185     }
2186     break;
2187   default:
2188     llvm_unreachable("The current token should be pseudo source value");
2189   }
2190   lex();
2191   return false;
2192 }
2193 
2194 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2195   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2196       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2197       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2198       Token.is(MIToken::kw_call_entry)) {
2199     const PseudoSourceValue *PSV = nullptr;
2200     if (parseMemoryPseudoSourceValue(PSV))
2201       return true;
2202     int64_t Offset = 0;
2203     if (parseOffset(Offset))
2204       return true;
2205     Dest = MachinePointerInfo(PSV, Offset);
2206     return false;
2207   }
2208   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2209       Token.isNot(MIToken::GlobalValue) &&
2210       Token.isNot(MIToken::NamedGlobalValue) &&
2211       Token.isNot(MIToken::QuotedIRValue))
2212     return error("expected an IR value reference");
2213   const Value *V = nullptr;
2214   if (parseIRValue(V))
2215     return true;
2216   if (!V->getType()->isPointerTy())
2217     return error("expected a pointer IR value");
2218   lex();
2219   int64_t Offset = 0;
2220   if (parseOffset(Offset))
2221     return true;
2222   Dest = MachinePointerInfo(V, Offset);
2223   return false;
2224 }
2225 
2226 bool MIParser::parseOptionalScope(LLVMContext &Context,
2227                                   SyncScope::ID &SSID) {
2228   SSID = SyncScope::System;
2229   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2230     lex();
2231     if (expectAndConsume(MIToken::lparen))
2232       return error("expected '(' in syncscope");
2233 
2234     std::string SSN;
2235     if (parseStringConstant(SSN))
2236       return true;
2237 
2238     SSID = Context.getOrInsertSyncScopeID(SSN);
2239     if (expectAndConsume(MIToken::rparen))
2240       return error("expected ')' in syncscope");
2241   }
2242 
2243   return false;
2244 }
2245 
2246 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2247   Order = AtomicOrdering::NotAtomic;
2248   if (Token.isNot(MIToken::Identifier))
2249     return false;
2250 
2251   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2252               .Case("unordered", AtomicOrdering::Unordered)
2253               .Case("monotonic", AtomicOrdering::Monotonic)
2254               .Case("acquire", AtomicOrdering::Acquire)
2255               .Case("release", AtomicOrdering::Release)
2256               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2257               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2258               .Default(AtomicOrdering::NotAtomic);
2259 
2260   if (Order != AtomicOrdering::NotAtomic) {
2261     lex();
2262     return false;
2263   }
2264 
2265   return error("expected an atomic scope, ordering or a size integer literal");
2266 }
2267 
2268 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2269   if (expectAndConsume(MIToken::lparen))
2270     return true;
2271   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2272   while (Token.isMemoryOperandFlag()) {
2273     if (parseMemoryOperandFlag(Flags))
2274       return true;
2275   }
2276   if (Token.isNot(MIToken::Identifier) ||
2277       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2278     return error("expected 'load' or 'store' memory operation");
2279   if (Token.stringValue() == "load")
2280     Flags |= MachineMemOperand::MOLoad;
2281   else
2282     Flags |= MachineMemOperand::MOStore;
2283   lex();
2284 
2285   // Optional 'store' for operands that both load and store.
2286   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2287     Flags |= MachineMemOperand::MOStore;
2288     lex();
2289   }
2290 
2291   // Optional synchronization scope.
2292   SyncScope::ID SSID;
2293   if (parseOptionalScope(MF.getFunction()->getContext(), SSID))
2294     return true;
2295 
2296   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2297   AtomicOrdering Order, FailureOrder;
2298   if (parseOptionalAtomicOrdering(Order))
2299     return true;
2300 
2301   if (parseOptionalAtomicOrdering(FailureOrder))
2302     return true;
2303 
2304   if (Token.isNot(MIToken::IntegerLiteral))
2305     return error("expected the size integer literal after memory operation");
2306   uint64_t Size;
2307   if (getUint64(Size))
2308     return true;
2309   lex();
2310 
2311   MachinePointerInfo Ptr = MachinePointerInfo();
2312   if (Token.is(MIToken::Identifier)) {
2313     const char *Word =
2314         ((Flags & MachineMemOperand::MOLoad) &&
2315          (Flags & MachineMemOperand::MOStore))
2316             ? "on"
2317             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2318     if (Token.stringValue() != Word)
2319       return error(Twine("expected '") + Word + "'");
2320     lex();
2321 
2322     if (parseMachinePointerInfo(Ptr))
2323       return true;
2324   }
2325   unsigned BaseAlignment = Size;
2326   AAMDNodes AAInfo;
2327   MDNode *Range = nullptr;
2328   while (consumeIfPresent(MIToken::comma)) {
2329     switch (Token.kind()) {
2330     case MIToken::kw_align:
2331       if (parseAlignment(BaseAlignment))
2332         return true;
2333       break;
2334     case MIToken::md_tbaa:
2335       lex();
2336       if (parseMDNode(AAInfo.TBAA))
2337         return true;
2338       break;
2339     case MIToken::md_alias_scope:
2340       lex();
2341       if (parseMDNode(AAInfo.Scope))
2342         return true;
2343       break;
2344     case MIToken::md_noalias:
2345       lex();
2346       if (parseMDNode(AAInfo.NoAlias))
2347         return true;
2348       break;
2349     case MIToken::md_range:
2350       lex();
2351       if (parseMDNode(Range))
2352         return true;
2353       break;
2354     // TODO: Report an error on duplicate metadata nodes.
2355     default:
2356       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2357                    "'!noalias' or '!range'");
2358     }
2359   }
2360   if (expectAndConsume(MIToken::rparen))
2361     return true;
2362   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2363                                  SSID, Order, FailureOrder);
2364   return false;
2365 }
2366 
2367 void MIParser::initNames2InstrOpCodes() {
2368   if (!Names2InstrOpCodes.empty())
2369     return;
2370   const auto *TII = MF.getSubtarget().getInstrInfo();
2371   assert(TII && "Expected target instruction info");
2372   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2373     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2374 }
2375 
2376 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2377   initNames2InstrOpCodes();
2378   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2379   if (InstrInfo == Names2InstrOpCodes.end())
2380     return true;
2381   OpCode = InstrInfo->getValue();
2382   return false;
2383 }
2384 
2385 void MIParser::initNames2Regs() {
2386   if (!Names2Regs.empty())
2387     return;
2388   // The '%noreg' register is the register 0.
2389   Names2Regs.insert(std::make_pair("noreg", 0));
2390   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2391   assert(TRI && "Expected target register info");
2392   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2393     bool WasInserted =
2394         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2395             .second;
2396     (void)WasInserted;
2397     assert(WasInserted && "Expected registers to be unique case-insensitively");
2398   }
2399 }
2400 
2401 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2402   initNames2Regs();
2403   auto RegInfo = Names2Regs.find(RegName);
2404   if (RegInfo == Names2Regs.end())
2405     return true;
2406   Reg = RegInfo->getValue();
2407   return false;
2408 }
2409 
2410 void MIParser::initNames2RegMasks() {
2411   if (!Names2RegMasks.empty())
2412     return;
2413   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2414   assert(TRI && "Expected target register info");
2415   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2416   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2417   assert(RegMasks.size() == RegMaskNames.size());
2418   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2419     Names2RegMasks.insert(
2420         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2421 }
2422 
2423 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2424   initNames2RegMasks();
2425   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2426   if (RegMaskInfo == Names2RegMasks.end())
2427     return nullptr;
2428   return RegMaskInfo->getValue();
2429 }
2430 
2431 void MIParser::initNames2SubRegIndices() {
2432   if (!Names2SubRegIndices.empty())
2433     return;
2434   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2435   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2436     Names2SubRegIndices.insert(
2437         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2438 }
2439 
2440 unsigned MIParser::getSubRegIndex(StringRef Name) {
2441   initNames2SubRegIndices();
2442   auto SubRegInfo = Names2SubRegIndices.find(Name);
2443   if (SubRegInfo == Names2SubRegIndices.end())
2444     return 0;
2445   return SubRegInfo->getValue();
2446 }
2447 
2448 static void initSlots2BasicBlocks(
2449     const Function &F,
2450     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2451   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2452   MST.incorporateFunction(F);
2453   for (auto &BB : F) {
2454     if (BB.hasName())
2455       continue;
2456     int Slot = MST.getLocalSlot(&BB);
2457     if (Slot == -1)
2458       continue;
2459     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2460   }
2461 }
2462 
2463 static const BasicBlock *getIRBlockFromSlot(
2464     unsigned Slot,
2465     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2466   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2467   if (BlockInfo == Slots2BasicBlocks.end())
2468     return nullptr;
2469   return BlockInfo->second;
2470 }
2471 
2472 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2473   if (Slots2BasicBlocks.empty())
2474     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2475   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2476 }
2477 
2478 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2479   if (&F == MF.getFunction())
2480     return getIRBlock(Slot);
2481   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2482   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2483   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2484 }
2485 
2486 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2487                            DenseMap<unsigned, const Value *> &Slots2Values) {
2488   int Slot = MST.getLocalSlot(V);
2489   if (Slot == -1)
2490     return;
2491   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2492 }
2493 
2494 /// Creates the mapping from slot numbers to function's unnamed IR values.
2495 static void initSlots2Values(const Function &F,
2496                              DenseMap<unsigned, const Value *> &Slots2Values) {
2497   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2498   MST.incorporateFunction(F);
2499   for (const auto &Arg : F.args())
2500     mapValueToSlot(&Arg, MST, Slots2Values);
2501   for (const auto &BB : F) {
2502     mapValueToSlot(&BB, MST, Slots2Values);
2503     for (const auto &I : BB)
2504       mapValueToSlot(&I, MST, Slots2Values);
2505   }
2506 }
2507 
2508 const Value *MIParser::getIRValue(unsigned Slot) {
2509   if (Slots2Values.empty())
2510     initSlots2Values(*MF.getFunction(), Slots2Values);
2511   auto ValueInfo = Slots2Values.find(Slot);
2512   if (ValueInfo == Slots2Values.end())
2513     return nullptr;
2514   return ValueInfo->second;
2515 }
2516 
2517 void MIParser::initNames2TargetIndices() {
2518   if (!Names2TargetIndices.empty())
2519     return;
2520   const auto *TII = MF.getSubtarget().getInstrInfo();
2521   assert(TII && "Expected target instruction info");
2522   auto Indices = TII->getSerializableTargetIndices();
2523   for (const auto &I : Indices)
2524     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2525 }
2526 
2527 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2528   initNames2TargetIndices();
2529   auto IndexInfo = Names2TargetIndices.find(Name);
2530   if (IndexInfo == Names2TargetIndices.end())
2531     return true;
2532   Index = IndexInfo->second;
2533   return false;
2534 }
2535 
2536 void MIParser::initNames2DirectTargetFlags() {
2537   if (!Names2DirectTargetFlags.empty())
2538     return;
2539   const auto *TII = MF.getSubtarget().getInstrInfo();
2540   assert(TII && "Expected target instruction info");
2541   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2542   for (const auto &I : Flags)
2543     Names2DirectTargetFlags.insert(
2544         std::make_pair(StringRef(I.second), I.first));
2545 }
2546 
2547 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2548   initNames2DirectTargetFlags();
2549   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2550   if (FlagInfo == Names2DirectTargetFlags.end())
2551     return true;
2552   Flag = FlagInfo->second;
2553   return false;
2554 }
2555 
2556 void MIParser::initNames2BitmaskTargetFlags() {
2557   if (!Names2BitmaskTargetFlags.empty())
2558     return;
2559   const auto *TII = MF.getSubtarget().getInstrInfo();
2560   assert(TII && "Expected target instruction info");
2561   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2562   for (const auto &I : Flags)
2563     Names2BitmaskTargetFlags.insert(
2564         std::make_pair(StringRef(I.second), I.first));
2565 }
2566 
2567 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2568   initNames2BitmaskTargetFlags();
2569   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2570   if (FlagInfo == Names2BitmaskTargetFlags.end())
2571     return true;
2572   Flag = FlagInfo->second;
2573   return false;
2574 }
2575 
2576 void MIParser::initNames2MMOTargetFlags() {
2577   if (!Names2MMOTargetFlags.empty())
2578     return;
2579   const auto *TII = MF.getSubtarget().getInstrInfo();
2580   assert(TII && "Expected target instruction info");
2581   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2582   for (const auto &I : Flags)
2583     Names2MMOTargetFlags.insert(
2584         std::make_pair(StringRef(I.second), I.first));
2585 }
2586 
2587 bool MIParser::getMMOTargetFlag(StringRef Name,
2588                                 MachineMemOperand::Flags &Flag) {
2589   initNames2MMOTargetFlags();
2590   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2591   if (FlagInfo == Names2MMOTargetFlags.end())
2592     return true;
2593   Flag = FlagInfo->second;
2594   return false;
2595 }
2596 
2597 bool MIParser::parseStringConstant(std::string &Result) {
2598   if (Token.isNot(MIToken::StringConstant))
2599     return error("expected string constant");
2600   Result = Token.stringValue();
2601   lex();
2602   return false;
2603 }
2604 
2605 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2606                                              StringRef Src,
2607                                              SMDiagnostic &Error) {
2608   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2609 }
2610 
2611 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2612                                     StringRef Src, SMDiagnostic &Error) {
2613   return MIParser(PFS, Error, Src).parseBasicBlocks();
2614 }
2615 
2616 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2617                              MachineBasicBlock *&MBB, StringRef Src,
2618                              SMDiagnostic &Error) {
2619   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2620 }
2621 
2622 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2623                                   unsigned &Reg, StringRef Src,
2624                                   SMDiagnostic &Error) {
2625   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2626 }
2627 
2628 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2629                                        unsigned &Reg, StringRef Src,
2630                                        SMDiagnostic &Error) {
2631   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2632 }
2633 
2634 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2635                                          VRegInfo *&Info, StringRef Src,
2636                                          SMDiagnostic &Error) {
2637   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2638 }
2639 
2640 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2641                                      int &FI, StringRef Src,
2642                                      SMDiagnostic &Error) {
2643   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2644 }
2645 
2646 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2647                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2648   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2649 }
2650