1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueSymbolTable.h"
56 #include "llvm/MC/LaneBitmask.h"
57 #include "llvm/MC/MCDwarf.h"
58 #include "llvm/MC/MCInstrDesc.h"
59 #include "llvm/MC/MCRegisterInfo.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MemoryBuffer.h"
66 #include "llvm/Support/SMLoc.h"
67 #include "llvm/Support/SourceMgr.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cctype>
74 #include <cstddef>
75 #include <cstdint>
76 #include <limits>
77 #include <string>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
83     SourceMgr &SM, const SlotMapping &IRSlots,
84     const Name2RegClassMap &Names2RegClasses,
85     const Name2RegBankMap &Names2RegBanks)
86   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
87     Names2RegBanks(Names2RegBanks) {
88 }
89 
90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
91   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
92   if (I.second) {
93     MachineRegisterInfo &MRI = MF.getRegInfo();
94     VRegInfo *Info = new (Allocator) VRegInfo;
95     Info->VReg = MRI.createIncompleteVirtualRegister();
96     I.first->second = Info;
97   }
98   return *I.first->second;
99 }
100 
101 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
102   assert(RegName != "" && "Expected named reg.");
103 
104   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
105   if (I.second) {
106     VRegInfo *Info = new (Allocator) VRegInfo;
107     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
108     I.first->second = Info;
109   }
110   return *I.first->second;
111 }
112 
113 namespace {
114 
115 /// A wrapper struct around the 'MachineOperand' struct that includes a source
116 /// range and other attributes.
117 struct ParsedMachineOperand {
118   MachineOperand Operand;
119   StringRef::iterator Begin;
120   StringRef::iterator End;
121   Optional<unsigned> TiedDefIdx;
122 
123   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
124                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
125       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
126     if (TiedDefIdx)
127       assert(Operand.isReg() && Operand.isUse() &&
128              "Only used register operands can be tied");
129   }
130 };
131 
132 class MIParser {
133   MachineFunction &MF;
134   SMDiagnostic &Error;
135   StringRef Source, CurrentSource;
136   MIToken Token;
137   PerFunctionMIParsingState &PFS;
138   /// Maps from instruction names to op codes.
139   StringMap<unsigned> Names2InstrOpCodes;
140   /// Maps from register names to registers.
141   StringMap<unsigned> Names2Regs;
142   /// Maps from register mask names to register masks.
143   StringMap<const uint32_t *> Names2RegMasks;
144   /// Maps from subregister names to subregister indices.
145   StringMap<unsigned> Names2SubRegIndices;
146   /// Maps from slot numbers to function's unnamed basic blocks.
147   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
148   /// Maps from slot numbers to function's unnamed values.
149   DenseMap<unsigned, const Value *> Slots2Values;
150   /// Maps from target index names to target indices.
151   StringMap<int> Names2TargetIndices;
152   /// Maps from direct target flag names to the direct target flag values.
153   StringMap<unsigned> Names2DirectTargetFlags;
154   /// Maps from direct target flag names to the bitmask target flag values.
155   StringMap<unsigned> Names2BitmaskTargetFlags;
156   /// Maps from MMO target flag names to MMO target flag values.
157   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
158 
159 public:
160   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
161            StringRef Source);
162 
163   /// \p SkipChar gives the number of characters to skip before looking
164   /// for the next token.
165   void lex(unsigned SkipChar = 0);
166 
167   /// Report an error at the current location with the given message.
168   ///
169   /// This function always return true.
170   bool error(const Twine &Msg);
171 
172   /// Report an error at the given location with the given message.
173   ///
174   /// This function always return true.
175   bool error(StringRef::iterator Loc, const Twine &Msg);
176 
177   bool
178   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
179   bool parseBasicBlocks();
180   bool parse(MachineInstr *&MI);
181   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
182   bool parseStandaloneNamedRegister(unsigned &Reg);
183   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
184   bool parseStandaloneRegister(unsigned &Reg);
185   bool parseStandaloneStackObject(int &FI);
186   bool parseStandaloneMDNode(MDNode *&Node);
187 
188   bool
189   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
190   bool parseBasicBlock(MachineBasicBlock &MBB,
191                        MachineBasicBlock *&AddFalthroughFrom);
192   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
193   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
194 
195   bool parseNamedRegister(unsigned &Reg);
196   bool parseVirtualRegister(VRegInfo *&Info);
197   bool parseNamedVirtualRegister(VRegInfo *&Info);
198   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
199   bool parseRegisterFlag(unsigned &Flags);
200   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
201   bool parseSubRegisterIndex(unsigned &SubReg);
202   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
203   bool parseRegisterOperand(MachineOperand &Dest,
204                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
205   bool parseImmediateOperand(MachineOperand &Dest);
206   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
207                        const Constant *&C);
208   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
209   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
210   bool parseTypedImmediateOperand(MachineOperand &Dest);
211   bool parseFPImmediateOperand(MachineOperand &Dest);
212   bool parseMBBReference(MachineBasicBlock *&MBB);
213   bool parseMBBOperand(MachineOperand &Dest);
214   bool parseStackFrameIndex(int &FI);
215   bool parseStackObjectOperand(MachineOperand &Dest);
216   bool parseFixedStackFrameIndex(int &FI);
217   bool parseFixedStackObjectOperand(MachineOperand &Dest);
218   bool parseGlobalValue(GlobalValue *&GV);
219   bool parseGlobalAddressOperand(MachineOperand &Dest);
220   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
221   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
222   bool parseJumpTableIndexOperand(MachineOperand &Dest);
223   bool parseExternalSymbolOperand(MachineOperand &Dest);
224   bool parseMDNode(MDNode *&Node);
225   bool parseDIExpression(MDNode *&Node);
226   bool parseMetadataOperand(MachineOperand &Dest);
227   bool parseCFIOffset(int &Offset);
228   bool parseCFIRegister(unsigned &Reg);
229   bool parseCFIEscapeValues(std::string& Values);
230   bool parseCFIOperand(MachineOperand &Dest);
231   bool parseIRBlock(BasicBlock *&BB, const Function &F);
232   bool parseBlockAddressOperand(MachineOperand &Dest);
233   bool parseIntrinsicOperand(MachineOperand &Dest);
234   bool parsePredicateOperand(MachineOperand &Dest);
235   bool parseTargetIndexOperand(MachineOperand &Dest);
236   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
237   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
238   bool parseMachineOperand(MachineOperand &Dest,
239                            Optional<unsigned> &TiedDefIdx);
240   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
241                                          Optional<unsigned> &TiedDefIdx);
242   bool parseOffset(int64_t &Offset);
243   bool parseAlignment(unsigned &Alignment);
244   bool parseAddrspace(unsigned &Addrspace);
245   bool parseOperandsOffset(MachineOperand &Op);
246   bool parseIRValue(const Value *&V);
247   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
248   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
249   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
250   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
251   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
252   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
253 
254 private:
255   /// Convert the integer literal in the current token into an unsigned integer.
256   ///
257   /// Return true if an error occurred.
258   bool getUnsigned(unsigned &Result);
259 
260   /// Convert the integer literal in the current token into an uint64.
261   ///
262   /// Return true if an error occurred.
263   bool getUint64(uint64_t &Result);
264 
265   /// Convert the hexadecimal literal in the current token into an unsigned
266   ///  APInt with a minimum bitwidth required to represent the value.
267   ///
268   /// Return true if the literal does not represent an integer value.
269   bool getHexUint(APInt &Result);
270 
271   /// If the current token is of the given kind, consume it and return false.
272   /// Otherwise report an error and return true.
273   bool expectAndConsume(MIToken::TokenKind TokenKind);
274 
275   /// If the current token is of the given kind, consume it and return true.
276   /// Otherwise return false.
277   bool consumeIfPresent(MIToken::TokenKind TokenKind);
278 
279   void initNames2InstrOpCodes();
280 
281   /// Try to convert an instruction name to an opcode. Return true if the
282   /// instruction name is invalid.
283   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
284 
285   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
286 
287   bool assignRegisterTies(MachineInstr &MI,
288                           ArrayRef<ParsedMachineOperand> Operands);
289 
290   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
291                               const MCInstrDesc &MCID);
292 
293   void initNames2Regs();
294 
295   /// Try to convert a register name to a register number. Return true if the
296   /// register name is invalid.
297   bool getRegisterByName(StringRef RegName, unsigned &Reg);
298 
299   void initNames2RegMasks();
300 
301   /// Check if the given identifier is a name of a register mask.
302   ///
303   /// Return null if the identifier isn't a register mask.
304   const uint32_t *getRegMask(StringRef Identifier);
305 
306   void initNames2SubRegIndices();
307 
308   /// Check if the given identifier is a name of a subregister index.
309   ///
310   /// Return 0 if the name isn't a subregister index class.
311   unsigned getSubRegIndex(StringRef Name);
312 
313   const BasicBlock *getIRBlock(unsigned Slot);
314   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
315 
316   const Value *getIRValue(unsigned Slot);
317 
318   void initNames2TargetIndices();
319 
320   /// Try to convert a name of target index to the corresponding target index.
321   ///
322   /// Return true if the name isn't a name of a target index.
323   bool getTargetIndex(StringRef Name, int &Index);
324 
325   void initNames2DirectTargetFlags();
326 
327   /// Try to convert a name of a direct target flag to the corresponding
328   /// target flag.
329   ///
330   /// Return true if the name isn't a name of a direct flag.
331   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
332 
333   void initNames2BitmaskTargetFlags();
334 
335   /// Try to convert a name of a bitmask target flag to the corresponding
336   /// target flag.
337   ///
338   /// Return true if the name isn't a name of a bitmask target flag.
339   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
340 
341   void initNames2MMOTargetFlags();
342 
343   /// Try to convert a name of a MachineMemOperand target flag to the
344   /// corresponding target flag.
345   ///
346   /// Return true if the name isn't a name of a target MMO flag.
347   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
348 
349   /// parseStringConstant
350   ///   ::= StringConstant
351   bool parseStringConstant(std::string &Result);
352 };
353 
354 } // end anonymous namespace
355 
356 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
357                    StringRef Source)
358     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
359 {}
360 
361 void MIParser::lex(unsigned SkipChar) {
362   CurrentSource = lexMIToken(
363       CurrentSource.data() + SkipChar, Token,
364       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
365 }
366 
367 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
368 
369 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
370   const SourceMgr &SM = *PFS.SM;
371   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
372   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
373   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
374     // Create an ordinary diagnostic when the source manager's buffer is the
375     // source string.
376     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
377     return true;
378   }
379   // Create a diagnostic for a YAML string literal.
380   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
381                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
382                        Source, None, None);
383   return true;
384 }
385 
386 static const char *toString(MIToken::TokenKind TokenKind) {
387   switch (TokenKind) {
388   case MIToken::comma:
389     return "','";
390   case MIToken::equal:
391     return "'='";
392   case MIToken::colon:
393     return "':'";
394   case MIToken::lparen:
395     return "'('";
396   case MIToken::rparen:
397     return "')'";
398   default:
399     return "<unknown token>";
400   }
401 }
402 
403 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
404   if (Token.isNot(TokenKind))
405     return error(Twine("expected ") + toString(TokenKind));
406   lex();
407   return false;
408 }
409 
410 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
411   if (Token.isNot(TokenKind))
412     return false;
413   lex();
414   return true;
415 }
416 
417 bool MIParser::parseBasicBlockDefinition(
418     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
419   assert(Token.is(MIToken::MachineBasicBlockLabel));
420   unsigned ID = 0;
421   if (getUnsigned(ID))
422     return true;
423   auto Loc = Token.location();
424   auto Name = Token.stringValue();
425   lex();
426   bool HasAddressTaken = false;
427   bool IsLandingPad = false;
428   unsigned Alignment = 0;
429   BasicBlock *BB = nullptr;
430   if (consumeIfPresent(MIToken::lparen)) {
431     do {
432       // TODO: Report an error when multiple same attributes are specified.
433       switch (Token.kind()) {
434       case MIToken::kw_address_taken:
435         HasAddressTaken = true;
436         lex();
437         break;
438       case MIToken::kw_landing_pad:
439         IsLandingPad = true;
440         lex();
441         break;
442       case MIToken::kw_align:
443         if (parseAlignment(Alignment))
444           return true;
445         break;
446       case MIToken::IRBlock:
447         // TODO: Report an error when both name and ir block are specified.
448         if (parseIRBlock(BB, MF.getFunction()))
449           return true;
450         lex();
451         break;
452       default:
453         break;
454       }
455     } while (consumeIfPresent(MIToken::comma));
456     if (expectAndConsume(MIToken::rparen))
457       return true;
458   }
459   if (expectAndConsume(MIToken::colon))
460     return true;
461 
462   if (!Name.empty()) {
463     BB = dyn_cast_or_null<BasicBlock>(
464         MF.getFunction().getValueSymbolTable()->lookup(Name));
465     if (!BB)
466       return error(Loc, Twine("basic block '") + Name +
467                             "' is not defined in the function '" +
468                             MF.getName() + "'");
469   }
470   auto *MBB = MF.CreateMachineBasicBlock(BB);
471   MF.insert(MF.end(), MBB);
472   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
473   if (!WasInserted)
474     return error(Loc, Twine("redefinition of machine basic block with id #") +
475                           Twine(ID));
476   if (Alignment)
477     MBB->setAlignment(Alignment);
478   if (HasAddressTaken)
479     MBB->setHasAddressTaken();
480   MBB->setIsEHPad(IsLandingPad);
481   return false;
482 }
483 
484 bool MIParser::parseBasicBlockDefinitions(
485     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
486   lex();
487   // Skip until the first machine basic block.
488   while (Token.is(MIToken::Newline))
489     lex();
490   if (Token.isErrorOrEOF())
491     return Token.isError();
492   if (Token.isNot(MIToken::MachineBasicBlockLabel))
493     return error("expected a basic block definition before instructions");
494   unsigned BraceDepth = 0;
495   do {
496     if (parseBasicBlockDefinition(MBBSlots))
497       return true;
498     bool IsAfterNewline = false;
499     // Skip until the next machine basic block.
500     while (true) {
501       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
502           Token.isErrorOrEOF())
503         break;
504       else if (Token.is(MIToken::MachineBasicBlockLabel))
505         return error("basic block definition should be located at the start of "
506                      "the line");
507       else if (consumeIfPresent(MIToken::Newline)) {
508         IsAfterNewline = true;
509         continue;
510       }
511       IsAfterNewline = false;
512       if (Token.is(MIToken::lbrace))
513         ++BraceDepth;
514       if (Token.is(MIToken::rbrace)) {
515         if (!BraceDepth)
516           return error("extraneous closing brace ('}')");
517         --BraceDepth;
518       }
519       lex();
520     }
521     // Verify that we closed all of the '{' at the end of a file or a block.
522     if (!Token.isError() && BraceDepth)
523       return error("expected '}'"); // FIXME: Report a note that shows '{'.
524   } while (!Token.isErrorOrEOF());
525   return Token.isError();
526 }
527 
528 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
529   assert(Token.is(MIToken::kw_liveins));
530   lex();
531   if (expectAndConsume(MIToken::colon))
532     return true;
533   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
534     return false;
535   do {
536     if (Token.isNot(MIToken::NamedRegister))
537       return error("expected a named register");
538     unsigned Reg = 0;
539     if (parseNamedRegister(Reg))
540       return true;
541     lex();
542     LaneBitmask Mask = LaneBitmask::getAll();
543     if (consumeIfPresent(MIToken::colon)) {
544       // Parse lane mask.
545       if (Token.isNot(MIToken::IntegerLiteral) &&
546           Token.isNot(MIToken::HexLiteral))
547         return error("expected a lane mask");
548       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
549                     "Use correct get-function for lane mask");
550       LaneBitmask::Type V;
551       if (getUnsigned(V))
552         return error("invalid lane mask value");
553       Mask = LaneBitmask(V);
554       lex();
555     }
556     MBB.addLiveIn(Reg, Mask);
557   } while (consumeIfPresent(MIToken::comma));
558   return false;
559 }
560 
561 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
562   assert(Token.is(MIToken::kw_successors));
563   lex();
564   if (expectAndConsume(MIToken::colon))
565     return true;
566   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
567     return false;
568   do {
569     if (Token.isNot(MIToken::MachineBasicBlock))
570       return error("expected a machine basic block reference");
571     MachineBasicBlock *SuccMBB = nullptr;
572     if (parseMBBReference(SuccMBB))
573       return true;
574     lex();
575     unsigned Weight = 0;
576     if (consumeIfPresent(MIToken::lparen)) {
577       if (Token.isNot(MIToken::IntegerLiteral) &&
578           Token.isNot(MIToken::HexLiteral))
579         return error("expected an integer literal after '('");
580       if (getUnsigned(Weight))
581         return true;
582       lex();
583       if (expectAndConsume(MIToken::rparen))
584         return true;
585     }
586     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
587   } while (consumeIfPresent(MIToken::comma));
588   MBB.normalizeSuccProbs();
589   return false;
590 }
591 
592 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
593                                MachineBasicBlock *&AddFalthroughFrom) {
594   // Skip the definition.
595   assert(Token.is(MIToken::MachineBasicBlockLabel));
596   lex();
597   if (consumeIfPresent(MIToken::lparen)) {
598     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
599       lex();
600     consumeIfPresent(MIToken::rparen);
601   }
602   consumeIfPresent(MIToken::colon);
603 
604   // Parse the liveins and successors.
605   // N.B: Multiple lists of successors and liveins are allowed and they're
606   // merged into one.
607   // Example:
608   //   liveins: %edi
609   //   liveins: %esi
610   //
611   // is equivalent to
612   //   liveins: %edi, %esi
613   bool ExplicitSuccessors = false;
614   while (true) {
615     if (Token.is(MIToken::kw_successors)) {
616       if (parseBasicBlockSuccessors(MBB))
617         return true;
618       ExplicitSuccessors = true;
619     } else if (Token.is(MIToken::kw_liveins)) {
620       if (parseBasicBlockLiveins(MBB))
621         return true;
622     } else if (consumeIfPresent(MIToken::Newline)) {
623       continue;
624     } else
625       break;
626     if (!Token.isNewlineOrEOF())
627       return error("expected line break at the end of a list");
628     lex();
629   }
630 
631   // Parse the instructions.
632   bool IsInBundle = false;
633   MachineInstr *PrevMI = nullptr;
634   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
635          !Token.is(MIToken::Eof)) {
636     if (consumeIfPresent(MIToken::Newline))
637       continue;
638     if (consumeIfPresent(MIToken::rbrace)) {
639       // The first parsing pass should verify that all closing '}' have an
640       // opening '{'.
641       assert(IsInBundle);
642       IsInBundle = false;
643       continue;
644     }
645     MachineInstr *MI = nullptr;
646     if (parse(MI))
647       return true;
648     MBB.insert(MBB.end(), MI);
649     if (IsInBundle) {
650       PrevMI->setFlag(MachineInstr::BundledSucc);
651       MI->setFlag(MachineInstr::BundledPred);
652     }
653     PrevMI = MI;
654     if (Token.is(MIToken::lbrace)) {
655       if (IsInBundle)
656         return error("nested instruction bundles are not allowed");
657       lex();
658       // This instruction is the start of the bundle.
659       MI->setFlag(MachineInstr::BundledSucc);
660       IsInBundle = true;
661       if (!Token.is(MIToken::Newline))
662         // The next instruction can be on the same line.
663         continue;
664     }
665     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
666     lex();
667   }
668 
669   // Construct successor list by searching for basic block machine operands.
670   if (!ExplicitSuccessors) {
671     SmallVector<MachineBasicBlock*,4> Successors;
672     bool IsFallthrough;
673     guessSuccessors(MBB, Successors, IsFallthrough);
674     for (MachineBasicBlock *Succ : Successors)
675       MBB.addSuccessor(Succ);
676 
677     if (IsFallthrough) {
678       AddFalthroughFrom = &MBB;
679     } else {
680       MBB.normalizeSuccProbs();
681     }
682   }
683 
684   return false;
685 }
686 
687 bool MIParser::parseBasicBlocks() {
688   lex();
689   // Skip until the first machine basic block.
690   while (Token.is(MIToken::Newline))
691     lex();
692   if (Token.isErrorOrEOF())
693     return Token.isError();
694   // The first parsing pass should have verified that this token is a MBB label
695   // in the 'parseBasicBlockDefinitions' method.
696   assert(Token.is(MIToken::MachineBasicBlockLabel));
697   MachineBasicBlock *AddFalthroughFrom = nullptr;
698   do {
699     MachineBasicBlock *MBB = nullptr;
700     if (parseMBBReference(MBB))
701       return true;
702     if (AddFalthroughFrom) {
703       if (!AddFalthroughFrom->isSuccessor(MBB))
704         AddFalthroughFrom->addSuccessor(MBB);
705       AddFalthroughFrom->normalizeSuccProbs();
706       AddFalthroughFrom = nullptr;
707     }
708     if (parseBasicBlock(*MBB, AddFalthroughFrom))
709       return true;
710     // The method 'parseBasicBlock' should parse the whole block until the next
711     // block or the end of file.
712     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
713   } while (Token.isNot(MIToken::Eof));
714   return false;
715 }
716 
717 bool MIParser::parse(MachineInstr *&MI) {
718   // Parse any register operands before '='
719   MachineOperand MO = MachineOperand::CreateImm(0);
720   SmallVector<ParsedMachineOperand, 8> Operands;
721   while (Token.isRegister() || Token.isRegisterFlag()) {
722     auto Loc = Token.location();
723     Optional<unsigned> TiedDefIdx;
724     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
725       return true;
726     Operands.push_back(
727         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
728     if (Token.isNot(MIToken::comma))
729       break;
730     lex();
731   }
732   if (!Operands.empty() && expectAndConsume(MIToken::equal))
733     return true;
734 
735   unsigned OpCode, Flags = 0;
736   if (Token.isError() || parseInstruction(OpCode, Flags))
737     return true;
738 
739   // Parse the remaining machine operands.
740   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
741          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
742     auto Loc = Token.location();
743     Optional<unsigned> TiedDefIdx;
744     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
745       return true;
746     Operands.push_back(
747         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
748     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
749         Token.is(MIToken::lbrace))
750       break;
751     if (Token.isNot(MIToken::comma))
752       return error("expected ',' before the next machine operand");
753     lex();
754   }
755 
756   DebugLoc DebugLocation;
757   if (Token.is(MIToken::kw_debug_location)) {
758     lex();
759     if (Token.isNot(MIToken::exclaim))
760       return error("expected a metadata node after 'debug-location'");
761     MDNode *Node = nullptr;
762     if (parseMDNode(Node))
763       return true;
764     DebugLocation = DebugLoc(Node);
765   }
766 
767   // Parse the machine memory operands.
768   SmallVector<MachineMemOperand *, 2> MemOperands;
769   if (Token.is(MIToken::coloncolon)) {
770     lex();
771     while (!Token.isNewlineOrEOF()) {
772       MachineMemOperand *MemOp = nullptr;
773       if (parseMachineMemoryOperand(MemOp))
774         return true;
775       MemOperands.push_back(MemOp);
776       if (Token.isNewlineOrEOF())
777         break;
778       if (Token.isNot(MIToken::comma))
779         return error("expected ',' before the next machine memory operand");
780       lex();
781     }
782   }
783 
784   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
785   if (!MCID.isVariadic()) {
786     // FIXME: Move the implicit operand verification to the machine verifier.
787     if (verifyImplicitOperands(Operands, MCID))
788       return true;
789   }
790 
791   // TODO: Check for extraneous machine operands.
792   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
793   MI->setFlags(Flags);
794   for (const auto &Operand : Operands)
795     MI->addOperand(MF, Operand.Operand);
796   if (assignRegisterTies(*MI, Operands))
797     return true;
798   if (MemOperands.empty())
799     return false;
800   MachineInstr::mmo_iterator MemRefs =
801       MF.allocateMemRefsArray(MemOperands.size());
802   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
803   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
804   return false;
805 }
806 
807 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
808   lex();
809   if (Token.isNot(MIToken::MachineBasicBlock))
810     return error("expected a machine basic block reference");
811   if (parseMBBReference(MBB))
812     return true;
813   lex();
814   if (Token.isNot(MIToken::Eof))
815     return error(
816         "expected end of string after the machine basic block reference");
817   return false;
818 }
819 
820 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
821   lex();
822   if (Token.isNot(MIToken::NamedRegister))
823     return error("expected a named register");
824   if (parseNamedRegister(Reg))
825     return true;
826   lex();
827   if (Token.isNot(MIToken::Eof))
828     return error("expected end of string after the register reference");
829   return false;
830 }
831 
832 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
833   lex();
834   if (Token.isNot(MIToken::VirtualRegister))
835     return error("expected a virtual register");
836   if (parseVirtualRegister(Info))
837     return true;
838   lex();
839   if (Token.isNot(MIToken::Eof))
840     return error("expected end of string after the register reference");
841   return false;
842 }
843 
844 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
845   lex();
846   if (Token.isNot(MIToken::NamedRegister) &&
847       Token.isNot(MIToken::VirtualRegister))
848     return error("expected either a named or virtual register");
849 
850   VRegInfo *Info;
851   if (parseRegister(Reg, Info))
852     return true;
853 
854   lex();
855   if (Token.isNot(MIToken::Eof))
856     return error("expected end of string after the register reference");
857   return false;
858 }
859 
860 bool MIParser::parseStandaloneStackObject(int &FI) {
861   lex();
862   if (Token.isNot(MIToken::StackObject))
863     return error("expected a stack object");
864   if (parseStackFrameIndex(FI))
865     return true;
866   if (Token.isNot(MIToken::Eof))
867     return error("expected end of string after the stack object reference");
868   return false;
869 }
870 
871 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
872   lex();
873   if (Token.is(MIToken::exclaim)) {
874     if (parseMDNode(Node))
875       return true;
876   } else if (Token.is(MIToken::md_diexpr)) {
877     if (parseDIExpression(Node))
878       return true;
879   } else
880     return error("expected a metadata node");
881   if (Token.isNot(MIToken::Eof))
882     return error("expected end of string after the metadata node");
883   return false;
884 }
885 
886 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
887   assert(MO.isImplicit());
888   return MO.isDef() ? "implicit-def" : "implicit";
889 }
890 
891 static std::string getRegisterName(const TargetRegisterInfo *TRI,
892                                    unsigned Reg) {
893   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
894   return StringRef(TRI->getName(Reg)).lower();
895 }
896 
897 /// Return true if the parsed machine operands contain a given machine operand.
898 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
899                                 ArrayRef<ParsedMachineOperand> Operands) {
900   for (const auto &I : Operands) {
901     if (ImplicitOperand.isIdenticalTo(I.Operand))
902       return true;
903   }
904   return false;
905 }
906 
907 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
908                                       const MCInstrDesc &MCID) {
909   if (MCID.isCall())
910     // We can't verify call instructions as they can contain arbitrary implicit
911     // register and register mask operands.
912     return false;
913 
914   // Gather all the expected implicit operands.
915   SmallVector<MachineOperand, 4> ImplicitOperands;
916   if (MCID.ImplicitDefs)
917     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
918       ImplicitOperands.push_back(
919           MachineOperand::CreateReg(*ImpDefs, true, true));
920   if (MCID.ImplicitUses)
921     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
922       ImplicitOperands.push_back(
923           MachineOperand::CreateReg(*ImpUses, false, true));
924 
925   const auto *TRI = MF.getSubtarget().getRegisterInfo();
926   assert(TRI && "Expected target register info");
927   for (const auto &I : ImplicitOperands) {
928     if (isImplicitOperandIn(I, Operands))
929       continue;
930     return error(Operands.empty() ? Token.location() : Operands.back().End,
931                  Twine("missing implicit register operand '") +
932                      printImplicitRegisterFlag(I) + " %" +
933                      getRegisterName(TRI, I.getReg()) + "'");
934   }
935   return false;
936 }
937 
938 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
939   // Allow frame and fast math flags for OPCODE
940   while (Token.is(MIToken::kw_frame_setup) ||
941          Token.is(MIToken::kw_frame_destroy) ||
942          Token.is(MIToken::kw_nnan) ||
943          Token.is(MIToken::kw_ninf) ||
944          Token.is(MIToken::kw_nsz) ||
945          Token.is(MIToken::kw_arcp) ||
946          Token.is(MIToken::kw_contract) ||
947          Token.is(MIToken::kw_afn) ||
948          Token.is(MIToken::kw_reassoc)) {
949     // Mine frame and fast math flags
950     if (Token.is(MIToken::kw_frame_setup))
951       Flags |= MachineInstr::FrameSetup;
952     if (Token.is(MIToken::kw_frame_destroy))
953       Flags |= MachineInstr::FrameDestroy;
954     if (Token.is(MIToken::kw_nnan))
955       Flags |= MachineInstr::FmNoNans;
956     if (Token.is(MIToken::kw_ninf))
957       Flags |= MachineInstr::FmNoInfs;
958     if (Token.is(MIToken::kw_nsz))
959       Flags |= MachineInstr::FmNsz;
960     if (Token.is(MIToken::kw_arcp))
961       Flags |= MachineInstr::FmArcp;
962     if (Token.is(MIToken::kw_contract))
963       Flags |= MachineInstr::FmContract;
964     if (Token.is(MIToken::kw_afn))
965       Flags |= MachineInstr::FmAfn;
966     if (Token.is(MIToken::kw_reassoc))
967       Flags |= MachineInstr::FmReassoc;
968 
969     lex();
970   }
971   if (Token.isNot(MIToken::Identifier))
972     return error("expected a machine instruction");
973   StringRef InstrName = Token.stringValue();
974   if (parseInstrName(InstrName, OpCode))
975     return error(Twine("unknown machine instruction name '") + InstrName + "'");
976   lex();
977   return false;
978 }
979 
980 bool MIParser::parseNamedRegister(unsigned &Reg) {
981   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
982   StringRef Name = Token.stringValue();
983   if (getRegisterByName(Name, Reg))
984     return error(Twine("unknown register name '") + Name + "'");
985   return false;
986 }
987 
988 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
989   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
990   StringRef Name = Token.stringValue();
991   // TODO: Check that the VReg name is not the same as a physical register name.
992   //       If it is, then print a warning (when warnings are implemented).
993   Info = &PFS.getVRegInfoNamed(Name);
994   return false;
995 }
996 
997 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
998   if (Token.is(MIToken::NamedVirtualRegister))
999     return parseNamedVirtualRegister(Info);
1000   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1001   unsigned ID;
1002   if (getUnsigned(ID))
1003     return true;
1004   Info = &PFS.getVRegInfo(ID);
1005   return false;
1006 }
1007 
1008 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1009   switch (Token.kind()) {
1010   case MIToken::underscore:
1011     Reg = 0;
1012     return false;
1013   case MIToken::NamedRegister:
1014     return parseNamedRegister(Reg);
1015   case MIToken::NamedVirtualRegister:
1016   case MIToken::VirtualRegister:
1017     if (parseVirtualRegister(Info))
1018       return true;
1019     Reg = Info->VReg;
1020     return false;
1021   // TODO: Parse other register kinds.
1022   default:
1023     llvm_unreachable("The current token should be a register");
1024   }
1025 }
1026 
1027 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1028   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1029     return error("expected '_', register class, or register bank name");
1030   StringRef::iterator Loc = Token.location();
1031   StringRef Name = Token.stringValue();
1032 
1033   // Was it a register class?
1034   auto RCNameI = PFS.Names2RegClasses.find(Name);
1035   if (RCNameI != PFS.Names2RegClasses.end()) {
1036     lex();
1037     const TargetRegisterClass &RC = *RCNameI->getValue();
1038 
1039     switch (RegInfo.Kind) {
1040     case VRegInfo::UNKNOWN:
1041     case VRegInfo::NORMAL:
1042       RegInfo.Kind = VRegInfo::NORMAL;
1043       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
1044         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1045         return error(Loc, Twine("conflicting register classes, previously: ") +
1046                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1047       }
1048       RegInfo.D.RC = &RC;
1049       RegInfo.Explicit = true;
1050       return false;
1051 
1052     case VRegInfo::GENERIC:
1053     case VRegInfo::REGBANK:
1054       return error(Loc, "register class specification on generic register");
1055     }
1056     llvm_unreachable("Unexpected register kind");
1057   }
1058 
1059   // Should be a register bank or a generic register.
1060   const RegisterBank *RegBank = nullptr;
1061   if (Name != "_") {
1062     auto RBNameI = PFS.Names2RegBanks.find(Name);
1063     if (RBNameI == PFS.Names2RegBanks.end())
1064       return error(Loc, "expected '_', register class, or register bank name");
1065     RegBank = RBNameI->getValue();
1066   }
1067 
1068   lex();
1069 
1070   switch (RegInfo.Kind) {
1071   case VRegInfo::UNKNOWN:
1072   case VRegInfo::GENERIC:
1073   case VRegInfo::REGBANK:
1074     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1075     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1076       return error(Loc, "conflicting generic register banks");
1077     RegInfo.D.RegBank = RegBank;
1078     RegInfo.Explicit = true;
1079     return false;
1080 
1081   case VRegInfo::NORMAL:
1082     return error(Loc, "register bank specification on normal register");
1083   }
1084   llvm_unreachable("Unexpected register kind");
1085 }
1086 
1087 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1088   const unsigned OldFlags = Flags;
1089   switch (Token.kind()) {
1090   case MIToken::kw_implicit:
1091     Flags |= RegState::Implicit;
1092     break;
1093   case MIToken::kw_implicit_define:
1094     Flags |= RegState::ImplicitDefine;
1095     break;
1096   case MIToken::kw_def:
1097     Flags |= RegState::Define;
1098     break;
1099   case MIToken::kw_dead:
1100     Flags |= RegState::Dead;
1101     break;
1102   case MIToken::kw_killed:
1103     Flags |= RegState::Kill;
1104     break;
1105   case MIToken::kw_undef:
1106     Flags |= RegState::Undef;
1107     break;
1108   case MIToken::kw_internal:
1109     Flags |= RegState::InternalRead;
1110     break;
1111   case MIToken::kw_early_clobber:
1112     Flags |= RegState::EarlyClobber;
1113     break;
1114   case MIToken::kw_debug_use:
1115     Flags |= RegState::Debug;
1116     break;
1117   case MIToken::kw_renamable:
1118     Flags |= RegState::Renamable;
1119     break;
1120   default:
1121     llvm_unreachable("The current token should be a register flag");
1122   }
1123   if (OldFlags == Flags)
1124     // We know that the same flag is specified more than once when the flags
1125     // weren't modified.
1126     return error("duplicate '" + Token.stringValue() + "' register flag");
1127   lex();
1128   return false;
1129 }
1130 
1131 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1132   assert(Token.is(MIToken::dot));
1133   lex();
1134   if (Token.isNot(MIToken::Identifier))
1135     return error("expected a subregister index after '.'");
1136   auto Name = Token.stringValue();
1137   SubReg = getSubRegIndex(Name);
1138   if (!SubReg)
1139     return error(Twine("use of unknown subregister index '") + Name + "'");
1140   lex();
1141   return false;
1142 }
1143 
1144 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1145   if (!consumeIfPresent(MIToken::kw_tied_def))
1146     return true;
1147   if (Token.isNot(MIToken::IntegerLiteral))
1148     return error("expected an integer literal after 'tied-def'");
1149   if (getUnsigned(TiedDefIdx))
1150     return true;
1151   lex();
1152   if (expectAndConsume(MIToken::rparen))
1153     return true;
1154   return false;
1155 }
1156 
1157 bool MIParser::assignRegisterTies(MachineInstr &MI,
1158                                   ArrayRef<ParsedMachineOperand> Operands) {
1159   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1160   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1161     if (!Operands[I].TiedDefIdx)
1162       continue;
1163     // The parser ensures that this operand is a register use, so we just have
1164     // to check the tied-def operand.
1165     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1166     if (DefIdx >= E)
1167       return error(Operands[I].Begin,
1168                    Twine("use of invalid tied-def operand index '" +
1169                          Twine(DefIdx) + "'; instruction has only ") +
1170                        Twine(E) + " operands");
1171     const auto &DefOperand = Operands[DefIdx].Operand;
1172     if (!DefOperand.isReg() || !DefOperand.isDef())
1173       // FIXME: add note with the def operand.
1174       return error(Operands[I].Begin,
1175                    Twine("use of invalid tied-def operand index '") +
1176                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1177                        " isn't a defined register");
1178     // Check that the tied-def operand wasn't tied elsewhere.
1179     for (const auto &TiedPair : TiedRegisterPairs) {
1180       if (TiedPair.first == DefIdx)
1181         return error(Operands[I].Begin,
1182                      Twine("the tied-def operand #") + Twine(DefIdx) +
1183                          " is already tied with another register operand");
1184     }
1185     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1186   }
1187   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1188   // indices must be less than tied max.
1189   for (const auto &TiedPair : TiedRegisterPairs)
1190     MI.tieOperands(TiedPair.first, TiedPair.second);
1191   return false;
1192 }
1193 
1194 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1195                                     Optional<unsigned> &TiedDefIdx,
1196                                     bool IsDef) {
1197   unsigned Flags = IsDef ? RegState::Define : 0;
1198   while (Token.isRegisterFlag()) {
1199     if (parseRegisterFlag(Flags))
1200       return true;
1201   }
1202   if (!Token.isRegister())
1203     return error("expected a register after register flags");
1204   unsigned Reg;
1205   VRegInfo *RegInfo;
1206   if (parseRegister(Reg, RegInfo))
1207     return true;
1208   lex();
1209   unsigned SubReg = 0;
1210   if (Token.is(MIToken::dot)) {
1211     if (parseSubRegisterIndex(SubReg))
1212       return true;
1213     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1214       return error("subregister index expects a virtual register");
1215   }
1216   if (Token.is(MIToken::colon)) {
1217     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1218       return error("register class specification expects a virtual register");
1219     lex();
1220     if (parseRegisterClassOrBank(*RegInfo))
1221         return true;
1222   }
1223   MachineRegisterInfo &MRI = MF.getRegInfo();
1224   if ((Flags & RegState::Define) == 0) {
1225     if (consumeIfPresent(MIToken::lparen)) {
1226       unsigned Idx;
1227       if (!parseRegisterTiedDefIndex(Idx))
1228         TiedDefIdx = Idx;
1229       else {
1230         // Try a redundant low-level type.
1231         LLT Ty;
1232         if (parseLowLevelType(Token.location(), Ty))
1233           return error("expected tied-def or low-level type after '('");
1234 
1235         if (expectAndConsume(MIToken::rparen))
1236           return true;
1237 
1238         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1239           return error("inconsistent type for generic virtual register");
1240 
1241         MRI.setType(Reg, Ty);
1242       }
1243     }
1244   } else if (consumeIfPresent(MIToken::lparen)) {
1245     // Virtual registers may have a tpe with GlobalISel.
1246     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1247       return error("unexpected type on physical register");
1248 
1249     LLT Ty;
1250     if (parseLowLevelType(Token.location(), Ty))
1251       return true;
1252 
1253     if (expectAndConsume(MIToken::rparen))
1254       return true;
1255 
1256     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1257       return error("inconsistent type for generic virtual register");
1258 
1259     MRI.setType(Reg, Ty);
1260   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1261     // Generic virtual registers must have a type.
1262     // If we end up here this means the type hasn't been specified and
1263     // this is bad!
1264     if (RegInfo->Kind == VRegInfo::GENERIC ||
1265         RegInfo->Kind == VRegInfo::REGBANK)
1266       return error("generic virtual registers must have a type");
1267   }
1268   Dest = MachineOperand::CreateReg(
1269       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1270       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1271       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1272       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1273 
1274   return false;
1275 }
1276 
1277 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1278   assert(Token.is(MIToken::IntegerLiteral));
1279   const APSInt &Int = Token.integerValue();
1280   if (Int.getMinSignedBits() > 64)
1281     return error("integer literal is too large to be an immediate operand");
1282   Dest = MachineOperand::CreateImm(Int.getExtValue());
1283   lex();
1284   return false;
1285 }
1286 
1287 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1288                                const Constant *&C) {
1289   auto Source = StringValue.str(); // The source has to be null terminated.
1290   SMDiagnostic Err;
1291   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1292                          &PFS.IRSlots);
1293   if (!C)
1294     return error(Loc + Err.getColumnNo(), Err.getMessage());
1295   return false;
1296 }
1297 
1298 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1299   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1300     return true;
1301   lex();
1302   return false;
1303 }
1304 
1305 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1306   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1307     StringRef SizeStr = Token.range().drop_front();
1308     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1309       return error("expected integers after 's'/'p' type character");
1310   }
1311 
1312   if (Token.range().front() == 's') {
1313     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1314     lex();
1315     return false;
1316   } else if (Token.range().front() == 'p') {
1317     const DataLayout &DL = MF.getDataLayout();
1318     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1319     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1320     lex();
1321     return false;
1322   }
1323 
1324   // Now we're looking for a vector.
1325   if (Token.isNot(MIToken::less))
1326     return error(Loc,
1327                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1328   lex();
1329 
1330   if (Token.isNot(MIToken::IntegerLiteral))
1331     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1332   uint64_t NumElements = Token.integerValue().getZExtValue();
1333   lex();
1334 
1335   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1336     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1337   lex();
1338 
1339   if (Token.range().front() != 's' && Token.range().front() != 'p')
1340     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1341   StringRef SizeStr = Token.range().drop_front();
1342   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1343     return error("expected integers after 's'/'p' type character");
1344 
1345   if (Token.range().front() == 's')
1346     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1347   else if (Token.range().front() == 'p') {
1348     const DataLayout &DL = MF.getDataLayout();
1349     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1350     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1351   } else
1352     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1353   lex();
1354 
1355   if (Token.isNot(MIToken::greater))
1356     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1357   lex();
1358 
1359   Ty = LLT::vector(NumElements, Ty);
1360   return false;
1361 }
1362 
1363 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1364   assert(Token.is(MIToken::Identifier));
1365   StringRef TypeStr = Token.range();
1366   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1367       TypeStr.front() != 'p')
1368     return error(
1369         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1370   StringRef SizeStr = Token.range().drop_front();
1371   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1372     return error("expected integers after 'i'/'s'/'p' type character");
1373 
1374   auto Loc = Token.location();
1375   lex();
1376   if (Token.isNot(MIToken::IntegerLiteral))
1377     return error("expected an integer literal");
1378   const Constant *C = nullptr;
1379   if (parseIRConstant(Loc, C))
1380     return true;
1381   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1382   return false;
1383 }
1384 
1385 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1386   auto Loc = Token.location();
1387   lex();
1388   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1389       Token.isNot(MIToken::HexLiteral))
1390     return error("expected a floating point literal");
1391   const Constant *C = nullptr;
1392   if (parseIRConstant(Loc, C))
1393     return true;
1394   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1395   return false;
1396 }
1397 
1398 bool MIParser::getUnsigned(unsigned &Result) {
1399   if (Token.hasIntegerValue()) {
1400     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1401     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1402     if (Val64 == Limit)
1403       return error("expected 32-bit integer (too large)");
1404     Result = Val64;
1405     return false;
1406   }
1407   if (Token.is(MIToken::HexLiteral)) {
1408     APInt A;
1409     if (getHexUint(A))
1410       return true;
1411     if (A.getBitWidth() > 32)
1412       return error("expected 32-bit integer (too large)");
1413     Result = A.getZExtValue();
1414     return false;
1415   }
1416   return true;
1417 }
1418 
1419 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1420   assert(Token.is(MIToken::MachineBasicBlock) ||
1421          Token.is(MIToken::MachineBasicBlockLabel));
1422   unsigned Number;
1423   if (getUnsigned(Number))
1424     return true;
1425   auto MBBInfo = PFS.MBBSlots.find(Number);
1426   if (MBBInfo == PFS.MBBSlots.end())
1427     return error(Twine("use of undefined machine basic block #") +
1428                  Twine(Number));
1429   MBB = MBBInfo->second;
1430   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1431   // we drop the <irname> from the bb.<id>.<irname> format.
1432   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1433     return error(Twine("the name of machine basic block #") + Twine(Number) +
1434                  " isn't '" + Token.stringValue() + "'");
1435   return false;
1436 }
1437 
1438 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1439   MachineBasicBlock *MBB;
1440   if (parseMBBReference(MBB))
1441     return true;
1442   Dest = MachineOperand::CreateMBB(MBB);
1443   lex();
1444   return false;
1445 }
1446 
1447 bool MIParser::parseStackFrameIndex(int &FI) {
1448   assert(Token.is(MIToken::StackObject));
1449   unsigned ID;
1450   if (getUnsigned(ID))
1451     return true;
1452   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1453   if (ObjectInfo == PFS.StackObjectSlots.end())
1454     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1455                  "'");
1456   StringRef Name;
1457   if (const auto *Alloca =
1458           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1459     Name = Alloca->getName();
1460   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1461     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1462                  "' isn't '" + Token.stringValue() + "'");
1463   lex();
1464   FI = ObjectInfo->second;
1465   return false;
1466 }
1467 
1468 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1469   int FI;
1470   if (parseStackFrameIndex(FI))
1471     return true;
1472   Dest = MachineOperand::CreateFI(FI);
1473   return false;
1474 }
1475 
1476 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1477   assert(Token.is(MIToken::FixedStackObject));
1478   unsigned ID;
1479   if (getUnsigned(ID))
1480     return true;
1481   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1482   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1483     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1484                  Twine(ID) + "'");
1485   lex();
1486   FI = ObjectInfo->second;
1487   return false;
1488 }
1489 
1490 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1491   int FI;
1492   if (parseFixedStackFrameIndex(FI))
1493     return true;
1494   Dest = MachineOperand::CreateFI(FI);
1495   return false;
1496 }
1497 
1498 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1499   switch (Token.kind()) {
1500   case MIToken::NamedGlobalValue: {
1501     const Module *M = MF.getFunction().getParent();
1502     GV = M->getNamedValue(Token.stringValue());
1503     if (!GV)
1504       return error(Twine("use of undefined global value '") + Token.range() +
1505                    "'");
1506     break;
1507   }
1508   case MIToken::GlobalValue: {
1509     unsigned GVIdx;
1510     if (getUnsigned(GVIdx))
1511       return true;
1512     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1513       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1514                    "'");
1515     GV = PFS.IRSlots.GlobalValues[GVIdx];
1516     break;
1517   }
1518   default:
1519     llvm_unreachable("The current token should be a global value");
1520   }
1521   return false;
1522 }
1523 
1524 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1525   GlobalValue *GV = nullptr;
1526   if (parseGlobalValue(GV))
1527     return true;
1528   lex();
1529   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1530   if (parseOperandsOffset(Dest))
1531     return true;
1532   return false;
1533 }
1534 
1535 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1536   assert(Token.is(MIToken::ConstantPoolItem));
1537   unsigned ID;
1538   if (getUnsigned(ID))
1539     return true;
1540   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1541   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1542     return error("use of undefined constant '%const." + Twine(ID) + "'");
1543   lex();
1544   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1545   if (parseOperandsOffset(Dest))
1546     return true;
1547   return false;
1548 }
1549 
1550 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1551   assert(Token.is(MIToken::JumpTableIndex));
1552   unsigned ID;
1553   if (getUnsigned(ID))
1554     return true;
1555   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1556   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1557     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1558   lex();
1559   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1560   return false;
1561 }
1562 
1563 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1564   assert(Token.is(MIToken::ExternalSymbol));
1565   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1566   lex();
1567   Dest = MachineOperand::CreateES(Symbol);
1568   if (parseOperandsOffset(Dest))
1569     return true;
1570   return false;
1571 }
1572 
1573 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1574   assert(Token.is(MIToken::SubRegisterIndex));
1575   StringRef Name = Token.stringValue();
1576   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1577   if (SubRegIndex == 0)
1578     return error(Twine("unknown subregister index '") + Name + "'");
1579   lex();
1580   Dest = MachineOperand::CreateImm(SubRegIndex);
1581   return false;
1582 }
1583 
1584 bool MIParser::parseMDNode(MDNode *&Node) {
1585   assert(Token.is(MIToken::exclaim));
1586 
1587   auto Loc = Token.location();
1588   lex();
1589   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1590     return error("expected metadata id after '!'");
1591   unsigned ID;
1592   if (getUnsigned(ID))
1593     return true;
1594   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1595   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1596     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1597   lex();
1598   Node = NodeInfo->second.get();
1599   return false;
1600 }
1601 
1602 bool MIParser::parseDIExpression(MDNode *&Expr) {
1603   assert(Token.is(MIToken::md_diexpr));
1604   lex();
1605 
1606   // FIXME: Share this parsing with the IL parser.
1607   SmallVector<uint64_t, 8> Elements;
1608 
1609   if (expectAndConsume(MIToken::lparen))
1610     return true;
1611 
1612   if (Token.isNot(MIToken::rparen)) {
1613     do {
1614       if (Token.is(MIToken::Identifier)) {
1615         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1616           lex();
1617           Elements.push_back(Op);
1618           continue;
1619         }
1620         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1621       }
1622 
1623       if (Token.isNot(MIToken::IntegerLiteral) ||
1624           Token.integerValue().isSigned())
1625         return error("expected unsigned integer");
1626 
1627       auto &U = Token.integerValue();
1628       if (U.ugt(UINT64_MAX))
1629         return error("element too large, limit is " + Twine(UINT64_MAX));
1630       Elements.push_back(U.getZExtValue());
1631       lex();
1632 
1633     } while (consumeIfPresent(MIToken::comma));
1634   }
1635 
1636   if (expectAndConsume(MIToken::rparen))
1637     return true;
1638 
1639   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1640   return false;
1641 }
1642 
1643 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1644   MDNode *Node = nullptr;
1645   if (Token.is(MIToken::exclaim)) {
1646     if (parseMDNode(Node))
1647       return true;
1648   } else if (Token.is(MIToken::md_diexpr)) {
1649     if (parseDIExpression(Node))
1650       return true;
1651   }
1652   Dest = MachineOperand::CreateMetadata(Node);
1653   return false;
1654 }
1655 
1656 bool MIParser::parseCFIOffset(int &Offset) {
1657   if (Token.isNot(MIToken::IntegerLiteral))
1658     return error("expected a cfi offset");
1659   if (Token.integerValue().getMinSignedBits() > 32)
1660     return error("expected a 32 bit integer (the cfi offset is too large)");
1661   Offset = (int)Token.integerValue().getExtValue();
1662   lex();
1663   return false;
1664 }
1665 
1666 bool MIParser::parseCFIRegister(unsigned &Reg) {
1667   if (Token.isNot(MIToken::NamedRegister))
1668     return error("expected a cfi register");
1669   unsigned LLVMReg;
1670   if (parseNamedRegister(LLVMReg))
1671     return true;
1672   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1673   assert(TRI && "Expected target register info");
1674   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1675   if (DwarfReg < 0)
1676     return error("invalid DWARF register");
1677   Reg = (unsigned)DwarfReg;
1678   lex();
1679   return false;
1680 }
1681 
1682 bool MIParser::parseCFIEscapeValues(std::string &Values) {
1683   do {
1684     if (Token.isNot(MIToken::HexLiteral))
1685       return error("expected a hexadecimal literal");
1686     unsigned Value;
1687     if (getUnsigned(Value))
1688       return true;
1689     if (Value > UINT8_MAX)
1690       return error("expected a 8-bit integer (too large)");
1691     Values.push_back(static_cast<uint8_t>(Value));
1692     lex();
1693   } while (consumeIfPresent(MIToken::comma));
1694   return false;
1695 }
1696 
1697 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1698   auto Kind = Token.kind();
1699   lex();
1700   int Offset;
1701   unsigned Reg;
1702   unsigned CFIIndex;
1703   switch (Kind) {
1704   case MIToken::kw_cfi_same_value:
1705     if (parseCFIRegister(Reg))
1706       return true;
1707     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1708     break;
1709   case MIToken::kw_cfi_offset:
1710     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1711         parseCFIOffset(Offset))
1712       return true;
1713     CFIIndex =
1714         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1715     break;
1716   case MIToken::kw_cfi_rel_offset:
1717     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1718         parseCFIOffset(Offset))
1719       return true;
1720     CFIIndex = MF.addFrameInst(
1721         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1722     break;
1723   case MIToken::kw_cfi_def_cfa_register:
1724     if (parseCFIRegister(Reg))
1725       return true;
1726     CFIIndex =
1727         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1728     break;
1729   case MIToken::kw_cfi_def_cfa_offset:
1730     if (parseCFIOffset(Offset))
1731       return true;
1732     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1733     CFIIndex = MF.addFrameInst(
1734         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1735     break;
1736   case MIToken::kw_cfi_adjust_cfa_offset:
1737     if (parseCFIOffset(Offset))
1738       return true;
1739     CFIIndex = MF.addFrameInst(
1740         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1741     break;
1742   case MIToken::kw_cfi_def_cfa:
1743     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1744         parseCFIOffset(Offset))
1745       return true;
1746     // NB: MCCFIInstruction::createDefCfa negates the offset.
1747     CFIIndex =
1748         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1749     break;
1750   case MIToken::kw_cfi_remember_state:
1751     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1752     break;
1753   case MIToken::kw_cfi_restore:
1754     if (parseCFIRegister(Reg))
1755       return true;
1756     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1757     break;
1758   case MIToken::kw_cfi_restore_state:
1759     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1760     break;
1761   case MIToken::kw_cfi_undefined:
1762     if (parseCFIRegister(Reg))
1763       return true;
1764     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1765     break;
1766   case MIToken::kw_cfi_register: {
1767     unsigned Reg2;
1768     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1769         parseCFIRegister(Reg2))
1770       return true;
1771 
1772     CFIIndex =
1773         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1774     break;
1775   }
1776   case MIToken::kw_cfi_window_save:
1777     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1778     break;
1779   case MIToken::kw_cfi_escape: {
1780     std::string Values;
1781     if (parseCFIEscapeValues(Values))
1782       return true;
1783     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1784     break;
1785   }
1786   default:
1787     // TODO: Parse the other CFI operands.
1788     llvm_unreachable("The current token should be a cfi operand");
1789   }
1790   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1791   return false;
1792 }
1793 
1794 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1795   switch (Token.kind()) {
1796   case MIToken::NamedIRBlock: {
1797     BB = dyn_cast_or_null<BasicBlock>(
1798         F.getValueSymbolTable()->lookup(Token.stringValue()));
1799     if (!BB)
1800       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1801     break;
1802   }
1803   case MIToken::IRBlock: {
1804     unsigned SlotNumber = 0;
1805     if (getUnsigned(SlotNumber))
1806       return true;
1807     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1808     if (!BB)
1809       return error(Twine("use of undefined IR block '%ir-block.") +
1810                    Twine(SlotNumber) + "'");
1811     break;
1812   }
1813   default:
1814     llvm_unreachable("The current token should be an IR block reference");
1815   }
1816   return false;
1817 }
1818 
1819 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1820   assert(Token.is(MIToken::kw_blockaddress));
1821   lex();
1822   if (expectAndConsume(MIToken::lparen))
1823     return true;
1824   if (Token.isNot(MIToken::GlobalValue) &&
1825       Token.isNot(MIToken::NamedGlobalValue))
1826     return error("expected a global value");
1827   GlobalValue *GV = nullptr;
1828   if (parseGlobalValue(GV))
1829     return true;
1830   auto *F = dyn_cast<Function>(GV);
1831   if (!F)
1832     return error("expected an IR function reference");
1833   lex();
1834   if (expectAndConsume(MIToken::comma))
1835     return true;
1836   BasicBlock *BB = nullptr;
1837   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1838     return error("expected an IR block reference");
1839   if (parseIRBlock(BB, *F))
1840     return true;
1841   lex();
1842   if (expectAndConsume(MIToken::rparen))
1843     return true;
1844   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1845   if (parseOperandsOffset(Dest))
1846     return true;
1847   return false;
1848 }
1849 
1850 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1851   assert(Token.is(MIToken::kw_intrinsic));
1852   lex();
1853   if (expectAndConsume(MIToken::lparen))
1854     return error("expected syntax intrinsic(@llvm.whatever)");
1855 
1856   if (Token.isNot(MIToken::NamedGlobalValue))
1857     return error("expected syntax intrinsic(@llvm.whatever)");
1858 
1859   std::string Name = Token.stringValue();
1860   lex();
1861 
1862   if (expectAndConsume(MIToken::rparen))
1863     return error("expected ')' to terminate intrinsic name");
1864 
1865   // Find out what intrinsic we're dealing with, first try the global namespace
1866   // and then the target's private intrinsics if that fails.
1867   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1868   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1869   if (ID == Intrinsic::not_intrinsic && TII)
1870     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1871 
1872   if (ID == Intrinsic::not_intrinsic)
1873     return error("unknown intrinsic name");
1874   Dest = MachineOperand::CreateIntrinsicID(ID);
1875 
1876   return false;
1877 }
1878 
1879 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1880   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1881   bool IsFloat = Token.is(MIToken::kw_floatpred);
1882   lex();
1883 
1884   if (expectAndConsume(MIToken::lparen))
1885     return error("expected syntax intpred(whatever) or floatpred(whatever");
1886 
1887   if (Token.isNot(MIToken::Identifier))
1888     return error("whatever");
1889 
1890   CmpInst::Predicate Pred;
1891   if (IsFloat) {
1892     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1893                .Case("false", CmpInst::FCMP_FALSE)
1894                .Case("oeq", CmpInst::FCMP_OEQ)
1895                .Case("ogt", CmpInst::FCMP_OGT)
1896                .Case("oge", CmpInst::FCMP_OGE)
1897                .Case("olt", CmpInst::FCMP_OLT)
1898                .Case("ole", CmpInst::FCMP_OLE)
1899                .Case("one", CmpInst::FCMP_ONE)
1900                .Case("ord", CmpInst::FCMP_ORD)
1901                .Case("uno", CmpInst::FCMP_UNO)
1902                .Case("ueq", CmpInst::FCMP_UEQ)
1903                .Case("ugt", CmpInst::FCMP_UGT)
1904                .Case("uge", CmpInst::FCMP_UGE)
1905                .Case("ult", CmpInst::FCMP_ULT)
1906                .Case("ule", CmpInst::FCMP_ULE)
1907                .Case("une", CmpInst::FCMP_UNE)
1908                .Case("true", CmpInst::FCMP_TRUE)
1909                .Default(CmpInst::BAD_FCMP_PREDICATE);
1910     if (!CmpInst::isFPPredicate(Pred))
1911       return error("invalid floating-point predicate");
1912   } else {
1913     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1914                .Case("eq", CmpInst::ICMP_EQ)
1915                .Case("ne", CmpInst::ICMP_NE)
1916                .Case("sgt", CmpInst::ICMP_SGT)
1917                .Case("sge", CmpInst::ICMP_SGE)
1918                .Case("slt", CmpInst::ICMP_SLT)
1919                .Case("sle", CmpInst::ICMP_SLE)
1920                .Case("ugt", CmpInst::ICMP_UGT)
1921                .Case("uge", CmpInst::ICMP_UGE)
1922                .Case("ult", CmpInst::ICMP_ULT)
1923                .Case("ule", CmpInst::ICMP_ULE)
1924                .Default(CmpInst::BAD_ICMP_PREDICATE);
1925     if (!CmpInst::isIntPredicate(Pred))
1926       return error("invalid integer predicate");
1927   }
1928 
1929   lex();
1930   Dest = MachineOperand::CreatePredicate(Pred);
1931   if (expectAndConsume(MIToken::rparen))
1932     return error("predicate should be terminated by ')'.");
1933 
1934   return false;
1935 }
1936 
1937 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1938   assert(Token.is(MIToken::kw_target_index));
1939   lex();
1940   if (expectAndConsume(MIToken::lparen))
1941     return true;
1942   if (Token.isNot(MIToken::Identifier))
1943     return error("expected the name of the target index");
1944   int Index = 0;
1945   if (getTargetIndex(Token.stringValue(), Index))
1946     return error("use of undefined target index '" + Token.stringValue() + "'");
1947   lex();
1948   if (expectAndConsume(MIToken::rparen))
1949     return true;
1950   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1951   if (parseOperandsOffset(Dest))
1952     return true;
1953   return false;
1954 }
1955 
1956 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1957   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1958   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1959   assert(TRI && "Expected target register info");
1960   lex();
1961   if (expectAndConsume(MIToken::lparen))
1962     return true;
1963 
1964   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1965   while (true) {
1966     if (Token.isNot(MIToken::NamedRegister))
1967       return error("expected a named register");
1968     unsigned Reg;
1969     if (parseNamedRegister(Reg))
1970       return true;
1971     lex();
1972     Mask[Reg / 32] |= 1U << (Reg % 32);
1973     // TODO: Report an error if the same register is used more than once.
1974     if (Token.isNot(MIToken::comma))
1975       break;
1976     lex();
1977   }
1978 
1979   if (expectAndConsume(MIToken::rparen))
1980     return true;
1981   Dest = MachineOperand::CreateRegMask(Mask);
1982   return false;
1983 }
1984 
1985 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1986   assert(Token.is(MIToken::kw_liveout));
1987   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1988   assert(TRI && "Expected target register info");
1989   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1990   lex();
1991   if (expectAndConsume(MIToken::lparen))
1992     return true;
1993   while (true) {
1994     if (Token.isNot(MIToken::NamedRegister))
1995       return error("expected a named register");
1996     unsigned Reg;
1997     if (parseNamedRegister(Reg))
1998       return true;
1999     lex();
2000     Mask[Reg / 32] |= 1U << (Reg % 32);
2001     // TODO: Report an error if the same register is used more than once.
2002     if (Token.isNot(MIToken::comma))
2003       break;
2004     lex();
2005   }
2006   if (expectAndConsume(MIToken::rparen))
2007     return true;
2008   Dest = MachineOperand::CreateRegLiveOut(Mask);
2009   return false;
2010 }
2011 
2012 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2013                                    Optional<unsigned> &TiedDefIdx) {
2014   switch (Token.kind()) {
2015   case MIToken::kw_implicit:
2016   case MIToken::kw_implicit_define:
2017   case MIToken::kw_def:
2018   case MIToken::kw_dead:
2019   case MIToken::kw_killed:
2020   case MIToken::kw_undef:
2021   case MIToken::kw_internal:
2022   case MIToken::kw_early_clobber:
2023   case MIToken::kw_debug_use:
2024   case MIToken::kw_renamable:
2025   case MIToken::underscore:
2026   case MIToken::NamedRegister:
2027   case MIToken::VirtualRegister:
2028   case MIToken::NamedVirtualRegister:
2029     return parseRegisterOperand(Dest, TiedDefIdx);
2030   case MIToken::IntegerLiteral:
2031     return parseImmediateOperand(Dest);
2032   case MIToken::kw_half:
2033   case MIToken::kw_float:
2034   case MIToken::kw_double:
2035   case MIToken::kw_x86_fp80:
2036   case MIToken::kw_fp128:
2037   case MIToken::kw_ppc_fp128:
2038     return parseFPImmediateOperand(Dest);
2039   case MIToken::MachineBasicBlock:
2040     return parseMBBOperand(Dest);
2041   case MIToken::StackObject:
2042     return parseStackObjectOperand(Dest);
2043   case MIToken::FixedStackObject:
2044     return parseFixedStackObjectOperand(Dest);
2045   case MIToken::GlobalValue:
2046   case MIToken::NamedGlobalValue:
2047     return parseGlobalAddressOperand(Dest);
2048   case MIToken::ConstantPoolItem:
2049     return parseConstantPoolIndexOperand(Dest);
2050   case MIToken::JumpTableIndex:
2051     return parseJumpTableIndexOperand(Dest);
2052   case MIToken::ExternalSymbol:
2053     return parseExternalSymbolOperand(Dest);
2054   case MIToken::SubRegisterIndex:
2055     return parseSubRegisterIndexOperand(Dest);
2056   case MIToken::md_diexpr:
2057   case MIToken::exclaim:
2058     return parseMetadataOperand(Dest);
2059   case MIToken::kw_cfi_same_value:
2060   case MIToken::kw_cfi_offset:
2061   case MIToken::kw_cfi_rel_offset:
2062   case MIToken::kw_cfi_def_cfa_register:
2063   case MIToken::kw_cfi_def_cfa_offset:
2064   case MIToken::kw_cfi_adjust_cfa_offset:
2065   case MIToken::kw_cfi_escape:
2066   case MIToken::kw_cfi_def_cfa:
2067   case MIToken::kw_cfi_register:
2068   case MIToken::kw_cfi_remember_state:
2069   case MIToken::kw_cfi_restore:
2070   case MIToken::kw_cfi_restore_state:
2071   case MIToken::kw_cfi_undefined:
2072   case MIToken::kw_cfi_window_save:
2073     return parseCFIOperand(Dest);
2074   case MIToken::kw_blockaddress:
2075     return parseBlockAddressOperand(Dest);
2076   case MIToken::kw_intrinsic:
2077     return parseIntrinsicOperand(Dest);
2078   case MIToken::kw_target_index:
2079     return parseTargetIndexOperand(Dest);
2080   case MIToken::kw_liveout:
2081     return parseLiveoutRegisterMaskOperand(Dest);
2082   case MIToken::kw_floatpred:
2083   case MIToken::kw_intpred:
2084     return parsePredicateOperand(Dest);
2085   case MIToken::Error:
2086     return true;
2087   case MIToken::Identifier:
2088     if (const auto *RegMask = getRegMask(Token.stringValue())) {
2089       Dest = MachineOperand::CreateRegMask(RegMask);
2090       lex();
2091       break;
2092     } else if (Token.stringValue() == "CustomRegMask") {
2093       return parseCustomRegisterMaskOperand(Dest);
2094     } else
2095       return parseTypedImmediateOperand(Dest);
2096   default:
2097     // FIXME: Parse the MCSymbol machine operand.
2098     return error("expected a machine operand");
2099   }
2100   return false;
2101 }
2102 
2103 bool MIParser::parseMachineOperandAndTargetFlags(
2104     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2105   unsigned TF = 0;
2106   bool HasTargetFlags = false;
2107   if (Token.is(MIToken::kw_target_flags)) {
2108     HasTargetFlags = true;
2109     lex();
2110     if (expectAndConsume(MIToken::lparen))
2111       return true;
2112     if (Token.isNot(MIToken::Identifier))
2113       return error("expected the name of the target flag");
2114     if (getDirectTargetFlag(Token.stringValue(), TF)) {
2115       if (getBitmaskTargetFlag(Token.stringValue(), TF))
2116         return error("use of undefined target flag '" + Token.stringValue() +
2117                      "'");
2118     }
2119     lex();
2120     while (Token.is(MIToken::comma)) {
2121       lex();
2122       if (Token.isNot(MIToken::Identifier))
2123         return error("expected the name of the target flag");
2124       unsigned BitFlag = 0;
2125       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2126         return error("use of undefined target flag '" + Token.stringValue() +
2127                      "'");
2128       // TODO: Report an error when using a duplicate bit target flag.
2129       TF |= BitFlag;
2130       lex();
2131     }
2132     if (expectAndConsume(MIToken::rparen))
2133       return true;
2134   }
2135   auto Loc = Token.location();
2136   if (parseMachineOperand(Dest, TiedDefIdx))
2137     return true;
2138   if (!HasTargetFlags)
2139     return false;
2140   if (Dest.isReg())
2141     return error(Loc, "register operands can't have target flags");
2142   Dest.setTargetFlags(TF);
2143   return false;
2144 }
2145 
2146 bool MIParser::parseOffset(int64_t &Offset) {
2147   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2148     return false;
2149   StringRef Sign = Token.range();
2150   bool IsNegative = Token.is(MIToken::minus);
2151   lex();
2152   if (Token.isNot(MIToken::IntegerLiteral))
2153     return error("expected an integer literal after '" + Sign + "'");
2154   if (Token.integerValue().getMinSignedBits() > 64)
2155     return error("expected 64-bit integer (too large)");
2156   Offset = Token.integerValue().getExtValue();
2157   if (IsNegative)
2158     Offset = -Offset;
2159   lex();
2160   return false;
2161 }
2162 
2163 bool MIParser::parseAlignment(unsigned &Alignment) {
2164   assert(Token.is(MIToken::kw_align));
2165   lex();
2166   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2167     return error("expected an integer literal after 'align'");
2168   if (getUnsigned(Alignment))
2169     return true;
2170   lex();
2171   return false;
2172 }
2173 
2174 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2175   assert(Token.is(MIToken::kw_addrspace));
2176   lex();
2177   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2178     return error("expected an integer literal after 'addrspace'");
2179   if (getUnsigned(Addrspace))
2180     return true;
2181   lex();
2182   return false;
2183 }
2184 
2185 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2186   int64_t Offset = 0;
2187   if (parseOffset(Offset))
2188     return true;
2189   Op.setOffset(Offset);
2190   return false;
2191 }
2192 
2193 bool MIParser::parseIRValue(const Value *&V) {
2194   switch (Token.kind()) {
2195   case MIToken::NamedIRValue: {
2196     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2197     break;
2198   }
2199   case MIToken::IRValue: {
2200     unsigned SlotNumber = 0;
2201     if (getUnsigned(SlotNumber))
2202       return true;
2203     V = getIRValue(SlotNumber);
2204     break;
2205   }
2206   case MIToken::NamedGlobalValue:
2207   case MIToken::GlobalValue: {
2208     GlobalValue *GV = nullptr;
2209     if (parseGlobalValue(GV))
2210       return true;
2211     V = GV;
2212     break;
2213   }
2214   case MIToken::QuotedIRValue: {
2215     const Constant *C = nullptr;
2216     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2217       return true;
2218     V = C;
2219     break;
2220   }
2221   default:
2222     llvm_unreachable("The current token should be an IR block reference");
2223   }
2224   if (!V)
2225     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2226   return false;
2227 }
2228 
2229 bool MIParser::getUint64(uint64_t &Result) {
2230   if (Token.hasIntegerValue()) {
2231     if (Token.integerValue().getActiveBits() > 64)
2232       return error("expected 64-bit integer (too large)");
2233     Result = Token.integerValue().getZExtValue();
2234     return false;
2235   }
2236   if (Token.is(MIToken::HexLiteral)) {
2237     APInt A;
2238     if (getHexUint(A))
2239       return true;
2240     if (A.getBitWidth() > 64)
2241       return error("expected 64-bit integer (too large)");
2242     Result = A.getZExtValue();
2243     return false;
2244   }
2245   return true;
2246 }
2247 
2248 bool MIParser::getHexUint(APInt &Result) {
2249   assert(Token.is(MIToken::HexLiteral));
2250   StringRef S = Token.range();
2251   assert(S[0] == '0' && tolower(S[1]) == 'x');
2252   // This could be a floating point literal with a special prefix.
2253   if (!isxdigit(S[2]))
2254     return true;
2255   StringRef V = S.substr(2);
2256   APInt A(V.size()*4, V, 16);
2257 
2258   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2259   // sure it isn't the case before constructing result.
2260   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2261   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2262   return false;
2263 }
2264 
2265 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2266   const auto OldFlags = Flags;
2267   switch (Token.kind()) {
2268   case MIToken::kw_volatile:
2269     Flags |= MachineMemOperand::MOVolatile;
2270     break;
2271   case MIToken::kw_non_temporal:
2272     Flags |= MachineMemOperand::MONonTemporal;
2273     break;
2274   case MIToken::kw_dereferenceable:
2275     Flags |= MachineMemOperand::MODereferenceable;
2276     break;
2277   case MIToken::kw_invariant:
2278     Flags |= MachineMemOperand::MOInvariant;
2279     break;
2280   case MIToken::StringConstant: {
2281     MachineMemOperand::Flags TF;
2282     if (getMMOTargetFlag(Token.stringValue(), TF))
2283       return error("use of undefined target MMO flag '" + Token.stringValue() +
2284                    "'");
2285     Flags |= TF;
2286     break;
2287   }
2288   default:
2289     llvm_unreachable("The current token should be a memory operand flag");
2290   }
2291   if (OldFlags == Flags)
2292     // We know that the same flag is specified more than once when the flags
2293     // weren't modified.
2294     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2295   lex();
2296   return false;
2297 }
2298 
2299 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2300   switch (Token.kind()) {
2301   case MIToken::kw_stack:
2302     PSV = MF.getPSVManager().getStack();
2303     break;
2304   case MIToken::kw_got:
2305     PSV = MF.getPSVManager().getGOT();
2306     break;
2307   case MIToken::kw_jump_table:
2308     PSV = MF.getPSVManager().getJumpTable();
2309     break;
2310   case MIToken::kw_constant_pool:
2311     PSV = MF.getPSVManager().getConstantPool();
2312     break;
2313   case MIToken::FixedStackObject: {
2314     int FI;
2315     if (parseFixedStackFrameIndex(FI))
2316       return true;
2317     PSV = MF.getPSVManager().getFixedStack(FI);
2318     // The token was already consumed, so use return here instead of break.
2319     return false;
2320   }
2321   case MIToken::StackObject: {
2322     int FI;
2323     if (parseStackFrameIndex(FI))
2324       return true;
2325     PSV = MF.getPSVManager().getFixedStack(FI);
2326     // The token was already consumed, so use return here instead of break.
2327     return false;
2328   }
2329   case MIToken::kw_call_entry:
2330     lex();
2331     switch (Token.kind()) {
2332     case MIToken::GlobalValue:
2333     case MIToken::NamedGlobalValue: {
2334       GlobalValue *GV = nullptr;
2335       if (parseGlobalValue(GV))
2336         return true;
2337       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2338       break;
2339     }
2340     case MIToken::ExternalSymbol:
2341       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2342           MF.createExternalSymbolName(Token.stringValue()));
2343       break;
2344     default:
2345       return error(
2346           "expected a global value or an external symbol after 'call-entry'");
2347     }
2348     break;
2349   default:
2350     llvm_unreachable("The current token should be pseudo source value");
2351   }
2352   lex();
2353   return false;
2354 }
2355 
2356 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2357   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2358       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2359       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2360       Token.is(MIToken::kw_call_entry)) {
2361     const PseudoSourceValue *PSV = nullptr;
2362     if (parseMemoryPseudoSourceValue(PSV))
2363       return true;
2364     int64_t Offset = 0;
2365     if (parseOffset(Offset))
2366       return true;
2367     Dest = MachinePointerInfo(PSV, Offset);
2368     return false;
2369   }
2370   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2371       Token.isNot(MIToken::GlobalValue) &&
2372       Token.isNot(MIToken::NamedGlobalValue) &&
2373       Token.isNot(MIToken::QuotedIRValue))
2374     return error("expected an IR value reference");
2375   const Value *V = nullptr;
2376   if (parseIRValue(V))
2377     return true;
2378   if (!V->getType()->isPointerTy())
2379     return error("expected a pointer IR value");
2380   lex();
2381   int64_t Offset = 0;
2382   if (parseOffset(Offset))
2383     return true;
2384   Dest = MachinePointerInfo(V, Offset);
2385   return false;
2386 }
2387 
2388 bool MIParser::parseOptionalScope(LLVMContext &Context,
2389                                   SyncScope::ID &SSID) {
2390   SSID = SyncScope::System;
2391   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2392     lex();
2393     if (expectAndConsume(MIToken::lparen))
2394       return error("expected '(' in syncscope");
2395 
2396     std::string SSN;
2397     if (parseStringConstant(SSN))
2398       return true;
2399 
2400     SSID = Context.getOrInsertSyncScopeID(SSN);
2401     if (expectAndConsume(MIToken::rparen))
2402       return error("expected ')' in syncscope");
2403   }
2404 
2405   return false;
2406 }
2407 
2408 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2409   Order = AtomicOrdering::NotAtomic;
2410   if (Token.isNot(MIToken::Identifier))
2411     return false;
2412 
2413   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2414               .Case("unordered", AtomicOrdering::Unordered)
2415               .Case("monotonic", AtomicOrdering::Monotonic)
2416               .Case("acquire", AtomicOrdering::Acquire)
2417               .Case("release", AtomicOrdering::Release)
2418               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2419               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2420               .Default(AtomicOrdering::NotAtomic);
2421 
2422   if (Order != AtomicOrdering::NotAtomic) {
2423     lex();
2424     return false;
2425   }
2426 
2427   return error("expected an atomic scope, ordering or a size integer literal");
2428 }
2429 
2430 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2431   if (expectAndConsume(MIToken::lparen))
2432     return true;
2433   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2434   while (Token.isMemoryOperandFlag()) {
2435     if (parseMemoryOperandFlag(Flags))
2436       return true;
2437   }
2438   if (Token.isNot(MIToken::Identifier) ||
2439       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2440     return error("expected 'load' or 'store' memory operation");
2441   if (Token.stringValue() == "load")
2442     Flags |= MachineMemOperand::MOLoad;
2443   else
2444     Flags |= MachineMemOperand::MOStore;
2445   lex();
2446 
2447   // Optional 'store' for operands that both load and store.
2448   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2449     Flags |= MachineMemOperand::MOStore;
2450     lex();
2451   }
2452 
2453   // Optional synchronization scope.
2454   SyncScope::ID SSID;
2455   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2456     return true;
2457 
2458   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2459   AtomicOrdering Order, FailureOrder;
2460   if (parseOptionalAtomicOrdering(Order))
2461     return true;
2462 
2463   if (parseOptionalAtomicOrdering(FailureOrder))
2464     return true;
2465 
2466   if (Token.isNot(MIToken::IntegerLiteral))
2467     return error("expected the size integer literal after memory operation");
2468   uint64_t Size;
2469   if (getUint64(Size))
2470     return true;
2471   lex();
2472 
2473   MachinePointerInfo Ptr = MachinePointerInfo();
2474   if (Token.is(MIToken::Identifier)) {
2475     const char *Word =
2476         ((Flags & MachineMemOperand::MOLoad) &&
2477          (Flags & MachineMemOperand::MOStore))
2478             ? "on"
2479             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2480     if (Token.stringValue() != Word)
2481       return error(Twine("expected '") + Word + "'");
2482     lex();
2483 
2484     if (parseMachinePointerInfo(Ptr))
2485       return true;
2486   }
2487   unsigned BaseAlignment = Size;
2488   AAMDNodes AAInfo;
2489   MDNode *Range = nullptr;
2490   while (consumeIfPresent(MIToken::comma)) {
2491     switch (Token.kind()) {
2492     case MIToken::kw_align:
2493       if (parseAlignment(BaseAlignment))
2494         return true;
2495       break;
2496     case MIToken::kw_addrspace:
2497       if (parseAddrspace(Ptr.AddrSpace))
2498         return true;
2499       break;
2500     case MIToken::md_tbaa:
2501       lex();
2502       if (parseMDNode(AAInfo.TBAA))
2503         return true;
2504       break;
2505     case MIToken::md_alias_scope:
2506       lex();
2507       if (parseMDNode(AAInfo.Scope))
2508         return true;
2509       break;
2510     case MIToken::md_noalias:
2511       lex();
2512       if (parseMDNode(AAInfo.NoAlias))
2513         return true;
2514       break;
2515     case MIToken::md_range:
2516       lex();
2517       if (parseMDNode(Range))
2518         return true;
2519       break;
2520     // TODO: Report an error on duplicate metadata nodes.
2521     default:
2522       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2523                    "'!noalias' or '!range'");
2524     }
2525   }
2526   if (expectAndConsume(MIToken::rparen))
2527     return true;
2528   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2529                                  SSID, Order, FailureOrder);
2530   return false;
2531 }
2532 
2533 void MIParser::initNames2InstrOpCodes() {
2534   if (!Names2InstrOpCodes.empty())
2535     return;
2536   const auto *TII = MF.getSubtarget().getInstrInfo();
2537   assert(TII && "Expected target instruction info");
2538   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2539     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2540 }
2541 
2542 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2543   initNames2InstrOpCodes();
2544   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2545   if (InstrInfo == Names2InstrOpCodes.end())
2546     return true;
2547   OpCode = InstrInfo->getValue();
2548   return false;
2549 }
2550 
2551 void MIParser::initNames2Regs() {
2552   if (!Names2Regs.empty())
2553     return;
2554   // The '%noreg' register is the register 0.
2555   Names2Regs.insert(std::make_pair("noreg", 0));
2556   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2557   assert(TRI && "Expected target register info");
2558   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2559     bool WasInserted =
2560         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2561             .second;
2562     (void)WasInserted;
2563     assert(WasInserted && "Expected registers to be unique case-insensitively");
2564   }
2565 }
2566 
2567 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2568   initNames2Regs();
2569   auto RegInfo = Names2Regs.find(RegName);
2570   if (RegInfo == Names2Regs.end())
2571     return true;
2572   Reg = RegInfo->getValue();
2573   return false;
2574 }
2575 
2576 void MIParser::initNames2RegMasks() {
2577   if (!Names2RegMasks.empty())
2578     return;
2579   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2580   assert(TRI && "Expected target register info");
2581   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2582   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2583   assert(RegMasks.size() == RegMaskNames.size());
2584   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2585     Names2RegMasks.insert(
2586         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2587 }
2588 
2589 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2590   initNames2RegMasks();
2591   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2592   if (RegMaskInfo == Names2RegMasks.end())
2593     return nullptr;
2594   return RegMaskInfo->getValue();
2595 }
2596 
2597 void MIParser::initNames2SubRegIndices() {
2598   if (!Names2SubRegIndices.empty())
2599     return;
2600   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2601   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2602     Names2SubRegIndices.insert(
2603         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2604 }
2605 
2606 unsigned MIParser::getSubRegIndex(StringRef Name) {
2607   initNames2SubRegIndices();
2608   auto SubRegInfo = Names2SubRegIndices.find(Name);
2609   if (SubRegInfo == Names2SubRegIndices.end())
2610     return 0;
2611   return SubRegInfo->getValue();
2612 }
2613 
2614 static void initSlots2BasicBlocks(
2615     const Function &F,
2616     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2617   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2618   MST.incorporateFunction(F);
2619   for (auto &BB : F) {
2620     if (BB.hasName())
2621       continue;
2622     int Slot = MST.getLocalSlot(&BB);
2623     if (Slot == -1)
2624       continue;
2625     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2626   }
2627 }
2628 
2629 static const BasicBlock *getIRBlockFromSlot(
2630     unsigned Slot,
2631     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2632   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2633   if (BlockInfo == Slots2BasicBlocks.end())
2634     return nullptr;
2635   return BlockInfo->second;
2636 }
2637 
2638 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2639   if (Slots2BasicBlocks.empty())
2640     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2641   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2642 }
2643 
2644 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2645   if (&F == &MF.getFunction())
2646     return getIRBlock(Slot);
2647   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2648   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2649   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2650 }
2651 
2652 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2653                            DenseMap<unsigned, const Value *> &Slots2Values) {
2654   int Slot = MST.getLocalSlot(V);
2655   if (Slot == -1)
2656     return;
2657   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2658 }
2659 
2660 /// Creates the mapping from slot numbers to function's unnamed IR values.
2661 static void initSlots2Values(const Function &F,
2662                              DenseMap<unsigned, const Value *> &Slots2Values) {
2663   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2664   MST.incorporateFunction(F);
2665   for (const auto &Arg : F.args())
2666     mapValueToSlot(&Arg, MST, Slots2Values);
2667   for (const auto &BB : F) {
2668     mapValueToSlot(&BB, MST, Slots2Values);
2669     for (const auto &I : BB)
2670       mapValueToSlot(&I, MST, Slots2Values);
2671   }
2672 }
2673 
2674 const Value *MIParser::getIRValue(unsigned Slot) {
2675   if (Slots2Values.empty())
2676     initSlots2Values(MF.getFunction(), Slots2Values);
2677   auto ValueInfo = Slots2Values.find(Slot);
2678   if (ValueInfo == Slots2Values.end())
2679     return nullptr;
2680   return ValueInfo->second;
2681 }
2682 
2683 void MIParser::initNames2TargetIndices() {
2684   if (!Names2TargetIndices.empty())
2685     return;
2686   const auto *TII = MF.getSubtarget().getInstrInfo();
2687   assert(TII && "Expected target instruction info");
2688   auto Indices = TII->getSerializableTargetIndices();
2689   for (const auto &I : Indices)
2690     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2691 }
2692 
2693 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2694   initNames2TargetIndices();
2695   auto IndexInfo = Names2TargetIndices.find(Name);
2696   if (IndexInfo == Names2TargetIndices.end())
2697     return true;
2698   Index = IndexInfo->second;
2699   return false;
2700 }
2701 
2702 void MIParser::initNames2DirectTargetFlags() {
2703   if (!Names2DirectTargetFlags.empty())
2704     return;
2705   const auto *TII = MF.getSubtarget().getInstrInfo();
2706   assert(TII && "Expected target instruction info");
2707   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2708   for (const auto &I : Flags)
2709     Names2DirectTargetFlags.insert(
2710         std::make_pair(StringRef(I.second), I.first));
2711 }
2712 
2713 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2714   initNames2DirectTargetFlags();
2715   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2716   if (FlagInfo == Names2DirectTargetFlags.end())
2717     return true;
2718   Flag = FlagInfo->second;
2719   return false;
2720 }
2721 
2722 void MIParser::initNames2BitmaskTargetFlags() {
2723   if (!Names2BitmaskTargetFlags.empty())
2724     return;
2725   const auto *TII = MF.getSubtarget().getInstrInfo();
2726   assert(TII && "Expected target instruction info");
2727   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2728   for (const auto &I : Flags)
2729     Names2BitmaskTargetFlags.insert(
2730         std::make_pair(StringRef(I.second), I.first));
2731 }
2732 
2733 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2734   initNames2BitmaskTargetFlags();
2735   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2736   if (FlagInfo == Names2BitmaskTargetFlags.end())
2737     return true;
2738   Flag = FlagInfo->second;
2739   return false;
2740 }
2741 
2742 void MIParser::initNames2MMOTargetFlags() {
2743   if (!Names2MMOTargetFlags.empty())
2744     return;
2745   const auto *TII = MF.getSubtarget().getInstrInfo();
2746   assert(TII && "Expected target instruction info");
2747   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2748   for (const auto &I : Flags)
2749     Names2MMOTargetFlags.insert(
2750         std::make_pair(StringRef(I.second), I.first));
2751 }
2752 
2753 bool MIParser::getMMOTargetFlag(StringRef Name,
2754                                 MachineMemOperand::Flags &Flag) {
2755   initNames2MMOTargetFlags();
2756   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2757   if (FlagInfo == Names2MMOTargetFlags.end())
2758     return true;
2759   Flag = FlagInfo->second;
2760   return false;
2761 }
2762 
2763 bool MIParser::parseStringConstant(std::string &Result) {
2764   if (Token.isNot(MIToken::StringConstant))
2765     return error("expected string constant");
2766   Result = Token.stringValue();
2767   lex();
2768   return false;
2769 }
2770 
2771 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2772                                              StringRef Src,
2773                                              SMDiagnostic &Error) {
2774   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2775 }
2776 
2777 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2778                                     StringRef Src, SMDiagnostic &Error) {
2779   return MIParser(PFS, Error, Src).parseBasicBlocks();
2780 }
2781 
2782 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2783                              MachineBasicBlock *&MBB, StringRef Src,
2784                              SMDiagnostic &Error) {
2785   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2786 }
2787 
2788 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2789                                   unsigned &Reg, StringRef Src,
2790                                   SMDiagnostic &Error) {
2791   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2792 }
2793 
2794 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2795                                        unsigned &Reg, StringRef Src,
2796                                        SMDiagnostic &Error) {
2797   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2798 }
2799 
2800 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2801                                          VRegInfo *&Info, StringRef Src,
2802                                          SMDiagnostic &Error) {
2803   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2804 }
2805 
2806 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2807                                      int &FI, StringRef Src,
2808                                      SMDiagnostic &Error) {
2809   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2810 }
2811 
2812 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2813                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2814   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2815 }
2816