1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 40 using namespace llvm; 41 42 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 43 SourceMgr &SM, const SlotMapping &IRSlots) 44 : MF(MF), SM(&SM), IRSlots(IRSlots) { 45 } 46 47 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 48 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 49 if (I.second) { 50 MachineRegisterInfo &MRI = MF.getRegInfo(); 51 VRegInfo *Info = new (Allocator) VRegInfo; 52 Info->VReg = MRI.createIncompleteVirtualRegister(); 53 I.first->second = Info; 54 } 55 return *I.first->second; 56 } 57 58 namespace { 59 60 /// A wrapper struct around the 'MachineOperand' struct that includes a source 61 /// range and other attributes. 62 struct ParsedMachineOperand { 63 MachineOperand Operand; 64 StringRef::iterator Begin; 65 StringRef::iterator End; 66 Optional<unsigned> TiedDefIdx; 67 68 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 69 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 70 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 71 if (TiedDefIdx) 72 assert(Operand.isReg() && Operand.isUse() && 73 "Only used register operands can be tied"); 74 } 75 }; 76 77 class MIParser { 78 MachineFunction &MF; 79 SMDiagnostic &Error; 80 StringRef Source, CurrentSource; 81 MIToken Token; 82 PerFunctionMIParsingState &PFS; 83 /// Maps from instruction names to op codes. 84 StringMap<unsigned> Names2InstrOpCodes; 85 /// Maps from register names to registers. 86 StringMap<unsigned> Names2Regs; 87 /// Maps from register mask names to register masks. 88 StringMap<const uint32_t *> Names2RegMasks; 89 /// Maps from subregister names to subregister indices. 90 StringMap<unsigned> Names2SubRegIndices; 91 /// Maps from slot numbers to function's unnamed basic blocks. 92 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 93 /// Maps from slot numbers to function's unnamed values. 94 DenseMap<unsigned, const Value *> Slots2Values; 95 /// Maps from target index names to target indices. 96 StringMap<int> Names2TargetIndices; 97 /// Maps from direct target flag names to the direct target flag values. 98 StringMap<unsigned> Names2DirectTargetFlags; 99 /// Maps from direct target flag names to the bitmask target flag values. 100 StringMap<unsigned> Names2BitmaskTargetFlags; 101 102 public: 103 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 104 StringRef Source); 105 106 /// \p SkipChar gives the number of characters to skip before looking 107 /// for the next token. 108 void lex(unsigned SkipChar = 0); 109 110 /// Report an error at the current location with the given message. 111 /// 112 /// This function always return true. 113 bool error(const Twine &Msg); 114 115 /// Report an error at the given location with the given message. 116 /// 117 /// This function always return true. 118 bool error(StringRef::iterator Loc, const Twine &Msg); 119 120 bool 121 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 122 bool parseBasicBlocks(); 123 bool parse(MachineInstr *&MI); 124 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 125 bool parseStandaloneNamedRegister(unsigned &Reg); 126 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 127 bool parseStandaloneStackObject(int &FI); 128 bool parseStandaloneMDNode(MDNode *&Node); 129 130 bool 131 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 132 bool parseBasicBlock(MachineBasicBlock &MBB); 133 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 134 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 135 136 bool parseNamedRegister(unsigned &Reg); 137 bool parseVirtualRegister(VRegInfo *&Info); 138 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 139 bool parseRegisterFlag(unsigned &Flags); 140 bool parseSubRegisterIndex(unsigned &SubReg); 141 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 142 bool parseRegisterOperand(MachineOperand &Dest, 143 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 144 bool parseImmediateOperand(MachineOperand &Dest); 145 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 146 const Constant *&C); 147 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 148 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 149 bool parseTypedImmediateOperand(MachineOperand &Dest); 150 bool parseFPImmediateOperand(MachineOperand &Dest); 151 bool parseMBBReference(MachineBasicBlock *&MBB); 152 bool parseMBBOperand(MachineOperand &Dest); 153 bool parseStackFrameIndex(int &FI); 154 bool parseStackObjectOperand(MachineOperand &Dest); 155 bool parseFixedStackFrameIndex(int &FI); 156 bool parseFixedStackObjectOperand(MachineOperand &Dest); 157 bool parseGlobalValue(GlobalValue *&GV); 158 bool parseGlobalAddressOperand(MachineOperand &Dest); 159 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 160 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 161 bool parseJumpTableIndexOperand(MachineOperand &Dest); 162 bool parseExternalSymbolOperand(MachineOperand &Dest); 163 bool parseMDNode(MDNode *&Node); 164 bool parseMetadataOperand(MachineOperand &Dest); 165 bool parseCFIOffset(int &Offset); 166 bool parseCFIRegister(unsigned &Reg); 167 bool parseCFIOperand(MachineOperand &Dest); 168 bool parseIRBlock(BasicBlock *&BB, const Function &F); 169 bool parseBlockAddressOperand(MachineOperand &Dest); 170 bool parseIntrinsicOperand(MachineOperand &Dest); 171 bool parsePredicateOperand(MachineOperand &Dest); 172 bool parseTargetIndexOperand(MachineOperand &Dest); 173 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 174 bool parseMachineOperand(MachineOperand &Dest, 175 Optional<unsigned> &TiedDefIdx); 176 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 177 Optional<unsigned> &TiedDefIdx); 178 bool parseOffset(int64_t &Offset); 179 bool parseAlignment(unsigned &Alignment); 180 bool parseOperandsOffset(MachineOperand &Op); 181 bool parseIRValue(const Value *&V); 182 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 183 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 184 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 185 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 186 187 private: 188 /// Convert the integer literal in the current token into an unsigned integer. 189 /// 190 /// Return true if an error occurred. 191 bool getUnsigned(unsigned &Result); 192 193 /// Convert the integer literal in the current token into an uint64. 194 /// 195 /// Return true if an error occurred. 196 bool getUint64(uint64_t &Result); 197 198 /// If the current token is of the given kind, consume it and return false. 199 /// Otherwise report an error and return true. 200 bool expectAndConsume(MIToken::TokenKind TokenKind); 201 202 /// If the current token is of the given kind, consume it and return true. 203 /// Otherwise return false. 204 bool consumeIfPresent(MIToken::TokenKind TokenKind); 205 206 void initNames2InstrOpCodes(); 207 208 /// Try to convert an instruction name to an opcode. Return true if the 209 /// instruction name is invalid. 210 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 211 212 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 213 214 bool assignRegisterTies(MachineInstr &MI, 215 ArrayRef<ParsedMachineOperand> Operands); 216 217 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 218 const MCInstrDesc &MCID); 219 220 void initNames2Regs(); 221 222 /// Try to convert a register name to a register number. Return true if the 223 /// register name is invalid. 224 bool getRegisterByName(StringRef RegName, unsigned &Reg); 225 226 void initNames2RegMasks(); 227 228 /// Check if the given identifier is a name of a register mask. 229 /// 230 /// Return null if the identifier isn't a register mask. 231 const uint32_t *getRegMask(StringRef Identifier); 232 233 void initNames2SubRegIndices(); 234 235 /// Check if the given identifier is a name of a subregister index. 236 /// 237 /// Return 0 if the name isn't a subregister index class. 238 unsigned getSubRegIndex(StringRef Name); 239 240 const BasicBlock *getIRBlock(unsigned Slot); 241 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 242 243 const Value *getIRValue(unsigned Slot); 244 245 void initNames2TargetIndices(); 246 247 /// Try to convert a name of target index to the corresponding target index. 248 /// 249 /// Return true if the name isn't a name of a target index. 250 bool getTargetIndex(StringRef Name, int &Index); 251 252 void initNames2DirectTargetFlags(); 253 254 /// Try to convert a name of a direct target flag to the corresponding 255 /// target flag. 256 /// 257 /// Return true if the name isn't a name of a direct flag. 258 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 259 260 void initNames2BitmaskTargetFlags(); 261 262 /// Try to convert a name of a bitmask target flag to the corresponding 263 /// target flag. 264 /// 265 /// Return true if the name isn't a name of a bitmask target flag. 266 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 267 }; 268 269 } // end anonymous namespace 270 271 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 272 StringRef Source) 273 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 274 {} 275 276 void MIParser::lex(unsigned SkipChar) { 277 CurrentSource = lexMIToken( 278 CurrentSource.data() + SkipChar, Token, 279 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 280 } 281 282 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 283 284 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 285 const SourceMgr &SM = *PFS.SM; 286 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 287 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 288 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 289 // Create an ordinary diagnostic when the source manager's buffer is the 290 // source string. 291 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 292 return true; 293 } 294 // Create a diagnostic for a YAML string literal. 295 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 296 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 297 Source, None, None); 298 return true; 299 } 300 301 static const char *toString(MIToken::TokenKind TokenKind) { 302 switch (TokenKind) { 303 case MIToken::comma: 304 return "','"; 305 case MIToken::equal: 306 return "'='"; 307 case MIToken::colon: 308 return "':'"; 309 case MIToken::lparen: 310 return "'('"; 311 case MIToken::rparen: 312 return "')'"; 313 default: 314 return "<unknown token>"; 315 } 316 } 317 318 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 319 if (Token.isNot(TokenKind)) 320 return error(Twine("expected ") + toString(TokenKind)); 321 lex(); 322 return false; 323 } 324 325 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 326 if (Token.isNot(TokenKind)) 327 return false; 328 lex(); 329 return true; 330 } 331 332 bool MIParser::parseBasicBlockDefinition( 333 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 334 assert(Token.is(MIToken::MachineBasicBlockLabel)); 335 unsigned ID = 0; 336 if (getUnsigned(ID)) 337 return true; 338 auto Loc = Token.location(); 339 auto Name = Token.stringValue(); 340 lex(); 341 bool HasAddressTaken = false; 342 bool IsLandingPad = false; 343 unsigned Alignment = 0; 344 BasicBlock *BB = nullptr; 345 if (consumeIfPresent(MIToken::lparen)) { 346 do { 347 // TODO: Report an error when multiple same attributes are specified. 348 switch (Token.kind()) { 349 case MIToken::kw_address_taken: 350 HasAddressTaken = true; 351 lex(); 352 break; 353 case MIToken::kw_landing_pad: 354 IsLandingPad = true; 355 lex(); 356 break; 357 case MIToken::kw_align: 358 if (parseAlignment(Alignment)) 359 return true; 360 break; 361 case MIToken::IRBlock: 362 // TODO: Report an error when both name and ir block are specified. 363 if (parseIRBlock(BB, *MF.getFunction())) 364 return true; 365 lex(); 366 break; 367 default: 368 break; 369 } 370 } while (consumeIfPresent(MIToken::comma)); 371 if (expectAndConsume(MIToken::rparen)) 372 return true; 373 } 374 if (expectAndConsume(MIToken::colon)) 375 return true; 376 377 if (!Name.empty()) { 378 BB = dyn_cast_or_null<BasicBlock>( 379 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 380 if (!BB) 381 return error(Loc, Twine("basic block '") + Name + 382 "' is not defined in the function '" + 383 MF.getName() + "'"); 384 } 385 auto *MBB = MF.CreateMachineBasicBlock(BB); 386 MF.insert(MF.end(), MBB); 387 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 388 if (!WasInserted) 389 return error(Loc, Twine("redefinition of machine basic block with id #") + 390 Twine(ID)); 391 if (Alignment) 392 MBB->setAlignment(Alignment); 393 if (HasAddressTaken) 394 MBB->setHasAddressTaken(); 395 MBB->setIsEHPad(IsLandingPad); 396 return false; 397 } 398 399 bool MIParser::parseBasicBlockDefinitions( 400 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 401 lex(); 402 // Skip until the first machine basic block. 403 while (Token.is(MIToken::Newline)) 404 lex(); 405 if (Token.isErrorOrEOF()) 406 return Token.isError(); 407 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 408 return error("expected a basic block definition before instructions"); 409 unsigned BraceDepth = 0; 410 do { 411 if (parseBasicBlockDefinition(MBBSlots)) 412 return true; 413 bool IsAfterNewline = false; 414 // Skip until the next machine basic block. 415 while (true) { 416 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 417 Token.isErrorOrEOF()) 418 break; 419 else if (Token.is(MIToken::MachineBasicBlockLabel)) 420 return error("basic block definition should be located at the start of " 421 "the line"); 422 else if (consumeIfPresent(MIToken::Newline)) { 423 IsAfterNewline = true; 424 continue; 425 } 426 IsAfterNewline = false; 427 if (Token.is(MIToken::lbrace)) 428 ++BraceDepth; 429 if (Token.is(MIToken::rbrace)) { 430 if (!BraceDepth) 431 return error("extraneous closing brace ('}')"); 432 --BraceDepth; 433 } 434 lex(); 435 } 436 // Verify that we closed all of the '{' at the end of a file or a block. 437 if (!Token.isError() && BraceDepth) 438 return error("expected '}'"); // FIXME: Report a note that shows '{'. 439 } while (!Token.isErrorOrEOF()); 440 return Token.isError(); 441 } 442 443 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 444 assert(Token.is(MIToken::kw_liveins)); 445 lex(); 446 if (expectAndConsume(MIToken::colon)) 447 return true; 448 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 449 return false; 450 do { 451 if (Token.isNot(MIToken::NamedRegister)) 452 return error("expected a named register"); 453 unsigned Reg = 0; 454 if (parseNamedRegister(Reg)) 455 return true; 456 MBB.addLiveIn(Reg); 457 lex(); 458 } while (consumeIfPresent(MIToken::comma)); 459 return false; 460 } 461 462 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 463 assert(Token.is(MIToken::kw_successors)); 464 lex(); 465 if (expectAndConsume(MIToken::colon)) 466 return true; 467 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 468 return false; 469 do { 470 if (Token.isNot(MIToken::MachineBasicBlock)) 471 return error("expected a machine basic block reference"); 472 MachineBasicBlock *SuccMBB = nullptr; 473 if (parseMBBReference(SuccMBB)) 474 return true; 475 lex(); 476 unsigned Weight = 0; 477 if (consumeIfPresent(MIToken::lparen)) { 478 if (Token.isNot(MIToken::IntegerLiteral)) 479 return error("expected an integer literal after '('"); 480 if (getUnsigned(Weight)) 481 return true; 482 lex(); 483 if (expectAndConsume(MIToken::rparen)) 484 return true; 485 } 486 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 487 } while (consumeIfPresent(MIToken::comma)); 488 MBB.normalizeSuccProbs(); 489 return false; 490 } 491 492 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 493 // Skip the definition. 494 assert(Token.is(MIToken::MachineBasicBlockLabel)); 495 lex(); 496 if (consumeIfPresent(MIToken::lparen)) { 497 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 498 lex(); 499 consumeIfPresent(MIToken::rparen); 500 } 501 consumeIfPresent(MIToken::colon); 502 503 // Parse the liveins and successors. 504 // N.B: Multiple lists of successors and liveins are allowed and they're 505 // merged into one. 506 // Example: 507 // liveins: %edi 508 // liveins: %esi 509 // 510 // is equivalent to 511 // liveins: %edi, %esi 512 while (true) { 513 if (Token.is(MIToken::kw_successors)) { 514 if (parseBasicBlockSuccessors(MBB)) 515 return true; 516 } else if (Token.is(MIToken::kw_liveins)) { 517 if (parseBasicBlockLiveins(MBB)) 518 return true; 519 } else if (consumeIfPresent(MIToken::Newline)) { 520 continue; 521 } else 522 break; 523 if (!Token.isNewlineOrEOF()) 524 return error("expected line break at the end of a list"); 525 lex(); 526 } 527 528 // Parse the instructions. 529 bool IsInBundle = false; 530 MachineInstr *PrevMI = nullptr; 531 while (true) { 532 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 533 return false; 534 else if (consumeIfPresent(MIToken::Newline)) 535 continue; 536 if (consumeIfPresent(MIToken::rbrace)) { 537 // The first parsing pass should verify that all closing '}' have an 538 // opening '{'. 539 assert(IsInBundle); 540 IsInBundle = false; 541 continue; 542 } 543 MachineInstr *MI = nullptr; 544 if (parse(MI)) 545 return true; 546 MBB.insert(MBB.end(), MI); 547 if (IsInBundle) { 548 PrevMI->setFlag(MachineInstr::BundledSucc); 549 MI->setFlag(MachineInstr::BundledPred); 550 } 551 PrevMI = MI; 552 if (Token.is(MIToken::lbrace)) { 553 if (IsInBundle) 554 return error("nested instruction bundles are not allowed"); 555 lex(); 556 // This instruction is the start of the bundle. 557 MI->setFlag(MachineInstr::BundledSucc); 558 IsInBundle = true; 559 if (!Token.is(MIToken::Newline)) 560 // The next instruction can be on the same line. 561 continue; 562 } 563 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 564 lex(); 565 } 566 return false; 567 } 568 569 bool MIParser::parseBasicBlocks() { 570 lex(); 571 // Skip until the first machine basic block. 572 while (Token.is(MIToken::Newline)) 573 lex(); 574 if (Token.isErrorOrEOF()) 575 return Token.isError(); 576 // The first parsing pass should have verified that this token is a MBB label 577 // in the 'parseBasicBlockDefinitions' method. 578 assert(Token.is(MIToken::MachineBasicBlockLabel)); 579 do { 580 MachineBasicBlock *MBB = nullptr; 581 if (parseMBBReference(MBB)) 582 return true; 583 if (parseBasicBlock(*MBB)) 584 return true; 585 // The method 'parseBasicBlock' should parse the whole block until the next 586 // block or the end of file. 587 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 588 } while (Token.isNot(MIToken::Eof)); 589 return false; 590 } 591 592 bool MIParser::parse(MachineInstr *&MI) { 593 // Parse any register operands before '=' 594 MachineOperand MO = MachineOperand::CreateImm(0); 595 SmallVector<ParsedMachineOperand, 8> Operands; 596 while (Token.isRegister() || Token.isRegisterFlag()) { 597 auto Loc = Token.location(); 598 Optional<unsigned> TiedDefIdx; 599 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 600 return true; 601 Operands.push_back( 602 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 603 if (Token.isNot(MIToken::comma)) 604 break; 605 lex(); 606 } 607 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 608 return true; 609 610 unsigned OpCode, Flags = 0; 611 if (Token.isError() || parseInstruction(OpCode, Flags)) 612 return true; 613 614 // Parse the remaining machine operands. 615 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 616 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 617 auto Loc = Token.location(); 618 Optional<unsigned> TiedDefIdx; 619 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 620 return true; 621 Operands.push_back( 622 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 623 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 624 Token.is(MIToken::lbrace)) 625 break; 626 if (Token.isNot(MIToken::comma)) 627 return error("expected ',' before the next machine operand"); 628 lex(); 629 } 630 631 DebugLoc DebugLocation; 632 if (Token.is(MIToken::kw_debug_location)) { 633 lex(); 634 if (Token.isNot(MIToken::exclaim)) 635 return error("expected a metadata node after 'debug-location'"); 636 MDNode *Node = nullptr; 637 if (parseMDNode(Node)) 638 return true; 639 DebugLocation = DebugLoc(Node); 640 } 641 642 // Parse the machine memory operands. 643 SmallVector<MachineMemOperand *, 2> MemOperands; 644 if (Token.is(MIToken::coloncolon)) { 645 lex(); 646 while (!Token.isNewlineOrEOF()) { 647 MachineMemOperand *MemOp = nullptr; 648 if (parseMachineMemoryOperand(MemOp)) 649 return true; 650 MemOperands.push_back(MemOp); 651 if (Token.isNewlineOrEOF()) 652 break; 653 if (Token.isNot(MIToken::comma)) 654 return error("expected ',' before the next machine memory operand"); 655 lex(); 656 } 657 } 658 659 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 660 if (!MCID.isVariadic()) { 661 // FIXME: Move the implicit operand verification to the machine verifier. 662 if (verifyImplicitOperands(Operands, MCID)) 663 return true; 664 } 665 666 // TODO: Check for extraneous machine operands. 667 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 668 MI->setFlags(Flags); 669 for (const auto &Operand : Operands) 670 MI->addOperand(MF, Operand.Operand); 671 if (assignRegisterTies(*MI, Operands)) 672 return true; 673 if (MemOperands.empty()) 674 return false; 675 MachineInstr::mmo_iterator MemRefs = 676 MF.allocateMemRefsArray(MemOperands.size()); 677 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 678 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 679 return false; 680 } 681 682 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 683 lex(); 684 if (Token.isNot(MIToken::MachineBasicBlock)) 685 return error("expected a machine basic block reference"); 686 if (parseMBBReference(MBB)) 687 return true; 688 lex(); 689 if (Token.isNot(MIToken::Eof)) 690 return error( 691 "expected end of string after the machine basic block reference"); 692 return false; 693 } 694 695 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 696 lex(); 697 if (Token.isNot(MIToken::NamedRegister)) 698 return error("expected a named register"); 699 if (parseNamedRegister(Reg)) 700 return true; 701 lex(); 702 if (Token.isNot(MIToken::Eof)) 703 return error("expected end of string after the register reference"); 704 return false; 705 } 706 707 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 708 lex(); 709 if (Token.isNot(MIToken::VirtualRegister)) 710 return error("expected a virtual register"); 711 if (parseVirtualRegister(Info)) 712 return true; 713 lex(); 714 if (Token.isNot(MIToken::Eof)) 715 return error("expected end of string after the register reference"); 716 return false; 717 } 718 719 bool MIParser::parseStandaloneStackObject(int &FI) { 720 lex(); 721 if (Token.isNot(MIToken::StackObject)) 722 return error("expected a stack object"); 723 if (parseStackFrameIndex(FI)) 724 return true; 725 if (Token.isNot(MIToken::Eof)) 726 return error("expected end of string after the stack object reference"); 727 return false; 728 } 729 730 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 731 lex(); 732 if (Token.isNot(MIToken::exclaim)) 733 return error("expected a metadata node"); 734 if (parseMDNode(Node)) 735 return true; 736 if (Token.isNot(MIToken::Eof)) 737 return error("expected end of string after the metadata node"); 738 return false; 739 } 740 741 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 742 assert(MO.isImplicit()); 743 return MO.isDef() ? "implicit-def" : "implicit"; 744 } 745 746 static std::string getRegisterName(const TargetRegisterInfo *TRI, 747 unsigned Reg) { 748 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 749 return StringRef(TRI->getName(Reg)).lower(); 750 } 751 752 /// Return true if the parsed machine operands contain a given machine operand. 753 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 754 ArrayRef<ParsedMachineOperand> Operands) { 755 for (const auto &I : Operands) { 756 if (ImplicitOperand.isIdenticalTo(I.Operand)) 757 return true; 758 } 759 return false; 760 } 761 762 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 763 const MCInstrDesc &MCID) { 764 if (MCID.isCall()) 765 // We can't verify call instructions as they can contain arbitrary implicit 766 // register and register mask operands. 767 return false; 768 769 // Gather all the expected implicit operands. 770 SmallVector<MachineOperand, 4> ImplicitOperands; 771 if (MCID.ImplicitDefs) 772 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 773 ImplicitOperands.push_back( 774 MachineOperand::CreateReg(*ImpDefs, true, true)); 775 if (MCID.ImplicitUses) 776 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 777 ImplicitOperands.push_back( 778 MachineOperand::CreateReg(*ImpUses, false, true)); 779 780 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 781 assert(TRI && "Expected target register info"); 782 for (const auto &I : ImplicitOperands) { 783 if (isImplicitOperandIn(I, Operands)) 784 continue; 785 return error(Operands.empty() ? Token.location() : Operands.back().End, 786 Twine("missing implicit register operand '") + 787 printImplicitRegisterFlag(I) + " %" + 788 getRegisterName(TRI, I.getReg()) + "'"); 789 } 790 return false; 791 } 792 793 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 794 if (Token.is(MIToken::kw_frame_setup)) { 795 Flags |= MachineInstr::FrameSetup; 796 lex(); 797 } 798 if (Token.isNot(MIToken::Identifier)) 799 return error("expected a machine instruction"); 800 StringRef InstrName = Token.stringValue(); 801 if (parseInstrName(InstrName, OpCode)) 802 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 803 lex(); 804 return false; 805 } 806 807 bool MIParser::parseNamedRegister(unsigned &Reg) { 808 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 809 StringRef Name = Token.stringValue(); 810 if (getRegisterByName(Name, Reg)) 811 return error(Twine("unknown register name '") + Name + "'"); 812 return false; 813 } 814 815 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 816 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 817 unsigned ID; 818 if (getUnsigned(ID)) 819 return true; 820 Info = &PFS.getVRegInfo(ID); 821 return false; 822 } 823 824 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 825 switch (Token.kind()) { 826 case MIToken::underscore: 827 Reg = 0; 828 return false; 829 case MIToken::NamedRegister: 830 return parseNamedRegister(Reg); 831 case MIToken::VirtualRegister: 832 if (parseVirtualRegister(Info)) 833 return true; 834 Reg = Info->VReg; 835 return false; 836 // TODO: Parse other register kinds. 837 default: 838 llvm_unreachable("The current token should be a register"); 839 } 840 } 841 842 bool MIParser::parseRegisterFlag(unsigned &Flags) { 843 const unsigned OldFlags = Flags; 844 switch (Token.kind()) { 845 case MIToken::kw_implicit: 846 Flags |= RegState::Implicit; 847 break; 848 case MIToken::kw_implicit_define: 849 Flags |= RegState::ImplicitDefine; 850 break; 851 case MIToken::kw_def: 852 Flags |= RegState::Define; 853 break; 854 case MIToken::kw_dead: 855 Flags |= RegState::Dead; 856 break; 857 case MIToken::kw_killed: 858 Flags |= RegState::Kill; 859 break; 860 case MIToken::kw_undef: 861 Flags |= RegState::Undef; 862 break; 863 case MIToken::kw_internal: 864 Flags |= RegState::InternalRead; 865 break; 866 case MIToken::kw_early_clobber: 867 Flags |= RegState::EarlyClobber; 868 break; 869 case MIToken::kw_debug_use: 870 Flags |= RegState::Debug; 871 break; 872 default: 873 llvm_unreachable("The current token should be a register flag"); 874 } 875 if (OldFlags == Flags) 876 // We know that the same flag is specified more than once when the flags 877 // weren't modified. 878 return error("duplicate '" + Token.stringValue() + "' register flag"); 879 lex(); 880 return false; 881 } 882 883 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 884 assert(Token.is(MIToken::dot)); 885 lex(); 886 if (Token.isNot(MIToken::Identifier)) 887 return error("expected a subregister index after '.'"); 888 auto Name = Token.stringValue(); 889 SubReg = getSubRegIndex(Name); 890 if (!SubReg) 891 return error(Twine("use of unknown subregister index '") + Name + "'"); 892 lex(); 893 return false; 894 } 895 896 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 897 if (!consumeIfPresent(MIToken::kw_tied_def)) 898 return true; 899 if (Token.isNot(MIToken::IntegerLiteral)) 900 return error("expected an integer literal after 'tied-def'"); 901 if (getUnsigned(TiedDefIdx)) 902 return true; 903 lex(); 904 if (expectAndConsume(MIToken::rparen)) 905 return true; 906 return false; 907 } 908 909 bool MIParser::assignRegisterTies(MachineInstr &MI, 910 ArrayRef<ParsedMachineOperand> Operands) { 911 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 912 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 913 if (!Operands[I].TiedDefIdx) 914 continue; 915 // The parser ensures that this operand is a register use, so we just have 916 // to check the tied-def operand. 917 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 918 if (DefIdx >= E) 919 return error(Operands[I].Begin, 920 Twine("use of invalid tied-def operand index '" + 921 Twine(DefIdx) + "'; instruction has only ") + 922 Twine(E) + " operands"); 923 const auto &DefOperand = Operands[DefIdx].Operand; 924 if (!DefOperand.isReg() || !DefOperand.isDef()) 925 // FIXME: add note with the def operand. 926 return error(Operands[I].Begin, 927 Twine("use of invalid tied-def operand index '") + 928 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 929 " isn't a defined register"); 930 // Check that the tied-def operand wasn't tied elsewhere. 931 for (const auto &TiedPair : TiedRegisterPairs) { 932 if (TiedPair.first == DefIdx) 933 return error(Operands[I].Begin, 934 Twine("the tied-def operand #") + Twine(DefIdx) + 935 " is already tied with another register operand"); 936 } 937 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 938 } 939 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 940 // indices must be less than tied max. 941 for (const auto &TiedPair : TiedRegisterPairs) 942 MI.tieOperands(TiedPair.first, TiedPair.second); 943 return false; 944 } 945 946 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 947 Optional<unsigned> &TiedDefIdx, 948 bool IsDef) { 949 unsigned Flags = IsDef ? RegState::Define : 0; 950 while (Token.isRegisterFlag()) { 951 if (parseRegisterFlag(Flags)) 952 return true; 953 } 954 if (!Token.isRegister()) 955 return error("expected a register after register flags"); 956 unsigned Reg; 957 VRegInfo *RegInfo; 958 if (parseRegister(Reg, RegInfo)) 959 return true; 960 lex(); 961 unsigned SubReg = 0; 962 if (Token.is(MIToken::dot)) { 963 if (parseSubRegisterIndex(SubReg)) 964 return true; 965 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 966 return error("subregister index expects a virtual register"); 967 } 968 MachineRegisterInfo &MRI = MF.getRegInfo(); 969 if ((Flags & RegState::Define) == 0) { 970 if (consumeIfPresent(MIToken::lparen)) { 971 unsigned Idx; 972 if (!parseRegisterTiedDefIndex(Idx)) 973 TiedDefIdx = Idx; 974 else { 975 // Try a redundant low-level type. 976 LLT Ty; 977 if (parseLowLevelType(Token.location(), Ty)) 978 return error("expected tied-def or low-level type after '('"); 979 980 if (expectAndConsume(MIToken::rparen)) 981 return true; 982 983 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 984 return error("inconsistent type for generic virtual register"); 985 986 MRI.setType(Reg, Ty); 987 } 988 } 989 } else if (consumeIfPresent(MIToken::lparen)) { 990 // Virtual registers may have a size with GlobalISel. 991 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 992 return error("unexpected size on physical register"); 993 if (RegInfo->Kind != VRegInfo::GENERIC && 994 RegInfo->Kind != VRegInfo::REGBANK) 995 return error("unexpected size on non-generic virtual register"); 996 997 LLT Ty; 998 if (parseLowLevelType(Token.location(), Ty)) 999 return true; 1000 1001 if (expectAndConsume(MIToken::rparen)) 1002 return true; 1003 1004 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1005 return error("inconsistent type for generic virtual register"); 1006 1007 MRI.setType(Reg, Ty); 1008 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1009 // Generic virtual registers must have a size. 1010 // If we end up here this means the size hasn't been specified and 1011 // this is bad! 1012 if (RegInfo->Kind == VRegInfo::GENERIC || 1013 RegInfo->Kind == VRegInfo::REGBANK) 1014 return error("generic virtual registers must have a size"); 1015 } 1016 Dest = MachineOperand::CreateReg( 1017 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1018 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1019 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1020 Flags & RegState::InternalRead); 1021 return false; 1022 } 1023 1024 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1025 assert(Token.is(MIToken::IntegerLiteral)); 1026 const APSInt &Int = Token.integerValue(); 1027 if (Int.getMinSignedBits() > 64) 1028 return error("integer literal is too large to be an immediate operand"); 1029 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1030 lex(); 1031 return false; 1032 } 1033 1034 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1035 const Constant *&C) { 1036 auto Source = StringValue.str(); // The source has to be null terminated. 1037 SMDiagnostic Err; 1038 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(), 1039 &PFS.IRSlots); 1040 if (!C) 1041 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1042 return false; 1043 } 1044 1045 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1046 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1047 return true; 1048 lex(); 1049 return false; 1050 } 1051 1052 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1053 if (Token.is(MIToken::ScalarType)) { 1054 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1055 lex(); 1056 return false; 1057 } else if (Token.is(MIToken::PointerType)) { 1058 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1059 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1060 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1061 lex(); 1062 return false; 1063 } 1064 1065 // Now we're looking for a vector. 1066 if (Token.isNot(MIToken::less)) 1067 return error(Loc, 1068 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1069 1070 lex(); 1071 1072 if (Token.isNot(MIToken::IntegerLiteral)) 1073 return error(Loc, "expected <N x sM> for vctor type"); 1074 uint64_t NumElements = Token.integerValue().getZExtValue(); 1075 lex(); 1076 1077 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1078 return error(Loc, "expected '<N x sM>' for vector type"); 1079 lex(); 1080 1081 if (Token.isNot(MIToken::ScalarType)) 1082 return error(Loc, "expected '<N x sM>' for vector type"); 1083 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1084 lex(); 1085 1086 if (Token.isNot(MIToken::greater)) 1087 return error(Loc, "expected '<N x sM>' for vector type"); 1088 lex(); 1089 1090 Ty = LLT::vector(NumElements, ScalarSize); 1091 return false; 1092 } 1093 1094 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1095 assert(Token.is(MIToken::IntegerType)); 1096 auto Loc = Token.location(); 1097 lex(); 1098 if (Token.isNot(MIToken::IntegerLiteral)) 1099 return error("expected an integer literal"); 1100 const Constant *C = nullptr; 1101 if (parseIRConstant(Loc, C)) 1102 return true; 1103 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1104 return false; 1105 } 1106 1107 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1108 auto Loc = Token.location(); 1109 lex(); 1110 if (Token.isNot(MIToken::FloatingPointLiteral)) 1111 return error("expected a floating point literal"); 1112 const Constant *C = nullptr; 1113 if (parseIRConstant(Loc, C)) 1114 return true; 1115 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1116 return false; 1117 } 1118 1119 bool MIParser::getUnsigned(unsigned &Result) { 1120 assert(Token.hasIntegerValue() && "Expected a token with an integer value"); 1121 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1122 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1123 if (Val64 == Limit) 1124 return error("expected 32-bit integer (too large)"); 1125 Result = Val64; 1126 return false; 1127 } 1128 1129 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1130 assert(Token.is(MIToken::MachineBasicBlock) || 1131 Token.is(MIToken::MachineBasicBlockLabel)); 1132 unsigned Number; 1133 if (getUnsigned(Number)) 1134 return true; 1135 auto MBBInfo = PFS.MBBSlots.find(Number); 1136 if (MBBInfo == PFS.MBBSlots.end()) 1137 return error(Twine("use of undefined machine basic block #") + 1138 Twine(Number)); 1139 MBB = MBBInfo->second; 1140 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1141 return error(Twine("the name of machine basic block #") + Twine(Number) + 1142 " isn't '" + Token.stringValue() + "'"); 1143 return false; 1144 } 1145 1146 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1147 MachineBasicBlock *MBB; 1148 if (parseMBBReference(MBB)) 1149 return true; 1150 Dest = MachineOperand::CreateMBB(MBB); 1151 lex(); 1152 return false; 1153 } 1154 1155 bool MIParser::parseStackFrameIndex(int &FI) { 1156 assert(Token.is(MIToken::StackObject)); 1157 unsigned ID; 1158 if (getUnsigned(ID)) 1159 return true; 1160 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1161 if (ObjectInfo == PFS.StackObjectSlots.end()) 1162 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1163 "'"); 1164 StringRef Name; 1165 if (const auto *Alloca = 1166 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1167 Name = Alloca->getName(); 1168 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1169 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1170 "' isn't '" + Token.stringValue() + "'"); 1171 lex(); 1172 FI = ObjectInfo->second; 1173 return false; 1174 } 1175 1176 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1177 int FI; 1178 if (parseStackFrameIndex(FI)) 1179 return true; 1180 Dest = MachineOperand::CreateFI(FI); 1181 return false; 1182 } 1183 1184 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1185 assert(Token.is(MIToken::FixedStackObject)); 1186 unsigned ID; 1187 if (getUnsigned(ID)) 1188 return true; 1189 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1190 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1191 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1192 Twine(ID) + "'"); 1193 lex(); 1194 FI = ObjectInfo->second; 1195 return false; 1196 } 1197 1198 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1199 int FI; 1200 if (parseFixedStackFrameIndex(FI)) 1201 return true; 1202 Dest = MachineOperand::CreateFI(FI); 1203 return false; 1204 } 1205 1206 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1207 switch (Token.kind()) { 1208 case MIToken::NamedGlobalValue: { 1209 const Module *M = MF.getFunction()->getParent(); 1210 GV = M->getNamedValue(Token.stringValue()); 1211 if (!GV) 1212 return error(Twine("use of undefined global value '") + Token.range() + 1213 "'"); 1214 break; 1215 } 1216 case MIToken::GlobalValue: { 1217 unsigned GVIdx; 1218 if (getUnsigned(GVIdx)) 1219 return true; 1220 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1221 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1222 "'"); 1223 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1224 break; 1225 } 1226 default: 1227 llvm_unreachable("The current token should be a global value"); 1228 } 1229 return false; 1230 } 1231 1232 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1233 GlobalValue *GV = nullptr; 1234 if (parseGlobalValue(GV)) 1235 return true; 1236 lex(); 1237 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1238 if (parseOperandsOffset(Dest)) 1239 return true; 1240 return false; 1241 } 1242 1243 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1244 assert(Token.is(MIToken::ConstantPoolItem)); 1245 unsigned ID; 1246 if (getUnsigned(ID)) 1247 return true; 1248 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1249 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1250 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1251 lex(); 1252 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1253 if (parseOperandsOffset(Dest)) 1254 return true; 1255 return false; 1256 } 1257 1258 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1259 assert(Token.is(MIToken::JumpTableIndex)); 1260 unsigned ID; 1261 if (getUnsigned(ID)) 1262 return true; 1263 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1264 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1265 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1266 lex(); 1267 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1268 return false; 1269 } 1270 1271 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1272 assert(Token.is(MIToken::ExternalSymbol)); 1273 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1274 lex(); 1275 Dest = MachineOperand::CreateES(Symbol); 1276 if (parseOperandsOffset(Dest)) 1277 return true; 1278 return false; 1279 } 1280 1281 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1282 assert(Token.is(MIToken::SubRegisterIndex)); 1283 StringRef Name = Token.stringValue(); 1284 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1285 if (SubRegIndex == 0) 1286 return error(Twine("unknown subregister index '") + Name + "'"); 1287 lex(); 1288 Dest = MachineOperand::CreateImm(SubRegIndex); 1289 return false; 1290 } 1291 1292 bool MIParser::parseMDNode(MDNode *&Node) { 1293 assert(Token.is(MIToken::exclaim)); 1294 auto Loc = Token.location(); 1295 lex(); 1296 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1297 return error("expected metadata id after '!'"); 1298 unsigned ID; 1299 if (getUnsigned(ID)) 1300 return true; 1301 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1302 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1303 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1304 lex(); 1305 Node = NodeInfo->second.get(); 1306 return false; 1307 } 1308 1309 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1310 MDNode *Node = nullptr; 1311 if (parseMDNode(Node)) 1312 return true; 1313 Dest = MachineOperand::CreateMetadata(Node); 1314 return false; 1315 } 1316 1317 bool MIParser::parseCFIOffset(int &Offset) { 1318 if (Token.isNot(MIToken::IntegerLiteral)) 1319 return error("expected a cfi offset"); 1320 if (Token.integerValue().getMinSignedBits() > 32) 1321 return error("expected a 32 bit integer (the cfi offset is too large)"); 1322 Offset = (int)Token.integerValue().getExtValue(); 1323 lex(); 1324 return false; 1325 } 1326 1327 bool MIParser::parseCFIRegister(unsigned &Reg) { 1328 if (Token.isNot(MIToken::NamedRegister)) 1329 return error("expected a cfi register"); 1330 unsigned LLVMReg; 1331 if (parseNamedRegister(LLVMReg)) 1332 return true; 1333 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1334 assert(TRI && "Expected target register info"); 1335 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1336 if (DwarfReg < 0) 1337 return error("invalid DWARF register"); 1338 Reg = (unsigned)DwarfReg; 1339 lex(); 1340 return false; 1341 } 1342 1343 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1344 auto Kind = Token.kind(); 1345 lex(); 1346 auto &MMI = MF.getMMI(); 1347 int Offset; 1348 unsigned Reg; 1349 unsigned CFIIndex; 1350 switch (Kind) { 1351 case MIToken::kw_cfi_same_value: 1352 if (parseCFIRegister(Reg)) 1353 return true; 1354 CFIIndex = 1355 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1356 break; 1357 case MIToken::kw_cfi_offset: 1358 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1359 parseCFIOffset(Offset)) 1360 return true; 1361 CFIIndex = 1362 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1363 break; 1364 case MIToken::kw_cfi_def_cfa_register: 1365 if (parseCFIRegister(Reg)) 1366 return true; 1367 CFIIndex = 1368 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1369 break; 1370 case MIToken::kw_cfi_def_cfa_offset: 1371 if (parseCFIOffset(Offset)) 1372 return true; 1373 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1374 CFIIndex = MMI.addFrameInst( 1375 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1376 break; 1377 case MIToken::kw_cfi_def_cfa: 1378 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1379 parseCFIOffset(Offset)) 1380 return true; 1381 // NB: MCCFIInstruction::createDefCfa negates the offset. 1382 CFIIndex = 1383 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1384 break; 1385 default: 1386 // TODO: Parse the other CFI operands. 1387 llvm_unreachable("The current token should be a cfi operand"); 1388 } 1389 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1390 return false; 1391 } 1392 1393 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1394 switch (Token.kind()) { 1395 case MIToken::NamedIRBlock: { 1396 BB = dyn_cast_or_null<BasicBlock>( 1397 F.getValueSymbolTable()->lookup(Token.stringValue())); 1398 if (!BB) 1399 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1400 break; 1401 } 1402 case MIToken::IRBlock: { 1403 unsigned SlotNumber = 0; 1404 if (getUnsigned(SlotNumber)) 1405 return true; 1406 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1407 if (!BB) 1408 return error(Twine("use of undefined IR block '%ir-block.") + 1409 Twine(SlotNumber) + "'"); 1410 break; 1411 } 1412 default: 1413 llvm_unreachable("The current token should be an IR block reference"); 1414 } 1415 return false; 1416 } 1417 1418 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1419 assert(Token.is(MIToken::kw_blockaddress)); 1420 lex(); 1421 if (expectAndConsume(MIToken::lparen)) 1422 return true; 1423 if (Token.isNot(MIToken::GlobalValue) && 1424 Token.isNot(MIToken::NamedGlobalValue)) 1425 return error("expected a global value"); 1426 GlobalValue *GV = nullptr; 1427 if (parseGlobalValue(GV)) 1428 return true; 1429 auto *F = dyn_cast<Function>(GV); 1430 if (!F) 1431 return error("expected an IR function reference"); 1432 lex(); 1433 if (expectAndConsume(MIToken::comma)) 1434 return true; 1435 BasicBlock *BB = nullptr; 1436 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1437 return error("expected an IR block reference"); 1438 if (parseIRBlock(BB, *F)) 1439 return true; 1440 lex(); 1441 if (expectAndConsume(MIToken::rparen)) 1442 return true; 1443 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1444 if (parseOperandsOffset(Dest)) 1445 return true; 1446 return false; 1447 } 1448 1449 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1450 assert(Token.is(MIToken::kw_intrinsic)); 1451 lex(); 1452 if (expectAndConsume(MIToken::lparen)) 1453 return error("expected syntax intrinsic(@llvm.whatever)"); 1454 1455 if (Token.isNot(MIToken::NamedGlobalValue)) 1456 return error("expected syntax intrinsic(@llvm.whatever)"); 1457 1458 std::string Name = Token.stringValue(); 1459 lex(); 1460 1461 if (expectAndConsume(MIToken::rparen)) 1462 return error("expected ')' to terminate intrinsic name"); 1463 1464 // Find out what intrinsic we're dealing with, first try the global namespace 1465 // and then the target's private intrinsics if that fails. 1466 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1467 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1468 if (ID == Intrinsic::not_intrinsic && TII) 1469 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1470 1471 if (ID == Intrinsic::not_intrinsic) 1472 return error("unknown intrinsic name"); 1473 Dest = MachineOperand::CreateIntrinsicID(ID); 1474 1475 return false; 1476 } 1477 1478 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1479 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1480 bool IsFloat = Token.is(MIToken::kw_floatpred); 1481 lex(); 1482 1483 if (expectAndConsume(MIToken::lparen)) 1484 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1485 1486 if (Token.isNot(MIToken::Identifier)) 1487 return error("whatever"); 1488 1489 CmpInst::Predicate Pred; 1490 if (IsFloat) { 1491 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1492 .Case("false", CmpInst::FCMP_FALSE) 1493 .Case("oeq", CmpInst::FCMP_OEQ) 1494 .Case("ogt", CmpInst::FCMP_OGT) 1495 .Case("oge", CmpInst::FCMP_OGE) 1496 .Case("olt", CmpInst::FCMP_OLT) 1497 .Case("ole", CmpInst::FCMP_OLE) 1498 .Case("one", CmpInst::FCMP_ONE) 1499 .Case("ord", CmpInst::FCMP_ORD) 1500 .Case("uno", CmpInst::FCMP_UNO) 1501 .Case("ueq", CmpInst::FCMP_UEQ) 1502 .Case("ugt", CmpInst::FCMP_UGT) 1503 .Case("uge", CmpInst::FCMP_UGE) 1504 .Case("ult", CmpInst::FCMP_ULT) 1505 .Case("ule", CmpInst::FCMP_ULE) 1506 .Case("une", CmpInst::FCMP_UNE) 1507 .Case("true", CmpInst::FCMP_TRUE) 1508 .Default(CmpInst::BAD_FCMP_PREDICATE); 1509 if (!CmpInst::isFPPredicate(Pred)) 1510 return error("invalid floating-point predicate"); 1511 } else { 1512 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1513 .Case("eq", CmpInst::ICMP_EQ) 1514 .Case("ne", CmpInst::ICMP_NE) 1515 .Case("sgt", CmpInst::ICMP_SGT) 1516 .Case("sge", CmpInst::ICMP_SGE) 1517 .Case("slt", CmpInst::ICMP_SLT) 1518 .Case("sle", CmpInst::ICMP_SLE) 1519 .Case("ugt", CmpInst::ICMP_UGT) 1520 .Case("uge", CmpInst::ICMP_UGE) 1521 .Case("ult", CmpInst::ICMP_ULT) 1522 .Case("ule", CmpInst::ICMP_ULE) 1523 .Default(CmpInst::BAD_ICMP_PREDICATE); 1524 if (!CmpInst::isIntPredicate(Pred)) 1525 return error("invalid integer predicate"); 1526 } 1527 1528 lex(); 1529 Dest = MachineOperand::CreatePredicate(Pred); 1530 if (expectAndConsume(MIToken::rparen)) 1531 return error("predicate should be terminated by ')'."); 1532 1533 return false; 1534 } 1535 1536 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1537 assert(Token.is(MIToken::kw_target_index)); 1538 lex(); 1539 if (expectAndConsume(MIToken::lparen)) 1540 return true; 1541 if (Token.isNot(MIToken::Identifier)) 1542 return error("expected the name of the target index"); 1543 int Index = 0; 1544 if (getTargetIndex(Token.stringValue(), Index)) 1545 return error("use of undefined target index '" + Token.stringValue() + "'"); 1546 lex(); 1547 if (expectAndConsume(MIToken::rparen)) 1548 return true; 1549 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1550 if (parseOperandsOffset(Dest)) 1551 return true; 1552 return false; 1553 } 1554 1555 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1556 assert(Token.is(MIToken::kw_liveout)); 1557 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1558 assert(TRI && "Expected target register info"); 1559 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1560 lex(); 1561 if (expectAndConsume(MIToken::lparen)) 1562 return true; 1563 while (true) { 1564 if (Token.isNot(MIToken::NamedRegister)) 1565 return error("expected a named register"); 1566 unsigned Reg; 1567 if (parseNamedRegister(Reg)) 1568 return true; 1569 lex(); 1570 Mask[Reg / 32] |= 1U << (Reg % 32); 1571 // TODO: Report an error if the same register is used more than once. 1572 if (Token.isNot(MIToken::comma)) 1573 break; 1574 lex(); 1575 } 1576 if (expectAndConsume(MIToken::rparen)) 1577 return true; 1578 Dest = MachineOperand::CreateRegLiveOut(Mask); 1579 return false; 1580 } 1581 1582 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1583 Optional<unsigned> &TiedDefIdx) { 1584 switch (Token.kind()) { 1585 case MIToken::kw_implicit: 1586 case MIToken::kw_implicit_define: 1587 case MIToken::kw_def: 1588 case MIToken::kw_dead: 1589 case MIToken::kw_killed: 1590 case MIToken::kw_undef: 1591 case MIToken::kw_internal: 1592 case MIToken::kw_early_clobber: 1593 case MIToken::kw_debug_use: 1594 case MIToken::underscore: 1595 case MIToken::NamedRegister: 1596 case MIToken::VirtualRegister: 1597 return parseRegisterOperand(Dest, TiedDefIdx); 1598 case MIToken::IntegerLiteral: 1599 return parseImmediateOperand(Dest); 1600 case MIToken::IntegerType: 1601 return parseTypedImmediateOperand(Dest); 1602 case MIToken::kw_half: 1603 case MIToken::kw_float: 1604 case MIToken::kw_double: 1605 case MIToken::kw_x86_fp80: 1606 case MIToken::kw_fp128: 1607 case MIToken::kw_ppc_fp128: 1608 return parseFPImmediateOperand(Dest); 1609 case MIToken::MachineBasicBlock: 1610 return parseMBBOperand(Dest); 1611 case MIToken::StackObject: 1612 return parseStackObjectOperand(Dest); 1613 case MIToken::FixedStackObject: 1614 return parseFixedStackObjectOperand(Dest); 1615 case MIToken::GlobalValue: 1616 case MIToken::NamedGlobalValue: 1617 return parseGlobalAddressOperand(Dest); 1618 case MIToken::ConstantPoolItem: 1619 return parseConstantPoolIndexOperand(Dest); 1620 case MIToken::JumpTableIndex: 1621 return parseJumpTableIndexOperand(Dest); 1622 case MIToken::ExternalSymbol: 1623 return parseExternalSymbolOperand(Dest); 1624 case MIToken::SubRegisterIndex: 1625 return parseSubRegisterIndexOperand(Dest); 1626 case MIToken::exclaim: 1627 return parseMetadataOperand(Dest); 1628 case MIToken::kw_cfi_same_value: 1629 case MIToken::kw_cfi_offset: 1630 case MIToken::kw_cfi_def_cfa_register: 1631 case MIToken::kw_cfi_def_cfa_offset: 1632 case MIToken::kw_cfi_def_cfa: 1633 return parseCFIOperand(Dest); 1634 case MIToken::kw_blockaddress: 1635 return parseBlockAddressOperand(Dest); 1636 case MIToken::kw_intrinsic: 1637 return parseIntrinsicOperand(Dest); 1638 case MIToken::kw_target_index: 1639 return parseTargetIndexOperand(Dest); 1640 case MIToken::kw_liveout: 1641 return parseLiveoutRegisterMaskOperand(Dest); 1642 case MIToken::kw_floatpred: 1643 case MIToken::kw_intpred: 1644 return parsePredicateOperand(Dest); 1645 case MIToken::Error: 1646 return true; 1647 case MIToken::Identifier: 1648 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1649 Dest = MachineOperand::CreateRegMask(RegMask); 1650 lex(); 1651 break; 1652 } 1653 LLVM_FALLTHROUGH; 1654 default: 1655 // FIXME: Parse the MCSymbol machine operand. 1656 return error("expected a machine operand"); 1657 } 1658 return false; 1659 } 1660 1661 bool MIParser::parseMachineOperandAndTargetFlags( 1662 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1663 unsigned TF = 0; 1664 bool HasTargetFlags = false; 1665 if (Token.is(MIToken::kw_target_flags)) { 1666 HasTargetFlags = true; 1667 lex(); 1668 if (expectAndConsume(MIToken::lparen)) 1669 return true; 1670 if (Token.isNot(MIToken::Identifier)) 1671 return error("expected the name of the target flag"); 1672 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1673 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1674 return error("use of undefined target flag '" + Token.stringValue() + 1675 "'"); 1676 } 1677 lex(); 1678 while (Token.is(MIToken::comma)) { 1679 lex(); 1680 if (Token.isNot(MIToken::Identifier)) 1681 return error("expected the name of the target flag"); 1682 unsigned BitFlag = 0; 1683 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1684 return error("use of undefined target flag '" + Token.stringValue() + 1685 "'"); 1686 // TODO: Report an error when using a duplicate bit target flag. 1687 TF |= BitFlag; 1688 lex(); 1689 } 1690 if (expectAndConsume(MIToken::rparen)) 1691 return true; 1692 } 1693 auto Loc = Token.location(); 1694 if (parseMachineOperand(Dest, TiedDefIdx)) 1695 return true; 1696 if (!HasTargetFlags) 1697 return false; 1698 if (Dest.isReg()) 1699 return error(Loc, "register operands can't have target flags"); 1700 Dest.setTargetFlags(TF); 1701 return false; 1702 } 1703 1704 bool MIParser::parseOffset(int64_t &Offset) { 1705 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1706 return false; 1707 StringRef Sign = Token.range(); 1708 bool IsNegative = Token.is(MIToken::minus); 1709 lex(); 1710 if (Token.isNot(MIToken::IntegerLiteral)) 1711 return error("expected an integer literal after '" + Sign + "'"); 1712 if (Token.integerValue().getMinSignedBits() > 64) 1713 return error("expected 64-bit integer (too large)"); 1714 Offset = Token.integerValue().getExtValue(); 1715 if (IsNegative) 1716 Offset = -Offset; 1717 lex(); 1718 return false; 1719 } 1720 1721 bool MIParser::parseAlignment(unsigned &Alignment) { 1722 assert(Token.is(MIToken::kw_align)); 1723 lex(); 1724 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1725 return error("expected an integer literal after 'align'"); 1726 if (getUnsigned(Alignment)) 1727 return true; 1728 lex(); 1729 return false; 1730 } 1731 1732 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1733 int64_t Offset = 0; 1734 if (parseOffset(Offset)) 1735 return true; 1736 Op.setOffset(Offset); 1737 return false; 1738 } 1739 1740 bool MIParser::parseIRValue(const Value *&V) { 1741 switch (Token.kind()) { 1742 case MIToken::NamedIRValue: { 1743 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1744 break; 1745 } 1746 case MIToken::IRValue: { 1747 unsigned SlotNumber = 0; 1748 if (getUnsigned(SlotNumber)) 1749 return true; 1750 V = getIRValue(SlotNumber); 1751 break; 1752 } 1753 case MIToken::NamedGlobalValue: 1754 case MIToken::GlobalValue: { 1755 GlobalValue *GV = nullptr; 1756 if (parseGlobalValue(GV)) 1757 return true; 1758 V = GV; 1759 break; 1760 } 1761 case MIToken::QuotedIRValue: { 1762 const Constant *C = nullptr; 1763 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1764 return true; 1765 V = C; 1766 break; 1767 } 1768 default: 1769 llvm_unreachable("The current token should be an IR block reference"); 1770 } 1771 if (!V) 1772 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1773 return false; 1774 } 1775 1776 bool MIParser::getUint64(uint64_t &Result) { 1777 assert(Token.hasIntegerValue()); 1778 if (Token.integerValue().getActiveBits() > 64) 1779 return error("expected 64-bit integer (too large)"); 1780 Result = Token.integerValue().getZExtValue(); 1781 return false; 1782 } 1783 1784 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1785 const auto OldFlags = Flags; 1786 switch (Token.kind()) { 1787 case MIToken::kw_volatile: 1788 Flags |= MachineMemOperand::MOVolatile; 1789 break; 1790 case MIToken::kw_non_temporal: 1791 Flags |= MachineMemOperand::MONonTemporal; 1792 break; 1793 case MIToken::kw_dereferenceable: 1794 Flags |= MachineMemOperand::MODereferenceable; 1795 break; 1796 case MIToken::kw_invariant: 1797 Flags |= MachineMemOperand::MOInvariant; 1798 break; 1799 // TODO: parse the target specific memory operand flags. 1800 default: 1801 llvm_unreachable("The current token should be a memory operand flag"); 1802 } 1803 if (OldFlags == Flags) 1804 // We know that the same flag is specified more than once when the flags 1805 // weren't modified. 1806 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1807 lex(); 1808 return false; 1809 } 1810 1811 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1812 switch (Token.kind()) { 1813 case MIToken::kw_stack: 1814 PSV = MF.getPSVManager().getStack(); 1815 break; 1816 case MIToken::kw_got: 1817 PSV = MF.getPSVManager().getGOT(); 1818 break; 1819 case MIToken::kw_jump_table: 1820 PSV = MF.getPSVManager().getJumpTable(); 1821 break; 1822 case MIToken::kw_constant_pool: 1823 PSV = MF.getPSVManager().getConstantPool(); 1824 break; 1825 case MIToken::FixedStackObject: { 1826 int FI; 1827 if (parseFixedStackFrameIndex(FI)) 1828 return true; 1829 PSV = MF.getPSVManager().getFixedStack(FI); 1830 // The token was already consumed, so use return here instead of break. 1831 return false; 1832 } 1833 case MIToken::StackObject: { 1834 int FI; 1835 if (parseStackFrameIndex(FI)) 1836 return true; 1837 PSV = MF.getPSVManager().getFixedStack(FI); 1838 // The token was already consumed, so use return here instead of break. 1839 return false; 1840 } 1841 case MIToken::kw_call_entry: { 1842 lex(); 1843 switch (Token.kind()) { 1844 case MIToken::GlobalValue: 1845 case MIToken::NamedGlobalValue: { 1846 GlobalValue *GV = nullptr; 1847 if (parseGlobalValue(GV)) 1848 return true; 1849 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1850 break; 1851 } 1852 case MIToken::ExternalSymbol: 1853 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1854 MF.createExternalSymbolName(Token.stringValue())); 1855 break; 1856 default: 1857 return error( 1858 "expected a global value or an external symbol after 'call-entry'"); 1859 } 1860 break; 1861 } 1862 default: 1863 llvm_unreachable("The current token should be pseudo source value"); 1864 } 1865 lex(); 1866 return false; 1867 } 1868 1869 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1870 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1871 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1872 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1873 Token.is(MIToken::kw_call_entry)) { 1874 const PseudoSourceValue *PSV = nullptr; 1875 if (parseMemoryPseudoSourceValue(PSV)) 1876 return true; 1877 int64_t Offset = 0; 1878 if (parseOffset(Offset)) 1879 return true; 1880 Dest = MachinePointerInfo(PSV, Offset); 1881 return false; 1882 } 1883 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1884 Token.isNot(MIToken::GlobalValue) && 1885 Token.isNot(MIToken::NamedGlobalValue) && 1886 Token.isNot(MIToken::QuotedIRValue)) 1887 return error("expected an IR value reference"); 1888 const Value *V = nullptr; 1889 if (parseIRValue(V)) 1890 return true; 1891 if (!V->getType()->isPointerTy()) 1892 return error("expected a pointer IR value"); 1893 lex(); 1894 int64_t Offset = 0; 1895 if (parseOffset(Offset)) 1896 return true; 1897 Dest = MachinePointerInfo(V, Offset); 1898 return false; 1899 } 1900 1901 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1902 if (expectAndConsume(MIToken::lparen)) 1903 return true; 1904 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 1905 while (Token.isMemoryOperandFlag()) { 1906 if (parseMemoryOperandFlag(Flags)) 1907 return true; 1908 } 1909 if (Token.isNot(MIToken::Identifier) || 1910 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1911 return error("expected 'load' or 'store' memory operation"); 1912 if (Token.stringValue() == "load") 1913 Flags |= MachineMemOperand::MOLoad; 1914 else 1915 Flags |= MachineMemOperand::MOStore; 1916 lex(); 1917 1918 if (Token.isNot(MIToken::IntegerLiteral)) 1919 return error("expected the size integer literal after memory operation"); 1920 uint64_t Size; 1921 if (getUint64(Size)) 1922 return true; 1923 lex(); 1924 1925 MachinePointerInfo Ptr = MachinePointerInfo(); 1926 if (Token.is(MIToken::Identifier)) { 1927 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1928 if (Token.stringValue() != Word) 1929 return error(Twine("expected '") + Word + "'"); 1930 lex(); 1931 1932 if (parseMachinePointerInfo(Ptr)) 1933 return true; 1934 } 1935 unsigned BaseAlignment = Size; 1936 AAMDNodes AAInfo; 1937 MDNode *Range = nullptr; 1938 while (consumeIfPresent(MIToken::comma)) { 1939 switch (Token.kind()) { 1940 case MIToken::kw_align: 1941 if (parseAlignment(BaseAlignment)) 1942 return true; 1943 break; 1944 case MIToken::md_tbaa: 1945 lex(); 1946 if (parseMDNode(AAInfo.TBAA)) 1947 return true; 1948 break; 1949 case MIToken::md_alias_scope: 1950 lex(); 1951 if (parseMDNode(AAInfo.Scope)) 1952 return true; 1953 break; 1954 case MIToken::md_noalias: 1955 lex(); 1956 if (parseMDNode(AAInfo.NoAlias)) 1957 return true; 1958 break; 1959 case MIToken::md_range: 1960 lex(); 1961 if (parseMDNode(Range)) 1962 return true; 1963 break; 1964 // TODO: Report an error on duplicate metadata nodes. 1965 default: 1966 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 1967 "'!noalias' or '!range'"); 1968 } 1969 } 1970 if (expectAndConsume(MIToken::rparen)) 1971 return true; 1972 Dest = 1973 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 1974 return false; 1975 } 1976 1977 void MIParser::initNames2InstrOpCodes() { 1978 if (!Names2InstrOpCodes.empty()) 1979 return; 1980 const auto *TII = MF.getSubtarget().getInstrInfo(); 1981 assert(TII && "Expected target instruction info"); 1982 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 1983 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 1984 } 1985 1986 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 1987 initNames2InstrOpCodes(); 1988 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 1989 if (InstrInfo == Names2InstrOpCodes.end()) 1990 return true; 1991 OpCode = InstrInfo->getValue(); 1992 return false; 1993 } 1994 1995 void MIParser::initNames2Regs() { 1996 if (!Names2Regs.empty()) 1997 return; 1998 // The '%noreg' register is the register 0. 1999 Names2Regs.insert(std::make_pair("noreg", 0)); 2000 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2001 assert(TRI && "Expected target register info"); 2002 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2003 bool WasInserted = 2004 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2005 .second; 2006 (void)WasInserted; 2007 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2008 } 2009 } 2010 2011 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2012 initNames2Regs(); 2013 auto RegInfo = Names2Regs.find(RegName); 2014 if (RegInfo == Names2Regs.end()) 2015 return true; 2016 Reg = RegInfo->getValue(); 2017 return false; 2018 } 2019 2020 void MIParser::initNames2RegMasks() { 2021 if (!Names2RegMasks.empty()) 2022 return; 2023 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2024 assert(TRI && "Expected target register info"); 2025 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2026 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2027 assert(RegMasks.size() == RegMaskNames.size()); 2028 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2029 Names2RegMasks.insert( 2030 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2031 } 2032 2033 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2034 initNames2RegMasks(); 2035 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2036 if (RegMaskInfo == Names2RegMasks.end()) 2037 return nullptr; 2038 return RegMaskInfo->getValue(); 2039 } 2040 2041 void MIParser::initNames2SubRegIndices() { 2042 if (!Names2SubRegIndices.empty()) 2043 return; 2044 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2045 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2046 Names2SubRegIndices.insert( 2047 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2048 } 2049 2050 unsigned MIParser::getSubRegIndex(StringRef Name) { 2051 initNames2SubRegIndices(); 2052 auto SubRegInfo = Names2SubRegIndices.find(Name); 2053 if (SubRegInfo == Names2SubRegIndices.end()) 2054 return 0; 2055 return SubRegInfo->getValue(); 2056 } 2057 2058 static void initSlots2BasicBlocks( 2059 const Function &F, 2060 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2061 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2062 MST.incorporateFunction(F); 2063 for (auto &BB : F) { 2064 if (BB.hasName()) 2065 continue; 2066 int Slot = MST.getLocalSlot(&BB); 2067 if (Slot == -1) 2068 continue; 2069 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2070 } 2071 } 2072 2073 static const BasicBlock *getIRBlockFromSlot( 2074 unsigned Slot, 2075 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2076 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2077 if (BlockInfo == Slots2BasicBlocks.end()) 2078 return nullptr; 2079 return BlockInfo->second; 2080 } 2081 2082 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2083 if (Slots2BasicBlocks.empty()) 2084 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2085 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2086 } 2087 2088 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2089 if (&F == MF.getFunction()) 2090 return getIRBlock(Slot); 2091 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2092 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2093 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2094 } 2095 2096 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2097 DenseMap<unsigned, const Value *> &Slots2Values) { 2098 int Slot = MST.getLocalSlot(V); 2099 if (Slot == -1) 2100 return; 2101 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2102 } 2103 2104 /// Creates the mapping from slot numbers to function's unnamed IR values. 2105 static void initSlots2Values(const Function &F, 2106 DenseMap<unsigned, const Value *> &Slots2Values) { 2107 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2108 MST.incorporateFunction(F); 2109 for (const auto &Arg : F.args()) 2110 mapValueToSlot(&Arg, MST, Slots2Values); 2111 for (const auto &BB : F) { 2112 mapValueToSlot(&BB, MST, Slots2Values); 2113 for (const auto &I : BB) 2114 mapValueToSlot(&I, MST, Slots2Values); 2115 } 2116 } 2117 2118 const Value *MIParser::getIRValue(unsigned Slot) { 2119 if (Slots2Values.empty()) 2120 initSlots2Values(*MF.getFunction(), Slots2Values); 2121 auto ValueInfo = Slots2Values.find(Slot); 2122 if (ValueInfo == Slots2Values.end()) 2123 return nullptr; 2124 return ValueInfo->second; 2125 } 2126 2127 void MIParser::initNames2TargetIndices() { 2128 if (!Names2TargetIndices.empty()) 2129 return; 2130 const auto *TII = MF.getSubtarget().getInstrInfo(); 2131 assert(TII && "Expected target instruction info"); 2132 auto Indices = TII->getSerializableTargetIndices(); 2133 for (const auto &I : Indices) 2134 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2135 } 2136 2137 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2138 initNames2TargetIndices(); 2139 auto IndexInfo = Names2TargetIndices.find(Name); 2140 if (IndexInfo == Names2TargetIndices.end()) 2141 return true; 2142 Index = IndexInfo->second; 2143 return false; 2144 } 2145 2146 void MIParser::initNames2DirectTargetFlags() { 2147 if (!Names2DirectTargetFlags.empty()) 2148 return; 2149 const auto *TII = MF.getSubtarget().getInstrInfo(); 2150 assert(TII && "Expected target instruction info"); 2151 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2152 for (const auto &I : Flags) 2153 Names2DirectTargetFlags.insert( 2154 std::make_pair(StringRef(I.second), I.first)); 2155 } 2156 2157 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2158 initNames2DirectTargetFlags(); 2159 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2160 if (FlagInfo == Names2DirectTargetFlags.end()) 2161 return true; 2162 Flag = FlagInfo->second; 2163 return false; 2164 } 2165 2166 void MIParser::initNames2BitmaskTargetFlags() { 2167 if (!Names2BitmaskTargetFlags.empty()) 2168 return; 2169 const auto *TII = MF.getSubtarget().getInstrInfo(); 2170 assert(TII && "Expected target instruction info"); 2171 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2172 for (const auto &I : Flags) 2173 Names2BitmaskTargetFlags.insert( 2174 std::make_pair(StringRef(I.second), I.first)); 2175 } 2176 2177 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2178 initNames2BitmaskTargetFlags(); 2179 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2180 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2181 return true; 2182 Flag = FlagInfo->second; 2183 return false; 2184 } 2185 2186 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2187 StringRef Src, 2188 SMDiagnostic &Error) { 2189 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2190 } 2191 2192 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2193 StringRef Src, SMDiagnostic &Error) { 2194 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2195 } 2196 2197 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2198 MachineBasicBlock *&MBB, StringRef Src, 2199 SMDiagnostic &Error) { 2200 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2201 } 2202 2203 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2204 unsigned &Reg, StringRef Src, 2205 SMDiagnostic &Error) { 2206 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2207 } 2208 2209 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2210 VRegInfo *&Info, StringRef Src, 2211 SMDiagnostic &Error) { 2212 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2213 } 2214 2215 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2216 int &FI, StringRef Src, 2217 SMDiagnostic &Error) { 2218 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2219 } 2220 2221 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2222 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2223 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2224 } 2225