1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 
40 using namespace llvm;
41 
42 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
43     SourceMgr &SM, const SlotMapping &IRSlots)
44   : MF(MF), SM(&SM), IRSlots(IRSlots) {
45 }
46 
47 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
48   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
49   if (I.second) {
50     MachineRegisterInfo &MRI = MF.getRegInfo();
51     VRegInfo *Info = new (Allocator) VRegInfo;
52     Info->VReg = MRI.createIncompleteVirtualRegister();
53     I.first->second = Info;
54   }
55   return *I.first->second;
56 }
57 
58 namespace {
59 
60 /// A wrapper struct around the 'MachineOperand' struct that includes a source
61 /// range and other attributes.
62 struct ParsedMachineOperand {
63   MachineOperand Operand;
64   StringRef::iterator Begin;
65   StringRef::iterator End;
66   Optional<unsigned> TiedDefIdx;
67 
68   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
69                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
70       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
71     if (TiedDefIdx)
72       assert(Operand.isReg() && Operand.isUse() &&
73              "Only used register operands can be tied");
74   }
75 };
76 
77 class MIParser {
78   MachineFunction &MF;
79   SMDiagnostic &Error;
80   StringRef Source, CurrentSource;
81   MIToken Token;
82   PerFunctionMIParsingState &PFS;
83   /// Maps from instruction names to op codes.
84   StringMap<unsigned> Names2InstrOpCodes;
85   /// Maps from register names to registers.
86   StringMap<unsigned> Names2Regs;
87   /// Maps from register mask names to register masks.
88   StringMap<const uint32_t *> Names2RegMasks;
89   /// Maps from subregister names to subregister indices.
90   StringMap<unsigned> Names2SubRegIndices;
91   /// Maps from slot numbers to function's unnamed basic blocks.
92   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
93   /// Maps from slot numbers to function's unnamed values.
94   DenseMap<unsigned, const Value *> Slots2Values;
95   /// Maps from target index names to target indices.
96   StringMap<int> Names2TargetIndices;
97   /// Maps from direct target flag names to the direct target flag values.
98   StringMap<unsigned> Names2DirectTargetFlags;
99   /// Maps from direct target flag names to the bitmask target flag values.
100   StringMap<unsigned> Names2BitmaskTargetFlags;
101 
102 public:
103   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
104            StringRef Source);
105 
106   /// \p SkipChar gives the number of characters to skip before looking
107   /// for the next token.
108   void lex(unsigned SkipChar = 0);
109 
110   /// Report an error at the current location with the given message.
111   ///
112   /// This function always return true.
113   bool error(const Twine &Msg);
114 
115   /// Report an error at the given location with the given message.
116   ///
117   /// This function always return true.
118   bool error(StringRef::iterator Loc, const Twine &Msg);
119 
120   bool
121   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
122   bool parseBasicBlocks();
123   bool parse(MachineInstr *&MI);
124   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
125   bool parseStandaloneNamedRegister(unsigned &Reg);
126   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
127   bool parseStandaloneStackObject(int &FI);
128   bool parseStandaloneMDNode(MDNode *&Node);
129 
130   bool
131   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
132   bool parseBasicBlock(MachineBasicBlock &MBB);
133   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
134   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
135 
136   bool parseNamedRegister(unsigned &Reg);
137   bool parseVirtualRegister(VRegInfo *&Info);
138   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
139   bool parseRegisterFlag(unsigned &Flags);
140   bool parseSubRegisterIndex(unsigned &SubReg);
141   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
142   bool parseRegisterOperand(MachineOperand &Dest,
143                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
144   bool parseImmediateOperand(MachineOperand &Dest);
145   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
146                        const Constant *&C);
147   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
148   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
149   bool parseTypedImmediateOperand(MachineOperand &Dest);
150   bool parseFPImmediateOperand(MachineOperand &Dest);
151   bool parseMBBReference(MachineBasicBlock *&MBB);
152   bool parseMBBOperand(MachineOperand &Dest);
153   bool parseStackFrameIndex(int &FI);
154   bool parseStackObjectOperand(MachineOperand &Dest);
155   bool parseFixedStackFrameIndex(int &FI);
156   bool parseFixedStackObjectOperand(MachineOperand &Dest);
157   bool parseGlobalValue(GlobalValue *&GV);
158   bool parseGlobalAddressOperand(MachineOperand &Dest);
159   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
160   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
161   bool parseJumpTableIndexOperand(MachineOperand &Dest);
162   bool parseExternalSymbolOperand(MachineOperand &Dest);
163   bool parseMDNode(MDNode *&Node);
164   bool parseMetadataOperand(MachineOperand &Dest);
165   bool parseCFIOffset(int &Offset);
166   bool parseCFIRegister(unsigned &Reg);
167   bool parseCFIOperand(MachineOperand &Dest);
168   bool parseIRBlock(BasicBlock *&BB, const Function &F);
169   bool parseBlockAddressOperand(MachineOperand &Dest);
170   bool parseIntrinsicOperand(MachineOperand &Dest);
171   bool parsePredicateOperand(MachineOperand &Dest);
172   bool parseTargetIndexOperand(MachineOperand &Dest);
173   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
174   bool parseMachineOperand(MachineOperand &Dest,
175                            Optional<unsigned> &TiedDefIdx);
176   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
177                                          Optional<unsigned> &TiedDefIdx);
178   bool parseOffset(int64_t &Offset);
179   bool parseAlignment(unsigned &Alignment);
180   bool parseOperandsOffset(MachineOperand &Op);
181   bool parseIRValue(const Value *&V);
182   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
183   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
184   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
185   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
186 
187 private:
188   /// Convert the integer literal in the current token into an unsigned integer.
189   ///
190   /// Return true if an error occurred.
191   bool getUnsigned(unsigned &Result);
192 
193   /// Convert the integer literal in the current token into an uint64.
194   ///
195   /// Return true if an error occurred.
196   bool getUint64(uint64_t &Result);
197 
198   /// If the current token is of the given kind, consume it and return false.
199   /// Otherwise report an error and return true.
200   bool expectAndConsume(MIToken::TokenKind TokenKind);
201 
202   /// If the current token is of the given kind, consume it and return true.
203   /// Otherwise return false.
204   bool consumeIfPresent(MIToken::TokenKind TokenKind);
205 
206   void initNames2InstrOpCodes();
207 
208   /// Try to convert an instruction name to an opcode. Return true if the
209   /// instruction name is invalid.
210   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
211 
212   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
213 
214   bool assignRegisterTies(MachineInstr &MI,
215                           ArrayRef<ParsedMachineOperand> Operands);
216 
217   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
218                               const MCInstrDesc &MCID);
219 
220   void initNames2Regs();
221 
222   /// Try to convert a register name to a register number. Return true if the
223   /// register name is invalid.
224   bool getRegisterByName(StringRef RegName, unsigned &Reg);
225 
226   void initNames2RegMasks();
227 
228   /// Check if the given identifier is a name of a register mask.
229   ///
230   /// Return null if the identifier isn't a register mask.
231   const uint32_t *getRegMask(StringRef Identifier);
232 
233   void initNames2SubRegIndices();
234 
235   /// Check if the given identifier is a name of a subregister index.
236   ///
237   /// Return 0 if the name isn't a subregister index class.
238   unsigned getSubRegIndex(StringRef Name);
239 
240   const BasicBlock *getIRBlock(unsigned Slot);
241   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
242 
243   const Value *getIRValue(unsigned Slot);
244 
245   void initNames2TargetIndices();
246 
247   /// Try to convert a name of target index to the corresponding target index.
248   ///
249   /// Return true if the name isn't a name of a target index.
250   bool getTargetIndex(StringRef Name, int &Index);
251 
252   void initNames2DirectTargetFlags();
253 
254   /// Try to convert a name of a direct target flag to the corresponding
255   /// target flag.
256   ///
257   /// Return true if the name isn't a name of a direct flag.
258   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
259 
260   void initNames2BitmaskTargetFlags();
261 
262   /// Try to convert a name of a bitmask target flag to the corresponding
263   /// target flag.
264   ///
265   /// Return true if the name isn't a name of a bitmask target flag.
266   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
267 };
268 
269 } // end anonymous namespace
270 
271 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
272                    StringRef Source)
273     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
274 {}
275 
276 void MIParser::lex(unsigned SkipChar) {
277   CurrentSource = lexMIToken(
278       CurrentSource.data() + SkipChar, Token,
279       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
280 }
281 
282 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
283 
284 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
285   const SourceMgr &SM = *PFS.SM;
286   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
287   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
288   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
289     // Create an ordinary diagnostic when the source manager's buffer is the
290     // source string.
291     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
292     return true;
293   }
294   // Create a diagnostic for a YAML string literal.
295   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
296                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
297                        Source, None, None);
298   return true;
299 }
300 
301 static const char *toString(MIToken::TokenKind TokenKind) {
302   switch (TokenKind) {
303   case MIToken::comma:
304     return "','";
305   case MIToken::equal:
306     return "'='";
307   case MIToken::colon:
308     return "':'";
309   case MIToken::lparen:
310     return "'('";
311   case MIToken::rparen:
312     return "')'";
313   default:
314     return "<unknown token>";
315   }
316 }
317 
318 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
319   if (Token.isNot(TokenKind))
320     return error(Twine("expected ") + toString(TokenKind));
321   lex();
322   return false;
323 }
324 
325 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
326   if (Token.isNot(TokenKind))
327     return false;
328   lex();
329   return true;
330 }
331 
332 bool MIParser::parseBasicBlockDefinition(
333     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
334   assert(Token.is(MIToken::MachineBasicBlockLabel));
335   unsigned ID = 0;
336   if (getUnsigned(ID))
337     return true;
338   auto Loc = Token.location();
339   auto Name = Token.stringValue();
340   lex();
341   bool HasAddressTaken = false;
342   bool IsLandingPad = false;
343   unsigned Alignment = 0;
344   BasicBlock *BB = nullptr;
345   if (consumeIfPresent(MIToken::lparen)) {
346     do {
347       // TODO: Report an error when multiple same attributes are specified.
348       switch (Token.kind()) {
349       case MIToken::kw_address_taken:
350         HasAddressTaken = true;
351         lex();
352         break;
353       case MIToken::kw_landing_pad:
354         IsLandingPad = true;
355         lex();
356         break;
357       case MIToken::kw_align:
358         if (parseAlignment(Alignment))
359           return true;
360         break;
361       case MIToken::IRBlock:
362         // TODO: Report an error when both name and ir block are specified.
363         if (parseIRBlock(BB, *MF.getFunction()))
364           return true;
365         lex();
366         break;
367       default:
368         break;
369       }
370     } while (consumeIfPresent(MIToken::comma));
371     if (expectAndConsume(MIToken::rparen))
372       return true;
373   }
374   if (expectAndConsume(MIToken::colon))
375     return true;
376 
377   if (!Name.empty()) {
378     BB = dyn_cast_or_null<BasicBlock>(
379         MF.getFunction()->getValueSymbolTable()->lookup(Name));
380     if (!BB)
381       return error(Loc, Twine("basic block '") + Name +
382                             "' is not defined in the function '" +
383                             MF.getName() + "'");
384   }
385   auto *MBB = MF.CreateMachineBasicBlock(BB);
386   MF.insert(MF.end(), MBB);
387   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
388   if (!WasInserted)
389     return error(Loc, Twine("redefinition of machine basic block with id #") +
390                           Twine(ID));
391   if (Alignment)
392     MBB->setAlignment(Alignment);
393   if (HasAddressTaken)
394     MBB->setHasAddressTaken();
395   MBB->setIsEHPad(IsLandingPad);
396   return false;
397 }
398 
399 bool MIParser::parseBasicBlockDefinitions(
400     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
401   lex();
402   // Skip until the first machine basic block.
403   while (Token.is(MIToken::Newline))
404     lex();
405   if (Token.isErrorOrEOF())
406     return Token.isError();
407   if (Token.isNot(MIToken::MachineBasicBlockLabel))
408     return error("expected a basic block definition before instructions");
409   unsigned BraceDepth = 0;
410   do {
411     if (parseBasicBlockDefinition(MBBSlots))
412       return true;
413     bool IsAfterNewline = false;
414     // Skip until the next machine basic block.
415     while (true) {
416       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
417           Token.isErrorOrEOF())
418         break;
419       else if (Token.is(MIToken::MachineBasicBlockLabel))
420         return error("basic block definition should be located at the start of "
421                      "the line");
422       else if (consumeIfPresent(MIToken::Newline)) {
423         IsAfterNewline = true;
424         continue;
425       }
426       IsAfterNewline = false;
427       if (Token.is(MIToken::lbrace))
428         ++BraceDepth;
429       if (Token.is(MIToken::rbrace)) {
430         if (!BraceDepth)
431           return error("extraneous closing brace ('}')");
432         --BraceDepth;
433       }
434       lex();
435     }
436     // Verify that we closed all of the '{' at the end of a file or a block.
437     if (!Token.isError() && BraceDepth)
438       return error("expected '}'"); // FIXME: Report a note that shows '{'.
439   } while (!Token.isErrorOrEOF());
440   return Token.isError();
441 }
442 
443 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
444   assert(Token.is(MIToken::kw_liveins));
445   lex();
446   if (expectAndConsume(MIToken::colon))
447     return true;
448   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
449     return false;
450   do {
451     if (Token.isNot(MIToken::NamedRegister))
452       return error("expected a named register");
453     unsigned Reg = 0;
454     if (parseNamedRegister(Reg))
455       return true;
456     MBB.addLiveIn(Reg);
457     lex();
458   } while (consumeIfPresent(MIToken::comma));
459   return false;
460 }
461 
462 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
463   assert(Token.is(MIToken::kw_successors));
464   lex();
465   if (expectAndConsume(MIToken::colon))
466     return true;
467   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
468     return false;
469   do {
470     if (Token.isNot(MIToken::MachineBasicBlock))
471       return error("expected a machine basic block reference");
472     MachineBasicBlock *SuccMBB = nullptr;
473     if (parseMBBReference(SuccMBB))
474       return true;
475     lex();
476     unsigned Weight = 0;
477     if (consumeIfPresent(MIToken::lparen)) {
478       if (Token.isNot(MIToken::IntegerLiteral))
479         return error("expected an integer literal after '('");
480       if (getUnsigned(Weight))
481         return true;
482       lex();
483       if (expectAndConsume(MIToken::rparen))
484         return true;
485     }
486     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
487   } while (consumeIfPresent(MIToken::comma));
488   MBB.normalizeSuccProbs();
489   return false;
490 }
491 
492 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
493   // Skip the definition.
494   assert(Token.is(MIToken::MachineBasicBlockLabel));
495   lex();
496   if (consumeIfPresent(MIToken::lparen)) {
497     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
498       lex();
499     consumeIfPresent(MIToken::rparen);
500   }
501   consumeIfPresent(MIToken::colon);
502 
503   // Parse the liveins and successors.
504   // N.B: Multiple lists of successors and liveins are allowed and they're
505   // merged into one.
506   // Example:
507   //   liveins: %edi
508   //   liveins: %esi
509   //
510   // is equivalent to
511   //   liveins: %edi, %esi
512   while (true) {
513     if (Token.is(MIToken::kw_successors)) {
514       if (parseBasicBlockSuccessors(MBB))
515         return true;
516     } else if (Token.is(MIToken::kw_liveins)) {
517       if (parseBasicBlockLiveins(MBB))
518         return true;
519     } else if (consumeIfPresent(MIToken::Newline)) {
520       continue;
521     } else
522       break;
523     if (!Token.isNewlineOrEOF())
524       return error("expected line break at the end of a list");
525     lex();
526   }
527 
528   // Parse the instructions.
529   bool IsInBundle = false;
530   MachineInstr *PrevMI = nullptr;
531   while (true) {
532     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
533       return false;
534     else if (consumeIfPresent(MIToken::Newline))
535       continue;
536     if (consumeIfPresent(MIToken::rbrace)) {
537       // The first parsing pass should verify that all closing '}' have an
538       // opening '{'.
539       assert(IsInBundle);
540       IsInBundle = false;
541       continue;
542     }
543     MachineInstr *MI = nullptr;
544     if (parse(MI))
545       return true;
546     MBB.insert(MBB.end(), MI);
547     if (IsInBundle) {
548       PrevMI->setFlag(MachineInstr::BundledSucc);
549       MI->setFlag(MachineInstr::BundledPred);
550     }
551     PrevMI = MI;
552     if (Token.is(MIToken::lbrace)) {
553       if (IsInBundle)
554         return error("nested instruction bundles are not allowed");
555       lex();
556       // This instruction is the start of the bundle.
557       MI->setFlag(MachineInstr::BundledSucc);
558       IsInBundle = true;
559       if (!Token.is(MIToken::Newline))
560         // The next instruction can be on the same line.
561         continue;
562     }
563     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
564     lex();
565   }
566   return false;
567 }
568 
569 bool MIParser::parseBasicBlocks() {
570   lex();
571   // Skip until the first machine basic block.
572   while (Token.is(MIToken::Newline))
573     lex();
574   if (Token.isErrorOrEOF())
575     return Token.isError();
576   // The first parsing pass should have verified that this token is a MBB label
577   // in the 'parseBasicBlockDefinitions' method.
578   assert(Token.is(MIToken::MachineBasicBlockLabel));
579   do {
580     MachineBasicBlock *MBB = nullptr;
581     if (parseMBBReference(MBB))
582       return true;
583     if (parseBasicBlock(*MBB))
584       return true;
585     // The method 'parseBasicBlock' should parse the whole block until the next
586     // block or the end of file.
587     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
588   } while (Token.isNot(MIToken::Eof));
589   return false;
590 }
591 
592 bool MIParser::parse(MachineInstr *&MI) {
593   // Parse any register operands before '='
594   MachineOperand MO = MachineOperand::CreateImm(0);
595   SmallVector<ParsedMachineOperand, 8> Operands;
596   while (Token.isRegister() || Token.isRegisterFlag()) {
597     auto Loc = Token.location();
598     Optional<unsigned> TiedDefIdx;
599     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
600       return true;
601     Operands.push_back(
602         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
603     if (Token.isNot(MIToken::comma))
604       break;
605     lex();
606   }
607   if (!Operands.empty() && expectAndConsume(MIToken::equal))
608     return true;
609 
610   unsigned OpCode, Flags = 0;
611   if (Token.isError() || parseInstruction(OpCode, Flags))
612     return true;
613 
614   // Parse the remaining machine operands.
615   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
616          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
617     auto Loc = Token.location();
618     Optional<unsigned> TiedDefIdx;
619     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
620       return true;
621     Operands.push_back(
622         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
623     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
624         Token.is(MIToken::lbrace))
625       break;
626     if (Token.isNot(MIToken::comma))
627       return error("expected ',' before the next machine operand");
628     lex();
629   }
630 
631   DebugLoc DebugLocation;
632   if (Token.is(MIToken::kw_debug_location)) {
633     lex();
634     if (Token.isNot(MIToken::exclaim))
635       return error("expected a metadata node after 'debug-location'");
636     MDNode *Node = nullptr;
637     if (parseMDNode(Node))
638       return true;
639     DebugLocation = DebugLoc(Node);
640   }
641 
642   // Parse the machine memory operands.
643   SmallVector<MachineMemOperand *, 2> MemOperands;
644   if (Token.is(MIToken::coloncolon)) {
645     lex();
646     while (!Token.isNewlineOrEOF()) {
647       MachineMemOperand *MemOp = nullptr;
648       if (parseMachineMemoryOperand(MemOp))
649         return true;
650       MemOperands.push_back(MemOp);
651       if (Token.isNewlineOrEOF())
652         break;
653       if (Token.isNot(MIToken::comma))
654         return error("expected ',' before the next machine memory operand");
655       lex();
656     }
657   }
658 
659   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
660   if (!MCID.isVariadic()) {
661     // FIXME: Move the implicit operand verification to the machine verifier.
662     if (verifyImplicitOperands(Operands, MCID))
663       return true;
664   }
665 
666   // TODO: Check for extraneous machine operands.
667   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
668   MI->setFlags(Flags);
669   for (const auto &Operand : Operands)
670     MI->addOperand(MF, Operand.Operand);
671   if (assignRegisterTies(*MI, Operands))
672     return true;
673   if (MemOperands.empty())
674     return false;
675   MachineInstr::mmo_iterator MemRefs =
676       MF.allocateMemRefsArray(MemOperands.size());
677   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
678   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
679   return false;
680 }
681 
682 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
683   lex();
684   if (Token.isNot(MIToken::MachineBasicBlock))
685     return error("expected a machine basic block reference");
686   if (parseMBBReference(MBB))
687     return true;
688   lex();
689   if (Token.isNot(MIToken::Eof))
690     return error(
691         "expected end of string after the machine basic block reference");
692   return false;
693 }
694 
695 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
696   lex();
697   if (Token.isNot(MIToken::NamedRegister))
698     return error("expected a named register");
699   if (parseNamedRegister(Reg))
700     return true;
701   lex();
702   if (Token.isNot(MIToken::Eof))
703     return error("expected end of string after the register reference");
704   return false;
705 }
706 
707 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
708   lex();
709   if (Token.isNot(MIToken::VirtualRegister))
710     return error("expected a virtual register");
711   if (parseVirtualRegister(Info))
712     return true;
713   lex();
714   if (Token.isNot(MIToken::Eof))
715     return error("expected end of string after the register reference");
716   return false;
717 }
718 
719 bool MIParser::parseStandaloneStackObject(int &FI) {
720   lex();
721   if (Token.isNot(MIToken::StackObject))
722     return error("expected a stack object");
723   if (parseStackFrameIndex(FI))
724     return true;
725   if (Token.isNot(MIToken::Eof))
726     return error("expected end of string after the stack object reference");
727   return false;
728 }
729 
730 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
731   lex();
732   if (Token.isNot(MIToken::exclaim))
733     return error("expected a metadata node");
734   if (parseMDNode(Node))
735     return true;
736   if (Token.isNot(MIToken::Eof))
737     return error("expected end of string after the metadata node");
738   return false;
739 }
740 
741 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
742   assert(MO.isImplicit());
743   return MO.isDef() ? "implicit-def" : "implicit";
744 }
745 
746 static std::string getRegisterName(const TargetRegisterInfo *TRI,
747                                    unsigned Reg) {
748   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
749   return StringRef(TRI->getName(Reg)).lower();
750 }
751 
752 /// Return true if the parsed machine operands contain a given machine operand.
753 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
754                                 ArrayRef<ParsedMachineOperand> Operands) {
755   for (const auto &I : Operands) {
756     if (ImplicitOperand.isIdenticalTo(I.Operand))
757       return true;
758   }
759   return false;
760 }
761 
762 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
763                                       const MCInstrDesc &MCID) {
764   if (MCID.isCall())
765     // We can't verify call instructions as they can contain arbitrary implicit
766     // register and register mask operands.
767     return false;
768 
769   // Gather all the expected implicit operands.
770   SmallVector<MachineOperand, 4> ImplicitOperands;
771   if (MCID.ImplicitDefs)
772     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
773       ImplicitOperands.push_back(
774           MachineOperand::CreateReg(*ImpDefs, true, true));
775   if (MCID.ImplicitUses)
776     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
777       ImplicitOperands.push_back(
778           MachineOperand::CreateReg(*ImpUses, false, true));
779 
780   const auto *TRI = MF.getSubtarget().getRegisterInfo();
781   assert(TRI && "Expected target register info");
782   for (const auto &I : ImplicitOperands) {
783     if (isImplicitOperandIn(I, Operands))
784       continue;
785     return error(Operands.empty() ? Token.location() : Operands.back().End,
786                  Twine("missing implicit register operand '") +
787                      printImplicitRegisterFlag(I) + " %" +
788                      getRegisterName(TRI, I.getReg()) + "'");
789   }
790   return false;
791 }
792 
793 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
794   if (Token.is(MIToken::kw_frame_setup)) {
795     Flags |= MachineInstr::FrameSetup;
796     lex();
797   }
798   if (Token.isNot(MIToken::Identifier))
799     return error("expected a machine instruction");
800   StringRef InstrName = Token.stringValue();
801   if (parseInstrName(InstrName, OpCode))
802     return error(Twine("unknown machine instruction name '") + InstrName + "'");
803   lex();
804   return false;
805 }
806 
807 bool MIParser::parseNamedRegister(unsigned &Reg) {
808   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
809   StringRef Name = Token.stringValue();
810   if (getRegisterByName(Name, Reg))
811     return error(Twine("unknown register name '") + Name + "'");
812   return false;
813 }
814 
815 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
816   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
817   unsigned ID;
818   if (getUnsigned(ID))
819     return true;
820   Info = &PFS.getVRegInfo(ID);
821   return false;
822 }
823 
824 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
825   switch (Token.kind()) {
826   case MIToken::underscore:
827     Reg = 0;
828     return false;
829   case MIToken::NamedRegister:
830     return parseNamedRegister(Reg);
831   case MIToken::VirtualRegister:
832     if (parseVirtualRegister(Info))
833       return true;
834     Reg = Info->VReg;
835     return false;
836   // TODO: Parse other register kinds.
837   default:
838     llvm_unreachable("The current token should be a register");
839   }
840 }
841 
842 bool MIParser::parseRegisterFlag(unsigned &Flags) {
843   const unsigned OldFlags = Flags;
844   switch (Token.kind()) {
845   case MIToken::kw_implicit:
846     Flags |= RegState::Implicit;
847     break;
848   case MIToken::kw_implicit_define:
849     Flags |= RegState::ImplicitDefine;
850     break;
851   case MIToken::kw_def:
852     Flags |= RegState::Define;
853     break;
854   case MIToken::kw_dead:
855     Flags |= RegState::Dead;
856     break;
857   case MIToken::kw_killed:
858     Flags |= RegState::Kill;
859     break;
860   case MIToken::kw_undef:
861     Flags |= RegState::Undef;
862     break;
863   case MIToken::kw_internal:
864     Flags |= RegState::InternalRead;
865     break;
866   case MIToken::kw_early_clobber:
867     Flags |= RegState::EarlyClobber;
868     break;
869   case MIToken::kw_debug_use:
870     Flags |= RegState::Debug;
871     break;
872   default:
873     llvm_unreachable("The current token should be a register flag");
874   }
875   if (OldFlags == Flags)
876     // We know that the same flag is specified more than once when the flags
877     // weren't modified.
878     return error("duplicate '" + Token.stringValue() + "' register flag");
879   lex();
880   return false;
881 }
882 
883 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
884   assert(Token.is(MIToken::dot));
885   lex();
886   if (Token.isNot(MIToken::Identifier))
887     return error("expected a subregister index after '.'");
888   auto Name = Token.stringValue();
889   SubReg = getSubRegIndex(Name);
890   if (!SubReg)
891     return error(Twine("use of unknown subregister index '") + Name + "'");
892   lex();
893   return false;
894 }
895 
896 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
897   if (!consumeIfPresent(MIToken::kw_tied_def))
898     return true;
899   if (Token.isNot(MIToken::IntegerLiteral))
900     return error("expected an integer literal after 'tied-def'");
901   if (getUnsigned(TiedDefIdx))
902     return true;
903   lex();
904   if (expectAndConsume(MIToken::rparen))
905     return true;
906   return false;
907 }
908 
909 bool MIParser::assignRegisterTies(MachineInstr &MI,
910                                   ArrayRef<ParsedMachineOperand> Operands) {
911   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
912   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
913     if (!Operands[I].TiedDefIdx)
914       continue;
915     // The parser ensures that this operand is a register use, so we just have
916     // to check the tied-def operand.
917     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
918     if (DefIdx >= E)
919       return error(Operands[I].Begin,
920                    Twine("use of invalid tied-def operand index '" +
921                          Twine(DefIdx) + "'; instruction has only ") +
922                        Twine(E) + " operands");
923     const auto &DefOperand = Operands[DefIdx].Operand;
924     if (!DefOperand.isReg() || !DefOperand.isDef())
925       // FIXME: add note with the def operand.
926       return error(Operands[I].Begin,
927                    Twine("use of invalid tied-def operand index '") +
928                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
929                        " isn't a defined register");
930     // Check that the tied-def operand wasn't tied elsewhere.
931     for (const auto &TiedPair : TiedRegisterPairs) {
932       if (TiedPair.first == DefIdx)
933         return error(Operands[I].Begin,
934                      Twine("the tied-def operand #") + Twine(DefIdx) +
935                          " is already tied with another register operand");
936     }
937     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
938   }
939   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
940   // indices must be less than tied max.
941   for (const auto &TiedPair : TiedRegisterPairs)
942     MI.tieOperands(TiedPair.first, TiedPair.second);
943   return false;
944 }
945 
946 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
947                                     Optional<unsigned> &TiedDefIdx,
948                                     bool IsDef) {
949   unsigned Flags = IsDef ? RegState::Define : 0;
950   while (Token.isRegisterFlag()) {
951     if (parseRegisterFlag(Flags))
952       return true;
953   }
954   if (!Token.isRegister())
955     return error("expected a register after register flags");
956   unsigned Reg;
957   VRegInfo *RegInfo;
958   if (parseRegister(Reg, RegInfo))
959     return true;
960   lex();
961   unsigned SubReg = 0;
962   if (Token.is(MIToken::dot)) {
963     if (parseSubRegisterIndex(SubReg))
964       return true;
965     if (!TargetRegisterInfo::isVirtualRegister(Reg))
966       return error("subregister index expects a virtual register");
967   }
968   MachineRegisterInfo &MRI = MF.getRegInfo();
969   if ((Flags & RegState::Define) == 0) {
970     if (consumeIfPresent(MIToken::lparen)) {
971       unsigned Idx;
972       if (!parseRegisterTiedDefIndex(Idx))
973         TiedDefIdx = Idx;
974       else {
975         // Try a redundant low-level type.
976         LLT Ty;
977         if (parseLowLevelType(Token.location(), Ty))
978           return error("expected tied-def or low-level type after '('");
979 
980         if (expectAndConsume(MIToken::rparen))
981           return true;
982 
983         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
984           return error("inconsistent type for generic virtual register");
985 
986         MRI.setType(Reg, Ty);
987       }
988     }
989   } else if (consumeIfPresent(MIToken::lparen)) {
990     // Virtual registers may have a size with GlobalISel.
991     if (!TargetRegisterInfo::isVirtualRegister(Reg))
992       return error("unexpected size on physical register");
993     if (RegInfo->Kind != VRegInfo::GENERIC &&
994         RegInfo->Kind != VRegInfo::REGBANK)
995       return error("unexpected size on non-generic virtual register");
996 
997     LLT Ty;
998     if (parseLowLevelType(Token.location(), Ty))
999       return true;
1000 
1001     if (expectAndConsume(MIToken::rparen))
1002       return true;
1003 
1004     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1005       return error("inconsistent type for generic virtual register");
1006 
1007     MRI.setType(Reg, Ty);
1008   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1009     // Generic virtual registers must have a size.
1010     // If we end up here this means the size hasn't been specified and
1011     // this is bad!
1012     if (RegInfo->Kind == VRegInfo::GENERIC ||
1013         RegInfo->Kind == VRegInfo::REGBANK)
1014       return error("generic virtual registers must have a size");
1015   }
1016   Dest = MachineOperand::CreateReg(
1017       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1018       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1019       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1020       Flags & RegState::InternalRead);
1021   return false;
1022 }
1023 
1024 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1025   assert(Token.is(MIToken::IntegerLiteral));
1026   const APSInt &Int = Token.integerValue();
1027   if (Int.getMinSignedBits() > 64)
1028     return error("integer literal is too large to be an immediate operand");
1029   Dest = MachineOperand::CreateImm(Int.getExtValue());
1030   lex();
1031   return false;
1032 }
1033 
1034 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1035                                const Constant *&C) {
1036   auto Source = StringValue.str(); // The source has to be null terminated.
1037   SMDiagnostic Err;
1038   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1039                          &PFS.IRSlots);
1040   if (!C)
1041     return error(Loc + Err.getColumnNo(), Err.getMessage());
1042   return false;
1043 }
1044 
1045 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1046   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1047     return true;
1048   lex();
1049   return false;
1050 }
1051 
1052 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1053   if (Token.is(MIToken::ScalarType)) {
1054     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1055     lex();
1056     return false;
1057   } else if (Token.is(MIToken::PointerType)) {
1058     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1059     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1060     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1061     lex();
1062     return false;
1063   }
1064 
1065   // Now we're looking for a vector.
1066   if (Token.isNot(MIToken::less))
1067     return error(Loc,
1068                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1069 
1070   lex();
1071 
1072   if (Token.isNot(MIToken::IntegerLiteral))
1073     return error(Loc, "expected <N x sM> for vctor type");
1074   uint64_t NumElements = Token.integerValue().getZExtValue();
1075   lex();
1076 
1077   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1078     return error(Loc, "expected '<N x sM>' for vector type");
1079   lex();
1080 
1081   if (Token.isNot(MIToken::ScalarType))
1082     return error(Loc, "expected '<N x sM>' for vector type");
1083   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1084   lex();
1085 
1086   if (Token.isNot(MIToken::greater))
1087     return error(Loc, "expected '<N x sM>' for vector type");
1088   lex();
1089 
1090   Ty = LLT::vector(NumElements, ScalarSize);
1091   return false;
1092 }
1093 
1094 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1095   assert(Token.is(MIToken::IntegerType));
1096   auto Loc = Token.location();
1097   lex();
1098   if (Token.isNot(MIToken::IntegerLiteral))
1099     return error("expected an integer literal");
1100   const Constant *C = nullptr;
1101   if (parseIRConstant(Loc, C))
1102     return true;
1103   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1104   return false;
1105 }
1106 
1107 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1108   auto Loc = Token.location();
1109   lex();
1110   if (Token.isNot(MIToken::FloatingPointLiteral))
1111     return error("expected a floating point literal");
1112   const Constant *C = nullptr;
1113   if (parseIRConstant(Loc, C))
1114     return true;
1115   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1116   return false;
1117 }
1118 
1119 bool MIParser::getUnsigned(unsigned &Result) {
1120   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1121   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1122   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1123   if (Val64 == Limit)
1124     return error("expected 32-bit integer (too large)");
1125   Result = Val64;
1126   return false;
1127 }
1128 
1129 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1130   assert(Token.is(MIToken::MachineBasicBlock) ||
1131          Token.is(MIToken::MachineBasicBlockLabel));
1132   unsigned Number;
1133   if (getUnsigned(Number))
1134     return true;
1135   auto MBBInfo = PFS.MBBSlots.find(Number);
1136   if (MBBInfo == PFS.MBBSlots.end())
1137     return error(Twine("use of undefined machine basic block #") +
1138                  Twine(Number));
1139   MBB = MBBInfo->second;
1140   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1141     return error(Twine("the name of machine basic block #") + Twine(Number) +
1142                  " isn't '" + Token.stringValue() + "'");
1143   return false;
1144 }
1145 
1146 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1147   MachineBasicBlock *MBB;
1148   if (parseMBBReference(MBB))
1149     return true;
1150   Dest = MachineOperand::CreateMBB(MBB);
1151   lex();
1152   return false;
1153 }
1154 
1155 bool MIParser::parseStackFrameIndex(int &FI) {
1156   assert(Token.is(MIToken::StackObject));
1157   unsigned ID;
1158   if (getUnsigned(ID))
1159     return true;
1160   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1161   if (ObjectInfo == PFS.StackObjectSlots.end())
1162     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1163                  "'");
1164   StringRef Name;
1165   if (const auto *Alloca =
1166           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1167     Name = Alloca->getName();
1168   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1169     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1170                  "' isn't '" + Token.stringValue() + "'");
1171   lex();
1172   FI = ObjectInfo->second;
1173   return false;
1174 }
1175 
1176 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1177   int FI;
1178   if (parseStackFrameIndex(FI))
1179     return true;
1180   Dest = MachineOperand::CreateFI(FI);
1181   return false;
1182 }
1183 
1184 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1185   assert(Token.is(MIToken::FixedStackObject));
1186   unsigned ID;
1187   if (getUnsigned(ID))
1188     return true;
1189   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1190   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1191     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1192                  Twine(ID) + "'");
1193   lex();
1194   FI = ObjectInfo->second;
1195   return false;
1196 }
1197 
1198 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1199   int FI;
1200   if (parseFixedStackFrameIndex(FI))
1201     return true;
1202   Dest = MachineOperand::CreateFI(FI);
1203   return false;
1204 }
1205 
1206 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1207   switch (Token.kind()) {
1208   case MIToken::NamedGlobalValue: {
1209     const Module *M = MF.getFunction()->getParent();
1210     GV = M->getNamedValue(Token.stringValue());
1211     if (!GV)
1212       return error(Twine("use of undefined global value '") + Token.range() +
1213                    "'");
1214     break;
1215   }
1216   case MIToken::GlobalValue: {
1217     unsigned GVIdx;
1218     if (getUnsigned(GVIdx))
1219       return true;
1220     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1221       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1222                    "'");
1223     GV = PFS.IRSlots.GlobalValues[GVIdx];
1224     break;
1225   }
1226   default:
1227     llvm_unreachable("The current token should be a global value");
1228   }
1229   return false;
1230 }
1231 
1232 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1233   GlobalValue *GV = nullptr;
1234   if (parseGlobalValue(GV))
1235     return true;
1236   lex();
1237   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1238   if (parseOperandsOffset(Dest))
1239     return true;
1240   return false;
1241 }
1242 
1243 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1244   assert(Token.is(MIToken::ConstantPoolItem));
1245   unsigned ID;
1246   if (getUnsigned(ID))
1247     return true;
1248   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1249   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1250     return error("use of undefined constant '%const." + Twine(ID) + "'");
1251   lex();
1252   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1253   if (parseOperandsOffset(Dest))
1254     return true;
1255   return false;
1256 }
1257 
1258 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1259   assert(Token.is(MIToken::JumpTableIndex));
1260   unsigned ID;
1261   if (getUnsigned(ID))
1262     return true;
1263   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1264   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1265     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1266   lex();
1267   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1268   return false;
1269 }
1270 
1271 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1272   assert(Token.is(MIToken::ExternalSymbol));
1273   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1274   lex();
1275   Dest = MachineOperand::CreateES(Symbol);
1276   if (parseOperandsOffset(Dest))
1277     return true;
1278   return false;
1279 }
1280 
1281 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1282   assert(Token.is(MIToken::SubRegisterIndex));
1283   StringRef Name = Token.stringValue();
1284   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1285   if (SubRegIndex == 0)
1286     return error(Twine("unknown subregister index '") + Name + "'");
1287   lex();
1288   Dest = MachineOperand::CreateImm(SubRegIndex);
1289   return false;
1290 }
1291 
1292 bool MIParser::parseMDNode(MDNode *&Node) {
1293   assert(Token.is(MIToken::exclaim));
1294   auto Loc = Token.location();
1295   lex();
1296   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1297     return error("expected metadata id after '!'");
1298   unsigned ID;
1299   if (getUnsigned(ID))
1300     return true;
1301   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1302   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1303     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1304   lex();
1305   Node = NodeInfo->second.get();
1306   return false;
1307 }
1308 
1309 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1310   MDNode *Node = nullptr;
1311   if (parseMDNode(Node))
1312     return true;
1313   Dest = MachineOperand::CreateMetadata(Node);
1314   return false;
1315 }
1316 
1317 bool MIParser::parseCFIOffset(int &Offset) {
1318   if (Token.isNot(MIToken::IntegerLiteral))
1319     return error("expected a cfi offset");
1320   if (Token.integerValue().getMinSignedBits() > 32)
1321     return error("expected a 32 bit integer (the cfi offset is too large)");
1322   Offset = (int)Token.integerValue().getExtValue();
1323   lex();
1324   return false;
1325 }
1326 
1327 bool MIParser::parseCFIRegister(unsigned &Reg) {
1328   if (Token.isNot(MIToken::NamedRegister))
1329     return error("expected a cfi register");
1330   unsigned LLVMReg;
1331   if (parseNamedRegister(LLVMReg))
1332     return true;
1333   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1334   assert(TRI && "Expected target register info");
1335   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1336   if (DwarfReg < 0)
1337     return error("invalid DWARF register");
1338   Reg = (unsigned)DwarfReg;
1339   lex();
1340   return false;
1341 }
1342 
1343 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1344   auto Kind = Token.kind();
1345   lex();
1346   auto &MMI = MF.getMMI();
1347   int Offset;
1348   unsigned Reg;
1349   unsigned CFIIndex;
1350   switch (Kind) {
1351   case MIToken::kw_cfi_same_value:
1352     if (parseCFIRegister(Reg))
1353       return true;
1354     CFIIndex =
1355         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1356     break;
1357   case MIToken::kw_cfi_offset:
1358     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1359         parseCFIOffset(Offset))
1360       return true;
1361     CFIIndex =
1362         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1363     break;
1364   case MIToken::kw_cfi_def_cfa_register:
1365     if (parseCFIRegister(Reg))
1366       return true;
1367     CFIIndex =
1368         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1369     break;
1370   case MIToken::kw_cfi_def_cfa_offset:
1371     if (parseCFIOffset(Offset))
1372       return true;
1373     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1374     CFIIndex = MMI.addFrameInst(
1375         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1376     break;
1377   case MIToken::kw_cfi_def_cfa:
1378     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1379         parseCFIOffset(Offset))
1380       return true;
1381     // NB: MCCFIInstruction::createDefCfa negates the offset.
1382     CFIIndex =
1383         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1384     break;
1385   default:
1386     // TODO: Parse the other CFI operands.
1387     llvm_unreachable("The current token should be a cfi operand");
1388   }
1389   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1390   return false;
1391 }
1392 
1393 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1394   switch (Token.kind()) {
1395   case MIToken::NamedIRBlock: {
1396     BB = dyn_cast_or_null<BasicBlock>(
1397         F.getValueSymbolTable()->lookup(Token.stringValue()));
1398     if (!BB)
1399       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1400     break;
1401   }
1402   case MIToken::IRBlock: {
1403     unsigned SlotNumber = 0;
1404     if (getUnsigned(SlotNumber))
1405       return true;
1406     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1407     if (!BB)
1408       return error(Twine("use of undefined IR block '%ir-block.") +
1409                    Twine(SlotNumber) + "'");
1410     break;
1411   }
1412   default:
1413     llvm_unreachable("The current token should be an IR block reference");
1414   }
1415   return false;
1416 }
1417 
1418 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1419   assert(Token.is(MIToken::kw_blockaddress));
1420   lex();
1421   if (expectAndConsume(MIToken::lparen))
1422     return true;
1423   if (Token.isNot(MIToken::GlobalValue) &&
1424       Token.isNot(MIToken::NamedGlobalValue))
1425     return error("expected a global value");
1426   GlobalValue *GV = nullptr;
1427   if (parseGlobalValue(GV))
1428     return true;
1429   auto *F = dyn_cast<Function>(GV);
1430   if (!F)
1431     return error("expected an IR function reference");
1432   lex();
1433   if (expectAndConsume(MIToken::comma))
1434     return true;
1435   BasicBlock *BB = nullptr;
1436   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1437     return error("expected an IR block reference");
1438   if (parseIRBlock(BB, *F))
1439     return true;
1440   lex();
1441   if (expectAndConsume(MIToken::rparen))
1442     return true;
1443   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1444   if (parseOperandsOffset(Dest))
1445     return true;
1446   return false;
1447 }
1448 
1449 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1450   assert(Token.is(MIToken::kw_intrinsic));
1451   lex();
1452   if (expectAndConsume(MIToken::lparen))
1453     return error("expected syntax intrinsic(@llvm.whatever)");
1454 
1455   if (Token.isNot(MIToken::NamedGlobalValue))
1456     return error("expected syntax intrinsic(@llvm.whatever)");
1457 
1458   std::string Name = Token.stringValue();
1459   lex();
1460 
1461   if (expectAndConsume(MIToken::rparen))
1462     return error("expected ')' to terminate intrinsic name");
1463 
1464   // Find out what intrinsic we're dealing with, first try the global namespace
1465   // and then the target's private intrinsics if that fails.
1466   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1467   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1468   if (ID == Intrinsic::not_intrinsic && TII)
1469     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1470 
1471   if (ID == Intrinsic::not_intrinsic)
1472     return error("unknown intrinsic name");
1473   Dest = MachineOperand::CreateIntrinsicID(ID);
1474 
1475   return false;
1476 }
1477 
1478 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1479   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1480   bool IsFloat = Token.is(MIToken::kw_floatpred);
1481   lex();
1482 
1483   if (expectAndConsume(MIToken::lparen))
1484     return error("expected syntax intpred(whatever) or floatpred(whatever");
1485 
1486   if (Token.isNot(MIToken::Identifier))
1487     return error("whatever");
1488 
1489   CmpInst::Predicate Pred;
1490   if (IsFloat) {
1491     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1492                .Case("false", CmpInst::FCMP_FALSE)
1493                .Case("oeq", CmpInst::FCMP_OEQ)
1494                .Case("ogt", CmpInst::FCMP_OGT)
1495                .Case("oge", CmpInst::FCMP_OGE)
1496                .Case("olt", CmpInst::FCMP_OLT)
1497                .Case("ole", CmpInst::FCMP_OLE)
1498                .Case("one", CmpInst::FCMP_ONE)
1499                .Case("ord", CmpInst::FCMP_ORD)
1500                .Case("uno", CmpInst::FCMP_UNO)
1501                .Case("ueq", CmpInst::FCMP_UEQ)
1502                .Case("ugt", CmpInst::FCMP_UGT)
1503                .Case("uge", CmpInst::FCMP_UGE)
1504                .Case("ult", CmpInst::FCMP_ULT)
1505                .Case("ule", CmpInst::FCMP_ULE)
1506                .Case("une", CmpInst::FCMP_UNE)
1507                .Case("true", CmpInst::FCMP_TRUE)
1508                .Default(CmpInst::BAD_FCMP_PREDICATE);
1509     if (!CmpInst::isFPPredicate(Pred))
1510       return error("invalid floating-point predicate");
1511   } else {
1512     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1513                .Case("eq", CmpInst::ICMP_EQ)
1514                .Case("ne", CmpInst::ICMP_NE)
1515                .Case("sgt", CmpInst::ICMP_SGT)
1516                .Case("sge", CmpInst::ICMP_SGE)
1517                .Case("slt", CmpInst::ICMP_SLT)
1518                .Case("sle", CmpInst::ICMP_SLE)
1519                .Case("ugt", CmpInst::ICMP_UGT)
1520                .Case("uge", CmpInst::ICMP_UGE)
1521                .Case("ult", CmpInst::ICMP_ULT)
1522                .Case("ule", CmpInst::ICMP_ULE)
1523                .Default(CmpInst::BAD_ICMP_PREDICATE);
1524     if (!CmpInst::isIntPredicate(Pred))
1525       return error("invalid integer predicate");
1526   }
1527 
1528   lex();
1529   Dest = MachineOperand::CreatePredicate(Pred);
1530   if (expectAndConsume(MIToken::rparen))
1531     return error("predicate should be terminated by ')'.");
1532 
1533   return false;
1534 }
1535 
1536 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1537   assert(Token.is(MIToken::kw_target_index));
1538   lex();
1539   if (expectAndConsume(MIToken::lparen))
1540     return true;
1541   if (Token.isNot(MIToken::Identifier))
1542     return error("expected the name of the target index");
1543   int Index = 0;
1544   if (getTargetIndex(Token.stringValue(), Index))
1545     return error("use of undefined target index '" + Token.stringValue() + "'");
1546   lex();
1547   if (expectAndConsume(MIToken::rparen))
1548     return true;
1549   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1550   if (parseOperandsOffset(Dest))
1551     return true;
1552   return false;
1553 }
1554 
1555 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1556   assert(Token.is(MIToken::kw_liveout));
1557   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1558   assert(TRI && "Expected target register info");
1559   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1560   lex();
1561   if (expectAndConsume(MIToken::lparen))
1562     return true;
1563   while (true) {
1564     if (Token.isNot(MIToken::NamedRegister))
1565       return error("expected a named register");
1566     unsigned Reg;
1567     if (parseNamedRegister(Reg))
1568       return true;
1569     lex();
1570     Mask[Reg / 32] |= 1U << (Reg % 32);
1571     // TODO: Report an error if the same register is used more than once.
1572     if (Token.isNot(MIToken::comma))
1573       break;
1574     lex();
1575   }
1576   if (expectAndConsume(MIToken::rparen))
1577     return true;
1578   Dest = MachineOperand::CreateRegLiveOut(Mask);
1579   return false;
1580 }
1581 
1582 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1583                                    Optional<unsigned> &TiedDefIdx) {
1584   switch (Token.kind()) {
1585   case MIToken::kw_implicit:
1586   case MIToken::kw_implicit_define:
1587   case MIToken::kw_def:
1588   case MIToken::kw_dead:
1589   case MIToken::kw_killed:
1590   case MIToken::kw_undef:
1591   case MIToken::kw_internal:
1592   case MIToken::kw_early_clobber:
1593   case MIToken::kw_debug_use:
1594   case MIToken::underscore:
1595   case MIToken::NamedRegister:
1596   case MIToken::VirtualRegister:
1597     return parseRegisterOperand(Dest, TiedDefIdx);
1598   case MIToken::IntegerLiteral:
1599     return parseImmediateOperand(Dest);
1600   case MIToken::IntegerType:
1601     return parseTypedImmediateOperand(Dest);
1602   case MIToken::kw_half:
1603   case MIToken::kw_float:
1604   case MIToken::kw_double:
1605   case MIToken::kw_x86_fp80:
1606   case MIToken::kw_fp128:
1607   case MIToken::kw_ppc_fp128:
1608     return parseFPImmediateOperand(Dest);
1609   case MIToken::MachineBasicBlock:
1610     return parseMBBOperand(Dest);
1611   case MIToken::StackObject:
1612     return parseStackObjectOperand(Dest);
1613   case MIToken::FixedStackObject:
1614     return parseFixedStackObjectOperand(Dest);
1615   case MIToken::GlobalValue:
1616   case MIToken::NamedGlobalValue:
1617     return parseGlobalAddressOperand(Dest);
1618   case MIToken::ConstantPoolItem:
1619     return parseConstantPoolIndexOperand(Dest);
1620   case MIToken::JumpTableIndex:
1621     return parseJumpTableIndexOperand(Dest);
1622   case MIToken::ExternalSymbol:
1623     return parseExternalSymbolOperand(Dest);
1624   case MIToken::SubRegisterIndex:
1625     return parseSubRegisterIndexOperand(Dest);
1626   case MIToken::exclaim:
1627     return parseMetadataOperand(Dest);
1628   case MIToken::kw_cfi_same_value:
1629   case MIToken::kw_cfi_offset:
1630   case MIToken::kw_cfi_def_cfa_register:
1631   case MIToken::kw_cfi_def_cfa_offset:
1632   case MIToken::kw_cfi_def_cfa:
1633     return parseCFIOperand(Dest);
1634   case MIToken::kw_blockaddress:
1635     return parseBlockAddressOperand(Dest);
1636   case MIToken::kw_intrinsic:
1637     return parseIntrinsicOperand(Dest);
1638   case MIToken::kw_target_index:
1639     return parseTargetIndexOperand(Dest);
1640   case MIToken::kw_liveout:
1641     return parseLiveoutRegisterMaskOperand(Dest);
1642   case MIToken::kw_floatpred:
1643   case MIToken::kw_intpred:
1644     return parsePredicateOperand(Dest);
1645   case MIToken::Error:
1646     return true;
1647   case MIToken::Identifier:
1648     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1649       Dest = MachineOperand::CreateRegMask(RegMask);
1650       lex();
1651       break;
1652     }
1653     LLVM_FALLTHROUGH;
1654   default:
1655     // FIXME: Parse the MCSymbol machine operand.
1656     return error("expected a machine operand");
1657   }
1658   return false;
1659 }
1660 
1661 bool MIParser::parseMachineOperandAndTargetFlags(
1662     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1663   unsigned TF = 0;
1664   bool HasTargetFlags = false;
1665   if (Token.is(MIToken::kw_target_flags)) {
1666     HasTargetFlags = true;
1667     lex();
1668     if (expectAndConsume(MIToken::lparen))
1669       return true;
1670     if (Token.isNot(MIToken::Identifier))
1671       return error("expected the name of the target flag");
1672     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1673       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1674         return error("use of undefined target flag '" + Token.stringValue() +
1675                      "'");
1676     }
1677     lex();
1678     while (Token.is(MIToken::comma)) {
1679       lex();
1680       if (Token.isNot(MIToken::Identifier))
1681         return error("expected the name of the target flag");
1682       unsigned BitFlag = 0;
1683       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1684         return error("use of undefined target flag '" + Token.stringValue() +
1685                      "'");
1686       // TODO: Report an error when using a duplicate bit target flag.
1687       TF |= BitFlag;
1688       lex();
1689     }
1690     if (expectAndConsume(MIToken::rparen))
1691       return true;
1692   }
1693   auto Loc = Token.location();
1694   if (parseMachineOperand(Dest, TiedDefIdx))
1695     return true;
1696   if (!HasTargetFlags)
1697     return false;
1698   if (Dest.isReg())
1699     return error(Loc, "register operands can't have target flags");
1700   Dest.setTargetFlags(TF);
1701   return false;
1702 }
1703 
1704 bool MIParser::parseOffset(int64_t &Offset) {
1705   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1706     return false;
1707   StringRef Sign = Token.range();
1708   bool IsNegative = Token.is(MIToken::minus);
1709   lex();
1710   if (Token.isNot(MIToken::IntegerLiteral))
1711     return error("expected an integer literal after '" + Sign + "'");
1712   if (Token.integerValue().getMinSignedBits() > 64)
1713     return error("expected 64-bit integer (too large)");
1714   Offset = Token.integerValue().getExtValue();
1715   if (IsNegative)
1716     Offset = -Offset;
1717   lex();
1718   return false;
1719 }
1720 
1721 bool MIParser::parseAlignment(unsigned &Alignment) {
1722   assert(Token.is(MIToken::kw_align));
1723   lex();
1724   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1725     return error("expected an integer literal after 'align'");
1726   if (getUnsigned(Alignment))
1727     return true;
1728   lex();
1729   return false;
1730 }
1731 
1732 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1733   int64_t Offset = 0;
1734   if (parseOffset(Offset))
1735     return true;
1736   Op.setOffset(Offset);
1737   return false;
1738 }
1739 
1740 bool MIParser::parseIRValue(const Value *&V) {
1741   switch (Token.kind()) {
1742   case MIToken::NamedIRValue: {
1743     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1744     break;
1745   }
1746   case MIToken::IRValue: {
1747     unsigned SlotNumber = 0;
1748     if (getUnsigned(SlotNumber))
1749       return true;
1750     V = getIRValue(SlotNumber);
1751     break;
1752   }
1753   case MIToken::NamedGlobalValue:
1754   case MIToken::GlobalValue: {
1755     GlobalValue *GV = nullptr;
1756     if (parseGlobalValue(GV))
1757       return true;
1758     V = GV;
1759     break;
1760   }
1761   case MIToken::QuotedIRValue: {
1762     const Constant *C = nullptr;
1763     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1764       return true;
1765     V = C;
1766     break;
1767   }
1768   default:
1769     llvm_unreachable("The current token should be an IR block reference");
1770   }
1771   if (!V)
1772     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1773   return false;
1774 }
1775 
1776 bool MIParser::getUint64(uint64_t &Result) {
1777   assert(Token.hasIntegerValue());
1778   if (Token.integerValue().getActiveBits() > 64)
1779     return error("expected 64-bit integer (too large)");
1780   Result = Token.integerValue().getZExtValue();
1781   return false;
1782 }
1783 
1784 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1785   const auto OldFlags = Flags;
1786   switch (Token.kind()) {
1787   case MIToken::kw_volatile:
1788     Flags |= MachineMemOperand::MOVolatile;
1789     break;
1790   case MIToken::kw_non_temporal:
1791     Flags |= MachineMemOperand::MONonTemporal;
1792     break;
1793   case MIToken::kw_dereferenceable:
1794     Flags |= MachineMemOperand::MODereferenceable;
1795     break;
1796   case MIToken::kw_invariant:
1797     Flags |= MachineMemOperand::MOInvariant;
1798     break;
1799   // TODO: parse the target specific memory operand flags.
1800   default:
1801     llvm_unreachable("The current token should be a memory operand flag");
1802   }
1803   if (OldFlags == Flags)
1804     // We know that the same flag is specified more than once when the flags
1805     // weren't modified.
1806     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1807   lex();
1808   return false;
1809 }
1810 
1811 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1812   switch (Token.kind()) {
1813   case MIToken::kw_stack:
1814     PSV = MF.getPSVManager().getStack();
1815     break;
1816   case MIToken::kw_got:
1817     PSV = MF.getPSVManager().getGOT();
1818     break;
1819   case MIToken::kw_jump_table:
1820     PSV = MF.getPSVManager().getJumpTable();
1821     break;
1822   case MIToken::kw_constant_pool:
1823     PSV = MF.getPSVManager().getConstantPool();
1824     break;
1825   case MIToken::FixedStackObject: {
1826     int FI;
1827     if (parseFixedStackFrameIndex(FI))
1828       return true;
1829     PSV = MF.getPSVManager().getFixedStack(FI);
1830     // The token was already consumed, so use return here instead of break.
1831     return false;
1832   }
1833   case MIToken::StackObject: {
1834     int FI;
1835     if (parseStackFrameIndex(FI))
1836       return true;
1837     PSV = MF.getPSVManager().getFixedStack(FI);
1838     // The token was already consumed, so use return here instead of break.
1839     return false;
1840   }
1841   case MIToken::kw_call_entry: {
1842     lex();
1843     switch (Token.kind()) {
1844     case MIToken::GlobalValue:
1845     case MIToken::NamedGlobalValue: {
1846       GlobalValue *GV = nullptr;
1847       if (parseGlobalValue(GV))
1848         return true;
1849       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1850       break;
1851     }
1852     case MIToken::ExternalSymbol:
1853       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1854           MF.createExternalSymbolName(Token.stringValue()));
1855       break;
1856     default:
1857       return error(
1858           "expected a global value or an external symbol after 'call-entry'");
1859     }
1860     break;
1861   }
1862   default:
1863     llvm_unreachable("The current token should be pseudo source value");
1864   }
1865   lex();
1866   return false;
1867 }
1868 
1869 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1870   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1871       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1872       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1873       Token.is(MIToken::kw_call_entry)) {
1874     const PseudoSourceValue *PSV = nullptr;
1875     if (parseMemoryPseudoSourceValue(PSV))
1876       return true;
1877     int64_t Offset = 0;
1878     if (parseOffset(Offset))
1879       return true;
1880     Dest = MachinePointerInfo(PSV, Offset);
1881     return false;
1882   }
1883   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1884       Token.isNot(MIToken::GlobalValue) &&
1885       Token.isNot(MIToken::NamedGlobalValue) &&
1886       Token.isNot(MIToken::QuotedIRValue))
1887     return error("expected an IR value reference");
1888   const Value *V = nullptr;
1889   if (parseIRValue(V))
1890     return true;
1891   if (!V->getType()->isPointerTy())
1892     return error("expected a pointer IR value");
1893   lex();
1894   int64_t Offset = 0;
1895   if (parseOffset(Offset))
1896     return true;
1897   Dest = MachinePointerInfo(V, Offset);
1898   return false;
1899 }
1900 
1901 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1902   if (expectAndConsume(MIToken::lparen))
1903     return true;
1904   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1905   while (Token.isMemoryOperandFlag()) {
1906     if (parseMemoryOperandFlag(Flags))
1907       return true;
1908   }
1909   if (Token.isNot(MIToken::Identifier) ||
1910       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1911     return error("expected 'load' or 'store' memory operation");
1912   if (Token.stringValue() == "load")
1913     Flags |= MachineMemOperand::MOLoad;
1914   else
1915     Flags |= MachineMemOperand::MOStore;
1916   lex();
1917 
1918   if (Token.isNot(MIToken::IntegerLiteral))
1919     return error("expected the size integer literal after memory operation");
1920   uint64_t Size;
1921   if (getUint64(Size))
1922     return true;
1923   lex();
1924 
1925   MachinePointerInfo Ptr = MachinePointerInfo();
1926   if (Token.is(MIToken::Identifier)) {
1927     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1928     if (Token.stringValue() != Word)
1929       return error(Twine("expected '") + Word + "'");
1930     lex();
1931 
1932     if (parseMachinePointerInfo(Ptr))
1933       return true;
1934   }
1935   unsigned BaseAlignment = Size;
1936   AAMDNodes AAInfo;
1937   MDNode *Range = nullptr;
1938   while (consumeIfPresent(MIToken::comma)) {
1939     switch (Token.kind()) {
1940     case MIToken::kw_align:
1941       if (parseAlignment(BaseAlignment))
1942         return true;
1943       break;
1944     case MIToken::md_tbaa:
1945       lex();
1946       if (parseMDNode(AAInfo.TBAA))
1947         return true;
1948       break;
1949     case MIToken::md_alias_scope:
1950       lex();
1951       if (parseMDNode(AAInfo.Scope))
1952         return true;
1953       break;
1954     case MIToken::md_noalias:
1955       lex();
1956       if (parseMDNode(AAInfo.NoAlias))
1957         return true;
1958       break;
1959     case MIToken::md_range:
1960       lex();
1961       if (parseMDNode(Range))
1962         return true;
1963       break;
1964     // TODO: Report an error on duplicate metadata nodes.
1965     default:
1966       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1967                    "'!noalias' or '!range'");
1968     }
1969   }
1970   if (expectAndConsume(MIToken::rparen))
1971     return true;
1972   Dest =
1973       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1974   return false;
1975 }
1976 
1977 void MIParser::initNames2InstrOpCodes() {
1978   if (!Names2InstrOpCodes.empty())
1979     return;
1980   const auto *TII = MF.getSubtarget().getInstrInfo();
1981   assert(TII && "Expected target instruction info");
1982   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1983     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1984 }
1985 
1986 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1987   initNames2InstrOpCodes();
1988   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1989   if (InstrInfo == Names2InstrOpCodes.end())
1990     return true;
1991   OpCode = InstrInfo->getValue();
1992   return false;
1993 }
1994 
1995 void MIParser::initNames2Regs() {
1996   if (!Names2Regs.empty())
1997     return;
1998   // The '%noreg' register is the register 0.
1999   Names2Regs.insert(std::make_pair("noreg", 0));
2000   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2001   assert(TRI && "Expected target register info");
2002   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2003     bool WasInserted =
2004         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2005             .second;
2006     (void)WasInserted;
2007     assert(WasInserted && "Expected registers to be unique case-insensitively");
2008   }
2009 }
2010 
2011 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2012   initNames2Regs();
2013   auto RegInfo = Names2Regs.find(RegName);
2014   if (RegInfo == Names2Regs.end())
2015     return true;
2016   Reg = RegInfo->getValue();
2017   return false;
2018 }
2019 
2020 void MIParser::initNames2RegMasks() {
2021   if (!Names2RegMasks.empty())
2022     return;
2023   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2024   assert(TRI && "Expected target register info");
2025   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2026   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2027   assert(RegMasks.size() == RegMaskNames.size());
2028   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2029     Names2RegMasks.insert(
2030         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2031 }
2032 
2033 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2034   initNames2RegMasks();
2035   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2036   if (RegMaskInfo == Names2RegMasks.end())
2037     return nullptr;
2038   return RegMaskInfo->getValue();
2039 }
2040 
2041 void MIParser::initNames2SubRegIndices() {
2042   if (!Names2SubRegIndices.empty())
2043     return;
2044   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2045   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2046     Names2SubRegIndices.insert(
2047         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2048 }
2049 
2050 unsigned MIParser::getSubRegIndex(StringRef Name) {
2051   initNames2SubRegIndices();
2052   auto SubRegInfo = Names2SubRegIndices.find(Name);
2053   if (SubRegInfo == Names2SubRegIndices.end())
2054     return 0;
2055   return SubRegInfo->getValue();
2056 }
2057 
2058 static void initSlots2BasicBlocks(
2059     const Function &F,
2060     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2061   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2062   MST.incorporateFunction(F);
2063   for (auto &BB : F) {
2064     if (BB.hasName())
2065       continue;
2066     int Slot = MST.getLocalSlot(&BB);
2067     if (Slot == -1)
2068       continue;
2069     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2070   }
2071 }
2072 
2073 static const BasicBlock *getIRBlockFromSlot(
2074     unsigned Slot,
2075     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2076   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2077   if (BlockInfo == Slots2BasicBlocks.end())
2078     return nullptr;
2079   return BlockInfo->second;
2080 }
2081 
2082 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2083   if (Slots2BasicBlocks.empty())
2084     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2085   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2086 }
2087 
2088 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2089   if (&F == MF.getFunction())
2090     return getIRBlock(Slot);
2091   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2092   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2093   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2094 }
2095 
2096 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2097                            DenseMap<unsigned, const Value *> &Slots2Values) {
2098   int Slot = MST.getLocalSlot(V);
2099   if (Slot == -1)
2100     return;
2101   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2102 }
2103 
2104 /// Creates the mapping from slot numbers to function's unnamed IR values.
2105 static void initSlots2Values(const Function &F,
2106                              DenseMap<unsigned, const Value *> &Slots2Values) {
2107   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2108   MST.incorporateFunction(F);
2109   for (const auto &Arg : F.args())
2110     mapValueToSlot(&Arg, MST, Slots2Values);
2111   for (const auto &BB : F) {
2112     mapValueToSlot(&BB, MST, Slots2Values);
2113     for (const auto &I : BB)
2114       mapValueToSlot(&I, MST, Slots2Values);
2115   }
2116 }
2117 
2118 const Value *MIParser::getIRValue(unsigned Slot) {
2119   if (Slots2Values.empty())
2120     initSlots2Values(*MF.getFunction(), Slots2Values);
2121   auto ValueInfo = Slots2Values.find(Slot);
2122   if (ValueInfo == Slots2Values.end())
2123     return nullptr;
2124   return ValueInfo->second;
2125 }
2126 
2127 void MIParser::initNames2TargetIndices() {
2128   if (!Names2TargetIndices.empty())
2129     return;
2130   const auto *TII = MF.getSubtarget().getInstrInfo();
2131   assert(TII && "Expected target instruction info");
2132   auto Indices = TII->getSerializableTargetIndices();
2133   for (const auto &I : Indices)
2134     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2135 }
2136 
2137 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2138   initNames2TargetIndices();
2139   auto IndexInfo = Names2TargetIndices.find(Name);
2140   if (IndexInfo == Names2TargetIndices.end())
2141     return true;
2142   Index = IndexInfo->second;
2143   return false;
2144 }
2145 
2146 void MIParser::initNames2DirectTargetFlags() {
2147   if (!Names2DirectTargetFlags.empty())
2148     return;
2149   const auto *TII = MF.getSubtarget().getInstrInfo();
2150   assert(TII && "Expected target instruction info");
2151   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2152   for (const auto &I : Flags)
2153     Names2DirectTargetFlags.insert(
2154         std::make_pair(StringRef(I.second), I.first));
2155 }
2156 
2157 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2158   initNames2DirectTargetFlags();
2159   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2160   if (FlagInfo == Names2DirectTargetFlags.end())
2161     return true;
2162   Flag = FlagInfo->second;
2163   return false;
2164 }
2165 
2166 void MIParser::initNames2BitmaskTargetFlags() {
2167   if (!Names2BitmaskTargetFlags.empty())
2168     return;
2169   const auto *TII = MF.getSubtarget().getInstrInfo();
2170   assert(TII && "Expected target instruction info");
2171   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2172   for (const auto &I : Flags)
2173     Names2BitmaskTargetFlags.insert(
2174         std::make_pair(StringRef(I.second), I.first));
2175 }
2176 
2177 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2178   initNames2BitmaskTargetFlags();
2179   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2180   if (FlagInfo == Names2BitmaskTargetFlags.end())
2181     return true;
2182   Flag = FlagInfo->second;
2183   return false;
2184 }
2185 
2186 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2187                                              StringRef Src,
2188                                              SMDiagnostic &Error) {
2189   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2190 }
2191 
2192 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2193                                     StringRef Src, SMDiagnostic &Error) {
2194   return MIParser(PFS, Error, Src).parseBasicBlocks();
2195 }
2196 
2197 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2198                              MachineBasicBlock *&MBB, StringRef Src,
2199                              SMDiagnostic &Error) {
2200   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2201 }
2202 
2203 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2204                                        unsigned &Reg, StringRef Src,
2205                                        SMDiagnostic &Error) {
2206   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2207 }
2208 
2209 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2210                                          VRegInfo *&Info, StringRef Src,
2211                                          SMDiagnostic &Error) {
2212   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2213 }
2214 
2215 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2216                                      int &FI, StringRef Src,
2217                                      SMDiagnostic &Error) {
2218   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2219 }
2220 
2221 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2222                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2223   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2224 }
2225